1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Core IEEE1394 transaction logic
4 *
5 * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 */
7
8 #include <linux/bug.h>
9 #include <linux/completion.h>
10 #include <linux/device.h>
11 #include <linux/errno.h>
12 #include <linux/firewire.h>
13 #include <linux/firewire-constants.h>
14 #include <linux/fs.h>
15 #include <linux/init.h>
16 #include <linux/jiffies.h>
17 #include <linux/kernel.h>
18 #include <linux/list.h>
19 #include <linux/module.h>
20 #include <linux/rculist.h>
21 #include <linux/slab.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/timer.h>
25 #include <linux/types.h>
26 #include <linux/workqueue.h>
27
28 #include <asm/byteorder.h>
29
30 #include "core.h"
31 #include "packet-header-definitions.h"
32 #include "phy-packet-definitions.h"
33 #include <trace/events/firewire.h>
34
35 #define HEADER_DESTINATION_IS_BROADCAST(header) \
36 ((async_header_get_destination(header) & 0x3f) == 0x3f)
37
38 /* returns 0 if the split timeout handler is already running */
try_cancel_split_timeout(struct fw_transaction * t)39 static int try_cancel_split_timeout(struct fw_transaction *t)
40 {
41 if (t->is_split_transaction)
42 return timer_delete(&t->split_timeout_timer);
43 else
44 return 1;
45 }
46
close_transaction(struct fw_transaction * transaction,struct fw_card * card,int rcode,u32 response_tstamp)47 static int close_transaction(struct fw_transaction *transaction, struct fw_card *card, int rcode,
48 u32 response_tstamp)
49 {
50 struct fw_transaction *t = NULL, *iter;
51
52 // NOTE: This can be without irqsave when we can guarantee that __fw_send_request() for
53 // local destination never runs in any type of IRQ context.
54 scoped_guard(spinlock_irqsave, &card->transactions.lock) {
55 list_for_each_entry(iter, &card->transactions.list, link) {
56 if (iter == transaction) {
57 if (try_cancel_split_timeout(iter)) {
58 list_del_init(&iter->link);
59 card->transactions.tlabel_mask &= ~(1ULL << iter->tlabel);
60 t = iter;
61 }
62 break;
63 }
64 }
65 }
66
67 if (!t)
68 return -ENOENT;
69
70 if (!t->with_tstamp) {
71 t->callback.without_tstamp(card, rcode, NULL, 0, t->callback_data);
72 } else {
73 t->callback.with_tstamp(card, rcode, t->packet.timestamp, response_tstamp, NULL, 0,
74 t->callback_data);
75 }
76
77 return 0;
78 }
79
80 /*
81 * Only valid for transactions that are potentially pending (ie have
82 * been sent).
83 */
fw_cancel_transaction(struct fw_card * card,struct fw_transaction * transaction)84 int fw_cancel_transaction(struct fw_card *card,
85 struct fw_transaction *transaction)
86 {
87 u32 tstamp;
88
89 /*
90 * Cancel the packet transmission if it's still queued. That
91 * will call the packet transmission callback which cancels
92 * the transaction.
93 */
94
95 if (card->driver->cancel_packet(card, &transaction->packet) == 0)
96 return 0;
97
98 /*
99 * If the request packet has already been sent, we need to see
100 * if the transaction is still pending and remove it in that case.
101 */
102
103 if (transaction->packet.ack == 0) {
104 // The timestamp is reused since it was just read now.
105 tstamp = transaction->packet.timestamp;
106 } else {
107 u32 curr_cycle_time = 0;
108
109 (void)fw_card_read_cycle_time(card, &curr_cycle_time);
110 tstamp = cycle_time_to_ohci_tstamp(curr_cycle_time);
111 }
112
113 return close_transaction(transaction, card, RCODE_CANCELLED, tstamp);
114 }
115 EXPORT_SYMBOL(fw_cancel_transaction);
116
split_transaction_timeout_callback(struct timer_list * timer)117 static void split_transaction_timeout_callback(struct timer_list *timer)
118 {
119 struct fw_transaction *t = timer_container_of(t, timer, split_timeout_timer);
120 struct fw_card *card = t->card;
121
122 scoped_guard(spinlock_irqsave, &card->transactions.lock) {
123 if (list_empty(&t->link))
124 return;
125 list_del(&t->link);
126 card->transactions.tlabel_mask &= ~(1ULL << t->tlabel);
127 }
128
129 if (!t->with_tstamp) {
130 t->callback.without_tstamp(card, RCODE_CANCELLED, NULL, 0, t->callback_data);
131 } else {
132 t->callback.with_tstamp(card, RCODE_CANCELLED, t->packet.timestamp,
133 t->split_timeout_cycle, NULL, 0, t->callback_data);
134 }
135 }
136
start_split_transaction_timeout(struct fw_transaction * t,struct fw_card * card)137 static void start_split_transaction_timeout(struct fw_transaction *t,
138 struct fw_card *card)
139 {
140 unsigned long delta;
141
142 if (list_empty(&t->link) || WARN_ON(t->is_split_transaction))
143 return;
144
145 t->is_split_transaction = true;
146
147 // NOTE: This can be without irqsave when we can guarantee that __fw_send_request() for
148 // local destination never runs in any type of IRQ context.
149 scoped_guard(spinlock_irqsave, &card->split_timeout.lock)
150 delta = card->split_timeout.jiffies;
151 mod_timer(&t->split_timeout_timer, jiffies + delta);
152 }
153
154 static u32 compute_split_timeout_timestamp(struct fw_card *card, u32 request_timestamp);
155
transmit_complete_callback(struct fw_packet * packet,struct fw_card * card,int status)156 static void transmit_complete_callback(struct fw_packet *packet,
157 struct fw_card *card, int status)
158 {
159 struct fw_transaction *t =
160 container_of(packet, struct fw_transaction, packet);
161
162 trace_async_request_outbound_complete((uintptr_t)t, card->index, packet->generation,
163 packet->speed, status, packet->timestamp);
164
165 switch (status) {
166 case ACK_COMPLETE:
167 close_transaction(t, card, RCODE_COMPLETE, packet->timestamp);
168 break;
169 case ACK_PENDING:
170 {
171 // NOTE: This can be without irqsave when we can guarantee that __fw_send_request() for
172 // local destination never runs in any type of IRQ context.
173 scoped_guard(spinlock_irqsave, &card->split_timeout.lock) {
174 t->split_timeout_cycle =
175 compute_split_timeout_timestamp(card, packet->timestamp) & 0xffff;
176 }
177 start_split_transaction_timeout(t, card);
178 break;
179 }
180 case ACK_BUSY_X:
181 case ACK_BUSY_A:
182 case ACK_BUSY_B:
183 close_transaction(t, card, RCODE_BUSY, packet->timestamp);
184 break;
185 case ACK_DATA_ERROR:
186 close_transaction(t, card, RCODE_DATA_ERROR, packet->timestamp);
187 break;
188 case ACK_TYPE_ERROR:
189 close_transaction(t, card, RCODE_TYPE_ERROR, packet->timestamp);
190 break;
191 default:
192 /*
193 * In this case the ack is really a juju specific
194 * rcode, so just forward that to the callback.
195 */
196 close_transaction(t, card, status, packet->timestamp);
197 break;
198 }
199 }
200
fw_fill_request(struct fw_packet * packet,int tcode,int tlabel,int destination_id,int source_id,int generation,int speed,unsigned long long offset,void * payload,size_t length)201 static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel,
202 int destination_id, int source_id, int generation, int speed,
203 unsigned long long offset, void *payload, size_t length)
204 {
205 int ext_tcode;
206
207 if (tcode == TCODE_STREAM_DATA) {
208 // The value of destination_id argument should include tag, channel, and sy fields
209 // as isochronous packet header has.
210 packet->header[0] = destination_id;
211 isoc_header_set_data_length(packet->header, length);
212 isoc_header_set_tcode(packet->header, TCODE_STREAM_DATA);
213 packet->header_length = 4;
214 packet->payload = payload;
215 packet->payload_length = length;
216
217 goto common;
218 }
219
220 if (tcode > 0x10) {
221 ext_tcode = tcode & ~0x10;
222 tcode = TCODE_LOCK_REQUEST;
223 } else
224 ext_tcode = 0;
225
226 async_header_set_retry(packet->header, RETRY_X);
227 async_header_set_tlabel(packet->header, tlabel);
228 async_header_set_tcode(packet->header, tcode);
229 async_header_set_destination(packet->header, destination_id);
230 async_header_set_source(packet->header, source_id);
231 async_header_set_offset(packet->header, offset);
232
233 switch (tcode) {
234 case TCODE_WRITE_QUADLET_REQUEST:
235 async_header_set_quadlet_data(packet->header, *(u32 *)payload);
236 packet->header_length = 16;
237 packet->payload_length = 0;
238 break;
239
240 case TCODE_LOCK_REQUEST:
241 case TCODE_WRITE_BLOCK_REQUEST:
242 async_header_set_data_length(packet->header, length);
243 async_header_set_extended_tcode(packet->header, ext_tcode);
244 packet->header_length = 16;
245 packet->payload = payload;
246 packet->payload_length = length;
247 break;
248
249 case TCODE_READ_QUADLET_REQUEST:
250 packet->header_length = 12;
251 packet->payload_length = 0;
252 break;
253
254 case TCODE_READ_BLOCK_REQUEST:
255 async_header_set_data_length(packet->header, length);
256 async_header_set_extended_tcode(packet->header, ext_tcode);
257 packet->header_length = 16;
258 packet->payload_length = 0;
259 break;
260
261 default:
262 WARN(1, "wrong tcode %d\n", tcode);
263 }
264 common:
265 packet->speed = speed;
266 packet->generation = generation;
267 packet->ack = 0;
268 packet->payload_mapped = false;
269 }
270
allocate_tlabel(struct fw_card * card)271 static int allocate_tlabel(struct fw_card *card)
272 __must_hold(&card->transactions.lock)
273 {
274 int tlabel;
275
276 lockdep_assert_held(&card->transactions.lock);
277
278 tlabel = card->transactions.current_tlabel;
279 while (card->transactions.tlabel_mask & (1ULL << tlabel)) {
280 tlabel = (tlabel + 1) & 0x3f;
281 if (tlabel == card->transactions.current_tlabel)
282 return -EBUSY;
283 }
284
285 card->transactions.current_tlabel = (tlabel + 1) & 0x3f;
286 card->transactions.tlabel_mask |= 1ULL << tlabel;
287
288 return tlabel;
289 }
290
291 /**
292 * __fw_send_request() - submit a request packet for transmission to generate callback for response
293 * subaction with or without time stamp.
294 * @card: interface to send the request at
295 * @t: transaction instance to which the request belongs
296 * @tcode: transaction code
297 * @destination_id: destination node ID, consisting of bus_ID and phy_ID
298 * @generation: bus generation in which request and response are valid
299 * @speed: transmission speed
300 * @offset: 48bit wide offset into destination's address space
301 * @payload: data payload for the request subaction
302 * @length: length of the payload, in bytes
303 * @callback: union of two functions whether to receive time stamp or not for response
304 * subaction.
305 * @with_tstamp: Whether to receive time stamp or not for response subaction.
306 * @callback_data: data to be passed to the transaction completion callback
307 *
308 * Submit a request packet into the asynchronous request transmission queue.
309 * Can be called from atomic context. If you prefer a blocking API, use
310 * fw_run_transaction() in a context that can sleep.
311 *
312 * In case of lock requests, specify one of the firewire-core specific %TCODE_
313 * constants instead of %TCODE_LOCK_REQUEST in @tcode.
314 *
315 * Make sure that the value in @destination_id is not older than the one in
316 * @generation. Otherwise the request is in danger to be sent to a wrong node.
317 *
318 * In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller
319 * needs to synthesize @destination_id with fw_stream_packet_destination_id().
320 * It will contain tag, channel, and sy data instead of a node ID then.
321 *
322 * The payload buffer at @data is going to be DMA-mapped except in case of
323 * @length <= 8 or of local (loopback) requests. Hence make sure that the
324 * buffer complies with the restrictions of the streaming DMA mapping API.
325 * @payload must not be freed before the @callback is called.
326 *
327 * In case of request types without payload, @data is NULL and @length is 0.
328 *
329 * After the transaction is completed successfully or unsuccessfully, the
330 * @callback will be called. Among its parameters is the response code which
331 * is either one of the rcodes per IEEE 1394 or, in case of internal errors,
332 * the firewire-core specific %RCODE_SEND_ERROR. The other firewire-core
333 * specific rcodes (%RCODE_CANCELLED, %RCODE_BUSY, %RCODE_GENERATION,
334 * %RCODE_NO_ACK) denote transaction timeout, busy responder, stale request
335 * generation, or missing ACK respectively.
336 *
337 * Note some timing corner cases: fw_send_request() may complete much earlier
338 * than when the request packet actually hits the wire. On the other hand,
339 * transaction completion and hence execution of @callback may happen even
340 * before fw_send_request() returns.
341 */
__fw_send_request(struct fw_card * card,struct fw_transaction * t,int tcode,int destination_id,int generation,int speed,unsigned long long offset,void * payload,size_t length,union fw_transaction_callback callback,bool with_tstamp,void * callback_data)342 void __fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode,
343 int destination_id, int generation, int speed, unsigned long long offset,
344 void *payload, size_t length, union fw_transaction_callback callback,
345 bool with_tstamp, void *callback_data)
346 {
347 int tlabel;
348
349 /*
350 * Allocate tlabel from the bitmap and put the transaction on
351 * the list while holding the card spinlock.
352 */
353
354 // NOTE: This can be without irqsave when we can guarantee that __fw_send_request() for
355 // local destination never runs in any type of IRQ context.
356 scoped_guard(spinlock_irqsave, &card->transactions.lock)
357 tlabel = allocate_tlabel(card);
358 if (tlabel < 0) {
359 if (!with_tstamp) {
360 callback.without_tstamp(card, RCODE_SEND_ERROR, NULL, 0, callback_data);
361 } else {
362 // Timestamping on behalf of hardware.
363 u32 curr_cycle_time = 0;
364 u32 tstamp;
365
366 (void)fw_card_read_cycle_time(card, &curr_cycle_time);
367 tstamp = cycle_time_to_ohci_tstamp(curr_cycle_time);
368
369 callback.with_tstamp(card, RCODE_SEND_ERROR, tstamp, tstamp, NULL, 0,
370 callback_data);
371 }
372 return;
373 }
374
375 t->node_id = destination_id;
376 t->tlabel = tlabel;
377 t->card = card;
378 t->is_split_transaction = false;
379 timer_setup(&t->split_timeout_timer, split_transaction_timeout_callback, 0);
380 t->callback = callback;
381 t->with_tstamp = with_tstamp;
382 t->callback_data = callback_data;
383 t->packet.callback = transmit_complete_callback;
384
385 // NOTE: This can be without irqsave when we can guarantee that __fw_send_request() for
386 // local destination never runs in any type of IRQ context.
387 scoped_guard(spinlock_irqsave, &card->lock) {
388 // The node_id field of fw_card can be updated when handling SelfIDComplete.
389 fw_fill_request(&t->packet, tcode, t->tlabel, destination_id, card->node_id,
390 generation, speed, offset, payload, length);
391 }
392
393 // NOTE: This can be without irqsave when we can guarantee that __fw_send_request() for
394 // local destination never runs in any type of IRQ context.
395 scoped_guard(spinlock_irqsave, &card->transactions.lock)
396 list_add_tail(&t->link, &card->transactions.list);
397
398 // Safe with no lock, since the index field of fw_card is immutable once assigned.
399 trace_async_request_outbound_initiate((uintptr_t)t, card->index, generation, speed,
400 t->packet.header, payload,
401 tcode_is_read_request(tcode) ? 0 : length / 4);
402
403 card->driver->send_request(card, &t->packet);
404 }
405 EXPORT_SYMBOL_GPL(__fw_send_request);
406
407 struct transaction_callback_data {
408 struct completion done;
409 void *payload;
410 int rcode;
411 };
412
transaction_callback(struct fw_card * card,int rcode,void * payload,size_t length,void * data)413 static void transaction_callback(struct fw_card *card, int rcode,
414 void *payload, size_t length, void *data)
415 {
416 struct transaction_callback_data *d = data;
417
418 if (rcode == RCODE_COMPLETE)
419 memcpy(d->payload, payload, length);
420 d->rcode = rcode;
421 complete(&d->done);
422 }
423
424 /**
425 * fw_run_transaction() - send request and sleep until transaction is completed
426 * @card: card interface for this request
427 * @tcode: transaction code
428 * @destination_id: destination node ID, consisting of bus_ID and phy_ID
429 * @generation: bus generation in which request and response are valid
430 * @speed: transmission speed
431 * @offset: 48bit wide offset into destination's address space
432 * @payload: data payload for the request subaction
433 * @length: length of the payload, in bytes
434 *
435 * Returns the RCODE. See fw_send_request() for parameter documentation.
436 * Unlike fw_send_request(), @data points to the payload of the request or/and
437 * to the payload of the response. DMA mapping restrictions apply to outbound
438 * request payloads of >= 8 bytes but not to inbound response payloads.
439 */
fw_run_transaction(struct fw_card * card,int tcode,int destination_id,int generation,int speed,unsigned long long offset,void * payload,size_t length)440 int fw_run_transaction(struct fw_card *card, int tcode, int destination_id,
441 int generation, int speed, unsigned long long offset,
442 void *payload, size_t length)
443 {
444 struct transaction_callback_data d;
445 struct fw_transaction t;
446
447 timer_setup_on_stack(&t.split_timeout_timer, NULL, 0);
448 init_completion(&d.done);
449 d.payload = payload;
450 fw_send_request(card, &t, tcode, destination_id, generation, speed,
451 offset, payload, length, transaction_callback, &d);
452 wait_for_completion(&d.done);
453 timer_destroy_on_stack(&t.split_timeout_timer);
454
455 return d.rcode;
456 }
457 EXPORT_SYMBOL(fw_run_transaction);
458
459 static DEFINE_MUTEX(phy_config_mutex);
460 static DECLARE_COMPLETION(phy_config_done);
461
transmit_phy_packet_callback(struct fw_packet * packet,struct fw_card * card,int status)462 static void transmit_phy_packet_callback(struct fw_packet *packet,
463 struct fw_card *card, int status)
464 {
465 trace_async_phy_outbound_complete((uintptr_t)packet, card->index, packet->generation, status,
466 packet->timestamp);
467 complete(&phy_config_done);
468 }
469
470 static struct fw_packet phy_config_packet = {
471 .header_length = 12,
472 .payload_length = 0,
473 .speed = SCODE_100,
474 .callback = transmit_phy_packet_callback,
475 };
476
fw_send_phy_config(struct fw_card * card,int node_id,int generation,int gap_count)477 void fw_send_phy_config(struct fw_card *card,
478 int node_id, int generation, int gap_count)
479 {
480 long timeout = msecs_to_jiffies(100);
481 u32 data = 0;
482
483 phy_packet_set_packet_identifier(&data, PHY_PACKET_PACKET_IDENTIFIER_PHY_CONFIG);
484
485 if (node_id != FW_PHY_CONFIG_NO_NODE_ID) {
486 phy_packet_phy_config_set_root_id(&data, node_id);
487 phy_packet_phy_config_set_force_root_node(&data, true);
488 }
489
490 if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) {
491 gap_count = card->driver->read_phy_reg(card, 1);
492 if (gap_count < 0)
493 return;
494
495 gap_count &= 63;
496 if (gap_count == 63)
497 return;
498 }
499 phy_packet_phy_config_set_gap_count(&data, gap_count);
500 phy_packet_phy_config_set_gap_count_optimization(&data, true);
501
502 guard(mutex)(&phy_config_mutex);
503
504 async_header_set_tcode(phy_config_packet.header, TCODE_LINK_INTERNAL);
505 phy_config_packet.header[1] = data;
506 phy_config_packet.header[2] = ~data;
507 phy_config_packet.generation = generation;
508 reinit_completion(&phy_config_done);
509
510 trace_async_phy_outbound_initiate((uintptr_t)&phy_config_packet, card->index,
511 phy_config_packet.generation, phy_config_packet.header[1],
512 phy_config_packet.header[2]);
513
514 card->driver->send_request(card, &phy_config_packet);
515 wait_for_completion_timeout(&phy_config_done, timeout);
516 }
517
lookup_overlapping_address_handler(struct list_head * list,unsigned long long offset,size_t length)518 static struct fw_address_handler *lookup_overlapping_address_handler(
519 struct list_head *list, unsigned long long offset, size_t length)
520 {
521 struct fw_address_handler *handler;
522
523 list_for_each_entry_rcu(handler, list, link) {
524 if (handler->offset < offset + length &&
525 offset < handler->offset + handler->length)
526 return handler;
527 }
528
529 return NULL;
530 }
531
is_enclosing_handler(struct fw_address_handler * handler,unsigned long long offset,size_t length)532 static bool is_enclosing_handler(struct fw_address_handler *handler,
533 unsigned long long offset, size_t length)
534 {
535 return handler->offset <= offset &&
536 offset + length <= handler->offset + handler->length;
537 }
538
lookup_enclosing_address_handler(struct list_head * list,unsigned long long offset,size_t length)539 static struct fw_address_handler *lookup_enclosing_address_handler(
540 struct list_head *list, unsigned long long offset, size_t length)
541 {
542 struct fw_address_handler *handler;
543
544 list_for_each_entry_rcu(handler, list, link) {
545 if (is_enclosing_handler(handler, offset, length))
546 return handler;
547 }
548
549 return NULL;
550 }
551
552 static DEFINE_SPINLOCK(address_handler_list_lock);
553 static LIST_HEAD(address_handler_list);
554
555 const struct fw_address_region fw_high_memory_region =
556 { .start = FW_MAX_PHYSICAL_RANGE, .end = 0xffffe0000000ULL, };
557 EXPORT_SYMBOL(fw_high_memory_region);
558
559 static const struct fw_address_region low_memory_region =
560 { .start = 0x000000000000ULL, .end = FW_MAX_PHYSICAL_RANGE, };
561
562 #if 0
563 const struct fw_address_region fw_private_region =
564 { .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL, };
565 const struct fw_address_region fw_csr_region =
566 { .start = CSR_REGISTER_BASE,
567 .end = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END, };
568 const struct fw_address_region fw_unit_space_region =
569 { .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, };
570 #endif /* 0 */
571
complete_address_handler(struct kref * kref)572 static void complete_address_handler(struct kref *kref)
573 {
574 struct fw_address_handler *handler = container_of(kref, struct fw_address_handler, kref);
575
576 complete(&handler->done);
577 }
578
get_address_handler(struct fw_address_handler * handler)579 static void get_address_handler(struct fw_address_handler *handler)
580 {
581 kref_get(&handler->kref);
582 }
583
put_address_handler(struct fw_address_handler * handler)584 static int put_address_handler(struct fw_address_handler *handler)
585 {
586 return kref_put(&handler->kref, complete_address_handler);
587 }
588
589 /**
590 * fw_core_add_address_handler() - register for incoming requests
591 * @handler: callback
592 * @region: region in the IEEE 1212 node space address range
593 *
594 * region->start, ->end, and handler->length have to be quadlet-aligned.
595 *
596 * When a request is received that falls within the specified address range, the specified callback
597 * is invoked. The parameters passed to the callback give the details of the particular request.
598 * The callback is invoked in the workqueue context in most cases. However, if the request is
599 * initiated by the local node, the callback is invoked in the initiator's context.
600 *
601 * To be called in process context.
602 * Return value: 0 on success, non-zero otherwise.
603 *
604 * The start offset of the handler's address region is determined by
605 * fw_core_add_address_handler() and is returned in handler->offset.
606 *
607 * Address allocations are exclusive, except for the FCP registers.
608 */
fw_core_add_address_handler(struct fw_address_handler * handler,const struct fw_address_region * region)609 int fw_core_add_address_handler(struct fw_address_handler *handler,
610 const struct fw_address_region *region)
611 {
612 struct fw_address_handler *other;
613 int ret = -EBUSY;
614
615 if (region->start & 0xffff000000000003ULL ||
616 region->start >= region->end ||
617 region->end > 0x0001000000000000ULL ||
618 handler->length & 3 ||
619 handler->length == 0)
620 return -EINVAL;
621
622 guard(spinlock)(&address_handler_list_lock);
623
624 handler->offset = region->start;
625 while (handler->offset + handler->length <= region->end) {
626 if (is_in_fcp_region(handler->offset, handler->length))
627 other = NULL;
628 else
629 other = lookup_overlapping_address_handler
630 (&address_handler_list,
631 handler->offset, handler->length);
632 if (other != NULL) {
633 handler->offset += other->length;
634 } else {
635 init_completion(&handler->done);
636 kref_init(&handler->kref);
637 list_add_tail_rcu(&handler->link, &address_handler_list);
638 ret = 0;
639 break;
640 }
641 }
642
643 return ret;
644 }
645 EXPORT_SYMBOL(fw_core_add_address_handler);
646
647 /**
648 * fw_core_remove_address_handler() - unregister an address handler
649 * @handler: callback
650 *
651 * To be called in process context.
652 *
653 * When fw_core_remove_address_handler() returns, @handler->callback() is
654 * guaranteed to not run on any CPU anymore.
655 */
fw_core_remove_address_handler(struct fw_address_handler * handler)656 void fw_core_remove_address_handler(struct fw_address_handler *handler)
657 {
658 scoped_guard(spinlock, &address_handler_list_lock)
659 list_del_rcu(&handler->link);
660
661 synchronize_rcu();
662
663 if (!put_address_handler(handler))
664 wait_for_completion(&handler->done);
665 }
666 EXPORT_SYMBOL(fw_core_remove_address_handler);
667
668 struct fw_request {
669 struct kref kref;
670 struct fw_packet response;
671 u32 request_header[ASYNC_HEADER_QUADLET_COUNT];
672 int ack;
673 u32 timestamp;
674 u32 length;
675 u32 data[];
676 };
677
fw_request_get(struct fw_request * request)678 void fw_request_get(struct fw_request *request)
679 {
680 kref_get(&request->kref);
681 }
682
release_request(struct kref * kref)683 static void release_request(struct kref *kref)
684 {
685 struct fw_request *request = container_of(kref, struct fw_request, kref);
686
687 kfree(request);
688 }
689
fw_request_put(struct fw_request * request)690 void fw_request_put(struct fw_request *request)
691 {
692 kref_put(&request->kref, release_request);
693 }
694
free_response_callback(struct fw_packet * packet,struct fw_card * card,int status)695 static void free_response_callback(struct fw_packet *packet,
696 struct fw_card *card, int status)
697 {
698 struct fw_request *request = container_of(packet, struct fw_request, response);
699
700 trace_async_response_outbound_complete((uintptr_t)request, card->index, packet->generation,
701 packet->speed, status, packet->timestamp);
702
703 // Decrease the reference count since not at in-flight.
704 fw_request_put(request);
705
706 // Decrease the reference count to release the object.
707 fw_request_put(request);
708 }
709
fw_get_response_length(struct fw_request * r)710 int fw_get_response_length(struct fw_request *r)
711 {
712 int tcode, ext_tcode, data_length;
713
714 tcode = async_header_get_tcode(r->request_header);
715
716 switch (tcode) {
717 case TCODE_WRITE_QUADLET_REQUEST:
718 case TCODE_WRITE_BLOCK_REQUEST:
719 return 0;
720
721 case TCODE_READ_QUADLET_REQUEST:
722 return 4;
723
724 case TCODE_READ_BLOCK_REQUEST:
725 data_length = async_header_get_data_length(r->request_header);
726 return data_length;
727
728 case TCODE_LOCK_REQUEST:
729 ext_tcode = async_header_get_extended_tcode(r->request_header);
730 data_length = async_header_get_data_length(r->request_header);
731 switch (ext_tcode) {
732 case EXTCODE_FETCH_ADD:
733 case EXTCODE_LITTLE_ADD:
734 return data_length;
735 default:
736 return data_length / 2;
737 }
738
739 default:
740 WARN(1, "wrong tcode %d\n", tcode);
741 return 0;
742 }
743 }
744
fw_fill_response(struct fw_packet * response,u32 * request_header,int rcode,void * payload,size_t length)745 void fw_fill_response(struct fw_packet *response, u32 *request_header,
746 int rcode, void *payload, size_t length)
747 {
748 int tcode, tlabel, extended_tcode, source, destination;
749
750 tcode = async_header_get_tcode(request_header);
751 tlabel = async_header_get_tlabel(request_header);
752 source = async_header_get_destination(request_header); // Exchange.
753 destination = async_header_get_source(request_header); // Exchange.
754 extended_tcode = async_header_get_extended_tcode(request_header);
755
756 async_header_set_retry(response->header, RETRY_1);
757 async_header_set_tlabel(response->header, tlabel);
758 async_header_set_destination(response->header, destination);
759 async_header_set_source(response->header, source);
760 async_header_set_rcode(response->header, rcode);
761 response->header[2] = 0; // The field is reserved.
762
763 switch (tcode) {
764 case TCODE_WRITE_QUADLET_REQUEST:
765 case TCODE_WRITE_BLOCK_REQUEST:
766 async_header_set_tcode(response->header, TCODE_WRITE_RESPONSE);
767 response->header_length = 12;
768 response->payload_length = 0;
769 break;
770
771 case TCODE_READ_QUADLET_REQUEST:
772 async_header_set_tcode(response->header, TCODE_READ_QUADLET_RESPONSE);
773 if (payload != NULL)
774 async_header_set_quadlet_data(response->header, *(u32 *)payload);
775 else
776 async_header_set_quadlet_data(response->header, 0);
777 response->header_length = 16;
778 response->payload_length = 0;
779 break;
780
781 case TCODE_READ_BLOCK_REQUEST:
782 case TCODE_LOCK_REQUEST:
783 async_header_set_tcode(response->header, tcode + 2);
784 async_header_set_data_length(response->header, length);
785 async_header_set_extended_tcode(response->header, extended_tcode);
786 response->header_length = 16;
787 response->payload = payload;
788 response->payload_length = length;
789 break;
790
791 default:
792 WARN(1, "wrong tcode %d\n", tcode);
793 }
794
795 response->payload_mapped = false;
796 }
797 EXPORT_SYMBOL(fw_fill_response);
798
compute_split_timeout_timestamp(struct fw_card * card,u32 request_timestamp)799 static u32 compute_split_timeout_timestamp(struct fw_card *card,
800 u32 request_timestamp)
801 __must_hold(&card->split_timeout.lock)
802 {
803 unsigned int cycles;
804 u32 timestamp;
805
806 lockdep_assert_held(&card->split_timeout.lock);
807
808 cycles = card->split_timeout.cycles;
809 cycles += request_timestamp & 0x1fff;
810
811 timestamp = request_timestamp & ~0x1fff;
812 timestamp += (cycles / 8000) << 13;
813 timestamp |= cycles % 8000;
814
815 return timestamp;
816 }
817
allocate_request(struct fw_card * card,struct fw_packet * p)818 static struct fw_request *allocate_request(struct fw_card *card,
819 struct fw_packet *p)
820 {
821 struct fw_request *request;
822 u32 *data, length;
823 int request_tcode;
824
825 request_tcode = async_header_get_tcode(p->header);
826 switch (request_tcode) {
827 case TCODE_WRITE_QUADLET_REQUEST:
828 data = &p->header[3];
829 length = 4;
830 break;
831
832 case TCODE_WRITE_BLOCK_REQUEST:
833 case TCODE_LOCK_REQUEST:
834 data = p->payload;
835 length = async_header_get_data_length(p->header);
836 break;
837
838 case TCODE_READ_QUADLET_REQUEST:
839 data = NULL;
840 length = 4;
841 break;
842
843 case TCODE_READ_BLOCK_REQUEST:
844 data = NULL;
845 length = async_header_get_data_length(p->header);
846 break;
847
848 default:
849 fw_notice(card, "ERROR - corrupt request received - %08x %08x %08x\n",
850 p->header[0], p->header[1], p->header[2]);
851 return NULL;
852 }
853
854 request = kmalloc(sizeof(*request) + length, GFP_ATOMIC);
855 if (request == NULL)
856 return NULL;
857 kref_init(&request->kref);
858
859 // NOTE: This can be without irqsave when we can guarantee that __fw_send_request() for
860 // local destination never runs in any type of IRQ context.
861 scoped_guard(spinlock_irqsave, &card->split_timeout.lock)
862 request->response.timestamp = compute_split_timeout_timestamp(card, p->timestamp);
863
864 request->response.speed = p->speed;
865 request->response.generation = p->generation;
866 request->response.ack = 0;
867 request->response.callback = free_response_callback;
868 request->ack = p->ack;
869 request->timestamp = p->timestamp;
870 request->length = length;
871 if (data)
872 memcpy(request->data, data, length);
873
874 memcpy(request->request_header, p->header, sizeof(p->header));
875
876 return request;
877 }
878
879 /**
880 * fw_send_response: - send response packet for asynchronous transaction.
881 * @card: interface to send the response at.
882 * @request: firewire request data for the transaction.
883 * @rcode: response code to send.
884 *
885 * Submit a response packet into the asynchronous response transmission queue. The @request
886 * is going to be released when the transmission successfully finishes later.
887 */
fw_send_response(struct fw_card * card,struct fw_request * request,int rcode)888 void fw_send_response(struct fw_card *card,
889 struct fw_request *request, int rcode)
890 {
891 u32 *data = NULL;
892 unsigned int data_length = 0;
893
894 /* unified transaction or broadcast transaction: don't respond */
895 if (request->ack != ACK_PENDING ||
896 HEADER_DESTINATION_IS_BROADCAST(request->request_header)) {
897 fw_request_put(request);
898 return;
899 }
900
901 if (rcode == RCODE_COMPLETE) {
902 data = request->data;
903 data_length = fw_get_response_length(request);
904 }
905
906 fw_fill_response(&request->response, request->request_header, rcode, data, data_length);
907
908 // Increase the reference count so that the object is kept during in-flight.
909 fw_request_get(request);
910
911 trace_async_response_outbound_initiate((uintptr_t)request, card->index,
912 request->response.generation, request->response.speed,
913 request->response.header, data,
914 data ? data_length / 4 : 0);
915
916 card->driver->send_response(card, &request->response);
917 }
918 EXPORT_SYMBOL(fw_send_response);
919
920 /**
921 * fw_get_request_speed() - returns speed at which the @request was received
922 * @request: firewire request data
923 */
fw_get_request_speed(struct fw_request * request)924 int fw_get_request_speed(struct fw_request *request)
925 {
926 return request->response.speed;
927 }
928 EXPORT_SYMBOL(fw_get_request_speed);
929
930 /**
931 * fw_request_get_timestamp: Get timestamp of the request.
932 * @request: The opaque pointer to request structure.
933 *
934 * Get timestamp when 1394 OHCI controller receives the asynchronous request subaction. The
935 * timestamp consists of the low order 3 bits of second field and the full 13 bits of count
936 * field of isochronous cycle time register.
937 *
938 * Returns: timestamp of the request.
939 */
fw_request_get_timestamp(const struct fw_request * request)940 u32 fw_request_get_timestamp(const struct fw_request *request)
941 {
942 return request->timestamp;
943 }
944 EXPORT_SYMBOL_GPL(fw_request_get_timestamp);
945
handle_exclusive_region_request(struct fw_card * card,struct fw_packet * p,struct fw_request * request,unsigned long long offset)946 static void handle_exclusive_region_request(struct fw_card *card,
947 struct fw_packet *p,
948 struct fw_request *request,
949 unsigned long long offset)
950 {
951 struct fw_address_handler *handler;
952 int tcode, destination, source;
953
954 destination = async_header_get_destination(p->header);
955 source = async_header_get_source(p->header);
956 tcode = async_header_get_tcode(p->header);
957 if (tcode == TCODE_LOCK_REQUEST)
958 tcode = 0x10 + async_header_get_extended_tcode(p->header);
959
960 scoped_guard(rcu) {
961 handler = lookup_enclosing_address_handler(&address_handler_list, offset,
962 request->length);
963 if (handler)
964 get_address_handler(handler);
965 }
966
967 if (!handler) {
968 fw_send_response(card, request, RCODE_ADDRESS_ERROR);
969 return;
970 }
971
972 // Outside the RCU read-side critical section. Without spinlock. With reference count.
973 handler->address_callback(card, request, tcode, destination, source, p->generation, offset,
974 request->data, request->length, handler->callback_data);
975 put_address_handler(handler);
976 }
977
978 // To use kmalloc allocator efficiently, this should be power of two.
979 #define BUFFER_ON_KERNEL_STACK_SIZE 4
980
handle_fcp_region_request(struct fw_card * card,struct fw_packet * p,struct fw_request * request,unsigned long long offset)981 static void handle_fcp_region_request(struct fw_card *card,
982 struct fw_packet *p,
983 struct fw_request *request,
984 unsigned long long offset)
985 {
986 struct fw_address_handler *buffer_on_kernel_stack[BUFFER_ON_KERNEL_STACK_SIZE];
987 struct fw_address_handler *handler, **handlers;
988 int tcode, destination, source, i, count, buffer_size;
989
990 if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
991 offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) ||
992 request->length > 0x200) {
993 fw_send_response(card, request, RCODE_ADDRESS_ERROR);
994
995 return;
996 }
997
998 tcode = async_header_get_tcode(p->header);
999 destination = async_header_get_destination(p->header);
1000 source = async_header_get_source(p->header);
1001
1002 if (tcode != TCODE_WRITE_QUADLET_REQUEST &&
1003 tcode != TCODE_WRITE_BLOCK_REQUEST) {
1004 fw_send_response(card, request, RCODE_TYPE_ERROR);
1005
1006 return;
1007 }
1008
1009 count = 0;
1010 handlers = buffer_on_kernel_stack;
1011 buffer_size = ARRAY_SIZE(buffer_on_kernel_stack);
1012 scoped_guard(rcu) {
1013 list_for_each_entry_rcu(handler, &address_handler_list, link) {
1014 if (is_enclosing_handler(handler, offset, request->length)) {
1015 if (count >= buffer_size) {
1016 int next_size = buffer_size * 2;
1017 struct fw_address_handler **buffer_on_kernel_heap;
1018
1019 if (handlers == buffer_on_kernel_stack)
1020 buffer_on_kernel_heap = NULL;
1021 else
1022 buffer_on_kernel_heap = handlers;
1023
1024 buffer_on_kernel_heap =
1025 krealloc_array(buffer_on_kernel_heap, next_size,
1026 sizeof(*buffer_on_kernel_heap), GFP_ATOMIC);
1027 // FCP is used for purposes unrelated to significant system
1028 // resources (e.g. storage or networking), so allocation
1029 // failures are not considered so critical.
1030 if (!buffer_on_kernel_heap)
1031 break;
1032
1033 if (handlers == buffer_on_kernel_stack) {
1034 memcpy(buffer_on_kernel_heap, buffer_on_kernel_stack,
1035 sizeof(buffer_on_kernel_stack));
1036 }
1037
1038 handlers = buffer_on_kernel_heap;
1039 buffer_size = next_size;
1040 }
1041 get_address_handler(handler);
1042 handlers[count++] = handler;
1043 }
1044 }
1045 }
1046
1047 for (i = 0; i < count; ++i) {
1048 handler = handlers[i];
1049 handler->address_callback(card, request, tcode, destination, source,
1050 p->generation, offset, request->data,
1051 request->length, handler->callback_data);
1052 put_address_handler(handler);
1053 }
1054
1055 if (handlers != buffer_on_kernel_stack)
1056 kfree(handlers);
1057
1058 fw_send_response(card, request, RCODE_COMPLETE);
1059 }
1060
fw_core_handle_request(struct fw_card * card,struct fw_packet * p)1061 void fw_core_handle_request(struct fw_card *card, struct fw_packet *p)
1062 {
1063 struct fw_request *request;
1064 unsigned long long offset;
1065 unsigned int tcode;
1066
1067 if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE)
1068 return;
1069
1070 tcode = async_header_get_tcode(p->header);
1071 if (tcode_is_link_internal(tcode)) {
1072 trace_async_phy_inbound((uintptr_t)p, card->index, p->generation, p->ack, p->timestamp,
1073 p->header[1], p->header[2]);
1074 fw_cdev_handle_phy_packet(card, p);
1075 return;
1076 }
1077
1078 request = allocate_request(card, p);
1079 if (request == NULL) {
1080 /* FIXME: send statically allocated busy packet. */
1081 return;
1082 }
1083
1084 trace_async_request_inbound((uintptr_t)request, card->index, p->generation, p->speed,
1085 p->ack, p->timestamp, p->header, request->data,
1086 tcode_is_read_request(tcode) ? 0 : request->length / 4);
1087
1088 offset = async_header_get_offset(p->header);
1089
1090 if (!is_in_fcp_region(offset, request->length))
1091 handle_exclusive_region_request(card, p, request, offset);
1092 else
1093 handle_fcp_region_request(card, p, request, offset);
1094
1095 }
1096 EXPORT_SYMBOL(fw_core_handle_request);
1097
fw_core_handle_response(struct fw_card * card,struct fw_packet * p)1098 void fw_core_handle_response(struct fw_card *card, struct fw_packet *p)
1099 {
1100 struct fw_transaction *t = NULL, *iter;
1101 u32 *data;
1102 size_t data_length;
1103 int tcode, tlabel, source, rcode;
1104
1105 tcode = async_header_get_tcode(p->header);
1106 tlabel = async_header_get_tlabel(p->header);
1107 source = async_header_get_source(p->header);
1108 rcode = async_header_get_rcode(p->header);
1109
1110 // FIXME: sanity check packet, is length correct, does tcodes
1111 // and addresses match to the transaction request queried later.
1112 //
1113 // For the tracepoints event, let us decode the header here against the concern.
1114
1115 switch (tcode) {
1116 case TCODE_READ_QUADLET_RESPONSE:
1117 data = (u32 *) &p->header[3];
1118 data_length = 4;
1119 break;
1120
1121 case TCODE_WRITE_RESPONSE:
1122 data = NULL;
1123 data_length = 0;
1124 break;
1125
1126 case TCODE_READ_BLOCK_RESPONSE:
1127 case TCODE_LOCK_RESPONSE:
1128 data = p->payload;
1129 data_length = async_header_get_data_length(p->header);
1130 break;
1131
1132 default:
1133 /* Should never happen, this is just to shut up gcc. */
1134 data = NULL;
1135 data_length = 0;
1136 break;
1137 }
1138
1139 // NOTE: This can be without irqsave when we can guarantee that __fw_send_request() for
1140 // local destination never runs in any type of IRQ context.
1141 scoped_guard(spinlock_irqsave, &card->transactions.lock) {
1142 list_for_each_entry(iter, &card->transactions.list, link) {
1143 if (iter->node_id == source && iter->tlabel == tlabel) {
1144 if (try_cancel_split_timeout(iter)) {
1145 list_del_init(&iter->link);
1146 card->transactions.tlabel_mask &= ~(1ULL << iter->tlabel);
1147 t = iter;
1148 }
1149 break;
1150 }
1151 }
1152 }
1153
1154 trace_async_response_inbound((uintptr_t)t, card->index, p->generation, p->speed, p->ack,
1155 p->timestamp, p->header, data, data_length / 4);
1156
1157 if (!t) {
1158 fw_notice(card, "unsolicited response (source %x, tlabel %x)\n",
1159 source, tlabel);
1160 return;
1161 }
1162
1163 /*
1164 * The response handler may be executed while the request handler
1165 * is still pending. Cancel the request handler.
1166 */
1167 card->driver->cancel_packet(card, &t->packet);
1168
1169 if (!t->with_tstamp) {
1170 t->callback.without_tstamp(card, rcode, data, data_length, t->callback_data);
1171 } else {
1172 t->callback.with_tstamp(card, rcode, t->packet.timestamp, p->timestamp, data,
1173 data_length, t->callback_data);
1174 }
1175 }
1176 EXPORT_SYMBOL(fw_core_handle_response);
1177
1178 /**
1179 * fw_rcode_string - convert a firewire result code to an error description
1180 * @rcode: the result code
1181 */
fw_rcode_string(int rcode)1182 const char *fw_rcode_string(int rcode)
1183 {
1184 static const char *const names[] = {
1185 [RCODE_COMPLETE] = "no error",
1186 [RCODE_CONFLICT_ERROR] = "conflict error",
1187 [RCODE_DATA_ERROR] = "data error",
1188 [RCODE_TYPE_ERROR] = "type error",
1189 [RCODE_ADDRESS_ERROR] = "address error",
1190 [RCODE_SEND_ERROR] = "send error",
1191 [RCODE_CANCELLED] = "timeout",
1192 [RCODE_BUSY] = "busy",
1193 [RCODE_GENERATION] = "bus reset",
1194 [RCODE_NO_ACK] = "no ack",
1195 };
1196
1197 if ((unsigned int)rcode < ARRAY_SIZE(names) && names[rcode])
1198 return names[rcode];
1199 else
1200 return "unknown";
1201 }
1202 EXPORT_SYMBOL(fw_rcode_string);
1203
1204 static const struct fw_address_region topology_map_region =
1205 { .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP,
1206 .end = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, };
1207
handle_topology_map(struct fw_card * card,struct fw_request * request,int tcode,int destination,int source,int generation,unsigned long long offset,void * payload,size_t length,void * callback_data)1208 static void handle_topology_map(struct fw_card *card, struct fw_request *request,
1209 int tcode, int destination, int source, int generation,
1210 unsigned long long offset, void *payload, size_t length,
1211 void *callback_data)
1212 {
1213 int start;
1214
1215 if (!tcode_is_read_request(tcode)) {
1216 fw_send_response(card, request, RCODE_TYPE_ERROR);
1217 return;
1218 }
1219
1220 if ((offset & 3) > 0 || (length & 3) > 0) {
1221 fw_send_response(card, request, RCODE_ADDRESS_ERROR);
1222 return;
1223 }
1224
1225 start = (offset - topology_map_region.start) / 4;
1226
1227 // NOTE: This can be without irqsave when we can guarantee that fw_send_request() for local
1228 // destination never runs in any type of IRQ context.
1229 scoped_guard(spinlock_irqsave, &card->topology_map.lock)
1230 memcpy(payload, &card->topology_map.buffer[start], length);
1231
1232 fw_send_response(card, request, RCODE_COMPLETE);
1233 }
1234
1235 static struct fw_address_handler topology_map = {
1236 .length = 0x400,
1237 .address_callback = handle_topology_map,
1238 };
1239
1240 static const struct fw_address_region registers_region =
1241 { .start = CSR_REGISTER_BASE,
1242 .end = CSR_REGISTER_BASE | CSR_CONFIG_ROM, };
1243
update_split_timeout(struct fw_card * card)1244 static void update_split_timeout(struct fw_card *card)
1245 __must_hold(&card->split_timeout.lock)
1246 {
1247 unsigned int cycles;
1248
1249 cycles = card->split_timeout.hi * 8000 + (card->split_timeout.lo >> 19);
1250
1251 /* minimum per IEEE 1394, maximum which doesn't overflow OHCI */
1252 cycles = clamp(cycles, 800u, 3u * 8000u);
1253
1254 card->split_timeout.cycles = cycles;
1255 card->split_timeout.jiffies = isoc_cycles_to_jiffies(cycles);
1256 }
1257
handle_registers(struct fw_card * card,struct fw_request * request,int tcode,int destination,int source,int generation,unsigned long long offset,void * payload,size_t length,void * callback_data)1258 static void handle_registers(struct fw_card *card, struct fw_request *request,
1259 int tcode, int destination, int source, int generation,
1260 unsigned long long offset, void *payload, size_t length,
1261 void *callback_data)
1262 {
1263 int reg = offset & ~CSR_REGISTER_BASE;
1264 __be32 *data = payload;
1265 int rcode = RCODE_COMPLETE;
1266
1267 switch (reg) {
1268 case CSR_PRIORITY_BUDGET:
1269 if (!card->priority_budget_implemented) {
1270 rcode = RCODE_ADDRESS_ERROR;
1271 break;
1272 }
1273 fallthrough;
1274
1275 case CSR_NODE_IDS:
1276 /*
1277 * per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8
1278 * and 9.6, but interoperable with IEEE 1394.1-2004 bridges
1279 */
1280 fallthrough;
1281
1282 case CSR_STATE_CLEAR:
1283 case CSR_STATE_SET:
1284 case CSR_CYCLE_TIME:
1285 case CSR_BUS_TIME:
1286 case CSR_BUSY_TIMEOUT:
1287 if (tcode == TCODE_READ_QUADLET_REQUEST)
1288 *data = cpu_to_be32(card->driver->read_csr(card, reg));
1289 else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1290 card->driver->write_csr(card, reg, be32_to_cpu(*data));
1291 else
1292 rcode = RCODE_TYPE_ERROR;
1293 break;
1294
1295 case CSR_RESET_START:
1296 if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1297 card->driver->write_csr(card, CSR_STATE_CLEAR,
1298 CSR_STATE_BIT_ABDICATE);
1299 else
1300 rcode = RCODE_TYPE_ERROR;
1301 break;
1302
1303 case CSR_SPLIT_TIMEOUT_HI:
1304 if (tcode == TCODE_READ_QUADLET_REQUEST) {
1305 *data = cpu_to_be32(card->split_timeout.hi);
1306 } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1307 // NOTE: This can be without irqsave when we can guarantee that
1308 // __fw_send_request() for local destination never runs in any type of IRQ
1309 // context.
1310 scoped_guard(spinlock_irqsave, &card->split_timeout.lock) {
1311 card->split_timeout.hi = be32_to_cpu(*data) & 7;
1312 update_split_timeout(card);
1313 }
1314 } else {
1315 rcode = RCODE_TYPE_ERROR;
1316 }
1317 break;
1318
1319 case CSR_SPLIT_TIMEOUT_LO:
1320 if (tcode == TCODE_READ_QUADLET_REQUEST) {
1321 *data = cpu_to_be32(card->split_timeout.lo);
1322 } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1323 // NOTE: This can be without irqsave when we can guarantee that
1324 // __fw_send_request() for local destination never runs in any type of IRQ
1325 // context.
1326 scoped_guard(spinlock_irqsave, &card->split_timeout.lock) {
1327 card->split_timeout.lo = be32_to_cpu(*data) & 0xfff80000;
1328 update_split_timeout(card);
1329 }
1330 } else {
1331 rcode = RCODE_TYPE_ERROR;
1332 }
1333 break;
1334
1335 case CSR_MAINT_UTILITY:
1336 if (tcode == TCODE_READ_QUADLET_REQUEST)
1337 *data = card->maint_utility_register;
1338 else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1339 card->maint_utility_register = *data;
1340 else
1341 rcode = RCODE_TYPE_ERROR;
1342 break;
1343
1344 case CSR_BROADCAST_CHANNEL:
1345 if (tcode == TCODE_READ_QUADLET_REQUEST)
1346 *data = cpu_to_be32(card->broadcast_channel);
1347 else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1348 card->broadcast_channel =
1349 (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) |
1350 BROADCAST_CHANNEL_INITIAL;
1351 else
1352 rcode = RCODE_TYPE_ERROR;
1353 break;
1354
1355 case CSR_BUS_MANAGER_ID:
1356 case CSR_BANDWIDTH_AVAILABLE:
1357 case CSR_CHANNELS_AVAILABLE_HI:
1358 case CSR_CHANNELS_AVAILABLE_LO:
1359 /*
1360 * FIXME: these are handled by the OHCI hardware and
1361 * the stack never sees these request. If we add
1362 * support for a new type of controller that doesn't
1363 * handle this in hardware we need to deal with these
1364 * transactions.
1365 */
1366 BUG();
1367 break;
1368
1369 default:
1370 rcode = RCODE_ADDRESS_ERROR;
1371 break;
1372 }
1373
1374 fw_send_response(card, request, rcode);
1375 }
1376
1377 static struct fw_address_handler registers = {
1378 .length = 0x400,
1379 .address_callback = handle_registers,
1380 };
1381
handle_low_memory(struct fw_card * card,struct fw_request * request,int tcode,int destination,int source,int generation,unsigned long long offset,void * payload,size_t length,void * callback_data)1382 static void handle_low_memory(struct fw_card *card, struct fw_request *request,
1383 int tcode, int destination, int source, int generation,
1384 unsigned long long offset, void *payload, size_t length,
1385 void *callback_data)
1386 {
1387 /*
1388 * This catches requests not handled by the physical DMA unit,
1389 * i.e., wrong transaction types or unauthorized source nodes.
1390 */
1391 fw_send_response(card, request, RCODE_TYPE_ERROR);
1392 }
1393
1394 static struct fw_address_handler low_memory = {
1395 .length = FW_MAX_PHYSICAL_RANGE,
1396 .address_callback = handle_low_memory,
1397 };
1398
1399 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1400 MODULE_DESCRIPTION("Core IEEE1394 transaction logic");
1401 MODULE_LICENSE("GPL");
1402
1403 static const u32 vendor_textual_descriptor[] = {
1404 /* textual descriptor leaf () */
1405 0x00060000,
1406 0x00000000,
1407 0x00000000,
1408 0x4c696e75, /* L i n u */
1409 0x78204669, /* x F i */
1410 0x72657769, /* r e w i */
1411 0x72650000, /* r e */
1412 };
1413
1414 static const u32 model_textual_descriptor[] = {
1415 /* model descriptor leaf () */
1416 0x00030000,
1417 0x00000000,
1418 0x00000000,
1419 0x4a756a75, /* J u j u */
1420 };
1421
1422 static struct fw_descriptor vendor_id_descriptor = {
1423 .length = ARRAY_SIZE(vendor_textual_descriptor),
1424 .immediate = 0x03001f11,
1425 .key = 0x81000000,
1426 .data = vendor_textual_descriptor,
1427 };
1428
1429 static struct fw_descriptor model_id_descriptor = {
1430 .length = ARRAY_SIZE(model_textual_descriptor),
1431 .immediate = 0x17023901,
1432 .key = 0x81000000,
1433 .data = model_textual_descriptor,
1434 };
1435
fw_core_init(void)1436 static int __init fw_core_init(void)
1437 {
1438 int ret;
1439
1440 fw_workqueue = alloc_workqueue("firewire", WQ_MEM_RECLAIM, 0);
1441 if (!fw_workqueue)
1442 return -ENOMEM;
1443
1444 ret = bus_register(&fw_bus_type);
1445 if (ret < 0) {
1446 destroy_workqueue(fw_workqueue);
1447 return ret;
1448 }
1449
1450 fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops);
1451 if (fw_cdev_major < 0) {
1452 bus_unregister(&fw_bus_type);
1453 destroy_workqueue(fw_workqueue);
1454 return fw_cdev_major;
1455 }
1456
1457 fw_core_add_address_handler(&topology_map, &topology_map_region);
1458 fw_core_add_address_handler(®isters, ®isters_region);
1459 fw_core_add_address_handler(&low_memory, &low_memory_region);
1460 fw_core_add_descriptor(&vendor_id_descriptor);
1461 fw_core_add_descriptor(&model_id_descriptor);
1462
1463 return 0;
1464 }
1465
fw_core_cleanup(void)1466 static void __exit fw_core_cleanup(void)
1467 {
1468 unregister_chrdev(fw_cdev_major, "firewire");
1469 bus_unregister(&fw_bus_type);
1470 destroy_workqueue(fw_workqueue);
1471 xa_destroy(&fw_device_xa);
1472 }
1473
1474 module_init(fw_core_init);
1475 module_exit(fw_core_cleanup);
1476