1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * RTC driver for tps6594 PMIC
4 *
5 * Copyright (C) 2023 BayLibre Incorporated - https://www.baylibre.com/
6 */
7
8 #include <linux/bcd.h>
9 #include <linux/errno.h>
10 #include <linux/init.h>
11 #include <linux/interrupt.h>
12 #include <linux/kernel.h>
13 #include <linux/limits.h>
14 #include <linux/math64.h>
15 #include <linux/module.h>
16 #include <linux/platform_device.h>
17 #include <linux/mod_devicetable.h>
18 #include <linux/property.h>
19 #include <linux/rtc.h>
20 #include <linux/types.h>
21 #include <linux/units.h>
22
23 #include <linux/mfd/tps6594.h>
24
25 // Total number of RTC registers needed to set time
26 #define NUM_TIME_REGS (TPS6594_REG_RTC_WEEKS - TPS6594_REG_RTC_SECONDS + 1)
27
28 // Total number of RTC alarm registers
29 #define NUM_TIME_ALARM_REGS (NUM_TIME_REGS - 1)
30
31 /*
32 * Min and max values supported by 'offset' interface (swapped sign).
33 * After conversion, the values do not exceed the range [-32767, 33767]
34 * which COMP_REG must conform to.
35 */
36 #define MIN_OFFSET (-277774)
37 #define MAX_OFFSET (277774)
38
39 // Number of ticks per hour
40 #define TICKS_PER_HOUR (32768 * 3600)
41
42 // Multiplier for ppb conversions
43 #define PPB_MULT NANO
44
45 struct tps6594_rtc {
46 struct rtc_device *rtc_dev;
47 int irq;
48 };
49
tps6594_rtc_alarm_irq_enable(struct device * dev,unsigned int enabled)50 static int tps6594_rtc_alarm_irq_enable(struct device *dev,
51 unsigned int enabled)
52 {
53 struct tps6594 *tps = dev_get_drvdata(dev->parent);
54 u8 val;
55
56 val = enabled ? TPS6594_BIT_IT_ALARM : 0;
57
58 return regmap_update_bits(tps->regmap, TPS6594_REG_RTC_INTERRUPTS,
59 TPS6594_BIT_IT_ALARM, val);
60 }
61
62 /* Pulse GET_TIME field of RTC_CTRL_1 to store a timestamp in shadow registers. */
tps6594_rtc_shadow_timestamp(struct device * dev,struct tps6594 * tps)63 static int tps6594_rtc_shadow_timestamp(struct device *dev, struct tps6594 *tps)
64 {
65 int ret;
66
67 /*
68 * Set GET_TIME to 0. Next time we set GET_TIME to 1 we will be sure to store
69 * an up-to-date timestamp.
70 */
71 ret = regmap_clear_bits(tps->regmap, TPS6594_REG_RTC_CTRL_1,
72 TPS6594_BIT_GET_TIME);
73 if (ret < 0)
74 return ret;
75
76 /*
77 * Copy content of RTC registers to shadow registers or latches to read
78 * a coherent timestamp.
79 */
80 return regmap_set_bits(tps->regmap, TPS6594_REG_RTC_CTRL_1,
81 TPS6594_BIT_GET_TIME);
82 }
83
tps6594_rtc_read_time(struct device * dev,struct rtc_time * tm)84 static int tps6594_rtc_read_time(struct device *dev, struct rtc_time *tm)
85 {
86 unsigned char rtc_data[NUM_TIME_REGS];
87 struct tps6594 *tps = dev_get_drvdata(dev->parent);
88 int ret;
89
90 // Check if RTC is running.
91 ret = regmap_test_bits(tps->regmap, TPS6594_REG_RTC_STATUS,
92 TPS6594_BIT_RUN);
93 if (ret < 0)
94 return ret;
95 if (ret == 0)
96 return -EINVAL;
97
98 ret = tps6594_rtc_shadow_timestamp(dev, tps);
99 if (ret < 0)
100 return ret;
101
102 // Read shadowed RTC registers.
103 ret = regmap_bulk_read(tps->regmap, TPS6594_REG_RTC_SECONDS, rtc_data,
104 NUM_TIME_REGS);
105 if (ret < 0)
106 return ret;
107
108 tm->tm_sec = bcd2bin(rtc_data[0]);
109 tm->tm_min = bcd2bin(rtc_data[1]);
110 tm->tm_hour = bcd2bin(rtc_data[2]);
111 tm->tm_mday = bcd2bin(rtc_data[3]);
112 tm->tm_mon = bcd2bin(rtc_data[4]) - 1;
113 tm->tm_year = bcd2bin(rtc_data[5]) + 100;
114 tm->tm_wday = bcd2bin(rtc_data[6]);
115
116 return 0;
117 }
118
tps6594_rtc_set_time(struct device * dev,struct rtc_time * tm)119 static int tps6594_rtc_set_time(struct device *dev, struct rtc_time *tm)
120 {
121 unsigned char rtc_data[NUM_TIME_REGS];
122 struct tps6594 *tps = dev_get_drvdata(dev->parent);
123 int ret;
124
125 rtc_data[0] = bin2bcd(tm->tm_sec);
126 rtc_data[1] = bin2bcd(tm->tm_min);
127 rtc_data[2] = bin2bcd(tm->tm_hour);
128 rtc_data[3] = bin2bcd(tm->tm_mday);
129 rtc_data[4] = bin2bcd(tm->tm_mon + 1);
130 rtc_data[5] = bin2bcd(tm->tm_year - 100);
131 rtc_data[6] = bin2bcd(tm->tm_wday);
132
133 // Stop RTC while updating the RTC time registers.
134 ret = regmap_clear_bits(tps->regmap, TPS6594_REG_RTC_CTRL_1,
135 TPS6594_BIT_STOP_RTC);
136 if (ret < 0)
137 return ret;
138
139 // Update all the time registers in one shot.
140 ret = regmap_bulk_write(tps->regmap, TPS6594_REG_RTC_SECONDS, rtc_data,
141 NUM_TIME_REGS);
142 if (ret < 0)
143 return ret;
144
145 // Start back RTC.
146 return regmap_set_bits(tps->regmap, TPS6594_REG_RTC_CTRL_1,
147 TPS6594_BIT_STOP_RTC);
148 }
149
tps6594_rtc_read_alarm(struct device * dev,struct rtc_wkalrm * alm)150 static int tps6594_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm)
151 {
152 unsigned char alarm_data[NUM_TIME_ALARM_REGS];
153 u32 int_val;
154 struct tps6594 *tps = dev_get_drvdata(dev->parent);
155 int ret;
156
157 ret = regmap_bulk_read(tps->regmap, TPS6594_REG_ALARM_SECONDS,
158 alarm_data, NUM_TIME_ALARM_REGS);
159 if (ret < 0)
160 return ret;
161
162 alm->time.tm_sec = bcd2bin(alarm_data[0]);
163 alm->time.tm_min = bcd2bin(alarm_data[1]);
164 alm->time.tm_hour = bcd2bin(alarm_data[2]);
165 alm->time.tm_mday = bcd2bin(alarm_data[3]);
166 alm->time.tm_mon = bcd2bin(alarm_data[4]) - 1;
167 alm->time.tm_year = bcd2bin(alarm_data[5]) + 100;
168
169 ret = regmap_read(tps->regmap, TPS6594_REG_RTC_INTERRUPTS, &int_val);
170 if (ret < 0)
171 return ret;
172
173 alm->enabled = int_val & TPS6594_BIT_IT_ALARM;
174
175 return 0;
176 }
177
tps6594_rtc_set_alarm(struct device * dev,struct rtc_wkalrm * alm)178 static int tps6594_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
179 {
180 unsigned char alarm_data[NUM_TIME_ALARM_REGS];
181 struct tps6594 *tps = dev_get_drvdata(dev->parent);
182 int ret;
183
184 // Disable alarm irq before changing the alarm timestamp.
185 ret = tps6594_rtc_alarm_irq_enable(dev, 0);
186 if (ret)
187 return ret;
188
189 alarm_data[0] = bin2bcd(alm->time.tm_sec);
190 alarm_data[1] = bin2bcd(alm->time.tm_min);
191 alarm_data[2] = bin2bcd(alm->time.tm_hour);
192 alarm_data[3] = bin2bcd(alm->time.tm_mday);
193 alarm_data[4] = bin2bcd(alm->time.tm_mon + 1);
194 alarm_data[5] = bin2bcd(alm->time.tm_year - 100);
195
196 // Update all the alarm registers in one shot.
197 ret = regmap_bulk_write(tps->regmap, TPS6594_REG_ALARM_SECONDS,
198 alarm_data, NUM_TIME_ALARM_REGS);
199 if (ret < 0)
200 return ret;
201
202 if (alm->enabled)
203 ret = tps6594_rtc_alarm_irq_enable(dev, 1);
204
205 return ret;
206 }
207
tps6594_rtc_set_calibration(struct device * dev,int calibration)208 static int tps6594_rtc_set_calibration(struct device *dev, int calibration)
209 {
210 struct tps6594 *tps = dev_get_drvdata(dev->parent);
211 __le16 value;
212 int ret;
213
214 /*
215 * TPS6594 uses two's complement 16 bit value for compensation of RTC
216 * crystal inaccuracies. One time every hour when seconds counter
217 * increments from 0 to 1 compensation value will be added to internal
218 * RTC counter value.
219 *
220 * Valid range for compensation value: [-32767 .. 32767].
221 */
222 if (calibration < S16_MIN + 1 || calibration > S16_MAX)
223 return -ERANGE;
224
225 value = cpu_to_le16(calibration);
226
227 // Update all the compensation registers in one shot.
228 ret = regmap_bulk_write(tps->regmap, TPS6594_REG_RTC_COMP_LSB, &value,
229 sizeof(value));
230 if (ret < 0)
231 return ret;
232
233 // Enable automatic compensation.
234 return regmap_set_bits(tps->regmap, TPS6594_REG_RTC_CTRL_1,
235 TPS6594_BIT_AUTO_COMP);
236 }
237
tps6594_rtc_get_calibration(struct device * dev,int * calibration)238 static int tps6594_rtc_get_calibration(struct device *dev, int *calibration)
239 {
240 struct tps6594 *tps = dev_get_drvdata(dev->parent);
241 unsigned int ctrl;
242 __le16 value;
243 int ret;
244
245 ret = regmap_read(tps->regmap, TPS6594_REG_RTC_CTRL_1, &ctrl);
246 if (ret < 0)
247 return ret;
248
249 // If automatic compensation is not enabled report back zero.
250 if (!(ctrl & TPS6594_BIT_AUTO_COMP)) {
251 *calibration = 0;
252 return 0;
253 }
254
255 ret = regmap_bulk_read(tps->regmap, TPS6594_REG_RTC_COMP_LSB, &value,
256 sizeof(value));
257 if (ret < 0)
258 return ret;
259
260 *calibration = le16_to_cpu(value);
261
262 return 0;
263 }
264
tps6594_rtc_read_offset(struct device * dev,long * offset)265 static int tps6594_rtc_read_offset(struct device *dev, long *offset)
266 {
267 int calibration;
268 s64 tmp;
269 int ret;
270
271 ret = tps6594_rtc_get_calibration(dev, &calibration);
272 if (ret < 0)
273 return ret;
274
275 // Convert from RTC calibration register format to ppb format.
276 tmp = calibration * PPB_MULT;
277
278 if (tmp < 0)
279 tmp -= TICKS_PER_HOUR / 2LL;
280 else
281 tmp += TICKS_PER_HOUR / 2LL;
282 tmp = div_s64(tmp, TICKS_PER_HOUR);
283
284 /*
285 * SAFETY:
286 * Computatiion is the reverse operation of the one done in
287 * `tps6594_rtc_set_offset`. The safety remarks applie here too.
288 */
289
290 /*
291 * Offset value operates in negative way, so swap sign.
292 * See 8.3.10.5, (32768 - COMP_REG).
293 */
294 *offset = (long)-tmp;
295
296 return 0;
297 }
298
tps6594_rtc_set_offset(struct device * dev,long offset)299 static int tps6594_rtc_set_offset(struct device *dev, long offset)
300 {
301 int calibration;
302 s64 tmp;
303
304 // Make sure offset value is within supported range.
305 if (offset < MIN_OFFSET || offset > MAX_OFFSET)
306 return -ERANGE;
307
308 // Convert from ppb format to RTC calibration register format.
309
310 tmp = offset * TICKS_PER_HOUR;
311 if (tmp < 0)
312 tmp -= PPB_MULT / 2LL;
313 else
314 tmp += PPB_MULT / 2LL;
315 tmp = div_s64(tmp, PPB_MULT);
316
317 /*
318 * SAFETY:
319 * - tmp = offset * TICK_PER_HOUR :
320 * `offset` can't be more than 277774, so `tmp` can't exceed 277774000000000
321 * which is lower than the maximum value in an `s64` (2^63-1). No overflow here.
322 *
323 * - tmp += TICK_PER_HOUR / 2LL :
324 * tmp will have a maximum value of 277774117964800 which is still inferior to 2^63-1.
325 */
326
327 // Offset value operates in negative way, so swap sign.
328 calibration = (int)-tmp;
329
330 return tps6594_rtc_set_calibration(dev, calibration);
331 }
332
tps6594_rtc_interrupt(int irq,void * data)333 static irqreturn_t tps6594_rtc_interrupt(int irq, void *data)
334 {
335 struct device *dev = data;
336 struct tps6594 *tps = dev_get_drvdata(dev->parent);
337 struct tps6594_rtc *rtc = dev_get_drvdata(dev);
338 int ret;
339 u32 rtc_reg;
340
341 ret = regmap_read(tps->regmap, TPS6594_REG_RTC_STATUS, &rtc_reg);
342 if (ret)
343 return IRQ_NONE;
344
345 rtc_update_irq(rtc->rtc_dev, 1, RTC_IRQF | RTC_AF);
346
347 return IRQ_HANDLED;
348 }
349
350 static const struct rtc_class_ops tps6594_rtc_ops = {
351 .read_time = tps6594_rtc_read_time,
352 .set_time = tps6594_rtc_set_time,
353 .read_alarm = tps6594_rtc_read_alarm,
354 .set_alarm = tps6594_rtc_set_alarm,
355 .alarm_irq_enable = tps6594_rtc_alarm_irq_enable,
356 .read_offset = tps6594_rtc_read_offset,
357 .set_offset = tps6594_rtc_set_offset,
358 };
359
tps6594_rtc_probe(struct platform_device * pdev)360 static int tps6594_rtc_probe(struct platform_device *pdev)
361 {
362 struct tps6594 *tps = dev_get_drvdata(pdev->dev.parent);
363 struct device *dev = &pdev->dev;
364 struct tps6594_rtc *rtc;
365 int irq;
366 int ret;
367
368 rtc = devm_kzalloc(dev, sizeof(*rtc), GFP_KERNEL);
369 if (!rtc)
370 return -ENOMEM;
371
372 rtc->rtc_dev = devm_rtc_allocate_device(dev);
373 if (IS_ERR(rtc->rtc_dev))
374 return PTR_ERR(rtc->rtc_dev);
375
376 // Enable crystal oscillator.
377 ret = regmap_set_bits(tps->regmap, TPS6594_REG_RTC_CTRL_2,
378 TPS6594_BIT_XTAL_EN);
379 if (ret < 0)
380 return ret;
381
382 ret = regmap_test_bits(tps->regmap, TPS6594_REG_RTC_STATUS,
383 TPS6594_BIT_RUN);
384 if (ret < 0)
385 return ret;
386 // RTC not running.
387 if (ret == 0) {
388 ret = regmap_set_bits(tps->regmap, TPS6594_REG_RTC_CTRL_1,
389 TPS6594_BIT_STOP_RTC);
390 if (ret < 0)
391 return ret;
392
393 /*
394 * On some boards, a 40 ms delay is needed before BIT_RUN is set.
395 * 80 ms should provide sufficient margin.
396 */
397 mdelay(80);
398
399 /*
400 * RTC should be running now. Check if this is the case.
401 * If not it might be a missing oscillator.
402 */
403 ret = regmap_test_bits(tps->regmap, TPS6594_REG_RTC_STATUS,
404 TPS6594_BIT_RUN);
405 if (ret < 0)
406 return ret;
407 if (ret == 0)
408 return -ENODEV;
409
410 // Stop RTC until first call to `tps6594_rtc_set_time`.
411 ret = regmap_clear_bits(tps->regmap, TPS6594_REG_RTC_CTRL_1,
412 TPS6594_BIT_STOP_RTC);
413 if (ret < 0)
414 return ret;
415 }
416
417 platform_set_drvdata(pdev, rtc);
418
419 irq = platform_get_irq_byname(pdev, TPS6594_IRQ_NAME_ALARM);
420 if (irq < 0)
421 return dev_err_probe(dev, irq, "Failed to get irq\n");
422
423 rtc->irq = irq;
424
425 ret = devm_request_threaded_irq(dev, irq, NULL, tps6594_rtc_interrupt,
426 IRQF_ONESHOT, TPS6594_IRQ_NAME_ALARM,
427 dev);
428 if (ret < 0)
429 return dev_err_probe(dev, ret,
430 "Failed to request_threaded_irq\n");
431
432 ret = device_init_wakeup(dev, true);
433 if (ret < 0)
434 return dev_err_probe(dev, ret,
435 "Failed to init rtc as wakeup source\n");
436
437 rtc->rtc_dev->ops = &tps6594_rtc_ops;
438 rtc->rtc_dev->range_min = RTC_TIMESTAMP_BEGIN_2000;
439 rtc->rtc_dev->range_max = RTC_TIMESTAMP_END_2099;
440
441 return devm_rtc_register_device(rtc->rtc_dev);
442 }
443
tps6594_rtc_resume(struct device * dev)444 static int tps6594_rtc_resume(struct device *dev)
445 {
446 struct tps6594 *tps = dev_get_drvdata(dev->parent);
447 struct tps6594_rtc *rtc = dev_get_drvdata(dev);
448 int ret;
449
450 ret = regmap_test_bits(tps->regmap, TPS6594_REG_INT_STARTUP,
451 TPS6594_BIT_RTC_INT);
452 if (ret < 0) {
453 dev_err(dev, "failed to read REG_INT_STARTUP: %d\n", ret);
454 goto out;
455 }
456
457 if (ret > 0) {
458 /*
459 * If the alarm bit is set, it means that the IRQ has been
460 * fired. But, the kernel may not have woke up yet when it
461 * happened. So, we have to clear it.
462 */
463 ret = regmap_write(tps->regmap, TPS6594_REG_RTC_STATUS,
464 TPS6594_BIT_ALARM);
465 if (ret < 0)
466 dev_err(dev, "error clearing alarm bit: %d", ret);
467
468 rtc_update_irq(rtc->rtc_dev, 1, RTC_IRQF | RTC_AF);
469 }
470 out:
471 disable_irq_wake(rtc->irq);
472
473 return 0;
474 }
475
tps6594_rtc_suspend(struct device * dev)476 static int tps6594_rtc_suspend(struct device *dev)
477 {
478 struct tps6594_rtc *rtc = dev_get_drvdata(dev);
479
480 enable_irq_wake(rtc->irq);
481
482 return 0;
483 }
484
485 static DEFINE_SIMPLE_DEV_PM_OPS(tps6594_rtc_pm_ops, tps6594_rtc_suspend, tps6594_rtc_resume);
486
487 static const struct platform_device_id tps6594_rtc_id_table[] = {
488 { "tps6594-rtc", },
489 {}
490 };
491 MODULE_DEVICE_TABLE(platform, tps6594_rtc_id_table);
492
493 static struct platform_driver tps6594_rtc_driver = {
494 .probe = tps6594_rtc_probe,
495 .driver = {
496 .name = "tps6594-rtc",
497 .pm = pm_sleep_ptr(&tps6594_rtc_pm_ops),
498 },
499 .id_table = tps6594_rtc_id_table,
500 };
501
502 module_platform_driver(tps6594_rtc_driver);
503 MODULE_AUTHOR("Esteban Blanc <eblanc@baylibre.com>");
504 MODULE_DESCRIPTION("TPS6594 RTC driver");
505 MODULE_LICENSE("GPL");
506