xref: /linux/drivers/base/arch_topology.c (revision 6fd9be0b7b2e957d24b0490b989658c4d18d92c7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Arch specific cpu topology information
4  *
5  * Copyright (C) 2016, ARM Ltd.
6  * Written by: Juri Lelli, ARM Ltd.
7  */
8 
9 #include <linux/acpi.h>
10 #include <linux/cacheinfo.h>
11 #include <linux/cleanup.h>
12 #include <linux/cpu.h>
13 #include <linux/cpufreq.h>
14 #include <linux/cpu_smt.h>
15 #include <linux/device.h>
16 #include <linux/of.h>
17 #include <linux/slab.h>
18 #include <linux/sched/topology.h>
19 #include <linux/cpuset.h>
20 #include <linux/cpumask.h>
21 #include <linux/init.h>
22 #include <linux/rcupdate.h>
23 #include <linux/sched.h>
24 #include <linux/units.h>
25 
26 #define CREATE_TRACE_POINTS
27 #include <trace/events/hw_pressure.h>
28 
29 static DEFINE_PER_CPU(struct scale_freq_data __rcu *, sft_data);
30 static struct cpumask scale_freq_counters_mask;
31 static bool scale_freq_invariant;
32 DEFINE_PER_CPU(unsigned long, capacity_freq_ref) = 0;
33 EXPORT_PER_CPU_SYMBOL_GPL(capacity_freq_ref);
34 
35 static bool supports_scale_freq_counters(const struct cpumask *cpus)
36 {
37 	int i;
38 
39 	for_each_cpu(i, cpus) {
40 		if (cpumask_test_cpu(i, &scale_freq_counters_mask))
41 			return true;
42 	}
43 
44 	return false;
45 }
46 
47 bool topology_scale_freq_invariant(void)
48 {
49 	return cpufreq_supports_freq_invariance() ||
50 	       supports_scale_freq_counters(cpu_online_mask);
51 }
52 
53 static void update_scale_freq_invariant(bool status)
54 {
55 	if (scale_freq_invariant == status)
56 		return;
57 
58 	/*
59 	 * Task scheduler behavior depends on frequency invariance support,
60 	 * either cpufreq or counter driven. If the support status changes as
61 	 * a result of counter initialisation and use, retrigger the build of
62 	 * scheduling domains to ensure the information is propagated properly.
63 	 */
64 	if (topology_scale_freq_invariant() == status) {
65 		scale_freq_invariant = status;
66 		rebuild_sched_domains_energy();
67 	}
68 }
69 
70 void topology_set_scale_freq_source(struct scale_freq_data *data,
71 				    const struct cpumask *cpus)
72 {
73 	struct scale_freq_data *sfd;
74 	int cpu;
75 
76 	/*
77 	 * Avoid calling rebuild_sched_domains() unnecessarily if FIE is
78 	 * supported by cpufreq.
79 	 */
80 	if (cpumask_empty(&scale_freq_counters_mask))
81 		scale_freq_invariant = topology_scale_freq_invariant();
82 
83 	rcu_read_lock();
84 
85 	for_each_cpu(cpu, cpus) {
86 		sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu));
87 
88 		/* Use ARCH provided counters whenever possible */
89 		if (!sfd || sfd->source != SCALE_FREQ_SOURCE_ARCH) {
90 			rcu_assign_pointer(per_cpu(sft_data, cpu), data);
91 			cpumask_set_cpu(cpu, &scale_freq_counters_mask);
92 		}
93 	}
94 
95 	rcu_read_unlock();
96 
97 	update_scale_freq_invariant(true);
98 }
99 EXPORT_SYMBOL_GPL(topology_set_scale_freq_source);
100 
101 void topology_clear_scale_freq_source(enum scale_freq_source source,
102 				      const struct cpumask *cpus)
103 {
104 	struct scale_freq_data *sfd;
105 	int cpu;
106 
107 	rcu_read_lock();
108 
109 	for_each_cpu(cpu, cpus) {
110 		sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu));
111 
112 		if (sfd && sfd->source == source) {
113 			rcu_assign_pointer(per_cpu(sft_data, cpu), NULL);
114 			cpumask_clear_cpu(cpu, &scale_freq_counters_mask);
115 		}
116 	}
117 
118 	rcu_read_unlock();
119 
120 	/*
121 	 * Make sure all references to previous sft_data are dropped to avoid
122 	 * use-after-free races.
123 	 */
124 	synchronize_rcu();
125 
126 	update_scale_freq_invariant(false);
127 }
128 EXPORT_SYMBOL_GPL(topology_clear_scale_freq_source);
129 
130 void topology_scale_freq_tick(void)
131 {
132 	struct scale_freq_data *sfd = rcu_dereference_sched(*this_cpu_ptr(&sft_data));
133 
134 	if (sfd)
135 		sfd->set_freq_scale();
136 }
137 
138 DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE;
139 EXPORT_PER_CPU_SYMBOL_GPL(arch_freq_scale);
140 
141 void topology_set_freq_scale(const struct cpumask *cpus, unsigned long cur_freq,
142 			     unsigned long max_freq)
143 {
144 	unsigned long scale;
145 	int i;
146 
147 	if (WARN_ON_ONCE(!cur_freq || !max_freq))
148 		return;
149 
150 	/*
151 	 * If the use of counters for FIE is enabled, just return as we don't
152 	 * want to update the scale factor with information from CPUFREQ.
153 	 * Instead the scale factor will be updated from arch_scale_freq_tick.
154 	 */
155 	if (supports_scale_freq_counters(cpus))
156 		return;
157 
158 	scale = (cur_freq << SCHED_CAPACITY_SHIFT) / max_freq;
159 
160 	for_each_cpu(i, cpus)
161 		per_cpu(arch_freq_scale, i) = scale;
162 }
163 
164 DEFINE_PER_CPU(unsigned long, hw_pressure);
165 
166 /**
167  * topology_update_hw_pressure() - Update HW pressure for CPUs
168  * @cpus        : The related CPUs for which capacity has been reduced
169  * @capped_freq : The maximum allowed frequency that CPUs can run at
170  *
171  * Update the value of HW pressure for all @cpus in the mask. The
172  * cpumask should include all (online+offline) affected CPUs, to avoid
173  * operating on stale data when hot-plug is used for some CPUs. The
174  * @capped_freq reflects the currently allowed max CPUs frequency due to
175  * HW capping. It might be also a boost frequency value, which is bigger
176  * than the internal 'capacity_freq_ref' max frequency. In such case the
177  * pressure value should simply be removed, since this is an indication that
178  * there is no HW throttling. The @capped_freq must be provided in kHz.
179  */
180 void topology_update_hw_pressure(const struct cpumask *cpus,
181 				      unsigned long capped_freq)
182 {
183 	unsigned long max_capacity, capacity, pressure;
184 	u32 max_freq;
185 	int cpu;
186 
187 	cpu = cpumask_first(cpus);
188 	max_capacity = arch_scale_cpu_capacity(cpu);
189 	max_freq = arch_scale_freq_ref(cpu);
190 
191 	/*
192 	 * Handle properly the boost frequencies, which should simply clean
193 	 * the HW pressure value.
194 	 */
195 	if (max_freq <= capped_freq)
196 		capacity = max_capacity;
197 	else
198 		capacity = mult_frac(max_capacity, capped_freq, max_freq);
199 
200 	pressure = max_capacity - capacity;
201 
202 	trace_hw_pressure_update(cpu, pressure);
203 
204 	for_each_cpu(cpu, cpus)
205 		WRITE_ONCE(per_cpu(hw_pressure, cpu), pressure);
206 }
207 EXPORT_SYMBOL_GPL(topology_update_hw_pressure);
208 
209 static void update_topology_flags_workfn(struct work_struct *work);
210 static DECLARE_WORK(update_topology_flags_work, update_topology_flags_workfn);
211 
212 static int update_topology;
213 
214 int topology_update_cpu_topology(void)
215 {
216 	return update_topology;
217 }
218 
219 /*
220  * Updating the sched_domains can't be done directly from cpufreq callbacks
221  * due to locking, so queue the work for later.
222  */
223 static void update_topology_flags_workfn(struct work_struct *work)
224 {
225 	update_topology = 1;
226 	rebuild_sched_domains();
227 	pr_debug("sched_domain hierarchy rebuilt, flags updated\n");
228 	update_topology = 0;
229 }
230 
231 static u32 *raw_capacity;
232 
233 static int free_raw_capacity(void)
234 {
235 	kfree(raw_capacity);
236 	raw_capacity = NULL;
237 
238 	return 0;
239 }
240 
241 void topology_normalize_cpu_scale(void)
242 {
243 	u64 capacity;
244 	u64 capacity_scale;
245 	int cpu;
246 
247 	if (!raw_capacity)
248 		return;
249 
250 	capacity_scale = 1;
251 	for_each_possible_cpu(cpu) {
252 		capacity = raw_capacity[cpu] *
253 			   (per_cpu(capacity_freq_ref, cpu) ?: 1);
254 		capacity_scale = max(capacity, capacity_scale);
255 	}
256 
257 	pr_debug("cpu_capacity: capacity_scale=%llu\n", capacity_scale);
258 	for_each_possible_cpu(cpu) {
259 		capacity = raw_capacity[cpu] *
260 			   (per_cpu(capacity_freq_ref, cpu) ?: 1);
261 		capacity = div64_u64(capacity << SCHED_CAPACITY_SHIFT,
262 			capacity_scale);
263 		topology_set_cpu_scale(cpu, capacity);
264 		pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
265 			cpu, topology_get_cpu_scale(cpu));
266 	}
267 }
268 
269 bool __init topology_parse_cpu_capacity(struct device_node *cpu_node, int cpu)
270 {
271 	struct clk *cpu_clk;
272 	static bool cap_parsing_failed;
273 	int ret;
274 	u32 cpu_capacity;
275 
276 	if (cap_parsing_failed)
277 		return false;
278 
279 	ret = of_property_read_u32(cpu_node, "capacity-dmips-mhz",
280 				   &cpu_capacity);
281 	if (!ret) {
282 		if (!raw_capacity) {
283 			raw_capacity = kcalloc(num_possible_cpus(),
284 					       sizeof(*raw_capacity),
285 					       GFP_KERNEL);
286 			if (!raw_capacity) {
287 				cap_parsing_failed = true;
288 				return false;
289 			}
290 		}
291 		raw_capacity[cpu] = cpu_capacity;
292 		pr_debug("cpu_capacity: %pOF cpu_capacity=%u (raw)\n",
293 			cpu_node, raw_capacity[cpu]);
294 
295 		/*
296 		 * Update capacity_freq_ref for calculating early boot CPU capacities.
297 		 * For non-clk CPU DVFS mechanism, there's no way to get the
298 		 * frequency value now, assuming they are running at the same
299 		 * frequency (by keeping the initial capacity_freq_ref value).
300 		 */
301 		cpu_clk = of_clk_get(cpu_node, 0);
302 		if (!IS_ERR_OR_NULL(cpu_clk)) {
303 			per_cpu(capacity_freq_ref, cpu) =
304 				clk_get_rate(cpu_clk) / HZ_PER_KHZ;
305 			clk_put(cpu_clk);
306 		}
307 	} else {
308 		if (raw_capacity) {
309 			pr_err("cpu_capacity: missing %pOF raw capacity\n",
310 				cpu_node);
311 			pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
312 		}
313 		cap_parsing_failed = true;
314 		free_raw_capacity();
315 	}
316 
317 	return !ret;
318 }
319 
320 void __weak freq_inv_set_max_ratio(int cpu, u64 max_rate)
321 {
322 }
323 
324 #ifdef CONFIG_ACPI_CPPC_LIB
325 #include <acpi/cppc_acpi.h>
326 
327 static inline void topology_init_cpu_capacity_cppc(void)
328 {
329 	u64 capacity, capacity_scale = 0;
330 	struct cppc_perf_caps perf_caps;
331 	int cpu;
332 
333 	if (likely(!acpi_cpc_valid()))
334 		return;
335 
336 	raw_capacity = kcalloc(num_possible_cpus(), sizeof(*raw_capacity),
337 			       GFP_KERNEL);
338 	if (!raw_capacity)
339 		return;
340 
341 	for_each_possible_cpu(cpu) {
342 		if (!cppc_get_perf_caps(cpu, &perf_caps) &&
343 		    (perf_caps.highest_perf >= perf_caps.nominal_perf) &&
344 		    (perf_caps.highest_perf >= perf_caps.lowest_perf)) {
345 			raw_capacity[cpu] = perf_caps.highest_perf;
346 			capacity_scale = max_t(u64, capacity_scale, raw_capacity[cpu]);
347 
348 			per_cpu(capacity_freq_ref, cpu) = cppc_perf_to_khz(&perf_caps, raw_capacity[cpu]);
349 
350 			pr_debug("cpu_capacity: CPU%d cpu_capacity=%u (raw).\n",
351 				 cpu, raw_capacity[cpu]);
352 			continue;
353 		}
354 
355 		pr_err("cpu_capacity: CPU%d missing/invalid highest performance.\n", cpu);
356 		pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
357 		goto exit;
358 	}
359 
360 	for_each_possible_cpu(cpu) {
361 		freq_inv_set_max_ratio(cpu,
362 				       per_cpu(capacity_freq_ref, cpu) * HZ_PER_KHZ);
363 
364 		capacity = raw_capacity[cpu];
365 		capacity = div64_u64(capacity << SCHED_CAPACITY_SHIFT,
366 				     capacity_scale);
367 		topology_set_cpu_scale(cpu, capacity);
368 		pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
369 			cpu, topology_get_cpu_scale(cpu));
370 	}
371 
372 	schedule_work(&update_topology_flags_work);
373 	pr_debug("cpu_capacity: cpu_capacity initialization done\n");
374 
375 exit:
376 	free_raw_capacity();
377 }
378 void acpi_processor_init_invariance_cppc(void)
379 {
380 	topology_init_cpu_capacity_cppc();
381 }
382 #endif
383 
384 #ifdef CONFIG_CPU_FREQ
385 static cpumask_var_t cpus_to_visit;
386 static void parsing_done_workfn(struct work_struct *work);
387 static DECLARE_WORK(parsing_done_work, parsing_done_workfn);
388 
389 static int
390 init_cpu_capacity_callback(struct notifier_block *nb,
391 			   unsigned long val,
392 			   void *data)
393 {
394 	struct cpufreq_policy *policy = data;
395 	int cpu;
396 
397 	if (val != CPUFREQ_CREATE_POLICY)
398 		return 0;
399 
400 	pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n",
401 		 cpumask_pr_args(policy->related_cpus),
402 		 cpumask_pr_args(cpus_to_visit));
403 
404 	cpumask_andnot(cpus_to_visit, cpus_to_visit, policy->related_cpus);
405 
406 	for_each_cpu(cpu, policy->related_cpus) {
407 		per_cpu(capacity_freq_ref, cpu) = policy->cpuinfo.max_freq;
408 		freq_inv_set_max_ratio(cpu,
409 				       per_cpu(capacity_freq_ref, cpu) * HZ_PER_KHZ);
410 	}
411 
412 	if (cpumask_empty(cpus_to_visit)) {
413 		if (raw_capacity) {
414 			topology_normalize_cpu_scale();
415 			schedule_work(&update_topology_flags_work);
416 			free_raw_capacity();
417 		}
418 		pr_debug("cpu_capacity: parsing done\n");
419 		schedule_work(&parsing_done_work);
420 	}
421 
422 	return 0;
423 }
424 
425 static struct notifier_block init_cpu_capacity_notifier = {
426 	.notifier_call = init_cpu_capacity_callback,
427 };
428 
429 static int __init register_cpufreq_notifier(void)
430 {
431 	int ret;
432 
433 	/*
434 	 * On ACPI-based systems skip registering cpufreq notifier as cpufreq
435 	 * information is not needed for cpu capacity initialization.
436 	 */
437 	if (!acpi_disabled)
438 		return -EINVAL;
439 
440 	if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL))
441 		return -ENOMEM;
442 
443 	cpumask_copy(cpus_to_visit, cpu_possible_mask);
444 
445 	ret = cpufreq_register_notifier(&init_cpu_capacity_notifier,
446 					CPUFREQ_POLICY_NOTIFIER);
447 
448 	if (ret)
449 		free_cpumask_var(cpus_to_visit);
450 
451 	return ret;
452 }
453 core_initcall(register_cpufreq_notifier);
454 
455 static void parsing_done_workfn(struct work_struct *work)
456 {
457 	cpufreq_unregister_notifier(&init_cpu_capacity_notifier,
458 					 CPUFREQ_POLICY_NOTIFIER);
459 	free_cpumask_var(cpus_to_visit);
460 }
461 
462 #else
463 core_initcall(free_raw_capacity);
464 #endif
465 
466 #if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
467 
468 /* Used to enable the SMT control */
469 static unsigned int max_smt_thread_num = 1;
470 
471 /*
472  * This function returns the logic cpu number of the node.
473  * There are basically three kinds of return values:
474  * (1) logic cpu number which is > 0.
475  * (2) -ENODEV when the device tree(DT) node is valid and found in the DT but
476  * there is no possible logical CPU in the kernel to match. This happens
477  * when CONFIG_NR_CPUS is configure to be smaller than the number of
478  * CPU nodes in DT. We need to just ignore this case.
479  * (3) -1 if the node does not exist in the device tree
480  */
481 static int __init get_cpu_for_node(struct device_node *node)
482 {
483 	int cpu;
484 	struct device_node *cpu_node __free(device_node) =
485 		of_parse_phandle(node, "cpu", 0);
486 
487 	if (!cpu_node)
488 		return -1;
489 
490 	cpu = of_cpu_node_to_id(cpu_node);
491 	if (cpu >= 0)
492 		topology_parse_cpu_capacity(cpu_node, cpu);
493 	else
494 		pr_info("CPU node for %pOF exist but the possible cpu range is :%*pbl\n",
495 			cpu_node, cpumask_pr_args(cpu_possible_mask));
496 
497 	return cpu;
498 }
499 
500 static int __init parse_core(struct device_node *core, int package_id,
501 			     int cluster_id, int core_id)
502 {
503 	char name[20];
504 	bool leaf = true;
505 	int i = 0;
506 	int cpu;
507 
508 	do {
509 		snprintf(name, sizeof(name), "thread%d", i);
510 		struct device_node *t __free(device_node) =
511 			of_get_child_by_name(core, name);
512 
513 		if (!t)
514 			break;
515 
516 		leaf = false;
517 		cpu = get_cpu_for_node(t);
518 		if (cpu >= 0) {
519 			cpu_topology[cpu].package_id = package_id;
520 			cpu_topology[cpu].cluster_id = cluster_id;
521 			cpu_topology[cpu].core_id = core_id;
522 			cpu_topology[cpu].thread_id = i;
523 		} else if (cpu != -ENODEV) {
524 			pr_err("%pOF: Can't get CPU for thread\n", t);
525 			return -EINVAL;
526 		}
527 		i++;
528 	} while (1);
529 
530 	max_smt_thread_num = max_t(unsigned int, max_smt_thread_num, i);
531 
532 	cpu = get_cpu_for_node(core);
533 	if (cpu >= 0) {
534 		if (!leaf) {
535 			pr_err("%pOF: Core has both threads and CPU\n",
536 			       core);
537 			return -EINVAL;
538 		}
539 
540 		cpu_topology[cpu].package_id = package_id;
541 		cpu_topology[cpu].cluster_id = cluster_id;
542 		cpu_topology[cpu].core_id = core_id;
543 	} else if (leaf && cpu != -ENODEV) {
544 		pr_err("%pOF: Can't get CPU for leaf core\n", core);
545 		return -EINVAL;
546 	}
547 
548 	return 0;
549 }
550 
551 static int __init parse_cluster(struct device_node *cluster, int package_id,
552 				int cluster_id, int depth)
553 {
554 	char name[20];
555 	bool leaf = true;
556 	bool has_cores = false;
557 	int core_id = 0;
558 	int i, ret;
559 
560 	/*
561 	 * First check for child clusters; we currently ignore any
562 	 * information about the nesting of clusters and present the
563 	 * scheduler with a flat list of them.
564 	 */
565 	i = 0;
566 	do {
567 		snprintf(name, sizeof(name), "cluster%d", i);
568 		struct device_node *c __free(device_node) =
569 			of_get_child_by_name(cluster, name);
570 
571 		if (!c)
572 			break;
573 
574 		leaf = false;
575 		ret = parse_cluster(c, package_id, i, depth + 1);
576 		if (depth > 0)
577 			pr_warn("Topology for clusters of clusters not yet supported\n");
578 		if (ret != 0)
579 			return ret;
580 		i++;
581 	} while (1);
582 
583 	/* Now check for cores */
584 	i = 0;
585 	do {
586 		snprintf(name, sizeof(name), "core%d", i);
587 		struct device_node *c __free(device_node) =
588 			of_get_child_by_name(cluster, name);
589 
590 		if (!c)
591 			break;
592 
593 		has_cores = true;
594 
595 		if (depth == 0) {
596 			pr_err("%pOF: cpu-map children should be clusters\n", c);
597 			return -EINVAL;
598 		}
599 
600 		if (leaf) {
601 			ret = parse_core(c, package_id, cluster_id, core_id++);
602 			if (ret != 0)
603 				return ret;
604 		} else {
605 			pr_err("%pOF: Non-leaf cluster with core %s\n",
606 			       cluster, name);
607 			return -EINVAL;
608 		}
609 
610 		i++;
611 	} while (1);
612 
613 	if (leaf && !has_cores)
614 		pr_warn("%pOF: empty cluster\n", cluster);
615 
616 	return 0;
617 }
618 
619 static int __init parse_socket(struct device_node *socket)
620 {
621 	char name[20];
622 	bool has_socket = false;
623 	int package_id = 0, ret;
624 
625 	do {
626 		snprintf(name, sizeof(name), "socket%d", package_id);
627 		struct device_node *c __free(device_node) =
628 			of_get_child_by_name(socket, name);
629 
630 		if (!c)
631 			break;
632 
633 		has_socket = true;
634 		ret = parse_cluster(c, package_id, -1, 0);
635 		if (ret != 0)
636 			return ret;
637 
638 		package_id++;
639 	} while (1);
640 
641 	if (!has_socket)
642 		ret = parse_cluster(socket, 0, -1, 0);
643 
644 	/*
645 	 * Reset the max_smt_thread_num to 1 on failure. Since on failure
646 	 * we need to notify the framework the SMT is not supported, but
647 	 * max_smt_thread_num can be initialized to the SMT thread number
648 	 * of the cores which are successfully parsed.
649 	 */
650 	if (ret)
651 		max_smt_thread_num = 1;
652 
653 	cpu_smt_set_num_threads(max_smt_thread_num, max_smt_thread_num);
654 
655 	return ret;
656 }
657 
658 static int __init parse_dt_topology(void)
659 {
660 	int ret = 0;
661 	int cpu;
662 	struct device_node *cn __free(device_node) =
663 		of_find_node_by_path("/cpus");
664 
665 	if (!cn) {
666 		pr_err("No CPU information found in DT\n");
667 		return 0;
668 	}
669 
670 	/*
671 	 * When topology is provided cpu-map is essentially a root
672 	 * cluster with restricted subnodes.
673 	 */
674 	struct device_node *map __free(device_node) =
675 		of_get_child_by_name(cn, "cpu-map");
676 
677 	if (!map)
678 		return ret;
679 
680 	ret = parse_socket(map);
681 	if (ret != 0)
682 		return ret;
683 
684 	topology_normalize_cpu_scale();
685 
686 	/*
687 	 * Check that all cores are in the topology; the SMP code will
688 	 * only mark cores described in the DT as possible.
689 	 */
690 	for_each_possible_cpu(cpu)
691 		if (cpu_topology[cpu].package_id < 0) {
692 			return -EINVAL;
693 		}
694 
695 	return ret;
696 }
697 #endif
698 
699 /*
700  * cpu topology table
701  */
702 struct cpu_topology cpu_topology[NR_CPUS];
703 EXPORT_SYMBOL_GPL(cpu_topology);
704 
705 const struct cpumask *cpu_coregroup_mask(int cpu)
706 {
707 	const cpumask_t *core_mask = cpumask_of_node(cpu_to_node(cpu));
708 
709 	/* Find the smaller of NUMA, core or LLC siblings */
710 	if (cpumask_subset(&cpu_topology[cpu].core_sibling, core_mask)) {
711 		/* not numa in package, lets use the package siblings */
712 		core_mask = &cpu_topology[cpu].core_sibling;
713 	}
714 
715 	if (last_level_cache_is_valid(cpu)) {
716 		if (cpumask_subset(&cpu_topology[cpu].llc_sibling, core_mask))
717 			core_mask = &cpu_topology[cpu].llc_sibling;
718 	}
719 
720 	/*
721 	 * For systems with no shared cpu-side LLC but with clusters defined,
722 	 * extend core_mask to cluster_siblings. The sched domain builder will
723 	 * then remove MC as redundant with CLS if SCHED_CLUSTER is enabled.
724 	 */
725 	if (IS_ENABLED(CONFIG_SCHED_CLUSTER) &&
726 	    cpumask_subset(core_mask, &cpu_topology[cpu].cluster_sibling))
727 		core_mask = &cpu_topology[cpu].cluster_sibling;
728 
729 	return core_mask;
730 }
731 
732 const struct cpumask *cpu_clustergroup_mask(int cpu)
733 {
734 	/*
735 	 * Forbid cpu_clustergroup_mask() to span more or the same CPUs as
736 	 * cpu_coregroup_mask().
737 	 */
738 	if (cpumask_subset(cpu_coregroup_mask(cpu),
739 			   &cpu_topology[cpu].cluster_sibling))
740 		return topology_sibling_cpumask(cpu);
741 
742 	return &cpu_topology[cpu].cluster_sibling;
743 }
744 
745 void update_siblings_masks(unsigned int cpuid)
746 {
747 	struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
748 	int cpu, ret;
749 
750 	ret = detect_cache_attributes(cpuid);
751 	if (ret && ret != -ENOENT)
752 		pr_info("Early cacheinfo allocation failed, ret = %d\n", ret);
753 
754 	/* update core and thread sibling masks */
755 	for_each_online_cpu(cpu) {
756 		cpu_topo = &cpu_topology[cpu];
757 
758 		if (last_level_cache_is_shared(cpu, cpuid)) {
759 			cpumask_set_cpu(cpu, &cpuid_topo->llc_sibling);
760 			cpumask_set_cpu(cpuid, &cpu_topo->llc_sibling);
761 		}
762 
763 		if (cpuid_topo->package_id != cpu_topo->package_id)
764 			continue;
765 
766 		cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
767 		cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
768 
769 		if (cpuid_topo->cluster_id != cpu_topo->cluster_id)
770 			continue;
771 
772 		if (cpuid_topo->cluster_id >= 0) {
773 			cpumask_set_cpu(cpu, &cpuid_topo->cluster_sibling);
774 			cpumask_set_cpu(cpuid, &cpu_topo->cluster_sibling);
775 		}
776 
777 		if (cpuid_topo->core_id != cpu_topo->core_id)
778 			continue;
779 
780 		cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
781 		cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
782 	}
783 }
784 
785 static void clear_cpu_topology(int cpu)
786 {
787 	struct cpu_topology *cpu_topo = &cpu_topology[cpu];
788 
789 	cpumask_clear(&cpu_topo->llc_sibling);
790 	cpumask_set_cpu(cpu, &cpu_topo->llc_sibling);
791 
792 	cpumask_clear(&cpu_topo->cluster_sibling);
793 	cpumask_set_cpu(cpu, &cpu_topo->cluster_sibling);
794 
795 	cpumask_clear(&cpu_topo->core_sibling);
796 	cpumask_set_cpu(cpu, &cpu_topo->core_sibling);
797 	cpumask_clear(&cpu_topo->thread_sibling);
798 	cpumask_set_cpu(cpu, &cpu_topo->thread_sibling);
799 }
800 
801 void __init reset_cpu_topology(void)
802 {
803 	unsigned int cpu;
804 
805 	for_each_possible_cpu(cpu) {
806 		struct cpu_topology *cpu_topo = &cpu_topology[cpu];
807 
808 		cpu_topo->thread_id = -1;
809 		cpu_topo->core_id = -1;
810 		cpu_topo->cluster_id = -1;
811 		cpu_topo->package_id = -1;
812 
813 		clear_cpu_topology(cpu);
814 	}
815 }
816 
817 void remove_cpu_topology(unsigned int cpu)
818 {
819 	int sibling;
820 
821 	for_each_cpu(sibling, topology_core_cpumask(cpu))
822 		cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
823 	for_each_cpu(sibling, topology_sibling_cpumask(cpu))
824 		cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
825 	for_each_cpu(sibling, topology_cluster_cpumask(cpu))
826 		cpumask_clear_cpu(cpu, topology_cluster_cpumask(sibling));
827 	for_each_cpu(sibling, topology_llc_cpumask(cpu))
828 		cpumask_clear_cpu(cpu, topology_llc_cpumask(sibling));
829 
830 	clear_cpu_topology(cpu);
831 }
832 
833 #if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
834 struct cpu_smt_info {
835 	unsigned int thread_num;
836 	int core_id;
837 };
838 
839 static bool __init acpi_cpu_is_threaded(int cpu)
840 {
841 	int is_threaded = acpi_pptt_cpu_is_thread(cpu);
842 
843 	/*
844 	 * if the PPTT doesn't have thread information, check for architecture
845 	 * specific fallback if available
846 	 */
847 	if (is_threaded < 0)
848 		is_threaded = arch_cpu_is_threaded();
849 
850 	return !!is_threaded;
851 }
852 
853 /*
854  * Propagate the topology information of the processor_topology_node tree to the
855  * cpu_topology array.
856  */
857 __weak int __init parse_acpi_topology(void)
858 {
859 	unsigned int max_smt_thread_num = 1;
860 	struct cpu_smt_info *entry;
861 	struct xarray hetero_cpu;
862 	unsigned long hetero_id;
863 	int cpu, topology_id;
864 
865 	if (acpi_disabled)
866 		return 0;
867 
868 	xa_init(&hetero_cpu);
869 
870 	for_each_possible_cpu(cpu) {
871 		topology_id = find_acpi_cpu_topology(cpu, 0);
872 		if (topology_id < 0)
873 			return topology_id;
874 
875 		if (acpi_cpu_is_threaded(cpu)) {
876 			cpu_topology[cpu].thread_id = topology_id;
877 			topology_id = find_acpi_cpu_topology(cpu, 1);
878 			cpu_topology[cpu].core_id   = topology_id;
879 
880 			/*
881 			 * In the PPTT, CPUs below a node with the 'identical
882 			 * implementation' flag have the same number of threads.
883 			 * Count the number of threads for only one CPU (i.e.
884 			 * one core_id) among those with the same hetero_id.
885 			 * See the comment of find_acpi_cpu_topology_hetero_id()
886 			 * for more details.
887 			 *
888 			 * One entry is created for each node having:
889 			 * - the 'identical implementation' flag
890 			 * - its parent not having the flag
891 			 */
892 			hetero_id = find_acpi_cpu_topology_hetero_id(cpu);
893 			entry = xa_load(&hetero_cpu, hetero_id);
894 			if (!entry) {
895 				entry = kzalloc(sizeof(*entry), GFP_KERNEL);
896 				WARN_ON_ONCE(!entry);
897 
898 				if (entry) {
899 					entry->core_id = topology_id;
900 					entry->thread_num = 1;
901 					xa_store(&hetero_cpu, hetero_id,
902 						 entry, GFP_KERNEL);
903 				}
904 			} else if (entry->core_id == topology_id) {
905 				entry->thread_num++;
906 			}
907 		} else {
908 			cpu_topology[cpu].thread_id  = -1;
909 			cpu_topology[cpu].core_id    = topology_id;
910 		}
911 		topology_id = find_acpi_cpu_topology_cluster(cpu);
912 		cpu_topology[cpu].cluster_id = topology_id;
913 		topology_id = find_acpi_cpu_topology_package(cpu);
914 		cpu_topology[cpu].package_id = topology_id;
915 	}
916 
917 	/*
918 	 * This is a short loop since the number of XArray elements is the
919 	 * number of heterogeneous CPU clusters. On a homogeneous system
920 	 * there's only one entry in the XArray.
921 	 */
922 	xa_for_each(&hetero_cpu, hetero_id, entry) {
923 		max_smt_thread_num = max(max_smt_thread_num, entry->thread_num);
924 		xa_erase(&hetero_cpu, hetero_id);
925 		kfree(entry);
926 	}
927 
928 	cpu_smt_set_num_threads(max_smt_thread_num, max_smt_thread_num);
929 	xa_destroy(&hetero_cpu);
930 	return 0;
931 }
932 
933 void __init init_cpu_topology(void)
934 {
935 	int cpu, ret;
936 
937 	reset_cpu_topology();
938 	ret = parse_acpi_topology();
939 	if (!ret)
940 		ret = of_have_populated_dt() && parse_dt_topology();
941 
942 	if (ret) {
943 		/*
944 		 * Discard anything that was parsed if we hit an error so we
945 		 * don't use partial information. But do not return yet to give
946 		 * arch-specific early cache level detection a chance to run.
947 		 */
948 		reset_cpu_topology();
949 	}
950 
951 	for_each_possible_cpu(cpu) {
952 		ret = fetch_cache_info(cpu);
953 		if (!ret)
954 			continue;
955 		else if (ret != -ENOENT)
956 			pr_err("Early cacheinfo failed, ret = %d\n", ret);
957 		return;
958 	}
959 }
960 
961 void store_cpu_topology(unsigned int cpuid)
962 {
963 	struct cpu_topology *cpuid_topo = &cpu_topology[cpuid];
964 
965 	if (cpuid_topo->package_id != -1)
966 		goto topology_populated;
967 
968 	cpuid_topo->thread_id = -1;
969 	cpuid_topo->core_id = cpuid;
970 	cpuid_topo->package_id = cpu_to_node(cpuid);
971 
972 	pr_debug("CPU%u: package %d core %d thread %d\n",
973 		 cpuid, cpuid_topo->package_id, cpuid_topo->core_id,
974 		 cpuid_topo->thread_id);
975 
976 topology_populated:
977 	update_siblings_masks(cpuid);
978 }
979 #endif
980