xref: /linux/drivers/infiniband/ulp/rtrs/rtrs-srv.c (revision 88f2bf22d99b4a89f5ec3d3dec07271368499c3c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * RDMA Transport Layer
4  *
5  * Copyright (c) 2014 - 2018 ProfitBricks GmbH. All rights reserved.
6  * Copyright (c) 2018 - 2019 1&1 IONOS Cloud GmbH. All rights reserved.
7  * Copyright (c) 2019 - 2020 1&1 IONOS SE. All rights reserved.
8  */
9 
10 #undef pr_fmt
11 #define pr_fmt(fmt) KBUILD_MODNAME " L" __stringify(__LINE__) ": " fmt
12 
13 #include <linux/module.h>
14 
15 #include "rtrs-srv.h"
16 #include "rtrs-log.h"
17 #include <rdma/ib_cm.h>
18 #include <rdma/ib_verbs.h>
19 #include "rtrs-srv-trace.h"
20 
21 MODULE_DESCRIPTION("RDMA Transport Server");
22 MODULE_LICENSE("GPL");
23 
24 /* Must be power of 2, see mask from mr->page_size in ib_sg_to_pages() */
25 #define DEFAULT_MAX_CHUNK_SIZE (128 << 10)
26 #define DEFAULT_SESS_QUEUE_DEPTH 512
27 #define MAX_HDR_SIZE PAGE_SIZE
28 
29 static const struct rtrs_rdma_dev_pd_ops dev_pd_ops;
30 static struct rtrs_rdma_dev_pd dev_pd = {
31 	.ops = &dev_pd_ops
32 };
33 const struct class rtrs_dev_class = {
34 	.name = "rtrs-server",
35 };
36 static struct rtrs_srv_ib_ctx ib_ctx;
37 
38 static int __read_mostly max_chunk_size = DEFAULT_MAX_CHUNK_SIZE;
39 static int __read_mostly sess_queue_depth = DEFAULT_SESS_QUEUE_DEPTH;
40 
41 static bool always_invalidate = true;
42 module_param(always_invalidate, bool, 0444);
43 MODULE_PARM_DESC(always_invalidate,
44 		 "Invalidate memory registration for contiguous memory regions before accessing.");
45 
46 module_param_named(max_chunk_size, max_chunk_size, int, 0444);
47 MODULE_PARM_DESC(max_chunk_size,
48 		 "Max size for each IO request, when change the unit is in byte (default: "
49 		 __stringify(DEFAULT_MAX_CHUNK_SIZE) "KB)");
50 
51 module_param_named(sess_queue_depth, sess_queue_depth, int, 0444);
52 MODULE_PARM_DESC(sess_queue_depth,
53 		 "Number of buffers for pending I/O requests to allocate per session. Maximum: "
54 		 __stringify(MAX_SESS_QUEUE_DEPTH) " (default: "
55 		 __stringify(DEFAULT_SESS_QUEUE_DEPTH) ")");
56 
57 static cpumask_t cq_affinity_mask = { CPU_BITS_ALL };
58 
59 static struct workqueue_struct *rtrs_wq;
60 
61 static inline struct rtrs_srv_con *to_srv_con(struct rtrs_con *c)
62 {
63 	return container_of(c, struct rtrs_srv_con, c);
64 }
65 
66 static bool rtrs_srv_change_state(struct rtrs_srv_path *srv_path,
67 				  enum rtrs_srv_state new_state)
68 {
69 	enum rtrs_srv_state old_state;
70 	bool changed = false;
71 	unsigned long flags;
72 
73 	spin_lock_irqsave(&srv_path->state_lock, flags);
74 	old_state = srv_path->state;
75 	switch (new_state) {
76 	case RTRS_SRV_CONNECTED:
77 		if (old_state == RTRS_SRV_CONNECTING)
78 			changed = true;
79 		break;
80 	case RTRS_SRV_CLOSING:
81 		if (old_state == RTRS_SRV_CONNECTING ||
82 		    old_state == RTRS_SRV_CONNECTED)
83 			changed = true;
84 		break;
85 	case RTRS_SRV_CLOSED:
86 		if (old_state == RTRS_SRV_CLOSING)
87 			changed = true;
88 		break;
89 	default:
90 		break;
91 	}
92 	if (changed)
93 		srv_path->state = new_state;
94 	spin_unlock_irqrestore(&srv_path->state_lock, flags);
95 
96 	return changed;
97 }
98 
99 static void free_id(struct rtrs_srv_op *id)
100 {
101 	if (!id)
102 		return;
103 	kfree(id);
104 }
105 
106 static void rtrs_srv_free_ops_ids(struct rtrs_srv_path *srv_path)
107 {
108 	struct rtrs_srv_sess *srv = srv_path->srv;
109 	int i;
110 
111 	if (srv_path->ops_ids) {
112 		for (i = 0; i < srv->queue_depth; i++)
113 			free_id(srv_path->ops_ids[i]);
114 		kfree(srv_path->ops_ids);
115 		srv_path->ops_ids = NULL;
116 	}
117 }
118 
119 static void rtrs_srv_rdma_done(struct ib_cq *cq, struct ib_wc *wc);
120 
121 static struct ib_cqe io_comp_cqe = {
122 	.done = rtrs_srv_rdma_done
123 };
124 
125 static inline void rtrs_srv_inflight_ref_release(struct percpu_ref *ref)
126 {
127 	struct rtrs_srv_path *srv_path = container_of(ref,
128 						      struct rtrs_srv_path,
129 						      ids_inflight_ref);
130 
131 	percpu_ref_exit(&srv_path->ids_inflight_ref);
132 	complete(&srv_path->complete_done);
133 }
134 
135 static int rtrs_srv_alloc_ops_ids(struct rtrs_srv_path *srv_path)
136 {
137 	struct rtrs_srv_sess *srv = srv_path->srv;
138 	struct rtrs_srv_op *id;
139 	int i, ret;
140 
141 	srv_path->ops_ids = kcalloc(srv->queue_depth,
142 				    sizeof(*srv_path->ops_ids),
143 				    GFP_KERNEL);
144 	if (!srv_path->ops_ids)
145 		goto err;
146 
147 	for (i = 0; i < srv->queue_depth; ++i) {
148 		id = kzalloc(sizeof(*id), GFP_KERNEL);
149 		if (!id)
150 			goto err;
151 
152 		srv_path->ops_ids[i] = id;
153 	}
154 
155 	ret = percpu_ref_init(&srv_path->ids_inflight_ref,
156 			      rtrs_srv_inflight_ref_release, 0, GFP_KERNEL);
157 	if (ret) {
158 		pr_err("Percpu reference init failed\n");
159 		goto err;
160 	}
161 	init_completion(&srv_path->complete_done);
162 
163 	return 0;
164 
165 err:
166 	rtrs_srv_free_ops_ids(srv_path);
167 	return -ENOMEM;
168 }
169 
170 static inline void rtrs_srv_get_ops_ids(struct rtrs_srv_path *srv_path)
171 {
172 	percpu_ref_get(&srv_path->ids_inflight_ref);
173 }
174 
175 static inline void rtrs_srv_put_ops_ids(struct rtrs_srv_path *srv_path)
176 {
177 	percpu_ref_put(&srv_path->ids_inflight_ref);
178 }
179 
180 static void rtrs_srv_reg_mr_done(struct ib_cq *cq, struct ib_wc *wc)
181 {
182 	struct rtrs_srv_con *con = to_srv_con(wc->qp->qp_context);
183 	struct rtrs_path *s = con->c.path;
184 	struct rtrs_srv_path *srv_path = to_srv_path(s);
185 
186 	if (wc->status != IB_WC_SUCCESS) {
187 		rtrs_err_rl(s, "REG MR failed: %s\n",
188 			  ib_wc_status_msg(wc->status));
189 		close_path(srv_path);
190 		return;
191 	}
192 }
193 
194 static struct ib_cqe local_reg_cqe = {
195 	.done = rtrs_srv_reg_mr_done
196 };
197 
198 static int rdma_write_sg(struct rtrs_srv_op *id)
199 {
200 	struct rtrs_path *s = id->con->c.path;
201 	struct rtrs_srv_path *srv_path = to_srv_path(s);
202 	dma_addr_t dma_addr = srv_path->dma_addr[id->msg_id];
203 	struct rtrs_srv_mr *srv_mr;
204 	struct ib_send_wr inv_wr;
205 	struct ib_rdma_wr imm_wr;
206 	struct ib_rdma_wr *wr = NULL;
207 	enum ib_send_flags flags;
208 	size_t sg_cnt;
209 	int err, offset;
210 	bool need_inval;
211 	struct ib_reg_wr rwr;
212 	struct ib_sge *plist;
213 	struct ib_sge list;
214 
215 	sg_cnt = le16_to_cpu(id->rd_msg->sg_cnt);
216 	need_inval = le16_to_cpu(id->rd_msg->flags) & RTRS_MSG_NEED_INVAL_F;
217 	if (sg_cnt != 1)
218 		return -EINVAL;
219 
220 	offset = 0;
221 
222 	wr		= &id->tx_wr;
223 	plist		= &id->tx_sg;
224 	plist->addr	= dma_addr + offset;
225 	plist->length	= le32_to_cpu(id->rd_msg->desc[0].len);
226 
227 	/* WR will fail with length error
228 	 * if this is 0
229 	 */
230 	if (plist->length == 0) {
231 		rtrs_err(s, "Invalid RDMA-Write sg list length 0\n");
232 		return -EINVAL;
233 	}
234 
235 	plist->lkey = srv_path->s.dev->ib_pd->local_dma_lkey;
236 	offset += plist->length;
237 
238 	wr->wr.sg_list	= plist;
239 	wr->wr.num_sge	= 1;
240 	wr->remote_addr	= le64_to_cpu(id->rd_msg->desc[0].addr);
241 	wr->rkey	= le32_to_cpu(id->rd_msg->desc[0].key);
242 
243 	wr->wr.opcode = IB_WR_RDMA_WRITE;
244 	wr->wr.wr_cqe   = &io_comp_cqe;
245 	wr->wr.ex.imm_data = 0;
246 	wr->wr.send_flags  = 0;
247 
248 	if (need_inval && always_invalidate) {
249 		wr->wr.next = &rwr.wr;
250 		rwr.wr.next = &inv_wr;
251 		inv_wr.next = &imm_wr.wr;
252 	} else if (always_invalidate) {
253 		wr->wr.next = &rwr.wr;
254 		rwr.wr.next = &imm_wr.wr;
255 	} else if (need_inval) {
256 		wr->wr.next = &inv_wr;
257 		inv_wr.next = &imm_wr.wr;
258 	} else {
259 		wr->wr.next = &imm_wr.wr;
260 	}
261 	/*
262 	 * From time to time we have to post signaled sends,
263 	 * or send queue will fill up and only QP reset can help.
264 	 */
265 	flags = (atomic_inc_return(&id->con->c.wr_cnt) % s->signal_interval) ?
266 		0 : IB_SEND_SIGNALED;
267 
268 	if (need_inval) {
269 		inv_wr.sg_list = NULL;
270 		inv_wr.num_sge = 0;
271 		inv_wr.opcode = IB_WR_SEND_WITH_INV;
272 		inv_wr.wr_cqe   = &io_comp_cqe;
273 		inv_wr.send_flags = 0;
274 		inv_wr.ex.invalidate_rkey = wr->rkey;
275 	}
276 
277 	imm_wr.wr.next = NULL;
278 	if (always_invalidate) {
279 		struct rtrs_msg_rkey_rsp *msg;
280 
281 		srv_mr = &srv_path->mrs[id->msg_id];
282 		rwr.wr.opcode = IB_WR_REG_MR;
283 		rwr.wr.wr_cqe = &local_reg_cqe;
284 		rwr.wr.num_sge = 0;
285 		rwr.mr = srv_mr->mr;
286 		rwr.wr.send_flags = 0;
287 		rwr.key = srv_mr->mr->rkey;
288 		rwr.access = (IB_ACCESS_LOCAL_WRITE |
289 			      IB_ACCESS_REMOTE_WRITE);
290 		msg = srv_mr->iu->buf;
291 		msg->buf_id = cpu_to_le16(id->msg_id);
292 		msg->type = cpu_to_le16(RTRS_MSG_RKEY_RSP);
293 		msg->rkey = cpu_to_le32(srv_mr->mr->rkey);
294 
295 		list.addr   = srv_mr->iu->dma_addr;
296 		list.length = sizeof(*msg);
297 		list.lkey   = srv_path->s.dev->ib_pd->local_dma_lkey;
298 		imm_wr.wr.sg_list = &list;
299 		imm_wr.wr.num_sge = 1;
300 		imm_wr.wr.opcode = IB_WR_SEND_WITH_IMM;
301 		ib_dma_sync_single_for_device(srv_path->s.dev->ib_dev,
302 					      srv_mr->iu->dma_addr,
303 					      srv_mr->iu->size, DMA_TO_DEVICE);
304 	} else {
305 		imm_wr.wr.sg_list = NULL;
306 		imm_wr.wr.num_sge = 0;
307 		imm_wr.wr.opcode = IB_WR_RDMA_WRITE_WITH_IMM;
308 	}
309 	imm_wr.wr.send_flags = flags;
310 	imm_wr.wr.ex.imm_data = cpu_to_be32(rtrs_to_io_rsp_imm(id->msg_id,
311 							     0, need_inval));
312 
313 	imm_wr.wr.wr_cqe   = &io_comp_cqe;
314 	ib_dma_sync_single_for_device(srv_path->s.dev->ib_dev, dma_addr,
315 				      offset, DMA_BIDIRECTIONAL);
316 
317 	err = ib_post_send(id->con->c.qp, &id->tx_wr.wr, NULL);
318 	if (err)
319 		rtrs_err(s,
320 			  "Posting RDMA-Write-Request to QP failed, err: %pe\n",
321 			  ERR_PTR(err));
322 
323 	return err;
324 }
325 
326 /**
327  * send_io_resp_imm() - respond to client with empty IMM on failed READ/WRITE
328  *                      requests or on successful WRITE request.
329  * @con:	the connection to send back result
330  * @id:		the id associated with the IO
331  * @errno:	the error number of the IO.
332  *
333  * Return 0 on success, errno otherwise.
334  */
335 static int send_io_resp_imm(struct rtrs_srv_con *con, struct rtrs_srv_op *id,
336 			    int errno)
337 {
338 	struct rtrs_path *s = con->c.path;
339 	struct rtrs_srv_path *srv_path = to_srv_path(s);
340 	struct ib_send_wr inv_wr, *wr = NULL;
341 	struct ib_rdma_wr imm_wr;
342 	struct ib_reg_wr rwr;
343 	struct rtrs_srv_mr *srv_mr;
344 	bool need_inval = false;
345 	enum ib_send_flags flags;
346 	struct ib_sge list;
347 	u32 imm;
348 	int err;
349 
350 	if (id->dir == READ) {
351 		struct rtrs_msg_rdma_read *rd_msg = id->rd_msg;
352 		size_t sg_cnt;
353 
354 		need_inval = le16_to_cpu(rd_msg->flags) &
355 				RTRS_MSG_NEED_INVAL_F;
356 		sg_cnt = le16_to_cpu(rd_msg->sg_cnt);
357 
358 		if (need_inval) {
359 			if (sg_cnt) {
360 				inv_wr.wr_cqe   = &io_comp_cqe;
361 				inv_wr.sg_list = NULL;
362 				inv_wr.num_sge = 0;
363 				inv_wr.opcode = IB_WR_SEND_WITH_INV;
364 				inv_wr.send_flags = 0;
365 				/* Only one key is actually used */
366 				inv_wr.ex.invalidate_rkey =
367 					le32_to_cpu(rd_msg->desc[0].key);
368 			} else {
369 				WARN_ON_ONCE(1);
370 				need_inval = false;
371 			}
372 		}
373 	}
374 
375 	trace_send_io_resp_imm(id, need_inval, always_invalidate, errno);
376 
377 	if (need_inval && always_invalidate) {
378 		wr = &inv_wr;
379 		inv_wr.next = &rwr.wr;
380 		rwr.wr.next = &imm_wr.wr;
381 	} else if (always_invalidate) {
382 		wr = &rwr.wr;
383 		rwr.wr.next = &imm_wr.wr;
384 	} else if (need_inval) {
385 		wr = &inv_wr;
386 		inv_wr.next = &imm_wr.wr;
387 	} else {
388 		wr = &imm_wr.wr;
389 	}
390 	/*
391 	 * From time to time we have to post signalled sends,
392 	 * or send queue will fill up and only QP reset can help.
393 	 */
394 	flags = (atomic_inc_return(&con->c.wr_cnt) % s->signal_interval) ?
395 		0 : IB_SEND_SIGNALED;
396 	imm = rtrs_to_io_rsp_imm(id->msg_id, errno, need_inval);
397 	imm_wr.wr.next = NULL;
398 	if (always_invalidate) {
399 		struct rtrs_msg_rkey_rsp *msg;
400 
401 		srv_mr = &srv_path->mrs[id->msg_id];
402 		rwr.wr.next = &imm_wr.wr;
403 		rwr.wr.opcode = IB_WR_REG_MR;
404 		rwr.wr.wr_cqe = &local_reg_cqe;
405 		rwr.wr.num_sge = 0;
406 		rwr.wr.send_flags = 0;
407 		rwr.mr = srv_mr->mr;
408 		rwr.key = srv_mr->mr->rkey;
409 		rwr.access = (IB_ACCESS_LOCAL_WRITE |
410 			      IB_ACCESS_REMOTE_WRITE);
411 		msg = srv_mr->iu->buf;
412 		msg->buf_id = cpu_to_le16(id->msg_id);
413 		msg->type = cpu_to_le16(RTRS_MSG_RKEY_RSP);
414 		msg->rkey = cpu_to_le32(srv_mr->mr->rkey);
415 
416 		list.addr   = srv_mr->iu->dma_addr;
417 		list.length = sizeof(*msg);
418 		list.lkey   = srv_path->s.dev->ib_pd->local_dma_lkey;
419 		imm_wr.wr.sg_list = &list;
420 		imm_wr.wr.num_sge = 1;
421 		imm_wr.wr.opcode = IB_WR_SEND_WITH_IMM;
422 		ib_dma_sync_single_for_device(srv_path->s.dev->ib_dev,
423 					      srv_mr->iu->dma_addr,
424 					      srv_mr->iu->size, DMA_TO_DEVICE);
425 	} else {
426 		imm_wr.wr.sg_list = NULL;
427 		imm_wr.wr.num_sge = 0;
428 		imm_wr.wr.opcode = IB_WR_RDMA_WRITE_WITH_IMM;
429 	}
430 	imm_wr.wr.send_flags = flags;
431 	imm_wr.wr.wr_cqe   = &io_comp_cqe;
432 
433 	imm_wr.wr.ex.imm_data = cpu_to_be32(imm);
434 
435 	err = ib_post_send(id->con->c.qp, wr, NULL);
436 	if (err)
437 		rtrs_err_rl(s, "Posting RDMA-Reply to QP failed, err: %pe\n",
438 			    ERR_PTR(err));
439 
440 	return err;
441 }
442 
443 void close_path(struct rtrs_srv_path *srv_path)
444 {
445 	if (rtrs_srv_change_state(srv_path, RTRS_SRV_CLOSING))
446 		queue_work(rtrs_wq, &srv_path->close_work);
447 	WARN_ON(srv_path->state != RTRS_SRV_CLOSING);
448 }
449 
450 static inline const char *rtrs_srv_state_str(enum rtrs_srv_state state)
451 {
452 	switch (state) {
453 	case RTRS_SRV_CONNECTING:
454 		return "RTRS_SRV_CONNECTING";
455 	case RTRS_SRV_CONNECTED:
456 		return "RTRS_SRV_CONNECTED";
457 	case RTRS_SRV_CLOSING:
458 		return "RTRS_SRV_CLOSING";
459 	case RTRS_SRV_CLOSED:
460 		return "RTRS_SRV_CLOSED";
461 	default:
462 		return "UNKNOWN";
463 	}
464 }
465 
466 /**
467  * rtrs_srv_resp_rdma() - Finish an RDMA request
468  *
469  * @id:		Internal RTRS operation identifier
470  * @status:	Response Code sent to the other side for this operation.
471  *		0 = success, <=0 error
472  * Context: any
473  *
474  * Finish a RDMA operation. A message is sent to the client and the
475  * corresponding memory areas will be released.
476  */
477 bool rtrs_srv_resp_rdma(struct rtrs_srv_op *id, int status)
478 {
479 	struct rtrs_srv_path *srv_path;
480 	struct rtrs_srv_con *con;
481 	struct rtrs_path *s;
482 	int err;
483 
484 	if (WARN_ON(!id))
485 		return true;
486 
487 	con = id->con;
488 	s = con->c.path;
489 	srv_path = to_srv_path(s);
490 
491 	id->status = status;
492 
493 	if (srv_path->state != RTRS_SRV_CONNECTED) {
494 		rtrs_err_rl(s,
495 			    "Sending I/O response failed,  server path %s is disconnected, path state %s\n",
496 			    kobject_name(&srv_path->kobj),
497 			    rtrs_srv_state_str(srv_path->state));
498 		goto out;
499 	}
500 	if (always_invalidate) {
501 		struct rtrs_srv_mr *mr = &srv_path->mrs[id->msg_id];
502 
503 		ib_update_fast_reg_key(mr->mr, ib_inc_rkey(mr->mr->rkey));
504 	}
505 	if (atomic_sub_return(1, &con->c.sq_wr_avail) < 0) {
506 		rtrs_err(s, "IB send queue full: srv_path=%s cid=%d\n",
507 			 kobject_name(&srv_path->kobj),
508 			 con->c.cid);
509 		atomic_add(1, &con->c.sq_wr_avail);
510 		spin_lock(&con->rsp_wr_wait_lock);
511 		list_add_tail(&id->wait_list, &con->rsp_wr_wait_list);
512 		spin_unlock(&con->rsp_wr_wait_lock);
513 		return false;
514 	}
515 
516 	if (status || id->dir == WRITE || !id->rd_msg->sg_cnt)
517 		err = send_io_resp_imm(con, id, status);
518 	else
519 		err = rdma_write_sg(id);
520 
521 	if (err) {
522 		rtrs_err_rl(s, "IO response failed: %pe: srv_path=%s\n",
523 			    ERR_PTR(err), kobject_name(&srv_path->kobj));
524 		close_path(srv_path);
525 	}
526 out:
527 	rtrs_srv_put_ops_ids(srv_path);
528 	return true;
529 }
530 EXPORT_SYMBOL(rtrs_srv_resp_rdma);
531 
532 /**
533  * rtrs_srv_set_sess_priv() - Set private pointer in rtrs_srv.
534  * @srv:	Session pointer
535  * @priv:	The private pointer that is associated with the session.
536  */
537 void rtrs_srv_set_sess_priv(struct rtrs_srv_sess *srv, void *priv)
538 {
539 	srv->priv = priv;
540 }
541 EXPORT_SYMBOL(rtrs_srv_set_sess_priv);
542 
543 static void unmap_cont_bufs(struct rtrs_srv_path *srv_path)
544 {
545 	int i;
546 
547 	for (i = 0; i < srv_path->mrs_num; i++) {
548 		struct rtrs_srv_mr *srv_mr;
549 
550 		srv_mr = &srv_path->mrs[i];
551 
552 		if (always_invalidate)
553 			rtrs_iu_free(srv_mr->iu, srv_path->s.dev->ib_dev, 1);
554 
555 		ib_dereg_mr(srv_mr->mr);
556 		ib_dma_unmap_sg(srv_path->s.dev->ib_dev, srv_mr->sgt.sgl,
557 				srv_mr->sgt.nents, DMA_BIDIRECTIONAL);
558 		sg_free_table(&srv_mr->sgt);
559 	}
560 	kfree(srv_path->mrs);
561 }
562 
563 static int map_cont_bufs(struct rtrs_srv_path *srv_path)
564 {
565 	struct ib_device *ib_dev = srv_path->s.dev->ib_dev;
566 	struct rtrs_srv_sess *srv = srv_path->srv;
567 	struct rtrs_path *ss = &srv_path->s;
568 	int i, err, mrs_num;
569 	unsigned int chunk_bits;
570 	enum ib_mr_type mr_type;
571 	int chunks_per_mr = 1;
572 	struct sg_table *sgt;
573 	struct ib_mr *mr;
574 
575 	/*
576 	 * Here we map queue_depth chunks to MR.  Firstly we have to
577 	 * figure out how many chunks can we map per MR.
578 	 */
579 	if (always_invalidate) {
580 		/*
581 		 * in order to do invalidate for each chunks of memory, we needs
582 		 * more memory regions.
583 		 */
584 		mrs_num = srv->queue_depth;
585 	} else {
586 		chunks_per_mr =
587 			srv_path->s.dev->ib_dev->attrs.max_fast_reg_page_list_len;
588 		mrs_num = DIV_ROUND_UP(srv->queue_depth, chunks_per_mr);
589 		chunks_per_mr = DIV_ROUND_UP(srv->queue_depth, mrs_num);
590 	}
591 
592 	srv_path->mrs = kcalloc(mrs_num, sizeof(*srv_path->mrs), GFP_KERNEL);
593 	if (!srv_path->mrs)
594 		return -ENOMEM;
595 
596 	for (srv_path->mrs_num = 0; srv_path->mrs_num < mrs_num;
597 	     srv_path->mrs_num++) {
598 		struct rtrs_srv_mr *srv_mr = &srv_path->mrs[srv_path->mrs_num];
599 		struct scatterlist *s;
600 		int nr, nr_sgt, chunks, ind;
601 
602 		sgt = &srv_mr->sgt;
603 		chunks = chunks_per_mr * srv_path->mrs_num;
604 		if (!always_invalidate)
605 			chunks_per_mr = min_t(int, chunks_per_mr,
606 					      srv->queue_depth - chunks);
607 
608 		err = sg_alloc_table(sgt, chunks_per_mr, GFP_KERNEL);
609 		if (err)
610 			goto err;
611 
612 		for_each_sg(sgt->sgl, s, chunks_per_mr, i)
613 			sg_set_page(s, srv->chunks[chunks + i],
614 				    max_chunk_size, 0);
615 
616 		nr_sgt = ib_dma_map_sg(srv_path->s.dev->ib_dev, sgt->sgl,
617 				   sgt->nents, DMA_BIDIRECTIONAL);
618 		if (!nr_sgt) {
619 			err = -EINVAL;
620 			goto free_sg;
621 		}
622 
623 		if (ib_dev->attrs.kernel_cap_flags & IBK_SG_GAPS_REG)
624 			mr_type = IB_MR_TYPE_SG_GAPS;
625 		else
626 			mr_type = IB_MR_TYPE_MEM_REG;
627 
628 		mr = ib_alloc_mr(srv_path->s.dev->ib_pd, mr_type, nr_sgt);
629 		if (IS_ERR(mr)) {
630 			err = PTR_ERR(mr);
631 			goto unmap_sg;
632 		}
633 		nr = ib_map_mr_sg(mr, sgt->sgl, nr_sgt,
634 				  NULL, max_chunk_size);
635 		if (nr < nr_sgt) {
636 			err = nr < 0 ? nr : -EINVAL;
637 			goto dereg_mr;
638 		}
639 
640 		if (always_invalidate) {
641 			srv_mr->iu = rtrs_iu_alloc(1,
642 					sizeof(struct rtrs_msg_rkey_rsp),
643 					GFP_KERNEL, srv_path->s.dev->ib_dev,
644 					DMA_TO_DEVICE, rtrs_srv_rdma_done);
645 			if (!srv_mr->iu) {
646 				err = -ENOMEM;
647 				rtrs_err(ss, "rtrs_iu_alloc(), err: %pe\n", ERR_PTR(err));
648 				goto dereg_mr;
649 			}
650 		}
651 
652 		/*
653 		 * Cache DMA addresses by traversing sg entries.  If
654 		 * regions were merged, an inner loop is required to
655 		 * populate the DMA address array by traversing larger
656 		 * regions.
657 		 */
658 		ind = chunks;
659 		for_each_sg(sgt->sgl, s, nr_sgt, i) {
660 			unsigned int dma_len = sg_dma_len(s);
661 			u64 dma_addr = sg_dma_address(s);
662 			u64 dma_addr_end = dma_addr + dma_len;
663 
664 			do {
665 				srv_path->dma_addr[ind++] = dma_addr;
666 				dma_addr += max_chunk_size;
667 			} while (dma_addr < dma_addr_end);
668 		}
669 
670 		ib_update_fast_reg_key(mr, ib_inc_rkey(mr->rkey));
671 		srv_mr->mr = mr;
672 	}
673 
674 	chunk_bits = ilog2(srv->queue_depth - 1) + 1;
675 	srv_path->mem_bits = (MAX_IMM_PAYL_BITS - chunk_bits);
676 
677 	return 0;
678 
679 dereg_mr:
680 	ib_dereg_mr(mr);
681 unmap_sg:
682 	ib_dma_unmap_sg(srv_path->s.dev->ib_dev, sgt->sgl,
683 			sgt->nents, DMA_BIDIRECTIONAL);
684 free_sg:
685 	sg_free_table(sgt);
686 err:
687 	unmap_cont_bufs(srv_path);
688 
689 	return err;
690 }
691 
692 static void rtrs_srv_hb_err_handler(struct rtrs_con *c)
693 {
694 	struct rtrs_srv_con *con = container_of(c, typeof(*con), c);
695 	struct rtrs_srv_path *srv_path = to_srv_path(con->c.path);
696 
697 	rtrs_err(con->c.path, "HB err handler for path=%s\n", kobject_name(&srv_path->kobj));
698 	close_path(to_srv_path(c->path));
699 }
700 
701 static void rtrs_srv_init_hb(struct rtrs_srv_path *srv_path)
702 {
703 	rtrs_init_hb(&srv_path->s, &io_comp_cqe,
704 		      RTRS_HB_INTERVAL_MS,
705 		      RTRS_HB_MISSED_MAX,
706 		      rtrs_srv_hb_err_handler,
707 		      rtrs_wq);
708 }
709 
710 static void rtrs_srv_start_hb(struct rtrs_srv_path *srv_path)
711 {
712 	rtrs_start_hb(&srv_path->s);
713 }
714 
715 static void rtrs_srv_stop_hb(struct rtrs_srv_path *srv_path)
716 {
717 	rtrs_stop_hb(&srv_path->s);
718 }
719 
720 static void rtrs_srv_info_rsp_done(struct ib_cq *cq, struct ib_wc *wc)
721 {
722 	struct rtrs_srv_con *con = to_srv_con(wc->qp->qp_context);
723 	struct rtrs_path *s = con->c.path;
724 	struct rtrs_srv_path *srv_path = to_srv_path(s);
725 	struct rtrs_iu *iu;
726 
727 	iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
728 	rtrs_iu_free(iu, srv_path->s.dev->ib_dev, 1);
729 
730 	if (wc->status != IB_WC_SUCCESS) {
731 		rtrs_err(s, "Sess info response send failed: %s\n",
732 			  ib_wc_status_msg(wc->status));
733 		close_path(srv_path);
734 		return;
735 	}
736 	WARN_ON(wc->opcode != IB_WC_SEND);
737 }
738 
739 static int rtrs_srv_path_up(struct rtrs_srv_path *srv_path)
740 {
741 	struct rtrs_srv_sess *srv = srv_path->srv;
742 	struct rtrs_srv_ctx *ctx = srv->ctx;
743 	int up, ret = 0;
744 
745 	mutex_lock(&srv->paths_ev_mutex);
746 	up = ++srv->paths_up;
747 	if (up == 1)
748 		ret = ctx->ops.link_ev(srv, RTRS_SRV_LINK_EV_CONNECTED, NULL);
749 	mutex_unlock(&srv->paths_ev_mutex);
750 
751 	/* Mark session as established */
752 	if (!ret)
753 		srv_path->established = true;
754 
755 	return ret;
756 }
757 
758 static void rtrs_srv_path_down(struct rtrs_srv_path *srv_path)
759 {
760 	struct rtrs_srv_sess *srv = srv_path->srv;
761 	struct rtrs_srv_ctx *ctx = srv->ctx;
762 
763 	if (!srv_path->established)
764 		return;
765 
766 	srv_path->established = false;
767 	mutex_lock(&srv->paths_ev_mutex);
768 	WARN_ON(!srv->paths_up);
769 	if (--srv->paths_up == 0)
770 		ctx->ops.link_ev(srv, RTRS_SRV_LINK_EV_DISCONNECTED, srv->priv);
771 	mutex_unlock(&srv->paths_ev_mutex);
772 }
773 
774 static bool exist_pathname(struct rtrs_srv_ctx *ctx,
775 			   const char *pathname, const uuid_t *path_uuid)
776 {
777 	struct rtrs_srv_sess *srv;
778 	struct rtrs_srv_path *srv_path;
779 	bool found = false;
780 
781 	mutex_lock(&ctx->srv_mutex);
782 	list_for_each_entry(srv, &ctx->srv_list, ctx_list) {
783 		mutex_lock(&srv->paths_mutex);
784 
785 		/* when a client with same uuid and same sessname tried to add a path */
786 		if (uuid_equal(&srv->paths_uuid, path_uuid)) {
787 			mutex_unlock(&srv->paths_mutex);
788 			continue;
789 		}
790 
791 		list_for_each_entry(srv_path, &srv->paths_list, s.entry) {
792 			if (strlen(srv_path->s.sessname) == strlen(pathname) &&
793 			    !strcmp(srv_path->s.sessname, pathname)) {
794 				found = true;
795 				break;
796 			}
797 		}
798 		mutex_unlock(&srv->paths_mutex);
799 		if (found)
800 			break;
801 	}
802 	mutex_unlock(&ctx->srv_mutex);
803 	return found;
804 }
805 
806 static int post_recv_path(struct rtrs_srv_path *srv_path);
807 static int rtrs_rdma_do_reject(struct rdma_cm_id *cm_id, int errno);
808 
809 static int process_info_req(struct rtrs_srv_con *con,
810 			    struct rtrs_msg_info_req *msg)
811 {
812 	struct rtrs_path *s = con->c.path;
813 	struct rtrs_srv_path *srv_path = to_srv_path(s);
814 	struct ib_send_wr *reg_wr = NULL;
815 	struct rtrs_msg_info_rsp *rsp;
816 	struct rtrs_iu *tx_iu;
817 	struct ib_reg_wr *rwr;
818 	int mri, err;
819 	size_t tx_sz;
820 
821 	err = post_recv_path(srv_path);
822 	if (err) {
823 		rtrs_err(s, "post_recv_path(), err: %pe\n", ERR_PTR(err));
824 		return err;
825 	}
826 
827 	if (strchr(msg->pathname, '/') || strchr(msg->pathname, '.')) {
828 		rtrs_err(s, "pathname cannot contain / and .\n");
829 		return -EINVAL;
830 	}
831 
832 	if (exist_pathname(srv_path->srv->ctx,
833 			   msg->pathname, &srv_path->srv->paths_uuid)) {
834 		rtrs_err(s, "pathname is duplicated: %s\n", msg->pathname);
835 		return -EPERM;
836 	}
837 	strscpy(srv_path->s.sessname, msg->pathname,
838 		sizeof(srv_path->s.sessname));
839 
840 	rwr = kcalloc(srv_path->mrs_num, sizeof(*rwr), GFP_KERNEL);
841 	if (!rwr)
842 		return -ENOMEM;
843 
844 	tx_sz  = sizeof(*rsp);
845 	tx_sz += sizeof(rsp->desc[0]) * srv_path->mrs_num;
846 	tx_iu = rtrs_iu_alloc(1, tx_sz, GFP_KERNEL, srv_path->s.dev->ib_dev,
847 			       DMA_TO_DEVICE, rtrs_srv_info_rsp_done);
848 	if (!tx_iu) {
849 		err = -ENOMEM;
850 		goto rwr_free;
851 	}
852 
853 	rsp = tx_iu->buf;
854 	rsp->type = cpu_to_le16(RTRS_MSG_INFO_RSP);
855 	rsp->sg_cnt = cpu_to_le16(srv_path->mrs_num);
856 
857 	for (mri = 0; mri < srv_path->mrs_num; mri++) {
858 		struct ib_mr *mr = srv_path->mrs[mri].mr;
859 
860 		rsp->desc[mri].addr = cpu_to_le64(mr->iova);
861 		rsp->desc[mri].key  = cpu_to_le32(mr->rkey);
862 		rsp->desc[mri].len  = cpu_to_le32(mr->length);
863 
864 		/*
865 		 * Fill in reg MR request and chain them *backwards*
866 		 */
867 		rwr[mri].wr.next = mri ? &rwr[mri - 1].wr : NULL;
868 		rwr[mri].wr.opcode = IB_WR_REG_MR;
869 		rwr[mri].wr.wr_cqe = &local_reg_cqe;
870 		rwr[mri].wr.num_sge = 0;
871 		rwr[mri].wr.send_flags = 0;
872 		rwr[mri].mr = mr;
873 		rwr[mri].key = mr->rkey;
874 		rwr[mri].access = (IB_ACCESS_LOCAL_WRITE |
875 				   IB_ACCESS_REMOTE_WRITE);
876 		reg_wr = &rwr[mri].wr;
877 	}
878 
879 	err = rtrs_srv_create_path_files(srv_path);
880 	if (err)
881 		goto iu_free;
882 	kobject_get(&srv_path->kobj);
883 	get_device(&srv_path->srv->dev);
884 	err = rtrs_srv_change_state(srv_path, RTRS_SRV_CONNECTED);
885 	if (!err) {
886 		rtrs_err(s, "rtrs_srv_change_state() failed\n");
887 		goto iu_free;
888 	}
889 
890 	rtrs_srv_start_hb(srv_path);
891 
892 	/*
893 	 * We do not account number of established connections at the current
894 	 * moment, we rely on the client, which should send info request when
895 	 * all connections are successfully established.  Thus, simply notify
896 	 * listener with a proper event if we are the first path.
897 	 */
898 	err = rtrs_srv_path_up(srv_path);
899 	if (err) {
900 		rtrs_err(s, "rtrs_srv_path_up(), err: %pe\n", ERR_PTR(err));
901 		goto iu_free;
902 	}
903 
904 	ib_dma_sync_single_for_device(srv_path->s.dev->ib_dev,
905 				      tx_iu->dma_addr,
906 				      tx_iu->size, DMA_TO_DEVICE);
907 
908 	/*
909 	 * Now disable zombie connection closing. Since from the logs and code,
910 	 * we know that it can never be in CONNECTED state.
911 	 */
912 	srv_path->connection_timeout = 0;
913 
914 	/* Send info response */
915 	err = rtrs_iu_post_send(&con->c, tx_iu, tx_sz, reg_wr);
916 	if (err) {
917 		rtrs_err(s, "rtrs_iu_post_send(), err: %pe\n", ERR_PTR(err));
918 iu_free:
919 		rtrs_iu_free(tx_iu, srv_path->s.dev->ib_dev, 1);
920 	}
921 rwr_free:
922 	kfree(rwr);
923 
924 	return err;
925 }
926 
927 static void rtrs_srv_info_req_done(struct ib_cq *cq, struct ib_wc *wc)
928 {
929 	struct rtrs_srv_con *con = to_srv_con(wc->qp->qp_context);
930 	struct rtrs_path *s = con->c.path;
931 	struct rtrs_srv_path *srv_path = to_srv_path(s);
932 	struct rtrs_msg_info_req *msg;
933 	struct rtrs_iu *iu;
934 	int err;
935 
936 	WARN_ON(con->c.cid);
937 
938 	iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
939 	if (wc->status != IB_WC_SUCCESS) {
940 		rtrs_err(s, "Sess info request receive failed: %s\n",
941 			  ib_wc_status_msg(wc->status));
942 		goto close;
943 	}
944 	WARN_ON(wc->opcode != IB_WC_RECV);
945 
946 	if (wc->byte_len < sizeof(*msg)) {
947 		rtrs_err(s, "Sess info request is malformed: size %d\n",
948 			  wc->byte_len);
949 		goto close;
950 	}
951 	ib_dma_sync_single_for_cpu(srv_path->s.dev->ib_dev, iu->dma_addr,
952 				   iu->size, DMA_FROM_DEVICE);
953 	msg = iu->buf;
954 	if (le16_to_cpu(msg->type) != RTRS_MSG_INFO_REQ) {
955 		rtrs_err(s, "Sess info request is malformed: type %d\n",
956 			  le16_to_cpu(msg->type));
957 		goto close;
958 	}
959 	err = process_info_req(con, msg);
960 	if (err)
961 		goto close;
962 
963 	rtrs_iu_free(iu, srv_path->s.dev->ib_dev, 1);
964 	return;
965 close:
966 	rtrs_iu_free(iu, srv_path->s.dev->ib_dev, 1);
967 	close_path(srv_path);
968 }
969 
970 static int post_recv_info_req(struct rtrs_srv_con *con)
971 {
972 	struct rtrs_path *s = con->c.path;
973 	struct rtrs_srv_path *srv_path = to_srv_path(s);
974 	struct rtrs_iu *rx_iu;
975 	int err;
976 
977 	rx_iu = rtrs_iu_alloc(1, sizeof(struct rtrs_msg_info_req),
978 			       GFP_KERNEL, srv_path->s.dev->ib_dev,
979 			       DMA_FROM_DEVICE, rtrs_srv_info_req_done);
980 	if (!rx_iu)
981 		return -ENOMEM;
982 	/* Prepare for getting info response */
983 	err = rtrs_iu_post_recv(&con->c, rx_iu);
984 	if (err) {
985 		rtrs_err(s, "rtrs_iu_post_recv(), err: %pe\n", ERR_PTR(err));
986 		rtrs_iu_free(rx_iu, srv_path->s.dev->ib_dev, 1);
987 		return err;
988 	}
989 
990 	return 0;
991 }
992 
993 static int post_recv_io(struct rtrs_srv_con *con, size_t q_size)
994 {
995 	int i, err;
996 
997 	for (i = 0; i < q_size; i++) {
998 		err = rtrs_post_recv_empty(&con->c, &io_comp_cqe);
999 		if (err)
1000 			return err;
1001 	}
1002 
1003 	return 0;
1004 }
1005 
1006 static int post_recv_path(struct rtrs_srv_path *srv_path)
1007 {
1008 	struct rtrs_srv_sess *srv = srv_path->srv;
1009 	struct rtrs_path *s = &srv_path->s;
1010 	size_t q_size;
1011 	int err, cid;
1012 
1013 	for (cid = 0; cid < srv_path->s.con_num; cid++) {
1014 		if (cid == 0)
1015 			q_size = SERVICE_CON_QUEUE_DEPTH;
1016 		else
1017 			q_size = srv->queue_depth;
1018 		if (srv_path->state != RTRS_SRV_CONNECTING) {
1019 			rtrs_err(s, "Path state invalid. state %s\n",
1020 				 rtrs_srv_state_str(srv_path->state));
1021 			return -EIO;
1022 		}
1023 
1024 		if (!srv_path->s.con[cid]) {
1025 			rtrs_err(s, "Conn not set for %d\n", cid);
1026 			return -EIO;
1027 		}
1028 
1029 		err = post_recv_io(to_srv_con(srv_path->s.con[cid]), q_size);
1030 		if (err) {
1031 			rtrs_err(s, "post_recv_io(), err: %pe\n", ERR_PTR(err));
1032 			return err;
1033 		}
1034 	}
1035 
1036 	return 0;
1037 }
1038 
1039 static void process_read(struct rtrs_srv_con *con,
1040 			 struct rtrs_msg_rdma_read *msg,
1041 			 u32 buf_id, u32 off)
1042 {
1043 	struct rtrs_path *s = con->c.path;
1044 	struct rtrs_srv_path *srv_path = to_srv_path(s);
1045 	struct rtrs_srv_sess *srv = srv_path->srv;
1046 	struct rtrs_srv_ctx *ctx = srv->ctx;
1047 	struct rtrs_srv_op *id;
1048 
1049 	size_t usr_len, data_len;
1050 	void *data;
1051 	int ret;
1052 
1053 	if (srv_path->state != RTRS_SRV_CONNECTED) {
1054 		rtrs_err_rl(s,
1055 			     "Processing read request failed,  session is disconnected, sess state %s\n",
1056 			     rtrs_srv_state_str(srv_path->state));
1057 		return;
1058 	}
1059 	if (msg->sg_cnt != 1 && msg->sg_cnt != 0) {
1060 		rtrs_err_rl(s,
1061 			    "Processing read request failed, invalid message\n");
1062 		return;
1063 	}
1064 	rtrs_srv_get_ops_ids(srv_path);
1065 	rtrs_srv_update_rdma_stats(srv_path->stats, off, READ);
1066 	id = srv_path->ops_ids[buf_id];
1067 	id->con		= con;
1068 	id->dir		= READ;
1069 	id->msg_id	= buf_id;
1070 	id->rd_msg	= msg;
1071 	usr_len = le16_to_cpu(msg->usr_len);
1072 	data_len = off - usr_len;
1073 	data = page_address(srv->chunks[buf_id]);
1074 	ret = ctx->ops.rdma_ev(srv->priv, id, data, data_len,
1075 			   data + data_len, usr_len);
1076 
1077 	if (ret) {
1078 		rtrs_err_rl(s,
1079 			     "Processing read request failed, user module cb reported for msg_id %d, err: %pe\n",
1080 			     buf_id, ERR_PTR(ret));
1081 		goto send_err_msg;
1082 	}
1083 
1084 	return;
1085 
1086 send_err_msg:
1087 	ret = send_io_resp_imm(con, id, ret);
1088 	if (ret < 0) {
1089 		rtrs_err_rl(s,
1090 			     "Sending err msg for failed RDMA-Write-Req failed, msg_id %d, err: %pe\n",
1091 			     buf_id, ERR_PTR(ret));
1092 		close_path(srv_path);
1093 	}
1094 	rtrs_srv_put_ops_ids(srv_path);
1095 }
1096 
1097 static void process_write(struct rtrs_srv_con *con,
1098 			  struct rtrs_msg_rdma_write *req,
1099 			  u32 buf_id, u32 off)
1100 {
1101 	struct rtrs_path *s = con->c.path;
1102 	struct rtrs_srv_path *srv_path = to_srv_path(s);
1103 	struct rtrs_srv_sess *srv = srv_path->srv;
1104 	struct rtrs_srv_ctx *ctx = srv->ctx;
1105 	struct rtrs_srv_op *id;
1106 
1107 	size_t data_len, usr_len;
1108 	void *data;
1109 	int ret;
1110 
1111 	if (srv_path->state != RTRS_SRV_CONNECTED) {
1112 		rtrs_err_rl(s,
1113 			     "Processing write request failed,  session is disconnected, sess state %s\n",
1114 			     rtrs_srv_state_str(srv_path->state));
1115 		return;
1116 	}
1117 	rtrs_srv_get_ops_ids(srv_path);
1118 	rtrs_srv_update_rdma_stats(srv_path->stats, off, WRITE);
1119 	id = srv_path->ops_ids[buf_id];
1120 	id->con    = con;
1121 	id->dir    = WRITE;
1122 	id->msg_id = buf_id;
1123 
1124 	usr_len = le16_to_cpu(req->usr_len);
1125 	data_len = off - usr_len;
1126 	data = page_address(srv->chunks[buf_id]);
1127 	ret = ctx->ops.rdma_ev(srv->priv, id, data, data_len,
1128 			       data + data_len, usr_len);
1129 	if (ret) {
1130 		rtrs_err_rl(s,
1131 			     "Processing write request failed, user module callback reports err: %pe\n",
1132 			     ERR_PTR(ret));
1133 		goto send_err_msg;
1134 	}
1135 
1136 	return;
1137 
1138 send_err_msg:
1139 	ret = send_io_resp_imm(con, id, ret);
1140 	if (ret < 0) {
1141 		rtrs_err_rl(s,
1142 			     "Processing write request failed, sending I/O response failed, msg_id %d, err: %pe\n",
1143 			     buf_id, ERR_PTR(ret));
1144 		close_path(srv_path);
1145 	}
1146 	rtrs_srv_put_ops_ids(srv_path);
1147 }
1148 
1149 static void process_io_req(struct rtrs_srv_con *con, void *msg,
1150 			   u32 id, u32 off)
1151 {
1152 	struct rtrs_path *s = con->c.path;
1153 	struct rtrs_srv_path *srv_path = to_srv_path(s);
1154 	struct rtrs_msg_rdma_hdr *hdr;
1155 	unsigned int type;
1156 
1157 	ib_dma_sync_single_for_cpu(srv_path->s.dev->ib_dev,
1158 				   srv_path->dma_addr[id],
1159 				   max_chunk_size, DMA_BIDIRECTIONAL);
1160 	hdr = msg;
1161 	type = le16_to_cpu(hdr->type);
1162 
1163 	switch (type) {
1164 	case RTRS_MSG_WRITE:
1165 		process_write(con, msg, id, off);
1166 		break;
1167 	case RTRS_MSG_READ:
1168 		process_read(con, msg, id, off);
1169 		break;
1170 	default:
1171 		rtrs_err(s,
1172 			  "Processing I/O request failed, unknown message type received: 0x%02x\n",
1173 			  type);
1174 		goto err;
1175 	}
1176 
1177 	return;
1178 
1179 err:
1180 	close_path(srv_path);
1181 }
1182 
1183 static void rtrs_srv_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1184 {
1185 	struct rtrs_srv_mr *mr =
1186 		container_of(wc->wr_cqe, typeof(*mr), inv_cqe);
1187 	struct rtrs_srv_con *con = to_srv_con(wc->qp->qp_context);
1188 	struct rtrs_path *s = con->c.path;
1189 	struct rtrs_srv_path *srv_path = to_srv_path(s);
1190 	struct rtrs_srv_sess *srv = srv_path->srv;
1191 	u32 msg_id, off;
1192 	void *data;
1193 
1194 	if (wc->status != IB_WC_SUCCESS) {
1195 		rtrs_err(s, "Failed IB_WR_LOCAL_INV: %s\n",
1196 			  ib_wc_status_msg(wc->status));
1197 		close_path(srv_path);
1198 	}
1199 	msg_id = mr->msg_id;
1200 	off = mr->msg_off;
1201 	data = page_address(srv->chunks[msg_id]) + off;
1202 	process_io_req(con, data, msg_id, off);
1203 }
1204 
1205 static int rtrs_srv_inv_rkey(struct rtrs_srv_con *con,
1206 			      struct rtrs_srv_mr *mr)
1207 {
1208 	struct ib_send_wr wr = {
1209 		.opcode		    = IB_WR_LOCAL_INV,
1210 		.wr_cqe		    = &mr->inv_cqe,
1211 		.send_flags	    = IB_SEND_SIGNALED,
1212 		.ex.invalidate_rkey = mr->mr->rkey,
1213 	};
1214 	mr->inv_cqe.done = rtrs_srv_inv_rkey_done;
1215 
1216 	return ib_post_send(con->c.qp, &wr, NULL);
1217 }
1218 
1219 static void rtrs_rdma_process_wr_wait_list(struct rtrs_srv_con *con)
1220 {
1221 	spin_lock(&con->rsp_wr_wait_lock);
1222 	while (!list_empty(&con->rsp_wr_wait_list)) {
1223 		struct rtrs_srv_op *id;
1224 		int ret;
1225 
1226 		id = list_entry(con->rsp_wr_wait_list.next,
1227 				struct rtrs_srv_op, wait_list);
1228 		list_del(&id->wait_list);
1229 
1230 		spin_unlock(&con->rsp_wr_wait_lock);
1231 		ret = rtrs_srv_resp_rdma(id, id->status);
1232 		spin_lock(&con->rsp_wr_wait_lock);
1233 
1234 		if (!ret) {
1235 			list_add(&id->wait_list, &con->rsp_wr_wait_list);
1236 			break;
1237 		}
1238 	}
1239 	spin_unlock(&con->rsp_wr_wait_lock);
1240 }
1241 
1242 static void rtrs_srv_rdma_done(struct ib_cq *cq, struct ib_wc *wc)
1243 {
1244 	struct rtrs_srv_con *con = to_srv_con(wc->qp->qp_context);
1245 	struct rtrs_path *s = con->c.path;
1246 	struct rtrs_srv_path *srv_path = to_srv_path(s);
1247 	struct rtrs_srv_sess *srv = srv_path->srv;
1248 	u32 imm_type, imm_payload;
1249 	int err;
1250 
1251 	if (wc->status != IB_WC_SUCCESS) {
1252 		if (wc->status != IB_WC_WR_FLUSH_ERR) {
1253 			rtrs_err(s,
1254 				  "%s (wr_cqe: %p, type: %d, vendor_err: 0x%x, len: %u)\n",
1255 				  ib_wc_status_msg(wc->status), wc->wr_cqe,
1256 				  wc->opcode, wc->vendor_err, wc->byte_len);
1257 			close_path(srv_path);
1258 		}
1259 		return;
1260 	}
1261 
1262 	switch (wc->opcode) {
1263 	case IB_WC_RECV_RDMA_WITH_IMM:
1264 		/*
1265 		 * post_recv() RDMA write completions of IO reqs (read/write)
1266 		 * and hb
1267 		 */
1268 		if (WARN_ON(wc->wr_cqe != &io_comp_cqe))
1269 			return;
1270 		srv_path->s.hb_missed_cnt = 0;
1271 		err = rtrs_post_recv_empty(&con->c, &io_comp_cqe);
1272 		if (err) {
1273 			rtrs_err(s, "rtrs_post_recv(), err: %pe\n",
1274 				 ERR_PTR(err));
1275 			close_path(srv_path);
1276 			break;
1277 		}
1278 		rtrs_from_imm(be32_to_cpu(wc->ex.imm_data),
1279 			       &imm_type, &imm_payload);
1280 		if (imm_type == RTRS_IO_REQ_IMM) {
1281 			u32 msg_id, off;
1282 			void *data;
1283 
1284 			msg_id = imm_payload >> srv_path->mem_bits;
1285 			off = imm_payload & ((1 << srv_path->mem_bits) - 1);
1286 			if (msg_id >= srv->queue_depth || off >= max_chunk_size) {
1287 				rtrs_err(s, "Wrong msg_id %u, off %u\n",
1288 					  msg_id, off);
1289 				close_path(srv_path);
1290 				return;
1291 			}
1292 			if (always_invalidate) {
1293 				struct rtrs_srv_mr *mr = &srv_path->mrs[msg_id];
1294 
1295 				mr->msg_off = off;
1296 				mr->msg_id = msg_id;
1297 				err = rtrs_srv_inv_rkey(con, mr);
1298 				if (err) {
1299 					rtrs_err(s, "rtrs_post_recv(), err: %pe\n",
1300 						 ERR_PTR(err));
1301 					close_path(srv_path);
1302 					break;
1303 				}
1304 			} else {
1305 				data = page_address(srv->chunks[msg_id]) + off;
1306 				process_io_req(con, data, msg_id, off);
1307 			}
1308 		} else if (imm_type == RTRS_HB_MSG_IMM) {
1309 			WARN_ON(con->c.cid);
1310 			rtrs_send_hb_ack(&srv_path->s);
1311 		} else if (imm_type == RTRS_HB_ACK_IMM) {
1312 			WARN_ON(con->c.cid);
1313 			srv_path->s.hb_missed_cnt = 0;
1314 		} else {
1315 			rtrs_wrn(s, "Unknown IMM type %u\n", imm_type);
1316 		}
1317 		break;
1318 	case IB_WC_RDMA_WRITE:
1319 	case IB_WC_SEND:
1320 		/*
1321 		 * post_send() RDMA write completions of IO reqs (read/write)
1322 		 * and hb.
1323 		 */
1324 		atomic_add(s->signal_interval, &con->c.sq_wr_avail);
1325 
1326 		if (!list_empty_careful(&con->rsp_wr_wait_list))
1327 			rtrs_rdma_process_wr_wait_list(con);
1328 
1329 		break;
1330 	default:
1331 		rtrs_wrn(s, "Unexpected WC type: %d\n", wc->opcode);
1332 		return;
1333 	}
1334 }
1335 
1336 /**
1337  * rtrs_srv_get_path_name() - Get rtrs_srv peer hostname.
1338  * @srv:	Session
1339  * @pathname:	Pathname buffer
1340  * @len:	Length of sessname buffer
1341  */
1342 int rtrs_srv_get_path_name(struct rtrs_srv_sess *srv, char *pathname,
1343 			   size_t len)
1344 {
1345 	struct rtrs_srv_path *srv_path;
1346 	int err = -ENOTCONN;
1347 
1348 	mutex_lock(&srv->paths_mutex);
1349 	list_for_each_entry(srv_path, &srv->paths_list, s.entry) {
1350 		if (srv_path->state != RTRS_SRV_CONNECTED)
1351 			continue;
1352 		strscpy(pathname, srv_path->s.sessname,
1353 			min_t(size_t, sizeof(srv_path->s.sessname), len));
1354 		err = 0;
1355 		break;
1356 	}
1357 	mutex_unlock(&srv->paths_mutex);
1358 
1359 	return err;
1360 }
1361 EXPORT_SYMBOL(rtrs_srv_get_path_name);
1362 
1363 /**
1364  * rtrs_srv_get_queue_depth() - Get rtrs_srv qdepth.
1365  * @srv:	Session
1366  */
1367 int rtrs_srv_get_queue_depth(struct rtrs_srv_sess *srv)
1368 {
1369 	return srv->queue_depth;
1370 }
1371 EXPORT_SYMBOL(rtrs_srv_get_queue_depth);
1372 
1373 static int find_next_bit_ring(struct rtrs_srv_path *srv_path)
1374 {
1375 	struct ib_device *ib_dev = srv_path->s.dev->ib_dev;
1376 	int v;
1377 
1378 	v = cpumask_next(srv_path->cur_cq_vector, &cq_affinity_mask);
1379 	if (v >= nr_cpu_ids || v >= ib_dev->num_comp_vectors)
1380 		v = cpumask_first(&cq_affinity_mask);
1381 	return v;
1382 }
1383 
1384 static int rtrs_srv_get_next_cq_vector(struct rtrs_srv_path *srv_path)
1385 {
1386 	srv_path->cur_cq_vector = find_next_bit_ring(srv_path);
1387 
1388 	return srv_path->cur_cq_vector;
1389 }
1390 
1391 static void rtrs_srv_dev_release(struct device *dev)
1392 {
1393 	struct rtrs_srv_sess *srv = container_of(dev, struct rtrs_srv_sess,
1394 						 dev);
1395 
1396 	kfree(srv);
1397 }
1398 
1399 static void free_srv(struct rtrs_srv_sess *srv)
1400 {
1401 	int i;
1402 
1403 	WARN_ON(refcount_read(&srv->refcount));
1404 	for (i = 0; i < srv->queue_depth; i++)
1405 		__free_pages(srv->chunks[i], get_order(max_chunk_size));
1406 	kfree(srv->chunks);
1407 	mutex_destroy(&srv->paths_mutex);
1408 	mutex_destroy(&srv->paths_ev_mutex);
1409 	/* last put to release the srv structure */
1410 	put_device(&srv->dev);
1411 }
1412 
1413 static struct rtrs_srv_sess *get_or_create_srv(struct rtrs_srv_ctx *ctx,
1414 					  const uuid_t *paths_uuid,
1415 					  bool first_conn)
1416 {
1417 	struct rtrs_srv_sess *srv;
1418 	int i;
1419 
1420 	mutex_lock(&ctx->srv_mutex);
1421 	list_for_each_entry(srv, &ctx->srv_list, ctx_list) {
1422 		if (uuid_equal(&srv->paths_uuid, paths_uuid) &&
1423 		    refcount_inc_not_zero(&srv->refcount)) {
1424 			mutex_unlock(&ctx->srv_mutex);
1425 			return srv;
1426 		}
1427 	}
1428 	mutex_unlock(&ctx->srv_mutex);
1429 	/*
1430 	 * If this request is not the first connection request from the
1431 	 * client for this session then fail and return error.
1432 	 */
1433 	if (!first_conn) {
1434 		pr_err_ratelimited("Error: Not the first connection request for this session\n");
1435 		return ERR_PTR(-ENXIO);
1436 	}
1437 
1438 	/* need to allocate a new srv */
1439 	srv = kzalloc(sizeof(*srv), GFP_KERNEL);
1440 	if  (!srv)
1441 		return ERR_PTR(-ENOMEM);
1442 
1443 	INIT_LIST_HEAD(&srv->paths_list);
1444 	mutex_init(&srv->paths_mutex);
1445 	mutex_init(&srv->paths_ev_mutex);
1446 	uuid_copy(&srv->paths_uuid, paths_uuid);
1447 	srv->queue_depth = sess_queue_depth;
1448 	srv->ctx = ctx;
1449 	device_initialize(&srv->dev);
1450 	srv->dev.release = rtrs_srv_dev_release;
1451 
1452 	srv->chunks = kcalloc(srv->queue_depth, sizeof(*srv->chunks),
1453 			      GFP_KERNEL);
1454 	if (!srv->chunks)
1455 		goto err_free_srv;
1456 
1457 	for (i = 0; i < srv->queue_depth; i++) {
1458 		srv->chunks[i] = alloc_pages(GFP_KERNEL,
1459 					     get_order(max_chunk_size));
1460 		if (!srv->chunks[i])
1461 			goto err_free_chunks;
1462 	}
1463 	refcount_set(&srv->refcount, 1);
1464 	mutex_lock(&ctx->srv_mutex);
1465 	list_add(&srv->ctx_list, &ctx->srv_list);
1466 	mutex_unlock(&ctx->srv_mutex);
1467 
1468 	return srv;
1469 
1470 err_free_chunks:
1471 	while (i--)
1472 		__free_pages(srv->chunks[i], get_order(max_chunk_size));
1473 	kfree(srv->chunks);
1474 
1475 err_free_srv:
1476 	put_device(&srv->dev);
1477 	return ERR_PTR(-ENOMEM);
1478 }
1479 
1480 static void put_srv(struct rtrs_srv_sess *srv)
1481 {
1482 	if (refcount_dec_and_test(&srv->refcount)) {
1483 		struct rtrs_srv_ctx *ctx = srv->ctx;
1484 
1485 		WARN_ON(srv->dev.kobj.state_in_sysfs);
1486 
1487 		mutex_lock(&ctx->srv_mutex);
1488 		list_del(&srv->ctx_list);
1489 		mutex_unlock(&ctx->srv_mutex);
1490 		free_srv(srv);
1491 	}
1492 }
1493 
1494 static void __add_path_to_srv(struct rtrs_srv_sess *srv,
1495 			      struct rtrs_srv_path *srv_path)
1496 {
1497 	list_add_tail(&srv_path->s.entry, &srv->paths_list);
1498 	srv->paths_num++;
1499 	WARN_ON(srv->paths_num >= MAX_PATHS_NUM);
1500 }
1501 
1502 static void del_path_from_srv(struct rtrs_srv_path *srv_path)
1503 {
1504 	struct rtrs_srv_sess *srv = srv_path->srv;
1505 
1506 	if (WARN_ON(!srv))
1507 		return;
1508 
1509 	mutex_lock(&srv->paths_mutex);
1510 	list_del(&srv_path->s.entry);
1511 	WARN_ON(!srv->paths_num);
1512 	srv->paths_num--;
1513 	mutex_unlock(&srv->paths_mutex);
1514 }
1515 
1516 /* return true if addresses are the same, error other wise */
1517 static int sockaddr_cmp(const struct sockaddr *a, const struct sockaddr *b)
1518 {
1519 	switch (a->sa_family) {
1520 	case AF_IB:
1521 		return memcmp(&((struct sockaddr_ib *)a)->sib_addr,
1522 			      &((struct sockaddr_ib *)b)->sib_addr,
1523 			      sizeof(struct ib_addr)) &&
1524 			(b->sa_family == AF_IB);
1525 	case AF_INET:
1526 		return memcmp(&((struct sockaddr_in *)a)->sin_addr,
1527 			      &((struct sockaddr_in *)b)->sin_addr,
1528 			      sizeof(struct in_addr)) &&
1529 			(b->sa_family == AF_INET);
1530 	case AF_INET6:
1531 		return memcmp(&((struct sockaddr_in6 *)a)->sin6_addr,
1532 			      &((struct sockaddr_in6 *)b)->sin6_addr,
1533 			      sizeof(struct in6_addr)) &&
1534 			(b->sa_family == AF_INET6);
1535 	default:
1536 		return -ENOENT;
1537 	}
1538 }
1539 
1540 /* Let's close connections which have been waiting for more than 30 seconds */
1541 #define RTRS_MAX_CONN_TIMEOUT 30000
1542 
1543 static void rtrs_srv_check_close_path(struct rtrs_srv_path *srv_path)
1544 {
1545 	struct rtrs_path *s = &srv_path->s;
1546 
1547 	if (srv_path->state == RTRS_SRV_CONNECTING && srv_path->connection_timeout &&
1548 	   (jiffies_to_msecs(jiffies - srv_path->connection_timeout) > RTRS_MAX_CONN_TIMEOUT)) {
1549 		rtrs_err(s, "Closing zombie path\n");
1550 		close_path(srv_path);
1551 	}
1552 }
1553 
1554 static bool __is_path_w_addr_exists(struct rtrs_srv_sess *srv,
1555 				    struct rdma_addr *addr)
1556 {
1557 	struct rtrs_srv_path *srv_path;
1558 
1559 	list_for_each_entry(srv_path, &srv->paths_list, s.entry) {
1560 		if (!sockaddr_cmp((struct sockaddr *)&srv_path->s.dst_addr,
1561 				  (struct sockaddr *)&addr->dst_addr) &&
1562 		    !sockaddr_cmp((struct sockaddr *)&srv_path->s.src_addr,
1563 				  (struct sockaddr *)&addr->src_addr)) {
1564 			rtrs_err((&srv_path->s),
1565 				 "Path (%s) with same addr exists (lifetime %u)\n",
1566 				 rtrs_srv_state_str(srv_path->state),
1567 				 (jiffies_to_msecs(jiffies - srv_path->connection_timeout)));
1568 			rtrs_srv_check_close_path(srv_path);
1569 			return true;
1570 		}
1571 	}
1572 
1573 	return false;
1574 }
1575 
1576 static void free_path(struct rtrs_srv_path *srv_path)
1577 {
1578 	if (srv_path->kobj.state_in_sysfs) {
1579 		kobject_del(&srv_path->kobj);
1580 		kobject_put(&srv_path->kobj);
1581 	} else {
1582 		free_percpu(srv_path->stats->rdma_stats);
1583 		kfree(srv_path->stats);
1584 		kfree(srv_path);
1585 	}
1586 }
1587 
1588 static void rtrs_srv_close_work(struct work_struct *work)
1589 {
1590 	struct rtrs_srv_path *srv_path;
1591 	struct rtrs_srv_con *con;
1592 	int i;
1593 
1594 	srv_path = container_of(work, typeof(*srv_path), close_work);
1595 
1596 	rtrs_srv_stop_hb(srv_path);
1597 
1598 	for (i = 0; i < srv_path->s.con_num; i++) {
1599 		if (!srv_path->s.con[i])
1600 			continue;
1601 		con = to_srv_con(srv_path->s.con[i]);
1602 		rdma_disconnect(con->c.cm_id);
1603 		ib_drain_qp(con->c.qp);
1604 	}
1605 
1606 	/*
1607 	 * Degrade ref count to the usual model with a single shared
1608 	 * atomic_t counter
1609 	 */
1610 	percpu_ref_kill(&srv_path->ids_inflight_ref);
1611 
1612 	/* Wait for all completion */
1613 	wait_for_completion(&srv_path->complete_done);
1614 
1615 	rtrs_srv_destroy_path_files(srv_path);
1616 
1617 	/* Notify upper layer if we are the last path */
1618 	rtrs_srv_path_down(srv_path);
1619 
1620 	unmap_cont_bufs(srv_path);
1621 	rtrs_srv_free_ops_ids(srv_path);
1622 
1623 	for (i = 0; i < srv_path->s.con_num; i++) {
1624 		if (!srv_path->s.con[i])
1625 			continue;
1626 		con = to_srv_con(srv_path->s.con[i]);
1627 		rtrs_cq_qp_destroy(&con->c);
1628 		rdma_destroy_id(con->c.cm_id);
1629 		kfree(con);
1630 	}
1631 	rtrs_ib_dev_put(srv_path->s.dev);
1632 
1633 	del_path_from_srv(srv_path);
1634 	put_srv(srv_path->srv);
1635 	srv_path->srv = NULL;
1636 	rtrs_srv_change_state(srv_path, RTRS_SRV_CLOSED);
1637 
1638 	kfree(srv_path->dma_addr);
1639 	kfree(srv_path->s.con);
1640 	free_path(srv_path);
1641 }
1642 
1643 static int rtrs_rdma_do_accept(struct rtrs_srv_path *srv_path,
1644 			       struct rdma_cm_id *cm_id)
1645 {
1646 	struct rtrs_srv_sess *srv = srv_path->srv;
1647 	struct rtrs_msg_conn_rsp msg;
1648 	struct rdma_conn_param param;
1649 	int err;
1650 
1651 	param = (struct rdma_conn_param) {
1652 		.rnr_retry_count = 7,
1653 		.private_data = &msg,
1654 		.private_data_len = sizeof(msg),
1655 	};
1656 
1657 	msg = (struct rtrs_msg_conn_rsp) {
1658 		.magic = cpu_to_le16(RTRS_MAGIC),
1659 		.version = cpu_to_le16(RTRS_PROTO_VER),
1660 		.queue_depth = cpu_to_le16(srv->queue_depth),
1661 		.max_io_size = cpu_to_le32(max_chunk_size - MAX_HDR_SIZE),
1662 		.max_hdr_size = cpu_to_le32(MAX_HDR_SIZE),
1663 	};
1664 
1665 	if (always_invalidate)
1666 		msg.flags = cpu_to_le32(RTRS_MSG_NEW_RKEY_F);
1667 
1668 	err = rdma_accept(cm_id, &param);
1669 	if (err)
1670 		pr_err("rdma_accept(), err: %pe\n", ERR_PTR(err));
1671 
1672 	return err;
1673 }
1674 
1675 static int rtrs_rdma_do_reject(struct rdma_cm_id *cm_id, int errno)
1676 {
1677 	struct rtrs_msg_conn_rsp msg;
1678 	int err;
1679 
1680 	msg = (struct rtrs_msg_conn_rsp) {
1681 		.magic = cpu_to_le16(RTRS_MAGIC),
1682 		.version = cpu_to_le16(RTRS_PROTO_VER),
1683 		.errno = cpu_to_le16(errno),
1684 	};
1685 
1686 	err = rdma_reject(cm_id, &msg, sizeof(msg), IB_CM_REJ_CONSUMER_DEFINED);
1687 	if (err)
1688 		pr_err("rdma_reject(), err: %pe\n", ERR_PTR(err));
1689 
1690 	/* Bounce errno back */
1691 	return errno;
1692 }
1693 
1694 static struct rtrs_srv_path *
1695 __find_path(struct rtrs_srv_sess *srv, const uuid_t *sess_uuid)
1696 {
1697 	struct rtrs_srv_path *srv_path;
1698 
1699 	list_for_each_entry(srv_path, &srv->paths_list, s.entry) {
1700 		if (uuid_equal(&srv_path->s.uuid, sess_uuid))
1701 			return srv_path;
1702 	}
1703 
1704 	return NULL;
1705 }
1706 
1707 static int create_con(struct rtrs_srv_path *srv_path,
1708 		      struct rdma_cm_id *cm_id,
1709 		      unsigned int cid)
1710 {
1711 	struct rtrs_srv_sess *srv = srv_path->srv;
1712 	struct rtrs_path *s = &srv_path->s;
1713 	struct rtrs_srv_con *con;
1714 
1715 	u32 cq_num, max_send_wr, max_recv_wr, wr_limit;
1716 	int err, cq_vector;
1717 
1718 	con = kzalloc(sizeof(*con), GFP_KERNEL);
1719 	if (!con) {
1720 		err = -ENOMEM;
1721 		goto err;
1722 	}
1723 
1724 	spin_lock_init(&con->rsp_wr_wait_lock);
1725 	INIT_LIST_HEAD(&con->rsp_wr_wait_list);
1726 	con->c.cm_id = cm_id;
1727 	con->c.path = &srv_path->s;
1728 	con->c.cid = cid;
1729 	atomic_set(&con->c.wr_cnt, 1);
1730 	wr_limit = srv_path->s.dev->ib_dev->attrs.max_qp_wr;
1731 
1732 	if (con->c.cid == 0) {
1733 		/*
1734 		 * All receive and all send (each requiring invalidate)
1735 		 * + 2 for drain and heartbeat
1736 		 */
1737 		max_send_wr = min_t(int, wr_limit,
1738 				    SERVICE_CON_QUEUE_DEPTH * 2 + 2);
1739 		max_recv_wr = max_send_wr;
1740 		s->signal_interval = min_not_zero(srv->queue_depth,
1741 						  (size_t)SERVICE_CON_QUEUE_DEPTH);
1742 	} else {
1743 		/* when always_invlaidate enalbed, we need linv+rinv+mr+imm */
1744 		if (always_invalidate)
1745 			max_send_wr =
1746 				min_t(int, wr_limit,
1747 				      srv->queue_depth * (1 + 4) + 1);
1748 		else
1749 			max_send_wr =
1750 				min_t(int, wr_limit,
1751 				      srv->queue_depth * (1 + 2) + 1);
1752 
1753 		max_recv_wr = srv->queue_depth + 1;
1754 	}
1755 	cq_num = max_send_wr + max_recv_wr;
1756 	atomic_set(&con->c.sq_wr_avail, max_send_wr);
1757 	cq_vector = rtrs_srv_get_next_cq_vector(srv_path);
1758 
1759 	/* TODO: SOFTIRQ can be faster, but be careful with softirq context */
1760 	err = rtrs_cq_qp_create(&srv_path->s, &con->c, 1, cq_vector, cq_num,
1761 				 max_send_wr, max_recv_wr,
1762 				 IB_POLL_WORKQUEUE);
1763 	if (err) {
1764 		rtrs_err(s, "rtrs_cq_qp_create(), err: %pe\n", ERR_PTR(err));
1765 		goto free_con;
1766 	}
1767 	if (con->c.cid == 0) {
1768 		err = post_recv_info_req(con);
1769 		if (err)
1770 			goto free_cqqp;
1771 	}
1772 	WARN_ON(srv_path->s.con[cid]);
1773 	srv_path->s.con[cid] = &con->c;
1774 
1775 	/*
1776 	 * Change context from server to current connection.  The other
1777 	 * way is to use cm_id->qp->qp_context, which does not work on OFED.
1778 	 */
1779 	cm_id->context = &con->c;
1780 
1781 	return 0;
1782 
1783 free_cqqp:
1784 	rtrs_cq_qp_destroy(&con->c);
1785 free_con:
1786 	kfree(con);
1787 
1788 err:
1789 	return err;
1790 }
1791 
1792 static struct rtrs_srv_path *__alloc_path(struct rtrs_srv_sess *srv,
1793 					   struct rdma_cm_id *cm_id,
1794 					   unsigned int con_num,
1795 					   unsigned int recon_cnt,
1796 					   const uuid_t *uuid)
1797 {
1798 	struct rtrs_srv_path *srv_path;
1799 	int err = -ENOMEM;
1800 	char str[NAME_MAX];
1801 	struct rtrs_addr path;
1802 
1803 	if (srv->paths_num >= MAX_PATHS_NUM) {
1804 		err = -ECONNRESET;
1805 		goto err;
1806 	}
1807 	if (__is_path_w_addr_exists(srv, &cm_id->route.addr)) {
1808 		err = -EEXIST;
1809 		goto err;
1810 	}
1811 	srv_path = kzalloc(sizeof(*srv_path), GFP_KERNEL);
1812 	if (!srv_path)
1813 		goto err;
1814 
1815 	srv_path->stats = kzalloc(sizeof(*srv_path->stats), GFP_KERNEL);
1816 	if (!srv_path->stats)
1817 		goto err_free_sess;
1818 
1819 	srv_path->stats->rdma_stats = alloc_percpu(struct rtrs_srv_stats_rdma_stats);
1820 	if (!srv_path->stats->rdma_stats)
1821 		goto err_free_stats;
1822 
1823 	srv_path->stats->srv_path = srv_path;
1824 
1825 	srv_path->dma_addr = kcalloc(srv->queue_depth,
1826 				     sizeof(*srv_path->dma_addr),
1827 				     GFP_KERNEL);
1828 	if (!srv_path->dma_addr)
1829 		goto err_free_percpu;
1830 
1831 	srv_path->s.con = kcalloc(con_num, sizeof(*srv_path->s.con),
1832 				  GFP_KERNEL);
1833 	if (!srv_path->s.con)
1834 		goto err_free_dma_addr;
1835 
1836 	srv_path->state = RTRS_SRV_CONNECTING;
1837 	srv_path->srv = srv;
1838 	srv_path->cur_cq_vector = -1;
1839 	srv_path->s.dst_addr = cm_id->route.addr.dst_addr;
1840 	srv_path->s.src_addr = cm_id->route.addr.src_addr;
1841 
1842 	/* temporary until receiving session-name from client */
1843 	path.src = &srv_path->s.src_addr;
1844 	path.dst = &srv_path->s.dst_addr;
1845 	rtrs_addr_to_str(&path, str, sizeof(str));
1846 	strscpy(srv_path->s.sessname, str, sizeof(srv_path->s.sessname));
1847 
1848 	srv_path->s.con_num = con_num;
1849 	srv_path->s.irq_con_num = con_num;
1850 	srv_path->s.recon_cnt = recon_cnt;
1851 	uuid_copy(&srv_path->s.uuid, uuid);
1852 	spin_lock_init(&srv_path->state_lock);
1853 	INIT_WORK(&srv_path->close_work, rtrs_srv_close_work);
1854 	rtrs_srv_init_hb(srv_path);
1855 	srv_path->connection_timeout = 0;
1856 
1857 	srv_path->s.dev = rtrs_ib_dev_find_or_add(cm_id->device, &dev_pd);
1858 	if (!srv_path->s.dev) {
1859 		err = -ENOMEM;
1860 		goto err_free_con;
1861 	}
1862 	err = map_cont_bufs(srv_path);
1863 	if (err)
1864 		goto err_put_dev;
1865 
1866 	err = rtrs_srv_alloc_ops_ids(srv_path);
1867 	if (err)
1868 		goto err_unmap_bufs;
1869 
1870 	__add_path_to_srv(srv, srv_path);
1871 
1872 	return srv_path;
1873 
1874 err_unmap_bufs:
1875 	unmap_cont_bufs(srv_path);
1876 err_put_dev:
1877 	rtrs_ib_dev_put(srv_path->s.dev);
1878 err_free_con:
1879 	kfree(srv_path->s.con);
1880 err_free_dma_addr:
1881 	kfree(srv_path->dma_addr);
1882 err_free_percpu:
1883 	free_percpu(srv_path->stats->rdma_stats);
1884 err_free_stats:
1885 	kfree(srv_path->stats);
1886 err_free_sess:
1887 	kfree(srv_path);
1888 err:
1889 	return ERR_PTR(err);
1890 }
1891 
1892 static int rtrs_rdma_connect(struct rdma_cm_id *cm_id,
1893 			      const struct rtrs_msg_conn_req *msg,
1894 			      size_t len)
1895 {
1896 	struct rtrs_srv_ctx *ctx = cm_id->context;
1897 	struct rtrs_srv_path *srv_path;
1898 	struct rtrs_srv_sess *srv;
1899 
1900 	u16 version, con_num, cid;
1901 	u16 recon_cnt;
1902 	int err = -ECONNRESET;
1903 
1904 	if (len < sizeof(*msg)) {
1905 		pr_err("Invalid RTRS connection request\n");
1906 		goto reject_w_err;
1907 	}
1908 	if (le16_to_cpu(msg->magic) != RTRS_MAGIC) {
1909 		pr_err("Invalid RTRS magic\n");
1910 		goto reject_w_err;
1911 	}
1912 	version = le16_to_cpu(msg->version);
1913 	if (version >> 8 != RTRS_PROTO_VER_MAJOR) {
1914 		pr_err("Unsupported major RTRS version: %d, expected %d\n",
1915 		       version >> 8, RTRS_PROTO_VER_MAJOR);
1916 		goto reject_w_err;
1917 	}
1918 	con_num = le16_to_cpu(msg->cid_num);
1919 	if (con_num > 4096) {
1920 		/* Sanity check */
1921 		pr_err("Too many connections requested: %d\n", con_num);
1922 		goto reject_w_err;
1923 	}
1924 	cid = le16_to_cpu(msg->cid);
1925 	if (cid >= con_num) {
1926 		/* Sanity check */
1927 		pr_err("Incorrect cid: %d >= %d\n", cid, con_num);
1928 		goto reject_w_err;
1929 	}
1930 	recon_cnt = le16_to_cpu(msg->recon_cnt);
1931 	srv = get_or_create_srv(ctx, &msg->paths_uuid, msg->first_conn);
1932 	if (IS_ERR(srv)) {
1933 		err = PTR_ERR(srv);
1934 		pr_err("get_or_create_srv(), error %d\n", err);
1935 		goto reject_w_err;
1936 	}
1937 	mutex_lock(&srv->paths_mutex);
1938 	srv_path = __find_path(srv, &msg->sess_uuid);
1939 	if (srv_path) {
1940 		struct rtrs_path *s = &srv_path->s;
1941 
1942 		/* Session already holds a reference */
1943 		put_srv(srv);
1944 
1945 		if (srv_path->state != RTRS_SRV_CONNECTING) {
1946 			rtrs_err(s, "Session in wrong state: %s\n",
1947 				  rtrs_srv_state_str(srv_path->state));
1948 			mutex_unlock(&srv->paths_mutex);
1949 			goto reject_w_err;
1950 		}
1951 		/*
1952 		 * Sanity checks
1953 		 */
1954 		if (con_num != s->con_num || cid >= s->con_num) {
1955 			rtrs_err(s, "Incorrect request: %d, %d\n",
1956 				  cid, con_num);
1957 			mutex_unlock(&srv->paths_mutex);
1958 			goto reject_w_err;
1959 		}
1960 		if (s->con[cid]) {
1961 			rtrs_err(s, "Connection (%s) already exists: %d (lifetime %u)\n",
1962 				 rtrs_srv_state_str(srv_path->state), cid,
1963 				 (jiffies_to_msecs(jiffies - srv_path->connection_timeout)));
1964 			rtrs_srv_check_close_path(srv_path);
1965 			mutex_unlock(&srv->paths_mutex);
1966 			goto reject_w_err;
1967 		}
1968 	} else {
1969 		srv_path = __alloc_path(srv, cm_id, con_num, recon_cnt,
1970 				    &msg->sess_uuid);
1971 		if (IS_ERR(srv_path)) {
1972 			mutex_unlock(&srv->paths_mutex);
1973 			put_srv(srv);
1974 			err = PTR_ERR(srv_path);
1975 			pr_err("RTRS server session allocation failed: %d\n", err);
1976 			goto reject_w_err;
1977 		}
1978 	}
1979 
1980 	/*
1981 	 * Start of any connection creation resets the timeout for the path.
1982 	 */
1983 	srv_path->connection_timeout = jiffies;
1984 
1985 	err = create_con(srv_path, cm_id, cid);
1986 	if (err) {
1987 		rtrs_err((&srv_path->s), "create_con(), error %pe\n", ERR_PTR(err));
1988 		rtrs_rdma_do_reject(cm_id, err);
1989 		/*
1990 		 * Since session has other connections we follow normal way
1991 		 * through workqueue, but still return an error to tell cma.c
1992 		 * to call rdma_destroy_id() for current connection.
1993 		 */
1994 		goto close_and_return_err;
1995 	}
1996 	err = rtrs_rdma_do_accept(srv_path, cm_id);
1997 	if (err) {
1998 		rtrs_err((&srv_path->s), "rtrs_rdma_do_accept(), error %pe\n",
1999 			 ERR_PTR(err));
2000 		rtrs_rdma_do_reject(cm_id, err);
2001 		/*
2002 		 * Since current connection was successfully added to the
2003 		 * session we follow normal way through workqueue to close the
2004 		 * session, thus return 0 to tell cma.c we call
2005 		 * rdma_destroy_id() ourselves.
2006 		 */
2007 		err = 0;
2008 		goto close_and_return_err;
2009 	}
2010 	mutex_unlock(&srv->paths_mutex);
2011 
2012 	return 0;
2013 
2014 reject_w_err:
2015 	return rtrs_rdma_do_reject(cm_id, err);
2016 
2017 close_and_return_err:
2018 	mutex_unlock(&srv->paths_mutex);
2019 	close_path(srv_path);
2020 
2021 	return err;
2022 }
2023 
2024 static int rtrs_srv_rdma_cm_handler(struct rdma_cm_id *cm_id,
2025 				     struct rdma_cm_event *ev)
2026 {
2027 	struct rtrs_srv_path *srv_path = NULL;
2028 	struct rtrs_path *s = NULL;
2029 	struct rtrs_con *c = NULL;
2030 
2031 	if (ev->event == RDMA_CM_EVENT_CONNECT_REQUEST)
2032 		/*
2033 		 * In case of error cma.c will destroy cm_id,
2034 		 * see cma_process_remove()
2035 		 */
2036 		return rtrs_rdma_connect(cm_id, ev->param.conn.private_data,
2037 					  ev->param.conn.private_data_len);
2038 
2039 	c = cm_id->context;
2040 	s = c->path;
2041 	srv_path = to_srv_path(s);
2042 
2043 	switch (ev->event) {
2044 	case RDMA_CM_EVENT_ESTABLISHED:
2045 		/* Nothing here */
2046 		break;
2047 	case RDMA_CM_EVENT_REJECTED:
2048 	case RDMA_CM_EVENT_CONNECT_ERROR:
2049 	case RDMA_CM_EVENT_UNREACHABLE:
2050 		if (ev->status < 0) {
2051 			rtrs_err(s, "CM error (CM event: %s, err: %pe)\n",
2052 					rdma_event_msg(ev->event),
2053 					ERR_PTR(ev->status));
2054 		} else if (ev->status > 0) {
2055 			rtrs_err(s, "CM error (CM event: %s, err: %s)\n",
2056 					rdma_event_msg(ev->event),
2057 					rdma_reject_msg(cm_id, ev->status));
2058 		}
2059 		fallthrough;
2060 	case RDMA_CM_EVENT_DISCONNECTED:
2061 	case RDMA_CM_EVENT_ADDR_CHANGE:
2062 	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
2063 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
2064 		close_path(srv_path);
2065 		break;
2066 	default:
2067 		if (ev->status < 0) {
2068 			pr_err("Ignoring unexpected CM event %s, err %pe\n",
2069 					rdma_event_msg(ev->event),
2070 					ERR_PTR(ev->status));
2071 		} else if (ev->status > 0) {
2072 			pr_err("Ignoring unexpected CM event %s, err %s\n",
2073 					rdma_event_msg(ev->event),
2074 					rdma_reject_msg(cm_id, ev->status));
2075 		}
2076 		break;
2077 	}
2078 
2079 	return 0;
2080 }
2081 
2082 static struct rdma_cm_id *rtrs_srv_cm_init(struct rtrs_srv_ctx *ctx,
2083 					    struct sockaddr *addr,
2084 					    enum rdma_ucm_port_space ps)
2085 {
2086 	struct rdma_cm_id *cm_id;
2087 	int ret;
2088 
2089 	cm_id = rdma_create_id(&init_net, rtrs_srv_rdma_cm_handler,
2090 			       ctx, ps, IB_QPT_RC);
2091 	if (IS_ERR(cm_id)) {
2092 		ret = PTR_ERR(cm_id);
2093 		pr_err("Creating id for RDMA connection failed, err: %d\n",
2094 		       ret);
2095 		goto err_out;
2096 	}
2097 	ret = rdma_bind_addr(cm_id, addr);
2098 	if (ret) {
2099 		pr_err("Binding RDMA address failed, err: %pe\n", ERR_PTR(ret));
2100 		goto err_cm;
2101 	}
2102 	ret = rdma_listen(cm_id, 64);
2103 	if (ret) {
2104 		pr_err("Listening on RDMA connection failed, err: %pe\n",
2105 		       ERR_PTR(ret));
2106 		goto err_cm;
2107 	}
2108 
2109 	return cm_id;
2110 
2111 err_cm:
2112 	rdma_destroy_id(cm_id);
2113 err_out:
2114 
2115 	return ERR_PTR(ret);
2116 }
2117 
2118 static int rtrs_srv_rdma_init(struct rtrs_srv_ctx *ctx, u16 port)
2119 {
2120 	struct sockaddr_in6 sin = {
2121 		.sin6_family	= AF_INET6,
2122 		.sin6_addr	= IN6ADDR_ANY_INIT,
2123 		.sin6_port	= htons(port),
2124 	};
2125 	struct sockaddr_ib sib = {
2126 		.sib_family			= AF_IB,
2127 		.sib_sid	= cpu_to_be64(RDMA_IB_IP_PS_IB | port),
2128 		.sib_sid_mask	= cpu_to_be64(0xffffffffffffffffULL),
2129 		.sib_pkey	= cpu_to_be16(0xffff),
2130 	};
2131 	struct rdma_cm_id *cm_ip, *cm_ib;
2132 	int ret;
2133 
2134 	/*
2135 	 * We accept both IPoIB and IB connections, so we need to keep
2136 	 * two cm id's, one for each socket type and port space.
2137 	 * If the cm initialization of one of the id's fails, we abort
2138 	 * everything.
2139 	 */
2140 	cm_ip = rtrs_srv_cm_init(ctx, (struct sockaddr *)&sin, RDMA_PS_TCP);
2141 	if (IS_ERR(cm_ip))
2142 		return PTR_ERR(cm_ip);
2143 
2144 	cm_ib = rtrs_srv_cm_init(ctx, (struct sockaddr *)&sib, RDMA_PS_IB);
2145 	if (IS_ERR(cm_ib)) {
2146 		ret = PTR_ERR(cm_ib);
2147 		goto free_cm_ip;
2148 	}
2149 
2150 	ctx->cm_id_ip = cm_ip;
2151 	ctx->cm_id_ib = cm_ib;
2152 
2153 	return 0;
2154 
2155 free_cm_ip:
2156 	rdma_destroy_id(cm_ip);
2157 
2158 	return ret;
2159 }
2160 
2161 static struct rtrs_srv_ctx *alloc_srv_ctx(struct rtrs_srv_ops *ops)
2162 {
2163 	struct rtrs_srv_ctx *ctx;
2164 
2165 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2166 	if (!ctx)
2167 		return NULL;
2168 
2169 	ctx->ops = *ops;
2170 	mutex_init(&ctx->srv_mutex);
2171 	INIT_LIST_HEAD(&ctx->srv_list);
2172 
2173 	return ctx;
2174 }
2175 
2176 static void free_srv_ctx(struct rtrs_srv_ctx *ctx)
2177 {
2178 	WARN_ON(!list_empty(&ctx->srv_list));
2179 	mutex_destroy(&ctx->srv_mutex);
2180 	kfree(ctx);
2181 }
2182 
2183 static int rtrs_srv_add_one(struct ib_device *device)
2184 {
2185 	struct rtrs_srv_ctx *ctx;
2186 	int ret = 0;
2187 
2188 	mutex_lock(&ib_ctx.ib_dev_mutex);
2189 	if (ib_ctx.ib_dev_count)
2190 		goto out;
2191 
2192 	/*
2193 	 * Since our CM IDs are NOT bound to any ib device we will create them
2194 	 * only once
2195 	 */
2196 	ctx = ib_ctx.srv_ctx;
2197 	ret = rtrs_srv_rdma_init(ctx, ib_ctx.port);
2198 	if (ret) {
2199 		/*
2200 		 * We errored out here.
2201 		 * According to the ib code, if we encounter an error here then the
2202 		 * error code is ignored, and no more calls to our ops are made.
2203 		 */
2204 		pr_err("Failed to initialize RDMA connection");
2205 		goto err_out;
2206 	}
2207 
2208 out:
2209 	/*
2210 	 * Keep a track on the number of ib devices added
2211 	 */
2212 	ib_ctx.ib_dev_count++;
2213 
2214 err_out:
2215 	mutex_unlock(&ib_ctx.ib_dev_mutex);
2216 	return ret;
2217 }
2218 
2219 static void rtrs_srv_remove_one(struct ib_device *device, void *client_data)
2220 {
2221 	struct rtrs_srv_ctx *ctx;
2222 
2223 	mutex_lock(&ib_ctx.ib_dev_mutex);
2224 	ib_ctx.ib_dev_count--;
2225 
2226 	if (ib_ctx.ib_dev_count)
2227 		goto out;
2228 
2229 	/*
2230 	 * Since our CM IDs are NOT bound to any ib device we will remove them
2231 	 * only once, when the last device is removed
2232 	 */
2233 	ctx = ib_ctx.srv_ctx;
2234 	rdma_destroy_id(ctx->cm_id_ip);
2235 	rdma_destroy_id(ctx->cm_id_ib);
2236 
2237 out:
2238 	mutex_unlock(&ib_ctx.ib_dev_mutex);
2239 }
2240 
2241 static struct ib_client rtrs_srv_client = {
2242 	.name	= "rtrs_server",
2243 	.add	= rtrs_srv_add_one,
2244 	.remove	= rtrs_srv_remove_one
2245 };
2246 
2247 /**
2248  * rtrs_srv_open() - open RTRS server context
2249  * @ops:		callback functions
2250  * @port:               port to listen on
2251  *
2252  * Creates server context with specified callbacks.
2253  *
2254  * Return a valid pointer on success otherwise PTR_ERR.
2255  */
2256 struct rtrs_srv_ctx *rtrs_srv_open(struct rtrs_srv_ops *ops, u16 port)
2257 {
2258 	struct rtrs_srv_ctx *ctx;
2259 	int err;
2260 
2261 	ctx = alloc_srv_ctx(ops);
2262 	if (!ctx)
2263 		return ERR_PTR(-ENOMEM);
2264 
2265 	mutex_init(&ib_ctx.ib_dev_mutex);
2266 	ib_ctx.srv_ctx = ctx;
2267 	ib_ctx.port = port;
2268 
2269 	err = ib_register_client(&rtrs_srv_client);
2270 	if (err) {
2271 		free_srv_ctx(ctx);
2272 		return ERR_PTR(err);
2273 	}
2274 
2275 	return ctx;
2276 }
2277 EXPORT_SYMBOL(rtrs_srv_open);
2278 
2279 static void close_paths(struct rtrs_srv_sess *srv)
2280 {
2281 	struct rtrs_srv_path *srv_path;
2282 
2283 	mutex_lock(&srv->paths_mutex);
2284 	list_for_each_entry(srv_path, &srv->paths_list, s.entry)
2285 		close_path(srv_path);
2286 	mutex_unlock(&srv->paths_mutex);
2287 }
2288 
2289 static void close_ctx(struct rtrs_srv_ctx *ctx)
2290 {
2291 	struct rtrs_srv_sess *srv;
2292 
2293 	mutex_lock(&ctx->srv_mutex);
2294 	list_for_each_entry(srv, &ctx->srv_list, ctx_list)
2295 		close_paths(srv);
2296 	mutex_unlock(&ctx->srv_mutex);
2297 	flush_workqueue(rtrs_wq);
2298 }
2299 
2300 /**
2301  * rtrs_srv_close() - close RTRS server context
2302  * @ctx: pointer to server context
2303  *
2304  * Closes RTRS server context with all client sessions.
2305  */
2306 void rtrs_srv_close(struct rtrs_srv_ctx *ctx)
2307 {
2308 	ib_unregister_client(&rtrs_srv_client);
2309 	mutex_destroy(&ib_ctx.ib_dev_mutex);
2310 	close_ctx(ctx);
2311 	free_srv_ctx(ctx);
2312 }
2313 EXPORT_SYMBOL(rtrs_srv_close);
2314 
2315 static int check_module_params(void)
2316 {
2317 	if (sess_queue_depth < 1 || sess_queue_depth > MAX_SESS_QUEUE_DEPTH) {
2318 		pr_err("Invalid sess_queue_depth value %d, has to be >= %d, <= %d.\n",
2319 		       sess_queue_depth, 1, MAX_SESS_QUEUE_DEPTH);
2320 		return -EINVAL;
2321 	}
2322 	if (max_chunk_size < MIN_CHUNK_SIZE || !is_power_of_2(max_chunk_size)) {
2323 		pr_err("Invalid max_chunk_size value %d, has to be >= %d and should be power of two.\n",
2324 		       max_chunk_size, MIN_CHUNK_SIZE);
2325 		return -EINVAL;
2326 	}
2327 
2328 	/*
2329 	 * Check if IB immediate data size is enough to hold the mem_id and the
2330 	 * offset inside the memory chunk
2331 	 */
2332 	if ((ilog2(sess_queue_depth - 1) + 1) +
2333 	    (ilog2(max_chunk_size - 1) + 1) > MAX_IMM_PAYL_BITS) {
2334 		pr_err("RDMA immediate size (%db) not enough to encode %d buffers of size %dB. Reduce 'sess_queue_depth' or 'max_chunk_size' parameters.\n",
2335 		       MAX_IMM_PAYL_BITS, sess_queue_depth, max_chunk_size);
2336 		return -EINVAL;
2337 	}
2338 
2339 	return 0;
2340 }
2341 
2342 void rtrs_srv_ib_event_handler(struct ib_event_handler *handler,
2343 			       struct ib_event *ibevent)
2344 {
2345 	struct ib_device *idev = ibevent->device;
2346 	u32 port_num = ibevent->element.port_num;
2347 
2348 	pr_info("Handling event: %s (%d). HCA name: %s, port num: %u\n",
2349 			ib_event_msg(ibevent->event), ibevent->event, idev->name, port_num);
2350 }
2351 
2352 static int rtrs_srv_ib_dev_init(struct rtrs_ib_dev *dev)
2353 {
2354 	INIT_IB_EVENT_HANDLER(&dev->event_handler, dev->ib_dev,
2355 			      rtrs_srv_ib_event_handler);
2356 	ib_register_event_handler(&dev->event_handler);
2357 
2358 	return 0;
2359 }
2360 
2361 static void rtrs_srv_ib_dev_deinit(struct rtrs_ib_dev *dev)
2362 {
2363 	ib_unregister_event_handler(&dev->event_handler);
2364 }
2365 
2366 
2367 static const struct rtrs_rdma_dev_pd_ops dev_pd_ops = {
2368 	.init = rtrs_srv_ib_dev_init,
2369 	.deinit = rtrs_srv_ib_dev_deinit
2370 };
2371 
2372 
2373 static int __init rtrs_server_init(void)
2374 {
2375 	int err;
2376 
2377 	pr_info("Loading module %s, proto %s: (max_chunk_size: %d (pure IO %ld, headers %ld) , sess_queue_depth: %d, always_invalidate: %d)\n",
2378 		KBUILD_MODNAME, RTRS_PROTO_VER_STRING,
2379 		max_chunk_size, max_chunk_size - MAX_HDR_SIZE, MAX_HDR_SIZE,
2380 		sess_queue_depth, always_invalidate);
2381 
2382 	rtrs_rdma_dev_pd_init(0, &dev_pd);
2383 
2384 	err = check_module_params();
2385 	if (err) {
2386 		pr_err("Failed to load module, invalid module parameters, err: %pe\n",
2387 		       ERR_PTR(err));
2388 		return err;
2389 	}
2390 	err = class_register(&rtrs_dev_class);
2391 	if (err)
2392 		goto out_err;
2393 
2394 	rtrs_wq = alloc_workqueue("rtrs_server_wq", 0, 0);
2395 	if (!rtrs_wq) {
2396 		err = -ENOMEM;
2397 		goto out_dev_class;
2398 	}
2399 
2400 	return 0;
2401 
2402 out_dev_class:
2403 	class_unregister(&rtrs_dev_class);
2404 out_err:
2405 	return err;
2406 }
2407 
2408 static void __exit rtrs_server_exit(void)
2409 {
2410 	destroy_workqueue(rtrs_wq);
2411 	class_unregister(&rtrs_dev_class);
2412 	rtrs_rdma_dev_pd_deinit(&dev_pd);
2413 }
2414 
2415 module_init(rtrs_server_init);
2416 module_exit(rtrs_server_exit);
2417