xref: /linux/mm/memory-tiers.c (revision a1ff5a7d78a036d6c2178ee5acd6ba4946243800)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/slab.h>
3 #include <linux/lockdep.h>
4 #include <linux/sysfs.h>
5 #include <linux/kobject.h>
6 #include <linux/memory.h>
7 #include <linux/memory-tiers.h>
8 #include <linux/notifier.h>
9 
10 #include "internal.h"
11 
12 struct memory_tier {
13 	/* hierarchy of memory tiers */
14 	struct list_head list;
15 	/* list of all memory types part of this tier */
16 	struct list_head memory_types;
17 	/*
18 	 * start value of abstract distance. memory tier maps
19 	 * an abstract distance  range,
20 	 * adistance_start .. adistance_start + MEMTIER_CHUNK_SIZE
21 	 */
22 	int adistance_start;
23 	struct device dev;
24 	/* All the nodes that are part of all the lower memory tiers. */
25 	nodemask_t lower_tier_mask;
26 };
27 
28 struct demotion_nodes {
29 	nodemask_t preferred;
30 };
31 
32 struct node_memory_type_map {
33 	struct memory_dev_type *memtype;
34 	int map_count;
35 };
36 
37 static DEFINE_MUTEX(memory_tier_lock);
38 static LIST_HEAD(memory_tiers);
39 /*
40  * The list is used to store all memory types that are not created
41  * by a device driver.
42  */
43 static LIST_HEAD(default_memory_types);
44 static struct node_memory_type_map node_memory_types[MAX_NUMNODES];
45 struct memory_dev_type *default_dram_type;
46 nodemask_t default_dram_nodes __initdata = NODE_MASK_NONE;
47 
48 static const struct bus_type memory_tier_subsys = {
49 	.name = "memory_tiering",
50 	.dev_name = "memory_tier",
51 };
52 
53 #ifdef CONFIG_MIGRATION
54 static int top_tier_adistance;
55 /*
56  * node_demotion[] examples:
57  *
58  * Example 1:
59  *
60  * Node 0 & 1 are CPU + DRAM nodes, node 2 & 3 are PMEM nodes.
61  *
62  * node distances:
63  * node   0    1    2    3
64  *    0  10   20   30   40
65  *    1  20   10   40   30
66  *    2  30   40   10   40
67  *    3  40   30   40   10
68  *
69  * memory_tiers0 = 0-1
70  * memory_tiers1 = 2-3
71  *
72  * node_demotion[0].preferred = 2
73  * node_demotion[1].preferred = 3
74  * node_demotion[2].preferred = <empty>
75  * node_demotion[3].preferred = <empty>
76  *
77  * Example 2:
78  *
79  * Node 0 & 1 are CPU + DRAM nodes, node 2 is memory-only DRAM node.
80  *
81  * node distances:
82  * node   0    1    2
83  *    0  10   20   30
84  *    1  20   10   30
85  *    2  30   30   10
86  *
87  * memory_tiers0 = 0-2
88  *
89  * node_demotion[0].preferred = <empty>
90  * node_demotion[1].preferred = <empty>
91  * node_demotion[2].preferred = <empty>
92  *
93  * Example 3:
94  *
95  * Node 0 is CPU + DRAM nodes, Node 1 is HBM node, node 2 is PMEM node.
96  *
97  * node distances:
98  * node   0    1    2
99  *    0  10   20   30
100  *    1  20   10   40
101  *    2  30   40   10
102  *
103  * memory_tiers0 = 1
104  * memory_tiers1 = 0
105  * memory_tiers2 = 2
106  *
107  * node_demotion[0].preferred = 2
108  * node_demotion[1].preferred = 0
109  * node_demotion[2].preferred = <empty>
110  *
111  */
112 static struct demotion_nodes *node_demotion __read_mostly;
113 #endif /* CONFIG_MIGRATION */
114 
115 static BLOCKING_NOTIFIER_HEAD(mt_adistance_algorithms);
116 
117 /* The lock is used to protect `default_dram_perf*` info and nid. */
118 static DEFINE_MUTEX(default_dram_perf_lock);
119 static bool default_dram_perf_error;
120 static struct access_coordinate default_dram_perf;
121 static int default_dram_perf_ref_nid = NUMA_NO_NODE;
122 static const char *default_dram_perf_ref_source;
123 
to_memory_tier(struct device * device)124 static inline struct memory_tier *to_memory_tier(struct device *device)
125 {
126 	return container_of(device, struct memory_tier, dev);
127 }
128 
get_memtier_nodemask(struct memory_tier * memtier)129 static __always_inline nodemask_t get_memtier_nodemask(struct memory_tier *memtier)
130 {
131 	nodemask_t nodes = NODE_MASK_NONE;
132 	struct memory_dev_type *memtype;
133 
134 	list_for_each_entry(memtype, &memtier->memory_types, tier_sibling)
135 		nodes_or(nodes, nodes, memtype->nodes);
136 
137 	return nodes;
138 }
139 
memory_tier_device_release(struct device * dev)140 static void memory_tier_device_release(struct device *dev)
141 {
142 	struct memory_tier *tier = to_memory_tier(dev);
143 	/*
144 	 * synchronize_rcu in clear_node_memory_tier makes sure
145 	 * we don't have rcu access to this memory tier.
146 	 */
147 	kfree(tier);
148 }
149 
nodelist_show(struct device * dev,struct device_attribute * attr,char * buf)150 static ssize_t nodelist_show(struct device *dev,
151 			     struct device_attribute *attr, char *buf)
152 {
153 	int ret;
154 	nodemask_t nmask;
155 
156 	mutex_lock(&memory_tier_lock);
157 	nmask = get_memtier_nodemask(to_memory_tier(dev));
158 	ret = sysfs_emit(buf, "%*pbl\n", nodemask_pr_args(&nmask));
159 	mutex_unlock(&memory_tier_lock);
160 	return ret;
161 }
162 static DEVICE_ATTR_RO(nodelist);
163 
164 static struct attribute *memtier_dev_attrs[] = {
165 	&dev_attr_nodelist.attr,
166 	NULL
167 };
168 
169 static const struct attribute_group memtier_dev_group = {
170 	.attrs = memtier_dev_attrs,
171 };
172 
173 static const struct attribute_group *memtier_dev_groups[] = {
174 	&memtier_dev_group,
175 	NULL
176 };
177 
find_create_memory_tier(struct memory_dev_type * memtype)178 static struct memory_tier *find_create_memory_tier(struct memory_dev_type *memtype)
179 {
180 	int ret;
181 	bool found_slot = false;
182 	struct memory_tier *memtier, *new_memtier;
183 	int adistance = memtype->adistance;
184 	unsigned int memtier_adistance_chunk_size = MEMTIER_CHUNK_SIZE;
185 
186 	lockdep_assert_held_once(&memory_tier_lock);
187 
188 	adistance = round_down(adistance, memtier_adistance_chunk_size);
189 	/*
190 	 * If the memtype is already part of a memory tier,
191 	 * just return that.
192 	 */
193 	if (!list_empty(&memtype->tier_sibling)) {
194 		list_for_each_entry(memtier, &memory_tiers, list) {
195 			if (adistance == memtier->adistance_start)
196 				return memtier;
197 		}
198 		WARN_ON(1);
199 		return ERR_PTR(-EINVAL);
200 	}
201 
202 	list_for_each_entry(memtier, &memory_tiers, list) {
203 		if (adistance == memtier->adistance_start) {
204 			goto link_memtype;
205 		} else if (adistance < memtier->adistance_start) {
206 			found_slot = true;
207 			break;
208 		}
209 	}
210 
211 	new_memtier = kzalloc(sizeof(struct memory_tier), GFP_KERNEL);
212 	if (!new_memtier)
213 		return ERR_PTR(-ENOMEM);
214 
215 	new_memtier->adistance_start = adistance;
216 	INIT_LIST_HEAD(&new_memtier->list);
217 	INIT_LIST_HEAD(&new_memtier->memory_types);
218 	if (found_slot)
219 		list_add_tail(&new_memtier->list, &memtier->list);
220 	else
221 		list_add_tail(&new_memtier->list, &memory_tiers);
222 
223 	new_memtier->dev.id = adistance >> MEMTIER_CHUNK_BITS;
224 	new_memtier->dev.bus = &memory_tier_subsys;
225 	new_memtier->dev.release = memory_tier_device_release;
226 	new_memtier->dev.groups = memtier_dev_groups;
227 
228 	ret = device_register(&new_memtier->dev);
229 	if (ret) {
230 		list_del(&new_memtier->list);
231 		put_device(&new_memtier->dev);
232 		return ERR_PTR(ret);
233 	}
234 	memtier = new_memtier;
235 
236 link_memtype:
237 	list_add(&memtype->tier_sibling, &memtier->memory_types);
238 	return memtier;
239 }
240 
__node_get_memory_tier(int node)241 static struct memory_tier *__node_get_memory_tier(int node)
242 {
243 	pg_data_t *pgdat;
244 
245 	pgdat = NODE_DATA(node);
246 	if (!pgdat)
247 		return NULL;
248 	/*
249 	 * Since we hold memory_tier_lock, we can avoid
250 	 * RCU read locks when accessing the details. No
251 	 * parallel updates are possible here.
252 	 */
253 	return rcu_dereference_check(pgdat->memtier,
254 				     lockdep_is_held(&memory_tier_lock));
255 }
256 
257 #ifdef CONFIG_MIGRATION
node_is_toptier(int node)258 bool node_is_toptier(int node)
259 {
260 	bool toptier;
261 	pg_data_t *pgdat;
262 	struct memory_tier *memtier;
263 
264 	pgdat = NODE_DATA(node);
265 	if (!pgdat)
266 		return false;
267 
268 	rcu_read_lock();
269 	memtier = rcu_dereference(pgdat->memtier);
270 	if (!memtier) {
271 		toptier = true;
272 		goto out;
273 	}
274 	if (memtier->adistance_start <= top_tier_adistance)
275 		toptier = true;
276 	else
277 		toptier = false;
278 out:
279 	rcu_read_unlock();
280 	return toptier;
281 }
282 
node_get_allowed_targets(pg_data_t * pgdat,nodemask_t * targets)283 void node_get_allowed_targets(pg_data_t *pgdat, nodemask_t *targets)
284 {
285 	struct memory_tier *memtier;
286 
287 	/*
288 	 * pg_data_t.memtier updates includes a synchronize_rcu()
289 	 * which ensures that we either find NULL or a valid memtier
290 	 * in NODE_DATA. protect the access via rcu_read_lock();
291 	 */
292 	rcu_read_lock();
293 	memtier = rcu_dereference(pgdat->memtier);
294 	if (memtier)
295 		*targets = memtier->lower_tier_mask;
296 	else
297 		*targets = NODE_MASK_NONE;
298 	rcu_read_unlock();
299 }
300 
301 /**
302  * next_demotion_node() - Get the next node in the demotion path
303  * @node: The starting node to lookup the next node
304  *
305  * Return: node id for next memory node in the demotion path hierarchy
306  * from @node; NUMA_NO_NODE if @node is terminal.  This does not keep
307  * @node online or guarantee that it *continues* to be the next demotion
308  * target.
309  */
next_demotion_node(int node)310 int next_demotion_node(int node)
311 {
312 	struct demotion_nodes *nd;
313 	int target;
314 
315 	if (!node_demotion)
316 		return NUMA_NO_NODE;
317 
318 	nd = &node_demotion[node];
319 
320 	/*
321 	 * node_demotion[] is updated without excluding this
322 	 * function from running.
323 	 *
324 	 * Make sure to use RCU over entire code blocks if
325 	 * node_demotion[] reads need to be consistent.
326 	 */
327 	rcu_read_lock();
328 	/*
329 	 * If there are multiple target nodes, just select one
330 	 * target node randomly.
331 	 *
332 	 * In addition, we can also use round-robin to select
333 	 * target node, but we should introduce another variable
334 	 * for node_demotion[] to record last selected target node,
335 	 * that may cause cache ping-pong due to the changing of
336 	 * last target node. Or introducing per-cpu data to avoid
337 	 * caching issue, which seems more complicated. So selecting
338 	 * target node randomly seems better until now.
339 	 */
340 	target = node_random(&nd->preferred);
341 	rcu_read_unlock();
342 
343 	return target;
344 }
345 
disable_all_demotion_targets(void)346 static void disable_all_demotion_targets(void)
347 {
348 	struct memory_tier *memtier;
349 	int node;
350 
351 	for_each_node_state(node, N_MEMORY) {
352 		node_demotion[node].preferred = NODE_MASK_NONE;
353 		/*
354 		 * We are holding memory_tier_lock, it is safe
355 		 * to access pgda->memtier.
356 		 */
357 		memtier = __node_get_memory_tier(node);
358 		if (memtier)
359 			memtier->lower_tier_mask = NODE_MASK_NONE;
360 	}
361 	/*
362 	 * Ensure that the "disable" is visible across the system.
363 	 * Readers will see either a combination of before+disable
364 	 * state or disable+after.  They will never see before and
365 	 * after state together.
366 	 */
367 	synchronize_rcu();
368 }
369 
dump_demotion_targets(void)370 static void dump_demotion_targets(void)
371 {
372 	int node;
373 
374 	for_each_node_state(node, N_MEMORY) {
375 		struct memory_tier *memtier = __node_get_memory_tier(node);
376 		nodemask_t preferred = node_demotion[node].preferred;
377 
378 		if (!memtier)
379 			continue;
380 
381 		if (nodes_empty(preferred))
382 			pr_info("Demotion targets for Node %d: null\n", node);
383 		else
384 			pr_info("Demotion targets for Node %d: preferred: %*pbl, fallback: %*pbl\n",
385 				node, nodemask_pr_args(&preferred),
386 				nodemask_pr_args(&memtier->lower_tier_mask));
387 	}
388 }
389 
390 /*
391  * Find an automatic demotion target for all memory
392  * nodes. Failing here is OK.  It might just indicate
393  * being at the end of a chain.
394  */
establish_demotion_targets(void)395 static void establish_demotion_targets(void)
396 {
397 	struct memory_tier *memtier;
398 	struct demotion_nodes *nd;
399 	int target = NUMA_NO_NODE, node;
400 	int distance, best_distance;
401 	nodemask_t tier_nodes, lower_tier;
402 
403 	lockdep_assert_held_once(&memory_tier_lock);
404 
405 	if (!node_demotion)
406 		return;
407 
408 	disable_all_demotion_targets();
409 
410 	for_each_node_state(node, N_MEMORY) {
411 		best_distance = -1;
412 		nd = &node_demotion[node];
413 
414 		memtier = __node_get_memory_tier(node);
415 		if (!memtier || list_is_last(&memtier->list, &memory_tiers))
416 			continue;
417 		/*
418 		 * Get the lower memtier to find the  demotion node list.
419 		 */
420 		memtier = list_next_entry(memtier, list);
421 		tier_nodes = get_memtier_nodemask(memtier);
422 		/*
423 		 * find_next_best_node, use 'used' nodemask as a skip list.
424 		 * Add all memory nodes except the selected memory tier
425 		 * nodelist to skip list so that we find the best node from the
426 		 * memtier nodelist.
427 		 */
428 		nodes_andnot(tier_nodes, node_states[N_MEMORY], tier_nodes);
429 
430 		/*
431 		 * Find all the nodes in the memory tier node list of same best distance.
432 		 * add them to the preferred mask. We randomly select between nodes
433 		 * in the preferred mask when allocating pages during demotion.
434 		 */
435 		do {
436 			target = find_next_best_node(node, &tier_nodes);
437 			if (target == NUMA_NO_NODE)
438 				break;
439 
440 			distance = node_distance(node, target);
441 			if (distance == best_distance || best_distance == -1) {
442 				best_distance = distance;
443 				node_set(target, nd->preferred);
444 			} else {
445 				break;
446 			}
447 		} while (1);
448 	}
449 	/*
450 	 * Promotion is allowed from a memory tier to higher
451 	 * memory tier only if the memory tier doesn't include
452 	 * compute. We want to skip promotion from a memory tier,
453 	 * if any node that is part of the memory tier have CPUs.
454 	 * Once we detect such a memory tier, we consider that tier
455 	 * as top tiper from which promotion is not allowed.
456 	 */
457 	list_for_each_entry_reverse(memtier, &memory_tiers, list) {
458 		tier_nodes = get_memtier_nodemask(memtier);
459 		nodes_and(tier_nodes, node_states[N_CPU], tier_nodes);
460 		if (!nodes_empty(tier_nodes)) {
461 			/*
462 			 * abstract distance below the max value of this memtier
463 			 * is considered toptier.
464 			 */
465 			top_tier_adistance = memtier->adistance_start +
466 						MEMTIER_CHUNK_SIZE - 1;
467 			break;
468 		}
469 	}
470 	/*
471 	 * Now build the lower_tier mask for each node collecting node mask from
472 	 * all memory tier below it. This allows us to fallback demotion page
473 	 * allocation to a set of nodes that is closer the above selected
474 	 * preferred node.
475 	 */
476 	lower_tier = node_states[N_MEMORY];
477 	list_for_each_entry(memtier, &memory_tiers, list) {
478 		/*
479 		 * Keep removing current tier from lower_tier nodes,
480 		 * This will remove all nodes in current and above
481 		 * memory tier from the lower_tier mask.
482 		 */
483 		tier_nodes = get_memtier_nodemask(memtier);
484 		nodes_andnot(lower_tier, lower_tier, tier_nodes);
485 		memtier->lower_tier_mask = lower_tier;
486 	}
487 
488 	dump_demotion_targets();
489 }
490 
491 #else
establish_demotion_targets(void)492 static inline void establish_demotion_targets(void) {}
493 #endif /* CONFIG_MIGRATION */
494 
__init_node_memory_type(int node,struct memory_dev_type * memtype)495 static inline void __init_node_memory_type(int node, struct memory_dev_type *memtype)
496 {
497 	if (!node_memory_types[node].memtype)
498 		node_memory_types[node].memtype = memtype;
499 	/*
500 	 * for each device getting added in the same NUMA node
501 	 * with this specific memtype, bump the map count. We
502 	 * Only take memtype device reference once, so that
503 	 * changing a node memtype can be done by droping the
504 	 * only reference count taken here.
505 	 */
506 
507 	if (node_memory_types[node].memtype == memtype) {
508 		if (!node_memory_types[node].map_count++)
509 			kref_get(&memtype->kref);
510 	}
511 }
512 
set_node_memory_tier(int node)513 static struct memory_tier *set_node_memory_tier(int node)
514 {
515 	struct memory_tier *memtier;
516 	struct memory_dev_type *memtype = default_dram_type;
517 	int adist = MEMTIER_ADISTANCE_DRAM;
518 	pg_data_t *pgdat = NODE_DATA(node);
519 
520 
521 	lockdep_assert_held_once(&memory_tier_lock);
522 
523 	if (!node_state(node, N_MEMORY))
524 		return ERR_PTR(-EINVAL);
525 
526 	mt_calc_adistance(node, &adist);
527 	if (!node_memory_types[node].memtype) {
528 		memtype = mt_find_alloc_memory_type(adist, &default_memory_types);
529 		if (IS_ERR(memtype)) {
530 			memtype = default_dram_type;
531 			pr_info("Failed to allocate a memory type. Fall back.\n");
532 		}
533 	}
534 
535 	__init_node_memory_type(node, memtype);
536 
537 	memtype = node_memory_types[node].memtype;
538 	node_set(node, memtype->nodes);
539 	memtier = find_create_memory_tier(memtype);
540 	if (!IS_ERR(memtier))
541 		rcu_assign_pointer(pgdat->memtier, memtier);
542 	return memtier;
543 }
544 
destroy_memory_tier(struct memory_tier * memtier)545 static void destroy_memory_tier(struct memory_tier *memtier)
546 {
547 	list_del(&memtier->list);
548 	device_unregister(&memtier->dev);
549 }
550 
clear_node_memory_tier(int node)551 static bool clear_node_memory_tier(int node)
552 {
553 	bool cleared = false;
554 	pg_data_t *pgdat;
555 	struct memory_tier *memtier;
556 
557 	pgdat = NODE_DATA(node);
558 	if (!pgdat)
559 		return false;
560 
561 	/*
562 	 * Make sure that anybody looking at NODE_DATA who finds
563 	 * a valid memtier finds memory_dev_types with nodes still
564 	 * linked to the memtier. We achieve this by waiting for
565 	 * rcu read section to finish using synchronize_rcu.
566 	 * This also enables us to free the destroyed memory tier
567 	 * with kfree instead of kfree_rcu
568 	 */
569 	memtier = __node_get_memory_tier(node);
570 	if (memtier) {
571 		struct memory_dev_type *memtype;
572 
573 		rcu_assign_pointer(pgdat->memtier, NULL);
574 		synchronize_rcu();
575 		memtype = node_memory_types[node].memtype;
576 		node_clear(node, memtype->nodes);
577 		if (nodes_empty(memtype->nodes)) {
578 			list_del_init(&memtype->tier_sibling);
579 			if (list_empty(&memtier->memory_types))
580 				destroy_memory_tier(memtier);
581 		}
582 		cleared = true;
583 	}
584 	return cleared;
585 }
586 
release_memtype(struct kref * kref)587 static void release_memtype(struct kref *kref)
588 {
589 	struct memory_dev_type *memtype;
590 
591 	memtype = container_of(kref, struct memory_dev_type, kref);
592 	kfree(memtype);
593 }
594 
alloc_memory_type(int adistance)595 struct memory_dev_type *alloc_memory_type(int adistance)
596 {
597 	struct memory_dev_type *memtype;
598 
599 	memtype = kmalloc(sizeof(*memtype), GFP_KERNEL);
600 	if (!memtype)
601 		return ERR_PTR(-ENOMEM);
602 
603 	memtype->adistance = adistance;
604 	INIT_LIST_HEAD(&memtype->tier_sibling);
605 	memtype->nodes  = NODE_MASK_NONE;
606 	kref_init(&memtype->kref);
607 	return memtype;
608 }
609 EXPORT_SYMBOL_GPL(alloc_memory_type);
610 
put_memory_type(struct memory_dev_type * memtype)611 void put_memory_type(struct memory_dev_type *memtype)
612 {
613 	kref_put(&memtype->kref, release_memtype);
614 }
615 EXPORT_SYMBOL_GPL(put_memory_type);
616 
init_node_memory_type(int node,struct memory_dev_type * memtype)617 void init_node_memory_type(int node, struct memory_dev_type *memtype)
618 {
619 
620 	mutex_lock(&memory_tier_lock);
621 	__init_node_memory_type(node, memtype);
622 	mutex_unlock(&memory_tier_lock);
623 }
624 EXPORT_SYMBOL_GPL(init_node_memory_type);
625 
clear_node_memory_type(int node,struct memory_dev_type * memtype)626 void clear_node_memory_type(int node, struct memory_dev_type *memtype)
627 {
628 	mutex_lock(&memory_tier_lock);
629 	if (node_memory_types[node].memtype == memtype || !memtype)
630 		node_memory_types[node].map_count--;
631 	/*
632 	 * If we umapped all the attached devices to this node,
633 	 * clear the node memory type.
634 	 */
635 	if (!node_memory_types[node].map_count) {
636 		memtype = node_memory_types[node].memtype;
637 		node_memory_types[node].memtype = NULL;
638 		put_memory_type(memtype);
639 	}
640 	mutex_unlock(&memory_tier_lock);
641 }
642 EXPORT_SYMBOL_GPL(clear_node_memory_type);
643 
mt_find_alloc_memory_type(int adist,struct list_head * memory_types)644 struct memory_dev_type *mt_find_alloc_memory_type(int adist, struct list_head *memory_types)
645 {
646 	struct memory_dev_type *mtype;
647 
648 	list_for_each_entry(mtype, memory_types, list)
649 		if (mtype->adistance == adist)
650 			return mtype;
651 
652 	mtype = alloc_memory_type(adist);
653 	if (IS_ERR(mtype))
654 		return mtype;
655 
656 	list_add(&mtype->list, memory_types);
657 
658 	return mtype;
659 }
660 EXPORT_SYMBOL_GPL(mt_find_alloc_memory_type);
661 
mt_put_memory_types(struct list_head * memory_types)662 void mt_put_memory_types(struct list_head *memory_types)
663 {
664 	struct memory_dev_type *mtype, *mtn;
665 
666 	list_for_each_entry_safe(mtype, mtn, memory_types, list) {
667 		list_del(&mtype->list);
668 		put_memory_type(mtype);
669 	}
670 }
671 EXPORT_SYMBOL_GPL(mt_put_memory_types);
672 
673 /*
674  * This is invoked via `late_initcall()` to initialize memory tiers for
675  * memory nodes, both with and without CPUs. After the initialization of
676  * firmware and devices, adistance algorithms are expected to be provided.
677  */
memory_tier_late_init(void)678 static int __init memory_tier_late_init(void)
679 {
680 	int nid;
681 	struct memory_tier *memtier;
682 
683 	get_online_mems();
684 	guard(mutex)(&memory_tier_lock);
685 
686 	/* Assign each uninitialized N_MEMORY node to a memory tier. */
687 	for_each_node_state(nid, N_MEMORY) {
688 		/*
689 		 * Some device drivers may have initialized
690 		 * memory tiers, potentially bringing memory nodes
691 		 * online and configuring memory tiers.
692 		 * Exclude them here.
693 		 */
694 		if (node_memory_types[nid].memtype)
695 			continue;
696 
697 		memtier = set_node_memory_tier(nid);
698 		if (IS_ERR(memtier))
699 			continue;
700 	}
701 
702 	establish_demotion_targets();
703 	put_online_mems();
704 
705 	return 0;
706 }
707 late_initcall(memory_tier_late_init);
708 
dump_hmem_attrs(struct access_coordinate * coord,const char * prefix)709 static void dump_hmem_attrs(struct access_coordinate *coord, const char *prefix)
710 {
711 	pr_info(
712 "%sread_latency: %u, write_latency: %u, read_bandwidth: %u, write_bandwidth: %u\n",
713 		prefix, coord->read_latency, coord->write_latency,
714 		coord->read_bandwidth, coord->write_bandwidth);
715 }
716 
mt_set_default_dram_perf(int nid,struct access_coordinate * perf,const char * source)717 int mt_set_default_dram_perf(int nid, struct access_coordinate *perf,
718 			     const char *source)
719 {
720 	guard(mutex)(&default_dram_perf_lock);
721 	if (default_dram_perf_error)
722 		return -EIO;
723 
724 	if (perf->read_latency + perf->write_latency == 0 ||
725 	    perf->read_bandwidth + perf->write_bandwidth == 0)
726 		return -EINVAL;
727 
728 	if (default_dram_perf_ref_nid == NUMA_NO_NODE) {
729 		default_dram_perf = *perf;
730 		default_dram_perf_ref_nid = nid;
731 		default_dram_perf_ref_source = kstrdup(source, GFP_KERNEL);
732 		return 0;
733 	}
734 
735 	/*
736 	 * The performance of all default DRAM nodes is expected to be
737 	 * same (that is, the variation is less than 10%).  And it
738 	 * will be used as base to calculate the abstract distance of
739 	 * other memory nodes.
740 	 */
741 	if (abs(perf->read_latency - default_dram_perf.read_latency) * 10 >
742 	    default_dram_perf.read_latency ||
743 	    abs(perf->write_latency - default_dram_perf.write_latency) * 10 >
744 	    default_dram_perf.write_latency ||
745 	    abs(perf->read_bandwidth - default_dram_perf.read_bandwidth) * 10 >
746 	    default_dram_perf.read_bandwidth ||
747 	    abs(perf->write_bandwidth - default_dram_perf.write_bandwidth) * 10 >
748 	    default_dram_perf.write_bandwidth) {
749 		pr_info(
750 "memory-tiers: the performance of DRAM node %d mismatches that of the reference\n"
751 "DRAM node %d.\n", nid, default_dram_perf_ref_nid);
752 		pr_info("  performance of reference DRAM node %d:\n",
753 			default_dram_perf_ref_nid);
754 		dump_hmem_attrs(&default_dram_perf, "    ");
755 		pr_info("  performance of DRAM node %d:\n", nid);
756 		dump_hmem_attrs(perf, "    ");
757 		pr_info(
758 "  disable default DRAM node performance based abstract distance algorithm.\n");
759 		default_dram_perf_error = true;
760 		return -EINVAL;
761 	}
762 
763 	return 0;
764 }
765 
mt_perf_to_adistance(struct access_coordinate * perf,int * adist)766 int mt_perf_to_adistance(struct access_coordinate *perf, int *adist)
767 {
768 	guard(mutex)(&default_dram_perf_lock);
769 	if (default_dram_perf_error)
770 		return -EIO;
771 
772 	if (perf->read_latency + perf->write_latency == 0 ||
773 	    perf->read_bandwidth + perf->write_bandwidth == 0)
774 		return -EINVAL;
775 
776 	if (default_dram_perf_ref_nid == NUMA_NO_NODE)
777 		return -ENOENT;
778 
779 	/*
780 	 * The abstract distance of a memory node is in direct proportion to
781 	 * its memory latency (read + write) and inversely proportional to its
782 	 * memory bandwidth (read + write).  The abstract distance, memory
783 	 * latency, and memory bandwidth of the default DRAM nodes are used as
784 	 * the base.
785 	 */
786 	*adist = MEMTIER_ADISTANCE_DRAM *
787 		(perf->read_latency + perf->write_latency) /
788 		(default_dram_perf.read_latency + default_dram_perf.write_latency) *
789 		(default_dram_perf.read_bandwidth + default_dram_perf.write_bandwidth) /
790 		(perf->read_bandwidth + perf->write_bandwidth);
791 
792 	return 0;
793 }
794 EXPORT_SYMBOL_GPL(mt_perf_to_adistance);
795 
796 /**
797  * register_mt_adistance_algorithm() - Register memory tiering abstract distance algorithm
798  * @nb: The notifier block which describe the algorithm
799  *
800  * Return: 0 on success, errno on error.
801  *
802  * Every memory tiering abstract distance algorithm provider needs to
803  * register the algorithm with register_mt_adistance_algorithm().  To
804  * calculate the abstract distance for a specified memory node, the
805  * notifier function will be called unless some high priority
806  * algorithm has provided result.  The prototype of the notifier
807  * function is as follows,
808  *
809  *   int (*algorithm_notifier)(struct notifier_block *nb,
810  *                             unsigned long nid, void *data);
811  *
812  * Where "nid" specifies the memory node, "data" is the pointer to the
813  * returned abstract distance (that is, "int *adist").  If the
814  * algorithm provides the result, NOTIFY_STOP should be returned.
815  * Otherwise, return_value & %NOTIFY_STOP_MASK == 0 to allow the next
816  * algorithm in the chain to provide the result.
817  */
register_mt_adistance_algorithm(struct notifier_block * nb)818 int register_mt_adistance_algorithm(struct notifier_block *nb)
819 {
820 	return blocking_notifier_chain_register(&mt_adistance_algorithms, nb);
821 }
822 EXPORT_SYMBOL_GPL(register_mt_adistance_algorithm);
823 
824 /**
825  * unregister_mt_adistance_algorithm() - Unregister memory tiering abstract distance algorithm
826  * @nb: the notifier block which describe the algorithm
827  *
828  * Return: 0 on success, errno on error.
829  */
unregister_mt_adistance_algorithm(struct notifier_block * nb)830 int unregister_mt_adistance_algorithm(struct notifier_block *nb)
831 {
832 	return blocking_notifier_chain_unregister(&mt_adistance_algorithms, nb);
833 }
834 EXPORT_SYMBOL_GPL(unregister_mt_adistance_algorithm);
835 
836 /**
837  * mt_calc_adistance() - Calculate abstract distance with registered algorithms
838  * @node: the node to calculate abstract distance for
839  * @adist: the returned abstract distance
840  *
841  * Return: if return_value & %NOTIFY_STOP_MASK != 0, then some
842  * abstract distance algorithm provides the result, and return it via
843  * @adist.  Otherwise, no algorithm can provide the result and @adist
844  * will be kept as it is.
845  */
mt_calc_adistance(int node,int * adist)846 int mt_calc_adistance(int node, int *adist)
847 {
848 	return blocking_notifier_call_chain(&mt_adistance_algorithms, node, adist);
849 }
850 EXPORT_SYMBOL_GPL(mt_calc_adistance);
851 
memtier_hotplug_callback(struct notifier_block * self,unsigned long action,void * _arg)852 static int __meminit memtier_hotplug_callback(struct notifier_block *self,
853 					      unsigned long action, void *_arg)
854 {
855 	struct memory_tier *memtier;
856 	struct memory_notify *arg = _arg;
857 
858 	/*
859 	 * Only update the node migration order when a node is
860 	 * changing status, like online->offline.
861 	 */
862 	if (arg->status_change_nid < 0)
863 		return notifier_from_errno(0);
864 
865 	switch (action) {
866 	case MEM_OFFLINE:
867 		mutex_lock(&memory_tier_lock);
868 		if (clear_node_memory_tier(arg->status_change_nid))
869 			establish_demotion_targets();
870 		mutex_unlock(&memory_tier_lock);
871 		break;
872 	case MEM_ONLINE:
873 		mutex_lock(&memory_tier_lock);
874 		memtier = set_node_memory_tier(arg->status_change_nid);
875 		if (!IS_ERR(memtier))
876 			establish_demotion_targets();
877 		mutex_unlock(&memory_tier_lock);
878 		break;
879 	}
880 
881 	return notifier_from_errno(0);
882 }
883 
memory_tier_init(void)884 static int __init memory_tier_init(void)
885 {
886 	int ret;
887 
888 	ret = subsys_virtual_register(&memory_tier_subsys, NULL);
889 	if (ret)
890 		panic("%s() failed to register memory tier subsystem\n", __func__);
891 
892 #ifdef CONFIG_MIGRATION
893 	node_demotion = kcalloc(nr_node_ids, sizeof(struct demotion_nodes),
894 				GFP_KERNEL);
895 	WARN_ON(!node_demotion);
896 #endif
897 
898 	guard(mutex)(&memory_tier_lock);
899 	/*
900 	 * For now we can have 4 faster memory tiers with smaller adistance
901 	 * than default DRAM tier.
902 	 */
903 	default_dram_type = mt_find_alloc_memory_type(MEMTIER_ADISTANCE_DRAM,
904 						      &default_memory_types);
905 	if (IS_ERR(default_dram_type))
906 		panic("%s() failed to allocate default DRAM tier\n", __func__);
907 
908 	/* Record nodes with memory and CPU to set default DRAM performance. */
909 	nodes_and(default_dram_nodes, node_states[N_MEMORY],
910 		  node_states[N_CPU]);
911 
912 	hotplug_memory_notifier(memtier_hotplug_callback, MEMTIER_HOTPLUG_PRI);
913 	return 0;
914 }
915 subsys_initcall(memory_tier_init);
916 
917 bool numa_demotion_enabled = false;
918 
919 #ifdef CONFIG_MIGRATION
920 #ifdef CONFIG_SYSFS
demotion_enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)921 static ssize_t demotion_enabled_show(struct kobject *kobj,
922 				     struct kobj_attribute *attr, char *buf)
923 {
924 	return sysfs_emit(buf, "%s\n",
925 			  numa_demotion_enabled ? "true" : "false");
926 }
927 
demotion_enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)928 static ssize_t demotion_enabled_store(struct kobject *kobj,
929 				      struct kobj_attribute *attr,
930 				      const char *buf, size_t count)
931 {
932 	ssize_t ret;
933 
934 	ret = kstrtobool(buf, &numa_demotion_enabled);
935 	if (ret)
936 		return ret;
937 
938 	return count;
939 }
940 
941 static struct kobj_attribute numa_demotion_enabled_attr =
942 	__ATTR_RW(demotion_enabled);
943 
944 static struct attribute *numa_attrs[] = {
945 	&numa_demotion_enabled_attr.attr,
946 	NULL,
947 };
948 
949 static const struct attribute_group numa_attr_group = {
950 	.attrs = numa_attrs,
951 };
952 
numa_init_sysfs(void)953 static int __init numa_init_sysfs(void)
954 {
955 	int err;
956 	struct kobject *numa_kobj;
957 
958 	numa_kobj = kobject_create_and_add("numa", mm_kobj);
959 	if (!numa_kobj) {
960 		pr_err("failed to create numa kobject\n");
961 		return -ENOMEM;
962 	}
963 	err = sysfs_create_group(numa_kobj, &numa_attr_group);
964 	if (err) {
965 		pr_err("failed to register numa group\n");
966 		goto delete_obj;
967 	}
968 	return 0;
969 
970 delete_obj:
971 	kobject_put(numa_kobj);
972 	return err;
973 }
974 subsys_initcall(numa_init_sysfs);
975 #endif /* CONFIG_SYSFS */
976 #endif
977