xref: /linux/drivers/cpufreq/cppc_cpufreq.c (revision abdf766d149c51fb256118f73be947d7a82f702e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * CPPC (Collaborative Processor Performance Control) driver for
4  * interfacing with the CPUfreq layer and governors. See
5  * cppc_acpi.c for CPPC specific methods.
6  *
7  * (C) Copyright 2014, 2015 Linaro Ltd.
8  * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
9  */
10 
11 #define pr_fmt(fmt)	"CPPC Cpufreq:"	fmt
12 
13 #include <linux/arch_topology.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/delay.h>
17 #include <linux/cpu.h>
18 #include <linux/cpufreq.h>
19 #include <linux/irq_work.h>
20 #include <linux/kthread.h>
21 #include <linux/time.h>
22 #include <linux/vmalloc.h>
23 #include <uapi/linux/sched/types.h>
24 
25 #include <linux/unaligned.h>
26 
27 #include <acpi/cppc_acpi.h>
28 
29 static struct cpufreq_driver cppc_cpufreq_driver;
30 
31 #ifdef CONFIG_ACPI_CPPC_CPUFREQ_FIE
32 static enum {
33 	FIE_UNSET = -1,
34 	FIE_ENABLED,
35 	FIE_DISABLED
36 } fie_disabled = FIE_UNSET;
37 
38 module_param(fie_disabled, int, 0444);
39 MODULE_PARM_DESC(fie_disabled, "Disable Frequency Invariance Engine (FIE)");
40 
41 /* Frequency invariance support */
42 struct cppc_freq_invariance {
43 	int cpu;
44 	struct irq_work irq_work;
45 	struct kthread_work work;
46 	struct cppc_perf_fb_ctrs prev_perf_fb_ctrs;
47 	struct cppc_cpudata *cpu_data;
48 };
49 
50 static DEFINE_PER_CPU(struct cppc_freq_invariance, cppc_freq_inv);
51 static struct kthread_worker *kworker_fie;
52 
53 static int cppc_perf_from_fbctrs(struct cppc_perf_fb_ctrs *fb_ctrs_t0,
54 				 struct cppc_perf_fb_ctrs *fb_ctrs_t1);
55 
56 /**
57  * cppc_scale_freq_workfn - CPPC arch_freq_scale updater for frequency invariance
58  * @work: The work item.
59  *
60  * The CPPC driver register itself with the topology core to provide its own
61  * implementation (cppc_scale_freq_tick()) of topology_scale_freq_tick() which
62  * gets called by the scheduler on every tick.
63  *
64  * Note that the arch specific counters have higher priority than CPPC counters,
65  * if available, though the CPPC driver doesn't need to have any special
66  * handling for that.
67  *
68  * On an invocation of cppc_scale_freq_tick(), we schedule an irq work (since we
69  * reach here from hard-irq context), which then schedules a normal work item
70  * and cppc_scale_freq_workfn() updates the per_cpu arch_freq_scale variable
71  * based on the counter updates since the last tick.
72  */
cppc_scale_freq_workfn(struct kthread_work * work)73 static void cppc_scale_freq_workfn(struct kthread_work *work)
74 {
75 	struct cppc_freq_invariance *cppc_fi;
76 	struct cppc_perf_fb_ctrs fb_ctrs = {0};
77 	struct cppc_cpudata *cpu_data;
78 	unsigned long local_freq_scale;
79 	u64 perf;
80 
81 	cppc_fi = container_of(work, struct cppc_freq_invariance, work);
82 	cpu_data = cppc_fi->cpu_data;
83 
84 	if (cppc_get_perf_ctrs(cppc_fi->cpu, &fb_ctrs)) {
85 		pr_warn("%s: failed to read perf counters\n", __func__);
86 		return;
87 	}
88 
89 	perf = cppc_perf_from_fbctrs(&cppc_fi->prev_perf_fb_ctrs, &fb_ctrs);
90 	if (!perf)
91 		return;
92 
93 	cppc_fi->prev_perf_fb_ctrs = fb_ctrs;
94 
95 	perf <<= SCHED_CAPACITY_SHIFT;
96 	local_freq_scale = div64_u64(perf, cpu_data->perf_caps.highest_perf);
97 
98 	/* This can happen due to counter's overflow */
99 	if (unlikely(local_freq_scale > 1024))
100 		local_freq_scale = 1024;
101 
102 	per_cpu(arch_freq_scale, cppc_fi->cpu) = local_freq_scale;
103 }
104 
cppc_irq_work(struct irq_work * irq_work)105 static void cppc_irq_work(struct irq_work *irq_work)
106 {
107 	struct cppc_freq_invariance *cppc_fi;
108 
109 	cppc_fi = container_of(irq_work, struct cppc_freq_invariance, irq_work);
110 	kthread_queue_work(kworker_fie, &cppc_fi->work);
111 }
112 
cppc_scale_freq_tick(void)113 static void cppc_scale_freq_tick(void)
114 {
115 	struct cppc_freq_invariance *cppc_fi = &per_cpu(cppc_freq_inv, smp_processor_id());
116 
117 	/*
118 	 * cppc_get_perf_ctrs() can potentially sleep, call that from the right
119 	 * context.
120 	 */
121 	irq_work_queue(&cppc_fi->irq_work);
122 }
123 
124 static struct scale_freq_data cppc_sftd = {
125 	.source = SCALE_FREQ_SOURCE_CPPC,
126 	.set_freq_scale = cppc_scale_freq_tick,
127 };
128 
cppc_cpufreq_cpu_fie_init(struct cpufreq_policy * policy)129 static void cppc_cpufreq_cpu_fie_init(struct cpufreq_policy *policy)
130 {
131 	struct cppc_freq_invariance *cppc_fi;
132 	int cpu, ret;
133 
134 	if (fie_disabled)
135 		return;
136 
137 	for_each_cpu(cpu, policy->cpus) {
138 		cppc_fi = &per_cpu(cppc_freq_inv, cpu);
139 		cppc_fi->cpu = cpu;
140 		cppc_fi->cpu_data = policy->driver_data;
141 		kthread_init_work(&cppc_fi->work, cppc_scale_freq_workfn);
142 		init_irq_work(&cppc_fi->irq_work, cppc_irq_work);
143 
144 		ret = cppc_get_perf_ctrs(cpu, &cppc_fi->prev_perf_fb_ctrs);
145 		if (ret) {
146 			pr_warn("%s: failed to read perf counters for cpu:%d: %d\n",
147 				__func__, cpu, ret);
148 
149 			/*
150 			 * Don't abort if the CPU was offline while the driver
151 			 * was getting registered.
152 			 */
153 			if (cpu_online(cpu))
154 				return;
155 		}
156 	}
157 
158 	/* Register for freq-invariance */
159 	topology_set_scale_freq_source(&cppc_sftd, policy->cpus);
160 }
161 
162 /*
163  * We free all the resources on policy's removal and not on CPU removal as the
164  * irq-work are per-cpu and the hotplug core takes care of flushing the pending
165  * irq-works (hint: smpcfd_dying_cpu()) on CPU hotplug. Even if the kthread-work
166  * fires on another CPU after the concerned CPU is removed, it won't harm.
167  *
168  * We just need to make sure to remove them all on policy->exit().
169  */
cppc_cpufreq_cpu_fie_exit(struct cpufreq_policy * policy)170 static void cppc_cpufreq_cpu_fie_exit(struct cpufreq_policy *policy)
171 {
172 	struct cppc_freq_invariance *cppc_fi;
173 	int cpu;
174 
175 	if (fie_disabled)
176 		return;
177 
178 	/* policy->cpus will be empty here, use related_cpus instead */
179 	topology_clear_scale_freq_source(SCALE_FREQ_SOURCE_CPPC, policy->related_cpus);
180 
181 	for_each_cpu(cpu, policy->related_cpus) {
182 		cppc_fi = &per_cpu(cppc_freq_inv, cpu);
183 		irq_work_sync(&cppc_fi->irq_work);
184 		kthread_cancel_work_sync(&cppc_fi->work);
185 	}
186 }
187 
cppc_freq_invariance_init(void)188 static void __init cppc_freq_invariance_init(void)
189 {
190 	struct sched_attr attr = {
191 		.size		= sizeof(struct sched_attr),
192 		.sched_policy	= SCHED_DEADLINE,
193 		.sched_nice	= 0,
194 		.sched_priority	= 0,
195 		/*
196 		 * Fake (unused) bandwidth; workaround to "fix"
197 		 * priority inheritance.
198 		 */
199 		.sched_runtime	= NSEC_PER_MSEC,
200 		.sched_deadline = 10 * NSEC_PER_MSEC,
201 		.sched_period	= 10 * NSEC_PER_MSEC,
202 	};
203 	int ret;
204 
205 	if (fie_disabled != FIE_ENABLED && fie_disabled != FIE_DISABLED) {
206 		fie_disabled = FIE_ENABLED;
207 		if (cppc_perf_ctrs_in_pcc()) {
208 			pr_info("FIE not enabled on systems with registers in PCC\n");
209 			fie_disabled = FIE_DISABLED;
210 		}
211 	}
212 
213 	if (fie_disabled)
214 		return;
215 
216 	kworker_fie = kthread_run_worker(0, "cppc_fie");
217 	if (IS_ERR(kworker_fie)) {
218 		pr_warn("%s: failed to create kworker_fie: %ld\n", __func__,
219 			PTR_ERR(kworker_fie));
220 		fie_disabled = FIE_DISABLED;
221 		return;
222 	}
223 
224 	ret = sched_setattr_nocheck(kworker_fie->task, &attr);
225 	if (ret) {
226 		pr_warn("%s: failed to set SCHED_DEADLINE: %d\n", __func__,
227 			ret);
228 		kthread_destroy_worker(kworker_fie);
229 		fie_disabled = FIE_DISABLED;
230 	}
231 }
232 
cppc_freq_invariance_exit(void)233 static void cppc_freq_invariance_exit(void)
234 {
235 	if (fie_disabled)
236 		return;
237 
238 	kthread_destroy_worker(kworker_fie);
239 }
240 
241 #else
cppc_cpufreq_cpu_fie_init(struct cpufreq_policy * policy)242 static inline void cppc_cpufreq_cpu_fie_init(struct cpufreq_policy *policy)
243 {
244 }
245 
cppc_cpufreq_cpu_fie_exit(struct cpufreq_policy * policy)246 static inline void cppc_cpufreq_cpu_fie_exit(struct cpufreq_policy *policy)
247 {
248 }
249 
cppc_freq_invariance_init(void)250 static inline void cppc_freq_invariance_init(void)
251 {
252 }
253 
cppc_freq_invariance_exit(void)254 static inline void cppc_freq_invariance_exit(void)
255 {
256 }
257 #endif /* CONFIG_ACPI_CPPC_CPUFREQ_FIE */
258 
cppc_cpufreq_set_target(struct cpufreq_policy * policy,unsigned int target_freq,unsigned int relation)259 static int cppc_cpufreq_set_target(struct cpufreq_policy *policy,
260 				   unsigned int target_freq,
261 				   unsigned int relation)
262 {
263 	struct cppc_cpudata *cpu_data = policy->driver_data;
264 	unsigned int cpu = policy->cpu;
265 	struct cpufreq_freqs freqs;
266 	int ret = 0;
267 
268 	cpu_data->perf_ctrls.desired_perf =
269 			cppc_khz_to_perf(&cpu_data->perf_caps, target_freq);
270 	freqs.old = policy->cur;
271 	freqs.new = target_freq;
272 
273 	cpufreq_freq_transition_begin(policy, &freqs);
274 	ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
275 	cpufreq_freq_transition_end(policy, &freqs, ret != 0);
276 
277 	if (ret)
278 		pr_debug("Failed to set target on CPU:%d. ret:%d\n",
279 			 cpu, ret);
280 
281 	return ret;
282 }
283 
cppc_cpufreq_fast_switch(struct cpufreq_policy * policy,unsigned int target_freq)284 static unsigned int cppc_cpufreq_fast_switch(struct cpufreq_policy *policy,
285 					      unsigned int target_freq)
286 {
287 	struct cppc_cpudata *cpu_data = policy->driver_data;
288 	unsigned int cpu = policy->cpu;
289 	u32 desired_perf;
290 	int ret;
291 
292 	desired_perf = cppc_khz_to_perf(&cpu_data->perf_caps, target_freq);
293 	cpu_data->perf_ctrls.desired_perf = desired_perf;
294 	ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
295 
296 	if (ret) {
297 		pr_debug("Failed to set target on CPU:%d. ret:%d\n",
298 			 cpu, ret);
299 		return 0;
300 	}
301 
302 	return target_freq;
303 }
304 
cppc_verify_policy(struct cpufreq_policy_data * policy)305 static int cppc_verify_policy(struct cpufreq_policy_data *policy)
306 {
307 	cpufreq_verify_within_cpu_limits(policy);
308 	return 0;
309 }
310 
__cppc_cpufreq_get_transition_delay_us(unsigned int cpu)311 static unsigned int __cppc_cpufreq_get_transition_delay_us(unsigned int cpu)
312 {
313 	int transition_latency_ns = cppc_get_transition_latency(cpu);
314 
315 	if (transition_latency_ns < 0)
316 		return CPUFREQ_DEFAULT_TRANSITION_LATENCY_NS / NSEC_PER_USEC;
317 
318 	return transition_latency_ns / NSEC_PER_USEC;
319 }
320 
321 /*
322  * The PCC subspace describes the rate at which platform can accept commands
323  * on the shared PCC channel (including READs which do not count towards freq
324  * transition requests), so ideally we need to use the PCC values as a fallback
325  * if we don't have a platform specific transition_delay_us
326  */
327 #ifdef CONFIG_ARM64
328 #include <asm/cputype.h>
329 
cppc_cpufreq_get_transition_delay_us(unsigned int cpu)330 static unsigned int cppc_cpufreq_get_transition_delay_us(unsigned int cpu)
331 {
332 	unsigned long implementor = read_cpuid_implementor();
333 	unsigned long part_num = read_cpuid_part_number();
334 
335 	switch (implementor) {
336 	case ARM_CPU_IMP_QCOM:
337 		switch (part_num) {
338 		case QCOM_CPU_PART_FALKOR_V1:
339 		case QCOM_CPU_PART_FALKOR:
340 			return 10000;
341 		}
342 	}
343 	return __cppc_cpufreq_get_transition_delay_us(cpu);
344 }
345 #else
cppc_cpufreq_get_transition_delay_us(unsigned int cpu)346 static unsigned int cppc_cpufreq_get_transition_delay_us(unsigned int cpu)
347 {
348 	return __cppc_cpufreq_get_transition_delay_us(cpu);
349 }
350 #endif
351 
352 #if defined(CONFIG_ARM64) && defined(CONFIG_ENERGY_MODEL)
353 
354 static DEFINE_PER_CPU(unsigned int, efficiency_class);
355 
356 /* Create an artificial performance state every CPPC_EM_CAP_STEP capacity unit. */
357 #define CPPC_EM_CAP_STEP	(20)
358 /* Increase the cost value by CPPC_EM_COST_STEP every performance state. */
359 #define CPPC_EM_COST_STEP	(1)
360 /* Add a cost gap correspnding to the energy of 4 CPUs. */
361 #define CPPC_EM_COST_GAP	(4 * SCHED_CAPACITY_SCALE * CPPC_EM_COST_STEP \
362 				/ CPPC_EM_CAP_STEP)
363 
get_perf_level_count(struct cpufreq_policy * policy)364 static unsigned int get_perf_level_count(struct cpufreq_policy *policy)
365 {
366 	struct cppc_perf_caps *perf_caps;
367 	unsigned int min_cap, max_cap;
368 	struct cppc_cpudata *cpu_data;
369 	int cpu = policy->cpu;
370 
371 	cpu_data = policy->driver_data;
372 	perf_caps = &cpu_data->perf_caps;
373 	max_cap = arch_scale_cpu_capacity(cpu);
374 	min_cap = div_u64((u64)max_cap * perf_caps->lowest_perf,
375 			  perf_caps->highest_perf);
376 	if ((min_cap == 0) || (max_cap < min_cap))
377 		return 0;
378 	return 1 + max_cap / CPPC_EM_CAP_STEP - min_cap / CPPC_EM_CAP_STEP;
379 }
380 
381 /*
382  * The cost is defined as:
383  *   cost = power * max_frequency / frequency
384  */
compute_cost(int cpu,int step)385 static inline unsigned long compute_cost(int cpu, int step)
386 {
387 	return CPPC_EM_COST_GAP * per_cpu(efficiency_class, cpu) +
388 			step * CPPC_EM_COST_STEP;
389 }
390 
cppc_get_cpu_power(struct device * cpu_dev,unsigned long * power,unsigned long * KHz)391 static int cppc_get_cpu_power(struct device *cpu_dev,
392 		unsigned long *power, unsigned long *KHz)
393 {
394 	unsigned long perf_step, perf_prev, perf, perf_check;
395 	unsigned int min_step, max_step, step, step_check;
396 	unsigned long prev_freq = *KHz;
397 	unsigned int min_cap, max_cap;
398 	struct cpufreq_policy *policy;
399 
400 	struct cppc_perf_caps *perf_caps;
401 	struct cppc_cpudata *cpu_data;
402 
403 	policy = cpufreq_cpu_get_raw(cpu_dev->id);
404 	if (!policy)
405 		return -EINVAL;
406 
407 	cpu_data = policy->driver_data;
408 	perf_caps = &cpu_data->perf_caps;
409 	max_cap = arch_scale_cpu_capacity(cpu_dev->id);
410 	min_cap = div_u64((u64)max_cap * perf_caps->lowest_perf,
411 			  perf_caps->highest_perf);
412 	perf_step = div_u64((u64)CPPC_EM_CAP_STEP * perf_caps->highest_perf,
413 			    max_cap);
414 	min_step = min_cap / CPPC_EM_CAP_STEP;
415 	max_step = max_cap / CPPC_EM_CAP_STEP;
416 
417 	perf_prev = cppc_khz_to_perf(perf_caps, *KHz);
418 	step = perf_prev / perf_step;
419 
420 	if (step > max_step)
421 		return -EINVAL;
422 
423 	if (min_step == max_step) {
424 		step = max_step;
425 		perf = perf_caps->highest_perf;
426 	} else if (step < min_step) {
427 		step = min_step;
428 		perf = perf_caps->lowest_perf;
429 	} else {
430 		step++;
431 		if (step == max_step)
432 			perf = perf_caps->highest_perf;
433 		else
434 			perf = step * perf_step;
435 	}
436 
437 	*KHz = cppc_perf_to_khz(perf_caps, perf);
438 	perf_check = cppc_khz_to_perf(perf_caps, *KHz);
439 	step_check = perf_check / perf_step;
440 
441 	/*
442 	 * To avoid bad integer approximation, check that new frequency value
443 	 * increased and that the new frequency will be converted to the
444 	 * desired step value.
445 	 */
446 	while ((*KHz == prev_freq) || (step_check != step)) {
447 		perf++;
448 		*KHz = cppc_perf_to_khz(perf_caps, perf);
449 		perf_check = cppc_khz_to_perf(perf_caps, *KHz);
450 		step_check = perf_check / perf_step;
451 	}
452 
453 	/*
454 	 * With an artificial EM, only the cost value is used. Still the power
455 	 * is populated such as 0 < power < EM_MAX_POWER. This allows to add
456 	 * more sense to the artificial performance states.
457 	 */
458 	*power = compute_cost(cpu_dev->id, step);
459 
460 	return 0;
461 }
462 
cppc_get_cpu_cost(struct device * cpu_dev,unsigned long KHz,unsigned long * cost)463 static int cppc_get_cpu_cost(struct device *cpu_dev, unsigned long KHz,
464 		unsigned long *cost)
465 {
466 	unsigned long perf_step, perf_prev;
467 	struct cppc_perf_caps *perf_caps;
468 	struct cpufreq_policy *policy;
469 	struct cppc_cpudata *cpu_data;
470 	unsigned int max_cap;
471 	int step;
472 
473 	policy = cpufreq_cpu_get_raw(cpu_dev->id);
474 	if (!policy)
475 		return -EINVAL;
476 
477 	cpu_data = policy->driver_data;
478 	perf_caps = &cpu_data->perf_caps;
479 	max_cap = arch_scale_cpu_capacity(cpu_dev->id);
480 
481 	perf_prev = cppc_khz_to_perf(perf_caps, KHz);
482 	perf_step = CPPC_EM_CAP_STEP * perf_caps->highest_perf / max_cap;
483 	step = perf_prev / perf_step;
484 
485 	*cost = compute_cost(cpu_dev->id, step);
486 
487 	return 0;
488 }
489 
cppc_cpufreq_register_em(struct cpufreq_policy * policy)490 static void cppc_cpufreq_register_em(struct cpufreq_policy *policy)
491 {
492 	struct cppc_cpudata *cpu_data;
493 	struct em_data_callback em_cb =
494 		EM_ADV_DATA_CB(cppc_get_cpu_power, cppc_get_cpu_cost);
495 
496 	cpu_data = policy->driver_data;
497 	em_dev_register_perf_domain(get_cpu_device(policy->cpu),
498 			get_perf_level_count(policy), &em_cb,
499 			cpu_data->shared_cpu_map, 0);
500 }
501 
populate_efficiency_class(void)502 static void populate_efficiency_class(void)
503 {
504 	struct acpi_madt_generic_interrupt *gicc;
505 	DECLARE_BITMAP(used_classes, 256) = {};
506 	int class, cpu, index;
507 
508 	for_each_possible_cpu(cpu) {
509 		gicc = acpi_cpu_get_madt_gicc(cpu);
510 		class = gicc->efficiency_class;
511 		bitmap_set(used_classes, class, 1);
512 	}
513 
514 	if (bitmap_weight(used_classes, 256) <= 1) {
515 		pr_debug("Efficiency classes are all equal (=%d). "
516 			"No EM registered", class);
517 		return;
518 	}
519 
520 	/*
521 	 * Squeeze efficiency class values on [0:#efficiency_class-1].
522 	 * Values are per spec in [0:255].
523 	 */
524 	index = 0;
525 	for_each_set_bit(class, used_classes, 256) {
526 		for_each_possible_cpu(cpu) {
527 			gicc = acpi_cpu_get_madt_gicc(cpu);
528 			if (gicc->efficiency_class == class)
529 				per_cpu(efficiency_class, cpu) = index;
530 		}
531 		index++;
532 	}
533 	cppc_cpufreq_driver.register_em = cppc_cpufreq_register_em;
534 }
535 
536 #else
populate_efficiency_class(void)537 static void populate_efficiency_class(void)
538 {
539 }
540 #endif
541 
cppc_cpufreq_get_cpu_data(unsigned int cpu)542 static struct cppc_cpudata *cppc_cpufreq_get_cpu_data(unsigned int cpu)
543 {
544 	struct cppc_cpudata *cpu_data;
545 	int ret;
546 
547 	cpu_data = kzalloc(sizeof(struct cppc_cpudata), GFP_KERNEL);
548 	if (!cpu_data)
549 		goto out;
550 
551 	if (!zalloc_cpumask_var(&cpu_data->shared_cpu_map, GFP_KERNEL))
552 		goto free_cpu;
553 
554 	ret = acpi_get_psd_map(cpu, cpu_data);
555 	if (ret) {
556 		pr_debug("Err parsing CPU%d PSD data: ret:%d\n", cpu, ret);
557 		goto free_mask;
558 	}
559 
560 	ret = cppc_get_perf_caps(cpu, &cpu_data->perf_caps);
561 	if (ret) {
562 		pr_debug("Err reading CPU%d perf caps: ret:%d\n", cpu, ret);
563 		goto free_mask;
564 	}
565 
566 	return cpu_data;
567 
568 free_mask:
569 	free_cpumask_var(cpu_data->shared_cpu_map);
570 free_cpu:
571 	kfree(cpu_data);
572 out:
573 	return NULL;
574 }
575 
cppc_cpufreq_put_cpu_data(struct cpufreq_policy * policy)576 static void cppc_cpufreq_put_cpu_data(struct cpufreq_policy *policy)
577 {
578 	struct cppc_cpudata *cpu_data = policy->driver_data;
579 
580 	free_cpumask_var(cpu_data->shared_cpu_map);
581 	kfree(cpu_data);
582 	policy->driver_data = NULL;
583 }
584 
cppc_cpufreq_cpu_init(struct cpufreq_policy * policy)585 static int cppc_cpufreq_cpu_init(struct cpufreq_policy *policy)
586 {
587 	unsigned int cpu = policy->cpu;
588 	struct cppc_cpudata *cpu_data;
589 	struct cppc_perf_caps *caps;
590 	int ret;
591 
592 	cpu_data = cppc_cpufreq_get_cpu_data(cpu);
593 	if (!cpu_data) {
594 		pr_err("Error in acquiring _CPC/_PSD data for CPU%d.\n", cpu);
595 		return -ENODEV;
596 	}
597 	caps = &cpu_data->perf_caps;
598 	policy->driver_data = cpu_data;
599 
600 	/*
601 	 * Set min to lowest nonlinear perf to avoid any efficiency penalty (see
602 	 * Section 8.4.7.1.1.5 of ACPI 6.1 spec)
603 	 */
604 	policy->min = cppc_perf_to_khz(caps, caps->lowest_nonlinear_perf);
605 	policy->max = cppc_perf_to_khz(caps, policy->boost_enabled ?
606 						caps->highest_perf : caps->nominal_perf);
607 
608 	/*
609 	 * Set cpuinfo.min_freq to Lowest to make the full range of performance
610 	 * available if userspace wants to use any perf between lowest & lowest
611 	 * nonlinear perf
612 	 */
613 	policy->cpuinfo.min_freq = cppc_perf_to_khz(caps, caps->lowest_perf);
614 	policy->cpuinfo.max_freq = policy->max;
615 
616 	policy->transition_delay_us = cppc_cpufreq_get_transition_delay_us(cpu);
617 	policy->shared_type = cpu_data->shared_type;
618 
619 	switch (policy->shared_type) {
620 	case CPUFREQ_SHARED_TYPE_HW:
621 	case CPUFREQ_SHARED_TYPE_NONE:
622 		/* Nothing to be done - we'll have a policy for each CPU */
623 		break;
624 	case CPUFREQ_SHARED_TYPE_ANY:
625 		/*
626 		 * All CPUs in the domain will share a policy and all cpufreq
627 		 * operations will use a single cppc_cpudata structure stored
628 		 * in policy->driver_data.
629 		 */
630 		cpumask_copy(policy->cpus, cpu_data->shared_cpu_map);
631 		break;
632 	default:
633 		pr_debug("Unsupported CPU co-ord type: %d\n",
634 			 policy->shared_type);
635 		ret = -EFAULT;
636 		goto out;
637 	}
638 
639 	policy->fast_switch_possible = cppc_allow_fast_switch();
640 	policy->dvfs_possible_from_any_cpu = true;
641 
642 	/*
643 	 * If 'highest_perf' is greater than 'nominal_perf', we assume CPU Boost
644 	 * is supported.
645 	 */
646 	if (caps->highest_perf > caps->nominal_perf)
647 		policy->boost_supported = true;
648 
649 	/* Set policy->cur to max now. The governors will adjust later. */
650 	policy->cur = cppc_perf_to_khz(caps, caps->highest_perf);
651 	cpu_data->perf_ctrls.desired_perf =  caps->highest_perf;
652 
653 	ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
654 	if (ret) {
655 		pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
656 			 caps->highest_perf, cpu, ret);
657 		goto out;
658 	}
659 
660 	cppc_cpufreq_cpu_fie_init(policy);
661 	return 0;
662 
663 out:
664 	cppc_cpufreq_put_cpu_data(policy);
665 	return ret;
666 }
667 
cppc_cpufreq_cpu_exit(struct cpufreq_policy * policy)668 static void cppc_cpufreq_cpu_exit(struct cpufreq_policy *policy)
669 {
670 	struct cppc_cpudata *cpu_data = policy->driver_data;
671 	struct cppc_perf_caps *caps = &cpu_data->perf_caps;
672 	unsigned int cpu = policy->cpu;
673 	int ret;
674 
675 	cppc_cpufreq_cpu_fie_exit(policy);
676 
677 	cpu_data->perf_ctrls.desired_perf = caps->lowest_perf;
678 
679 	ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
680 	if (ret)
681 		pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
682 			 caps->lowest_perf, cpu, ret);
683 
684 	cppc_cpufreq_put_cpu_data(policy);
685 }
686 
get_delta(u64 t1,u64 t0)687 static inline u64 get_delta(u64 t1, u64 t0)
688 {
689 	if (t1 > t0 || t0 > ~(u32)0)
690 		return t1 - t0;
691 
692 	return (u32)t1 - (u32)t0;
693 }
694 
cppc_perf_from_fbctrs(struct cppc_perf_fb_ctrs * fb_ctrs_t0,struct cppc_perf_fb_ctrs * fb_ctrs_t1)695 static int cppc_perf_from_fbctrs(struct cppc_perf_fb_ctrs *fb_ctrs_t0,
696 				 struct cppc_perf_fb_ctrs *fb_ctrs_t1)
697 {
698 	u64 delta_reference, delta_delivered;
699 	u64 reference_perf;
700 
701 	reference_perf = fb_ctrs_t0->reference_perf;
702 
703 	delta_reference = get_delta(fb_ctrs_t1->reference,
704 				    fb_ctrs_t0->reference);
705 	delta_delivered = get_delta(fb_ctrs_t1->delivered,
706 				    fb_ctrs_t0->delivered);
707 
708 	/*
709 	 * Avoid divide-by zero and unchanged feedback counters.
710 	 * Leave it for callers to handle.
711 	 */
712 	if (!delta_reference || !delta_delivered)
713 		return 0;
714 
715 	return (reference_perf * delta_delivered) / delta_reference;
716 }
717 
cppc_get_perf_ctrs_sample(int cpu,struct cppc_perf_fb_ctrs * fb_ctrs_t0,struct cppc_perf_fb_ctrs * fb_ctrs_t1)718 static int cppc_get_perf_ctrs_sample(int cpu,
719 				     struct cppc_perf_fb_ctrs *fb_ctrs_t0,
720 				     struct cppc_perf_fb_ctrs *fb_ctrs_t1)
721 {
722 	int ret;
723 
724 	ret = cppc_get_perf_ctrs(cpu, fb_ctrs_t0);
725 	if (ret)
726 		return ret;
727 
728 	udelay(2); /* 2usec delay between sampling */
729 
730 	return cppc_get_perf_ctrs(cpu, fb_ctrs_t1);
731 }
732 
cppc_cpufreq_get_rate(unsigned int cpu)733 static unsigned int cppc_cpufreq_get_rate(unsigned int cpu)
734 {
735 	struct cpufreq_policy *policy __free(put_cpufreq_policy) = cpufreq_cpu_get(cpu);
736 	struct cppc_perf_fb_ctrs fb_ctrs_t0 = {0}, fb_ctrs_t1 = {0};
737 	struct cppc_cpudata *cpu_data;
738 	u64 delivered_perf;
739 	int ret;
740 
741 	if (!policy)
742 		return 0;
743 
744 	cpu_data = policy->driver_data;
745 
746 	ret = cppc_get_perf_ctrs_sample(cpu, &fb_ctrs_t0, &fb_ctrs_t1);
747 	if (ret) {
748 		if (ret == -EFAULT)
749 			/* Any of the associated CPPC regs is 0. */
750 			goto out_invalid_counters;
751 		else
752 			return 0;
753 	}
754 
755 	delivered_perf = cppc_perf_from_fbctrs(&fb_ctrs_t0, &fb_ctrs_t1);
756 	if (!delivered_perf)
757 		goto out_invalid_counters;
758 
759 	return cppc_perf_to_khz(&cpu_data->perf_caps, delivered_perf);
760 
761 out_invalid_counters:
762 	/*
763 	 * Feedback counters could be unchanged or 0 when a cpu enters a
764 	 * low-power idle state, e.g. clock-gated or power-gated.
765 	 * Use desired perf for reflecting frequency.  Get the latest register
766 	 * value first as some platforms may update the actual delivered perf
767 	 * there; if failed, resort to the cached desired perf.
768 	 */
769 	if (cppc_get_desired_perf(cpu, &delivered_perf))
770 		delivered_perf = cpu_data->perf_ctrls.desired_perf;
771 
772 	return cppc_perf_to_khz(&cpu_data->perf_caps, delivered_perf);
773 }
774 
cppc_cpufreq_set_boost(struct cpufreq_policy * policy,int state)775 static int cppc_cpufreq_set_boost(struct cpufreq_policy *policy, int state)
776 {
777 	struct cppc_cpudata *cpu_data = policy->driver_data;
778 	struct cppc_perf_caps *caps = &cpu_data->perf_caps;
779 	int ret;
780 
781 	if (state)
782 		policy->max = cppc_perf_to_khz(caps, caps->highest_perf);
783 	else
784 		policy->max = cppc_perf_to_khz(caps, caps->nominal_perf);
785 	policy->cpuinfo.max_freq = policy->max;
786 
787 	ret = freq_qos_update_request(policy->max_freq_req, policy->max);
788 	if (ret < 0)
789 		return ret;
790 
791 	return 0;
792 }
793 
show_freqdomain_cpus(struct cpufreq_policy * policy,char * buf)794 static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf)
795 {
796 	struct cppc_cpudata *cpu_data = policy->driver_data;
797 
798 	return cpufreq_show_cpus(cpu_data->shared_cpu_map, buf);
799 }
800 
show_auto_select(struct cpufreq_policy * policy,char * buf)801 static ssize_t show_auto_select(struct cpufreq_policy *policy, char *buf)
802 {
803 	bool val;
804 	int ret;
805 
806 	ret = cppc_get_auto_sel(policy->cpu, &val);
807 
808 	/* show "<unsupported>" when this register is not supported by cpc */
809 	if (ret == -EOPNOTSUPP)
810 		return sysfs_emit(buf, "<unsupported>\n");
811 
812 	if (ret)
813 		return ret;
814 
815 	return sysfs_emit(buf, "%d\n", val);
816 }
817 
store_auto_select(struct cpufreq_policy * policy,const char * buf,size_t count)818 static ssize_t store_auto_select(struct cpufreq_policy *policy,
819 				 const char *buf, size_t count)
820 {
821 	bool val;
822 	int ret;
823 
824 	ret = kstrtobool(buf, &val);
825 	if (ret)
826 		return ret;
827 
828 	ret = cppc_set_auto_sel(policy->cpu, val);
829 	if (ret)
830 		return ret;
831 
832 	return count;
833 }
834 
show_auto_act_window(struct cpufreq_policy * policy,char * buf)835 static ssize_t show_auto_act_window(struct cpufreq_policy *policy, char *buf)
836 {
837 	u64 val;
838 	int ret;
839 
840 	ret = cppc_get_auto_act_window(policy->cpu, &val);
841 
842 	/* show "<unsupported>" when this register is not supported by cpc */
843 	if (ret == -EOPNOTSUPP)
844 		return sysfs_emit(buf, "<unsupported>\n");
845 
846 	if (ret)
847 		return ret;
848 
849 	return sysfs_emit(buf, "%llu\n", val);
850 }
851 
store_auto_act_window(struct cpufreq_policy * policy,const char * buf,size_t count)852 static ssize_t store_auto_act_window(struct cpufreq_policy *policy,
853 				     const char *buf, size_t count)
854 {
855 	u64 usec;
856 	int ret;
857 
858 	ret = kstrtou64(buf, 0, &usec);
859 	if (ret)
860 		return ret;
861 
862 	ret = cppc_set_auto_act_window(policy->cpu, usec);
863 	if (ret)
864 		return ret;
865 
866 	return count;
867 }
868 
show_energy_performance_preference_val(struct cpufreq_policy * policy,char * buf)869 static ssize_t show_energy_performance_preference_val(struct cpufreq_policy *policy, char *buf)
870 {
871 	u64 val;
872 	int ret;
873 
874 	ret = cppc_get_epp_perf(policy->cpu, &val);
875 
876 	/* show "<unsupported>" when this register is not supported by cpc */
877 	if (ret == -EOPNOTSUPP)
878 		return sysfs_emit(buf, "<unsupported>\n");
879 
880 	if (ret)
881 		return ret;
882 
883 	return sysfs_emit(buf, "%llu\n", val);
884 }
885 
store_energy_performance_preference_val(struct cpufreq_policy * policy,const char * buf,size_t count)886 static ssize_t store_energy_performance_preference_val(struct cpufreq_policy *policy,
887 						       const char *buf, size_t count)
888 {
889 	u64 val;
890 	int ret;
891 
892 	ret = kstrtou64(buf, 0, &val);
893 	if (ret)
894 		return ret;
895 
896 	ret = cppc_set_epp(policy->cpu, val);
897 	if (ret)
898 		return ret;
899 
900 	return count;
901 }
902 
903 cpufreq_freq_attr_ro(freqdomain_cpus);
904 cpufreq_freq_attr_rw(auto_select);
905 cpufreq_freq_attr_rw(auto_act_window);
906 cpufreq_freq_attr_rw(energy_performance_preference_val);
907 
908 static struct freq_attr *cppc_cpufreq_attr[] = {
909 	&freqdomain_cpus,
910 	&auto_select,
911 	&auto_act_window,
912 	&energy_performance_preference_val,
913 	NULL,
914 };
915 
916 static struct cpufreq_driver cppc_cpufreq_driver = {
917 	.flags = CPUFREQ_CONST_LOOPS | CPUFREQ_NEED_UPDATE_LIMITS,
918 	.verify = cppc_verify_policy,
919 	.target = cppc_cpufreq_set_target,
920 	.get = cppc_cpufreq_get_rate,
921 	.fast_switch = cppc_cpufreq_fast_switch,
922 	.init = cppc_cpufreq_cpu_init,
923 	.exit = cppc_cpufreq_cpu_exit,
924 	.set_boost = cppc_cpufreq_set_boost,
925 	.attr = cppc_cpufreq_attr,
926 	.name = "cppc_cpufreq",
927 };
928 
cppc_cpufreq_init(void)929 static int __init cppc_cpufreq_init(void)
930 {
931 	int ret;
932 
933 	if (!acpi_cpc_valid())
934 		return -ENODEV;
935 
936 	cppc_freq_invariance_init();
937 	populate_efficiency_class();
938 
939 	ret = cpufreq_register_driver(&cppc_cpufreq_driver);
940 	if (ret)
941 		cppc_freq_invariance_exit();
942 
943 	return ret;
944 }
945 
cppc_cpufreq_exit(void)946 static void __exit cppc_cpufreq_exit(void)
947 {
948 	cpufreq_unregister_driver(&cppc_cpufreq_driver);
949 	cppc_freq_invariance_exit();
950 }
951 
952 module_exit(cppc_cpufreq_exit);
953 MODULE_AUTHOR("Ashwin Chaugule");
954 MODULE_DESCRIPTION("CPUFreq driver based on the ACPI CPPC v5.0+ spec");
955 MODULE_LICENSE("GPL");
956 
957 late_initcall(cppc_cpufreq_init);
958 
959 static const struct acpi_device_id cppc_acpi_ids[] __used = {
960 	{ACPI_PROCESSOR_DEVICE_HID, },
961 	{}
962 };
963 
964 MODULE_DEVICE_TABLE(acpi, cppc_acpi_ids);
965