xref: /linux/fs/f2fs/f2fs.h (revision cb015814f8b6eebcbb8e46e111d108892c5e6821)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fs/f2fs/f2fs.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10 
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/slab.h>
15 #include <linux/crc32.h>
16 #include <linux/magic.h>
17 #include <linux/kobject.h>
18 #include <linux/sched.h>
19 #include <linux/cred.h>
20 #include <linux/sched/mm.h>
21 #include <linux/vmalloc.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/quotaops.h>
25 #include <linux/part_stat.h>
26 #include <linux/rw_hint.h>
27 
28 #include <linux/fscrypt.h>
29 #include <linux/fsverity.h>
30 
31 struct pagevec;
32 
33 #ifdef CONFIG_F2FS_CHECK_FS
34 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
35 #else
36 #define f2fs_bug_on(sbi, condition)					\
37 	do {								\
38 		if (WARN_ON(condition))					\
39 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
40 	} while (0)
41 #endif
42 
43 enum {
44 	FAULT_KMALLOC,
45 	FAULT_KVMALLOC,
46 	FAULT_PAGE_ALLOC,
47 	FAULT_PAGE_GET,
48 	FAULT_ALLOC_BIO,	/* it's obsolete due to bio_alloc() will never fail */
49 	FAULT_ALLOC_NID,
50 	FAULT_ORPHAN,
51 	FAULT_BLOCK,
52 	FAULT_DIR_DEPTH,
53 	FAULT_EVICT_INODE,
54 	FAULT_TRUNCATE,
55 	FAULT_READ_IO,
56 	FAULT_CHECKPOINT,
57 	FAULT_DISCARD,
58 	FAULT_WRITE_IO,
59 	FAULT_SLAB_ALLOC,
60 	FAULT_DQUOT_INIT,
61 	FAULT_LOCK_OP,
62 	FAULT_BLKADDR_VALIDITY,
63 	FAULT_BLKADDR_CONSISTENCE,
64 	FAULT_NO_SEGMENT,
65 	FAULT_INCONSISTENT_FOOTER,
66 	FAULT_TIMEOUT,
67 	FAULT_VMALLOC,
68 	FAULT_MAX,
69 };
70 
71 /* indicate which option to update */
72 enum fault_option {
73 	FAULT_RATE	= 1,	/* only update fault rate */
74 	FAULT_TYPE	= 2,	/* only update fault type */
75 	FAULT_ALL	= 4,	/* reset all fault injection options/stats */
76 };
77 
78 #ifdef CONFIG_F2FS_FAULT_INJECTION
79 struct f2fs_fault_info {
80 	atomic_t inject_ops;
81 	int inject_rate;
82 	unsigned int inject_type;
83 	/* Used to account total count of injection for each type */
84 	unsigned int inject_count[FAULT_MAX];
85 };
86 
87 extern const char *f2fs_fault_name[FAULT_MAX];
88 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & BIT(type))
89 
90 /* maximum retry count for injected failure */
91 #define DEFAULT_FAILURE_RETRY_COUNT		8
92 #else
93 #define DEFAULT_FAILURE_RETRY_COUNT		1
94 #endif
95 
96 /*
97  * For mount options
98  */
99 enum f2fs_mount_opt {
100 	F2FS_MOUNT_DISABLE_ROLL_FORWARD,
101 	F2FS_MOUNT_DISCARD,
102 	F2FS_MOUNT_NOHEAP,
103 	F2FS_MOUNT_XATTR_USER,
104 	F2FS_MOUNT_POSIX_ACL,
105 	F2FS_MOUNT_DISABLE_EXT_IDENTIFY,
106 	F2FS_MOUNT_INLINE_XATTR,
107 	F2FS_MOUNT_INLINE_DATA,
108 	F2FS_MOUNT_INLINE_DENTRY,
109 	F2FS_MOUNT_FLUSH_MERGE,
110 	F2FS_MOUNT_NOBARRIER,
111 	F2FS_MOUNT_FASTBOOT,
112 	F2FS_MOUNT_READ_EXTENT_CACHE,
113 	F2FS_MOUNT_DATA_FLUSH,
114 	F2FS_MOUNT_FAULT_INJECTION,
115 	F2FS_MOUNT_USRQUOTA,
116 	F2FS_MOUNT_GRPQUOTA,
117 	F2FS_MOUNT_PRJQUOTA,
118 	F2FS_MOUNT_QUOTA,
119 	F2FS_MOUNT_INLINE_XATTR_SIZE,
120 	F2FS_MOUNT_RESERVE_ROOT,
121 	F2FS_MOUNT_DISABLE_CHECKPOINT,
122 	F2FS_MOUNT_NORECOVERY,
123 	F2FS_MOUNT_ATGC,
124 	F2FS_MOUNT_MERGE_CHECKPOINT,
125 	F2FS_MOUNT_GC_MERGE,
126 	F2FS_MOUNT_COMPRESS_CACHE,
127 	F2FS_MOUNT_AGE_EXTENT_CACHE,
128 	F2FS_MOUNT_NAT_BITS,
129 	F2FS_MOUNT_INLINECRYPT,
130 	/*
131 	 * Some f2fs environments expect to be able to pass the "lazytime" option
132 	 * string rather than using the MS_LAZYTIME flag, so this must remain.
133 	 */
134 	F2FS_MOUNT_LAZYTIME,
135 	F2FS_MOUNT_RESERVE_NODE,
136 };
137 
138 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
139 #define clear_opt(sbi, option)		\
140 	(F2FS_OPTION(sbi).opt &= ~BIT(F2FS_MOUNT_##option))
141 #define set_opt(sbi, option)		\
142 	(F2FS_OPTION(sbi).opt |= BIT(F2FS_MOUNT_##option))
143 #define test_opt(sbi, option)		\
144 	(F2FS_OPTION(sbi).opt & BIT(F2FS_MOUNT_##option))
145 
146 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
147 		typecheck(unsigned long long, b) &&			\
148 		((long long)((a) - (b)) > 0))
149 
150 typedef u32 block_t;	/*
151 			 * should not change u32, since it is the on-disk block
152 			 * address format, __le32.
153 			 */
154 typedef u32 nid_t;
155 
156 #define COMPRESS_EXT_NUM		16
157 
158 enum blkzone_allocation_policy {
159 	BLKZONE_ALLOC_PRIOR_SEQ,	/* Prioritize writing to sequential zones */
160 	BLKZONE_ALLOC_ONLY_SEQ,		/* Only allow writing to sequential zones */
161 	BLKZONE_ALLOC_PRIOR_CONV,	/* Prioritize writing to conventional zones */
162 };
163 
164 enum bggc_io_aware_policy {
165 	AWARE_ALL_IO,		/* skip background GC if there is any kind of pending IO */
166 	AWARE_READ_IO,		/* skip background GC if there is pending read IO */
167 	AWARE_NONE,			/* don't aware IO for background GC */
168 };
169 
170 enum device_allocation_policy {
171 	ALLOCATE_FORWARD_NOHINT,
172 	ALLOCATE_FORWARD_WITHIN_HINT,
173 	ALLOCATE_FORWARD_FROM_HINT,
174 };
175 
176 /*
177  * An implementation of an rwsem that is explicitly unfair to readers. This
178  * prevents priority inversion when a low-priority reader acquires the read lock
179  * while sleeping on the write lock but the write lock is needed by
180  * higher-priority clients.
181  */
182 
183 struct f2fs_rwsem {
184         struct rw_semaphore internal_rwsem;
185 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
186         wait_queue_head_t read_waiters;
187 #endif
188 };
189 
190 struct f2fs_mount_info {
191 	unsigned long long opt;
192 	block_t root_reserved_blocks;	/* root reserved blocks */
193 	block_t root_reserved_nodes;	/* root reserved nodes */
194 	kuid_t s_resuid;		/* reserved blocks for uid */
195 	kgid_t s_resgid;		/* reserved blocks for gid */
196 	int active_logs;		/* # of active logs */
197 	int inline_xattr_size;		/* inline xattr size */
198 #ifdef CONFIG_F2FS_FAULT_INJECTION
199 	struct f2fs_fault_info fault_info;	/* For fault injection */
200 #endif
201 #ifdef CONFIG_QUOTA
202 	/* Names of quota files with journalled quota */
203 	char *s_qf_names[MAXQUOTAS];
204 	int s_jquota_fmt;			/* Format of quota to use */
205 #endif
206 	/* For which write hints are passed down to block layer */
207 	int alloc_mode;			/* segment allocation policy */
208 	int fsync_mode;			/* fsync policy */
209 	int fs_mode;			/* fs mode: LFS or ADAPTIVE */
210 	int bggc_mode;			/* bggc mode: off, on or sync */
211 	int memory_mode;		/* memory mode */
212 	int errors;			/* errors parameter */
213 	int discard_unit;		/*
214 					 * discard command's offset/size should
215 					 * be aligned to this unit: block,
216 					 * segment or section
217 					 */
218 	struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
219 	block_t unusable_cap_perc;	/* percentage for cap */
220 	block_t unusable_cap;		/* Amount of space allowed to be
221 					 * unusable when disabling checkpoint
222 					 */
223 
224 	/* For compression */
225 	unsigned char compress_algorithm;	/* algorithm type */
226 	unsigned char compress_log_size;	/* cluster log size */
227 	unsigned char compress_level;		/* compress level */
228 	bool compress_chksum;			/* compressed data chksum */
229 	unsigned char compress_ext_cnt;		/* extension count */
230 	unsigned char nocompress_ext_cnt;		/* nocompress extension count */
231 	int compress_mode;			/* compression mode */
232 	unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN];	/* extensions */
233 	unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
234 	unsigned int lookup_mode;
235 };
236 
237 #define F2FS_FEATURE_ENCRYPT			0x00000001
238 #define F2FS_FEATURE_BLKZONED			0x00000002
239 #define F2FS_FEATURE_ATOMIC_WRITE		0x00000004
240 #define F2FS_FEATURE_EXTRA_ATTR			0x00000008
241 #define F2FS_FEATURE_PRJQUOTA			0x00000010
242 #define F2FS_FEATURE_INODE_CHKSUM		0x00000020
243 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x00000040
244 #define F2FS_FEATURE_QUOTA_INO			0x00000080
245 #define F2FS_FEATURE_INODE_CRTIME		0x00000100
246 #define F2FS_FEATURE_LOST_FOUND			0x00000200
247 #define F2FS_FEATURE_VERITY			0x00000400
248 #define F2FS_FEATURE_SB_CHKSUM			0x00000800
249 #define F2FS_FEATURE_CASEFOLD			0x00001000
250 #define F2FS_FEATURE_COMPRESSION		0x00002000
251 #define F2FS_FEATURE_RO				0x00004000
252 #define F2FS_FEATURE_DEVICE_ALIAS		0x00008000
253 #define F2FS_FEATURE_PACKED_SSA			0x00010000
254 
255 #define __F2FS_HAS_FEATURE(raw_super, mask)				\
256 	((raw_super->feature & cpu_to_le32(mask)) != 0)
257 #define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
258 
259 /*
260  * Default values for user and/or group using reserved blocks
261  */
262 #define	F2FS_DEF_RESUID		0
263 #define	F2FS_DEF_RESGID		0
264 
265 /*
266  * For checkpoint manager
267  */
268 enum {
269 	NAT_BITMAP,
270 	SIT_BITMAP
271 };
272 
273 #define	CP_UMOUNT	0x00000001
274 #define	CP_FASTBOOT	0x00000002
275 #define	CP_SYNC		0x00000004
276 #define	CP_RECOVERY	0x00000008
277 #define	CP_DISCARD	0x00000010
278 #define CP_TRIMMED	0x00000020
279 #define CP_PAUSE	0x00000040
280 #define CP_RESIZE 	0x00000080
281 
282 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
283 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
284 #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
285 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
286 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
287 #define DEF_CP_INTERVAL			60	/* 60 secs */
288 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
289 #define DEF_DISABLE_INTERVAL		5	/* 5 secs */
290 #define DEF_ENABLE_INTERVAL		5	/* 5 secs */
291 #define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
292 #define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
293 
294 enum cp_time {
295 	CP_TIME_START,		/* begin */
296 	CP_TIME_LOCK,		/* after cp_global_sem */
297 	CP_TIME_OP_LOCK,	/* after block_operation */
298 	CP_TIME_FLUSH_META,	/* after flush sit/nat */
299 	CP_TIME_SYNC_META,	/* after sync_meta_pages */
300 	CP_TIME_SYNC_CP_META,	/* after sync cp meta pages */
301 	CP_TIME_WAIT_DIRTY_META,/* after wait on dirty meta */
302 	CP_TIME_WAIT_CP_DATA,	/* after wait on cp data */
303 	CP_TIME_FLUSH_DEVICE,	/* after flush device cache */
304 	CP_TIME_WAIT_LAST_CP,	/* after wait on last cp pack */
305 	CP_TIME_END,		/* after unblock_operation */
306 	CP_TIME_MAX,
307 };
308 
309 /* time cost stats of checkpoint */
310 struct cp_stats {
311 	ktime_t times[CP_TIME_MAX];
312 };
313 
314 struct cp_control {
315 	int reason;
316 	__u64 trim_start;
317 	__u64 trim_end;
318 	__u64 trim_minlen;
319 	struct cp_stats stats;
320 };
321 
322 enum f2fs_cp_phase {
323 	CP_PHASE_START_BLOCK_OPS,
324 	CP_PHASE_FINISH_BLOCK_OPS,
325 	CP_PHASE_FINISH_CHECKPOINT,
326 };
327 
328 /*
329  * indicate meta/data type
330  */
331 enum {
332 	META_CP,
333 	META_NAT,
334 	META_SIT,
335 	META_SSA,
336 	META_MAX,
337 	META_POR,
338 	DATA_GENERIC,		/* check range only */
339 	DATA_GENERIC_ENHANCE,	/* strong check on range and segment bitmap */
340 	DATA_GENERIC_ENHANCE_READ,	/*
341 					 * strong check on range and segment
342 					 * bitmap but no warning due to race
343 					 * condition of read on truncated area
344 					 * by extent_cache
345 					 */
346 	DATA_GENERIC_ENHANCE_UPDATE,	/*
347 					 * strong check on range and segment
348 					 * bitmap for update case
349 					 */
350 	META_GENERIC,
351 };
352 
353 /* for the list of ino */
354 enum {
355 	ORPHAN_INO,		/* for orphan ino list */
356 	APPEND_INO,		/* for append ino list */
357 	UPDATE_INO,		/* for update ino list */
358 	TRANS_DIR_INO,		/* for transactions dir ino list */
359 	XATTR_DIR_INO,		/* for xattr updated dir ino list */
360 	FLUSH_INO,		/* for multiple device flushing */
361 	MAX_INO_ENTRY,		/* max. list */
362 };
363 
364 struct ino_entry {
365 	struct list_head list;		/* list head */
366 	nid_t ino;			/* inode number */
367 	unsigned int dirty_device;	/* dirty device bitmap */
368 };
369 
370 /* for the list of inodes to be GCed */
371 struct inode_entry {
372 	struct list_head list;	/* list head */
373 	struct inode *inode;	/* vfs inode pointer */
374 };
375 
376 struct fsync_node_entry {
377 	struct list_head list;	/* list head */
378 	struct folio *folio;	/* warm node folio pointer */
379 	unsigned int seq_id;	/* sequence id */
380 };
381 
382 struct ckpt_req {
383 	struct completion wait;		/* completion for checkpoint done */
384 	struct llist_node llnode;	/* llist_node to be linked in wait queue */
385 	int ret;			/* return code of checkpoint */
386 	union {
387 		ktime_t queue_time;	/* request queued time */
388 		ktime_t delta_time;	/* time in queue */
389 	};
390 };
391 
392 struct ckpt_req_control {
393 	struct task_struct *f2fs_issue_ckpt;	/* checkpoint task */
394 	int ckpt_thread_ioprio;			/* checkpoint merge thread ioprio */
395 	wait_queue_head_t ckpt_wait_queue;	/* waiting queue for wake-up */
396 	atomic_t issued_ckpt;		/* # of actually issued ckpts */
397 	atomic_t total_ckpt;		/* # of total ckpts */
398 	atomic_t queued_ckpt;		/* # of queued ckpts */
399 	struct llist_head issue_list;	/* list for command issue */
400 	spinlock_t stat_lock;		/* lock for below checkpoint time stats */
401 	unsigned int cur_time;		/* cur wait time in msec for currently issued checkpoint */
402 	unsigned int peak_time;		/* peak wait time in msec until now */
403 };
404 
405 /* a time threshold that checkpoint was blocked for, unit: ms */
406 #define CP_LONG_LATENCY_THRESHOLD	5000
407 
408 /* for the bitmap indicate blocks to be discarded */
409 struct discard_entry {
410 	struct list_head list;	/* list head */
411 	block_t start_blkaddr;	/* start blockaddr of current segment */
412 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
413 };
414 
415 /* minimum discard granularity, unit: block count */
416 #define MIN_DISCARD_GRANULARITY		1
417 /* default discard granularity of inner discard thread, unit: block count */
418 #define DEFAULT_DISCARD_GRANULARITY		16
419 /* default maximum discard granularity of ordered discard, unit: block count */
420 #define DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY	16
421 /* default interval of periodical discard submission */
422 #define DEFAULT_DISCARD_INTERVAL	(msecs_to_jiffies(20))
423 
424 /* max discard pend list number */
425 #define MAX_PLIST_NUM		512
426 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
427 					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
428 
429 enum {
430 	D_PREP,			/* initial */
431 	D_PARTIAL,		/* partially submitted */
432 	D_SUBMIT,		/* all submitted */
433 	D_DONE,			/* finished */
434 };
435 
436 struct discard_info {
437 	block_t lstart;			/* logical start address */
438 	block_t len;			/* length */
439 	block_t start;			/* actual start address in dev */
440 };
441 
442 struct discard_cmd {
443 	struct rb_node rb_node;		/* rb node located in rb-tree */
444 	struct discard_info di;		/* discard info */
445 	struct list_head list;		/* command list */
446 	struct completion wait;		/* completion */
447 	struct block_device *bdev;	/* bdev */
448 	unsigned short ref;		/* reference count */
449 	unsigned char state;		/* state */
450 	unsigned char queued;		/* queued discard */
451 	int error;			/* bio error */
452 	spinlock_t lock;		/* for state/bio_ref updating */
453 	unsigned short bio_ref;		/* bio reference count */
454 };
455 
456 enum {
457 	DPOLICY_BG,
458 	DPOLICY_FORCE,
459 	DPOLICY_FSTRIM,
460 	DPOLICY_UMOUNT,
461 	MAX_DPOLICY,
462 };
463 
464 enum {
465 	DPOLICY_IO_AWARE_DISABLE,	/* force to not be aware of IO */
466 	DPOLICY_IO_AWARE_ENABLE,	/* force to be aware of IO */
467 	DPOLICY_IO_AWARE_MAX,
468 };
469 
470 struct discard_policy {
471 	int type;			/* type of discard */
472 	unsigned int min_interval;	/* used for candidates exist */
473 	unsigned int mid_interval;	/* used for device busy */
474 	unsigned int max_interval;	/* used for candidates not exist */
475 	unsigned int max_requests;	/* # of discards issued per round */
476 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
477 	bool io_aware;			/* issue discard in idle time */
478 	bool sync;			/* submit discard with REQ_SYNC flag */
479 	bool ordered;			/* issue discard by lba order */
480 	bool timeout;			/* discard timeout for put_super */
481 	unsigned int granularity;	/* discard granularity */
482 };
483 
484 struct discard_cmd_control {
485 	struct task_struct *f2fs_issue_discard;	/* discard thread */
486 	struct list_head entry_list;		/* 4KB discard entry list */
487 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
488 	struct list_head wait_list;		/* store on-flushing entries */
489 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
490 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
491 	struct mutex cmd_lock;
492 	unsigned int nr_discards;		/* # of discards in the list */
493 	unsigned int max_discards;		/* max. discards to be issued */
494 	unsigned int max_discard_request;	/* max. discard request per round */
495 	unsigned int min_discard_issue_time;	/* min. interval between discard issue */
496 	unsigned int mid_discard_issue_time;	/* mid. interval between discard issue */
497 	unsigned int max_discard_issue_time;	/* max. interval between discard issue */
498 	unsigned int discard_io_aware_gran; /* minimum discard granularity not be aware of I/O */
499 	unsigned int discard_urgent_util;	/* utilization which issue discard proactively */
500 	unsigned int discard_granularity;	/* discard granularity */
501 	unsigned int max_ordered_discard;	/* maximum discard granularity issued by lba order */
502 	unsigned int discard_io_aware;		/* io_aware policy */
503 	unsigned int undiscard_blks;		/* # of undiscard blocks */
504 	unsigned int next_pos;			/* next discard position */
505 	atomic_t issued_discard;		/* # of issued discard */
506 	atomic_t queued_discard;		/* # of queued discard */
507 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
508 	struct rb_root_cached root;		/* root of discard rb-tree */
509 	bool rbtree_check;			/* config for consistence check */
510 	bool discard_wake;			/* to wake up discard thread */
511 };
512 
513 /* for the list of fsync inodes, used only during recovery */
514 struct fsync_inode_entry {
515 	struct list_head list;	/* list head */
516 	struct inode *inode;	/* vfs inode pointer */
517 	block_t blkaddr;	/* block address locating the last fsync */
518 	block_t last_dentry;	/* block address locating the last dentry */
519 };
520 
521 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
522 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
523 
524 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
525 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
526 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
527 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
528 
529 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
530 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
531 
update_nats_in_cursum(struct f2fs_journal * journal,int i)532 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
533 {
534 	int before = nats_in_cursum(journal);
535 
536 	journal->n_nats = cpu_to_le16(before + i);
537 	return before;
538 }
539 
update_sits_in_cursum(struct f2fs_journal * journal,int i)540 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
541 {
542 	int before = sits_in_cursum(journal);
543 
544 	journal->n_sits = cpu_to_le16(before + i);
545 	return before;
546 }
547 
__has_cursum_space(struct f2fs_journal * journal,int size,int type)548 static inline bool __has_cursum_space(struct f2fs_journal *journal,
549 							int size, int type)
550 {
551 	if (type == NAT_JOURNAL)
552 		return size <= MAX_NAT_JENTRIES(journal);
553 	return size <= MAX_SIT_JENTRIES(journal);
554 }
555 
556 /* for inline stuff */
557 #define DEF_INLINE_RESERVED_SIZE	1
558 static inline int get_extra_isize(struct inode *inode);
559 static inline int get_inline_xattr_addrs(struct inode *inode);
560 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
561 				(CUR_ADDRS_PER_INODE(inode) -		\
562 				get_inline_xattr_addrs(inode) -	\
563 				DEF_INLINE_RESERVED_SIZE))
564 
565 /* for inline dir */
566 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
567 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
568 				BITS_PER_BYTE + 1))
569 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
570 	DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
571 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
572 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
573 				NR_INLINE_DENTRY(inode) + \
574 				INLINE_DENTRY_BITMAP_SIZE(inode)))
575 
576 /*
577  * For INODE and NODE manager
578  */
579 /* for directory operations */
580 
581 struct f2fs_filename {
582 	/*
583 	 * The filename the user specified.  This is NULL for some
584 	 * filesystem-internal operations, e.g. converting an inline directory
585 	 * to a non-inline one, or roll-forward recovering an encrypted dentry.
586 	 */
587 	const struct qstr *usr_fname;
588 
589 	/*
590 	 * The on-disk filename.  For encrypted directories, this is encrypted.
591 	 * This may be NULL for lookups in an encrypted dir without the key.
592 	 */
593 	struct fscrypt_str disk_name;
594 
595 	/* The dirhash of this filename */
596 	f2fs_hash_t hash;
597 
598 #ifdef CONFIG_FS_ENCRYPTION
599 	/*
600 	 * For lookups in encrypted directories: either the buffer backing
601 	 * disk_name, or a buffer that holds the decoded no-key name.
602 	 */
603 	struct fscrypt_str crypto_buf;
604 #endif
605 #if IS_ENABLED(CONFIG_UNICODE)
606 	/*
607 	 * For casefolded directories: the casefolded name, but it's left NULL
608 	 * if the original name is not valid Unicode, if the original name is
609 	 * "." or "..", if the directory is both casefolded and encrypted and
610 	 * its encryption key is unavailable, or if the filesystem is doing an
611 	 * internal operation where usr_fname is also NULL.  In all these cases
612 	 * we fall back to treating the name as an opaque byte sequence.
613 	 */
614 	struct qstr cf_name;
615 #endif
616 };
617 
618 struct f2fs_dentry_ptr {
619 	struct inode *inode;
620 	void *bitmap;
621 	struct f2fs_dir_entry *dentry;
622 	__u8 (*filename)[F2FS_SLOT_LEN];
623 	int max;
624 	int nr_bitmap;
625 };
626 
make_dentry_ptr_block(struct inode * inode,struct f2fs_dentry_ptr * d,struct f2fs_dentry_block * t)627 static inline void make_dentry_ptr_block(struct inode *inode,
628 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
629 {
630 	d->inode = inode;
631 	d->max = NR_DENTRY_IN_BLOCK;
632 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
633 	d->bitmap = t->dentry_bitmap;
634 	d->dentry = t->dentry;
635 	d->filename = t->filename;
636 }
637 
make_dentry_ptr_inline(struct inode * inode,struct f2fs_dentry_ptr * d,void * t)638 static inline void make_dentry_ptr_inline(struct inode *inode,
639 					struct f2fs_dentry_ptr *d, void *t)
640 {
641 	int entry_cnt = NR_INLINE_DENTRY(inode);
642 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
643 	int reserved_size = INLINE_RESERVED_SIZE(inode);
644 
645 	d->inode = inode;
646 	d->max = entry_cnt;
647 	d->nr_bitmap = bitmap_size;
648 	d->bitmap = t;
649 	d->dentry = t + bitmap_size + reserved_size;
650 	d->filename = t + bitmap_size + reserved_size +
651 					SIZE_OF_DIR_ENTRY * entry_cnt;
652 }
653 
654 /*
655  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
656  * as its node offset to distinguish from index node blocks.
657  * But some bits are used to mark the node block.
658  */
659 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
660 				>> OFFSET_BIT_SHIFT)
661 enum {
662 	ALLOC_NODE,			/* allocate a new node page if needed */
663 	LOOKUP_NODE,			/* look up a node without readahead */
664 	LOOKUP_NODE_RA,			/*
665 					 * look up a node with readahead called
666 					 * by get_data_block.
667 					 */
668 };
669 
670 #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO or flush count */
671 
672 /* IO/non-IO congestion wait timeout value, default: 1ms */
673 #define	DEFAULT_SCHEDULE_TIMEOUT	(msecs_to_jiffies(1))
674 
675 /* timeout value injected, default: 1000ms */
676 #define DEFAULT_FAULT_TIMEOUT	(msecs_to_jiffies(1000))
677 
678 /* maximum retry quota flush count */
679 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
680 
681 /* maximum retry of EIO'ed page */
682 #define MAX_RETRY_PAGE_EIO			100
683 
684 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
685 
686 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
687 
688 /* dirty segments threshold for triggering CP */
689 #define DEFAULT_DIRTY_THRESHOLD		4
690 
691 #define RECOVERY_MAX_RA_BLOCKS		BIO_MAX_VECS
692 #define RECOVERY_MIN_RA_BLOCKS		1
693 
694 #define F2FS_ONSTACK_PAGES	16	/* nr of onstack pages */
695 
696 /* for in-memory extent cache entry */
697 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
698 
699 /* number of extent info in extent cache we try to shrink */
700 #define READ_EXTENT_CACHE_SHRINK_NUMBER	128
701 
702 /* number of age extent info in extent cache we try to shrink */
703 #define AGE_EXTENT_CACHE_SHRINK_NUMBER	128
704 #define LAST_AGE_WEIGHT			30
705 #define SAME_AGE_REGION			1024
706 
707 /*
708  * Define data block with age less than 1GB as hot data
709  * define data block with age less than 10GB but more than 1GB as warm data
710  */
711 #define DEF_HOT_DATA_AGE_THRESHOLD	262144
712 #define DEF_WARM_DATA_AGE_THRESHOLD	2621440
713 
714 /* default max read extent count per inode */
715 #define DEF_MAX_READ_EXTENT_COUNT	10240
716 
717 /* extent cache type */
718 enum extent_type {
719 	EX_READ,
720 	EX_BLOCK_AGE,
721 	NR_EXTENT_CACHES,
722 };
723 
724 /*
725  * Reserved value to mark invalid age extents, hence valid block range
726  * from 0 to ULLONG_MAX-1
727  */
728 #define F2FS_EXTENT_AGE_INVALID	ULLONG_MAX
729 
730 struct extent_info {
731 	unsigned int fofs;		/* start offset in a file */
732 	unsigned int len;		/* length of the extent */
733 	union {
734 		/* read extent_cache */
735 		struct {
736 			/* start block address of the extent */
737 			block_t blk;
738 #ifdef CONFIG_F2FS_FS_COMPRESSION
739 			/* physical extent length of compressed blocks */
740 			unsigned int c_len;
741 #endif
742 		};
743 		/* block age extent_cache */
744 		struct {
745 			/* block age of the extent */
746 			unsigned long long age;
747 			/* last total blocks allocated */
748 			unsigned long long last_blocks;
749 		};
750 	};
751 };
752 
753 struct extent_node {
754 	struct rb_node rb_node;		/* rb node located in rb-tree */
755 	struct extent_info ei;		/* extent info */
756 	struct list_head list;		/* node in global extent list of sbi */
757 	struct extent_tree *et;		/* extent tree pointer */
758 };
759 
760 struct extent_tree {
761 	nid_t ino;			/* inode number */
762 	enum extent_type type;		/* keep the extent tree type */
763 	struct rb_root_cached root;	/* root of extent info rb-tree */
764 	struct extent_node *cached_en;	/* recently accessed extent node */
765 	struct list_head list;		/* to be used by sbi->zombie_list */
766 	rwlock_t lock;			/* protect extent info rb-tree */
767 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
768 	bool largest_updated;		/* largest extent updated */
769 	struct extent_info largest;	/* largest cached extent for EX_READ */
770 };
771 
772 struct extent_tree_info {
773 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
774 	struct mutex extent_tree_lock;	/* locking extent radix tree */
775 	struct list_head extent_list;		/* lru list for shrinker */
776 	spinlock_t extent_lock;			/* locking extent lru list */
777 	atomic_t total_ext_tree;		/* extent tree count */
778 	struct list_head zombie_list;		/* extent zombie tree list */
779 	atomic_t total_zombie_tree;		/* extent zombie tree count */
780 	atomic_t total_ext_node;		/* extent info count */
781 };
782 
783 /*
784  * State of block returned by f2fs_map_blocks.
785  */
786 #define F2FS_MAP_NEW		(1U << 0)
787 #define F2FS_MAP_MAPPED		(1U << 1)
788 #define F2FS_MAP_DELALLOC	(1U << 2)
789 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
790 				F2FS_MAP_DELALLOC)
791 
792 struct f2fs_map_blocks {
793 	struct block_device *m_bdev;	/* for multi-device dio */
794 	block_t m_pblk;
795 	block_t m_lblk;
796 	unsigned int m_len;
797 	unsigned int m_flags;
798 	unsigned long m_last_pblk;	/* last allocated block, only used for DIO in LFS mode */
799 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
800 	pgoff_t *m_next_extent;		/* point to next possible extent */
801 	int m_seg_type;
802 	bool m_may_create;		/* indicate it is from write path */
803 	bool m_multidev_dio;		/* indicate it allows multi-device dio */
804 };
805 
806 /* for flag in get_data_block */
807 enum {
808 	F2FS_GET_BLOCK_DEFAULT,
809 	F2FS_GET_BLOCK_FIEMAP,
810 	F2FS_GET_BLOCK_BMAP,
811 	F2FS_GET_BLOCK_DIO,
812 	F2FS_GET_BLOCK_PRE_DIO,
813 	F2FS_GET_BLOCK_PRE_AIO,
814 	F2FS_GET_BLOCK_PRECACHE,
815 };
816 
817 /*
818  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
819  */
820 #define FADVISE_COLD_BIT	0x01
821 #define FADVISE_LOST_PINO_BIT	0x02
822 #define FADVISE_ENCRYPT_BIT	0x04
823 #define FADVISE_ENC_NAME_BIT	0x08
824 #define FADVISE_KEEP_SIZE_BIT	0x10
825 #define FADVISE_HOT_BIT		0x20
826 #define FADVISE_VERITY_BIT	0x40
827 #define FADVISE_TRUNC_BIT	0x80
828 
829 #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
830 
831 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
832 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
833 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
834 
835 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
836 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
837 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
838 
839 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
840 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
841 
842 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
843 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
844 
845 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
846 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
847 
848 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
849 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
850 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
851 
852 #define file_is_verity(inode)	is_file(inode, FADVISE_VERITY_BIT)
853 #define file_set_verity(inode)	set_file(inode, FADVISE_VERITY_BIT)
854 
855 #define file_should_truncate(inode)	is_file(inode, FADVISE_TRUNC_BIT)
856 #define file_need_truncate(inode)	set_file(inode, FADVISE_TRUNC_BIT)
857 #define file_dont_truncate(inode)	clear_file(inode, FADVISE_TRUNC_BIT)
858 
859 #define DEF_DIR_LEVEL		0
860 
861 /* used for f2fs_inode_info->flags */
862 enum {
863 	FI_NEW_INODE,		/* indicate newly allocated inode */
864 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
865 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
866 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
867 	FI_INC_LINK,		/* need to increment i_nlink */
868 	FI_ACL_MODE,		/* indicate acl mode */
869 	FI_NO_ALLOC,		/* should not allocate any blocks */
870 	FI_FREE_NID,		/* free allocated nide */
871 	FI_NO_EXTENT,		/* not to use the extent cache */
872 	FI_INLINE_XATTR,	/* used for inline xattr */
873 	FI_INLINE_DATA,		/* used for inline data*/
874 	FI_INLINE_DENTRY,	/* used for inline dentry */
875 	FI_APPEND_WRITE,	/* inode has appended data */
876 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
877 	FI_NEED_IPU,		/* used for ipu per file */
878 	FI_ATOMIC_FILE,		/* indicate atomic file */
879 	FI_DATA_EXIST,		/* indicate data exists */
880 	FI_SKIP_WRITES,		/* should skip data page writeback */
881 	FI_OPU_WRITE,		/* used for opu per file */
882 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
883 	FI_PREALLOCATED_ALL,	/* all blocks for write were preallocated */
884 	FI_HOT_DATA,		/* indicate file is hot */
885 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
886 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
887 	FI_PIN_FILE,		/* indicate file should not be gced */
888 	FI_VERITY_IN_PROGRESS,	/* building fs-verity Merkle tree */
889 	FI_COMPRESSED_FILE,	/* indicate file's data can be compressed */
890 	FI_COMPRESS_CORRUPT,	/* indicate compressed cluster is corrupted */
891 	FI_MMAP_FILE,		/* indicate file was mmapped */
892 	FI_ENABLE_COMPRESS,	/* enable compression in "user" compression mode */
893 	FI_COMPRESS_RELEASED,	/* compressed blocks were released */
894 	FI_ALIGNED_WRITE,	/* enable aligned write */
895 	FI_COW_FILE,		/* indicate COW file */
896 	FI_ATOMIC_COMMITTED,	/* indicate atomic commit completed except disk sync */
897 	FI_ATOMIC_DIRTIED,	/* indicate atomic file is dirtied */
898 	FI_ATOMIC_REPLACE,	/* indicate atomic replace */
899 	FI_OPENED_FILE,		/* indicate file has been opened */
900 	FI_DONATE_FINISHED,	/* indicate page donation of file has been finished */
901 	FI_MAX,			/* max flag, never be used */
902 };
903 
904 struct f2fs_inode_info {
905 	struct inode vfs_inode;		/* serve a vfs inode */
906 	unsigned long i_flags;		/* keep an inode flags for ioctl */
907 	unsigned char i_advise;		/* use to give file attribute hints */
908 	unsigned char i_dir_level;	/* use for dentry level for large dir */
909 	union {
910 		unsigned int i_current_depth;	/* only for directory depth */
911 		unsigned short i_gc_failures;	/* for gc failure statistic */
912 	};
913 	unsigned int i_pino;		/* parent inode number */
914 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
915 
916 	/* Use below internally in f2fs*/
917 	unsigned long flags[BITS_TO_LONGS(FI_MAX)];	/* use to pass per-file flags */
918 	unsigned int ioprio_hint;	/* hint for IO priority */
919 	struct f2fs_rwsem i_sem;	/* protect fi info */
920 	atomic_t dirty_pages;		/* # of dirty pages */
921 	f2fs_hash_t chash;		/* hash value of given file name */
922 	unsigned int clevel;		/* maximum level of given file name */
923 	struct task_struct *task;	/* lookup and create consistency */
924 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
925 	struct task_struct *wb_task;	/* indicate inode is in context of writeback */
926 	nid_t i_xattr_nid;		/* node id that contains xattrs */
927 	loff_t	last_disk_size;		/* lastly written file size */
928 	spinlock_t i_size_lock;		/* protect last_disk_size */
929 
930 #ifdef CONFIG_QUOTA
931 	struct dquot __rcu *i_dquot[MAXQUOTAS];
932 
933 	/* quota space reservation, managed internally by quota code */
934 	qsize_t i_reserved_quota;
935 #endif
936 	struct list_head dirty_list;	/* dirty list for dirs and files */
937 	struct list_head gdirty_list;	/* linked in global dirty list */
938 
939 	/* linked in global inode list for cache donation */
940 	struct list_head gdonate_list;
941 	pgoff_t donate_start, donate_end; /* inclusive */
942 	atomic_t open_count;		/* # of open files */
943 
944 	struct task_struct *atomic_write_task;	/* store atomic write task */
945 	struct extent_tree *extent_tree[NR_EXTENT_CACHES];
946 					/* cached extent_tree entry */
947 	union {
948 		struct inode *cow_inode;	/* copy-on-write inode for atomic write */
949 		struct inode *atomic_inode;
950 					/* point to atomic_inode, available only for cow_inode */
951 	};
952 
953 	/* avoid racing between foreground op and gc */
954 	struct f2fs_rwsem i_gc_rwsem[2];
955 	struct f2fs_rwsem i_xattr_sem; /* avoid racing between reading and changing EAs */
956 
957 	int i_extra_isize;		/* size of extra space located in i_addr */
958 	kprojid_t i_projid;		/* id for project quota */
959 	int i_inline_xattr_size;	/* inline xattr size */
960 	struct timespec64 i_crtime;	/* inode creation time */
961 	struct timespec64 i_disk_time[3];/* inode disk times */
962 
963 	/* for file compress */
964 	atomic_t i_compr_blocks;		/* # of compressed blocks */
965 	unsigned char i_compress_algorithm;	/* algorithm type */
966 	unsigned char i_log_cluster_size;	/* log of cluster size */
967 	unsigned char i_compress_level;		/* compress level (lz4hc,zstd) */
968 	unsigned char i_compress_flag;		/* compress flag */
969 	unsigned int i_cluster_size;		/* cluster size */
970 	atomic_t writeback;			/* count # of writeback thread */
971 
972 	unsigned int atomic_write_cnt;
973 	loff_t original_i_size;		/* original i_size before atomic write */
974 #ifdef CONFIG_FS_ENCRYPTION
975 	struct fscrypt_inode_info *i_crypt_info; /* filesystem encryption info */
976 #endif
977 #ifdef CONFIG_FS_VERITY
978 	struct fsverity_info *i_verity_info; /* filesystem verity info */
979 #endif
980 };
981 
get_read_extent_info(struct extent_info * ext,struct f2fs_extent * i_ext)982 static inline void get_read_extent_info(struct extent_info *ext,
983 					struct f2fs_extent *i_ext)
984 {
985 	ext->fofs = le32_to_cpu(i_ext->fofs);
986 	ext->blk = le32_to_cpu(i_ext->blk);
987 	ext->len = le32_to_cpu(i_ext->len);
988 }
989 
set_raw_read_extent(struct extent_info * ext,struct f2fs_extent * i_ext)990 static inline void set_raw_read_extent(struct extent_info *ext,
991 					struct f2fs_extent *i_ext)
992 {
993 	i_ext->fofs = cpu_to_le32(ext->fofs);
994 	i_ext->blk = cpu_to_le32(ext->blk);
995 	i_ext->len = cpu_to_le32(ext->len);
996 }
997 
__is_discard_mergeable(struct discard_info * back,struct discard_info * front,unsigned int max_len)998 static inline bool __is_discard_mergeable(struct discard_info *back,
999 			struct discard_info *front, unsigned int max_len)
1000 {
1001 	return (back->lstart + back->len == front->lstart) &&
1002 		(back->len + front->len <= max_len);
1003 }
1004 
__is_discard_back_mergeable(struct discard_info * cur,struct discard_info * back,unsigned int max_len)1005 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
1006 			struct discard_info *back, unsigned int max_len)
1007 {
1008 	return __is_discard_mergeable(back, cur, max_len);
1009 }
1010 
__is_discard_front_mergeable(struct discard_info * cur,struct discard_info * front,unsigned int max_len)1011 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
1012 			struct discard_info *front, unsigned int max_len)
1013 {
1014 	return __is_discard_mergeable(cur, front, max_len);
1015 }
1016 
1017 /*
1018  * For free nid management
1019  */
1020 enum nid_state {
1021 	FREE_NID,		/* newly added to free nid list */
1022 	PREALLOC_NID,		/* it is preallocated */
1023 	MAX_NID_STATE,
1024 };
1025 
1026 enum nat_state {
1027 	TOTAL_NAT,
1028 	DIRTY_NAT,
1029 	RECLAIMABLE_NAT,
1030 	MAX_NAT_STATE,
1031 };
1032 
1033 struct f2fs_nm_info {
1034 	block_t nat_blkaddr;		/* base disk address of NAT */
1035 	nid_t max_nid;			/* maximum possible node ids */
1036 	nid_t available_nids;		/* # of available node ids */
1037 	nid_t next_scan_nid;		/* the next nid to be scanned */
1038 	nid_t max_rf_node_blocks;	/* max # of nodes for recovery */
1039 	unsigned int ram_thresh;	/* control the memory footprint */
1040 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
1041 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
1042 
1043 	/* NAT cache management */
1044 	struct radix_tree_root nat_root;/* root of the nat entry cache */
1045 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
1046 	struct f2fs_rwsem nat_tree_lock;	/* protect nat entry tree */
1047 	struct list_head nat_entries;	/* cached nat entry list (clean) */
1048 	spinlock_t nat_list_lock;	/* protect clean nat entry list */
1049 	unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
1050 	unsigned int nat_blocks;	/* # of nat blocks */
1051 
1052 	/* free node ids management */
1053 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
1054 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
1055 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
1056 	spinlock_t nid_list_lock;	/* protect nid lists ops */
1057 	struct mutex build_lock;	/* lock for build free nids */
1058 	unsigned char **free_nid_bitmap;
1059 	unsigned char *nat_block_bitmap;
1060 	unsigned short *free_nid_count;	/* free nid count of NAT block */
1061 
1062 	/* for checkpoint */
1063 	char *nat_bitmap;		/* NAT bitmap pointer */
1064 
1065 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
1066 	unsigned char *nat_bits;	/* NAT bits blocks */
1067 	unsigned char *full_nat_bits;	/* full NAT pages */
1068 	unsigned char *empty_nat_bits;	/* empty NAT pages */
1069 #ifdef CONFIG_F2FS_CHECK_FS
1070 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
1071 #endif
1072 	int bitmap_size;		/* bitmap size */
1073 };
1074 
1075 /*
1076  * this structure is used as one of function parameters.
1077  * all the information are dedicated to a given direct node block determined
1078  * by the data offset in a file.
1079  */
1080 struct dnode_of_data {
1081 	struct inode *inode;		/* vfs inode pointer */
1082 	struct folio *inode_folio;	/* its inode folio, NULL is possible */
1083 	struct folio *node_folio;	/* cached direct node folio */
1084 	nid_t nid;			/* node id of the direct node block */
1085 	unsigned int ofs_in_node;	/* data offset in the node page */
1086 	bool inode_folio_locked;	/* inode folio is locked or not */
1087 	bool node_changed;		/* is node block changed */
1088 	char cur_level;			/* level of hole node page */
1089 	char max_level;			/* level of current page located */
1090 	block_t	data_blkaddr;		/* block address of the node block */
1091 };
1092 
set_new_dnode(struct dnode_of_data * dn,struct inode * inode,struct folio * ifolio,struct folio * nfolio,nid_t nid)1093 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
1094 		struct folio *ifolio, struct folio *nfolio, nid_t nid)
1095 {
1096 	memset(dn, 0, sizeof(*dn));
1097 	dn->inode = inode;
1098 	dn->inode_folio = ifolio;
1099 	dn->node_folio = nfolio;
1100 	dn->nid = nid;
1101 }
1102 
1103 /*
1104  * For SIT manager
1105  *
1106  * By default, there are 6 active log areas across the whole main area.
1107  * When considering hot and cold data separation to reduce cleaning overhead,
1108  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
1109  * respectively.
1110  * In the current design, you should not change the numbers intentionally.
1111  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
1112  * logs individually according to the underlying devices. (default: 6)
1113  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
1114  * data and 8 for node logs.
1115  */
1116 #define	NR_CURSEG_DATA_TYPE	(3)
1117 #define NR_CURSEG_NODE_TYPE	(3)
1118 #define NR_CURSEG_INMEM_TYPE	(2)
1119 #define NR_CURSEG_RO_TYPE	(2)
1120 #define NR_CURSEG_PERSIST_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
1121 #define NR_CURSEG_TYPE		(NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
1122 
1123 enum log_type {
1124 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
1125 	CURSEG_WARM_DATA,	/* data blocks */
1126 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
1127 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
1128 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
1129 	CURSEG_COLD_NODE,	/* indirect node blocks */
1130 	NR_PERSISTENT_LOG,	/* number of persistent log */
1131 	CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
1132 				/* pinned file that needs consecutive block address */
1133 	CURSEG_ALL_DATA_ATGC,	/* SSR alloctor in hot/warm/cold data area */
1134 	NO_CHECK_TYPE,		/* number of persistent & inmem log */
1135 };
1136 
1137 struct flush_cmd {
1138 	struct completion wait;
1139 	struct llist_node llnode;
1140 	nid_t ino;
1141 	int ret;
1142 };
1143 
1144 struct flush_cmd_control {
1145 	struct task_struct *f2fs_issue_flush;	/* flush thread */
1146 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
1147 	atomic_t issued_flush;			/* # of issued flushes */
1148 	atomic_t queued_flush;			/* # of queued flushes */
1149 	struct llist_head issue_list;		/* list for command issue */
1150 	struct llist_node *dispatch_list;	/* list for command dispatch */
1151 };
1152 
1153 struct f2fs_sm_info {
1154 	struct sit_info *sit_info;		/* whole segment information */
1155 	struct free_segmap_info *free_info;	/* free segment information */
1156 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
1157 	struct curseg_info *curseg_array;	/* active segment information */
1158 
1159 	struct f2fs_rwsem curseg_lock;	/* for preventing curseg change */
1160 
1161 	block_t seg0_blkaddr;		/* block address of 0'th segment */
1162 	block_t main_blkaddr;		/* start block address of main area */
1163 	block_t ssa_blkaddr;		/* start block address of SSA area */
1164 
1165 	unsigned int segment_count;	/* total # of segments */
1166 	unsigned int main_segments;	/* # of segments in main area */
1167 	unsigned int reserved_segments;	/* # of reserved segments */
1168 	unsigned int ovp_segments;	/* # of overprovision segments */
1169 
1170 	/* a threshold to reclaim prefree segments */
1171 	unsigned int rec_prefree_segments;
1172 
1173 	struct list_head sit_entry_set;	/* sit entry set list */
1174 
1175 	unsigned int ipu_policy;	/* in-place-update policy */
1176 	unsigned int min_ipu_util;	/* in-place-update threshold */
1177 	unsigned int min_fsync_blocks;	/* threshold for fsync */
1178 	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
1179 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
1180 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
1181 
1182 	/* for flush command control */
1183 	struct flush_cmd_control *fcc_info;
1184 
1185 	/* for discard command control */
1186 	struct discard_cmd_control *dcc_info;
1187 };
1188 
1189 /*
1190  * For superblock
1191  */
1192 /*
1193  * COUNT_TYPE for monitoring
1194  *
1195  * f2fs monitors the number of several block types such as on-writeback,
1196  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1197  */
1198 #define WB_DATA_TYPE(folio, f)			\
1199 	(f || f2fs_is_cp_guaranteed(folio) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1200 enum count_type {
1201 	F2FS_DIRTY_DENTS,
1202 	F2FS_DIRTY_DATA,
1203 	F2FS_DIRTY_QDATA,
1204 	F2FS_DIRTY_NODES,
1205 	F2FS_DIRTY_META,
1206 	F2FS_DIRTY_IMETA,
1207 	F2FS_WB_CP_DATA,
1208 	F2FS_WB_DATA,
1209 	F2FS_RD_DATA,
1210 	F2FS_RD_NODE,
1211 	F2FS_RD_META,
1212 	F2FS_DIO_WRITE,
1213 	F2FS_DIO_READ,
1214 	NR_COUNT_TYPE,
1215 };
1216 
1217 /*
1218  * The below are the page types of bios used in submit_bio().
1219  * The available types are:
1220  * DATA			User data pages. It operates as async mode.
1221  * NODE			Node pages. It operates as async mode.
1222  * META			FS metadata pages such as SIT, NAT, CP.
1223  * NR_PAGE_TYPE		The number of page types.
1224  * META_FLUSH		Make sure the previous pages are written
1225  *			with waiting the bio's completion
1226  * ...			Only can be used with META.
1227  */
1228 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
1229 #define PAGE_TYPE_ON_MAIN(type)	((type) == DATA || (type) == NODE)
1230 enum page_type {
1231 	DATA = 0,
1232 	NODE = 1,	/* should not change this */
1233 	META,
1234 	NR_PAGE_TYPE,
1235 	META_FLUSH,
1236 	IPU,		/* the below types are used by tracepoints only. */
1237 	OPU,
1238 };
1239 
1240 enum temp_type {
1241 	HOT = 0,	/* must be zero for meta bio */
1242 	WARM,
1243 	COLD,
1244 	NR_TEMP_TYPE,
1245 };
1246 
1247 enum need_lock_type {
1248 	LOCK_REQ = 0,
1249 	LOCK_DONE,
1250 	LOCK_RETRY,
1251 };
1252 
1253 enum cp_reason_type {
1254 	CP_NO_NEEDED,
1255 	CP_NON_REGULAR,
1256 	CP_COMPRESSED,
1257 	CP_HARDLINK,
1258 	CP_SB_NEED_CP,
1259 	CP_WRONG_PINO,
1260 	CP_NO_SPC_ROLL,
1261 	CP_NODE_NEED_CP,
1262 	CP_FASTBOOT_MODE,
1263 	CP_SPEC_LOG_NUM,
1264 	CP_RECOVER_DIR,
1265 	CP_XATTR_DIR,
1266 };
1267 
1268 enum iostat_type {
1269 	/* WRITE IO */
1270 	APP_DIRECT_IO,			/* app direct write IOs */
1271 	APP_BUFFERED_IO,		/* app buffered write IOs */
1272 	APP_WRITE_IO,			/* app write IOs */
1273 	APP_MAPPED_IO,			/* app mapped IOs */
1274 	APP_BUFFERED_CDATA_IO,		/* app buffered write IOs on compressed file */
1275 	APP_MAPPED_CDATA_IO,		/* app mapped write IOs on compressed file */
1276 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1277 	FS_CDATA_IO,			/* data IOs from kworker/fsync/reclaimer on compressed file */
1278 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1279 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1280 	FS_GC_DATA_IO,			/* data IOs from forground gc */
1281 	FS_GC_NODE_IO,			/* node IOs from forground gc */
1282 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1283 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1284 	FS_CP_META_IO,			/* meta IOs from checkpoint */
1285 
1286 	/* READ IO */
1287 	APP_DIRECT_READ_IO,		/* app direct read IOs */
1288 	APP_BUFFERED_READ_IO,		/* app buffered read IOs */
1289 	APP_READ_IO,			/* app read IOs */
1290 	APP_MAPPED_READ_IO,		/* app mapped read IOs */
1291 	APP_BUFFERED_CDATA_READ_IO,	/* app buffered read IOs on compressed file  */
1292 	APP_MAPPED_CDATA_READ_IO,	/* app mapped read IOs on compressed file  */
1293 	FS_DATA_READ_IO,		/* data read IOs */
1294 	FS_GDATA_READ_IO,		/* data read IOs from background gc */
1295 	FS_CDATA_READ_IO,		/* compressed data read IOs */
1296 	FS_NODE_READ_IO,		/* node read IOs */
1297 	FS_META_READ_IO,		/* meta read IOs */
1298 
1299 	/* other */
1300 	FS_DISCARD_IO,			/* discard */
1301 	FS_FLUSH_IO,			/* flush */
1302 	FS_ZONE_RESET_IO,		/* zone reset */
1303 	NR_IO_TYPE,
1304 };
1305 
1306 struct f2fs_io_info {
1307 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1308 	nid_t ino;		/* inode number */
1309 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1310 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1311 	enum req_op op;		/* contains REQ_OP_ */
1312 	blk_opf_t op_flags;	/* req_flag_bits */
1313 	block_t new_blkaddr;	/* new block address to be written */
1314 	block_t old_blkaddr;	/* old block address before Cow */
1315 	union {
1316 		struct page *page;	/* page to be written */
1317 		struct folio *folio;
1318 	};
1319 	struct page *encrypted_page;	/* encrypted page */
1320 	struct page *compressed_page;	/* compressed page */
1321 	struct list_head list;		/* serialize IOs */
1322 	unsigned int compr_blocks;	/* # of compressed block addresses */
1323 	unsigned int need_lock:8;	/* indicate we need to lock cp_rwsem */
1324 	unsigned int version:8;		/* version of the node */
1325 	unsigned int submitted:1;	/* indicate IO submission */
1326 	unsigned int in_list:1;		/* indicate fio is in io_list */
1327 	unsigned int is_por:1;		/* indicate IO is from recovery or not */
1328 	unsigned int encrypted:1;	/* indicate file is encrypted */
1329 	unsigned int meta_gc:1;		/* require meta inode GC */
1330 	enum iostat_type io_type;	/* io type */
1331 	struct writeback_control *io_wbc; /* writeback control */
1332 	struct bio **bio;		/* bio for ipu */
1333 	sector_t *last_block;		/* last block number in bio */
1334 };
1335 
1336 struct bio_entry {
1337 	struct bio *bio;
1338 	struct list_head list;
1339 };
1340 
1341 #define is_read_io(rw) ((rw) == READ)
1342 struct f2fs_bio_info {
1343 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1344 	struct bio *bio;		/* bios to merge */
1345 	sector_t last_block_in_bio;	/* last block number */
1346 	struct f2fs_io_info fio;	/* store buffered io info. */
1347 #ifdef CONFIG_BLK_DEV_ZONED
1348 	struct completion zone_wait;	/* condition value for the previous open zone to close */
1349 	struct bio *zone_pending_bio;	/* pending bio for the previous zone */
1350 	void *bi_private;		/* previous bi_private for pending bio */
1351 #endif
1352 	struct f2fs_rwsem io_rwsem;	/* blocking op for bio */
1353 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1354 	struct list_head io_list;	/* track fios */
1355 	struct list_head bio_list;	/* bio entry list head */
1356 	struct f2fs_rwsem bio_list_lock;	/* lock to protect bio entry list */
1357 };
1358 
1359 #define FDEV(i)				(sbi->devs[i])
1360 #define RDEV(i)				(raw_super->devs[i])
1361 struct f2fs_dev_info {
1362 	struct file *bdev_file;
1363 	struct block_device *bdev;
1364 	char path[MAX_PATH_LEN + 1];
1365 	unsigned int total_segments;
1366 	block_t start_blk;
1367 	block_t end_blk;
1368 #ifdef CONFIG_BLK_DEV_ZONED
1369 	unsigned int nr_blkz;		/* Total number of zones */
1370 	unsigned long *blkz_seq;	/* Bitmap indicating sequential zones */
1371 #endif
1372 };
1373 
1374 enum inode_type {
1375 	DIR_INODE,			/* for dirty dir inode */
1376 	FILE_INODE,			/* for dirty regular/symlink inode */
1377 	DIRTY_META,			/* for all dirtied inode metadata */
1378 	DONATE_INODE,			/* for all inode to donate pages */
1379 	NR_INODE_TYPE,
1380 };
1381 
1382 /* for inner inode cache management */
1383 struct inode_management {
1384 	struct radix_tree_root ino_root;	/* ino entry array */
1385 	spinlock_t ino_lock;			/* for ino entry lock */
1386 	struct list_head ino_list;		/* inode list head */
1387 	unsigned long ino_num;			/* number of entries */
1388 };
1389 
1390 /* for GC_AT */
1391 struct atgc_management {
1392 	bool atgc_enabled;			/* ATGC is enabled or not */
1393 	struct rb_root_cached root;		/* root of victim rb-tree */
1394 	struct list_head victim_list;		/* linked with all victim entries */
1395 	unsigned int victim_count;		/* victim count in rb-tree */
1396 	unsigned int candidate_ratio;		/* candidate ratio */
1397 	unsigned int max_candidate_count;	/* max candidate count */
1398 	unsigned int age_weight;		/* age weight, vblock_weight = 100 - age_weight */
1399 	unsigned long long age_threshold;	/* age threshold */
1400 };
1401 
1402 struct f2fs_gc_control {
1403 	unsigned int victim_segno;	/* target victim segment number */
1404 	int init_gc_type;		/* FG_GC or BG_GC */
1405 	bool no_bg_gc;			/* check the space and stop bg_gc */
1406 	bool should_migrate_blocks;	/* should migrate blocks */
1407 	bool err_gc_skipped;		/* return EAGAIN if GC skipped */
1408 	bool one_time;			/* require one time GC in one migration unit */
1409 	unsigned int nr_free_secs;	/* # of free sections to do GC */
1410 };
1411 
1412 /*
1413  * For s_flag in struct f2fs_sb_info
1414  * Modification on enum should be synchronized with s_flag array
1415  */
1416 enum {
1417 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1418 	SBI_IS_CLOSE,				/* specify unmounting */
1419 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1420 	SBI_POR_DOING,				/* recovery is doing or not */
1421 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1422 	SBI_NEED_CP,				/* need to checkpoint */
1423 	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1424 	SBI_IS_RECOVERED,			/* recovered orphan/data */
1425 	SBI_CP_DISABLED,			/* CP was disabled last mount */
1426 	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
1427 	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1428 	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1429 	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1430 	SBI_IS_RESIZEFS,			/* resizefs is in process */
1431 	SBI_IS_FREEZING,			/* freezefs is in process */
1432 	SBI_IS_WRITABLE,			/* remove ro mountoption transiently */
1433 	MAX_SBI_FLAG,
1434 };
1435 
1436 enum {
1437 	CP_TIME,
1438 	REQ_TIME,
1439 	DISCARD_TIME,
1440 	GC_TIME,
1441 	DISABLE_TIME,
1442 	ENABLE_TIME,
1443 	UMOUNT_DISCARD_TIMEOUT,
1444 	MAX_TIME,
1445 };
1446 
1447 /* Note that you need to keep synchronization with this gc_mode_names array */
1448 enum {
1449 	GC_NORMAL,
1450 	GC_IDLE_CB,
1451 	GC_IDLE_GREEDY,
1452 	GC_IDLE_AT,
1453 	GC_URGENT_HIGH,
1454 	GC_URGENT_LOW,
1455 	GC_URGENT_MID,
1456 	MAX_GC_MODE,
1457 };
1458 
1459 enum {
1460 	BGGC_MODE_ON,		/* background gc is on */
1461 	BGGC_MODE_OFF,		/* background gc is off */
1462 	BGGC_MODE_SYNC,		/*
1463 				 * background gc is on, migrating blocks
1464 				 * like foreground gc
1465 				 */
1466 };
1467 
1468 enum {
1469 	FS_MODE_ADAPTIVE,		/* use both lfs/ssr allocation */
1470 	FS_MODE_LFS,			/* use lfs allocation only */
1471 	FS_MODE_FRAGMENT_SEG,		/* segment fragmentation mode */
1472 	FS_MODE_FRAGMENT_BLK,		/* block fragmentation mode */
1473 };
1474 
1475 enum {
1476 	ALLOC_MODE_DEFAULT,	/* stay default */
1477 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1478 };
1479 
1480 enum fsync_mode {
1481 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1482 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1483 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1484 };
1485 
1486 enum {
1487 	COMPR_MODE_FS,		/*
1488 				 * automatically compress compression
1489 				 * enabled files
1490 				 */
1491 	COMPR_MODE_USER,	/*
1492 				 * automatical compression is disabled.
1493 				 * user can control the file compression
1494 				 * using ioctls
1495 				 */
1496 };
1497 
1498 enum {
1499 	DISCARD_UNIT_BLOCK,	/* basic discard unit is block */
1500 	DISCARD_UNIT_SEGMENT,	/* basic discard unit is segment */
1501 	DISCARD_UNIT_SECTION,	/* basic discard unit is section */
1502 };
1503 
1504 enum {
1505 	MEMORY_MODE_NORMAL,	/* memory mode for normal devices */
1506 	MEMORY_MODE_LOW,	/* memory mode for low memory devices */
1507 };
1508 
1509 enum errors_option {
1510 	MOUNT_ERRORS_READONLY,	/* remount fs ro on errors */
1511 	MOUNT_ERRORS_CONTINUE,	/* continue on errors */
1512 	MOUNT_ERRORS_PANIC,	/* panic on errors */
1513 };
1514 
1515 enum {
1516 	BACKGROUND,
1517 	FOREGROUND,
1518 	MAX_CALL_TYPE,
1519 	TOTAL_CALL = FOREGROUND,
1520 };
1521 
1522 enum f2fs_lookup_mode {
1523 	LOOKUP_PERF,
1524 	LOOKUP_COMPAT,
1525 	LOOKUP_AUTO,
1526 };
1527 
1528 static inline int f2fs_test_bit(unsigned int nr, char *addr);
1529 static inline void f2fs_set_bit(unsigned int nr, char *addr);
1530 static inline void f2fs_clear_bit(unsigned int nr, char *addr);
1531 
1532 /*
1533  * Layout of f2fs page.private:
1534  *
1535  * Layout A: lowest bit should be 1
1536  * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... |
1537  * bit 0	PAGE_PRIVATE_NOT_POINTER
1538  * bit 1	PAGE_PRIVATE_ONGOING_MIGRATION
1539  * bit 2	PAGE_PRIVATE_INLINE_INODE
1540  * bit 3	PAGE_PRIVATE_REF_RESOURCE
1541  * bit 4	PAGE_PRIVATE_ATOMIC_WRITE
1542  * bit 5-	f2fs private data
1543  *
1544  * Layout B: lowest bit should be 0
1545  * page.private is a wrapped pointer.
1546  */
1547 enum {
1548 	PAGE_PRIVATE_NOT_POINTER,		/* private contains non-pointer data */
1549 	PAGE_PRIVATE_ONGOING_MIGRATION,		/* data page which is on-going migrating */
1550 	PAGE_PRIVATE_INLINE_INODE,		/* inode page contains inline data */
1551 	PAGE_PRIVATE_REF_RESOURCE,		/* dirty page has referenced resources */
1552 	PAGE_PRIVATE_ATOMIC_WRITE,		/* data page from atomic write path */
1553 	PAGE_PRIVATE_MAX
1554 };
1555 
1556 /* For compression */
1557 enum compress_algorithm_type {
1558 	COMPRESS_LZO,
1559 	COMPRESS_LZ4,
1560 	COMPRESS_ZSTD,
1561 	COMPRESS_LZORLE,
1562 	COMPRESS_MAX,
1563 };
1564 
1565 enum compress_flag {
1566 	COMPRESS_CHKSUM,
1567 	COMPRESS_MAX_FLAG,
1568 };
1569 
1570 #define	COMPRESS_WATERMARK			20
1571 #define	COMPRESS_PERCENT			20
1572 
1573 #define COMPRESS_DATA_RESERVED_SIZE		4
1574 struct compress_data {
1575 	__le32 clen;			/* compressed data size */
1576 	__le32 chksum;			/* compressed data checksum */
1577 	__le32 reserved[COMPRESS_DATA_RESERVED_SIZE];	/* reserved */
1578 	u8 cdata[];			/* compressed data */
1579 };
1580 
1581 #define COMPRESS_HEADER_SIZE	(sizeof(struct compress_data))
1582 
1583 #define F2FS_COMPRESSED_PAGE_MAGIC	0xF5F2C000
1584 
1585 #define F2FS_ZSTD_DEFAULT_CLEVEL	1
1586 
1587 #define	COMPRESS_LEVEL_OFFSET	8
1588 
1589 /* compress context */
1590 struct compress_ctx {
1591 	struct inode *inode;		/* inode the context belong to */
1592 	pgoff_t cluster_idx;		/* cluster index number */
1593 	unsigned int cluster_size;	/* page count in cluster */
1594 	unsigned int log_cluster_size;	/* log of cluster size */
1595 	struct page **rpages;		/* pages store raw data in cluster */
1596 	unsigned int nr_rpages;		/* total page number in rpages */
1597 	struct page **cpages;		/* pages store compressed data in cluster */
1598 	unsigned int nr_cpages;		/* total page number in cpages */
1599 	unsigned int valid_nr_cpages;	/* valid page number in cpages */
1600 	void *rbuf;			/* virtual mapped address on rpages */
1601 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1602 	size_t rlen;			/* valid data length in rbuf */
1603 	size_t clen;			/* valid data length in cbuf */
1604 	void *private;			/* payload buffer for specified compression algorithm */
1605 	void *private2;			/* extra payload buffer */
1606 };
1607 
1608 /* compress context for write IO path */
1609 struct compress_io_ctx {
1610 	u32 magic;			/* magic number to indicate page is compressed */
1611 	struct inode *inode;		/* inode the context belong to */
1612 	struct page **rpages;		/* pages store raw data in cluster */
1613 	unsigned int nr_rpages;		/* total page number in rpages */
1614 	atomic_t pending_pages;		/* in-flight compressed page count */
1615 };
1616 
1617 /* Context for decompressing one cluster on the read IO path */
1618 struct decompress_io_ctx {
1619 	u32 magic;			/* magic number to indicate page is compressed */
1620 	struct inode *inode;		/* inode the context belong to */
1621 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1622 	pgoff_t cluster_idx;		/* cluster index number */
1623 	unsigned int cluster_size;	/* page count in cluster */
1624 	unsigned int log_cluster_size;	/* log of cluster size */
1625 	struct page **rpages;		/* pages store raw data in cluster */
1626 	unsigned int nr_rpages;		/* total page number in rpages */
1627 	struct page **cpages;		/* pages store compressed data in cluster */
1628 	unsigned int nr_cpages;		/* total page number in cpages */
1629 	struct page **tpages;		/* temp pages to pad holes in cluster */
1630 	void *rbuf;			/* virtual mapped address on rpages */
1631 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1632 	size_t rlen;			/* valid data length in rbuf */
1633 	size_t clen;			/* valid data length in cbuf */
1634 
1635 	/*
1636 	 * The number of compressed pages remaining to be read in this cluster.
1637 	 * This is initially nr_cpages.  It is decremented by 1 each time a page
1638 	 * has been read (or failed to be read).  When it reaches 0, the cluster
1639 	 * is decompressed (or an error is reported).
1640 	 *
1641 	 * If an error occurs before all the pages have been submitted for I/O,
1642 	 * then this will never reach 0.  In this case the I/O submitter is
1643 	 * responsible for calling f2fs_decompress_end_io() instead.
1644 	 */
1645 	atomic_t remaining_pages;
1646 
1647 	/*
1648 	 * Number of references to this decompress_io_ctx.
1649 	 *
1650 	 * One reference is held for I/O completion.  This reference is dropped
1651 	 * after the pagecache pages are updated and unlocked -- either after
1652 	 * decompression (and verity if enabled), or after an error.
1653 	 *
1654 	 * In addition, each compressed page holds a reference while it is in a
1655 	 * bio.  These references are necessary prevent compressed pages from
1656 	 * being freed while they are still in a bio.
1657 	 */
1658 	refcount_t refcnt;
1659 
1660 	bool failed;			/* IO error occurred before decompression? */
1661 	bool need_verity;		/* need fs-verity verification after decompression? */
1662 	unsigned char compress_algorithm;	/* backup algorithm type */
1663 	void *private;			/* payload buffer for specified decompression algorithm */
1664 	void *private2;			/* extra payload buffer */
1665 	struct work_struct verity_work;	/* work to verify the decompressed pages */
1666 	struct work_struct free_work;	/* work for late free this structure itself */
1667 };
1668 
1669 #define NULL_CLUSTER			((unsigned int)(~0))
1670 #define MIN_COMPRESS_LOG_SIZE		2
1671 #define MAX_COMPRESS_LOG_SIZE		8
1672 #define MAX_COMPRESS_WINDOW_SIZE(log_size)	((PAGE_SIZE) << (log_size))
1673 
1674 struct f2fs_sb_info {
1675 	struct super_block *sb;			/* pointer to VFS super block */
1676 	struct proc_dir_entry *s_proc;		/* proc entry */
1677 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1678 	struct f2fs_rwsem sb_lock;		/* lock for raw super block */
1679 	int valid_super_block;			/* valid super block no */
1680 	unsigned long s_flag;				/* flags for sbi */
1681 	struct mutex writepages;		/* mutex for writepages() */
1682 
1683 #ifdef CONFIG_BLK_DEV_ZONED
1684 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1685 	unsigned int unusable_blocks_per_sec;   /* unusable blocks per section */
1686 	unsigned int max_open_zones;		/* max open zone resources of the zoned device */
1687 	/* For adjust the priority writing position of data in zone UFS */
1688 	unsigned int blkzone_alloc_policy;
1689 #endif
1690 
1691 	/* for node-related operations */
1692 	struct f2fs_nm_info *nm_info;		/* node manager */
1693 	struct inode *node_inode;		/* cache node blocks */
1694 
1695 	/* for segment-related operations */
1696 	struct f2fs_sm_info *sm_info;		/* segment manager */
1697 
1698 	/* for bio operations */
1699 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1700 	/* keep migration IO order for LFS mode */
1701 	struct f2fs_rwsem io_order_lock;
1702 	pgoff_t page_eio_ofs[NR_PAGE_TYPE];	/* EIO page offset */
1703 	int page_eio_cnt[NR_PAGE_TYPE];		/* EIO count */
1704 
1705 	/* for checkpoint */
1706 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1707 	int cur_cp_pack;			/* remain current cp pack */
1708 	spinlock_t cp_lock;			/* for flag in ckpt */
1709 	struct inode *meta_inode;		/* cache meta blocks */
1710 	struct f2fs_rwsem cp_global_sem;	/* checkpoint procedure lock */
1711 	struct f2fs_rwsem cp_rwsem;		/* blocking FS operations */
1712 	struct f2fs_rwsem node_write;		/* locking node writes */
1713 	struct f2fs_rwsem node_change;	/* locking node change */
1714 	wait_queue_head_t cp_wait;
1715 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1716 	long interval_time[MAX_TIME];		/* to store thresholds */
1717 	struct ckpt_req_control cprc_info;	/* for checkpoint request control */
1718 	struct cp_stats cp_stats;		/* for time stat of checkpoint */
1719 	struct f2fs_rwsem cp_enable_rwsem;	/* block cache/dio write */
1720 
1721 	struct inode_management im[MAX_INO_ENTRY];	/* manage inode cache */
1722 
1723 	spinlock_t fsync_node_lock;		/* for node entry lock */
1724 	struct list_head fsync_node_list;	/* node list head */
1725 	unsigned int fsync_seg_id;		/* sequence id */
1726 	unsigned int fsync_node_num;		/* number of node entries */
1727 
1728 	/* for orphan inode, use 0'th array */
1729 	unsigned int max_orphans;		/* max orphan inodes */
1730 
1731 	/* for inode management */
1732 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1733 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1734 	struct mutex flush_lock;		/* for flush exclusion */
1735 
1736 	/* for extent tree cache */
1737 	struct extent_tree_info extent_tree[NR_EXTENT_CACHES];
1738 	atomic64_t allocated_data_blocks;	/* for block age extent_cache */
1739 	unsigned int max_read_extent_count;	/* max read extent count per inode */
1740 
1741 	/* The threshold used for hot and warm data seperation*/
1742 	unsigned int hot_data_age_threshold;
1743 	unsigned int warm_data_age_threshold;
1744 	unsigned int last_age_weight;
1745 
1746 	/* control donate caches */
1747 	unsigned int donate_files;
1748 
1749 	/* basic filesystem units */
1750 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1751 	unsigned int log_blocksize;		/* log2 block size */
1752 	unsigned int blocksize;			/* block size */
1753 	unsigned int root_ino_num;		/* root inode number*/
1754 	unsigned int node_ino_num;		/* node inode number*/
1755 	unsigned int meta_ino_num;		/* meta inode number*/
1756 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1757 	unsigned int blocks_per_seg;		/* blocks per segment */
1758 	unsigned int segs_per_sec;		/* segments per section */
1759 	unsigned int secs_per_zone;		/* sections per zone */
1760 	unsigned int total_sections;		/* total section count */
1761 	unsigned int total_node_count;		/* total node block count */
1762 	unsigned int total_valid_node_count;	/* valid node block count */
1763 	int dir_level;				/* directory level */
1764 	bool readdir_ra;			/* readahead inode in readdir */
1765 	u64 max_io_bytes;			/* max io bytes to merge IOs */
1766 
1767 	block_t user_block_count;		/* # of user blocks */
1768 	block_t total_valid_block_count;	/* # of valid blocks */
1769 	block_t discard_blks;			/* discard command candidats */
1770 	block_t last_valid_block_count;		/* for recovery */
1771 	block_t reserved_blocks;		/* configurable reserved blocks */
1772 	block_t current_reserved_blocks;	/* current reserved blocks */
1773 
1774 	/* Additional tracking for no checkpoint mode */
1775 	block_t unusable_block_count;		/* # of blocks saved by last cp */
1776 
1777 	unsigned int nquota_files;		/* # of quota sysfile */
1778 	struct f2fs_rwsem quota_sem;		/* blocking cp for flags */
1779 	struct task_struct *umount_lock_holder;	/* s_umount lock holder */
1780 
1781 	/* # of pages, see count_type */
1782 	atomic_t nr_pages[NR_COUNT_TYPE];
1783 	/* # of allocated blocks */
1784 	struct percpu_counter alloc_valid_block_count;
1785 	/* # of node block writes as roll forward recovery */
1786 	struct percpu_counter rf_node_block_count;
1787 
1788 	/* writeback control */
1789 	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1790 
1791 	/* valid inode count */
1792 	struct percpu_counter total_valid_inode_count;
1793 
1794 	struct f2fs_mount_info mount_opt;	/* mount options */
1795 
1796 	/* for cleaning operations */
1797 	struct f2fs_rwsem gc_lock;		/*
1798 						 * semaphore for GC, avoid
1799 						 * race between GC and GC or CP
1800 						 */
1801 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1802 	struct atgc_management am;		/* atgc management */
1803 	unsigned int cur_victim_sec;		/* current victim section num */
1804 	unsigned int gc_mode;			/* current GC state */
1805 	unsigned int next_victim_seg[2];	/* next segment in victim section */
1806 	spinlock_t gc_remaining_trials_lock;
1807 	/* remaining trial count for GC_URGENT_* and GC_IDLE_* */
1808 	unsigned int gc_remaining_trials;
1809 
1810 	/* for skip statistic */
1811 	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1812 
1813 	/* free sections reserved for pinned file */
1814 	unsigned int reserved_pin_section;
1815 
1816 	/* threshold for gc trials on pinned files */
1817 	unsigned short gc_pin_file_threshold;
1818 	struct f2fs_rwsem pin_sem;
1819 
1820 	/* maximum # of trials to find a victim segment for SSR and GC */
1821 	unsigned int max_victim_search;
1822 	/* migration granularity of garbage collection, unit: segment */
1823 	unsigned int migration_granularity;
1824 	/* migration window granularity of garbage collection, unit: segment */
1825 	unsigned int migration_window_granularity;
1826 
1827 	/*
1828 	 * for stat information.
1829 	 * one is for the LFS mode, and the other is for the SSR mode.
1830 	 */
1831 #ifdef CONFIG_F2FS_STAT_FS
1832 	struct f2fs_stat_info *stat_info;	/* FS status information */
1833 	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1834 	unsigned int segment_count[2];		/* # of allocated segments */
1835 	unsigned int block_count[2];		/* # of allocated blocks */
1836 	atomic_t inplace_count;		/* # of inplace update */
1837 	/* # of lookup extent cache */
1838 	atomic64_t total_hit_ext[NR_EXTENT_CACHES];
1839 	/* # of hit rbtree extent node */
1840 	atomic64_t read_hit_rbtree[NR_EXTENT_CACHES];
1841 	/* # of hit cached extent node */
1842 	atomic64_t read_hit_cached[NR_EXTENT_CACHES];
1843 	/* # of hit largest extent node in read extent cache */
1844 	atomic64_t read_hit_largest;
1845 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1846 	atomic_t inline_inode;			/* # of inline_data inodes */
1847 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1848 	atomic_t compr_inode;			/* # of compressed inodes */
1849 	atomic64_t compr_blocks;		/* # of compressed blocks */
1850 	atomic_t swapfile_inode;		/* # of swapfile inodes */
1851 	atomic_t atomic_files;			/* # of opened atomic file */
1852 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1853 	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1854 	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1855 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1856 	atomic_t cp_call_count[MAX_CALL_TYPE];	/* # of cp call */
1857 #endif
1858 	spinlock_t stat_lock;			/* lock for stat operations */
1859 
1860 	/* to attach REQ_META|REQ_FUA flags */
1861 	unsigned int data_io_flag;
1862 	unsigned int node_io_flag;
1863 
1864 	/* For sysfs support */
1865 	struct kobject s_kobj;			/* /sys/fs/f2fs/<devname> */
1866 	struct completion s_kobj_unregister;
1867 
1868 	struct kobject s_stat_kobj;		/* /sys/fs/f2fs/<devname>/stat */
1869 	struct completion s_stat_kobj_unregister;
1870 
1871 	struct kobject s_feature_list_kobj;		/* /sys/fs/f2fs/<devname>/feature_list */
1872 	struct completion s_feature_list_kobj_unregister;
1873 
1874 	/* For shrinker support */
1875 	struct list_head s_list;
1876 	struct mutex umount_mutex;
1877 	unsigned int shrinker_run_no;
1878 
1879 	/* For multi devices */
1880 	int s_ndevs;				/* number of devices */
1881 	struct f2fs_dev_info *devs;		/* for device list */
1882 	unsigned int dirty_device;		/* for checkpoint data flush */
1883 	spinlock_t dev_lock;			/* protect dirty_device */
1884 	bool aligned_blksize;			/* all devices has the same logical blksize */
1885 	unsigned int first_seq_zone_segno;	/* first segno in sequential zone */
1886 	unsigned int bggc_io_aware;		/* For adjust the BG_GC priority when pending IO */
1887 	unsigned int allocate_section_hint;	/* the boundary position between devices */
1888 	unsigned int allocate_section_policy;	/* determine the section writing priority */
1889 
1890 	/* For write statistics */
1891 	u64 sectors_written_start;
1892 	u64 kbytes_written;
1893 
1894 	/* Precomputed FS UUID checksum for seeding other checksums */
1895 	__u32 s_chksum_seed;
1896 
1897 	struct workqueue_struct *post_read_wq;	/* post read workqueue */
1898 
1899 	/*
1900 	 * If we are in irq context, let's update error information into
1901 	 * on-disk superblock in the work.
1902 	 */
1903 	struct work_struct s_error_work;
1904 	unsigned char errors[MAX_F2FS_ERRORS];		/* error flags */
1905 	unsigned char stop_reason[MAX_STOP_REASON];	/* stop reason */
1906 	spinlock_t error_lock;			/* protect errors/stop_reason array */
1907 	bool error_dirty;			/* errors of sb is dirty */
1908 
1909 	/* For reclaimed segs statistics per each GC mode */
1910 	unsigned int gc_segment_mode;		/* GC state for reclaimed segments */
1911 	unsigned int gc_reclaimed_segs[MAX_GC_MODE];	/* Reclaimed segs for each mode */
1912 
1913 	unsigned long seq_file_ra_mul;		/* multiplier for ra_pages of seq. files in fadvise */
1914 
1915 	int max_fragment_chunk;			/* max chunk size for block fragmentation mode */
1916 	int max_fragment_hole;			/* max hole size for block fragmentation mode */
1917 
1918 	/* For atomic write statistics */
1919 	atomic64_t current_atomic_write;
1920 	s64 peak_atomic_write;
1921 	u64 committed_atomic_block;
1922 	u64 revoked_atomic_block;
1923 
1924 	/* carve out reserved_blocks from total blocks */
1925 	bool carve_out;
1926 
1927 #ifdef CONFIG_F2FS_FS_COMPRESSION
1928 	struct kmem_cache *page_array_slab;	/* page array entry */
1929 	unsigned int page_array_slab_size;	/* default page array slab size */
1930 
1931 	/* For runtime compression statistics */
1932 	u64 compr_written_block;
1933 	u64 compr_saved_block;
1934 	u32 compr_new_inode;
1935 
1936 	/* For compressed block cache */
1937 	struct inode *compress_inode;		/* cache compressed blocks */
1938 	unsigned int compress_percent;		/* cache page percentage */
1939 	unsigned int compress_watermark;	/* cache page watermark */
1940 	atomic_t compress_page_hit;		/* cache hit count */
1941 #endif
1942 
1943 #ifdef CONFIG_F2FS_IOSTAT
1944 	/* For app/fs IO statistics */
1945 	spinlock_t iostat_lock;
1946 	unsigned long long iostat_count[NR_IO_TYPE];
1947 	unsigned long long iostat_bytes[NR_IO_TYPE];
1948 	unsigned long long prev_iostat_bytes[NR_IO_TYPE];
1949 	bool iostat_enable;
1950 	unsigned long iostat_next_period;
1951 	unsigned int iostat_period_ms;
1952 
1953 	/* For io latency related statistics info in one iostat period */
1954 	spinlock_t iostat_lat_lock;
1955 	struct iostat_lat_info *iostat_io_lat;
1956 #endif
1957 };
1958 
1959 /* Definitions to access f2fs_sb_info */
1960 #define SEGS_TO_BLKS(sbi, segs)					\
1961 		((segs) << (sbi)->log_blocks_per_seg)
1962 #define BLKS_TO_SEGS(sbi, blks)					\
1963 		((blks) >> (sbi)->log_blocks_per_seg)
1964 
1965 #define BLKS_PER_SEG(sbi)	((sbi)->blocks_per_seg)
1966 #define BLKS_PER_SEC(sbi)	(SEGS_TO_BLKS(sbi, (sbi)->segs_per_sec))
1967 #define SEGS_PER_SEC(sbi)	((sbi)->segs_per_sec)
1968 
1969 __printf(3, 4)
1970 void f2fs_printk(struct f2fs_sb_info *sbi, bool limit_rate, const char *fmt, ...);
1971 
1972 #define f2fs_err(sbi, fmt, ...)						\
1973 	f2fs_printk(sbi, false, KERN_ERR fmt, ##__VA_ARGS__)
1974 #define f2fs_warn(sbi, fmt, ...)					\
1975 	f2fs_printk(sbi, false, KERN_WARNING fmt, ##__VA_ARGS__)
1976 #define f2fs_notice(sbi, fmt, ...)					\
1977 	f2fs_printk(sbi, false, KERN_NOTICE fmt, ##__VA_ARGS__)
1978 #define f2fs_info(sbi, fmt, ...)					\
1979 	f2fs_printk(sbi, false, KERN_INFO fmt, ##__VA_ARGS__)
1980 #define f2fs_debug(sbi, fmt, ...)					\
1981 	f2fs_printk(sbi, false, KERN_DEBUG fmt, ##__VA_ARGS__)
1982 
1983 #define f2fs_err_ratelimited(sbi, fmt, ...)				\
1984 	f2fs_printk(sbi, true, KERN_ERR fmt, ##__VA_ARGS__)
1985 #define f2fs_warn_ratelimited(sbi, fmt, ...)				\
1986 	f2fs_printk(sbi, true, KERN_WARNING fmt, ##__VA_ARGS__)
1987 #define f2fs_info_ratelimited(sbi, fmt, ...)				\
1988 	f2fs_printk(sbi, true, KERN_INFO fmt, ##__VA_ARGS__)
1989 
1990 #ifdef CONFIG_F2FS_FAULT_INJECTION
1991 #define time_to_inject(sbi, type) __time_to_inject(sbi, type, __func__,	\
1992 									__builtin_return_address(0))
__time_to_inject(struct f2fs_sb_info * sbi,int type,const char * func,const char * parent_func)1993 static inline bool __time_to_inject(struct f2fs_sb_info *sbi, int type,
1994 				const char *func, const char *parent_func)
1995 {
1996 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1997 
1998 	if (!ffi->inject_rate)
1999 		return false;
2000 
2001 	if (!IS_FAULT_SET(ffi, type))
2002 		return false;
2003 
2004 	atomic_inc(&ffi->inject_ops);
2005 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
2006 		atomic_set(&ffi->inject_ops, 0);
2007 		ffi->inject_count[type]++;
2008 		f2fs_info_ratelimited(sbi, "inject %s in %s of %pS",
2009 				f2fs_fault_name[type], func, parent_func);
2010 		return true;
2011 	}
2012 	return false;
2013 }
2014 #else
time_to_inject(struct f2fs_sb_info * sbi,int type)2015 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
2016 {
2017 	return false;
2018 }
2019 #endif
2020 
2021 /*
2022  * Test if the mounted volume is a multi-device volume.
2023  *   - For a single regular disk volume, sbi->s_ndevs is 0.
2024  *   - For a single zoned disk volume, sbi->s_ndevs is 1.
2025  *   - For a multi-device volume, sbi->s_ndevs is always 2 or more.
2026  */
f2fs_is_multi_device(struct f2fs_sb_info * sbi)2027 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
2028 {
2029 	return sbi->s_ndevs > 1;
2030 }
2031 
f2fs_update_time(struct f2fs_sb_info * sbi,int type)2032 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
2033 {
2034 	unsigned long now = jiffies;
2035 
2036 	sbi->last_time[type] = now;
2037 
2038 	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
2039 	if (type == REQ_TIME) {
2040 		sbi->last_time[DISCARD_TIME] = now;
2041 		sbi->last_time[GC_TIME] = now;
2042 	}
2043 }
2044 
f2fs_time_over(struct f2fs_sb_info * sbi,int type)2045 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
2046 {
2047 	unsigned long interval = sbi->interval_time[type] * HZ;
2048 
2049 	return time_after(jiffies, sbi->last_time[type] + interval);
2050 }
2051 
f2fs_time_to_wait(struct f2fs_sb_info * sbi,int type)2052 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
2053 						int type)
2054 {
2055 	unsigned long interval = sbi->interval_time[type] * HZ;
2056 	unsigned int wait_ms = 0;
2057 	long delta;
2058 
2059 	delta = (sbi->last_time[type] + interval) - jiffies;
2060 	if (delta > 0)
2061 		wait_ms = jiffies_to_msecs(delta);
2062 
2063 	return wait_ms;
2064 }
2065 
2066 /*
2067  * Inline functions
2068  */
__f2fs_crc32(u32 crc,const void * address,unsigned int length)2069 static inline u32 __f2fs_crc32(u32 crc, const void *address,
2070 			       unsigned int length)
2071 {
2072 	return crc32(crc, address, length);
2073 }
2074 
f2fs_crc32(const void * address,unsigned int length)2075 static inline u32 f2fs_crc32(const void *address, unsigned int length)
2076 {
2077 	return __f2fs_crc32(F2FS_SUPER_MAGIC, address, length);
2078 }
2079 
f2fs_chksum(u32 crc,const void * address,unsigned int length)2080 static inline u32 f2fs_chksum(u32 crc, const void *address, unsigned int length)
2081 {
2082 	return __f2fs_crc32(crc, address, length);
2083 }
2084 
F2FS_I(struct inode * inode)2085 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
2086 {
2087 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
2088 }
2089 
F2FS_SB(struct super_block * sb)2090 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
2091 {
2092 	return sb->s_fs_info;
2093 }
2094 
F2FS_I_SB(struct inode * inode)2095 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
2096 {
2097 	return F2FS_SB(inode->i_sb);
2098 }
2099 
F2FS_M_SB(struct address_space * mapping)2100 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
2101 {
2102 	return F2FS_I_SB(mapping->host);
2103 }
2104 
F2FS_F_SB(const struct folio * folio)2105 static inline struct f2fs_sb_info *F2FS_F_SB(const struct folio *folio)
2106 {
2107 	return F2FS_M_SB(folio->mapping);
2108 }
2109 
F2FS_RAW_SUPER(struct f2fs_sb_info * sbi)2110 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
2111 {
2112 	return (struct f2fs_super_block *)(sbi->raw_super);
2113 }
2114 
F2FS_SUPER_BLOCK(struct folio * folio,pgoff_t index)2115 static inline struct f2fs_super_block *F2FS_SUPER_BLOCK(struct folio *folio,
2116 								pgoff_t index)
2117 {
2118 	pgoff_t idx_in_folio = index % folio_nr_pages(folio);
2119 
2120 	return (struct f2fs_super_block *)
2121 		(page_address(folio_page(folio, idx_in_folio)) +
2122 						F2FS_SUPER_OFFSET);
2123 }
2124 
F2FS_CKPT(struct f2fs_sb_info * sbi)2125 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
2126 {
2127 	return (struct f2fs_checkpoint *)(sbi->ckpt);
2128 }
2129 
F2FS_NODE(const struct folio * folio)2130 static inline struct f2fs_node *F2FS_NODE(const struct folio *folio)
2131 {
2132 	return (struct f2fs_node *)folio_address(folio);
2133 }
2134 
F2FS_INODE(const struct folio * folio)2135 static inline struct f2fs_inode *F2FS_INODE(const struct folio *folio)
2136 {
2137 	return &((struct f2fs_node *)folio_address(folio))->i;
2138 }
2139 
NM_I(struct f2fs_sb_info * sbi)2140 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
2141 {
2142 	return (struct f2fs_nm_info *)(sbi->nm_info);
2143 }
2144 
SM_I(struct f2fs_sb_info * sbi)2145 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
2146 {
2147 	return (struct f2fs_sm_info *)(sbi->sm_info);
2148 }
2149 
SIT_I(struct f2fs_sb_info * sbi)2150 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
2151 {
2152 	return (struct sit_info *)(SM_I(sbi)->sit_info);
2153 }
2154 
FREE_I(struct f2fs_sb_info * sbi)2155 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
2156 {
2157 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
2158 }
2159 
DIRTY_I(struct f2fs_sb_info * sbi)2160 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
2161 {
2162 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
2163 }
2164 
META_MAPPING(struct f2fs_sb_info * sbi)2165 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
2166 {
2167 	return sbi->meta_inode->i_mapping;
2168 }
2169 
NODE_MAPPING(struct f2fs_sb_info * sbi)2170 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
2171 {
2172 	return sbi->node_inode->i_mapping;
2173 }
2174 
is_meta_folio(struct folio * folio)2175 static inline bool is_meta_folio(struct folio *folio)
2176 {
2177 	return folio->mapping == META_MAPPING(F2FS_F_SB(folio));
2178 }
2179 
is_node_folio(struct folio * folio)2180 static inline bool is_node_folio(struct folio *folio)
2181 {
2182 	return folio->mapping == NODE_MAPPING(F2FS_F_SB(folio));
2183 }
2184 
is_sbi_flag_set(struct f2fs_sb_info * sbi,unsigned int type)2185 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
2186 {
2187 	return test_bit(type, &sbi->s_flag);
2188 }
2189 
set_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)2190 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2191 {
2192 	set_bit(type, &sbi->s_flag);
2193 }
2194 
clear_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)2195 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2196 {
2197 	clear_bit(type, &sbi->s_flag);
2198 }
2199 
cur_cp_version(struct f2fs_checkpoint * cp)2200 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
2201 {
2202 	return le64_to_cpu(cp->checkpoint_ver);
2203 }
2204 
f2fs_qf_ino(struct super_block * sb,int type)2205 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
2206 {
2207 	if (type < F2FS_MAX_QUOTAS)
2208 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
2209 	return 0;
2210 }
2211 
cur_cp_crc(struct f2fs_checkpoint * cp)2212 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
2213 {
2214 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
2215 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
2216 }
2217 
__is_set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2218 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2219 {
2220 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2221 
2222 	return ckpt_flags & f;
2223 }
2224 
is_set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2225 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2226 {
2227 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
2228 }
2229 
__set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2230 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2231 {
2232 	unsigned int ckpt_flags;
2233 
2234 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2235 	ckpt_flags |= f;
2236 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2237 }
2238 
set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2239 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2240 {
2241 	unsigned long flags;
2242 
2243 	spin_lock_irqsave(&sbi->cp_lock, flags);
2244 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
2245 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2246 }
2247 
__clear_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2248 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2249 {
2250 	unsigned int ckpt_flags;
2251 
2252 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2253 	ckpt_flags &= (~f);
2254 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2255 }
2256 
clear_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2257 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2258 {
2259 	unsigned long flags;
2260 
2261 	spin_lock_irqsave(&sbi->cp_lock, flags);
2262 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
2263 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2264 }
2265 
2266 #define init_f2fs_rwsem(sem)					\
2267 do {								\
2268 	static struct lock_class_key __key;			\
2269 								\
2270 	__init_f2fs_rwsem((sem), #sem, &__key);			\
2271 } while (0)
2272 
__init_f2fs_rwsem(struct f2fs_rwsem * sem,const char * sem_name,struct lock_class_key * key)2273 static inline void __init_f2fs_rwsem(struct f2fs_rwsem *sem,
2274 		const char *sem_name, struct lock_class_key *key)
2275 {
2276 	__init_rwsem(&sem->internal_rwsem, sem_name, key);
2277 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2278 	init_waitqueue_head(&sem->read_waiters);
2279 #endif
2280 }
2281 
f2fs_rwsem_is_locked(struct f2fs_rwsem * sem)2282 static inline int f2fs_rwsem_is_locked(struct f2fs_rwsem *sem)
2283 {
2284 	return rwsem_is_locked(&sem->internal_rwsem);
2285 }
2286 
f2fs_rwsem_is_contended(struct f2fs_rwsem * sem)2287 static inline int f2fs_rwsem_is_contended(struct f2fs_rwsem *sem)
2288 {
2289 	return rwsem_is_contended(&sem->internal_rwsem);
2290 }
2291 
f2fs_down_read(struct f2fs_rwsem * sem)2292 static inline void f2fs_down_read(struct f2fs_rwsem *sem)
2293 {
2294 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2295 	wait_event(sem->read_waiters, down_read_trylock(&sem->internal_rwsem));
2296 #else
2297 	down_read(&sem->internal_rwsem);
2298 #endif
2299 }
2300 
f2fs_down_read_trylock(struct f2fs_rwsem * sem)2301 static inline int f2fs_down_read_trylock(struct f2fs_rwsem *sem)
2302 {
2303 	return down_read_trylock(&sem->internal_rwsem);
2304 }
2305 
f2fs_up_read(struct f2fs_rwsem * sem)2306 static inline void f2fs_up_read(struct f2fs_rwsem *sem)
2307 {
2308 	up_read(&sem->internal_rwsem);
2309 }
2310 
f2fs_down_write(struct f2fs_rwsem * sem)2311 static inline void f2fs_down_write(struct f2fs_rwsem *sem)
2312 {
2313 	down_write(&sem->internal_rwsem);
2314 }
2315 
2316 #ifdef CONFIG_DEBUG_LOCK_ALLOC
f2fs_down_read_nested(struct f2fs_rwsem * sem,int subclass)2317 static inline void f2fs_down_read_nested(struct f2fs_rwsem *sem, int subclass)
2318 {
2319 	down_read_nested(&sem->internal_rwsem, subclass);
2320 }
2321 
f2fs_down_write_nested(struct f2fs_rwsem * sem,int subclass)2322 static inline void f2fs_down_write_nested(struct f2fs_rwsem *sem, int subclass)
2323 {
2324 	down_write_nested(&sem->internal_rwsem, subclass);
2325 }
2326 #else
2327 #define f2fs_down_read_nested(sem, subclass) f2fs_down_read(sem)
2328 #define f2fs_down_write_nested(sem, subclass) f2fs_down_write(sem)
2329 #endif
2330 
f2fs_down_write_trylock(struct f2fs_rwsem * sem)2331 static inline int f2fs_down_write_trylock(struct f2fs_rwsem *sem)
2332 {
2333 	return down_write_trylock(&sem->internal_rwsem);
2334 }
2335 
f2fs_up_write(struct f2fs_rwsem * sem)2336 static inline void f2fs_up_write(struct f2fs_rwsem *sem)
2337 {
2338 	up_write(&sem->internal_rwsem);
2339 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2340 	wake_up_all(&sem->read_waiters);
2341 #endif
2342 }
2343 
disable_nat_bits(struct f2fs_sb_info * sbi,bool lock)2344 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
2345 {
2346 	unsigned long flags;
2347 	unsigned char *nat_bits;
2348 
2349 	/*
2350 	 * In order to re-enable nat_bits we need to call fsck.f2fs by
2351 	 * set_sbi_flag(sbi, SBI_NEED_FSCK). But it may give huge cost,
2352 	 * so let's rely on regular fsck or unclean shutdown.
2353 	 */
2354 
2355 	if (lock)
2356 		spin_lock_irqsave(&sbi->cp_lock, flags);
2357 	__clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
2358 	nat_bits = NM_I(sbi)->nat_bits;
2359 	NM_I(sbi)->nat_bits = NULL;
2360 	if (lock)
2361 		spin_unlock_irqrestore(&sbi->cp_lock, flags);
2362 
2363 	kvfree(nat_bits);
2364 }
2365 
enabled_nat_bits(struct f2fs_sb_info * sbi,struct cp_control * cpc)2366 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
2367 					struct cp_control *cpc)
2368 {
2369 	bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
2370 
2371 	return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
2372 }
2373 
f2fs_lock_op(struct f2fs_sb_info * sbi)2374 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
2375 {
2376 	f2fs_down_read(&sbi->cp_rwsem);
2377 }
2378 
f2fs_trylock_op(struct f2fs_sb_info * sbi)2379 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
2380 {
2381 	if (time_to_inject(sbi, FAULT_LOCK_OP))
2382 		return 0;
2383 	return f2fs_down_read_trylock(&sbi->cp_rwsem);
2384 }
2385 
f2fs_unlock_op(struct f2fs_sb_info * sbi)2386 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
2387 {
2388 	f2fs_up_read(&sbi->cp_rwsem);
2389 }
2390 
f2fs_lock_all(struct f2fs_sb_info * sbi)2391 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
2392 {
2393 	f2fs_down_write(&sbi->cp_rwsem);
2394 }
2395 
f2fs_unlock_all(struct f2fs_sb_info * sbi)2396 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
2397 {
2398 	f2fs_up_write(&sbi->cp_rwsem);
2399 }
2400 
__get_cp_reason(struct f2fs_sb_info * sbi)2401 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
2402 {
2403 	int reason = CP_SYNC;
2404 
2405 	if (test_opt(sbi, FASTBOOT))
2406 		reason = CP_FASTBOOT;
2407 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2408 		reason = CP_UMOUNT;
2409 	return reason;
2410 }
2411 
__remain_node_summaries(int reason)2412 static inline bool __remain_node_summaries(int reason)
2413 {
2414 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
2415 }
2416 
__exist_node_summaries(struct f2fs_sb_info * sbi)2417 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
2418 {
2419 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
2420 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
2421 }
2422 
2423 /*
2424  * Check whether the inode has blocks or not
2425  */
F2FS_HAS_BLOCKS(struct inode * inode)2426 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
2427 {
2428 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
2429 
2430 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
2431 }
2432 
f2fs_has_xattr_block(unsigned int ofs)2433 static inline bool f2fs_has_xattr_block(unsigned int ofs)
2434 {
2435 	return ofs == XATTR_NODE_OFFSET;
2436 }
2437 
__allow_reserved_root(struct f2fs_sb_info * sbi,struct inode * inode,bool cap)2438 static inline bool __allow_reserved_root(struct f2fs_sb_info *sbi,
2439 					struct inode *inode, bool cap)
2440 {
2441 	if (!inode)
2442 		return true;
2443 	if (IS_NOQUOTA(inode))
2444 		return true;
2445 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
2446 		return true;
2447 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2448 					in_group_p(F2FS_OPTION(sbi).s_resgid))
2449 		return true;
2450 	if (cap && capable(CAP_SYS_RESOURCE))
2451 		return true;
2452 	return false;
2453 }
2454 
get_available_block_count(struct f2fs_sb_info * sbi,struct inode * inode,bool cap)2455 static inline unsigned int get_available_block_count(struct f2fs_sb_info *sbi,
2456 						struct inode *inode, bool cap)
2457 {
2458 	block_t avail_user_block_count;
2459 
2460 	avail_user_block_count = sbi->user_block_count -
2461 					sbi->current_reserved_blocks;
2462 
2463 	if (test_opt(sbi, RESERVE_ROOT) && !__allow_reserved_root(sbi, inode, cap))
2464 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2465 
2466 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2467 		if (avail_user_block_count > sbi->unusable_block_count)
2468 			avail_user_block_count -= sbi->unusable_block_count;
2469 		else
2470 			avail_user_block_count = 0;
2471 	}
2472 
2473 	return avail_user_block_count;
2474 }
2475 
2476 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
inc_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,blkcnt_t * count,bool partial)2477 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2478 				 struct inode *inode, blkcnt_t *count, bool partial)
2479 {
2480 	long long diff = 0, release = 0;
2481 	block_t avail_user_block_count;
2482 	int ret;
2483 
2484 	ret = dquot_reserve_block(inode, *count);
2485 	if (ret)
2486 		return ret;
2487 
2488 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2489 		release = *count;
2490 		goto release_quota;
2491 	}
2492 
2493 	/*
2494 	 * let's increase this in prior to actual block count change in order
2495 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2496 	 */
2497 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2498 
2499 	spin_lock(&sbi->stat_lock);
2500 
2501 	avail_user_block_count = get_available_block_count(sbi, inode, true);
2502 	diff = (long long)sbi->total_valid_block_count + *count -
2503 						avail_user_block_count;
2504 	if (unlikely(diff > 0)) {
2505 		if (!partial) {
2506 			spin_unlock(&sbi->stat_lock);
2507 			release = *count;
2508 			goto enospc;
2509 		}
2510 		if (diff > *count)
2511 			diff = *count;
2512 		*count -= diff;
2513 		release = diff;
2514 		if (!*count) {
2515 			spin_unlock(&sbi->stat_lock);
2516 			goto enospc;
2517 		}
2518 	}
2519 	sbi->total_valid_block_count += (block_t)(*count);
2520 
2521 	spin_unlock(&sbi->stat_lock);
2522 
2523 	if (unlikely(release)) {
2524 		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2525 		dquot_release_reservation_block(inode, release);
2526 	}
2527 	f2fs_i_blocks_write(inode, *count, true, true);
2528 	return 0;
2529 
2530 enospc:
2531 	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2532 release_quota:
2533 	dquot_release_reservation_block(inode, release);
2534 	return -ENOSPC;
2535 }
2536 
2537 #define PAGE_PRIVATE_GET_FUNC(name, flagname) \
2538 static inline bool folio_test_f2fs_##name(const struct folio *folio)	\
2539 {									\
2540 	unsigned long priv = (unsigned long)folio->private;		\
2541 	unsigned long v = (1UL << PAGE_PRIVATE_NOT_POINTER) |		\
2542 			     (1UL << PAGE_PRIVATE_##flagname);		\
2543 	return (priv & v) == v;						\
2544 }									\
2545 static inline bool page_private_##name(struct page *page) \
2546 { \
2547 	return PagePrivate(page) && \
2548 		test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \
2549 		test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2550 }
2551 
2552 #define PAGE_PRIVATE_SET_FUNC(name, flagname) \
2553 static inline void folio_set_f2fs_##name(struct folio *folio)		\
2554 {									\
2555 	unsigned long v = (1UL << PAGE_PRIVATE_NOT_POINTER) |		\
2556 			     (1UL << PAGE_PRIVATE_##flagname);		\
2557 	if (!folio->private)						\
2558 		folio_attach_private(folio, (void *)v);			\
2559 	else {								\
2560 		v |= (unsigned long)folio->private;			\
2561 		folio->private = (void *)v;				\
2562 	}								\
2563 }									\
2564 static inline void set_page_private_##name(struct page *page) \
2565 { \
2566 	if (!PagePrivate(page)) \
2567 		attach_page_private(page, (void *)0); \
2568 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \
2569 	set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2570 }
2571 
2572 #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \
2573 static inline void folio_clear_f2fs_##name(struct folio *folio)		\
2574 {									\
2575 	unsigned long v = (unsigned long)folio->private;		\
2576 									\
2577 	v &= ~(1UL << PAGE_PRIVATE_##flagname);				\
2578 	if (v == (1UL << PAGE_PRIVATE_NOT_POINTER))			\
2579 		folio_detach_private(folio);				\
2580 	else								\
2581 		folio->private = (void *)v;				\
2582 }									\
2583 static inline void clear_page_private_##name(struct page *page) \
2584 { \
2585 	clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2586 	if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER)) \
2587 		detach_page_private(page); \
2588 }
2589 
2590 PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER);
2591 PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE);
2592 PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION);
2593 PAGE_PRIVATE_GET_FUNC(atomic, ATOMIC_WRITE);
2594 
2595 PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE);
2596 PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE);
2597 PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION);
2598 PAGE_PRIVATE_SET_FUNC(atomic, ATOMIC_WRITE);
2599 
2600 PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE);
2601 PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE);
2602 PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION);
2603 PAGE_PRIVATE_CLEAR_FUNC(atomic, ATOMIC_WRITE);
2604 
folio_get_f2fs_data(struct folio * folio)2605 static inline unsigned long folio_get_f2fs_data(struct folio *folio)
2606 {
2607 	unsigned long data = (unsigned long)folio->private;
2608 
2609 	if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data))
2610 		return 0;
2611 	return data >> PAGE_PRIVATE_MAX;
2612 }
2613 
folio_set_f2fs_data(struct folio * folio,unsigned long data)2614 static inline void folio_set_f2fs_data(struct folio *folio, unsigned long data)
2615 {
2616 	data = (1UL << PAGE_PRIVATE_NOT_POINTER) | (data << PAGE_PRIVATE_MAX);
2617 
2618 	if (!folio_test_private(folio))
2619 		folio_attach_private(folio, (void *)data);
2620 	else
2621 		folio->private = (void *)((unsigned long)folio->private | data);
2622 }
2623 
dec_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,block_t count)2624 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2625 						struct inode *inode,
2626 						block_t count)
2627 {
2628 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2629 
2630 	spin_lock(&sbi->stat_lock);
2631 	if (unlikely(sbi->total_valid_block_count < count)) {
2632 		f2fs_warn(sbi, "Inconsistent total_valid_block_count:%u, ino:%lu, count:%u",
2633 			  sbi->total_valid_block_count, inode->i_ino, count);
2634 		sbi->total_valid_block_count = 0;
2635 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2636 	} else {
2637 		sbi->total_valid_block_count -= count;
2638 	}
2639 	if (sbi->reserved_blocks &&
2640 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2641 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2642 					sbi->current_reserved_blocks + count);
2643 	spin_unlock(&sbi->stat_lock);
2644 	if (unlikely(inode->i_blocks < sectors)) {
2645 		f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2646 			  inode->i_ino,
2647 			  (unsigned long long)inode->i_blocks,
2648 			  (unsigned long long)sectors);
2649 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2650 		return;
2651 	}
2652 	f2fs_i_blocks_write(inode, count, false, true);
2653 }
2654 
inc_page_count(struct f2fs_sb_info * sbi,int count_type)2655 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2656 {
2657 	atomic_inc(&sbi->nr_pages[count_type]);
2658 
2659 	if (count_type == F2FS_DIRTY_DENTS ||
2660 			count_type == F2FS_DIRTY_NODES ||
2661 			count_type == F2FS_DIRTY_META ||
2662 			count_type == F2FS_DIRTY_QDATA ||
2663 			count_type == F2FS_DIRTY_IMETA)
2664 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2665 }
2666 
inode_inc_dirty_pages(struct inode * inode)2667 static inline void inode_inc_dirty_pages(struct inode *inode)
2668 {
2669 	atomic_inc(&F2FS_I(inode)->dirty_pages);
2670 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2671 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2672 	if (IS_NOQUOTA(inode))
2673 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2674 }
2675 
dec_page_count(struct f2fs_sb_info * sbi,int count_type)2676 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2677 {
2678 	atomic_dec(&sbi->nr_pages[count_type]);
2679 }
2680 
inode_dec_dirty_pages(struct inode * inode)2681 static inline void inode_dec_dirty_pages(struct inode *inode)
2682 {
2683 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2684 			!S_ISLNK(inode->i_mode))
2685 		return;
2686 
2687 	atomic_dec(&F2FS_I(inode)->dirty_pages);
2688 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2689 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2690 	if (IS_NOQUOTA(inode))
2691 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2692 }
2693 
inc_atomic_write_cnt(struct inode * inode)2694 static inline void inc_atomic_write_cnt(struct inode *inode)
2695 {
2696 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2697 	struct f2fs_inode_info *fi = F2FS_I(inode);
2698 	u64 current_write;
2699 
2700 	fi->atomic_write_cnt++;
2701 	atomic64_inc(&sbi->current_atomic_write);
2702 	current_write = atomic64_read(&sbi->current_atomic_write);
2703 	if (current_write > sbi->peak_atomic_write)
2704 		sbi->peak_atomic_write = current_write;
2705 }
2706 
release_atomic_write_cnt(struct inode * inode)2707 static inline void release_atomic_write_cnt(struct inode *inode)
2708 {
2709 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2710 	struct f2fs_inode_info *fi = F2FS_I(inode);
2711 
2712 	atomic64_sub(fi->atomic_write_cnt, &sbi->current_atomic_write);
2713 	fi->atomic_write_cnt = 0;
2714 }
2715 
get_pages(struct f2fs_sb_info * sbi,int count_type)2716 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2717 {
2718 	return atomic_read(&sbi->nr_pages[count_type]);
2719 }
2720 
get_dirty_pages(struct inode * inode)2721 static inline int get_dirty_pages(struct inode *inode)
2722 {
2723 	return atomic_read(&F2FS_I(inode)->dirty_pages);
2724 }
2725 
get_blocktype_secs(struct f2fs_sb_info * sbi,int block_type)2726 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2727 {
2728 	return div_u64(get_pages(sbi, block_type) + BLKS_PER_SEC(sbi) - 1,
2729 							BLKS_PER_SEC(sbi));
2730 }
2731 
valid_user_blocks(struct f2fs_sb_info * sbi)2732 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2733 {
2734 	return sbi->total_valid_block_count;
2735 }
2736 
discard_blocks(struct f2fs_sb_info * sbi)2737 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2738 {
2739 	return sbi->discard_blks;
2740 }
2741 
__bitmap_size(struct f2fs_sb_info * sbi,int flag)2742 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2743 {
2744 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2745 
2746 	/* return NAT or SIT bitmap */
2747 	if (flag == NAT_BITMAP)
2748 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2749 	else if (flag == SIT_BITMAP)
2750 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2751 
2752 	return 0;
2753 }
2754 
__cp_payload(struct f2fs_sb_info * sbi)2755 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2756 {
2757 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2758 }
2759 
__bitmap_ptr(struct f2fs_sb_info * sbi,int flag)2760 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2761 {
2762 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2763 	void *tmp_ptr = &ckpt->sit_nat_version_bitmap;
2764 	int offset;
2765 
2766 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2767 		offset = (flag == SIT_BITMAP) ?
2768 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2769 		/*
2770 		 * if large_nat_bitmap feature is enabled, leave checksum
2771 		 * protection for all nat/sit bitmaps.
2772 		 */
2773 		return tmp_ptr + offset + sizeof(__le32);
2774 	}
2775 
2776 	if (__cp_payload(sbi) > 0) {
2777 		if (flag == NAT_BITMAP)
2778 			return tmp_ptr;
2779 		else
2780 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
2781 	} else {
2782 		offset = (flag == NAT_BITMAP) ?
2783 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2784 		return tmp_ptr + offset;
2785 	}
2786 }
2787 
__start_cp_addr(struct f2fs_sb_info * sbi)2788 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2789 {
2790 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2791 
2792 	if (sbi->cur_cp_pack == 2)
2793 		start_addr += BLKS_PER_SEG(sbi);
2794 	return start_addr;
2795 }
2796 
__start_cp_next_addr(struct f2fs_sb_info * sbi)2797 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2798 {
2799 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2800 
2801 	if (sbi->cur_cp_pack == 1)
2802 		start_addr += BLKS_PER_SEG(sbi);
2803 	return start_addr;
2804 }
2805 
__set_cp_next_pack(struct f2fs_sb_info * sbi)2806 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2807 {
2808 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2809 }
2810 
__start_sum_addr(struct f2fs_sb_info * sbi)2811 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2812 {
2813 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2814 }
2815 
2816 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
inc_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2817 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2818 					struct inode *inode, bool is_inode)
2819 {
2820 	block_t	valid_block_count;
2821 	unsigned int valid_node_count, avail_user_node_count;
2822 	unsigned int avail_user_block_count;
2823 	int err;
2824 
2825 	if (is_inode) {
2826 		if (inode) {
2827 			err = dquot_alloc_inode(inode);
2828 			if (err)
2829 				return err;
2830 		}
2831 	} else {
2832 		err = dquot_reserve_block(inode, 1);
2833 		if (err)
2834 			return err;
2835 	}
2836 
2837 	if (time_to_inject(sbi, FAULT_BLOCK))
2838 		goto enospc;
2839 
2840 	spin_lock(&sbi->stat_lock);
2841 
2842 	valid_block_count = sbi->total_valid_block_count + 1;
2843 	avail_user_block_count = get_available_block_count(sbi, inode,
2844 			test_opt(sbi, RESERVE_NODE));
2845 
2846 	if (unlikely(valid_block_count > avail_user_block_count)) {
2847 		spin_unlock(&sbi->stat_lock);
2848 		goto enospc;
2849 	}
2850 
2851 	avail_user_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
2852 	if (test_opt(sbi, RESERVE_NODE) &&
2853 			!__allow_reserved_root(sbi, inode, true))
2854 		avail_user_node_count -= F2FS_OPTION(sbi).root_reserved_nodes;
2855 	valid_node_count = sbi->total_valid_node_count + 1;
2856 	if (unlikely(valid_node_count > avail_user_node_count)) {
2857 		spin_unlock(&sbi->stat_lock);
2858 		goto enospc;
2859 	}
2860 
2861 	sbi->total_valid_node_count++;
2862 	sbi->total_valid_block_count++;
2863 	spin_unlock(&sbi->stat_lock);
2864 
2865 	if (inode) {
2866 		if (is_inode)
2867 			f2fs_mark_inode_dirty_sync(inode, true);
2868 		else
2869 			f2fs_i_blocks_write(inode, 1, true, true);
2870 	}
2871 
2872 	percpu_counter_inc(&sbi->alloc_valid_block_count);
2873 	return 0;
2874 
2875 enospc:
2876 	if (is_inode) {
2877 		if (inode)
2878 			dquot_free_inode(inode);
2879 	} else {
2880 		dquot_release_reservation_block(inode, 1);
2881 	}
2882 	return -ENOSPC;
2883 }
2884 
dec_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2885 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2886 					struct inode *inode, bool is_inode)
2887 {
2888 	spin_lock(&sbi->stat_lock);
2889 
2890 	if (unlikely(!sbi->total_valid_block_count ||
2891 			!sbi->total_valid_node_count)) {
2892 		f2fs_warn(sbi, "dec_valid_node_count: inconsistent block counts, total_valid_block:%u, total_valid_node:%u",
2893 			  sbi->total_valid_block_count,
2894 			  sbi->total_valid_node_count);
2895 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2896 	} else {
2897 		sbi->total_valid_block_count--;
2898 		sbi->total_valid_node_count--;
2899 	}
2900 
2901 	if (sbi->reserved_blocks &&
2902 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2903 		sbi->current_reserved_blocks++;
2904 
2905 	spin_unlock(&sbi->stat_lock);
2906 
2907 	if (is_inode) {
2908 		dquot_free_inode(inode);
2909 	} else {
2910 		if (unlikely(inode->i_blocks == 0)) {
2911 			f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2912 				  inode->i_ino,
2913 				  (unsigned long long)inode->i_blocks);
2914 			set_sbi_flag(sbi, SBI_NEED_FSCK);
2915 			return;
2916 		}
2917 		f2fs_i_blocks_write(inode, 1, false, true);
2918 	}
2919 }
2920 
valid_node_count(struct f2fs_sb_info * sbi)2921 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2922 {
2923 	return sbi->total_valid_node_count;
2924 }
2925 
inc_valid_inode_count(struct f2fs_sb_info * sbi)2926 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2927 {
2928 	percpu_counter_inc(&sbi->total_valid_inode_count);
2929 }
2930 
dec_valid_inode_count(struct f2fs_sb_info * sbi)2931 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2932 {
2933 	percpu_counter_dec(&sbi->total_valid_inode_count);
2934 }
2935 
valid_inode_count(struct f2fs_sb_info * sbi)2936 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2937 {
2938 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2939 }
2940 
f2fs_grab_cache_folio(struct address_space * mapping,pgoff_t index,bool for_write)2941 static inline struct folio *f2fs_grab_cache_folio(struct address_space *mapping,
2942 		pgoff_t index, bool for_write)
2943 {
2944 	struct folio *folio;
2945 	unsigned int flags;
2946 
2947 	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2948 		fgf_t fgf_flags;
2949 
2950 		if (!for_write)
2951 			fgf_flags = FGP_LOCK | FGP_ACCESSED;
2952 		else
2953 			fgf_flags = FGP_LOCK;
2954 		folio = __filemap_get_folio(mapping, index, fgf_flags, 0);
2955 		if (!IS_ERR(folio))
2956 			return folio;
2957 
2958 		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC))
2959 			return ERR_PTR(-ENOMEM);
2960 	}
2961 
2962 	if (!for_write)
2963 		return filemap_grab_folio(mapping, index);
2964 
2965 	flags = memalloc_nofs_save();
2966 	folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
2967 			mapping_gfp_mask(mapping));
2968 	memalloc_nofs_restore(flags);
2969 
2970 	return folio;
2971 }
2972 
f2fs_filemap_get_folio(struct address_space * mapping,pgoff_t index,fgf_t fgp_flags,gfp_t gfp_mask)2973 static inline struct folio *f2fs_filemap_get_folio(
2974 				struct address_space *mapping, pgoff_t index,
2975 				fgf_t fgp_flags, gfp_t gfp_mask)
2976 {
2977 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET))
2978 		return ERR_PTR(-ENOMEM);
2979 
2980 	return __filemap_get_folio(mapping, index, fgp_flags, gfp_mask);
2981 }
2982 
f2fs_folio_put(struct folio * folio,bool unlock)2983 static inline void f2fs_folio_put(struct folio *folio, bool unlock)
2984 {
2985 	if (IS_ERR_OR_NULL(folio))
2986 		return;
2987 
2988 	if (unlock) {
2989 		f2fs_bug_on(F2FS_F_SB(folio), !folio_test_locked(folio));
2990 		folio_unlock(folio);
2991 	}
2992 	folio_put(folio);
2993 }
2994 
f2fs_put_page(struct page * page,bool unlock)2995 static inline void f2fs_put_page(struct page *page, bool unlock)
2996 {
2997 	if (!page)
2998 		return;
2999 	f2fs_folio_put(page_folio(page), unlock);
3000 }
3001 
f2fs_put_dnode(struct dnode_of_data * dn)3002 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
3003 {
3004 	if (dn->node_folio)
3005 		f2fs_folio_put(dn->node_folio, true);
3006 	if (dn->inode_folio && dn->node_folio != dn->inode_folio)
3007 		f2fs_folio_put(dn->inode_folio, false);
3008 	dn->node_folio = NULL;
3009 	dn->inode_folio = NULL;
3010 }
3011 
f2fs_kmem_cache_create(const char * name,size_t size)3012 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
3013 					size_t size)
3014 {
3015 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
3016 }
3017 
f2fs_kmem_cache_alloc_nofail(struct kmem_cache * cachep,gfp_t flags)3018 static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep,
3019 						gfp_t flags)
3020 {
3021 	void *entry;
3022 
3023 	entry = kmem_cache_alloc(cachep, flags);
3024 	if (!entry)
3025 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
3026 	return entry;
3027 }
3028 
f2fs_kmem_cache_alloc(struct kmem_cache * cachep,gfp_t flags,bool nofail,struct f2fs_sb_info * sbi)3029 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
3030 			gfp_t flags, bool nofail, struct f2fs_sb_info *sbi)
3031 {
3032 	if (nofail)
3033 		return f2fs_kmem_cache_alloc_nofail(cachep, flags);
3034 
3035 	if (time_to_inject(sbi, FAULT_SLAB_ALLOC))
3036 		return NULL;
3037 
3038 	return kmem_cache_alloc(cachep, flags);
3039 }
3040 
is_inflight_io(struct f2fs_sb_info * sbi,int type)3041 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
3042 {
3043 	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
3044 		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
3045 		get_pages(sbi, F2FS_WB_CP_DATA) ||
3046 		get_pages(sbi, F2FS_DIO_READ) ||
3047 		get_pages(sbi, F2FS_DIO_WRITE))
3048 		return true;
3049 
3050 	if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
3051 			atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
3052 		return true;
3053 
3054 	if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
3055 			atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
3056 		return true;
3057 	return false;
3058 }
3059 
is_inflight_read_io(struct f2fs_sb_info * sbi)3060 static inline bool is_inflight_read_io(struct f2fs_sb_info *sbi)
3061 {
3062 	return get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_DIO_READ);
3063 }
3064 
is_idle(struct f2fs_sb_info * sbi,int type)3065 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
3066 {
3067 	bool zoned_gc = (type == GC_TIME &&
3068 			F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_BLKZONED));
3069 
3070 	if (sbi->gc_mode == GC_URGENT_HIGH)
3071 		return true;
3072 
3073 	if (sbi->bggc_io_aware == AWARE_READ_IO && is_inflight_read_io(sbi))
3074 		return false;
3075 	if (sbi->bggc_io_aware == AWARE_ALL_IO && is_inflight_io(sbi, type))
3076 		return false;
3077 
3078 	if (sbi->gc_mode == GC_URGENT_MID)
3079 		return true;
3080 
3081 	if (sbi->gc_mode == GC_URGENT_LOW &&
3082 			(type == DISCARD_TIME || type == GC_TIME))
3083 		return true;
3084 
3085 	if (zoned_gc)
3086 		return true;
3087 
3088 	return f2fs_time_over(sbi, type);
3089 }
3090 
f2fs_radix_tree_insert(struct radix_tree_root * root,unsigned long index,void * item)3091 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
3092 				unsigned long index, void *item)
3093 {
3094 	while (radix_tree_insert(root, index, item))
3095 		cond_resched();
3096 }
3097 
3098 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
3099 
IS_INODE(const struct folio * folio)3100 static inline bool IS_INODE(const struct folio *folio)
3101 {
3102 	struct f2fs_node *p = F2FS_NODE(folio);
3103 
3104 	return RAW_IS_INODE(p);
3105 }
3106 
offset_in_addr(struct f2fs_inode * i)3107 static inline int offset_in_addr(struct f2fs_inode *i)
3108 {
3109 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
3110 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
3111 }
3112 
blkaddr_in_node(struct f2fs_node * node)3113 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
3114 {
3115 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
3116 }
3117 
3118 static inline int f2fs_has_extra_attr(struct inode *inode);
get_dnode_base(struct inode * inode,struct folio * node_folio)3119 static inline unsigned int get_dnode_base(struct inode *inode,
3120 					struct folio *node_folio)
3121 {
3122 	if (!IS_INODE(node_folio))
3123 		return 0;
3124 
3125 	return inode ? get_extra_isize(inode) :
3126 			offset_in_addr(&F2FS_NODE(node_folio)->i);
3127 }
3128 
get_dnode_addr(struct inode * inode,struct folio * node_folio)3129 static inline __le32 *get_dnode_addr(struct inode *inode,
3130 					struct folio *node_folio)
3131 {
3132 	return blkaddr_in_node(F2FS_NODE(node_folio)) +
3133 			get_dnode_base(inode, node_folio);
3134 }
3135 
data_blkaddr(struct inode * inode,struct folio * node_folio,unsigned int offset)3136 static inline block_t data_blkaddr(struct inode *inode,
3137 			struct folio *node_folio, unsigned int offset)
3138 {
3139 	return le32_to_cpu(*(get_dnode_addr(inode, node_folio) + offset));
3140 }
3141 
f2fs_data_blkaddr(struct dnode_of_data * dn)3142 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
3143 {
3144 	return data_blkaddr(dn->inode, dn->node_folio, dn->ofs_in_node);
3145 }
3146 
f2fs_test_bit(unsigned int nr,char * addr)3147 static inline int f2fs_test_bit(unsigned int nr, char *addr)
3148 {
3149 	int mask;
3150 
3151 	addr += (nr >> 3);
3152 	mask = BIT(7 - (nr & 0x07));
3153 	return mask & *addr;
3154 }
3155 
f2fs_set_bit(unsigned int nr,char * addr)3156 static inline void f2fs_set_bit(unsigned int nr, char *addr)
3157 {
3158 	int mask;
3159 
3160 	addr += (nr >> 3);
3161 	mask = BIT(7 - (nr & 0x07));
3162 	*addr |= mask;
3163 }
3164 
f2fs_clear_bit(unsigned int nr,char * addr)3165 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
3166 {
3167 	int mask;
3168 
3169 	addr += (nr >> 3);
3170 	mask = BIT(7 - (nr & 0x07));
3171 	*addr &= ~mask;
3172 }
3173 
f2fs_test_and_set_bit(unsigned int nr,char * addr)3174 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
3175 {
3176 	int mask;
3177 	int ret;
3178 
3179 	addr += (nr >> 3);
3180 	mask = BIT(7 - (nr & 0x07));
3181 	ret = mask & *addr;
3182 	*addr |= mask;
3183 	return ret;
3184 }
3185 
f2fs_test_and_clear_bit(unsigned int nr,char * addr)3186 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
3187 {
3188 	int mask;
3189 	int ret;
3190 
3191 	addr += (nr >> 3);
3192 	mask = BIT(7 - (nr & 0x07));
3193 	ret = mask & *addr;
3194 	*addr &= ~mask;
3195 	return ret;
3196 }
3197 
f2fs_change_bit(unsigned int nr,char * addr)3198 static inline void f2fs_change_bit(unsigned int nr, char *addr)
3199 {
3200 	int mask;
3201 
3202 	addr += (nr >> 3);
3203 	mask = BIT(7 - (nr & 0x07));
3204 	*addr ^= mask;
3205 }
3206 
3207 /*
3208  * On-disk inode flags (f2fs_inode::i_flags)
3209  */
3210 #define F2FS_COMPR_FL			0x00000004 /* Compress file */
3211 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
3212 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
3213 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
3214 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
3215 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
3216 #define F2FS_NOCOMP_FL			0x00000400 /* Don't compress */
3217 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
3218 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
3219 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
3220 #define F2FS_CASEFOLD_FL		0x40000000 /* Casefolded file */
3221 #define F2FS_DEVICE_ALIAS_FL		0x80000000 /* File for aliasing a device */
3222 
3223 #define F2FS_QUOTA_DEFAULT_FL		(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL)
3224 
3225 /* Flags that should be inherited by new inodes from their parent. */
3226 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
3227 			   F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
3228 			   F2FS_CASEFOLD_FL)
3229 
3230 /* Flags that are appropriate for regular files (all but dir-specific ones). */
3231 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
3232 				F2FS_CASEFOLD_FL))
3233 
3234 /* Flags that are appropriate for non-directories/regular files. */
3235 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
3236 
3237 #define IS_DEVICE_ALIASING(inode)	(F2FS_I(inode)->i_flags & F2FS_DEVICE_ALIAS_FL)
3238 
f2fs_mask_flags(umode_t mode,__u32 flags)3239 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
3240 {
3241 	if (S_ISDIR(mode))
3242 		return flags;
3243 	else if (S_ISREG(mode))
3244 		return flags & F2FS_REG_FLMASK;
3245 	else
3246 		return flags & F2FS_OTHER_FLMASK;
3247 }
3248 
__mark_inode_dirty_flag(struct inode * inode,int flag,bool set)3249 static inline void __mark_inode_dirty_flag(struct inode *inode,
3250 						int flag, bool set)
3251 {
3252 	switch (flag) {
3253 	case FI_INLINE_XATTR:
3254 	case FI_INLINE_DATA:
3255 	case FI_INLINE_DENTRY:
3256 	case FI_NEW_INODE:
3257 		if (set)
3258 			return;
3259 		fallthrough;
3260 	case FI_DATA_EXIST:
3261 	case FI_PIN_FILE:
3262 	case FI_COMPRESS_RELEASED:
3263 		f2fs_mark_inode_dirty_sync(inode, true);
3264 	}
3265 }
3266 
set_inode_flag(struct inode * inode,int flag)3267 static inline void set_inode_flag(struct inode *inode, int flag)
3268 {
3269 	set_bit(flag, F2FS_I(inode)->flags);
3270 	__mark_inode_dirty_flag(inode, flag, true);
3271 }
3272 
is_inode_flag_set(struct inode * inode,int flag)3273 static inline int is_inode_flag_set(struct inode *inode, int flag)
3274 {
3275 	return test_bit(flag, F2FS_I(inode)->flags);
3276 }
3277 
clear_inode_flag(struct inode * inode,int flag)3278 static inline void clear_inode_flag(struct inode *inode, int flag)
3279 {
3280 	clear_bit(flag, F2FS_I(inode)->flags);
3281 	__mark_inode_dirty_flag(inode, flag, false);
3282 }
3283 
f2fs_verity_in_progress(struct inode * inode)3284 static inline bool f2fs_verity_in_progress(struct inode *inode)
3285 {
3286 	return IS_ENABLED(CONFIG_FS_VERITY) &&
3287 	       is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
3288 }
3289 
set_acl_inode(struct inode * inode,umode_t mode)3290 static inline void set_acl_inode(struct inode *inode, umode_t mode)
3291 {
3292 	F2FS_I(inode)->i_acl_mode = mode;
3293 	set_inode_flag(inode, FI_ACL_MODE);
3294 	f2fs_mark_inode_dirty_sync(inode, false);
3295 }
3296 
f2fs_i_links_write(struct inode * inode,bool inc)3297 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
3298 {
3299 	if (inc)
3300 		inc_nlink(inode);
3301 	else
3302 		drop_nlink(inode);
3303 	f2fs_mark_inode_dirty_sync(inode, true);
3304 }
3305 
f2fs_i_blocks_write(struct inode * inode,block_t diff,bool add,bool claim)3306 static inline void f2fs_i_blocks_write(struct inode *inode,
3307 					block_t diff, bool add, bool claim)
3308 {
3309 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3310 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3311 
3312 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
3313 	if (add) {
3314 		if (claim)
3315 			dquot_claim_block(inode, diff);
3316 		else
3317 			dquot_alloc_block_nofail(inode, diff);
3318 	} else {
3319 		dquot_free_block(inode, diff);
3320 	}
3321 
3322 	f2fs_mark_inode_dirty_sync(inode, true);
3323 	if (clean || recover)
3324 		set_inode_flag(inode, FI_AUTO_RECOVER);
3325 }
3326 
3327 static inline bool f2fs_is_atomic_file(struct inode *inode);
3328 
f2fs_i_size_write(struct inode * inode,loff_t i_size)3329 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
3330 {
3331 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3332 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3333 
3334 	if (i_size_read(inode) == i_size)
3335 		return;
3336 
3337 	i_size_write(inode, i_size);
3338 
3339 	if (f2fs_is_atomic_file(inode))
3340 		return;
3341 
3342 	f2fs_mark_inode_dirty_sync(inode, true);
3343 	if (clean || recover)
3344 		set_inode_flag(inode, FI_AUTO_RECOVER);
3345 }
3346 
f2fs_i_depth_write(struct inode * inode,unsigned int depth)3347 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
3348 {
3349 	F2FS_I(inode)->i_current_depth = depth;
3350 	f2fs_mark_inode_dirty_sync(inode, true);
3351 }
3352 
f2fs_i_gc_failures_write(struct inode * inode,unsigned int count)3353 static inline void f2fs_i_gc_failures_write(struct inode *inode,
3354 					unsigned int count)
3355 {
3356 	F2FS_I(inode)->i_gc_failures = count;
3357 	f2fs_mark_inode_dirty_sync(inode, true);
3358 }
3359 
f2fs_i_xnid_write(struct inode * inode,nid_t xnid)3360 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
3361 {
3362 	F2FS_I(inode)->i_xattr_nid = xnid;
3363 	f2fs_mark_inode_dirty_sync(inode, true);
3364 }
3365 
f2fs_i_pino_write(struct inode * inode,nid_t pino)3366 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
3367 {
3368 	F2FS_I(inode)->i_pino = pino;
3369 	f2fs_mark_inode_dirty_sync(inode, true);
3370 }
3371 
get_inline_info(struct inode * inode,struct f2fs_inode * ri)3372 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
3373 {
3374 	struct f2fs_inode_info *fi = F2FS_I(inode);
3375 
3376 	if (ri->i_inline & F2FS_INLINE_XATTR)
3377 		set_bit(FI_INLINE_XATTR, fi->flags);
3378 	if (ri->i_inline & F2FS_INLINE_DATA)
3379 		set_bit(FI_INLINE_DATA, fi->flags);
3380 	if (ri->i_inline & F2FS_INLINE_DENTRY)
3381 		set_bit(FI_INLINE_DENTRY, fi->flags);
3382 	if (ri->i_inline & F2FS_DATA_EXIST)
3383 		set_bit(FI_DATA_EXIST, fi->flags);
3384 	if (ri->i_inline & F2FS_EXTRA_ATTR)
3385 		set_bit(FI_EXTRA_ATTR, fi->flags);
3386 	if (ri->i_inline & F2FS_PIN_FILE)
3387 		set_bit(FI_PIN_FILE, fi->flags);
3388 	if (ri->i_inline & F2FS_COMPRESS_RELEASED)
3389 		set_bit(FI_COMPRESS_RELEASED, fi->flags);
3390 }
3391 
set_raw_inline(struct inode * inode,struct f2fs_inode * ri)3392 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
3393 {
3394 	ri->i_inline = 0;
3395 
3396 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
3397 		ri->i_inline |= F2FS_INLINE_XATTR;
3398 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
3399 		ri->i_inline |= F2FS_INLINE_DATA;
3400 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
3401 		ri->i_inline |= F2FS_INLINE_DENTRY;
3402 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
3403 		ri->i_inline |= F2FS_DATA_EXIST;
3404 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
3405 		ri->i_inline |= F2FS_EXTRA_ATTR;
3406 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3407 		ri->i_inline |= F2FS_PIN_FILE;
3408 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
3409 		ri->i_inline |= F2FS_COMPRESS_RELEASED;
3410 }
3411 
f2fs_has_extra_attr(struct inode * inode)3412 static inline int f2fs_has_extra_attr(struct inode *inode)
3413 {
3414 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
3415 }
3416 
f2fs_has_inline_xattr(struct inode * inode)3417 static inline int f2fs_has_inline_xattr(struct inode *inode)
3418 {
3419 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
3420 }
3421 
f2fs_compressed_file(struct inode * inode)3422 static inline int f2fs_compressed_file(struct inode *inode)
3423 {
3424 	return S_ISREG(inode->i_mode) &&
3425 		is_inode_flag_set(inode, FI_COMPRESSED_FILE);
3426 }
3427 
f2fs_need_compress_data(struct inode * inode)3428 static inline bool f2fs_need_compress_data(struct inode *inode)
3429 {
3430 	int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
3431 
3432 	if (!f2fs_compressed_file(inode))
3433 		return false;
3434 
3435 	if (compress_mode == COMPR_MODE_FS)
3436 		return true;
3437 	else if (compress_mode == COMPR_MODE_USER &&
3438 			is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
3439 		return true;
3440 
3441 	return false;
3442 }
3443 
addrs_per_page(struct inode * inode,bool is_inode)3444 static inline unsigned int addrs_per_page(struct inode *inode,
3445 							bool is_inode)
3446 {
3447 	unsigned int addrs = is_inode ? (CUR_ADDRS_PER_INODE(inode) -
3448 			get_inline_xattr_addrs(inode)) : DEF_ADDRS_PER_BLOCK;
3449 
3450 	if (f2fs_compressed_file(inode))
3451 		return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
3452 	return addrs;
3453 }
3454 
3455 static inline
inline_xattr_addr(struct inode * inode,const struct folio * folio)3456 void *inline_xattr_addr(struct inode *inode, const struct folio *folio)
3457 {
3458 	struct f2fs_inode *ri = F2FS_INODE(folio);
3459 
3460 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
3461 					get_inline_xattr_addrs(inode)]);
3462 }
3463 
inline_xattr_size(struct inode * inode)3464 static inline int inline_xattr_size(struct inode *inode)
3465 {
3466 	if (f2fs_has_inline_xattr(inode))
3467 		return get_inline_xattr_addrs(inode) * sizeof(__le32);
3468 	return 0;
3469 }
3470 
3471 /*
3472  * Notice: check inline_data flag without inode page lock is unsafe.
3473  * It could change at any time by f2fs_convert_inline_folio().
3474  */
f2fs_has_inline_data(struct inode * inode)3475 static inline int f2fs_has_inline_data(struct inode *inode)
3476 {
3477 	return is_inode_flag_set(inode, FI_INLINE_DATA);
3478 }
3479 
f2fs_exist_data(struct inode * inode)3480 static inline int f2fs_exist_data(struct inode *inode)
3481 {
3482 	return is_inode_flag_set(inode, FI_DATA_EXIST);
3483 }
3484 
f2fs_is_mmap_file(struct inode * inode)3485 static inline int f2fs_is_mmap_file(struct inode *inode)
3486 {
3487 	return is_inode_flag_set(inode, FI_MMAP_FILE);
3488 }
3489 
f2fs_is_pinned_file(struct inode * inode)3490 static inline bool f2fs_is_pinned_file(struct inode *inode)
3491 {
3492 	return is_inode_flag_set(inode, FI_PIN_FILE);
3493 }
3494 
f2fs_is_atomic_file(struct inode * inode)3495 static inline bool f2fs_is_atomic_file(struct inode *inode)
3496 {
3497 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
3498 }
3499 
f2fs_is_cow_file(struct inode * inode)3500 static inline bool f2fs_is_cow_file(struct inode *inode)
3501 {
3502 	return is_inode_flag_set(inode, FI_COW_FILE);
3503 }
3504 
inline_data_addr(struct inode * inode,struct folio * folio)3505 static inline void *inline_data_addr(struct inode *inode, struct folio *folio)
3506 {
3507 	__le32 *addr = get_dnode_addr(inode, folio);
3508 
3509 	return (void *)(addr + DEF_INLINE_RESERVED_SIZE);
3510 }
3511 
f2fs_has_inline_dentry(struct inode * inode)3512 static inline int f2fs_has_inline_dentry(struct inode *inode)
3513 {
3514 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
3515 }
3516 
is_file(struct inode * inode,int type)3517 static inline int is_file(struct inode *inode, int type)
3518 {
3519 	return F2FS_I(inode)->i_advise & type;
3520 }
3521 
set_file(struct inode * inode,int type)3522 static inline void set_file(struct inode *inode, int type)
3523 {
3524 	if (is_file(inode, type))
3525 		return;
3526 	F2FS_I(inode)->i_advise |= type;
3527 	f2fs_mark_inode_dirty_sync(inode, true);
3528 }
3529 
clear_file(struct inode * inode,int type)3530 static inline void clear_file(struct inode *inode, int type)
3531 {
3532 	if (!is_file(inode, type))
3533 		return;
3534 	F2FS_I(inode)->i_advise &= ~type;
3535 	f2fs_mark_inode_dirty_sync(inode, true);
3536 }
3537 
f2fs_is_time_consistent(struct inode * inode)3538 static inline bool f2fs_is_time_consistent(struct inode *inode)
3539 {
3540 	struct timespec64 ts = inode_get_atime(inode);
3541 
3542 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &ts))
3543 		return false;
3544 	ts = inode_get_ctime(inode);
3545 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &ts))
3546 		return false;
3547 	ts = inode_get_mtime(inode);
3548 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &ts))
3549 		return false;
3550 	return true;
3551 }
3552 
f2fs_skip_inode_update(struct inode * inode,int dsync)3553 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
3554 {
3555 	bool ret;
3556 
3557 	if (dsync) {
3558 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3559 
3560 		spin_lock(&sbi->inode_lock[DIRTY_META]);
3561 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
3562 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
3563 		return ret;
3564 	}
3565 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
3566 			file_keep_isize(inode) ||
3567 			i_size_read(inode) & ~PAGE_MASK)
3568 		return false;
3569 
3570 	if (!f2fs_is_time_consistent(inode))
3571 		return false;
3572 
3573 	spin_lock(&F2FS_I(inode)->i_size_lock);
3574 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
3575 	spin_unlock(&F2FS_I(inode)->i_size_lock);
3576 
3577 	return ret;
3578 }
3579 
f2fs_readonly(struct super_block * sb)3580 static inline bool f2fs_readonly(struct super_block *sb)
3581 {
3582 	return sb_rdonly(sb);
3583 }
3584 
f2fs_cp_error(struct f2fs_sb_info * sbi)3585 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
3586 {
3587 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
3588 }
3589 
f2fs_kmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3590 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3591 					size_t size, gfp_t flags)
3592 {
3593 	if (time_to_inject(sbi, FAULT_KMALLOC))
3594 		return NULL;
3595 
3596 	return kmalloc(size, flags);
3597 }
3598 
f2fs_getname(struct f2fs_sb_info * sbi)3599 static inline void *f2fs_getname(struct f2fs_sb_info *sbi)
3600 {
3601 	if (time_to_inject(sbi, FAULT_KMALLOC))
3602 		return NULL;
3603 
3604 	return __getname();
3605 }
3606 
f2fs_putname(char * buf)3607 static inline void f2fs_putname(char *buf)
3608 {
3609 	__putname(buf);
3610 }
3611 
f2fs_kzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3612 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3613 					size_t size, gfp_t flags)
3614 {
3615 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3616 }
3617 
f2fs_kvmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3618 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3619 					size_t size, gfp_t flags)
3620 {
3621 	if (time_to_inject(sbi, FAULT_KVMALLOC))
3622 		return NULL;
3623 
3624 	return kvmalloc(size, flags);
3625 }
3626 
f2fs_kvzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3627 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3628 					size_t size, gfp_t flags)
3629 {
3630 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3631 }
3632 
f2fs_vmalloc(struct f2fs_sb_info * sbi,size_t size)3633 static inline void *f2fs_vmalloc(struct f2fs_sb_info *sbi, size_t size)
3634 {
3635 	if (time_to_inject(sbi, FAULT_VMALLOC))
3636 		return NULL;
3637 
3638 	return vmalloc(size);
3639 }
3640 
get_extra_isize(struct inode * inode)3641 static inline int get_extra_isize(struct inode *inode)
3642 {
3643 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3644 }
3645 
get_inline_xattr_addrs(struct inode * inode)3646 static inline int get_inline_xattr_addrs(struct inode *inode)
3647 {
3648 	return F2FS_I(inode)->i_inline_xattr_size;
3649 }
3650 
3651 #define f2fs_get_inode_mode(i) \
3652 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3653 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3654 
3655 #define F2FS_MIN_EXTRA_ATTR_SIZE		(sizeof(__le32))
3656 
3657 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
3658 	(offsetof(struct f2fs_inode, i_extra_end) -	\
3659 	offsetof(struct f2fs_inode, i_extra_isize))	\
3660 
3661 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
3662 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
3663 		((offsetof(typeof(*(f2fs_inode)), field) +	\
3664 		sizeof((f2fs_inode)->field))			\
3665 		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
3666 
3667 #define __is_large_section(sbi)		(SEGS_PER_SEC(sbi) > 1)
3668 
3669 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3670 
3671 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3672 					block_t blkaddr, int type);
verify_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr,int type)3673 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3674 					block_t blkaddr, int type)
3675 {
3676 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type))
3677 		f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3678 			 blkaddr, type);
3679 }
3680 
__is_valid_data_blkaddr(block_t blkaddr)3681 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3682 {
3683 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3684 			blkaddr == COMPRESS_ADDR)
3685 		return false;
3686 	return true;
3687 }
3688 
3689 /*
3690  * file.c
3691  */
3692 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3693 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3694 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3695 int f2fs_truncate(struct inode *inode);
3696 int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path,
3697 		 struct kstat *stat, u32 request_mask, unsigned int flags);
3698 int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
3699 		 struct iattr *attr);
3700 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3701 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3702 int f2fs_do_shutdown(struct f2fs_sb_info *sbi, unsigned int flag,
3703 						bool readonly, bool need_lock);
3704 int f2fs_precache_extents(struct inode *inode);
3705 int f2fs_fileattr_get(struct dentry *dentry, struct file_kattr *fa);
3706 int f2fs_fileattr_set(struct mnt_idmap *idmap,
3707 		      struct dentry *dentry, struct file_kattr *fa);
3708 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3709 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3710 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3711 int f2fs_pin_file_control(struct inode *inode, bool inc);
3712 
3713 /*
3714  * inode.c
3715  */
3716 void f2fs_set_inode_flags(struct inode *inode);
3717 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct folio *folio);
3718 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct folio *folio);
3719 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3720 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3721 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3722 void f2fs_update_inode(struct inode *inode, struct folio *node_folio);
3723 void f2fs_update_inode_page(struct inode *inode);
3724 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3725 void f2fs_remove_donate_inode(struct inode *inode);
3726 void f2fs_evict_inode(struct inode *inode);
3727 void f2fs_handle_failed_inode(struct inode *inode);
3728 
3729 /*
3730  * namei.c
3731  */
3732 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3733 							bool hot, bool set);
3734 struct dentry *f2fs_get_parent(struct dentry *child);
3735 int f2fs_get_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3736 		     struct inode **new_inode);
3737 
3738 /*
3739  * dir.c
3740  */
3741 #if IS_ENABLED(CONFIG_UNICODE)
3742 int f2fs_init_casefolded_name(const struct inode *dir,
3743 			      struct f2fs_filename *fname);
3744 void f2fs_free_casefolded_name(struct f2fs_filename *fname);
3745 #else
f2fs_init_casefolded_name(const struct inode * dir,struct f2fs_filename * fname)3746 static inline int f2fs_init_casefolded_name(const struct inode *dir,
3747 					    struct f2fs_filename *fname)
3748 {
3749 	return 0;
3750 }
3751 
f2fs_free_casefolded_name(struct f2fs_filename * fname)3752 static inline void f2fs_free_casefolded_name(struct f2fs_filename *fname)
3753 {
3754 }
3755 #endif /* CONFIG_UNICODE */
3756 
3757 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3758 			int lookup, struct f2fs_filename *fname);
3759 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3760 			struct f2fs_filename *fname);
3761 void f2fs_free_filename(struct f2fs_filename *fname);
3762 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3763 			const struct f2fs_filename *fname, int *max_slots,
3764 			bool use_hash);
3765 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3766 			unsigned int start_pos, struct fscrypt_str *fstr);
3767 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3768 			struct f2fs_dentry_ptr *d);
3769 struct folio *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3770 		const struct f2fs_filename *fname, struct folio *dfolio);
3771 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3772 			unsigned int current_depth);
3773 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3774 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3775 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3776 		const struct f2fs_filename *fname, struct folio **res_folio);
3777 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3778 			const struct qstr *child, struct folio **res_folio);
3779 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct folio **f);
3780 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3781 			struct folio **folio);
3782 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3783 			struct folio *folio, struct inode *inode);
3784 bool f2fs_has_enough_room(struct inode *dir, struct folio *ifolio,
3785 			  const struct f2fs_filename *fname);
3786 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3787 			const struct fscrypt_str *name, f2fs_hash_t name_hash,
3788 			unsigned int bit_pos);
3789 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3790 			struct inode *inode, nid_t ino, umode_t mode);
3791 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3792 			struct inode *inode, nid_t ino, umode_t mode);
3793 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3794 			struct inode *inode, nid_t ino, umode_t mode);
3795 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct folio *folio,
3796 			struct inode *dir, struct inode *inode);
3797 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir,
3798 					struct f2fs_filename *fname);
3799 bool f2fs_empty_dir(struct inode *dir);
3800 
f2fs_add_link(struct dentry * dentry,struct inode * inode)3801 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3802 {
3803 	if (fscrypt_is_nokey_name(dentry))
3804 		return -ENOKEY;
3805 	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3806 				inode, inode->i_ino, inode->i_mode);
3807 }
3808 
3809 /*
3810  * super.c
3811  */
3812 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3813 void f2fs_inode_synced(struct inode *inode);
3814 int f2fs_dquot_initialize(struct inode *inode);
3815 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3816 int f2fs_do_quota_sync(struct super_block *sb, int type);
3817 loff_t max_file_blocks(struct inode *inode);
3818 void f2fs_quota_off_umount(struct super_block *sb);
3819 void f2fs_save_errors(struct f2fs_sb_info *sbi, unsigned char flag);
3820 void f2fs_handle_critical_error(struct f2fs_sb_info *sbi, unsigned char reason);
3821 void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error);
3822 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3823 int f2fs_sync_fs(struct super_block *sb, int sync);
3824 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3825 
3826 /*
3827  * hash.c
3828  */
3829 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3830 
3831 /*
3832  * node.c
3833  */
3834 struct node_info;
3835 enum node_type;
3836 
3837 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3838 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3839 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct folio *folio);
3840 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3841 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct folio *folio);
3842 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3843 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3844 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3845 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3846 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3847 				struct node_info *ni, bool checkpoint_context);
3848 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3849 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3850 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3851 int f2fs_truncate_xattr_node(struct inode *inode);
3852 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3853 					unsigned int seq_id);
3854 int f2fs_remove_inode_page(struct inode *inode);
3855 struct folio *f2fs_new_inode_folio(struct inode *inode);
3856 struct folio *f2fs_new_node_folio(struct dnode_of_data *dn, unsigned int ofs);
3857 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3858 struct folio *f2fs_get_node_folio(struct f2fs_sb_info *sbi, pgoff_t nid,
3859 						enum node_type node_type);
3860 struct folio *f2fs_get_inode_folio(struct f2fs_sb_info *sbi, pgoff_t ino);
3861 struct folio *f2fs_get_xnode_folio(struct f2fs_sb_info *sbi, pgoff_t xnid);
3862 int f2fs_move_node_folio(struct folio *node_folio, int gc_type);
3863 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3864 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3865 			struct writeback_control *wbc, bool atomic,
3866 			unsigned int *seq_id);
3867 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3868 			struct writeback_control *wbc,
3869 			bool do_balance, enum iostat_type io_type);
3870 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3871 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3872 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3873 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3874 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3875 int f2fs_recover_inline_xattr(struct inode *inode, struct folio *folio);
3876 int f2fs_recover_xattr_data(struct inode *inode, struct folio *folio);
3877 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct folio *folio);
3878 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3879 			unsigned int segno, struct f2fs_summary_block *sum);
3880 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3881 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3882 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3883 int __init f2fs_create_node_manager_caches(void);
3884 void f2fs_destroy_node_manager_caches(void);
3885 
3886 /*
3887  * segment.c
3888  */
3889 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3890 int f2fs_commit_atomic_write(struct inode *inode);
3891 void f2fs_abort_atomic_write(struct inode *inode, bool clean);
3892 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3893 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3894 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3895 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3896 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3897 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3898 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr,
3899 						unsigned int len);
3900 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3901 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi);
3902 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3903 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3904 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3905 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3906 					struct cp_control *cpc);
3907 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3908 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3909 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3910 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3911 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3912 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno);
3913 int f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3914 int f2fs_reinit_atgc_curseg(struct f2fs_sb_info *sbi);
3915 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3916 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3917 int f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3918 					unsigned int start, unsigned int end);
3919 int f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force);
3920 int f2fs_allocate_pinning_section(struct f2fs_sb_info *sbi);
3921 int f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3922 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3923 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3924 					struct cp_control *cpc);
3925 struct folio *f2fs_get_sum_folio(struct f2fs_sb_info *sbi, unsigned int segno);
3926 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3927 					block_t blk_addr);
3928 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct folio *folio,
3929 						enum iostat_type io_type);
3930 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3931 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3932 			struct f2fs_io_info *fio);
3933 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3934 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3935 			block_t old_blkaddr, block_t new_blkaddr,
3936 			bool recover_curseg, bool recover_newaddr,
3937 			bool from_gc);
3938 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3939 			block_t old_addr, block_t new_addr,
3940 			unsigned char version, bool recover_curseg,
3941 			bool recover_newaddr);
3942 enum temp_type f2fs_get_segment_temp(struct f2fs_sb_info *sbi,
3943 						enum log_type seg_type);
3944 int f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct folio *folio,
3945 			block_t old_blkaddr, block_t *new_blkaddr,
3946 			struct f2fs_summary *sum, int type,
3947 			struct f2fs_io_info *fio);
3948 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3949 					block_t blkaddr, unsigned int blkcnt);
3950 void f2fs_folio_wait_writeback(struct folio *folio, enum page_type type,
3951 		bool ordered, bool locked);
3952 #define f2fs_wait_on_page_writeback(page, type, ordered, locked)	\
3953 		f2fs_folio_wait_writeback(page_folio(page), type, ordered, locked)
3954 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3955 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3956 								block_t len);
3957 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3958 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3959 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3960 			unsigned int val, int alloc);
3961 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3962 int f2fs_check_and_fix_write_pointer(struct f2fs_sb_info *sbi);
3963 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3964 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3965 int __init f2fs_create_segment_manager_caches(void);
3966 void f2fs_destroy_segment_manager_caches(void);
3967 int f2fs_rw_hint_to_seg_type(struct f2fs_sb_info *sbi, enum rw_hint hint);
3968 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3969 			enum page_type type, enum temp_type temp);
3970 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi);
3971 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3972 			unsigned int segno);
3973 unsigned long long f2fs_get_section_mtime(struct f2fs_sb_info *sbi,
3974 			unsigned int segno);
3975 
fio_inode(struct f2fs_io_info * fio)3976 static inline struct inode *fio_inode(struct f2fs_io_info *fio)
3977 {
3978 	return fio->folio->mapping->host;
3979 }
3980 
3981 #define DEF_FRAGMENT_SIZE	4
3982 #define MIN_FRAGMENT_SIZE	1
3983 #define MAX_FRAGMENT_SIZE	512
3984 
f2fs_need_rand_seg(struct f2fs_sb_info * sbi)3985 static inline bool f2fs_need_rand_seg(struct f2fs_sb_info *sbi)
3986 {
3987 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG ||
3988 		F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK;
3989 }
3990 
3991 /*
3992  * checkpoint.c
3993  */
3994 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io,
3995 							unsigned char reason);
3996 void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi);
3997 struct folio *f2fs_grab_meta_folio(struct f2fs_sb_info *sbi, pgoff_t index);
3998 struct folio *f2fs_get_meta_folio(struct f2fs_sb_info *sbi, pgoff_t index);
3999 struct folio *f2fs_get_meta_folio_retry(struct f2fs_sb_info *sbi, pgoff_t index);
4000 struct folio *f2fs_get_tmp_folio(struct f2fs_sb_info *sbi, pgoff_t index);
4001 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
4002 					block_t blkaddr, int type);
4003 bool f2fs_is_valid_blkaddr_raw(struct f2fs_sb_info *sbi,
4004 					block_t blkaddr, int type);
4005 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
4006 			int type, bool sync);
4007 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index,
4008 							unsigned int ra_blocks);
4009 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
4010 			long nr_to_write, enum iostat_type io_type);
4011 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
4012 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
4013 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
4014 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
4015 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
4016 					unsigned int devidx, int type);
4017 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
4018 					unsigned int devidx, int type);
4019 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
4020 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
4021 void f2fs_add_orphan_inode(struct inode *inode);
4022 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
4023 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
4024 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
4025 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio);
4026 void f2fs_remove_dirty_inode(struct inode *inode);
4027 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type,
4028 								bool from_cp);
4029 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
4030 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
4031 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
4032 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
4033 int __init f2fs_create_checkpoint_caches(void);
4034 void f2fs_destroy_checkpoint_caches(void);
4035 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi);
4036 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi);
4037 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi);
4038 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi);
4039 
4040 /*
4041  * data.c
4042  */
4043 int __init f2fs_init_bioset(void);
4044 void f2fs_destroy_bioset(void);
4045 bool f2fs_is_cp_guaranteed(const struct folio *folio);
4046 int f2fs_init_bio_entry_cache(void);
4047 void f2fs_destroy_bio_entry_cache(void);
4048 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio,
4049 			  enum page_type type);
4050 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi);
4051 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
4052 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
4053 				struct inode *inode, struct folio *folio,
4054 				nid_t ino, enum page_type type);
4055 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
4056 					struct bio **bio, struct folio *folio);
4057 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
4058 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
4059 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
4060 void f2fs_submit_page_write(struct f2fs_io_info *fio);
4061 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
4062 		block_t blk_addr, sector_t *sector);
4063 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
4064 void f2fs_set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
4065 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
4066 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
4067 int f2fs_reserve_new_block(struct dnode_of_data *dn);
4068 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index);
4069 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
4070 struct folio *f2fs_get_read_data_folio(struct inode *inode, pgoff_t index,
4071 		blk_opf_t op_flags, bool for_write, pgoff_t *next_pgofs);
4072 struct folio *f2fs_find_data_folio(struct inode *inode, pgoff_t index,
4073 		pgoff_t *next_pgofs);
4074 struct folio *f2fs_get_lock_data_folio(struct inode *inode, pgoff_t index,
4075 			bool for_write);
4076 struct folio *f2fs_get_new_data_folio(struct inode *inode,
4077 			struct folio *ifolio, pgoff_t index, bool new_i_size);
4078 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
4079 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag);
4080 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4081 			u64 start, u64 len);
4082 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
4083 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
4084 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
4085 int f2fs_write_single_data_page(struct folio *folio, int *submitted,
4086 				struct bio **bio, sector_t *last_block,
4087 				struct writeback_control *wbc,
4088 				enum iostat_type io_type,
4089 				int compr_blocks, bool allow_balance);
4090 void f2fs_write_failed(struct inode *inode, loff_t to);
4091 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length);
4092 bool f2fs_release_folio(struct folio *folio, gfp_t wait);
4093 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
4094 void f2fs_clear_page_cache_dirty_tag(struct folio *folio);
4095 int f2fs_init_post_read_processing(void);
4096 void f2fs_destroy_post_read_processing(void);
4097 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
4098 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
4099 extern const struct iomap_ops f2fs_iomap_ops;
4100 
4101 /*
4102  * gc.c
4103  */
4104 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
4105 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
4106 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
4107 int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control);
4108 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
4109 int f2fs_gc_range(struct f2fs_sb_info *sbi,
4110 		unsigned int start_seg, unsigned int end_seg,
4111 		bool dry_run, unsigned int dry_run_sections);
4112 int f2fs_resize_fs(struct file *filp, __u64 block_count);
4113 int __init f2fs_create_garbage_collection_cache(void);
4114 void f2fs_destroy_garbage_collection_cache(void);
4115 /* victim selection function for cleaning and SSR */
4116 int f2fs_get_victim(struct f2fs_sb_info *sbi, unsigned int *result,
4117 			int gc_type, int type, char alloc_mode,
4118 			unsigned long long age, bool one_time);
4119 
4120 /*
4121  * recovery.c
4122  */
4123 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
4124 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
4125 int __init f2fs_create_recovery_cache(void);
4126 void f2fs_destroy_recovery_cache(void);
4127 
4128 /*
4129  * debug.c
4130  */
4131 #ifdef CONFIG_F2FS_STAT_FS
4132 enum {
4133 	DEVSTAT_INUSE,
4134 	DEVSTAT_DIRTY,
4135 	DEVSTAT_FULL,
4136 	DEVSTAT_FREE,
4137 	DEVSTAT_PREFREE,
4138 	DEVSTAT_MAX,
4139 };
4140 
4141 struct f2fs_dev_stats {
4142 	unsigned int devstats[2][DEVSTAT_MAX];		/* 0: segs, 1: secs */
4143 };
4144 
4145 struct f2fs_stat_info {
4146 	struct list_head stat_list;
4147 	struct f2fs_sb_info *sbi;
4148 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
4149 	int main_area_segs, main_area_sections, main_area_zones;
4150 	unsigned long long hit_cached[NR_EXTENT_CACHES];
4151 	unsigned long long hit_rbtree[NR_EXTENT_CACHES];
4152 	unsigned long long total_ext[NR_EXTENT_CACHES];
4153 	unsigned long long hit_total[NR_EXTENT_CACHES];
4154 	int ext_tree[NR_EXTENT_CACHES];
4155 	int zombie_tree[NR_EXTENT_CACHES];
4156 	int ext_node[NR_EXTENT_CACHES];
4157 	/* to count memory footprint */
4158 	unsigned long long ext_mem[NR_EXTENT_CACHES];
4159 	/* for read extent cache */
4160 	unsigned long long hit_largest;
4161 	/* for block age extent cache */
4162 	unsigned long long allocated_data_blocks;
4163 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
4164 	int ndirty_data, ndirty_qdata;
4165 	unsigned int ndirty_dirs, ndirty_files, ndirty_all;
4166 	unsigned int nquota_files, ndonate_files;
4167 	int nats, dirty_nats, sits, dirty_sits;
4168 	int free_nids, avail_nids, alloc_nids;
4169 	int total_count, utilization;
4170 	int nr_wb_cp_data, nr_wb_data;
4171 	int nr_rd_data, nr_rd_node, nr_rd_meta;
4172 	int nr_dio_read, nr_dio_write;
4173 	unsigned int io_skip_bggc, other_skip_bggc;
4174 	int nr_flushing, nr_flushed, flush_list_empty;
4175 	int nr_discarding, nr_discarded;
4176 	int nr_discard_cmd;
4177 	unsigned int undiscard_blks;
4178 	int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt;
4179 	unsigned int cur_ckpt_time, peak_ckpt_time;
4180 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
4181 	int compr_inode, swapfile_inode;
4182 	unsigned long long compr_blocks;
4183 	int aw_cnt, max_aw_cnt;
4184 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
4185 	unsigned int bimodal, avg_vblocks;
4186 	int util_free, util_valid, util_invalid;
4187 	int rsvd_segs, overp_segs;
4188 	int dirty_count, node_pages, meta_pages, compress_pages;
4189 	int compress_page_hit;
4190 	int prefree_count, free_segs, free_secs;
4191 	int cp_call_count[MAX_CALL_TYPE], cp_count;
4192 	int gc_call_count[MAX_CALL_TYPE];
4193 	int gc_segs[2][2];
4194 	int gc_secs[2][2];
4195 	int tot_blks, data_blks, node_blks;
4196 	int bg_data_blks, bg_node_blks;
4197 	int blkoff[NR_CURSEG_TYPE];
4198 	int curseg[NR_CURSEG_TYPE];
4199 	int cursec[NR_CURSEG_TYPE];
4200 	int curzone[NR_CURSEG_TYPE];
4201 	unsigned int dirty_seg[NR_CURSEG_TYPE];
4202 	unsigned int full_seg[NR_CURSEG_TYPE];
4203 	unsigned int valid_blks[NR_CURSEG_TYPE];
4204 
4205 	unsigned int meta_count[META_MAX];
4206 	unsigned int segment_count[2];
4207 	unsigned int block_count[2];
4208 	unsigned int inplace_count;
4209 	unsigned long long base_mem, cache_mem, page_mem;
4210 	struct f2fs_dev_stats *dev_stats;
4211 };
4212 
F2FS_STAT(struct f2fs_sb_info * sbi)4213 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
4214 {
4215 	return (struct f2fs_stat_info *)sbi->stat_info;
4216 }
4217 
4218 #define stat_inc_cp_call_count(sbi, foreground)				\
4219 		atomic_inc(&sbi->cp_call_count[(foreground)])
4220 #define stat_inc_cp_count(sbi)		(F2FS_STAT(sbi)->cp_count++)
4221 #define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
4222 #define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
4223 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
4224 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
4225 #define stat_inc_total_hit(sbi, type)		(atomic64_inc(&(sbi)->total_hit_ext[type]))
4226 #define stat_inc_rbtree_node_hit(sbi, type)	(atomic64_inc(&(sbi)->read_hit_rbtree[type]))
4227 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
4228 #define stat_inc_cached_node_hit(sbi, type)	(atomic64_inc(&(sbi)->read_hit_cached[type]))
4229 #define stat_inc_inline_xattr(inode)					\
4230 	do {								\
4231 		if (f2fs_has_inline_xattr(inode))			\
4232 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
4233 	} while (0)
4234 #define stat_dec_inline_xattr(inode)					\
4235 	do {								\
4236 		if (f2fs_has_inline_xattr(inode))			\
4237 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
4238 	} while (0)
4239 #define stat_inc_inline_inode(inode)					\
4240 	do {								\
4241 		if (f2fs_has_inline_data(inode))			\
4242 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
4243 	} while (0)
4244 #define stat_dec_inline_inode(inode)					\
4245 	do {								\
4246 		if (f2fs_has_inline_data(inode))			\
4247 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
4248 	} while (0)
4249 #define stat_inc_inline_dir(inode)					\
4250 	do {								\
4251 		if (f2fs_has_inline_dentry(inode))			\
4252 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
4253 	} while (0)
4254 #define stat_dec_inline_dir(inode)					\
4255 	do {								\
4256 		if (f2fs_has_inline_dentry(inode))			\
4257 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
4258 	} while (0)
4259 #define stat_inc_compr_inode(inode)					\
4260 	do {								\
4261 		if (f2fs_compressed_file(inode))			\
4262 			(atomic_inc(&F2FS_I_SB(inode)->compr_inode));	\
4263 	} while (0)
4264 #define stat_dec_compr_inode(inode)					\
4265 	do {								\
4266 		if (f2fs_compressed_file(inode))			\
4267 			(atomic_dec(&F2FS_I_SB(inode)->compr_inode));	\
4268 	} while (0)
4269 #define stat_add_compr_blocks(inode, blocks)				\
4270 		(atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
4271 #define stat_sub_compr_blocks(inode, blocks)				\
4272 		(atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
4273 #define stat_inc_swapfile_inode(inode)					\
4274 		(atomic_inc(&F2FS_I_SB(inode)->swapfile_inode))
4275 #define stat_dec_swapfile_inode(inode)					\
4276 		(atomic_dec(&F2FS_I_SB(inode)->swapfile_inode))
4277 #define stat_inc_atomic_inode(inode)					\
4278 			(atomic_inc(&F2FS_I_SB(inode)->atomic_files))
4279 #define stat_dec_atomic_inode(inode)					\
4280 			(atomic_dec(&F2FS_I_SB(inode)->atomic_files))
4281 #define stat_inc_meta_count(sbi, blkaddr)				\
4282 	do {								\
4283 		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
4284 			atomic_inc(&(sbi)->meta_count[META_CP]);	\
4285 		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
4286 			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
4287 		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
4288 			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
4289 		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
4290 			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
4291 	} while (0)
4292 #define stat_inc_seg_type(sbi, curseg)					\
4293 		((sbi)->segment_count[(curseg)->alloc_type]++)
4294 #define stat_inc_block_count(sbi, curseg)				\
4295 		((sbi)->block_count[(curseg)->alloc_type]++)
4296 #define stat_inc_inplace_blocks(sbi)					\
4297 		(atomic_inc(&(sbi)->inplace_count))
4298 #define stat_update_max_atomic_write(inode)				\
4299 	do {								\
4300 		int cur = atomic_read(&F2FS_I_SB(inode)->atomic_files);	\
4301 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
4302 		if (cur > max)						\
4303 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
4304 	} while (0)
4305 #define stat_inc_gc_call_count(sbi, foreground)				\
4306 		(F2FS_STAT(sbi)->gc_call_count[(foreground)]++)
4307 #define stat_inc_gc_sec_count(sbi, type, gc_type)			\
4308 		(F2FS_STAT(sbi)->gc_secs[(type)][(gc_type)]++)
4309 #define stat_inc_gc_seg_count(sbi, type, gc_type)			\
4310 		(F2FS_STAT(sbi)->gc_segs[(type)][(gc_type)]++)
4311 
4312 #define stat_inc_tot_blk_count(si, blks)				\
4313 	((si)->tot_blks += (blks))
4314 
4315 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
4316 	do {								\
4317 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
4318 		stat_inc_tot_blk_count(si, blks);			\
4319 		si->data_blks += (blks);				\
4320 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
4321 	} while (0)
4322 
4323 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
4324 	do {								\
4325 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
4326 		stat_inc_tot_blk_count(si, blks);			\
4327 		si->node_blks += (blks);				\
4328 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
4329 	} while (0)
4330 
4331 int f2fs_build_stats(struct f2fs_sb_info *sbi);
4332 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
4333 void __init f2fs_create_root_stats(void);
4334 void f2fs_destroy_root_stats(void);
4335 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
4336 #else
4337 #define stat_inc_cp_call_count(sbi, foreground)		do { } while (0)
4338 #define stat_inc_cp_count(sbi)				do { } while (0)
4339 #define stat_io_skip_bggc_count(sbi)			do { } while (0)
4340 #define stat_other_skip_bggc_count(sbi)			do { } while (0)
4341 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
4342 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
4343 #define stat_inc_total_hit(sbi, type)			do { } while (0)
4344 #define stat_inc_rbtree_node_hit(sbi, type)		do { } while (0)
4345 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
4346 #define stat_inc_cached_node_hit(sbi, type)		do { } while (0)
4347 #define stat_inc_inline_xattr(inode)			do { } while (0)
4348 #define stat_dec_inline_xattr(inode)			do { } while (0)
4349 #define stat_inc_inline_inode(inode)			do { } while (0)
4350 #define stat_dec_inline_inode(inode)			do { } while (0)
4351 #define stat_inc_inline_dir(inode)			do { } while (0)
4352 #define stat_dec_inline_dir(inode)			do { } while (0)
4353 #define stat_inc_compr_inode(inode)			do { } while (0)
4354 #define stat_dec_compr_inode(inode)			do { } while (0)
4355 #define stat_add_compr_blocks(inode, blocks)		do { } while (0)
4356 #define stat_sub_compr_blocks(inode, blocks)		do { } while (0)
4357 #define stat_inc_swapfile_inode(inode)			do { } while (0)
4358 #define stat_dec_swapfile_inode(inode)			do { } while (0)
4359 #define stat_inc_atomic_inode(inode)			do { } while (0)
4360 #define stat_dec_atomic_inode(inode)			do { } while (0)
4361 #define stat_update_max_atomic_write(inode)		do { } while (0)
4362 #define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
4363 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
4364 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
4365 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
4366 #define stat_inc_gc_call_count(sbi, foreground)		do { } while (0)
4367 #define stat_inc_gc_sec_count(sbi, type, gc_type)	do { } while (0)
4368 #define stat_inc_gc_seg_count(sbi, type, gc_type)	do { } while (0)
4369 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
4370 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
4371 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
4372 
f2fs_build_stats(struct f2fs_sb_info * sbi)4373 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_stats(struct f2fs_sb_info * sbi)4374 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
f2fs_create_root_stats(void)4375 static inline void __init f2fs_create_root_stats(void) { }
f2fs_destroy_root_stats(void)4376 static inline void f2fs_destroy_root_stats(void) { }
f2fs_update_sit_info(struct f2fs_sb_info * sbi)4377 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
4378 #endif
4379 
4380 extern const struct file_operations f2fs_dir_operations;
4381 extern const struct file_operations f2fs_file_operations;
4382 extern const struct inode_operations f2fs_file_inode_operations;
4383 extern const struct address_space_operations f2fs_dblock_aops;
4384 extern const struct address_space_operations f2fs_node_aops;
4385 extern const struct address_space_operations f2fs_meta_aops;
4386 extern const struct inode_operations f2fs_dir_inode_operations;
4387 extern const struct inode_operations f2fs_symlink_inode_operations;
4388 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
4389 extern const struct inode_operations f2fs_special_inode_operations;
4390 extern struct kmem_cache *f2fs_inode_entry_slab;
4391 
4392 /*
4393  * inline.c
4394  */
4395 bool f2fs_may_inline_data(struct inode *inode);
4396 bool f2fs_sanity_check_inline_data(struct inode *inode, struct folio *ifolio);
4397 bool f2fs_may_inline_dentry(struct inode *inode);
4398 void f2fs_do_read_inline_data(struct folio *folio, struct folio *ifolio);
4399 void f2fs_truncate_inline_inode(struct inode *inode, struct folio *ifolio,
4400 		u64 from);
4401 int f2fs_read_inline_data(struct inode *inode, struct folio *folio);
4402 int f2fs_convert_inline_folio(struct dnode_of_data *dn, struct folio *folio);
4403 int f2fs_convert_inline_inode(struct inode *inode);
4404 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
4405 int f2fs_write_inline_data(struct inode *inode, struct folio *folio);
4406 int f2fs_recover_inline_data(struct inode *inode, struct folio *nfolio);
4407 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
4408 		const struct f2fs_filename *fname, struct folio **res_folio,
4409 		bool use_hash);
4410 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
4411 			struct folio *ifolio);
4412 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
4413 			struct inode *inode, nid_t ino, umode_t mode);
4414 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
4415 		struct folio *folio, struct inode *dir, struct inode *inode);
4416 bool f2fs_empty_inline_dir(struct inode *dir);
4417 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
4418 			struct fscrypt_str *fstr);
4419 int f2fs_inline_data_fiemap(struct inode *inode,
4420 			struct fiemap_extent_info *fieinfo,
4421 			__u64 start, __u64 len);
4422 
4423 /*
4424  * shrinker.c
4425  */
4426 unsigned long f2fs_shrink_count(struct shrinker *shrink,
4427 			struct shrink_control *sc);
4428 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
4429 			struct shrink_control *sc);
4430 unsigned int f2fs_donate_files(void);
4431 void f2fs_reclaim_caches(unsigned int reclaim_caches_kb);
4432 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
4433 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
4434 
4435 /*
4436  * extent_cache.c
4437  */
4438 bool sanity_check_extent_cache(struct inode *inode, struct folio *ifolio);
4439 void f2fs_init_extent_tree(struct inode *inode);
4440 void f2fs_drop_extent_tree(struct inode *inode);
4441 void f2fs_destroy_extent_node(struct inode *inode);
4442 void f2fs_destroy_extent_tree(struct inode *inode);
4443 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
4444 int __init f2fs_create_extent_cache(void);
4445 void f2fs_destroy_extent_cache(void);
4446 
4447 /* read extent cache ops */
4448 void f2fs_init_read_extent_tree(struct inode *inode, struct folio *ifolio);
4449 bool f2fs_lookup_read_extent_cache(struct inode *inode, pgoff_t pgofs,
4450 			struct extent_info *ei);
4451 bool f2fs_lookup_read_extent_cache_block(struct inode *inode, pgoff_t index,
4452 			block_t *blkaddr);
4453 void f2fs_update_read_extent_cache(struct dnode_of_data *dn);
4454 void f2fs_update_read_extent_cache_range(struct dnode_of_data *dn,
4455 			pgoff_t fofs, block_t blkaddr, unsigned int len);
4456 unsigned int f2fs_shrink_read_extent_tree(struct f2fs_sb_info *sbi,
4457 			int nr_shrink);
4458 
4459 /* block age extent cache ops */
4460 void f2fs_init_age_extent_tree(struct inode *inode);
4461 bool f2fs_lookup_age_extent_cache(struct inode *inode, pgoff_t pgofs,
4462 			struct extent_info *ei);
4463 void f2fs_update_age_extent_cache(struct dnode_of_data *dn);
4464 void f2fs_update_age_extent_cache_range(struct dnode_of_data *dn,
4465 			pgoff_t fofs, unsigned int len);
4466 unsigned int f2fs_shrink_age_extent_tree(struct f2fs_sb_info *sbi,
4467 			int nr_shrink);
4468 
4469 /*
4470  * sysfs.c
4471  */
4472 #define MIN_RA_MUL	2
4473 #define MAX_RA_MUL	256
4474 
4475 int __init f2fs_init_sysfs(void);
4476 void f2fs_exit_sysfs(void);
4477 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
4478 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
4479 
4480 /* verity.c */
4481 extern const struct fsverity_operations f2fs_verityops;
4482 
4483 /*
4484  * crypto support
4485  */
f2fs_encrypted_file(struct inode * inode)4486 static inline bool f2fs_encrypted_file(struct inode *inode)
4487 {
4488 	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
4489 }
4490 
f2fs_set_encrypted_inode(struct inode * inode)4491 static inline void f2fs_set_encrypted_inode(struct inode *inode)
4492 {
4493 #ifdef CONFIG_FS_ENCRYPTION
4494 	file_set_encrypt(inode);
4495 	f2fs_set_inode_flags(inode);
4496 #endif
4497 }
4498 
4499 /*
4500  * Returns true if the reads of the inode's data need to undergo some
4501  * postprocessing step, like decryption or authenticity verification.
4502  */
f2fs_post_read_required(struct inode * inode)4503 static inline bool f2fs_post_read_required(struct inode *inode)
4504 {
4505 	return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
4506 		f2fs_compressed_file(inode);
4507 }
4508 
f2fs_used_in_atomic_write(struct inode * inode)4509 static inline bool f2fs_used_in_atomic_write(struct inode *inode)
4510 {
4511 	return f2fs_is_atomic_file(inode) || f2fs_is_cow_file(inode);
4512 }
4513 
f2fs_meta_inode_gc_required(struct inode * inode)4514 static inline bool f2fs_meta_inode_gc_required(struct inode *inode)
4515 {
4516 	return f2fs_post_read_required(inode) || f2fs_used_in_atomic_write(inode);
4517 }
4518 
4519 /*
4520  * compress.c
4521  */
4522 #ifdef CONFIG_F2FS_FS_COMPRESSION
4523 enum cluster_check_type {
4524 	CLUSTER_IS_COMPR,   /* check only if compressed cluster */
4525 	CLUSTER_COMPR_BLKS, /* return # of compressed blocks in a cluster */
4526 	CLUSTER_RAW_BLKS    /* return # of raw blocks in a cluster */
4527 };
4528 bool f2fs_is_compressed_page(struct folio *folio);
4529 struct folio *f2fs_compress_control_folio(struct folio *folio);
4530 int f2fs_prepare_compress_overwrite(struct inode *inode,
4531 			struct page **pagep, pgoff_t index, void **fsdata);
4532 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
4533 					pgoff_t index, unsigned copied);
4534 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
4535 void f2fs_compress_write_end_io(struct bio *bio, struct folio *folio);
4536 bool f2fs_is_compress_backend_ready(struct inode *inode);
4537 bool f2fs_is_compress_level_valid(int alg, int lvl);
4538 int __init f2fs_init_compress_mempool(void);
4539 void f2fs_destroy_compress_mempool(void);
4540 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task);
4541 void f2fs_end_read_compressed_page(struct folio *folio, bool failed,
4542 				block_t blkaddr, bool in_task);
4543 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
4544 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
4545 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages,
4546 				int index, int nr_pages, bool uptodate);
4547 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn);
4548 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct folio *folio);
4549 int f2fs_write_multi_pages(struct compress_ctx *cc,
4550 						int *submitted,
4551 						struct writeback_control *wbc,
4552 						enum iostat_type io_type);
4553 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
4554 bool f2fs_is_sparse_cluster(struct inode *inode, pgoff_t index);
4555 void f2fs_update_read_extent_tree_range_compressed(struct inode *inode,
4556 				pgoff_t fofs, block_t blkaddr,
4557 				unsigned int llen, unsigned int c_len);
4558 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
4559 				unsigned nr_pages, sector_t *last_block_in_bio,
4560 				struct readahead_control *rac, bool for_write);
4561 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
4562 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
4563 				bool in_task);
4564 void f2fs_put_folio_dic(struct folio *folio, bool in_task);
4565 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn,
4566 						unsigned int ofs_in_node);
4567 int f2fs_init_compress_ctx(struct compress_ctx *cc);
4568 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse);
4569 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
4570 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi);
4571 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi);
4572 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
4573 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
4574 int __init f2fs_init_compress_cache(void);
4575 void f2fs_destroy_compress_cache(void);
4576 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi);
4577 void f2fs_invalidate_compress_pages_range(struct f2fs_sb_info *sbi,
4578 					block_t blkaddr, unsigned int len);
4579 bool f2fs_load_compressed_folio(struct f2fs_sb_info *sbi, struct folio *folio,
4580 								block_t blkaddr);
4581 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino);
4582 #define inc_compr_inode_stat(inode)					\
4583 	do {								\
4584 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4585 		sbi->compr_new_inode++;					\
4586 	} while (0)
4587 #define add_compr_block_stat(inode, blocks)				\
4588 	do {								\
4589 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4590 		int diff = F2FS_I(inode)->i_cluster_size - blocks;	\
4591 		sbi->compr_written_block += blocks;			\
4592 		sbi->compr_saved_block += diff;				\
4593 	} while (0)
4594 #else
f2fs_is_compressed_page(struct folio * folio)4595 static inline bool f2fs_is_compressed_page(struct folio *folio) { return false; }
f2fs_is_compress_backend_ready(struct inode * inode)4596 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
4597 {
4598 	if (!f2fs_compressed_file(inode))
4599 		return true;
4600 	/* not support compression */
4601 	return false;
4602 }
f2fs_is_compress_level_valid(int alg,int lvl)4603 static inline bool f2fs_is_compress_level_valid(int alg, int lvl) { return false; }
f2fs_compress_control_folio(struct folio * folio)4604 static inline struct folio *f2fs_compress_control_folio(struct folio *folio)
4605 {
4606 	WARN_ON_ONCE(1);
4607 	return ERR_PTR(-EINVAL);
4608 }
f2fs_init_compress_mempool(void)4609 static inline int __init f2fs_init_compress_mempool(void) { return 0; }
f2fs_destroy_compress_mempool(void)4610 static inline void f2fs_destroy_compress_mempool(void) { }
f2fs_decompress_cluster(struct decompress_io_ctx * dic,bool in_task)4611 static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic,
4612 				bool in_task) { }
f2fs_end_read_compressed_page(struct folio * folio,bool failed,block_t blkaddr,bool in_task)4613 static inline void f2fs_end_read_compressed_page(struct folio *folio,
4614 				bool failed, block_t blkaddr, bool in_task)
4615 {
4616 	WARN_ON_ONCE(1);
4617 }
f2fs_put_folio_dic(struct folio * folio,bool in_task)4618 static inline void f2fs_put_folio_dic(struct folio *folio, bool in_task)
4619 {
4620 	WARN_ON_ONCE(1);
4621 }
f2fs_cluster_blocks_are_contiguous(struct dnode_of_data * dn,unsigned int ofs_in_node)4622 static inline unsigned int f2fs_cluster_blocks_are_contiguous(
4623 			struct dnode_of_data *dn, unsigned int ofs_in_node) { return 0; }
f2fs_sanity_check_cluster(struct dnode_of_data * dn)4624 static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; }
f2fs_init_compress_inode(struct f2fs_sb_info * sbi)4625 static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_compress_inode(struct f2fs_sb_info * sbi)4626 static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { }
f2fs_init_page_array_cache(struct f2fs_sb_info * sbi)4627 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_page_array_cache(struct f2fs_sb_info * sbi)4628 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
f2fs_init_compress_cache(void)4629 static inline int __init f2fs_init_compress_cache(void) { return 0; }
f2fs_destroy_compress_cache(void)4630 static inline void f2fs_destroy_compress_cache(void) { }
f2fs_invalidate_compress_pages_range(struct f2fs_sb_info * sbi,block_t blkaddr,unsigned int len)4631 static inline void f2fs_invalidate_compress_pages_range(struct f2fs_sb_info *sbi,
4632 				block_t blkaddr, unsigned int len) { }
f2fs_load_compressed_folio(struct f2fs_sb_info * sbi,struct folio * folio,block_t blkaddr)4633 static inline bool f2fs_load_compressed_folio(struct f2fs_sb_info *sbi,
4634 		struct folio *folio, block_t blkaddr) { return false; }
f2fs_invalidate_compress_pages(struct f2fs_sb_info * sbi,nid_t ino)4635 static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi,
4636 							nid_t ino) { }
4637 #define inc_compr_inode_stat(inode)		do { } while (0)
f2fs_is_compressed_cluster(struct inode * inode,pgoff_t index)4638 static inline int f2fs_is_compressed_cluster(
4639 				struct inode *inode,
4640 				pgoff_t index) { return 0; }
f2fs_is_sparse_cluster(struct inode * inode,pgoff_t index)4641 static inline bool f2fs_is_sparse_cluster(
4642 				struct inode *inode,
4643 				pgoff_t index) { return true; }
f2fs_update_read_extent_tree_range_compressed(struct inode * inode,pgoff_t fofs,block_t blkaddr,unsigned int llen,unsigned int c_len)4644 static inline void f2fs_update_read_extent_tree_range_compressed(
4645 				struct inode *inode,
4646 				pgoff_t fofs, block_t blkaddr,
4647 				unsigned int llen, unsigned int c_len) { }
4648 #endif
4649 
set_compress_context(struct inode * inode)4650 static inline int set_compress_context(struct inode *inode)
4651 {
4652 #ifdef CONFIG_F2FS_FS_COMPRESSION
4653 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4654 	struct f2fs_inode_info *fi = F2FS_I(inode);
4655 
4656 	fi->i_compress_algorithm = F2FS_OPTION(sbi).compress_algorithm;
4657 	fi->i_log_cluster_size = F2FS_OPTION(sbi).compress_log_size;
4658 	fi->i_compress_flag = F2FS_OPTION(sbi).compress_chksum ?
4659 					BIT(COMPRESS_CHKSUM) : 0;
4660 	fi->i_cluster_size = BIT(fi->i_log_cluster_size);
4661 	if ((fi->i_compress_algorithm == COMPRESS_LZ4 ||
4662 		fi->i_compress_algorithm == COMPRESS_ZSTD) &&
4663 			F2FS_OPTION(sbi).compress_level)
4664 		fi->i_compress_level = F2FS_OPTION(sbi).compress_level;
4665 	fi->i_flags |= F2FS_COMPR_FL;
4666 	set_inode_flag(inode, FI_COMPRESSED_FILE);
4667 	stat_inc_compr_inode(inode);
4668 	inc_compr_inode_stat(inode);
4669 	f2fs_mark_inode_dirty_sync(inode, true);
4670 	return 0;
4671 #else
4672 	return -EOPNOTSUPP;
4673 #endif
4674 }
4675 
f2fs_disable_compressed_file(struct inode * inode)4676 static inline bool f2fs_disable_compressed_file(struct inode *inode)
4677 {
4678 	struct f2fs_inode_info *fi = F2FS_I(inode);
4679 
4680 	f2fs_down_write(&fi->i_sem);
4681 
4682 	if (!f2fs_compressed_file(inode)) {
4683 		f2fs_up_write(&fi->i_sem);
4684 		return true;
4685 	}
4686 	if (f2fs_is_mmap_file(inode) || atomic_read(&fi->writeback) ||
4687 		(S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))) {
4688 		f2fs_up_write(&fi->i_sem);
4689 		return false;
4690 	}
4691 
4692 	fi->i_flags &= ~F2FS_COMPR_FL;
4693 	stat_dec_compr_inode(inode);
4694 	clear_inode_flag(inode, FI_COMPRESSED_FILE);
4695 	f2fs_mark_inode_dirty_sync(inode, true);
4696 
4697 	f2fs_up_write(&fi->i_sem);
4698 	return true;
4699 }
4700 
4701 #define F2FS_FEATURE_FUNCS(name, flagname) \
4702 static inline bool f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
4703 { \
4704 	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
4705 }
4706 
4707 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
4708 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
4709 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
4710 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
4711 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4712 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4713 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4714 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4715 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4716 F2FS_FEATURE_FUNCS(verity, VERITY);
4717 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4718 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4719 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4720 F2FS_FEATURE_FUNCS(readonly, RO);
4721 F2FS_FEATURE_FUNCS(device_alias, DEVICE_ALIAS);
4722 F2FS_FEATURE_FUNCS(packed_ssa, PACKED_SSA);
4723 
4724 #ifdef CONFIG_BLK_DEV_ZONED
f2fs_zone_is_seq(struct f2fs_sb_info * sbi,int devi,unsigned int zone)4725 static inline bool f2fs_zone_is_seq(struct f2fs_sb_info *sbi, int devi,
4726 							unsigned int zone)
4727 {
4728 	return test_bit(zone, FDEV(devi).blkz_seq);
4729 }
4730 
f2fs_blkz_is_seq(struct f2fs_sb_info * sbi,int devi,block_t blkaddr)4731 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4732 								block_t blkaddr)
4733 {
4734 	return f2fs_zone_is_seq(sbi, devi, blkaddr / sbi->blocks_per_blkz);
4735 }
4736 #endif
4737 
f2fs_bdev_index(struct f2fs_sb_info * sbi,struct block_device * bdev)4738 static inline int f2fs_bdev_index(struct f2fs_sb_info *sbi,
4739 				  struct block_device *bdev)
4740 {
4741 	int i;
4742 
4743 	if (!f2fs_is_multi_device(sbi))
4744 		return 0;
4745 
4746 	for (i = 0; i < sbi->s_ndevs; i++)
4747 		if (FDEV(i).bdev == bdev)
4748 			return i;
4749 
4750 	WARN_ON(1);
4751 	return -1;
4752 }
4753 
f2fs_hw_should_discard(struct f2fs_sb_info * sbi)4754 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4755 {
4756 	return f2fs_sb_has_blkzoned(sbi);
4757 }
4758 
f2fs_bdev_support_discard(struct block_device * bdev)4759 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4760 {
4761 	return bdev_max_discard_sectors(bdev) || bdev_is_zoned(bdev);
4762 }
4763 
f2fs_hw_support_discard(struct f2fs_sb_info * sbi)4764 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4765 {
4766 	int i;
4767 
4768 	if (!f2fs_is_multi_device(sbi))
4769 		return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4770 
4771 	for (i = 0; i < sbi->s_ndevs; i++)
4772 		if (f2fs_bdev_support_discard(FDEV(i).bdev))
4773 			return true;
4774 	return false;
4775 }
4776 
f2fs_hw_discard_granularity(struct f2fs_sb_info * sbi)4777 static inline unsigned int f2fs_hw_discard_granularity(struct f2fs_sb_info *sbi)
4778 {
4779 	int i = 1;
4780 	unsigned int discard_granularity = bdev_discard_granularity(sbi->sb->s_bdev);
4781 
4782 	if (f2fs_is_multi_device(sbi))
4783 		for (; i < sbi->s_ndevs && !bdev_is_zoned(FDEV(i).bdev); i++)
4784 			discard_granularity = max_t(unsigned int, discard_granularity,
4785 						bdev_discard_granularity(FDEV(i).bdev));
4786 	return discard_granularity;
4787 }
4788 
f2fs_realtime_discard_enable(struct f2fs_sb_info * sbi)4789 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4790 {
4791 	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4792 					f2fs_hw_should_discard(sbi);
4793 }
4794 
f2fs_hw_is_readonly(struct f2fs_sb_info * sbi)4795 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4796 {
4797 	int i;
4798 
4799 	if (!f2fs_is_multi_device(sbi))
4800 		return bdev_read_only(sbi->sb->s_bdev);
4801 
4802 	for (i = 0; i < sbi->s_ndevs; i++)
4803 		if (bdev_read_only(FDEV(i).bdev))
4804 			return true;
4805 	return false;
4806 }
4807 
f2fs_dev_is_readonly(struct f2fs_sb_info * sbi)4808 static inline bool f2fs_dev_is_readonly(struct f2fs_sb_info *sbi)
4809 {
4810 	return f2fs_sb_has_readonly(sbi) || f2fs_hw_is_readonly(sbi);
4811 }
4812 
f2fs_lfs_mode(struct f2fs_sb_info * sbi)4813 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4814 {
4815 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4816 }
4817 
f2fs_is_sequential_zone_area(struct f2fs_sb_info * sbi,block_t blkaddr)4818 static inline bool f2fs_is_sequential_zone_area(struct f2fs_sb_info *sbi,
4819 					  block_t blkaddr)
4820 {
4821 	if (f2fs_sb_has_blkzoned(sbi)) {
4822 #ifdef CONFIG_BLK_DEV_ZONED
4823 		int devi = f2fs_target_device_index(sbi, blkaddr);
4824 
4825 		if (!bdev_is_zoned(FDEV(devi).bdev))
4826 			return false;
4827 
4828 		if (f2fs_is_multi_device(sbi)) {
4829 			if (blkaddr < FDEV(devi).start_blk ||
4830 				blkaddr > FDEV(devi).end_blk) {
4831 				f2fs_err(sbi, "Invalid block %x", blkaddr);
4832 				return false;
4833 			}
4834 			blkaddr -= FDEV(devi).start_blk;
4835 		}
4836 
4837 		return f2fs_blkz_is_seq(sbi, devi, blkaddr);
4838 #else
4839 		return false;
4840 #endif
4841 	}
4842 	return false;
4843 }
4844 
f2fs_low_mem_mode(struct f2fs_sb_info * sbi)4845 static inline bool f2fs_low_mem_mode(struct f2fs_sb_info *sbi)
4846 {
4847 	return F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW;
4848 }
4849 
f2fs_may_compress(struct inode * inode)4850 static inline bool f2fs_may_compress(struct inode *inode)
4851 {
4852 	if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4853 		f2fs_is_atomic_file(inode) || f2fs_has_inline_data(inode) ||
4854 		f2fs_is_mmap_file(inode))
4855 		return false;
4856 	return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4857 }
4858 
f2fs_i_compr_blocks_update(struct inode * inode,u64 blocks,bool add)4859 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4860 						u64 blocks, bool add)
4861 {
4862 	struct f2fs_inode_info *fi = F2FS_I(inode);
4863 	int diff = fi->i_cluster_size - blocks;
4864 
4865 	/* don't update i_compr_blocks if saved blocks were released */
4866 	if (!add && !atomic_read(&fi->i_compr_blocks))
4867 		return;
4868 
4869 	if (add) {
4870 		atomic_add(diff, &fi->i_compr_blocks);
4871 		stat_add_compr_blocks(inode, diff);
4872 	} else {
4873 		atomic_sub(diff, &fi->i_compr_blocks);
4874 		stat_sub_compr_blocks(inode, diff);
4875 	}
4876 	f2fs_mark_inode_dirty_sync(inode, true);
4877 }
4878 
f2fs_allow_multi_device_dio(struct f2fs_sb_info * sbi,int flag)4879 static inline bool f2fs_allow_multi_device_dio(struct f2fs_sb_info *sbi,
4880 								int flag)
4881 {
4882 	if (!f2fs_is_multi_device(sbi))
4883 		return false;
4884 	if (flag != F2FS_GET_BLOCK_DIO)
4885 		return false;
4886 	return sbi->aligned_blksize;
4887 }
4888 
f2fs_need_verity(const struct inode * inode,pgoff_t idx)4889 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
4890 {
4891 	return fsverity_active(inode) &&
4892 	       idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
4893 }
4894 
4895 #ifdef CONFIG_F2FS_FAULT_INJECTION
4896 extern int f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned long rate,
4897 					unsigned long type, enum fault_option fo);
4898 #else
f2fs_build_fault_attr(struct f2fs_sb_info * sbi,unsigned long rate,unsigned long type,enum fault_option fo)4899 static inline int f2fs_build_fault_attr(struct f2fs_sb_info *sbi,
4900 					unsigned long rate, unsigned long type,
4901 					enum fault_option fo)
4902 {
4903 	return 0;
4904 }
4905 #endif
4906 
is_journalled_quota(struct f2fs_sb_info * sbi)4907 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4908 {
4909 #ifdef CONFIG_QUOTA
4910 	if (f2fs_sb_has_quota_ino(sbi))
4911 		return true;
4912 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4913 		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4914 		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4915 		return true;
4916 #endif
4917 	return false;
4918 }
4919 
f2fs_block_unit_discard(struct f2fs_sb_info * sbi)4920 static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi)
4921 {
4922 	return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK;
4923 }
4924 
__f2fs_schedule_timeout(long timeout,bool io)4925 static inline void __f2fs_schedule_timeout(long timeout, bool io)
4926 {
4927 	set_current_state(TASK_UNINTERRUPTIBLE);
4928 	if (io)
4929 		io_schedule_timeout(timeout);
4930 	else
4931 		schedule_timeout(timeout);
4932 }
4933 
4934 #define f2fs_io_schedule_timeout(timeout)		\
4935 			__f2fs_schedule_timeout(timeout, true)
4936 #define f2fs_schedule_timeout(timeout)			\
4937 			__f2fs_schedule_timeout(timeout, false)
4938 
f2fs_io_schedule_timeout_killable(long timeout)4939 static inline void f2fs_io_schedule_timeout_killable(long timeout)
4940 {
4941 	while (timeout) {
4942 		if (fatal_signal_pending(current))
4943 			return;
4944 		set_current_state(TASK_UNINTERRUPTIBLE);
4945 		io_schedule_timeout(DEFAULT_SCHEDULE_TIMEOUT);
4946 		if (timeout <= DEFAULT_SCHEDULE_TIMEOUT)
4947 			return;
4948 		timeout -= DEFAULT_SCHEDULE_TIMEOUT;
4949 	}
4950 }
4951 
f2fs_handle_page_eio(struct f2fs_sb_info * sbi,struct folio * folio,enum page_type type)4952 static inline void f2fs_handle_page_eio(struct f2fs_sb_info *sbi,
4953 				struct folio *folio, enum page_type type)
4954 {
4955 	pgoff_t ofs = folio->index;
4956 
4957 	if (unlikely(f2fs_cp_error(sbi)))
4958 		return;
4959 
4960 	if (ofs == sbi->page_eio_ofs[type]) {
4961 		if (sbi->page_eio_cnt[type]++ == MAX_RETRY_PAGE_EIO)
4962 			set_ckpt_flags(sbi, CP_ERROR_FLAG);
4963 	} else {
4964 		sbi->page_eio_ofs[type] = ofs;
4965 		sbi->page_eio_cnt[type] = 0;
4966 	}
4967 }
4968 
f2fs_is_readonly(struct f2fs_sb_info * sbi)4969 static inline bool f2fs_is_readonly(struct f2fs_sb_info *sbi)
4970 {
4971 	return f2fs_sb_has_readonly(sbi) || f2fs_readonly(sbi->sb);
4972 }
4973 
f2fs_truncate_meta_inode_pages(struct f2fs_sb_info * sbi,block_t blkaddr,unsigned int cnt)4974 static inline void f2fs_truncate_meta_inode_pages(struct f2fs_sb_info *sbi,
4975 					block_t blkaddr, unsigned int cnt)
4976 {
4977 	bool need_submit = false;
4978 	int i = 0;
4979 
4980 	do {
4981 		struct folio *folio;
4982 
4983 		folio = filemap_get_folio(META_MAPPING(sbi), blkaddr + i);
4984 		if (!IS_ERR(folio)) {
4985 			if (folio_test_writeback(folio))
4986 				need_submit = true;
4987 			f2fs_folio_put(folio, false);
4988 		}
4989 	} while (++i < cnt && !need_submit);
4990 
4991 	if (need_submit)
4992 		f2fs_submit_merged_write_cond(sbi, sbi->meta_inode,
4993 							NULL, 0, DATA);
4994 
4995 	truncate_inode_pages_range(META_MAPPING(sbi),
4996 			F2FS_BLK_TO_BYTES((loff_t)blkaddr),
4997 			F2FS_BLK_END_BYTES((loff_t)(blkaddr + cnt - 1)));
4998 }
4999 
f2fs_invalidate_internal_cache(struct f2fs_sb_info * sbi,block_t blkaddr,unsigned int len)5000 static inline void f2fs_invalidate_internal_cache(struct f2fs_sb_info *sbi,
5001 						block_t blkaddr, unsigned int len)
5002 {
5003 	f2fs_truncate_meta_inode_pages(sbi, blkaddr, len);
5004 	f2fs_invalidate_compress_pages_range(sbi, blkaddr, len);
5005 }
5006 
5007 #define EFSBADCRC	EBADMSG		/* Bad CRC detected */
5008 #define EFSCORRUPTED	EUCLEAN		/* Filesystem is corrupted */
5009 
5010 #endif /* _LINUX_F2FS_H */
5011