xref: /linux/drivers/rtc/rtc-tps6594.c (revision a1ff5a7d78a036d6c2178ee5acd6ba4946243800)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * RTC driver for tps6594 PMIC
4  *
5  * Copyright (C) 2023 BayLibre Incorporated - https://www.baylibre.com/
6  */
7 
8 #include <linux/bcd.h>
9 #include <linux/errno.h>
10 #include <linux/init.h>
11 #include <linux/interrupt.h>
12 #include <linux/kernel.h>
13 #include <linux/limits.h>
14 #include <linux/math64.h>
15 #include <linux/module.h>
16 #include <linux/platform_device.h>
17 #include <linux/mod_devicetable.h>
18 #include <linux/property.h>
19 #include <linux/rtc.h>
20 #include <linux/types.h>
21 #include <linux/units.h>
22 
23 #include <linux/mfd/tps6594.h>
24 
25 // Total number of RTC registers needed to set time
26 #define NUM_TIME_REGS (TPS6594_REG_RTC_WEEKS - TPS6594_REG_RTC_SECONDS + 1)
27 
28 // Total number of RTC alarm registers
29 #define NUM_TIME_ALARM_REGS (NUM_TIME_REGS - 1)
30 
31 /*
32  * Min and max values supported by 'offset' interface (swapped sign).
33  * After conversion, the values do not exceed the range [-32767, 33767]
34  * which COMP_REG must conform to.
35  */
36 #define MIN_OFFSET (-277774)
37 #define MAX_OFFSET (277774)
38 
39 // Number of ticks per hour
40 #define TICKS_PER_HOUR (32768 * 3600)
41 
42 // Multiplier for ppb conversions
43 #define PPB_MULT NANO
44 
45 struct tps6594_rtc {
46 	struct rtc_device *rtc_dev;
47 	int irq;
48 };
49 
tps6594_rtc_alarm_irq_enable(struct device * dev,unsigned int enabled)50 static int tps6594_rtc_alarm_irq_enable(struct device *dev,
51 					unsigned int enabled)
52 {
53 	struct tps6594 *tps = dev_get_drvdata(dev->parent);
54 	u8 val;
55 
56 	val = enabled ? TPS6594_BIT_IT_ALARM : 0;
57 
58 	return regmap_update_bits(tps->regmap, TPS6594_REG_RTC_INTERRUPTS,
59 				  TPS6594_BIT_IT_ALARM, val);
60 }
61 
62 /* Pulse GET_TIME field of RTC_CTRL_1 to store a timestamp in shadow registers. */
tps6594_rtc_shadow_timestamp(struct device * dev,struct tps6594 * tps)63 static int tps6594_rtc_shadow_timestamp(struct device *dev, struct tps6594 *tps)
64 {
65 	int ret;
66 
67 	/*
68 	 * Set GET_TIME to 0. Next time we set GET_TIME to 1 we will be sure to store
69 	 * an up-to-date timestamp.
70 	 */
71 	ret = regmap_clear_bits(tps->regmap, TPS6594_REG_RTC_CTRL_1,
72 				TPS6594_BIT_GET_TIME);
73 	if (ret < 0)
74 		return ret;
75 
76 	/*
77 	 * Copy content of RTC registers to shadow registers or latches to read
78 	 * a coherent timestamp.
79 	 */
80 	return regmap_set_bits(tps->regmap, TPS6594_REG_RTC_CTRL_1,
81 			       TPS6594_BIT_GET_TIME);
82 }
83 
tps6594_rtc_read_time(struct device * dev,struct rtc_time * tm)84 static int tps6594_rtc_read_time(struct device *dev, struct rtc_time *tm)
85 {
86 	unsigned char rtc_data[NUM_TIME_REGS];
87 	struct tps6594 *tps = dev_get_drvdata(dev->parent);
88 	int ret;
89 
90 	// Check if RTC is running.
91 	ret = regmap_test_bits(tps->regmap, TPS6594_REG_RTC_STATUS,
92 			       TPS6594_BIT_RUN);
93 	if (ret < 0)
94 		return ret;
95 	if (ret == 0)
96 		return -EINVAL;
97 
98 	ret = tps6594_rtc_shadow_timestamp(dev, tps);
99 	if (ret < 0)
100 		return ret;
101 
102 	// Read shadowed RTC registers.
103 	ret = regmap_bulk_read(tps->regmap, TPS6594_REG_RTC_SECONDS, rtc_data,
104 			       NUM_TIME_REGS);
105 	if (ret < 0)
106 		return ret;
107 
108 	tm->tm_sec = bcd2bin(rtc_data[0]);
109 	tm->tm_min = bcd2bin(rtc_data[1]);
110 	tm->tm_hour = bcd2bin(rtc_data[2]);
111 	tm->tm_mday = bcd2bin(rtc_data[3]);
112 	tm->tm_mon = bcd2bin(rtc_data[4]) - 1;
113 	tm->tm_year = bcd2bin(rtc_data[5]) + 100;
114 	tm->tm_wday = bcd2bin(rtc_data[6]);
115 
116 	return 0;
117 }
118 
tps6594_rtc_set_time(struct device * dev,struct rtc_time * tm)119 static int tps6594_rtc_set_time(struct device *dev, struct rtc_time *tm)
120 {
121 	unsigned char rtc_data[NUM_TIME_REGS];
122 	struct tps6594 *tps = dev_get_drvdata(dev->parent);
123 	int ret;
124 
125 	rtc_data[0] = bin2bcd(tm->tm_sec);
126 	rtc_data[1] = bin2bcd(tm->tm_min);
127 	rtc_data[2] = bin2bcd(tm->tm_hour);
128 	rtc_data[3] = bin2bcd(tm->tm_mday);
129 	rtc_data[4] = bin2bcd(tm->tm_mon + 1);
130 	rtc_data[5] = bin2bcd(tm->tm_year - 100);
131 	rtc_data[6] = bin2bcd(tm->tm_wday);
132 
133 	// Stop RTC while updating the RTC time registers.
134 	ret = regmap_clear_bits(tps->regmap, TPS6594_REG_RTC_CTRL_1,
135 				TPS6594_BIT_STOP_RTC);
136 	if (ret < 0)
137 		return ret;
138 
139 	// Update all the time registers in one shot.
140 	ret = regmap_bulk_write(tps->regmap, TPS6594_REG_RTC_SECONDS, rtc_data,
141 				NUM_TIME_REGS);
142 	if (ret < 0)
143 		return ret;
144 
145 	// Start back RTC.
146 	return regmap_set_bits(tps->regmap, TPS6594_REG_RTC_CTRL_1,
147 			       TPS6594_BIT_STOP_RTC);
148 }
149 
tps6594_rtc_read_alarm(struct device * dev,struct rtc_wkalrm * alm)150 static int tps6594_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm)
151 {
152 	unsigned char alarm_data[NUM_TIME_ALARM_REGS];
153 	u32 int_val;
154 	struct tps6594 *tps = dev_get_drvdata(dev->parent);
155 	int ret;
156 
157 	ret = regmap_bulk_read(tps->regmap, TPS6594_REG_ALARM_SECONDS,
158 			       alarm_data, NUM_TIME_ALARM_REGS);
159 	if (ret < 0)
160 		return ret;
161 
162 	alm->time.tm_sec = bcd2bin(alarm_data[0]);
163 	alm->time.tm_min = bcd2bin(alarm_data[1]);
164 	alm->time.tm_hour = bcd2bin(alarm_data[2]);
165 	alm->time.tm_mday = bcd2bin(alarm_data[3]);
166 	alm->time.tm_mon = bcd2bin(alarm_data[4]) - 1;
167 	alm->time.tm_year = bcd2bin(alarm_data[5]) + 100;
168 
169 	ret = regmap_read(tps->regmap, TPS6594_REG_RTC_INTERRUPTS, &int_val);
170 	if (ret < 0)
171 		return ret;
172 
173 	alm->enabled = int_val & TPS6594_BIT_IT_ALARM;
174 
175 	return 0;
176 }
177 
tps6594_rtc_set_alarm(struct device * dev,struct rtc_wkalrm * alm)178 static int tps6594_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
179 {
180 	unsigned char alarm_data[NUM_TIME_ALARM_REGS];
181 	struct tps6594 *tps = dev_get_drvdata(dev->parent);
182 	int ret;
183 
184 	// Disable alarm irq before changing the alarm timestamp.
185 	ret = tps6594_rtc_alarm_irq_enable(dev, 0);
186 	if (ret)
187 		return ret;
188 
189 	alarm_data[0] = bin2bcd(alm->time.tm_sec);
190 	alarm_data[1] = bin2bcd(alm->time.tm_min);
191 	alarm_data[2] = bin2bcd(alm->time.tm_hour);
192 	alarm_data[3] = bin2bcd(alm->time.tm_mday);
193 	alarm_data[4] = bin2bcd(alm->time.tm_mon + 1);
194 	alarm_data[5] = bin2bcd(alm->time.tm_year - 100);
195 
196 	// Update all the alarm registers in one shot.
197 	ret = regmap_bulk_write(tps->regmap, TPS6594_REG_ALARM_SECONDS,
198 				alarm_data, NUM_TIME_ALARM_REGS);
199 	if (ret < 0)
200 		return ret;
201 
202 	if (alm->enabled)
203 		ret = tps6594_rtc_alarm_irq_enable(dev, 1);
204 
205 	return ret;
206 }
207 
tps6594_rtc_set_calibration(struct device * dev,int calibration)208 static int tps6594_rtc_set_calibration(struct device *dev, int calibration)
209 {
210 	struct tps6594 *tps = dev_get_drvdata(dev->parent);
211 	__le16 value;
212 	int ret;
213 
214 	/*
215 	 * TPS6594 uses two's complement 16 bit value for compensation of RTC
216 	 * crystal inaccuracies. One time every hour when seconds counter
217 	 * increments from 0 to 1 compensation value will be added to internal
218 	 * RTC counter value.
219 	 *
220 	 * Valid range for compensation value: [-32767 .. 32767].
221 	 */
222 	if (calibration < S16_MIN + 1 || calibration > S16_MAX)
223 		return -ERANGE;
224 
225 	value = cpu_to_le16(calibration);
226 
227 	// Update all the compensation registers in one shot.
228 	ret = regmap_bulk_write(tps->regmap, TPS6594_REG_RTC_COMP_LSB, &value,
229 				sizeof(value));
230 	if (ret < 0)
231 		return ret;
232 
233 	// Enable automatic compensation.
234 	return regmap_set_bits(tps->regmap, TPS6594_REG_RTC_CTRL_1,
235 			       TPS6594_BIT_AUTO_COMP);
236 }
237 
tps6594_rtc_get_calibration(struct device * dev,int * calibration)238 static int tps6594_rtc_get_calibration(struct device *dev, int *calibration)
239 {
240 	struct tps6594 *tps = dev_get_drvdata(dev->parent);
241 	unsigned int ctrl;
242 	__le16 value;
243 	int ret;
244 
245 	ret = regmap_read(tps->regmap, TPS6594_REG_RTC_CTRL_1, &ctrl);
246 	if (ret < 0)
247 		return ret;
248 
249 	// If automatic compensation is not enabled report back zero.
250 	if (!(ctrl & TPS6594_BIT_AUTO_COMP)) {
251 		*calibration = 0;
252 		return 0;
253 	}
254 
255 	ret = regmap_bulk_read(tps->regmap, TPS6594_REG_RTC_COMP_LSB, &value,
256 			       sizeof(value));
257 	if (ret < 0)
258 		return ret;
259 
260 	*calibration = le16_to_cpu(value);
261 
262 	return 0;
263 }
264 
tps6594_rtc_read_offset(struct device * dev,long * offset)265 static int tps6594_rtc_read_offset(struct device *dev, long *offset)
266 {
267 	int calibration;
268 	s64 tmp;
269 	int ret;
270 
271 	ret = tps6594_rtc_get_calibration(dev, &calibration);
272 	if (ret < 0)
273 		return ret;
274 
275 	// Convert from RTC calibration register format to ppb format.
276 	tmp = calibration * PPB_MULT;
277 
278 	if (tmp < 0)
279 		tmp -= TICKS_PER_HOUR / 2LL;
280 	else
281 		tmp += TICKS_PER_HOUR / 2LL;
282 	tmp = div_s64(tmp, TICKS_PER_HOUR);
283 
284 	/*
285 	 * SAFETY:
286 	 * Computatiion is the reverse operation of the one done in
287 	 * `tps6594_rtc_set_offset`. The safety remarks applie here too.
288 	 */
289 
290 	/*
291 	 * Offset value operates in negative way, so swap sign.
292 	 * See 8.3.10.5, (32768 - COMP_REG).
293 	 */
294 	*offset = (long)-tmp;
295 
296 	return 0;
297 }
298 
tps6594_rtc_set_offset(struct device * dev,long offset)299 static int tps6594_rtc_set_offset(struct device *dev, long offset)
300 {
301 	int calibration;
302 	s64 tmp;
303 
304 	// Make sure offset value is within supported range.
305 	if (offset < MIN_OFFSET || offset > MAX_OFFSET)
306 		return -ERANGE;
307 
308 	// Convert from ppb format to RTC calibration register format.
309 
310 	tmp = offset * TICKS_PER_HOUR;
311 	if (tmp < 0)
312 		tmp -= PPB_MULT / 2LL;
313 	else
314 		tmp += PPB_MULT / 2LL;
315 	tmp = div_s64(tmp, PPB_MULT);
316 
317 	/*
318 	 * SAFETY:
319 	 * - tmp = offset * TICK_PER_HOUR :
320 	 *	`offset` can't be more than 277774, so `tmp` can't exceed 277774000000000
321 	 *	which is lower than the maximum value in an `s64` (2^63-1). No overflow here.
322 	 *
323 	 * - tmp += TICK_PER_HOUR / 2LL :
324 	 *	tmp will have a maximum value of 277774117964800 which is still inferior to 2^63-1.
325 	 */
326 
327 	// Offset value operates in negative way, so swap sign.
328 	calibration = (int)-tmp;
329 
330 	return tps6594_rtc_set_calibration(dev, calibration);
331 }
332 
tps6594_rtc_interrupt(int irq,void * data)333 static irqreturn_t tps6594_rtc_interrupt(int irq, void *data)
334 {
335 	struct device *dev = data;
336 	struct tps6594 *tps = dev_get_drvdata(dev->parent);
337 	struct tps6594_rtc *rtc = dev_get_drvdata(dev);
338 	int ret;
339 	u32 rtc_reg;
340 
341 	ret = regmap_read(tps->regmap, TPS6594_REG_RTC_STATUS, &rtc_reg);
342 	if (ret)
343 		return IRQ_NONE;
344 
345 	rtc_update_irq(rtc->rtc_dev, 1, RTC_IRQF | RTC_AF);
346 
347 	return IRQ_HANDLED;
348 }
349 
350 static const struct rtc_class_ops tps6594_rtc_ops = {
351 	.read_time = tps6594_rtc_read_time,
352 	.set_time = tps6594_rtc_set_time,
353 	.read_alarm = tps6594_rtc_read_alarm,
354 	.set_alarm = tps6594_rtc_set_alarm,
355 	.alarm_irq_enable = tps6594_rtc_alarm_irq_enable,
356 	.read_offset = tps6594_rtc_read_offset,
357 	.set_offset = tps6594_rtc_set_offset,
358 };
359 
tps6594_rtc_probe(struct platform_device * pdev)360 static int tps6594_rtc_probe(struct platform_device *pdev)
361 {
362 	struct tps6594 *tps = dev_get_drvdata(pdev->dev.parent);
363 	struct device *dev = &pdev->dev;
364 	struct tps6594_rtc *rtc;
365 	int irq;
366 	int ret;
367 
368 	rtc = devm_kzalloc(dev, sizeof(*rtc), GFP_KERNEL);
369 	if (!rtc)
370 		return -ENOMEM;
371 
372 	rtc->rtc_dev = devm_rtc_allocate_device(dev);
373 	if (IS_ERR(rtc->rtc_dev))
374 		return PTR_ERR(rtc->rtc_dev);
375 
376 	// Enable crystal oscillator.
377 	ret = regmap_set_bits(tps->regmap, TPS6594_REG_RTC_CTRL_2,
378 			      TPS6594_BIT_XTAL_EN);
379 	if (ret < 0)
380 		return ret;
381 
382 	ret = regmap_test_bits(tps->regmap, TPS6594_REG_RTC_STATUS,
383 			       TPS6594_BIT_RUN);
384 	if (ret < 0)
385 		return ret;
386 	// RTC not running.
387 	if (ret == 0) {
388 		ret = regmap_set_bits(tps->regmap, TPS6594_REG_RTC_CTRL_1,
389 				      TPS6594_BIT_STOP_RTC);
390 		if (ret < 0)
391 			return ret;
392 
393 		/*
394 		 * On some boards, a 40 ms delay is needed before BIT_RUN is set.
395 		 * 80 ms should provide sufficient margin.
396 		 */
397 		mdelay(80);
398 
399 		/*
400 		 * RTC should be running now. Check if this is the case.
401 		 * If not it might be a missing oscillator.
402 		 */
403 		ret = regmap_test_bits(tps->regmap, TPS6594_REG_RTC_STATUS,
404 				       TPS6594_BIT_RUN);
405 		if (ret < 0)
406 			return ret;
407 		if (ret == 0)
408 			return -ENODEV;
409 
410 		// Stop RTC until first call to `tps6594_rtc_set_time`.
411 		ret = regmap_clear_bits(tps->regmap, TPS6594_REG_RTC_CTRL_1,
412 					TPS6594_BIT_STOP_RTC);
413 		if (ret < 0)
414 			return ret;
415 	}
416 
417 	platform_set_drvdata(pdev, rtc);
418 
419 	irq = platform_get_irq_byname(pdev, TPS6594_IRQ_NAME_ALARM);
420 	if (irq < 0)
421 		return dev_err_probe(dev, irq, "Failed to get irq\n");
422 
423 	rtc->irq = irq;
424 
425 	ret = devm_request_threaded_irq(dev, irq, NULL, tps6594_rtc_interrupt,
426 					IRQF_ONESHOT, TPS6594_IRQ_NAME_ALARM,
427 					dev);
428 	if (ret < 0)
429 		return dev_err_probe(dev, ret,
430 				     "Failed to request_threaded_irq\n");
431 
432 	ret = device_init_wakeup(dev, true);
433 	if (ret < 0)
434 		return dev_err_probe(dev, ret,
435 				     "Failed to init rtc as wakeup source\n");
436 
437 	rtc->rtc_dev->ops = &tps6594_rtc_ops;
438 	rtc->rtc_dev->range_min = RTC_TIMESTAMP_BEGIN_2000;
439 	rtc->rtc_dev->range_max = RTC_TIMESTAMP_END_2099;
440 
441 	return devm_rtc_register_device(rtc->rtc_dev);
442 }
443 
tps6594_rtc_resume(struct device * dev)444 static int tps6594_rtc_resume(struct device *dev)
445 {
446 	struct tps6594 *tps = dev_get_drvdata(dev->parent);
447 	struct tps6594_rtc *rtc = dev_get_drvdata(dev);
448 	int ret;
449 
450 	ret = regmap_test_bits(tps->regmap, TPS6594_REG_INT_STARTUP,
451 			       TPS6594_BIT_RTC_INT);
452 	if (ret < 0) {
453 		dev_err(dev, "failed to read REG_INT_STARTUP: %d\n", ret);
454 		goto out;
455 	}
456 
457 	if (ret > 0) {
458 		/*
459 		 * If the alarm bit is set, it means that the IRQ has been
460 		 * fired. But, the kernel may not have woke up yet when it
461 		 * happened. So, we have to clear it.
462 		 */
463 		ret = regmap_write(tps->regmap, TPS6594_REG_RTC_STATUS,
464 				   TPS6594_BIT_ALARM);
465 		if (ret < 0)
466 			dev_err(dev, "error clearing alarm bit: %d", ret);
467 
468 		rtc_update_irq(rtc->rtc_dev, 1, RTC_IRQF | RTC_AF);
469 	}
470 out:
471 	disable_irq_wake(rtc->irq);
472 
473 	return 0;
474 }
475 
tps6594_rtc_suspend(struct device * dev)476 static int tps6594_rtc_suspend(struct device *dev)
477 {
478 	struct tps6594_rtc *rtc = dev_get_drvdata(dev);
479 
480 	enable_irq_wake(rtc->irq);
481 
482 	return 0;
483 }
484 
485 static DEFINE_SIMPLE_DEV_PM_OPS(tps6594_rtc_pm_ops, tps6594_rtc_suspend, tps6594_rtc_resume);
486 
487 static const struct platform_device_id tps6594_rtc_id_table[] = {
488 	{ "tps6594-rtc", },
489 	{}
490 };
491 MODULE_DEVICE_TABLE(platform, tps6594_rtc_id_table);
492 
493 static struct platform_driver tps6594_rtc_driver = {
494 	.probe		= tps6594_rtc_probe,
495 	.driver		= {
496 		.name	= "tps6594-rtc",
497 		.pm = pm_sleep_ptr(&tps6594_rtc_pm_ops),
498 	},
499 	.id_table = tps6594_rtc_id_table,
500 };
501 
502 module_platform_driver(tps6594_rtc_driver);
503 MODULE_AUTHOR("Esteban Blanc <eblanc@baylibre.com>");
504 MODULE_DESCRIPTION("TPS6594 RTC driver");
505 MODULE_LICENSE("GPL");
506