1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Linux Socket Filter - Kernel level socket filtering 4 * 5 * Based on the design of the Berkeley Packet Filter. The new 6 * internal format has been designed by PLUMgrid: 7 * 8 * Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com 9 * 10 * Authors: 11 * 12 * Jay Schulist <jschlst@samba.org> 13 * Alexei Starovoitov <ast@plumgrid.com> 14 * Daniel Borkmann <dborkman@redhat.com> 15 * 16 * Andi Kleen - Fix a few bad bugs and races. 17 * Kris Katterjohn - Added many additional checks in bpf_check_classic() 18 */ 19 20 #include <linux/atomic.h> 21 #include <linux/bpf_verifier.h> 22 #include <linux/module.h> 23 #include <linux/types.h> 24 #include <linux/mm.h> 25 #include <linux/fcntl.h> 26 #include <linux/socket.h> 27 #include <linux/sock_diag.h> 28 #include <linux/in.h> 29 #include <linux/inet.h> 30 #include <linux/netdevice.h> 31 #include <linux/if_packet.h> 32 #include <linux/if_arp.h> 33 #include <linux/gfp.h> 34 #include <net/inet_common.h> 35 #include <net/ip.h> 36 #include <net/protocol.h> 37 #include <net/netlink.h> 38 #include <linux/skbuff.h> 39 #include <linux/skmsg.h> 40 #include <net/sock.h> 41 #include <net/flow_dissector.h> 42 #include <linux/errno.h> 43 #include <linux/timer.h> 44 #include <linux/uaccess.h> 45 #include <linux/unaligned.h> 46 #include <linux/filter.h> 47 #include <linux/ratelimit.h> 48 #include <linux/seccomp.h> 49 #include <linux/if_vlan.h> 50 #include <linux/bpf.h> 51 #include <linux/btf.h> 52 #include <net/sch_generic.h> 53 #include <net/cls_cgroup.h> 54 #include <net/dst_metadata.h> 55 #include <net/dst.h> 56 #include <net/sock_reuseport.h> 57 #include <net/busy_poll.h> 58 #include <net/tcp.h> 59 #include <net/xfrm.h> 60 #include <net/udp.h> 61 #include <linux/bpf_trace.h> 62 #include <net/xdp_sock.h> 63 #include <linux/inetdevice.h> 64 #include <net/inet_hashtables.h> 65 #include <net/inet6_hashtables.h> 66 #include <net/ip_fib.h> 67 #include <net/nexthop.h> 68 #include <net/flow.h> 69 #include <net/arp.h> 70 #include <net/ipv6.h> 71 #include <net/net_namespace.h> 72 #include <linux/seg6_local.h> 73 #include <net/seg6.h> 74 #include <net/seg6_local.h> 75 #include <net/lwtunnel.h> 76 #include <net/ipv6_stubs.h> 77 #include <net/bpf_sk_storage.h> 78 #include <net/transp_v6.h> 79 #include <linux/btf_ids.h> 80 #include <net/tls.h> 81 #include <net/xdp.h> 82 #include <net/mptcp.h> 83 #include <net/netfilter/nf_conntrack_bpf.h> 84 #include <net/netkit.h> 85 #include <linux/un.h> 86 #include <net/xdp_sock_drv.h> 87 #include <net/inet_dscp.h> 88 89 #include "dev.h" 90 91 /* Keep the struct bpf_fib_lookup small so that it fits into a cacheline */ 92 static_assert(sizeof(struct bpf_fib_lookup) == 64, "struct bpf_fib_lookup size check"); 93 94 static const struct bpf_func_proto * 95 bpf_sk_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog); 96 97 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len) 98 { 99 if (in_compat_syscall()) { 100 struct compat_sock_fprog f32; 101 102 if (len != sizeof(f32)) 103 return -EINVAL; 104 if (copy_from_sockptr(&f32, src, sizeof(f32))) 105 return -EFAULT; 106 memset(dst, 0, sizeof(*dst)); 107 dst->len = f32.len; 108 dst->filter = compat_ptr(f32.filter); 109 } else { 110 if (len != sizeof(*dst)) 111 return -EINVAL; 112 if (copy_from_sockptr(dst, src, sizeof(*dst))) 113 return -EFAULT; 114 } 115 116 return 0; 117 } 118 EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user); 119 120 /** 121 * sk_filter_trim_cap - run a packet through a socket filter 122 * @sk: sock associated with &sk_buff 123 * @skb: buffer to filter 124 * @cap: limit on how short the eBPF program may trim the packet 125 * @reason: record drop reason on errors (negative return value) 126 * 127 * Run the eBPF program and then cut skb->data to correct size returned by 128 * the program. If pkt_len is 0 we toss packet. If skb->len is smaller 129 * than pkt_len we keep whole skb->data. This is the socket level 130 * wrapper to bpf_prog_run. It returns 0 if the packet should 131 * be accepted or -EPERM if the packet should be tossed. 132 * 133 */ 134 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, 135 unsigned int cap, enum skb_drop_reason *reason) 136 { 137 int err; 138 struct sk_filter *filter; 139 140 /* 141 * If the skb was allocated from pfmemalloc reserves, only 142 * allow SOCK_MEMALLOC sockets to use it as this socket is 143 * helping free memory 144 */ 145 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) { 146 NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP); 147 *reason = SKB_DROP_REASON_PFMEMALLOC; 148 return -ENOMEM; 149 } 150 err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb); 151 if (err) { 152 *reason = SKB_DROP_REASON_SOCKET_FILTER; 153 return err; 154 } 155 156 err = security_sock_rcv_skb(sk, skb); 157 if (err) { 158 *reason = SKB_DROP_REASON_SECURITY_HOOK; 159 return err; 160 } 161 162 rcu_read_lock(); 163 filter = rcu_dereference(sk->sk_filter); 164 if (filter) { 165 struct sock *save_sk = skb->sk; 166 unsigned int pkt_len; 167 168 skb->sk = sk; 169 pkt_len = bpf_prog_run_save_cb(filter->prog, skb); 170 skb->sk = save_sk; 171 err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM; 172 if (err) 173 *reason = SKB_DROP_REASON_SOCKET_FILTER; 174 } 175 rcu_read_unlock(); 176 177 return err; 178 } 179 EXPORT_SYMBOL(sk_filter_trim_cap); 180 181 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb) 182 { 183 return skb_get_poff(skb); 184 } 185 186 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x) 187 { 188 struct nlattr *nla; 189 190 if (skb_is_nonlinear(skb)) 191 return 0; 192 193 if (skb->len < sizeof(struct nlattr)) 194 return 0; 195 196 if (a > skb->len - sizeof(struct nlattr)) 197 return 0; 198 199 nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x); 200 if (nla) 201 return (void *) nla - (void *) skb->data; 202 203 return 0; 204 } 205 206 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x) 207 { 208 struct nlattr *nla; 209 210 if (skb_is_nonlinear(skb)) 211 return 0; 212 213 if (skb->len < sizeof(struct nlattr)) 214 return 0; 215 216 if (a > skb->len - sizeof(struct nlattr)) 217 return 0; 218 219 nla = (struct nlattr *) &skb->data[a]; 220 if (!nla_ok(nla, skb->len - a)) 221 return 0; 222 223 nla = nla_find_nested(nla, x); 224 if (nla) 225 return (void *) nla - (void *) skb->data; 226 227 return 0; 228 } 229 230 static int bpf_skb_load_helper_convert_offset(const struct sk_buff *skb, int offset) 231 { 232 if (likely(offset >= 0)) 233 return offset; 234 235 if (offset >= SKF_NET_OFF) 236 return offset - SKF_NET_OFF + skb_network_offset(skb); 237 238 if (offset >= SKF_LL_OFF && skb_mac_header_was_set(skb)) 239 return offset - SKF_LL_OFF + skb_mac_offset(skb); 240 241 return INT_MIN; 242 } 243 244 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *, 245 data, int, headlen, int, offset) 246 { 247 u8 tmp; 248 const int len = sizeof(tmp); 249 250 offset = bpf_skb_load_helper_convert_offset(skb, offset); 251 if (offset == INT_MIN) 252 return -EFAULT; 253 254 if (headlen - offset >= len) 255 return *(u8 *)(data + offset); 256 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp))) 257 return tmp; 258 else 259 return -EFAULT; 260 } 261 262 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb, 263 int, offset) 264 { 265 return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len, 266 offset); 267 } 268 269 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *, 270 data, int, headlen, int, offset) 271 { 272 __be16 tmp; 273 const int len = sizeof(tmp); 274 275 offset = bpf_skb_load_helper_convert_offset(skb, offset); 276 if (offset == INT_MIN) 277 return -EFAULT; 278 279 if (headlen - offset >= len) 280 return get_unaligned_be16(data + offset); 281 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp))) 282 return be16_to_cpu(tmp); 283 else 284 return -EFAULT; 285 } 286 287 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb, 288 int, offset) 289 { 290 return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len, 291 offset); 292 } 293 294 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *, 295 data, int, headlen, int, offset) 296 { 297 __be32 tmp; 298 const int len = sizeof(tmp); 299 300 offset = bpf_skb_load_helper_convert_offset(skb, offset); 301 if (offset == INT_MIN) 302 return -EFAULT; 303 304 if (headlen - offset >= len) 305 return get_unaligned_be32(data + offset); 306 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp))) 307 return be32_to_cpu(tmp); 308 else 309 return -EFAULT; 310 } 311 312 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb, 313 int, offset) 314 { 315 return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len, 316 offset); 317 } 318 319 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg, 320 struct bpf_insn *insn_buf) 321 { 322 struct bpf_insn *insn = insn_buf; 323 324 switch (skb_field) { 325 case SKF_AD_MARK: 326 BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4); 327 328 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg, 329 offsetof(struct sk_buff, mark)); 330 break; 331 332 case SKF_AD_PKTTYPE: 333 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET); 334 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX); 335 #ifdef __BIG_ENDIAN_BITFIELD 336 *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5); 337 #endif 338 break; 339 340 case SKF_AD_QUEUE: 341 BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2); 342 343 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg, 344 offsetof(struct sk_buff, queue_mapping)); 345 break; 346 347 case SKF_AD_VLAN_TAG: 348 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2); 349 350 /* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */ 351 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg, 352 offsetof(struct sk_buff, vlan_tci)); 353 break; 354 case SKF_AD_VLAN_TAG_PRESENT: 355 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_all) != 4); 356 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg, 357 offsetof(struct sk_buff, vlan_all)); 358 *insn++ = BPF_JMP_IMM(BPF_JEQ, dst_reg, 0, 1); 359 *insn++ = BPF_ALU32_IMM(BPF_MOV, dst_reg, 1); 360 break; 361 } 362 363 return insn - insn_buf; 364 } 365 366 static bool convert_bpf_extensions(struct sock_filter *fp, 367 struct bpf_insn **insnp) 368 { 369 struct bpf_insn *insn = *insnp; 370 u32 cnt; 371 372 switch (fp->k) { 373 case SKF_AD_OFF + SKF_AD_PROTOCOL: 374 BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2); 375 376 /* A = *(u16 *) (CTX + offsetof(protocol)) */ 377 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX, 378 offsetof(struct sk_buff, protocol)); 379 /* A = ntohs(A) [emitting a nop or swap16] */ 380 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16); 381 break; 382 383 case SKF_AD_OFF + SKF_AD_PKTTYPE: 384 cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn); 385 insn += cnt - 1; 386 break; 387 388 case SKF_AD_OFF + SKF_AD_IFINDEX: 389 case SKF_AD_OFF + SKF_AD_HATYPE: 390 BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4); 391 BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2); 392 393 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev), 394 BPF_REG_TMP, BPF_REG_CTX, 395 offsetof(struct sk_buff, dev)); 396 /* if (tmp != 0) goto pc + 1 */ 397 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1); 398 *insn++ = BPF_EXIT_INSN(); 399 if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX) 400 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP, 401 offsetof(struct net_device, ifindex)); 402 else 403 *insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP, 404 offsetof(struct net_device, type)); 405 break; 406 407 case SKF_AD_OFF + SKF_AD_MARK: 408 cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn); 409 insn += cnt - 1; 410 break; 411 412 case SKF_AD_OFF + SKF_AD_RXHASH: 413 BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4); 414 415 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, 416 offsetof(struct sk_buff, hash)); 417 break; 418 419 case SKF_AD_OFF + SKF_AD_QUEUE: 420 cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn); 421 insn += cnt - 1; 422 break; 423 424 case SKF_AD_OFF + SKF_AD_VLAN_TAG: 425 cnt = convert_skb_access(SKF_AD_VLAN_TAG, 426 BPF_REG_A, BPF_REG_CTX, insn); 427 insn += cnt - 1; 428 break; 429 430 case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT: 431 cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT, 432 BPF_REG_A, BPF_REG_CTX, insn); 433 insn += cnt - 1; 434 break; 435 436 case SKF_AD_OFF + SKF_AD_VLAN_TPID: 437 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2); 438 439 /* A = *(u16 *) (CTX + offsetof(vlan_proto)) */ 440 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX, 441 offsetof(struct sk_buff, vlan_proto)); 442 /* A = ntohs(A) [emitting a nop or swap16] */ 443 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16); 444 break; 445 446 case SKF_AD_OFF + SKF_AD_PAY_OFFSET: 447 case SKF_AD_OFF + SKF_AD_NLATTR: 448 case SKF_AD_OFF + SKF_AD_NLATTR_NEST: 449 case SKF_AD_OFF + SKF_AD_CPU: 450 case SKF_AD_OFF + SKF_AD_RANDOM: 451 /* arg1 = CTX */ 452 *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX); 453 /* arg2 = A */ 454 *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A); 455 /* arg3 = X */ 456 *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X); 457 /* Emit call(arg1=CTX, arg2=A, arg3=X) */ 458 switch (fp->k) { 459 case SKF_AD_OFF + SKF_AD_PAY_OFFSET: 460 *insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset); 461 break; 462 case SKF_AD_OFF + SKF_AD_NLATTR: 463 *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr); 464 break; 465 case SKF_AD_OFF + SKF_AD_NLATTR_NEST: 466 *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest); 467 break; 468 case SKF_AD_OFF + SKF_AD_CPU: 469 *insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id); 470 break; 471 case SKF_AD_OFF + SKF_AD_RANDOM: 472 *insn = BPF_EMIT_CALL(bpf_user_rnd_u32); 473 bpf_user_rnd_init_once(); 474 break; 475 } 476 break; 477 478 case SKF_AD_OFF + SKF_AD_ALU_XOR_X: 479 /* A ^= X */ 480 *insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X); 481 break; 482 483 default: 484 /* This is just a dummy call to avoid letting the compiler 485 * evict __bpf_call_base() as an optimization. Placed here 486 * where no-one bothers. 487 */ 488 BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0); 489 return false; 490 } 491 492 *insnp = insn; 493 return true; 494 } 495 496 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp) 497 { 498 const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS); 499 int size = bpf_size_to_bytes(BPF_SIZE(fp->code)); 500 bool endian = BPF_SIZE(fp->code) == BPF_H || 501 BPF_SIZE(fp->code) == BPF_W; 502 bool indirect = BPF_MODE(fp->code) == BPF_IND; 503 const int ip_align = NET_IP_ALIGN; 504 struct bpf_insn *insn = *insnp; 505 int offset = fp->k; 506 507 if (!indirect && 508 ((unaligned_ok && offset >= 0) || 509 (!unaligned_ok && offset >= 0 && 510 offset + ip_align >= 0 && 511 offset + ip_align % size == 0))) { 512 bool ldx_off_ok = offset <= S16_MAX; 513 514 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H); 515 if (offset) 516 *insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset); 517 *insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP, 518 size, 2 + endian + (!ldx_off_ok * 2)); 519 if (ldx_off_ok) { 520 *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A, 521 BPF_REG_D, offset); 522 } else { 523 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D); 524 *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset); 525 *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A, 526 BPF_REG_TMP, 0); 527 } 528 if (endian) 529 *insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8); 530 *insn++ = BPF_JMP_A(8); 531 } 532 533 *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX); 534 *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D); 535 *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H); 536 if (!indirect) { 537 *insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset); 538 } else { 539 *insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X); 540 if (fp->k) 541 *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset); 542 } 543 544 switch (BPF_SIZE(fp->code)) { 545 case BPF_B: 546 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8); 547 break; 548 case BPF_H: 549 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16); 550 break; 551 case BPF_W: 552 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32); 553 break; 554 default: 555 return false; 556 } 557 558 *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2); 559 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A); 560 *insn = BPF_EXIT_INSN(); 561 562 *insnp = insn; 563 return true; 564 } 565 566 /** 567 * bpf_convert_filter - convert filter program 568 * @prog: the user passed filter program 569 * @len: the length of the user passed filter program 570 * @new_prog: allocated 'struct bpf_prog' or NULL 571 * @new_len: pointer to store length of converted program 572 * @seen_ld_abs: bool whether we've seen ld_abs/ind 573 * 574 * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn' 575 * style extended BPF (eBPF). 576 * Conversion workflow: 577 * 578 * 1) First pass for calculating the new program length: 579 * bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs) 580 * 581 * 2) 2nd pass to remap in two passes: 1st pass finds new 582 * jump offsets, 2nd pass remapping: 583 * bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs) 584 */ 585 static int bpf_convert_filter(struct sock_filter *prog, int len, 586 struct bpf_prog *new_prog, int *new_len, 587 bool *seen_ld_abs) 588 { 589 int new_flen = 0, pass = 0, target, i, stack_off; 590 struct bpf_insn *new_insn, *first_insn = NULL; 591 struct sock_filter *fp; 592 int *addrs = NULL; 593 u8 bpf_src; 594 595 BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK); 596 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 597 598 if (len <= 0 || len > BPF_MAXINSNS) 599 return -EINVAL; 600 601 if (new_prog) { 602 first_insn = new_prog->insnsi; 603 addrs = kcalloc(len, sizeof(*addrs), 604 GFP_KERNEL | __GFP_NOWARN); 605 if (!addrs) 606 return -ENOMEM; 607 } 608 609 do_pass: 610 new_insn = first_insn; 611 fp = prog; 612 613 /* Classic BPF related prologue emission. */ 614 if (new_prog) { 615 /* Classic BPF expects A and X to be reset first. These need 616 * to be guaranteed to be the first two instructions. 617 */ 618 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A); 619 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X); 620 621 /* All programs must keep CTX in callee saved BPF_REG_CTX. 622 * In eBPF case it's done by the compiler, here we need to 623 * do this ourself. Initial CTX is present in BPF_REG_ARG1. 624 */ 625 *new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1); 626 if (*seen_ld_abs) { 627 /* For packet access in classic BPF, cache skb->data 628 * in callee-saved BPF R8 and skb->len - skb->data_len 629 * (headlen) in BPF R9. Since classic BPF is read-only 630 * on CTX, we only need to cache it once. 631 */ 632 *new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data), 633 BPF_REG_D, BPF_REG_CTX, 634 offsetof(struct sk_buff, data)); 635 *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX, 636 offsetof(struct sk_buff, len)); 637 *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX, 638 offsetof(struct sk_buff, data_len)); 639 *new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP); 640 } 641 } else { 642 new_insn += 3; 643 } 644 645 for (i = 0; i < len; fp++, i++) { 646 struct bpf_insn tmp_insns[32] = { }; 647 struct bpf_insn *insn = tmp_insns; 648 649 if (addrs) 650 addrs[i] = new_insn - first_insn; 651 652 switch (fp->code) { 653 /* All arithmetic insns and skb loads map as-is. */ 654 case BPF_ALU | BPF_ADD | BPF_X: 655 case BPF_ALU | BPF_ADD | BPF_K: 656 case BPF_ALU | BPF_SUB | BPF_X: 657 case BPF_ALU | BPF_SUB | BPF_K: 658 case BPF_ALU | BPF_AND | BPF_X: 659 case BPF_ALU | BPF_AND | BPF_K: 660 case BPF_ALU | BPF_OR | BPF_X: 661 case BPF_ALU | BPF_OR | BPF_K: 662 case BPF_ALU | BPF_LSH | BPF_X: 663 case BPF_ALU | BPF_LSH | BPF_K: 664 case BPF_ALU | BPF_RSH | BPF_X: 665 case BPF_ALU | BPF_RSH | BPF_K: 666 case BPF_ALU | BPF_XOR | BPF_X: 667 case BPF_ALU | BPF_XOR | BPF_K: 668 case BPF_ALU | BPF_MUL | BPF_X: 669 case BPF_ALU | BPF_MUL | BPF_K: 670 case BPF_ALU | BPF_DIV | BPF_X: 671 case BPF_ALU | BPF_DIV | BPF_K: 672 case BPF_ALU | BPF_MOD | BPF_X: 673 case BPF_ALU | BPF_MOD | BPF_K: 674 case BPF_ALU | BPF_NEG: 675 case BPF_LD | BPF_ABS | BPF_W: 676 case BPF_LD | BPF_ABS | BPF_H: 677 case BPF_LD | BPF_ABS | BPF_B: 678 case BPF_LD | BPF_IND | BPF_W: 679 case BPF_LD | BPF_IND | BPF_H: 680 case BPF_LD | BPF_IND | BPF_B: 681 /* Check for overloaded BPF extension and 682 * directly convert it if found, otherwise 683 * just move on with mapping. 684 */ 685 if (BPF_CLASS(fp->code) == BPF_LD && 686 BPF_MODE(fp->code) == BPF_ABS && 687 convert_bpf_extensions(fp, &insn)) 688 break; 689 if (BPF_CLASS(fp->code) == BPF_LD && 690 convert_bpf_ld_abs(fp, &insn)) { 691 *seen_ld_abs = true; 692 break; 693 } 694 695 if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) || 696 fp->code == (BPF_ALU | BPF_MOD | BPF_X)) { 697 *insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X); 698 /* Error with exception code on div/mod by 0. 699 * For cBPF programs, this was always return 0. 700 */ 701 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2); 702 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A); 703 *insn++ = BPF_EXIT_INSN(); 704 } 705 706 *insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k); 707 break; 708 709 /* Jump transformation cannot use BPF block macros 710 * everywhere as offset calculation and target updates 711 * require a bit more work than the rest, i.e. jump 712 * opcodes map as-is, but offsets need adjustment. 713 */ 714 715 #define BPF_EMIT_JMP \ 716 do { \ 717 const s32 off_min = S16_MIN, off_max = S16_MAX; \ 718 s32 off; \ 719 \ 720 if (target >= len || target < 0) \ 721 goto err; \ 722 off = addrs ? addrs[target] - addrs[i] - 1 : 0; \ 723 /* Adjust pc relative offset for 2nd or 3rd insn. */ \ 724 off -= insn - tmp_insns; \ 725 /* Reject anything not fitting into insn->off. */ \ 726 if (off < off_min || off > off_max) \ 727 goto err; \ 728 insn->off = off; \ 729 } while (0) 730 731 case BPF_JMP | BPF_JA: 732 target = i + fp->k + 1; 733 insn->code = fp->code; 734 BPF_EMIT_JMP; 735 break; 736 737 case BPF_JMP | BPF_JEQ | BPF_K: 738 case BPF_JMP | BPF_JEQ | BPF_X: 739 case BPF_JMP | BPF_JSET | BPF_K: 740 case BPF_JMP | BPF_JSET | BPF_X: 741 case BPF_JMP | BPF_JGT | BPF_K: 742 case BPF_JMP | BPF_JGT | BPF_X: 743 case BPF_JMP | BPF_JGE | BPF_K: 744 case BPF_JMP | BPF_JGE | BPF_X: 745 if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) { 746 /* BPF immediates are signed, zero extend 747 * immediate into tmp register and use it 748 * in compare insn. 749 */ 750 *insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k); 751 752 insn->dst_reg = BPF_REG_A; 753 insn->src_reg = BPF_REG_TMP; 754 bpf_src = BPF_X; 755 } else { 756 insn->dst_reg = BPF_REG_A; 757 insn->imm = fp->k; 758 bpf_src = BPF_SRC(fp->code); 759 insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0; 760 } 761 762 /* Common case where 'jump_false' is next insn. */ 763 if (fp->jf == 0) { 764 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src; 765 target = i + fp->jt + 1; 766 BPF_EMIT_JMP; 767 break; 768 } 769 770 /* Convert some jumps when 'jump_true' is next insn. */ 771 if (fp->jt == 0) { 772 switch (BPF_OP(fp->code)) { 773 case BPF_JEQ: 774 insn->code = BPF_JMP | BPF_JNE | bpf_src; 775 break; 776 case BPF_JGT: 777 insn->code = BPF_JMP | BPF_JLE | bpf_src; 778 break; 779 case BPF_JGE: 780 insn->code = BPF_JMP | BPF_JLT | bpf_src; 781 break; 782 default: 783 goto jmp_rest; 784 } 785 786 target = i + fp->jf + 1; 787 BPF_EMIT_JMP; 788 break; 789 } 790 jmp_rest: 791 /* Other jumps are mapped into two insns: Jxx and JA. */ 792 target = i + fp->jt + 1; 793 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src; 794 BPF_EMIT_JMP; 795 insn++; 796 797 insn->code = BPF_JMP | BPF_JA; 798 target = i + fp->jf + 1; 799 BPF_EMIT_JMP; 800 break; 801 802 /* ldxb 4 * ([14] & 0xf) is remapped into 6 insns. */ 803 case BPF_LDX | BPF_MSH | BPF_B: { 804 struct sock_filter tmp = { 805 .code = BPF_LD | BPF_ABS | BPF_B, 806 .k = fp->k, 807 }; 808 809 *seen_ld_abs = true; 810 811 /* X = A */ 812 *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A); 813 /* A = BPF_R0 = *(u8 *) (skb->data + K) */ 814 convert_bpf_ld_abs(&tmp, &insn); 815 insn++; 816 /* A &= 0xf */ 817 *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf); 818 /* A <<= 2 */ 819 *insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2); 820 /* tmp = X */ 821 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X); 822 /* X = A */ 823 *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A); 824 /* A = tmp */ 825 *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP); 826 break; 827 } 828 /* RET_K is remapped into 2 insns. RET_A case doesn't need an 829 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A. 830 */ 831 case BPF_RET | BPF_A: 832 case BPF_RET | BPF_K: 833 if (BPF_RVAL(fp->code) == BPF_K) 834 *insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0, 835 0, fp->k); 836 *insn = BPF_EXIT_INSN(); 837 break; 838 839 /* Store to stack. */ 840 case BPF_ST: 841 case BPF_STX: 842 stack_off = fp->k * 4 + 4; 843 *insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) == 844 BPF_ST ? BPF_REG_A : BPF_REG_X, 845 -stack_off); 846 /* check_load_and_stores() verifies that classic BPF can 847 * load from stack only after write, so tracking 848 * stack_depth for ST|STX insns is enough 849 */ 850 if (new_prog && new_prog->aux->stack_depth < stack_off) 851 new_prog->aux->stack_depth = stack_off; 852 break; 853 854 /* Load from stack. */ 855 case BPF_LD | BPF_MEM: 856 case BPF_LDX | BPF_MEM: 857 stack_off = fp->k * 4 + 4; 858 *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ? 859 BPF_REG_A : BPF_REG_X, BPF_REG_FP, 860 -stack_off); 861 break; 862 863 /* A = K or X = K */ 864 case BPF_LD | BPF_IMM: 865 case BPF_LDX | BPF_IMM: 866 *insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ? 867 BPF_REG_A : BPF_REG_X, fp->k); 868 break; 869 870 /* X = A */ 871 case BPF_MISC | BPF_TAX: 872 *insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A); 873 break; 874 875 /* A = X */ 876 case BPF_MISC | BPF_TXA: 877 *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X); 878 break; 879 880 /* A = skb->len or X = skb->len */ 881 case BPF_LD | BPF_W | BPF_LEN: 882 case BPF_LDX | BPF_W | BPF_LEN: 883 *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ? 884 BPF_REG_A : BPF_REG_X, BPF_REG_CTX, 885 offsetof(struct sk_buff, len)); 886 break; 887 888 /* Access seccomp_data fields. */ 889 case BPF_LDX | BPF_ABS | BPF_W: 890 /* A = *(u32 *) (ctx + K) */ 891 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k); 892 break; 893 894 /* Unknown instruction. */ 895 default: 896 goto err; 897 } 898 899 insn++; 900 if (new_prog) 901 memcpy(new_insn, tmp_insns, 902 sizeof(*insn) * (insn - tmp_insns)); 903 new_insn += insn - tmp_insns; 904 } 905 906 if (!new_prog) { 907 /* Only calculating new length. */ 908 *new_len = new_insn - first_insn; 909 if (*seen_ld_abs) 910 *new_len += 4; /* Prologue bits. */ 911 return 0; 912 } 913 914 pass++; 915 if (new_flen != new_insn - first_insn) { 916 new_flen = new_insn - first_insn; 917 if (pass > 2) 918 goto err; 919 goto do_pass; 920 } 921 922 kfree(addrs); 923 BUG_ON(*new_len != new_flen); 924 return 0; 925 err: 926 kfree(addrs); 927 return -EINVAL; 928 } 929 930 /* Security: 931 * 932 * As we dont want to clear mem[] array for each packet going through 933 * __bpf_prog_run(), we check that filter loaded by user never try to read 934 * a cell if not previously written, and we check all branches to be sure 935 * a malicious user doesn't try to abuse us. 936 */ 937 static int check_load_and_stores(const struct sock_filter *filter, int flen) 938 { 939 u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */ 940 int pc, ret = 0; 941 942 BUILD_BUG_ON(BPF_MEMWORDS > 16); 943 944 masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL); 945 if (!masks) 946 return -ENOMEM; 947 948 memset(masks, 0xff, flen * sizeof(*masks)); 949 950 for (pc = 0; pc < flen; pc++) { 951 memvalid &= masks[pc]; 952 953 switch (filter[pc].code) { 954 case BPF_ST: 955 case BPF_STX: 956 memvalid |= (1 << filter[pc].k); 957 break; 958 case BPF_LD | BPF_MEM: 959 case BPF_LDX | BPF_MEM: 960 if (!(memvalid & (1 << filter[pc].k))) { 961 ret = -EINVAL; 962 goto error; 963 } 964 break; 965 case BPF_JMP | BPF_JA: 966 /* A jump must set masks on target */ 967 masks[pc + 1 + filter[pc].k] &= memvalid; 968 memvalid = ~0; 969 break; 970 case BPF_JMP | BPF_JEQ | BPF_K: 971 case BPF_JMP | BPF_JEQ | BPF_X: 972 case BPF_JMP | BPF_JGE | BPF_K: 973 case BPF_JMP | BPF_JGE | BPF_X: 974 case BPF_JMP | BPF_JGT | BPF_K: 975 case BPF_JMP | BPF_JGT | BPF_X: 976 case BPF_JMP | BPF_JSET | BPF_K: 977 case BPF_JMP | BPF_JSET | BPF_X: 978 /* A jump must set masks on targets */ 979 masks[pc + 1 + filter[pc].jt] &= memvalid; 980 masks[pc + 1 + filter[pc].jf] &= memvalid; 981 memvalid = ~0; 982 break; 983 } 984 } 985 error: 986 kfree(masks); 987 return ret; 988 } 989 990 static bool chk_code_allowed(u16 code_to_probe) 991 { 992 static const bool codes[] = { 993 /* 32 bit ALU operations */ 994 [BPF_ALU | BPF_ADD | BPF_K] = true, 995 [BPF_ALU | BPF_ADD | BPF_X] = true, 996 [BPF_ALU | BPF_SUB | BPF_K] = true, 997 [BPF_ALU | BPF_SUB | BPF_X] = true, 998 [BPF_ALU | BPF_MUL | BPF_K] = true, 999 [BPF_ALU | BPF_MUL | BPF_X] = true, 1000 [BPF_ALU | BPF_DIV | BPF_K] = true, 1001 [BPF_ALU | BPF_DIV | BPF_X] = true, 1002 [BPF_ALU | BPF_MOD | BPF_K] = true, 1003 [BPF_ALU | BPF_MOD | BPF_X] = true, 1004 [BPF_ALU | BPF_AND | BPF_K] = true, 1005 [BPF_ALU | BPF_AND | BPF_X] = true, 1006 [BPF_ALU | BPF_OR | BPF_K] = true, 1007 [BPF_ALU | BPF_OR | BPF_X] = true, 1008 [BPF_ALU | BPF_XOR | BPF_K] = true, 1009 [BPF_ALU | BPF_XOR | BPF_X] = true, 1010 [BPF_ALU | BPF_LSH | BPF_K] = true, 1011 [BPF_ALU | BPF_LSH | BPF_X] = true, 1012 [BPF_ALU | BPF_RSH | BPF_K] = true, 1013 [BPF_ALU | BPF_RSH | BPF_X] = true, 1014 [BPF_ALU | BPF_NEG] = true, 1015 /* Load instructions */ 1016 [BPF_LD | BPF_W | BPF_ABS] = true, 1017 [BPF_LD | BPF_H | BPF_ABS] = true, 1018 [BPF_LD | BPF_B | BPF_ABS] = true, 1019 [BPF_LD | BPF_W | BPF_LEN] = true, 1020 [BPF_LD | BPF_W | BPF_IND] = true, 1021 [BPF_LD | BPF_H | BPF_IND] = true, 1022 [BPF_LD | BPF_B | BPF_IND] = true, 1023 [BPF_LD | BPF_IMM] = true, 1024 [BPF_LD | BPF_MEM] = true, 1025 [BPF_LDX | BPF_W | BPF_LEN] = true, 1026 [BPF_LDX | BPF_B | BPF_MSH] = true, 1027 [BPF_LDX | BPF_IMM] = true, 1028 [BPF_LDX | BPF_MEM] = true, 1029 /* Store instructions */ 1030 [BPF_ST] = true, 1031 [BPF_STX] = true, 1032 /* Misc instructions */ 1033 [BPF_MISC | BPF_TAX] = true, 1034 [BPF_MISC | BPF_TXA] = true, 1035 /* Return instructions */ 1036 [BPF_RET | BPF_K] = true, 1037 [BPF_RET | BPF_A] = true, 1038 /* Jump instructions */ 1039 [BPF_JMP | BPF_JA] = true, 1040 [BPF_JMP | BPF_JEQ | BPF_K] = true, 1041 [BPF_JMP | BPF_JEQ | BPF_X] = true, 1042 [BPF_JMP | BPF_JGE | BPF_K] = true, 1043 [BPF_JMP | BPF_JGE | BPF_X] = true, 1044 [BPF_JMP | BPF_JGT | BPF_K] = true, 1045 [BPF_JMP | BPF_JGT | BPF_X] = true, 1046 [BPF_JMP | BPF_JSET | BPF_K] = true, 1047 [BPF_JMP | BPF_JSET | BPF_X] = true, 1048 }; 1049 1050 if (code_to_probe >= ARRAY_SIZE(codes)) 1051 return false; 1052 1053 return codes[code_to_probe]; 1054 } 1055 1056 static bool bpf_check_basics_ok(const struct sock_filter *filter, 1057 unsigned int flen) 1058 { 1059 if (filter == NULL) 1060 return false; 1061 if (flen == 0 || flen > BPF_MAXINSNS) 1062 return false; 1063 1064 return true; 1065 } 1066 1067 /** 1068 * bpf_check_classic - verify socket filter code 1069 * @filter: filter to verify 1070 * @flen: length of filter 1071 * 1072 * Check the user's filter code. If we let some ugly 1073 * filter code slip through kaboom! The filter must contain 1074 * no references or jumps that are out of range, no illegal 1075 * instructions, and must end with a RET instruction. 1076 * 1077 * All jumps are forward as they are not signed. 1078 * 1079 * Returns 0 if the rule set is legal or -EINVAL if not. 1080 */ 1081 static int bpf_check_classic(const struct sock_filter *filter, 1082 unsigned int flen) 1083 { 1084 bool anc_found; 1085 int pc; 1086 1087 /* Check the filter code now */ 1088 for (pc = 0; pc < flen; pc++) { 1089 const struct sock_filter *ftest = &filter[pc]; 1090 1091 /* May we actually operate on this code? */ 1092 if (!chk_code_allowed(ftest->code)) 1093 return -EINVAL; 1094 1095 /* Some instructions need special checks */ 1096 switch (ftest->code) { 1097 case BPF_ALU | BPF_DIV | BPF_K: 1098 case BPF_ALU | BPF_MOD | BPF_K: 1099 /* Check for division by zero */ 1100 if (ftest->k == 0) 1101 return -EINVAL; 1102 break; 1103 case BPF_ALU | BPF_LSH | BPF_K: 1104 case BPF_ALU | BPF_RSH | BPF_K: 1105 if (ftest->k >= 32) 1106 return -EINVAL; 1107 break; 1108 case BPF_LD | BPF_MEM: 1109 case BPF_LDX | BPF_MEM: 1110 case BPF_ST: 1111 case BPF_STX: 1112 /* Check for invalid memory addresses */ 1113 if (ftest->k >= BPF_MEMWORDS) 1114 return -EINVAL; 1115 break; 1116 case BPF_JMP | BPF_JA: 1117 /* Note, the large ftest->k might cause loops. 1118 * Compare this with conditional jumps below, 1119 * where offsets are limited. --ANK (981016) 1120 */ 1121 if (ftest->k >= (unsigned int)(flen - pc - 1)) 1122 return -EINVAL; 1123 break; 1124 case BPF_JMP | BPF_JEQ | BPF_K: 1125 case BPF_JMP | BPF_JEQ | BPF_X: 1126 case BPF_JMP | BPF_JGE | BPF_K: 1127 case BPF_JMP | BPF_JGE | BPF_X: 1128 case BPF_JMP | BPF_JGT | BPF_K: 1129 case BPF_JMP | BPF_JGT | BPF_X: 1130 case BPF_JMP | BPF_JSET | BPF_K: 1131 case BPF_JMP | BPF_JSET | BPF_X: 1132 /* Both conditionals must be safe */ 1133 if (pc + ftest->jt + 1 >= flen || 1134 pc + ftest->jf + 1 >= flen) 1135 return -EINVAL; 1136 break; 1137 case BPF_LD | BPF_W | BPF_ABS: 1138 case BPF_LD | BPF_H | BPF_ABS: 1139 case BPF_LD | BPF_B | BPF_ABS: 1140 anc_found = false; 1141 if (bpf_anc_helper(ftest) & BPF_ANC) 1142 anc_found = true; 1143 /* Ancillary operation unknown or unsupported */ 1144 if (anc_found == false && ftest->k >= SKF_AD_OFF) 1145 return -EINVAL; 1146 } 1147 } 1148 1149 /* Last instruction must be a RET code */ 1150 switch (filter[flen - 1].code) { 1151 case BPF_RET | BPF_K: 1152 case BPF_RET | BPF_A: 1153 return check_load_and_stores(filter, flen); 1154 } 1155 1156 return -EINVAL; 1157 } 1158 1159 static int bpf_prog_store_orig_filter(struct bpf_prog *fp, 1160 const struct sock_fprog *fprog) 1161 { 1162 unsigned int fsize = bpf_classic_proglen(fprog); 1163 struct sock_fprog_kern *fkprog; 1164 1165 fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL); 1166 if (!fp->orig_prog) 1167 return -ENOMEM; 1168 1169 fkprog = fp->orig_prog; 1170 fkprog->len = fprog->len; 1171 1172 fkprog->filter = kmemdup(fp->insns, fsize, 1173 GFP_KERNEL | __GFP_NOWARN); 1174 if (!fkprog->filter) { 1175 kfree(fp->orig_prog); 1176 return -ENOMEM; 1177 } 1178 1179 return 0; 1180 } 1181 1182 static void bpf_release_orig_filter(struct bpf_prog *fp) 1183 { 1184 struct sock_fprog_kern *fprog = fp->orig_prog; 1185 1186 if (fprog) { 1187 kfree(fprog->filter); 1188 kfree(fprog); 1189 } 1190 } 1191 1192 static void __bpf_prog_release(struct bpf_prog *prog) 1193 { 1194 if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) { 1195 bpf_prog_put(prog); 1196 } else { 1197 bpf_release_orig_filter(prog); 1198 bpf_prog_free(prog); 1199 } 1200 } 1201 1202 static void __sk_filter_release(struct sk_filter *fp) 1203 { 1204 __bpf_prog_release(fp->prog); 1205 kfree(fp); 1206 } 1207 1208 /** 1209 * sk_filter_release_rcu - Release a socket filter by rcu_head 1210 * @rcu: rcu_head that contains the sk_filter to free 1211 */ 1212 static void sk_filter_release_rcu(struct rcu_head *rcu) 1213 { 1214 struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu); 1215 1216 __sk_filter_release(fp); 1217 } 1218 1219 /** 1220 * sk_filter_release - release a socket filter 1221 * @fp: filter to remove 1222 * 1223 * Remove a filter from a socket and release its resources. 1224 */ 1225 static void sk_filter_release(struct sk_filter *fp) 1226 { 1227 if (refcount_dec_and_test(&fp->refcnt)) 1228 call_rcu(&fp->rcu, sk_filter_release_rcu); 1229 } 1230 1231 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp) 1232 { 1233 u32 filter_size = bpf_prog_size(fp->prog->len); 1234 1235 atomic_sub(filter_size, &sk->sk_omem_alloc); 1236 sk_filter_release(fp); 1237 } 1238 1239 /* try to charge the socket memory if there is space available 1240 * return true on success 1241 */ 1242 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp) 1243 { 1244 int optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max); 1245 u32 filter_size = bpf_prog_size(fp->prog->len); 1246 1247 /* same check as in sock_kmalloc() */ 1248 if (filter_size <= optmem_max && 1249 atomic_read(&sk->sk_omem_alloc) + filter_size < optmem_max) { 1250 atomic_add(filter_size, &sk->sk_omem_alloc); 1251 return true; 1252 } 1253 return false; 1254 } 1255 1256 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp) 1257 { 1258 if (!refcount_inc_not_zero(&fp->refcnt)) 1259 return false; 1260 1261 if (!__sk_filter_charge(sk, fp)) { 1262 sk_filter_release(fp); 1263 return false; 1264 } 1265 return true; 1266 } 1267 1268 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp) 1269 { 1270 struct sock_filter *old_prog; 1271 struct bpf_prog *old_fp; 1272 int err, new_len, old_len = fp->len; 1273 bool seen_ld_abs = false; 1274 1275 /* We are free to overwrite insns et al right here as it won't be used at 1276 * this point in time anymore internally after the migration to the eBPF 1277 * instruction representation. 1278 */ 1279 BUILD_BUG_ON(sizeof(struct sock_filter) != 1280 sizeof(struct bpf_insn)); 1281 1282 /* Conversion cannot happen on overlapping memory areas, 1283 * so we need to keep the user BPF around until the 2nd 1284 * pass. At this time, the user BPF is stored in fp->insns. 1285 */ 1286 old_prog = kmemdup_array(fp->insns, old_len, sizeof(struct sock_filter), 1287 GFP_KERNEL | __GFP_NOWARN); 1288 if (!old_prog) { 1289 err = -ENOMEM; 1290 goto out_err; 1291 } 1292 1293 /* 1st pass: calculate the new program length. */ 1294 err = bpf_convert_filter(old_prog, old_len, NULL, &new_len, 1295 &seen_ld_abs); 1296 if (err) 1297 goto out_err_free; 1298 1299 /* Expand fp for appending the new filter representation. */ 1300 old_fp = fp; 1301 fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0); 1302 if (!fp) { 1303 /* The old_fp is still around in case we couldn't 1304 * allocate new memory, so uncharge on that one. 1305 */ 1306 fp = old_fp; 1307 err = -ENOMEM; 1308 goto out_err_free; 1309 } 1310 1311 fp->len = new_len; 1312 1313 /* 2nd pass: remap sock_filter insns into bpf_insn insns. */ 1314 err = bpf_convert_filter(old_prog, old_len, fp, &new_len, 1315 &seen_ld_abs); 1316 if (err) 1317 /* 2nd bpf_convert_filter() can fail only if it fails 1318 * to allocate memory, remapping must succeed. Note, 1319 * that at this time old_fp has already been released 1320 * by krealloc(). 1321 */ 1322 goto out_err_free; 1323 1324 fp = bpf_prog_select_runtime(fp, &err); 1325 if (err) 1326 goto out_err_free; 1327 1328 kfree(old_prog); 1329 return fp; 1330 1331 out_err_free: 1332 kfree(old_prog); 1333 out_err: 1334 __bpf_prog_release(fp); 1335 return ERR_PTR(err); 1336 } 1337 1338 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp, 1339 bpf_aux_classic_check_t trans) 1340 { 1341 int err; 1342 1343 fp->bpf_func = NULL; 1344 fp->jited = 0; 1345 1346 err = bpf_check_classic(fp->insns, fp->len); 1347 if (err) { 1348 __bpf_prog_release(fp); 1349 return ERR_PTR(err); 1350 } 1351 1352 /* There might be additional checks and transformations 1353 * needed on classic filters, f.e. in case of seccomp. 1354 */ 1355 if (trans) { 1356 err = trans(fp->insns, fp->len); 1357 if (err) { 1358 __bpf_prog_release(fp); 1359 return ERR_PTR(err); 1360 } 1361 } 1362 1363 /* Probe if we can JIT compile the filter and if so, do 1364 * the compilation of the filter. 1365 */ 1366 bpf_jit_compile(fp); 1367 1368 /* JIT compiler couldn't process this filter, so do the eBPF translation 1369 * for the optimized interpreter. 1370 */ 1371 if (!fp->jited) 1372 fp = bpf_migrate_filter(fp); 1373 1374 return fp; 1375 } 1376 1377 /** 1378 * bpf_prog_create - create an unattached filter 1379 * @pfp: the unattached filter that is created 1380 * @fprog: the filter program 1381 * 1382 * Create a filter independent of any socket. We first run some 1383 * sanity checks on it to make sure it does not explode on us later. 1384 * If an error occurs or there is insufficient memory for the filter 1385 * a negative errno code is returned. On success the return is zero. 1386 */ 1387 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog) 1388 { 1389 unsigned int fsize = bpf_classic_proglen(fprog); 1390 struct bpf_prog *fp; 1391 1392 /* Make sure new filter is there and in the right amounts. */ 1393 if (!bpf_check_basics_ok(fprog->filter, fprog->len)) 1394 return -EINVAL; 1395 1396 fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0); 1397 if (!fp) 1398 return -ENOMEM; 1399 1400 memcpy(fp->insns, fprog->filter, fsize); 1401 1402 fp->len = fprog->len; 1403 /* Since unattached filters are not copied back to user 1404 * space through sk_get_filter(), we do not need to hold 1405 * a copy here, and can spare us the work. 1406 */ 1407 fp->orig_prog = NULL; 1408 1409 /* bpf_prepare_filter() already takes care of freeing 1410 * memory in case something goes wrong. 1411 */ 1412 fp = bpf_prepare_filter(fp, NULL); 1413 if (IS_ERR(fp)) 1414 return PTR_ERR(fp); 1415 1416 *pfp = fp; 1417 return 0; 1418 } 1419 EXPORT_SYMBOL_GPL(bpf_prog_create); 1420 1421 /** 1422 * bpf_prog_create_from_user - create an unattached filter from user buffer 1423 * @pfp: the unattached filter that is created 1424 * @fprog: the filter program 1425 * @trans: post-classic verifier transformation handler 1426 * @save_orig: save classic BPF program 1427 * 1428 * This function effectively does the same as bpf_prog_create(), only 1429 * that it builds up its insns buffer from user space provided buffer. 1430 * It also allows for passing a bpf_aux_classic_check_t handler. 1431 */ 1432 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog, 1433 bpf_aux_classic_check_t trans, bool save_orig) 1434 { 1435 unsigned int fsize = bpf_classic_proglen(fprog); 1436 struct bpf_prog *fp; 1437 int err; 1438 1439 /* Make sure new filter is there and in the right amounts. */ 1440 if (!bpf_check_basics_ok(fprog->filter, fprog->len)) 1441 return -EINVAL; 1442 1443 fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0); 1444 if (!fp) 1445 return -ENOMEM; 1446 1447 if (copy_from_user(fp->insns, fprog->filter, fsize)) { 1448 __bpf_prog_free(fp); 1449 return -EFAULT; 1450 } 1451 1452 fp->len = fprog->len; 1453 fp->orig_prog = NULL; 1454 1455 if (save_orig) { 1456 err = bpf_prog_store_orig_filter(fp, fprog); 1457 if (err) { 1458 __bpf_prog_free(fp); 1459 return -ENOMEM; 1460 } 1461 } 1462 1463 /* bpf_prepare_filter() already takes care of freeing 1464 * memory in case something goes wrong. 1465 */ 1466 fp = bpf_prepare_filter(fp, trans); 1467 if (IS_ERR(fp)) 1468 return PTR_ERR(fp); 1469 1470 *pfp = fp; 1471 return 0; 1472 } 1473 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user); 1474 1475 void bpf_prog_destroy(struct bpf_prog *fp) 1476 { 1477 __bpf_prog_release(fp); 1478 } 1479 EXPORT_SYMBOL_GPL(bpf_prog_destroy); 1480 1481 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk) 1482 { 1483 struct sk_filter *fp, *old_fp; 1484 1485 fp = kmalloc(sizeof(*fp), GFP_KERNEL); 1486 if (!fp) 1487 return -ENOMEM; 1488 1489 fp->prog = prog; 1490 1491 if (!__sk_filter_charge(sk, fp)) { 1492 kfree(fp); 1493 return -ENOMEM; 1494 } 1495 refcount_set(&fp->refcnt, 1); 1496 1497 old_fp = rcu_dereference_protected(sk->sk_filter, 1498 lockdep_sock_is_held(sk)); 1499 rcu_assign_pointer(sk->sk_filter, fp); 1500 1501 if (old_fp) 1502 sk_filter_uncharge(sk, old_fp); 1503 1504 return 0; 1505 } 1506 1507 static 1508 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk) 1509 { 1510 unsigned int fsize = bpf_classic_proglen(fprog); 1511 struct bpf_prog *prog; 1512 int err; 1513 1514 if (sock_flag(sk, SOCK_FILTER_LOCKED)) 1515 return ERR_PTR(-EPERM); 1516 1517 /* Make sure new filter is there and in the right amounts. */ 1518 if (!bpf_check_basics_ok(fprog->filter, fprog->len)) 1519 return ERR_PTR(-EINVAL); 1520 1521 prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0); 1522 if (!prog) 1523 return ERR_PTR(-ENOMEM); 1524 1525 if (copy_from_user(prog->insns, fprog->filter, fsize)) { 1526 __bpf_prog_free(prog); 1527 return ERR_PTR(-EFAULT); 1528 } 1529 1530 prog->len = fprog->len; 1531 1532 err = bpf_prog_store_orig_filter(prog, fprog); 1533 if (err) { 1534 __bpf_prog_free(prog); 1535 return ERR_PTR(-ENOMEM); 1536 } 1537 1538 /* bpf_prepare_filter() already takes care of freeing 1539 * memory in case something goes wrong. 1540 */ 1541 return bpf_prepare_filter(prog, NULL); 1542 } 1543 1544 /** 1545 * sk_attach_filter - attach a socket filter 1546 * @fprog: the filter program 1547 * @sk: the socket to use 1548 * 1549 * Attach the user's filter code. We first run some sanity checks on 1550 * it to make sure it does not explode on us later. If an error 1551 * occurs or there is insufficient memory for the filter a negative 1552 * errno code is returned. On success the return is zero. 1553 */ 1554 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk) 1555 { 1556 struct bpf_prog *prog = __get_filter(fprog, sk); 1557 int err; 1558 1559 if (IS_ERR(prog)) 1560 return PTR_ERR(prog); 1561 1562 err = __sk_attach_prog(prog, sk); 1563 if (err < 0) { 1564 __bpf_prog_release(prog); 1565 return err; 1566 } 1567 1568 return 0; 1569 } 1570 EXPORT_SYMBOL_GPL(sk_attach_filter); 1571 1572 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk) 1573 { 1574 struct bpf_prog *prog = __get_filter(fprog, sk); 1575 int err, optmem_max; 1576 1577 if (IS_ERR(prog)) 1578 return PTR_ERR(prog); 1579 1580 optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max); 1581 if (bpf_prog_size(prog->len) > optmem_max) 1582 err = -ENOMEM; 1583 else 1584 err = reuseport_attach_prog(sk, prog); 1585 1586 if (err) 1587 __bpf_prog_release(prog); 1588 1589 return err; 1590 } 1591 1592 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk) 1593 { 1594 if (sock_flag(sk, SOCK_FILTER_LOCKED)) 1595 return ERR_PTR(-EPERM); 1596 1597 return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER); 1598 } 1599 1600 int sk_attach_bpf(u32 ufd, struct sock *sk) 1601 { 1602 struct bpf_prog *prog = __get_bpf(ufd, sk); 1603 int err; 1604 1605 if (IS_ERR(prog)) 1606 return PTR_ERR(prog); 1607 1608 err = __sk_attach_prog(prog, sk); 1609 if (err < 0) { 1610 bpf_prog_put(prog); 1611 return err; 1612 } 1613 1614 return 0; 1615 } 1616 1617 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk) 1618 { 1619 struct bpf_prog *prog; 1620 int err, optmem_max; 1621 1622 if (sock_flag(sk, SOCK_FILTER_LOCKED)) 1623 return -EPERM; 1624 1625 prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER); 1626 if (PTR_ERR(prog) == -EINVAL) 1627 prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT); 1628 if (IS_ERR(prog)) 1629 return PTR_ERR(prog); 1630 1631 if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) { 1632 /* Like other non BPF_PROG_TYPE_SOCKET_FILTER 1633 * bpf prog (e.g. sockmap). It depends on the 1634 * limitation imposed by bpf_prog_load(). 1635 * Hence, sysctl_optmem_max is not checked. 1636 */ 1637 if ((sk->sk_type != SOCK_STREAM && 1638 sk->sk_type != SOCK_DGRAM) || 1639 (sk->sk_protocol != IPPROTO_UDP && 1640 sk->sk_protocol != IPPROTO_TCP) || 1641 (sk->sk_family != AF_INET && 1642 sk->sk_family != AF_INET6)) { 1643 err = -ENOTSUPP; 1644 goto err_prog_put; 1645 } 1646 } else { 1647 /* BPF_PROG_TYPE_SOCKET_FILTER */ 1648 optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max); 1649 if (bpf_prog_size(prog->len) > optmem_max) { 1650 err = -ENOMEM; 1651 goto err_prog_put; 1652 } 1653 } 1654 1655 err = reuseport_attach_prog(sk, prog); 1656 err_prog_put: 1657 if (err) 1658 bpf_prog_put(prog); 1659 1660 return err; 1661 } 1662 1663 void sk_reuseport_prog_free(struct bpf_prog *prog) 1664 { 1665 if (!prog) 1666 return; 1667 1668 if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) 1669 bpf_prog_put(prog); 1670 else 1671 bpf_prog_destroy(prog); 1672 } 1673 1674 static inline int __bpf_try_make_writable(struct sk_buff *skb, 1675 unsigned int write_len) 1676 { 1677 #ifdef CONFIG_DEBUG_NET 1678 /* Avoid a splat in pskb_may_pull_reason() */ 1679 if (write_len > INT_MAX) 1680 return -EINVAL; 1681 #endif 1682 return skb_ensure_writable(skb, write_len); 1683 } 1684 1685 static inline int bpf_try_make_writable(struct sk_buff *skb, 1686 unsigned int write_len) 1687 { 1688 int err = __bpf_try_make_writable(skb, write_len); 1689 1690 bpf_compute_data_pointers(skb); 1691 return err; 1692 } 1693 1694 static int bpf_try_make_head_writable(struct sk_buff *skb) 1695 { 1696 return bpf_try_make_writable(skb, skb_headlen(skb)); 1697 } 1698 1699 static inline void bpf_push_mac_rcsum(struct sk_buff *skb) 1700 { 1701 if (skb_at_tc_ingress(skb)) 1702 skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len); 1703 } 1704 1705 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb) 1706 { 1707 if (skb_at_tc_ingress(skb)) 1708 skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len); 1709 } 1710 1711 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset, 1712 const void *, from, u32, len, u64, flags) 1713 { 1714 void *ptr; 1715 1716 if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH))) 1717 return -EINVAL; 1718 if (unlikely(offset > INT_MAX)) 1719 return -EFAULT; 1720 if (unlikely(bpf_try_make_writable(skb, offset + len))) 1721 return -EFAULT; 1722 1723 ptr = skb->data + offset; 1724 if (flags & BPF_F_RECOMPUTE_CSUM) 1725 __skb_postpull_rcsum(skb, ptr, len, offset); 1726 1727 memcpy(ptr, from, len); 1728 1729 if (flags & BPF_F_RECOMPUTE_CSUM) 1730 __skb_postpush_rcsum(skb, ptr, len, offset); 1731 if (flags & BPF_F_INVALIDATE_HASH) 1732 skb_clear_hash(skb); 1733 1734 return 0; 1735 } 1736 1737 static const struct bpf_func_proto bpf_skb_store_bytes_proto = { 1738 .func = bpf_skb_store_bytes, 1739 .gpl_only = false, 1740 .ret_type = RET_INTEGER, 1741 .arg1_type = ARG_PTR_TO_CTX, 1742 .arg2_type = ARG_ANYTHING, 1743 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY, 1744 .arg4_type = ARG_CONST_SIZE, 1745 .arg5_type = ARG_ANYTHING, 1746 }; 1747 1748 int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from, 1749 u32 len, u64 flags) 1750 { 1751 return ____bpf_skb_store_bytes(skb, offset, from, len, flags); 1752 } 1753 1754 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset, 1755 void *, to, u32, len) 1756 { 1757 void *ptr; 1758 1759 if (unlikely(offset > INT_MAX)) 1760 goto err_clear; 1761 1762 ptr = skb_header_pointer(skb, offset, len, to); 1763 if (unlikely(!ptr)) 1764 goto err_clear; 1765 if (ptr != to) 1766 memcpy(to, ptr, len); 1767 1768 return 0; 1769 err_clear: 1770 memset(to, 0, len); 1771 return -EFAULT; 1772 } 1773 1774 static const struct bpf_func_proto bpf_skb_load_bytes_proto = { 1775 .func = bpf_skb_load_bytes, 1776 .gpl_only = false, 1777 .ret_type = RET_INTEGER, 1778 .arg1_type = ARG_PTR_TO_CTX, 1779 .arg2_type = ARG_ANYTHING, 1780 .arg3_type = ARG_PTR_TO_UNINIT_MEM, 1781 .arg4_type = ARG_CONST_SIZE, 1782 }; 1783 1784 int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len) 1785 { 1786 return ____bpf_skb_load_bytes(skb, offset, to, len); 1787 } 1788 1789 BPF_CALL_4(bpf_flow_dissector_load_bytes, 1790 const struct bpf_flow_dissector *, ctx, u32, offset, 1791 void *, to, u32, len) 1792 { 1793 void *ptr; 1794 1795 if (unlikely(offset > 0xffff)) 1796 goto err_clear; 1797 1798 if (unlikely(!ctx->skb)) 1799 goto err_clear; 1800 1801 ptr = skb_header_pointer(ctx->skb, offset, len, to); 1802 if (unlikely(!ptr)) 1803 goto err_clear; 1804 if (ptr != to) 1805 memcpy(to, ptr, len); 1806 1807 return 0; 1808 err_clear: 1809 memset(to, 0, len); 1810 return -EFAULT; 1811 } 1812 1813 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = { 1814 .func = bpf_flow_dissector_load_bytes, 1815 .gpl_only = false, 1816 .ret_type = RET_INTEGER, 1817 .arg1_type = ARG_PTR_TO_CTX, 1818 .arg2_type = ARG_ANYTHING, 1819 .arg3_type = ARG_PTR_TO_UNINIT_MEM, 1820 .arg4_type = ARG_CONST_SIZE, 1821 }; 1822 1823 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb, 1824 u32, offset, void *, to, u32, len, u32, start_header) 1825 { 1826 u8 *end = skb_tail_pointer(skb); 1827 u8 *start, *ptr; 1828 1829 if (unlikely(offset > 0xffff)) 1830 goto err_clear; 1831 1832 switch (start_header) { 1833 case BPF_HDR_START_MAC: 1834 if (unlikely(!skb_mac_header_was_set(skb))) 1835 goto err_clear; 1836 start = skb_mac_header(skb); 1837 break; 1838 case BPF_HDR_START_NET: 1839 start = skb_network_header(skb); 1840 break; 1841 default: 1842 goto err_clear; 1843 } 1844 1845 ptr = start + offset; 1846 1847 if (likely(ptr + len <= end)) { 1848 memcpy(to, ptr, len); 1849 return 0; 1850 } 1851 1852 err_clear: 1853 memset(to, 0, len); 1854 return -EFAULT; 1855 } 1856 1857 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = { 1858 .func = bpf_skb_load_bytes_relative, 1859 .gpl_only = false, 1860 .ret_type = RET_INTEGER, 1861 .arg1_type = ARG_PTR_TO_CTX, 1862 .arg2_type = ARG_ANYTHING, 1863 .arg3_type = ARG_PTR_TO_UNINIT_MEM, 1864 .arg4_type = ARG_CONST_SIZE, 1865 .arg5_type = ARG_ANYTHING, 1866 }; 1867 1868 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len) 1869 { 1870 /* Idea is the following: should the needed direct read/write 1871 * test fail during runtime, we can pull in more data and redo 1872 * again, since implicitly, we invalidate previous checks here. 1873 * 1874 * Or, since we know how much we need to make read/writeable, 1875 * this can be done once at the program beginning for direct 1876 * access case. By this we overcome limitations of only current 1877 * headroom being accessible. 1878 */ 1879 return bpf_try_make_writable(skb, len ? : skb_headlen(skb)); 1880 } 1881 1882 static const struct bpf_func_proto bpf_skb_pull_data_proto = { 1883 .func = bpf_skb_pull_data, 1884 .gpl_only = false, 1885 .ret_type = RET_INTEGER, 1886 .arg1_type = ARG_PTR_TO_CTX, 1887 .arg2_type = ARG_ANYTHING, 1888 }; 1889 1890 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk) 1891 { 1892 return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL; 1893 } 1894 1895 static const struct bpf_func_proto bpf_sk_fullsock_proto = { 1896 .func = bpf_sk_fullsock, 1897 .gpl_only = false, 1898 .ret_type = RET_PTR_TO_SOCKET_OR_NULL, 1899 .arg1_type = ARG_PTR_TO_SOCK_COMMON, 1900 }; 1901 1902 static inline int sk_skb_try_make_writable(struct sk_buff *skb, 1903 unsigned int write_len) 1904 { 1905 return __bpf_try_make_writable(skb, write_len); 1906 } 1907 1908 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len) 1909 { 1910 /* Idea is the following: should the needed direct read/write 1911 * test fail during runtime, we can pull in more data and redo 1912 * again, since implicitly, we invalidate previous checks here. 1913 * 1914 * Or, since we know how much we need to make read/writeable, 1915 * this can be done once at the program beginning for direct 1916 * access case. By this we overcome limitations of only current 1917 * headroom being accessible. 1918 */ 1919 return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb)); 1920 } 1921 1922 static const struct bpf_func_proto sk_skb_pull_data_proto = { 1923 .func = sk_skb_pull_data, 1924 .gpl_only = false, 1925 .ret_type = RET_INTEGER, 1926 .arg1_type = ARG_PTR_TO_CTX, 1927 .arg2_type = ARG_ANYTHING, 1928 }; 1929 1930 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset, 1931 u64, from, u64, to, u64, flags) 1932 { 1933 __sum16 *ptr; 1934 1935 if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK))) 1936 return -EINVAL; 1937 if (unlikely(offset > 0xffff || offset & 1)) 1938 return -EFAULT; 1939 if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr)))) 1940 return -EFAULT; 1941 1942 ptr = (__sum16 *)(skb->data + offset); 1943 switch (flags & BPF_F_HDR_FIELD_MASK) { 1944 case 0: 1945 if (unlikely(from != 0)) 1946 return -EINVAL; 1947 1948 csum_replace_by_diff(ptr, to); 1949 break; 1950 case 2: 1951 csum_replace2(ptr, from, to); 1952 break; 1953 case 4: 1954 csum_replace4(ptr, from, to); 1955 break; 1956 default: 1957 return -EINVAL; 1958 } 1959 1960 return 0; 1961 } 1962 1963 static const struct bpf_func_proto bpf_l3_csum_replace_proto = { 1964 .func = bpf_l3_csum_replace, 1965 .gpl_only = false, 1966 .ret_type = RET_INTEGER, 1967 .arg1_type = ARG_PTR_TO_CTX, 1968 .arg2_type = ARG_ANYTHING, 1969 .arg3_type = ARG_ANYTHING, 1970 .arg4_type = ARG_ANYTHING, 1971 .arg5_type = ARG_ANYTHING, 1972 }; 1973 1974 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset, 1975 u64, from, u64, to, u64, flags) 1976 { 1977 bool is_pseudo = flags & BPF_F_PSEUDO_HDR; 1978 bool is_mmzero = flags & BPF_F_MARK_MANGLED_0; 1979 bool do_mforce = flags & BPF_F_MARK_ENFORCE; 1980 bool is_ipv6 = flags & BPF_F_IPV6; 1981 __sum16 *ptr; 1982 1983 if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE | 1984 BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK | BPF_F_IPV6))) 1985 return -EINVAL; 1986 if (unlikely(offset > 0xffff || offset & 1)) 1987 return -EFAULT; 1988 if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr)))) 1989 return -EFAULT; 1990 1991 ptr = (__sum16 *)(skb->data + offset); 1992 if (is_mmzero && !do_mforce && !*ptr) 1993 return 0; 1994 1995 switch (flags & BPF_F_HDR_FIELD_MASK) { 1996 case 0: 1997 if (unlikely(from != 0)) 1998 return -EINVAL; 1999 2000 inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo, is_ipv6); 2001 break; 2002 case 2: 2003 inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo); 2004 break; 2005 case 4: 2006 inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo); 2007 break; 2008 default: 2009 return -EINVAL; 2010 } 2011 2012 if (is_mmzero && !*ptr) 2013 *ptr = CSUM_MANGLED_0; 2014 return 0; 2015 } 2016 2017 static const struct bpf_func_proto bpf_l4_csum_replace_proto = { 2018 .func = bpf_l4_csum_replace, 2019 .gpl_only = false, 2020 .ret_type = RET_INTEGER, 2021 .arg1_type = ARG_PTR_TO_CTX, 2022 .arg2_type = ARG_ANYTHING, 2023 .arg3_type = ARG_ANYTHING, 2024 .arg4_type = ARG_ANYTHING, 2025 .arg5_type = ARG_ANYTHING, 2026 }; 2027 2028 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size, 2029 __be32 *, to, u32, to_size, __wsum, seed) 2030 { 2031 /* This is quite flexible, some examples: 2032 * 2033 * from_size == 0, to_size > 0, seed := csum --> pushing data 2034 * from_size > 0, to_size == 0, seed := csum --> pulling data 2035 * from_size > 0, to_size > 0, seed := 0 --> diffing data 2036 * 2037 * Even for diffing, from_size and to_size don't need to be equal. 2038 */ 2039 2040 __wsum ret = seed; 2041 2042 if (from_size && to_size) 2043 ret = csum_sub(csum_partial(to, to_size, ret), 2044 csum_partial(from, from_size, 0)); 2045 else if (to_size) 2046 ret = csum_partial(to, to_size, ret); 2047 2048 else if (from_size) 2049 ret = ~csum_partial(from, from_size, ~ret); 2050 2051 return csum_from32to16((__force unsigned int)ret); 2052 } 2053 2054 static const struct bpf_func_proto bpf_csum_diff_proto = { 2055 .func = bpf_csum_diff, 2056 .gpl_only = false, 2057 .pkt_access = true, 2058 .ret_type = RET_INTEGER, 2059 .arg1_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY, 2060 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 2061 .arg3_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY, 2062 .arg4_type = ARG_CONST_SIZE_OR_ZERO, 2063 .arg5_type = ARG_ANYTHING, 2064 }; 2065 2066 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum) 2067 { 2068 /* The interface is to be used in combination with bpf_csum_diff() 2069 * for direct packet writes. csum rotation for alignment as well 2070 * as emulating csum_sub() can be done from the eBPF program. 2071 */ 2072 if (skb->ip_summed == CHECKSUM_COMPLETE) 2073 return (skb->csum = csum_add(skb->csum, csum)); 2074 2075 return -ENOTSUPP; 2076 } 2077 2078 static const struct bpf_func_proto bpf_csum_update_proto = { 2079 .func = bpf_csum_update, 2080 .gpl_only = false, 2081 .ret_type = RET_INTEGER, 2082 .arg1_type = ARG_PTR_TO_CTX, 2083 .arg2_type = ARG_ANYTHING, 2084 }; 2085 2086 BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level) 2087 { 2088 /* The interface is to be used in combination with bpf_skb_adjust_room() 2089 * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET 2090 * is passed as flags, for example. 2091 */ 2092 switch (level) { 2093 case BPF_CSUM_LEVEL_INC: 2094 __skb_incr_checksum_unnecessary(skb); 2095 break; 2096 case BPF_CSUM_LEVEL_DEC: 2097 __skb_decr_checksum_unnecessary(skb); 2098 break; 2099 case BPF_CSUM_LEVEL_RESET: 2100 __skb_reset_checksum_unnecessary(skb); 2101 break; 2102 case BPF_CSUM_LEVEL_QUERY: 2103 return skb->ip_summed == CHECKSUM_UNNECESSARY ? 2104 skb->csum_level : -EACCES; 2105 default: 2106 return -EINVAL; 2107 } 2108 2109 return 0; 2110 } 2111 2112 static const struct bpf_func_proto bpf_csum_level_proto = { 2113 .func = bpf_csum_level, 2114 .gpl_only = false, 2115 .ret_type = RET_INTEGER, 2116 .arg1_type = ARG_PTR_TO_CTX, 2117 .arg2_type = ARG_ANYTHING, 2118 }; 2119 2120 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb) 2121 { 2122 return dev_forward_skb_nomtu(dev, skb); 2123 } 2124 2125 static inline int __bpf_rx_skb_no_mac(struct net_device *dev, 2126 struct sk_buff *skb) 2127 { 2128 int ret = ____dev_forward_skb(dev, skb, false); 2129 2130 if (likely(!ret)) { 2131 skb->dev = dev; 2132 ret = netif_rx(skb); 2133 } 2134 2135 return ret; 2136 } 2137 2138 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb) 2139 { 2140 int ret; 2141 2142 if (dev_xmit_recursion()) { 2143 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n"); 2144 kfree_skb(skb); 2145 return -ENETDOWN; 2146 } 2147 2148 skb->dev = dev; 2149 skb_set_redirected_noclear(skb, skb_at_tc_ingress(skb)); 2150 skb_clear_tstamp(skb); 2151 2152 dev_xmit_recursion_inc(); 2153 ret = dev_queue_xmit(skb); 2154 dev_xmit_recursion_dec(); 2155 2156 return ret; 2157 } 2158 2159 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev, 2160 u32 flags) 2161 { 2162 unsigned int mlen = skb_network_offset(skb); 2163 2164 if (unlikely(skb->len <= mlen)) { 2165 kfree_skb(skb); 2166 return -ERANGE; 2167 } 2168 2169 if (mlen) { 2170 __skb_pull(skb, mlen); 2171 2172 /* At ingress, the mac header has already been pulled once. 2173 * At egress, skb_pospull_rcsum has to be done in case that 2174 * the skb is originated from ingress (i.e. a forwarded skb) 2175 * to ensure that rcsum starts at net header. 2176 */ 2177 if (!skb_at_tc_ingress(skb)) 2178 skb_postpull_rcsum(skb, skb_mac_header(skb), mlen); 2179 } 2180 skb_pop_mac_header(skb); 2181 skb_reset_mac_len(skb); 2182 return flags & BPF_F_INGRESS ? 2183 __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb); 2184 } 2185 2186 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev, 2187 u32 flags) 2188 { 2189 /* Verify that a link layer header is carried */ 2190 if (unlikely(skb->mac_header >= skb->network_header || skb->len == 0)) { 2191 kfree_skb(skb); 2192 return -ERANGE; 2193 } 2194 2195 bpf_push_mac_rcsum(skb); 2196 return flags & BPF_F_INGRESS ? 2197 __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb); 2198 } 2199 2200 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev, 2201 u32 flags) 2202 { 2203 if (dev_is_mac_header_xmit(dev)) 2204 return __bpf_redirect_common(skb, dev, flags); 2205 else 2206 return __bpf_redirect_no_mac(skb, dev, flags); 2207 } 2208 2209 #if IS_ENABLED(CONFIG_IPV6) 2210 static int bpf_out_neigh_v6(struct net *net, struct sk_buff *skb, 2211 struct net_device *dev, struct bpf_nh_params *nh) 2212 { 2213 u32 hh_len = LL_RESERVED_SPACE(dev); 2214 const struct in6_addr *nexthop; 2215 struct dst_entry *dst = NULL; 2216 struct neighbour *neigh; 2217 2218 if (dev_xmit_recursion()) { 2219 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n"); 2220 goto out_drop; 2221 } 2222 2223 skb->dev = dev; 2224 skb_clear_tstamp(skb); 2225 2226 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) { 2227 skb = skb_expand_head(skb, hh_len); 2228 if (!skb) 2229 return -ENOMEM; 2230 } 2231 2232 rcu_read_lock(); 2233 if (!nh) { 2234 dst = skb_dst(skb); 2235 nexthop = rt6_nexthop(dst_rt6_info(dst), 2236 &ipv6_hdr(skb)->daddr); 2237 } else { 2238 nexthop = &nh->ipv6_nh; 2239 } 2240 neigh = ip_neigh_gw6(dev, nexthop); 2241 if (likely(!IS_ERR(neigh))) { 2242 int ret; 2243 2244 sock_confirm_neigh(skb, neigh); 2245 local_bh_disable(); 2246 dev_xmit_recursion_inc(); 2247 ret = neigh_output(neigh, skb, false); 2248 dev_xmit_recursion_dec(); 2249 local_bh_enable(); 2250 rcu_read_unlock(); 2251 return ret; 2252 } 2253 rcu_read_unlock(); 2254 if (dst) 2255 IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES); 2256 out_drop: 2257 kfree_skb(skb); 2258 return -ENETDOWN; 2259 } 2260 2261 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev, 2262 struct bpf_nh_params *nh) 2263 { 2264 const struct ipv6hdr *ip6h = ipv6_hdr(skb); 2265 struct net *net = dev_net(dev); 2266 int err, ret = NET_XMIT_DROP; 2267 2268 if (!nh) { 2269 struct dst_entry *dst; 2270 struct flowi6 fl6 = { 2271 .flowi6_flags = FLOWI_FLAG_ANYSRC, 2272 .flowi6_mark = skb->mark, 2273 .flowlabel = ip6_flowinfo(ip6h), 2274 .flowi6_oif = dev->ifindex, 2275 .flowi6_proto = ip6h->nexthdr, 2276 .daddr = ip6h->daddr, 2277 .saddr = ip6h->saddr, 2278 }; 2279 2280 dst = ipv6_stub->ipv6_dst_lookup_flow(net, NULL, &fl6, NULL); 2281 if (IS_ERR(dst)) 2282 goto out_drop; 2283 2284 skb_dst_drop(skb); 2285 skb_dst_set(skb, dst); 2286 } else if (nh->nh_family != AF_INET6) { 2287 goto out_drop; 2288 } 2289 2290 err = bpf_out_neigh_v6(net, skb, dev, nh); 2291 if (unlikely(net_xmit_eval(err))) 2292 dev_core_stats_tx_dropped_inc(dev); 2293 else 2294 ret = NET_XMIT_SUCCESS; 2295 goto out_xmit; 2296 out_drop: 2297 dev_core_stats_tx_dropped_inc(dev); 2298 kfree_skb(skb); 2299 out_xmit: 2300 return ret; 2301 } 2302 #else 2303 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev, 2304 struct bpf_nh_params *nh) 2305 { 2306 kfree_skb(skb); 2307 return NET_XMIT_DROP; 2308 } 2309 #endif /* CONFIG_IPV6 */ 2310 2311 #if IS_ENABLED(CONFIG_INET) 2312 static int bpf_out_neigh_v4(struct net *net, struct sk_buff *skb, 2313 struct net_device *dev, struct bpf_nh_params *nh) 2314 { 2315 u32 hh_len = LL_RESERVED_SPACE(dev); 2316 struct neighbour *neigh; 2317 bool is_v6gw = false; 2318 2319 if (dev_xmit_recursion()) { 2320 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n"); 2321 goto out_drop; 2322 } 2323 2324 skb->dev = dev; 2325 skb_clear_tstamp(skb); 2326 2327 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) { 2328 skb = skb_expand_head(skb, hh_len); 2329 if (!skb) 2330 return -ENOMEM; 2331 } 2332 2333 rcu_read_lock(); 2334 if (!nh) { 2335 struct rtable *rt = skb_rtable(skb); 2336 2337 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw); 2338 } else if (nh->nh_family == AF_INET6) { 2339 neigh = ip_neigh_gw6(dev, &nh->ipv6_nh); 2340 is_v6gw = true; 2341 } else if (nh->nh_family == AF_INET) { 2342 neigh = ip_neigh_gw4(dev, nh->ipv4_nh); 2343 } else { 2344 rcu_read_unlock(); 2345 goto out_drop; 2346 } 2347 2348 if (likely(!IS_ERR(neigh))) { 2349 int ret; 2350 2351 sock_confirm_neigh(skb, neigh); 2352 local_bh_disable(); 2353 dev_xmit_recursion_inc(); 2354 ret = neigh_output(neigh, skb, is_v6gw); 2355 dev_xmit_recursion_dec(); 2356 local_bh_enable(); 2357 rcu_read_unlock(); 2358 return ret; 2359 } 2360 rcu_read_unlock(); 2361 out_drop: 2362 kfree_skb(skb); 2363 return -ENETDOWN; 2364 } 2365 2366 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev, 2367 struct bpf_nh_params *nh) 2368 { 2369 const struct iphdr *ip4h = ip_hdr(skb); 2370 struct net *net = dev_net(dev); 2371 int err, ret = NET_XMIT_DROP; 2372 2373 if (!nh) { 2374 struct flowi4 fl4 = { 2375 .flowi4_flags = FLOWI_FLAG_ANYSRC, 2376 .flowi4_mark = skb->mark, 2377 .flowi4_dscp = ip4h_dscp(ip4h), 2378 .flowi4_oif = dev->ifindex, 2379 .flowi4_proto = ip4h->protocol, 2380 .daddr = ip4h->daddr, 2381 .saddr = ip4h->saddr, 2382 }; 2383 struct rtable *rt; 2384 2385 rt = ip_route_output_flow(net, &fl4, NULL); 2386 if (IS_ERR(rt)) 2387 goto out_drop; 2388 if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) { 2389 ip_rt_put(rt); 2390 goto out_drop; 2391 } 2392 2393 skb_dst_drop(skb); 2394 skb_dst_set(skb, &rt->dst); 2395 } 2396 2397 err = bpf_out_neigh_v4(net, skb, dev, nh); 2398 if (unlikely(net_xmit_eval(err))) 2399 dev_core_stats_tx_dropped_inc(dev); 2400 else 2401 ret = NET_XMIT_SUCCESS; 2402 goto out_xmit; 2403 out_drop: 2404 dev_core_stats_tx_dropped_inc(dev); 2405 kfree_skb(skb); 2406 out_xmit: 2407 return ret; 2408 } 2409 #else 2410 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev, 2411 struct bpf_nh_params *nh) 2412 { 2413 kfree_skb(skb); 2414 return NET_XMIT_DROP; 2415 } 2416 #endif /* CONFIG_INET */ 2417 2418 static int __bpf_redirect_neigh(struct sk_buff *skb, struct net_device *dev, 2419 struct bpf_nh_params *nh) 2420 { 2421 struct ethhdr *ethh = eth_hdr(skb); 2422 2423 if (unlikely(skb->mac_header >= skb->network_header)) 2424 goto out; 2425 bpf_push_mac_rcsum(skb); 2426 if (is_multicast_ether_addr(ethh->h_dest)) 2427 goto out; 2428 2429 skb_pull(skb, sizeof(*ethh)); 2430 skb_unset_mac_header(skb); 2431 skb_reset_network_header(skb); 2432 2433 if (skb->protocol == htons(ETH_P_IP)) 2434 return __bpf_redirect_neigh_v4(skb, dev, nh); 2435 else if (skb->protocol == htons(ETH_P_IPV6)) 2436 return __bpf_redirect_neigh_v6(skb, dev, nh); 2437 out: 2438 kfree_skb(skb); 2439 return -ENOTSUPP; 2440 } 2441 2442 /* Internal, non-exposed redirect flags. */ 2443 enum { 2444 BPF_F_NEIGH = (1ULL << 16), 2445 BPF_F_PEER = (1ULL << 17), 2446 BPF_F_NEXTHOP = (1ULL << 18), 2447 #define BPF_F_REDIRECT_INTERNAL (BPF_F_NEIGH | BPF_F_PEER | BPF_F_NEXTHOP) 2448 }; 2449 2450 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags) 2451 { 2452 struct net_device *dev; 2453 struct sk_buff *clone; 2454 int ret; 2455 2456 BUILD_BUG_ON(BPF_F_REDIRECT_INTERNAL & BPF_F_REDIRECT_FLAGS); 2457 2458 if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL))) 2459 return -EINVAL; 2460 2461 /* BPF test infra's convert___skb_to_skb() can create type-less 2462 * GSO packets. gso_features_check() will detect this as a bad 2463 * offload. However, lets not leak them out in the first place. 2464 */ 2465 if (unlikely(skb_is_gso(skb) && !skb_shinfo(skb)->gso_type)) 2466 return -EBADMSG; 2467 2468 dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex); 2469 if (unlikely(!dev)) 2470 return -EINVAL; 2471 2472 clone = skb_clone(skb, GFP_ATOMIC); 2473 if (unlikely(!clone)) 2474 return -ENOMEM; 2475 2476 /* For direct write, we need to keep the invariant that the skbs 2477 * we're dealing with need to be uncloned. Should uncloning fail 2478 * here, we need to free the just generated clone to unclone once 2479 * again. 2480 */ 2481 ret = bpf_try_make_head_writable(skb); 2482 if (unlikely(ret)) { 2483 kfree_skb(clone); 2484 return -ENOMEM; 2485 } 2486 2487 return __bpf_redirect(clone, dev, flags); 2488 } 2489 2490 static const struct bpf_func_proto bpf_clone_redirect_proto = { 2491 .func = bpf_clone_redirect, 2492 .gpl_only = false, 2493 .ret_type = RET_INTEGER, 2494 .arg1_type = ARG_PTR_TO_CTX, 2495 .arg2_type = ARG_ANYTHING, 2496 .arg3_type = ARG_ANYTHING, 2497 }; 2498 2499 static struct net_device *skb_get_peer_dev(struct net_device *dev) 2500 { 2501 const struct net_device_ops *ops = dev->netdev_ops; 2502 2503 if (likely(ops->ndo_get_peer_dev)) 2504 return INDIRECT_CALL_1(ops->ndo_get_peer_dev, 2505 netkit_peer_dev, dev); 2506 return NULL; 2507 } 2508 2509 int skb_do_redirect(struct sk_buff *skb) 2510 { 2511 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri(); 2512 struct net *net = dev_net(skb->dev); 2513 struct net_device *dev; 2514 u32 flags = ri->flags; 2515 2516 dev = dev_get_by_index_rcu(net, ri->tgt_index); 2517 ri->tgt_index = 0; 2518 ri->flags = 0; 2519 if (unlikely(!dev)) 2520 goto out_drop; 2521 if (flags & BPF_F_PEER) { 2522 if (unlikely(!skb_at_tc_ingress(skb))) 2523 goto out_drop; 2524 dev = skb_get_peer_dev(dev); 2525 if (unlikely(!dev || 2526 !(dev->flags & IFF_UP) || 2527 net_eq(net, dev_net(dev)))) 2528 goto out_drop; 2529 skb->dev = dev; 2530 dev_sw_netstats_rx_add(dev, skb->len); 2531 skb_scrub_packet(skb, false); 2532 return -EAGAIN; 2533 } 2534 return flags & BPF_F_NEIGH ? 2535 __bpf_redirect_neigh(skb, dev, flags & BPF_F_NEXTHOP ? 2536 &ri->nh : NULL) : 2537 __bpf_redirect(skb, dev, flags); 2538 out_drop: 2539 kfree_skb(skb); 2540 return -EINVAL; 2541 } 2542 2543 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags) 2544 { 2545 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri(); 2546 2547 if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL))) 2548 return TC_ACT_SHOT; 2549 2550 ri->flags = flags; 2551 ri->tgt_index = ifindex; 2552 2553 return TC_ACT_REDIRECT; 2554 } 2555 2556 static const struct bpf_func_proto bpf_redirect_proto = { 2557 .func = bpf_redirect, 2558 .gpl_only = false, 2559 .ret_type = RET_INTEGER, 2560 .arg1_type = ARG_ANYTHING, 2561 .arg2_type = ARG_ANYTHING, 2562 }; 2563 2564 BPF_CALL_2(bpf_redirect_peer, u32, ifindex, u64, flags) 2565 { 2566 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri(); 2567 2568 if (unlikely(flags)) 2569 return TC_ACT_SHOT; 2570 2571 ri->flags = BPF_F_PEER; 2572 ri->tgt_index = ifindex; 2573 2574 return TC_ACT_REDIRECT; 2575 } 2576 2577 static const struct bpf_func_proto bpf_redirect_peer_proto = { 2578 .func = bpf_redirect_peer, 2579 .gpl_only = false, 2580 .ret_type = RET_INTEGER, 2581 .arg1_type = ARG_ANYTHING, 2582 .arg2_type = ARG_ANYTHING, 2583 }; 2584 2585 BPF_CALL_4(bpf_redirect_neigh, u32, ifindex, struct bpf_redir_neigh *, params, 2586 int, plen, u64, flags) 2587 { 2588 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri(); 2589 2590 if (unlikely((plen && plen < sizeof(*params)) || flags)) 2591 return TC_ACT_SHOT; 2592 2593 ri->flags = BPF_F_NEIGH | (plen ? BPF_F_NEXTHOP : 0); 2594 ri->tgt_index = ifindex; 2595 2596 BUILD_BUG_ON(sizeof(struct bpf_redir_neigh) != sizeof(struct bpf_nh_params)); 2597 if (plen) 2598 memcpy(&ri->nh, params, sizeof(ri->nh)); 2599 2600 return TC_ACT_REDIRECT; 2601 } 2602 2603 static const struct bpf_func_proto bpf_redirect_neigh_proto = { 2604 .func = bpf_redirect_neigh, 2605 .gpl_only = false, 2606 .ret_type = RET_INTEGER, 2607 .arg1_type = ARG_ANYTHING, 2608 .arg2_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY, 2609 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 2610 .arg4_type = ARG_ANYTHING, 2611 }; 2612 2613 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes) 2614 { 2615 msg->apply_bytes = bytes; 2616 return 0; 2617 } 2618 2619 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = { 2620 .func = bpf_msg_apply_bytes, 2621 .gpl_only = false, 2622 .ret_type = RET_INTEGER, 2623 .arg1_type = ARG_PTR_TO_CTX, 2624 .arg2_type = ARG_ANYTHING, 2625 }; 2626 2627 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes) 2628 { 2629 msg->cork_bytes = bytes; 2630 return 0; 2631 } 2632 2633 static void sk_msg_reset_curr(struct sk_msg *msg) 2634 { 2635 if (!msg->sg.size) { 2636 msg->sg.curr = msg->sg.start; 2637 msg->sg.copybreak = 0; 2638 } else { 2639 u32 i = msg->sg.end; 2640 2641 sk_msg_iter_var_prev(i); 2642 msg->sg.curr = i; 2643 msg->sg.copybreak = msg->sg.data[i].length; 2644 } 2645 } 2646 2647 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = { 2648 .func = bpf_msg_cork_bytes, 2649 .gpl_only = false, 2650 .ret_type = RET_INTEGER, 2651 .arg1_type = ARG_PTR_TO_CTX, 2652 .arg2_type = ARG_ANYTHING, 2653 }; 2654 2655 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start, 2656 u32, end, u64, flags) 2657 { 2658 u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start; 2659 u32 first_sge, last_sge, i, shift, bytes_sg_total; 2660 struct scatterlist *sge; 2661 u8 *raw, *to, *from; 2662 struct page *page; 2663 2664 if (unlikely(flags || end <= start)) 2665 return -EINVAL; 2666 2667 /* First find the starting scatterlist element */ 2668 i = msg->sg.start; 2669 do { 2670 offset += len; 2671 len = sk_msg_elem(msg, i)->length; 2672 if (start < offset + len) 2673 break; 2674 sk_msg_iter_var_next(i); 2675 } while (i != msg->sg.end); 2676 2677 if (unlikely(start >= offset + len)) 2678 return -EINVAL; 2679 2680 first_sge = i; 2681 /* The start may point into the sg element so we need to also 2682 * account for the headroom. 2683 */ 2684 bytes_sg_total = start - offset + bytes; 2685 if (!test_bit(i, msg->sg.copy) && bytes_sg_total <= len) 2686 goto out; 2687 2688 /* At this point we need to linearize multiple scatterlist 2689 * elements or a single shared page. Either way we need to 2690 * copy into a linear buffer exclusively owned by BPF. Then 2691 * place the buffer in the scatterlist and fixup the original 2692 * entries by removing the entries now in the linear buffer 2693 * and shifting the remaining entries. For now we do not try 2694 * to copy partial entries to avoid complexity of running out 2695 * of sg_entry slots. The downside is reading a single byte 2696 * will copy the entire sg entry. 2697 */ 2698 do { 2699 copy += sk_msg_elem(msg, i)->length; 2700 sk_msg_iter_var_next(i); 2701 if (bytes_sg_total <= copy) 2702 break; 2703 } while (i != msg->sg.end); 2704 last_sge = i; 2705 2706 if (unlikely(bytes_sg_total > copy)) 2707 return -EINVAL; 2708 2709 page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP, 2710 get_order(copy)); 2711 if (unlikely(!page)) 2712 return -ENOMEM; 2713 2714 raw = page_address(page); 2715 i = first_sge; 2716 do { 2717 sge = sk_msg_elem(msg, i); 2718 from = sg_virt(sge); 2719 len = sge->length; 2720 to = raw + poffset; 2721 2722 memcpy(to, from, len); 2723 poffset += len; 2724 sge->length = 0; 2725 put_page(sg_page(sge)); 2726 2727 sk_msg_iter_var_next(i); 2728 } while (i != last_sge); 2729 2730 sg_set_page(&msg->sg.data[first_sge], page, copy, 0); 2731 2732 /* To repair sg ring we need to shift entries. If we only 2733 * had a single entry though we can just replace it and 2734 * be done. Otherwise walk the ring and shift the entries. 2735 */ 2736 WARN_ON_ONCE(last_sge == first_sge); 2737 shift = last_sge > first_sge ? 2738 last_sge - first_sge - 1 : 2739 NR_MSG_FRAG_IDS - first_sge + last_sge - 1; 2740 if (!shift) 2741 goto out; 2742 2743 i = first_sge; 2744 sk_msg_iter_var_next(i); 2745 do { 2746 u32 move_from; 2747 2748 if (i + shift >= NR_MSG_FRAG_IDS) 2749 move_from = i + shift - NR_MSG_FRAG_IDS; 2750 else 2751 move_from = i + shift; 2752 if (move_from == msg->sg.end) 2753 break; 2754 2755 msg->sg.data[i] = msg->sg.data[move_from]; 2756 msg->sg.data[move_from].length = 0; 2757 msg->sg.data[move_from].page_link = 0; 2758 msg->sg.data[move_from].offset = 0; 2759 sk_msg_iter_var_next(i); 2760 } while (1); 2761 2762 msg->sg.end = msg->sg.end - shift > msg->sg.end ? 2763 msg->sg.end - shift + NR_MSG_FRAG_IDS : 2764 msg->sg.end - shift; 2765 out: 2766 sk_msg_reset_curr(msg); 2767 msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset; 2768 msg->data_end = msg->data + bytes; 2769 return 0; 2770 } 2771 2772 static const struct bpf_func_proto bpf_msg_pull_data_proto = { 2773 .func = bpf_msg_pull_data, 2774 .gpl_only = false, 2775 .ret_type = RET_INTEGER, 2776 .arg1_type = ARG_PTR_TO_CTX, 2777 .arg2_type = ARG_ANYTHING, 2778 .arg3_type = ARG_ANYTHING, 2779 .arg4_type = ARG_ANYTHING, 2780 }; 2781 2782 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start, 2783 u32, len, u64, flags) 2784 { 2785 struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge; 2786 u32 new, i = 0, l = 0, space, copy = 0, offset = 0; 2787 u8 *raw, *to, *from; 2788 struct page *page; 2789 2790 if (unlikely(flags)) 2791 return -EINVAL; 2792 2793 if (unlikely(len == 0)) 2794 return 0; 2795 2796 /* First find the starting scatterlist element */ 2797 i = msg->sg.start; 2798 do { 2799 offset += l; 2800 l = sk_msg_elem(msg, i)->length; 2801 2802 if (start < offset + l) 2803 break; 2804 sk_msg_iter_var_next(i); 2805 } while (i != msg->sg.end); 2806 2807 if (start > offset + l) 2808 return -EINVAL; 2809 2810 space = MAX_MSG_FRAGS - sk_msg_elem_used(msg); 2811 2812 /* If no space available will fallback to copy, we need at 2813 * least one scatterlist elem available to push data into 2814 * when start aligns to the beginning of an element or two 2815 * when it falls inside an element. We handle the start equals 2816 * offset case because its the common case for inserting a 2817 * header. 2818 */ 2819 if (!space || (space == 1 && start != offset)) 2820 copy = msg->sg.data[i].length; 2821 2822 page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP, 2823 get_order(copy + len)); 2824 if (unlikely(!page)) 2825 return -ENOMEM; 2826 2827 if (copy) { 2828 int front, back; 2829 2830 raw = page_address(page); 2831 2832 if (i == msg->sg.end) 2833 sk_msg_iter_var_prev(i); 2834 psge = sk_msg_elem(msg, i); 2835 front = start - offset; 2836 back = psge->length - front; 2837 from = sg_virt(psge); 2838 2839 if (front) 2840 memcpy(raw, from, front); 2841 2842 if (back) { 2843 from += front; 2844 to = raw + front + len; 2845 2846 memcpy(to, from, back); 2847 } 2848 2849 put_page(sg_page(psge)); 2850 new = i; 2851 goto place_new; 2852 } 2853 2854 if (start - offset) { 2855 if (i == msg->sg.end) 2856 sk_msg_iter_var_prev(i); 2857 psge = sk_msg_elem(msg, i); 2858 rsge = sk_msg_elem_cpy(msg, i); 2859 2860 psge->length = start - offset; 2861 rsge.length -= psge->length; 2862 rsge.offset += start; 2863 2864 sk_msg_iter_var_next(i); 2865 sg_unmark_end(psge); 2866 sg_unmark_end(&rsge); 2867 } 2868 2869 /* Slot(s) to place newly allocated data */ 2870 sk_msg_iter_next(msg, end); 2871 new = i; 2872 sk_msg_iter_var_next(i); 2873 2874 if (i == msg->sg.end) { 2875 if (!rsge.length) 2876 goto place_new; 2877 sk_msg_iter_next(msg, end); 2878 goto place_new; 2879 } 2880 2881 /* Shift one or two slots as needed */ 2882 sge = sk_msg_elem_cpy(msg, new); 2883 sg_unmark_end(&sge); 2884 2885 nsge = sk_msg_elem_cpy(msg, i); 2886 if (rsge.length) { 2887 sk_msg_iter_var_next(i); 2888 nnsge = sk_msg_elem_cpy(msg, i); 2889 sk_msg_iter_next(msg, end); 2890 } 2891 2892 while (i != msg->sg.end) { 2893 msg->sg.data[i] = sge; 2894 sge = nsge; 2895 sk_msg_iter_var_next(i); 2896 if (rsge.length) { 2897 nsge = nnsge; 2898 nnsge = sk_msg_elem_cpy(msg, i); 2899 } else { 2900 nsge = sk_msg_elem_cpy(msg, i); 2901 } 2902 } 2903 2904 place_new: 2905 /* Place newly allocated data buffer */ 2906 sk_mem_charge(msg->sk, len); 2907 msg->sg.size += len; 2908 __clear_bit(new, msg->sg.copy); 2909 sg_set_page(&msg->sg.data[new], page, len + copy, 0); 2910 if (rsge.length) { 2911 get_page(sg_page(&rsge)); 2912 sk_msg_iter_var_next(new); 2913 msg->sg.data[new] = rsge; 2914 } 2915 2916 sk_msg_reset_curr(msg); 2917 sk_msg_compute_data_pointers(msg); 2918 return 0; 2919 } 2920 2921 static const struct bpf_func_proto bpf_msg_push_data_proto = { 2922 .func = bpf_msg_push_data, 2923 .gpl_only = false, 2924 .ret_type = RET_INTEGER, 2925 .arg1_type = ARG_PTR_TO_CTX, 2926 .arg2_type = ARG_ANYTHING, 2927 .arg3_type = ARG_ANYTHING, 2928 .arg4_type = ARG_ANYTHING, 2929 }; 2930 2931 static void sk_msg_shift_left(struct sk_msg *msg, int i) 2932 { 2933 struct scatterlist *sge = sk_msg_elem(msg, i); 2934 int prev; 2935 2936 put_page(sg_page(sge)); 2937 do { 2938 prev = i; 2939 sk_msg_iter_var_next(i); 2940 msg->sg.data[prev] = msg->sg.data[i]; 2941 } while (i != msg->sg.end); 2942 2943 sk_msg_iter_prev(msg, end); 2944 } 2945 2946 static void sk_msg_shift_right(struct sk_msg *msg, int i) 2947 { 2948 struct scatterlist tmp, sge; 2949 2950 sk_msg_iter_next(msg, end); 2951 sge = sk_msg_elem_cpy(msg, i); 2952 sk_msg_iter_var_next(i); 2953 tmp = sk_msg_elem_cpy(msg, i); 2954 2955 while (i != msg->sg.end) { 2956 msg->sg.data[i] = sge; 2957 sk_msg_iter_var_next(i); 2958 sge = tmp; 2959 tmp = sk_msg_elem_cpy(msg, i); 2960 } 2961 } 2962 2963 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start, 2964 u32, len, u64, flags) 2965 { 2966 u32 i = 0, l = 0, space, offset = 0; 2967 u64 last = start + len; 2968 int pop; 2969 2970 if (unlikely(flags)) 2971 return -EINVAL; 2972 2973 if (unlikely(len == 0)) 2974 return 0; 2975 2976 /* First find the starting scatterlist element */ 2977 i = msg->sg.start; 2978 do { 2979 offset += l; 2980 l = sk_msg_elem(msg, i)->length; 2981 2982 if (start < offset + l) 2983 break; 2984 sk_msg_iter_var_next(i); 2985 } while (i != msg->sg.end); 2986 2987 /* Bounds checks: start and pop must be inside message */ 2988 if (start >= offset + l || last > msg->sg.size) 2989 return -EINVAL; 2990 2991 space = MAX_MSG_FRAGS - sk_msg_elem_used(msg); 2992 2993 pop = len; 2994 /* --------------| offset 2995 * -| start |-------- len -------| 2996 * 2997 * |----- a ----|-------- pop -------|----- b ----| 2998 * |______________________________________________| length 2999 * 3000 * 3001 * a: region at front of scatter element to save 3002 * b: region at back of scatter element to save when length > A + pop 3003 * pop: region to pop from element, same as input 'pop' here will be 3004 * decremented below per iteration. 3005 * 3006 * Two top-level cases to handle when start != offset, first B is non 3007 * zero and second B is zero corresponding to when a pop includes more 3008 * than one element. 3009 * 3010 * Then if B is non-zero AND there is no space allocate space and 3011 * compact A, B regions into page. If there is space shift ring to 3012 * the right free'ing the next element in ring to place B, leaving 3013 * A untouched except to reduce length. 3014 */ 3015 if (start != offset) { 3016 struct scatterlist *nsge, *sge = sk_msg_elem(msg, i); 3017 int a = start - offset; 3018 int b = sge->length - pop - a; 3019 3020 sk_msg_iter_var_next(i); 3021 3022 if (b > 0) { 3023 if (space) { 3024 sge->length = a; 3025 sk_msg_shift_right(msg, i); 3026 nsge = sk_msg_elem(msg, i); 3027 get_page(sg_page(sge)); 3028 sg_set_page(nsge, 3029 sg_page(sge), 3030 b, sge->offset + pop + a); 3031 } else { 3032 struct page *page, *orig; 3033 u8 *to, *from; 3034 3035 page = alloc_pages(__GFP_NOWARN | 3036 __GFP_COMP | GFP_ATOMIC, 3037 get_order(a + b)); 3038 if (unlikely(!page)) 3039 return -ENOMEM; 3040 3041 orig = sg_page(sge); 3042 from = sg_virt(sge); 3043 to = page_address(page); 3044 memcpy(to, from, a); 3045 memcpy(to + a, from + a + pop, b); 3046 sg_set_page(sge, page, a + b, 0); 3047 put_page(orig); 3048 } 3049 pop = 0; 3050 } else { 3051 pop -= (sge->length - a); 3052 sge->length = a; 3053 } 3054 } 3055 3056 /* From above the current layout _must_ be as follows, 3057 * 3058 * -| offset 3059 * -| start 3060 * 3061 * |---- pop ---|---------------- b ------------| 3062 * |____________________________________________| length 3063 * 3064 * Offset and start of the current msg elem are equal because in the 3065 * previous case we handled offset != start and either consumed the 3066 * entire element and advanced to the next element OR pop == 0. 3067 * 3068 * Two cases to handle here are first pop is less than the length 3069 * leaving some remainder b above. Simply adjust the element's layout 3070 * in this case. Or pop >= length of the element so that b = 0. In this 3071 * case advance to next element decrementing pop. 3072 */ 3073 while (pop) { 3074 struct scatterlist *sge = sk_msg_elem(msg, i); 3075 3076 if (pop < sge->length) { 3077 sge->length -= pop; 3078 sge->offset += pop; 3079 pop = 0; 3080 } else { 3081 pop -= sge->length; 3082 sk_msg_shift_left(msg, i); 3083 } 3084 } 3085 3086 sk_mem_uncharge(msg->sk, len - pop); 3087 msg->sg.size -= (len - pop); 3088 sk_msg_reset_curr(msg); 3089 sk_msg_compute_data_pointers(msg); 3090 return 0; 3091 } 3092 3093 static const struct bpf_func_proto bpf_msg_pop_data_proto = { 3094 .func = bpf_msg_pop_data, 3095 .gpl_only = false, 3096 .ret_type = RET_INTEGER, 3097 .arg1_type = ARG_PTR_TO_CTX, 3098 .arg2_type = ARG_ANYTHING, 3099 .arg3_type = ARG_ANYTHING, 3100 .arg4_type = ARG_ANYTHING, 3101 }; 3102 3103 #ifdef CONFIG_CGROUP_NET_CLASSID 3104 BPF_CALL_0(bpf_get_cgroup_classid_curr) 3105 { 3106 return __task_get_classid(current); 3107 } 3108 3109 const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = { 3110 .func = bpf_get_cgroup_classid_curr, 3111 .gpl_only = false, 3112 .ret_type = RET_INTEGER, 3113 }; 3114 3115 BPF_CALL_1(bpf_skb_cgroup_classid, const struct sk_buff *, skb) 3116 { 3117 struct sock *sk = skb_to_full_sk(skb); 3118 3119 if (!sk || !sk_fullsock(sk)) 3120 return 0; 3121 3122 return sock_cgroup_classid(&sk->sk_cgrp_data); 3123 } 3124 3125 static const struct bpf_func_proto bpf_skb_cgroup_classid_proto = { 3126 .func = bpf_skb_cgroup_classid, 3127 .gpl_only = false, 3128 .ret_type = RET_INTEGER, 3129 .arg1_type = ARG_PTR_TO_CTX, 3130 }; 3131 #endif 3132 3133 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb) 3134 { 3135 return task_get_classid(skb); 3136 } 3137 3138 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = { 3139 .func = bpf_get_cgroup_classid, 3140 .gpl_only = false, 3141 .ret_type = RET_INTEGER, 3142 .arg1_type = ARG_PTR_TO_CTX, 3143 }; 3144 3145 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb) 3146 { 3147 return dst_tclassid(skb); 3148 } 3149 3150 static const struct bpf_func_proto bpf_get_route_realm_proto = { 3151 .func = bpf_get_route_realm, 3152 .gpl_only = false, 3153 .ret_type = RET_INTEGER, 3154 .arg1_type = ARG_PTR_TO_CTX, 3155 }; 3156 3157 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb) 3158 { 3159 /* If skb_clear_hash() was called due to mangling, we can 3160 * trigger SW recalculation here. Later access to hash 3161 * can then use the inline skb->hash via context directly 3162 * instead of calling this helper again. 3163 */ 3164 return skb_get_hash(skb); 3165 } 3166 3167 static const struct bpf_func_proto bpf_get_hash_recalc_proto = { 3168 .func = bpf_get_hash_recalc, 3169 .gpl_only = false, 3170 .ret_type = RET_INTEGER, 3171 .arg1_type = ARG_PTR_TO_CTX, 3172 }; 3173 3174 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb) 3175 { 3176 /* After all direct packet write, this can be used once for 3177 * triggering a lazy recalc on next skb_get_hash() invocation. 3178 */ 3179 skb_clear_hash(skb); 3180 return 0; 3181 } 3182 3183 static const struct bpf_func_proto bpf_set_hash_invalid_proto = { 3184 .func = bpf_set_hash_invalid, 3185 .gpl_only = false, 3186 .ret_type = RET_INTEGER, 3187 .arg1_type = ARG_PTR_TO_CTX, 3188 }; 3189 3190 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash) 3191 { 3192 /* Set user specified hash as L4(+), so that it gets returned 3193 * on skb_get_hash() call unless BPF prog later on triggers a 3194 * skb_clear_hash(). 3195 */ 3196 __skb_set_sw_hash(skb, hash, true); 3197 return 0; 3198 } 3199 3200 static const struct bpf_func_proto bpf_set_hash_proto = { 3201 .func = bpf_set_hash, 3202 .gpl_only = false, 3203 .ret_type = RET_INTEGER, 3204 .arg1_type = ARG_PTR_TO_CTX, 3205 .arg2_type = ARG_ANYTHING, 3206 }; 3207 3208 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto, 3209 u16, vlan_tci) 3210 { 3211 int ret; 3212 3213 if (unlikely(vlan_proto != htons(ETH_P_8021Q) && 3214 vlan_proto != htons(ETH_P_8021AD))) 3215 vlan_proto = htons(ETH_P_8021Q); 3216 3217 bpf_push_mac_rcsum(skb); 3218 ret = skb_vlan_push(skb, vlan_proto, vlan_tci); 3219 bpf_pull_mac_rcsum(skb); 3220 skb_reset_mac_len(skb); 3221 3222 bpf_compute_data_pointers(skb); 3223 return ret; 3224 } 3225 3226 static const struct bpf_func_proto bpf_skb_vlan_push_proto = { 3227 .func = bpf_skb_vlan_push, 3228 .gpl_only = false, 3229 .ret_type = RET_INTEGER, 3230 .arg1_type = ARG_PTR_TO_CTX, 3231 .arg2_type = ARG_ANYTHING, 3232 .arg3_type = ARG_ANYTHING, 3233 }; 3234 3235 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb) 3236 { 3237 int ret; 3238 3239 bpf_push_mac_rcsum(skb); 3240 ret = skb_vlan_pop(skb); 3241 bpf_pull_mac_rcsum(skb); 3242 3243 bpf_compute_data_pointers(skb); 3244 return ret; 3245 } 3246 3247 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = { 3248 .func = bpf_skb_vlan_pop, 3249 .gpl_only = false, 3250 .ret_type = RET_INTEGER, 3251 .arg1_type = ARG_PTR_TO_CTX, 3252 }; 3253 3254 static void bpf_skb_change_protocol(struct sk_buff *skb, u16 proto) 3255 { 3256 skb->protocol = htons(proto); 3257 if (skb_valid_dst(skb)) 3258 skb_dst_drop(skb); 3259 } 3260 3261 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len) 3262 { 3263 /* Caller already did skb_cow() with meta_len+len as headroom, 3264 * so no need to do it here. 3265 */ 3266 skb_push(skb, len); 3267 skb_postpush_data_move(skb, len, off); 3268 memset(skb->data + off, 0, len); 3269 3270 /* No skb_postpush_rcsum(skb, skb->data + off, len) 3271 * needed here as it does not change the skb->csum 3272 * result for checksum complete when summing over 3273 * zeroed blocks. 3274 */ 3275 return 0; 3276 } 3277 3278 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len) 3279 { 3280 void *old_data; 3281 3282 /* skb_ensure_writable() is not needed here, as we're 3283 * already working on an uncloned skb. 3284 */ 3285 if (unlikely(!pskb_may_pull(skb, off + len))) 3286 return -ENOMEM; 3287 3288 old_data = skb->data; 3289 __skb_pull(skb, len); 3290 skb_postpull_rcsum(skb, old_data + off, len); 3291 skb_postpull_data_move(skb, len, off); 3292 3293 return 0; 3294 } 3295 3296 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len) 3297 { 3298 bool trans_same = skb->transport_header == skb->network_header; 3299 int ret; 3300 3301 /* There's no need for __skb_push()/__skb_pull() pair to 3302 * get to the start of the mac header as we're guaranteed 3303 * to always start from here under eBPF. 3304 */ 3305 ret = bpf_skb_generic_push(skb, off, len); 3306 if (likely(!ret)) { 3307 skb->mac_header -= len; 3308 skb->network_header -= len; 3309 if (trans_same) 3310 skb->transport_header = skb->network_header; 3311 } 3312 3313 return ret; 3314 } 3315 3316 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len) 3317 { 3318 bool trans_same = skb->transport_header == skb->network_header; 3319 int ret; 3320 3321 /* Same here, __skb_push()/__skb_pull() pair not needed. */ 3322 ret = bpf_skb_generic_pop(skb, off, len); 3323 if (likely(!ret)) { 3324 skb->mac_header += len; 3325 skb->network_header += len; 3326 if (trans_same) 3327 skb->transport_header = skb->network_header; 3328 } 3329 3330 return ret; 3331 } 3332 3333 static int bpf_skb_proto_4_to_6(struct sk_buff *skb) 3334 { 3335 const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr); 3336 const u8 meta_len = skb_metadata_len(skb); 3337 u32 off = skb_mac_header_len(skb); 3338 int ret; 3339 3340 ret = skb_cow(skb, meta_len + len_diff); 3341 if (unlikely(ret < 0)) 3342 return ret; 3343 3344 ret = bpf_skb_net_hdr_push(skb, off, len_diff); 3345 if (unlikely(ret < 0)) 3346 return ret; 3347 3348 if (skb_is_gso(skb)) { 3349 struct skb_shared_info *shinfo = skb_shinfo(skb); 3350 3351 /* SKB_GSO_TCPV4 needs to be changed into SKB_GSO_TCPV6. */ 3352 if (shinfo->gso_type & SKB_GSO_TCPV4) { 3353 shinfo->gso_type &= ~SKB_GSO_TCPV4; 3354 shinfo->gso_type |= SKB_GSO_TCPV6; 3355 } 3356 shinfo->gso_type |= SKB_GSO_DODGY; 3357 } 3358 3359 bpf_skb_change_protocol(skb, ETH_P_IPV6); 3360 skb_clear_hash(skb); 3361 3362 return 0; 3363 } 3364 3365 static int bpf_skb_proto_6_to_4(struct sk_buff *skb) 3366 { 3367 const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr); 3368 u32 off = skb_mac_header_len(skb); 3369 int ret; 3370 3371 ret = skb_unclone(skb, GFP_ATOMIC); 3372 if (unlikely(ret < 0)) 3373 return ret; 3374 3375 ret = bpf_skb_net_hdr_pop(skb, off, len_diff); 3376 if (unlikely(ret < 0)) 3377 return ret; 3378 3379 if (skb_is_gso(skb)) { 3380 struct skb_shared_info *shinfo = skb_shinfo(skb); 3381 3382 /* SKB_GSO_TCPV6 needs to be changed into SKB_GSO_TCPV4. */ 3383 if (shinfo->gso_type & SKB_GSO_TCPV6) { 3384 shinfo->gso_type &= ~SKB_GSO_TCPV6; 3385 shinfo->gso_type |= SKB_GSO_TCPV4; 3386 } 3387 shinfo->gso_type |= SKB_GSO_DODGY; 3388 } 3389 3390 bpf_skb_change_protocol(skb, ETH_P_IP); 3391 skb_clear_hash(skb); 3392 3393 return 0; 3394 } 3395 3396 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto) 3397 { 3398 __be16 from_proto = skb->protocol; 3399 3400 if (from_proto == htons(ETH_P_IP) && 3401 to_proto == htons(ETH_P_IPV6)) 3402 return bpf_skb_proto_4_to_6(skb); 3403 3404 if (from_proto == htons(ETH_P_IPV6) && 3405 to_proto == htons(ETH_P_IP)) 3406 return bpf_skb_proto_6_to_4(skb); 3407 3408 return -ENOTSUPP; 3409 } 3410 3411 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto, 3412 u64, flags) 3413 { 3414 int ret; 3415 3416 if (unlikely(flags)) 3417 return -EINVAL; 3418 3419 /* General idea is that this helper does the basic groundwork 3420 * needed for changing the protocol, and eBPF program fills the 3421 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace() 3422 * and other helpers, rather than passing a raw buffer here. 3423 * 3424 * The rationale is to keep this minimal and without a need to 3425 * deal with raw packet data. F.e. even if we would pass buffers 3426 * here, the program still needs to call the bpf_lX_csum_replace() 3427 * helpers anyway. Plus, this way we keep also separation of 3428 * concerns, since f.e. bpf_skb_store_bytes() should only take 3429 * care of stores. 3430 * 3431 * Currently, additional options and extension header space are 3432 * not supported, but flags register is reserved so we can adapt 3433 * that. For offloads, we mark packet as dodgy, so that headers 3434 * need to be verified first. 3435 */ 3436 ret = bpf_skb_proto_xlat(skb, proto); 3437 bpf_compute_data_pointers(skb); 3438 return ret; 3439 } 3440 3441 static const struct bpf_func_proto bpf_skb_change_proto_proto = { 3442 .func = bpf_skb_change_proto, 3443 .gpl_only = false, 3444 .ret_type = RET_INTEGER, 3445 .arg1_type = ARG_PTR_TO_CTX, 3446 .arg2_type = ARG_ANYTHING, 3447 .arg3_type = ARG_ANYTHING, 3448 }; 3449 3450 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type) 3451 { 3452 /* We only allow a restricted subset to be changed for now. */ 3453 if (unlikely(!skb_pkt_type_ok(skb->pkt_type) || 3454 !skb_pkt_type_ok(pkt_type))) 3455 return -EINVAL; 3456 3457 skb->pkt_type = pkt_type; 3458 return 0; 3459 } 3460 3461 static const struct bpf_func_proto bpf_skb_change_type_proto = { 3462 .func = bpf_skb_change_type, 3463 .gpl_only = false, 3464 .ret_type = RET_INTEGER, 3465 .arg1_type = ARG_PTR_TO_CTX, 3466 .arg2_type = ARG_ANYTHING, 3467 }; 3468 3469 static u32 bpf_skb_net_base_len(const struct sk_buff *skb) 3470 { 3471 switch (skb->protocol) { 3472 case htons(ETH_P_IP): 3473 return sizeof(struct iphdr); 3474 case htons(ETH_P_IPV6): 3475 return sizeof(struct ipv6hdr); 3476 default: 3477 return ~0U; 3478 } 3479 } 3480 3481 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK (BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \ 3482 BPF_F_ADJ_ROOM_ENCAP_L3_IPV6) 3483 3484 #define BPF_F_ADJ_ROOM_DECAP_L3_MASK (BPF_F_ADJ_ROOM_DECAP_L3_IPV4 | \ 3485 BPF_F_ADJ_ROOM_DECAP_L3_IPV6) 3486 3487 #define BPF_F_ADJ_ROOM_MASK (BPF_F_ADJ_ROOM_FIXED_GSO | \ 3488 BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \ 3489 BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \ 3490 BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \ 3491 BPF_F_ADJ_ROOM_ENCAP_L2_ETH | \ 3492 BPF_F_ADJ_ROOM_ENCAP_L2( \ 3493 BPF_ADJ_ROOM_ENCAP_L2_MASK) | \ 3494 BPF_F_ADJ_ROOM_DECAP_L3_MASK) 3495 3496 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff, 3497 u64 flags) 3498 { 3499 u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT; 3500 bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK; 3501 u16 mac_len = 0, inner_net = 0, inner_trans = 0; 3502 const u8 meta_len = skb_metadata_len(skb); 3503 unsigned int gso_type = SKB_GSO_DODGY; 3504 int ret; 3505 3506 if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) { 3507 /* udp gso_size delineates datagrams, only allow if fixed */ 3508 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) || 3509 !(flags & BPF_F_ADJ_ROOM_FIXED_GSO)) 3510 return -ENOTSUPP; 3511 } 3512 3513 ret = skb_cow_head(skb, meta_len + len_diff); 3514 if (unlikely(ret < 0)) 3515 return ret; 3516 3517 if (encap) { 3518 if (skb->protocol != htons(ETH_P_IP) && 3519 skb->protocol != htons(ETH_P_IPV6)) 3520 return -ENOTSUPP; 3521 3522 if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 && 3523 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6) 3524 return -EINVAL; 3525 3526 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE && 3527 flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) 3528 return -EINVAL; 3529 3530 if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH && 3531 inner_mac_len < ETH_HLEN) 3532 return -EINVAL; 3533 3534 if (skb->encapsulation) 3535 return -EALREADY; 3536 3537 mac_len = skb->network_header - skb->mac_header; 3538 inner_net = skb->network_header; 3539 if (inner_mac_len > len_diff) 3540 return -EINVAL; 3541 inner_trans = skb->transport_header; 3542 } 3543 3544 ret = bpf_skb_net_hdr_push(skb, off, len_diff); 3545 if (unlikely(ret < 0)) 3546 return ret; 3547 3548 if (encap) { 3549 skb->inner_mac_header = inner_net - inner_mac_len; 3550 skb->inner_network_header = inner_net; 3551 skb->inner_transport_header = inner_trans; 3552 3553 if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH) 3554 skb_set_inner_protocol(skb, htons(ETH_P_TEB)); 3555 else 3556 skb_set_inner_protocol(skb, skb->protocol); 3557 3558 skb->encapsulation = 1; 3559 skb_set_network_header(skb, mac_len); 3560 3561 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) 3562 gso_type |= SKB_GSO_UDP_TUNNEL; 3563 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE) 3564 gso_type |= SKB_GSO_GRE; 3565 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6) 3566 gso_type |= SKB_GSO_IPXIP6; 3567 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4) 3568 gso_type |= SKB_GSO_IPXIP4; 3569 3570 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE || 3571 flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) { 3572 int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ? 3573 sizeof(struct ipv6hdr) : 3574 sizeof(struct iphdr); 3575 3576 skb_set_transport_header(skb, mac_len + nh_len); 3577 } 3578 3579 /* Match skb->protocol to new outer l3 protocol */ 3580 if (skb->protocol == htons(ETH_P_IP) && 3581 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6) 3582 bpf_skb_change_protocol(skb, ETH_P_IPV6); 3583 else if (skb->protocol == htons(ETH_P_IPV6) && 3584 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4) 3585 bpf_skb_change_protocol(skb, ETH_P_IP); 3586 } 3587 3588 if (skb_is_gso(skb)) { 3589 struct skb_shared_info *shinfo = skb_shinfo(skb); 3590 3591 /* Header must be checked, and gso_segs recomputed. */ 3592 shinfo->gso_type |= gso_type; 3593 shinfo->gso_segs = 0; 3594 3595 /* Due to header growth, MSS needs to be downgraded. 3596 * There is a BUG_ON() when segmenting the frag_list with 3597 * head_frag true, so linearize the skb after downgrading 3598 * the MSS. 3599 */ 3600 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO)) { 3601 skb_decrease_gso_size(shinfo, len_diff); 3602 if (shinfo->frag_list) 3603 return skb_linearize(skb); 3604 } 3605 } 3606 3607 return 0; 3608 } 3609 3610 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff, 3611 u64 flags) 3612 { 3613 int ret; 3614 3615 if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO | 3616 BPF_F_ADJ_ROOM_DECAP_L3_MASK | 3617 BPF_F_ADJ_ROOM_NO_CSUM_RESET))) 3618 return -EINVAL; 3619 3620 if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) { 3621 /* udp gso_size delineates datagrams, only allow if fixed */ 3622 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) || 3623 !(flags & BPF_F_ADJ_ROOM_FIXED_GSO)) 3624 return -ENOTSUPP; 3625 } 3626 3627 ret = skb_unclone(skb, GFP_ATOMIC); 3628 if (unlikely(ret < 0)) 3629 return ret; 3630 3631 ret = bpf_skb_net_hdr_pop(skb, off, len_diff); 3632 if (unlikely(ret < 0)) 3633 return ret; 3634 3635 /* Match skb->protocol to new outer l3 protocol */ 3636 if (skb->protocol == htons(ETH_P_IP) && 3637 flags & BPF_F_ADJ_ROOM_DECAP_L3_IPV6) 3638 bpf_skb_change_protocol(skb, ETH_P_IPV6); 3639 else if (skb->protocol == htons(ETH_P_IPV6) && 3640 flags & BPF_F_ADJ_ROOM_DECAP_L3_IPV4) 3641 bpf_skb_change_protocol(skb, ETH_P_IP); 3642 3643 if (skb_is_gso(skb)) { 3644 struct skb_shared_info *shinfo = skb_shinfo(skb); 3645 3646 /* Due to header shrink, MSS can be upgraded. */ 3647 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO)) 3648 skb_increase_gso_size(shinfo, len_diff); 3649 3650 /* Header must be checked, and gso_segs recomputed. */ 3651 shinfo->gso_type |= SKB_GSO_DODGY; 3652 shinfo->gso_segs = 0; 3653 } 3654 3655 return 0; 3656 } 3657 3658 #define BPF_SKB_MAX_LEN SKB_MAX_ALLOC 3659 3660 BPF_CALL_4(sk_skb_adjust_room, struct sk_buff *, skb, s32, len_diff, 3661 u32, mode, u64, flags) 3662 { 3663 u32 len_diff_abs = abs(len_diff); 3664 bool shrink = len_diff < 0; 3665 int ret = 0; 3666 3667 if (unlikely(flags || mode)) 3668 return -EINVAL; 3669 if (unlikely(len_diff_abs > 0xfffU)) 3670 return -EFAULT; 3671 3672 if (!shrink) { 3673 ret = skb_cow(skb, len_diff); 3674 if (unlikely(ret < 0)) 3675 return ret; 3676 __skb_push(skb, len_diff_abs); 3677 memset(skb->data, 0, len_diff_abs); 3678 } else { 3679 if (unlikely(!pskb_may_pull(skb, len_diff_abs))) 3680 return -ENOMEM; 3681 __skb_pull(skb, len_diff_abs); 3682 } 3683 if (tls_sw_has_ctx_rx(skb->sk)) { 3684 struct strp_msg *rxm = strp_msg(skb); 3685 3686 rxm->full_len += len_diff; 3687 } 3688 return ret; 3689 } 3690 3691 static const struct bpf_func_proto sk_skb_adjust_room_proto = { 3692 .func = sk_skb_adjust_room, 3693 .gpl_only = false, 3694 .ret_type = RET_INTEGER, 3695 .arg1_type = ARG_PTR_TO_CTX, 3696 .arg2_type = ARG_ANYTHING, 3697 .arg3_type = ARG_ANYTHING, 3698 .arg4_type = ARG_ANYTHING, 3699 }; 3700 3701 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff, 3702 u32, mode, u64, flags) 3703 { 3704 u32 len_cur, len_diff_abs = abs(len_diff); 3705 u32 len_min = bpf_skb_net_base_len(skb); 3706 u32 len_max = BPF_SKB_MAX_LEN; 3707 __be16 proto = skb->protocol; 3708 bool shrink = len_diff < 0; 3709 u32 off; 3710 int ret; 3711 3712 if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK | 3713 BPF_F_ADJ_ROOM_NO_CSUM_RESET))) 3714 return -EINVAL; 3715 if (unlikely(len_diff_abs > 0xfffU)) 3716 return -EFAULT; 3717 if (unlikely(proto != htons(ETH_P_IP) && 3718 proto != htons(ETH_P_IPV6))) 3719 return -ENOTSUPP; 3720 3721 off = skb_mac_header_len(skb); 3722 switch (mode) { 3723 case BPF_ADJ_ROOM_NET: 3724 off += bpf_skb_net_base_len(skb); 3725 break; 3726 case BPF_ADJ_ROOM_MAC: 3727 break; 3728 default: 3729 return -ENOTSUPP; 3730 } 3731 3732 if (flags & BPF_F_ADJ_ROOM_DECAP_L3_MASK) { 3733 if (!shrink) 3734 return -EINVAL; 3735 3736 switch (flags & BPF_F_ADJ_ROOM_DECAP_L3_MASK) { 3737 case BPF_F_ADJ_ROOM_DECAP_L3_IPV4: 3738 len_min = sizeof(struct iphdr); 3739 break; 3740 case BPF_F_ADJ_ROOM_DECAP_L3_IPV6: 3741 len_min = sizeof(struct ipv6hdr); 3742 break; 3743 default: 3744 return -EINVAL; 3745 } 3746 } 3747 3748 len_cur = skb->len - skb_network_offset(skb); 3749 if ((shrink && (len_diff_abs >= len_cur || 3750 len_cur - len_diff_abs < len_min)) || 3751 (!shrink && (skb->len + len_diff_abs > len_max && 3752 !skb_is_gso(skb)))) 3753 return -ENOTSUPP; 3754 3755 ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) : 3756 bpf_skb_net_grow(skb, off, len_diff_abs, flags); 3757 if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET)) 3758 __skb_reset_checksum_unnecessary(skb); 3759 3760 bpf_compute_data_pointers(skb); 3761 return ret; 3762 } 3763 3764 static const struct bpf_func_proto bpf_skb_adjust_room_proto = { 3765 .func = bpf_skb_adjust_room, 3766 .gpl_only = false, 3767 .ret_type = RET_INTEGER, 3768 .arg1_type = ARG_PTR_TO_CTX, 3769 .arg2_type = ARG_ANYTHING, 3770 .arg3_type = ARG_ANYTHING, 3771 .arg4_type = ARG_ANYTHING, 3772 }; 3773 3774 static u32 __bpf_skb_min_len(const struct sk_buff *skb) 3775 { 3776 int offset = skb_network_offset(skb); 3777 u32 min_len = 0; 3778 3779 if (offset > 0) 3780 min_len = offset; 3781 if (skb_transport_header_was_set(skb)) { 3782 offset = skb_transport_offset(skb); 3783 if (offset > 0) 3784 min_len = offset; 3785 } 3786 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3787 offset = skb_checksum_start_offset(skb) + 3788 skb->csum_offset + sizeof(__sum16); 3789 if (offset > 0) 3790 min_len = offset; 3791 } 3792 return min_len; 3793 } 3794 3795 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len) 3796 { 3797 unsigned int old_len = skb->len; 3798 int ret; 3799 3800 ret = __skb_grow_rcsum(skb, new_len); 3801 if (!ret) 3802 memset(skb->data + old_len, 0, new_len - old_len); 3803 return ret; 3804 } 3805 3806 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len) 3807 { 3808 return __skb_trim_rcsum(skb, new_len); 3809 } 3810 3811 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len, 3812 u64 flags) 3813 { 3814 u32 max_len = BPF_SKB_MAX_LEN; 3815 u32 min_len = __bpf_skb_min_len(skb); 3816 int ret; 3817 3818 if (unlikely(flags || new_len > max_len || new_len < min_len)) 3819 return -EINVAL; 3820 if (skb->encapsulation) 3821 return -ENOTSUPP; 3822 3823 /* The basic idea of this helper is that it's performing the 3824 * needed work to either grow or trim an skb, and eBPF program 3825 * rewrites the rest via helpers like bpf_skb_store_bytes(), 3826 * bpf_lX_csum_replace() and others rather than passing a raw 3827 * buffer here. This one is a slow path helper and intended 3828 * for replies with control messages. 3829 * 3830 * Like in bpf_skb_change_proto(), we want to keep this rather 3831 * minimal and without protocol specifics so that we are able 3832 * to separate concerns as in bpf_skb_store_bytes() should only 3833 * be the one responsible for writing buffers. 3834 * 3835 * It's really expected to be a slow path operation here for 3836 * control message replies, so we're implicitly linearizing, 3837 * uncloning and drop offloads from the skb by this. 3838 */ 3839 ret = __bpf_try_make_writable(skb, skb->len); 3840 if (!ret) { 3841 if (new_len > skb->len) 3842 ret = bpf_skb_grow_rcsum(skb, new_len); 3843 else if (new_len < skb->len) 3844 ret = bpf_skb_trim_rcsum(skb, new_len); 3845 if (!ret && skb_is_gso(skb)) 3846 skb_gso_reset(skb); 3847 } 3848 return ret; 3849 } 3850 3851 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len, 3852 u64, flags) 3853 { 3854 int ret = __bpf_skb_change_tail(skb, new_len, flags); 3855 3856 bpf_compute_data_pointers(skb); 3857 return ret; 3858 } 3859 3860 static const struct bpf_func_proto bpf_skb_change_tail_proto = { 3861 .func = bpf_skb_change_tail, 3862 .gpl_only = false, 3863 .ret_type = RET_INTEGER, 3864 .arg1_type = ARG_PTR_TO_CTX, 3865 .arg2_type = ARG_ANYTHING, 3866 .arg3_type = ARG_ANYTHING, 3867 }; 3868 3869 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len, 3870 u64, flags) 3871 { 3872 return __bpf_skb_change_tail(skb, new_len, flags); 3873 } 3874 3875 static const struct bpf_func_proto sk_skb_change_tail_proto = { 3876 .func = sk_skb_change_tail, 3877 .gpl_only = false, 3878 .ret_type = RET_INTEGER, 3879 .arg1_type = ARG_PTR_TO_CTX, 3880 .arg2_type = ARG_ANYTHING, 3881 .arg3_type = ARG_ANYTHING, 3882 }; 3883 3884 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room, 3885 u64 flags) 3886 { 3887 const u8 meta_len = skb_metadata_len(skb); 3888 u32 max_len = BPF_SKB_MAX_LEN; 3889 u32 new_len = skb->len + head_room; 3890 int ret; 3891 3892 if (unlikely(flags || (int)head_room < 0 || 3893 (!skb_is_gso(skb) && new_len > max_len) || 3894 new_len < skb->len)) 3895 return -EINVAL; 3896 3897 ret = skb_cow(skb, meta_len + head_room); 3898 if (likely(!ret)) { 3899 /* Idea for this helper is that we currently only 3900 * allow to expand on mac header. This means that 3901 * skb->protocol network header, etc, stay as is. 3902 * Compared to bpf_skb_change_tail(), we're more 3903 * flexible due to not needing to linearize or 3904 * reset GSO. Intention for this helper is to be 3905 * used by an L3 skb that needs to push mac header 3906 * for redirection into L2 device. 3907 */ 3908 __skb_push(skb, head_room); 3909 skb_postpush_data_move(skb, head_room, 0); 3910 memset(skb->data, 0, head_room); 3911 skb_reset_mac_header(skb); 3912 skb_reset_mac_len(skb); 3913 } 3914 3915 return ret; 3916 } 3917 3918 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room, 3919 u64, flags) 3920 { 3921 int ret = __bpf_skb_change_head(skb, head_room, flags); 3922 3923 bpf_compute_data_pointers(skb); 3924 return ret; 3925 } 3926 3927 static const struct bpf_func_proto bpf_skb_change_head_proto = { 3928 .func = bpf_skb_change_head, 3929 .gpl_only = false, 3930 .ret_type = RET_INTEGER, 3931 .arg1_type = ARG_PTR_TO_CTX, 3932 .arg2_type = ARG_ANYTHING, 3933 .arg3_type = ARG_ANYTHING, 3934 }; 3935 3936 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room, 3937 u64, flags) 3938 { 3939 return __bpf_skb_change_head(skb, head_room, flags); 3940 } 3941 3942 static const struct bpf_func_proto sk_skb_change_head_proto = { 3943 .func = sk_skb_change_head, 3944 .gpl_only = false, 3945 .ret_type = RET_INTEGER, 3946 .arg1_type = ARG_PTR_TO_CTX, 3947 .arg2_type = ARG_ANYTHING, 3948 .arg3_type = ARG_ANYTHING, 3949 }; 3950 3951 BPF_CALL_1(bpf_xdp_get_buff_len, struct xdp_buff*, xdp) 3952 { 3953 return xdp_get_buff_len(xdp); 3954 } 3955 3956 static const struct bpf_func_proto bpf_xdp_get_buff_len_proto = { 3957 .func = bpf_xdp_get_buff_len, 3958 .gpl_only = false, 3959 .ret_type = RET_INTEGER, 3960 .arg1_type = ARG_PTR_TO_CTX, 3961 }; 3962 3963 BTF_ID_LIST_SINGLE(bpf_xdp_get_buff_len_bpf_ids, struct, xdp_buff) 3964 3965 const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto = { 3966 .func = bpf_xdp_get_buff_len, 3967 .gpl_only = false, 3968 .arg1_type = ARG_PTR_TO_BTF_ID, 3969 .arg1_btf_id = &bpf_xdp_get_buff_len_bpf_ids[0], 3970 }; 3971 3972 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp) 3973 { 3974 return xdp_data_meta_unsupported(xdp) ? 0 : 3975 xdp->data - xdp->data_meta; 3976 } 3977 3978 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset) 3979 { 3980 void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame); 3981 unsigned long metalen = xdp_get_metalen(xdp); 3982 void *data_start = xdp_frame_end + metalen; 3983 void *data = xdp->data + offset; 3984 3985 if (unlikely(data < data_start || 3986 data > xdp->data_end - ETH_HLEN)) 3987 return -EINVAL; 3988 3989 if (metalen) 3990 memmove(xdp->data_meta + offset, 3991 xdp->data_meta, metalen); 3992 xdp->data_meta += offset; 3993 xdp->data = data; 3994 3995 return 0; 3996 } 3997 3998 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = { 3999 .func = bpf_xdp_adjust_head, 4000 .gpl_only = false, 4001 .ret_type = RET_INTEGER, 4002 .arg1_type = ARG_PTR_TO_CTX, 4003 .arg2_type = ARG_ANYTHING, 4004 }; 4005 4006 void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off, 4007 void *buf, unsigned long len, bool flush) 4008 { 4009 unsigned long ptr_len, ptr_off = 0; 4010 skb_frag_t *next_frag, *end_frag; 4011 struct skb_shared_info *sinfo; 4012 void *src, *dst; 4013 u8 *ptr_buf; 4014 4015 if (likely(xdp->data_end - xdp->data >= off + len)) { 4016 src = flush ? buf : xdp->data + off; 4017 dst = flush ? xdp->data + off : buf; 4018 memcpy(dst, src, len); 4019 return; 4020 } 4021 4022 sinfo = xdp_get_shared_info_from_buff(xdp); 4023 end_frag = &sinfo->frags[sinfo->nr_frags]; 4024 next_frag = &sinfo->frags[0]; 4025 4026 ptr_len = xdp->data_end - xdp->data; 4027 ptr_buf = xdp->data; 4028 4029 while (true) { 4030 if (off < ptr_off + ptr_len) { 4031 unsigned long copy_off = off - ptr_off; 4032 unsigned long copy_len = min(len, ptr_len - copy_off); 4033 4034 src = flush ? buf : ptr_buf + copy_off; 4035 dst = flush ? ptr_buf + copy_off : buf; 4036 memcpy(dst, src, copy_len); 4037 4038 off += copy_len; 4039 len -= copy_len; 4040 buf += copy_len; 4041 } 4042 4043 if (!len || next_frag == end_frag) 4044 break; 4045 4046 ptr_off += ptr_len; 4047 ptr_buf = skb_frag_address(next_frag); 4048 ptr_len = skb_frag_size(next_frag); 4049 next_frag++; 4050 } 4051 } 4052 4053 void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len) 4054 { 4055 u32 size = xdp->data_end - xdp->data; 4056 struct skb_shared_info *sinfo; 4057 void *addr = xdp->data; 4058 int i; 4059 4060 if (unlikely(offset > 0xffff || len > 0xffff)) 4061 return ERR_PTR(-EFAULT); 4062 4063 if (unlikely(offset + len > xdp_get_buff_len(xdp))) 4064 return ERR_PTR(-EINVAL); 4065 4066 if (likely(offset < size)) /* linear area */ 4067 goto out; 4068 4069 sinfo = xdp_get_shared_info_from_buff(xdp); 4070 offset -= size; 4071 for (i = 0; i < sinfo->nr_frags; i++) { /* paged area */ 4072 u32 frag_size = skb_frag_size(&sinfo->frags[i]); 4073 4074 if (offset < frag_size) { 4075 addr = skb_frag_address(&sinfo->frags[i]); 4076 size = frag_size; 4077 break; 4078 } 4079 offset -= frag_size; 4080 } 4081 out: 4082 return offset + len <= size ? addr + offset : NULL; 4083 } 4084 4085 BPF_CALL_4(bpf_xdp_load_bytes, struct xdp_buff *, xdp, u32, offset, 4086 void *, buf, u32, len) 4087 { 4088 void *ptr; 4089 4090 ptr = bpf_xdp_pointer(xdp, offset, len); 4091 if (IS_ERR(ptr)) 4092 return PTR_ERR(ptr); 4093 4094 if (!ptr) 4095 bpf_xdp_copy_buf(xdp, offset, buf, len, false); 4096 else 4097 memcpy(buf, ptr, len); 4098 4099 return 0; 4100 } 4101 4102 static const struct bpf_func_proto bpf_xdp_load_bytes_proto = { 4103 .func = bpf_xdp_load_bytes, 4104 .gpl_only = false, 4105 .ret_type = RET_INTEGER, 4106 .arg1_type = ARG_PTR_TO_CTX, 4107 .arg2_type = ARG_ANYTHING, 4108 .arg3_type = ARG_PTR_TO_UNINIT_MEM, 4109 .arg4_type = ARG_CONST_SIZE, 4110 }; 4111 4112 int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len) 4113 { 4114 return ____bpf_xdp_load_bytes(xdp, offset, buf, len); 4115 } 4116 4117 BPF_CALL_4(bpf_xdp_store_bytes, struct xdp_buff *, xdp, u32, offset, 4118 void *, buf, u32, len) 4119 { 4120 void *ptr; 4121 4122 ptr = bpf_xdp_pointer(xdp, offset, len); 4123 if (IS_ERR(ptr)) 4124 return PTR_ERR(ptr); 4125 4126 if (!ptr) 4127 bpf_xdp_copy_buf(xdp, offset, buf, len, true); 4128 else 4129 memcpy(ptr, buf, len); 4130 4131 return 0; 4132 } 4133 4134 static const struct bpf_func_proto bpf_xdp_store_bytes_proto = { 4135 .func = bpf_xdp_store_bytes, 4136 .gpl_only = false, 4137 .ret_type = RET_INTEGER, 4138 .arg1_type = ARG_PTR_TO_CTX, 4139 .arg2_type = ARG_ANYTHING, 4140 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY, 4141 .arg4_type = ARG_CONST_SIZE, 4142 }; 4143 4144 int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len) 4145 { 4146 return ____bpf_xdp_store_bytes(xdp, offset, buf, len); 4147 } 4148 4149 static int bpf_xdp_frags_increase_tail(struct xdp_buff *xdp, int offset) 4150 { 4151 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp); 4152 skb_frag_t *frag = &sinfo->frags[sinfo->nr_frags - 1]; 4153 struct xdp_rxq_info *rxq = xdp->rxq; 4154 unsigned int tailroom; 4155 4156 if (!rxq->frag_size || rxq->frag_size > xdp->frame_sz) 4157 return -EOPNOTSUPP; 4158 4159 tailroom = rxq->frag_size - skb_frag_size(frag) - skb_frag_off(frag); 4160 if (unlikely(offset > tailroom)) 4161 return -EINVAL; 4162 4163 memset(skb_frag_address(frag) + skb_frag_size(frag), 0, offset); 4164 skb_frag_size_add(frag, offset); 4165 sinfo->xdp_frags_size += offset; 4166 if (rxq->mem.type == MEM_TYPE_XSK_BUFF_POOL) 4167 xsk_buff_get_tail(xdp)->data_end += offset; 4168 4169 return 0; 4170 } 4171 4172 static struct xdp_buff *bpf_xdp_shrink_data_zc(struct xdp_buff *xdp, int shrink, 4173 bool tail, bool release) 4174 { 4175 struct xdp_buff *zc_frag = tail ? xsk_buff_get_tail(xdp) : 4176 xsk_buff_get_head(xdp); 4177 4178 if (release) { 4179 xsk_buff_del_frag(zc_frag); 4180 } else { 4181 if (tail) 4182 zc_frag->data_end -= shrink; 4183 else 4184 zc_frag->data += shrink; 4185 } 4186 4187 return zc_frag; 4188 } 4189 4190 static bool bpf_xdp_shrink_data(struct xdp_buff *xdp, skb_frag_t *frag, 4191 int shrink, bool tail) 4192 { 4193 enum xdp_mem_type mem_type = xdp->rxq->mem.type; 4194 bool release = skb_frag_size(frag) == shrink; 4195 netmem_ref netmem = skb_frag_netmem(frag); 4196 struct xdp_buff *zc_frag = NULL; 4197 4198 if (mem_type == MEM_TYPE_XSK_BUFF_POOL) { 4199 netmem = 0; 4200 zc_frag = bpf_xdp_shrink_data_zc(xdp, shrink, tail, release); 4201 } 4202 4203 if (release) { 4204 __xdp_return(netmem, mem_type, false, zc_frag); 4205 } else { 4206 if (!tail) 4207 skb_frag_off_add(frag, shrink); 4208 skb_frag_size_sub(frag, shrink); 4209 } 4210 4211 return release; 4212 } 4213 4214 static int bpf_xdp_frags_shrink_tail(struct xdp_buff *xdp, int offset) 4215 { 4216 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp); 4217 int i, n_frags_free = 0, len_free = 0; 4218 4219 if (unlikely(offset > (int)xdp_get_buff_len(xdp) - ETH_HLEN)) 4220 return -EINVAL; 4221 4222 for (i = sinfo->nr_frags - 1; i >= 0 && offset > 0; i--) { 4223 skb_frag_t *frag = &sinfo->frags[i]; 4224 int shrink = min_t(int, offset, skb_frag_size(frag)); 4225 4226 len_free += shrink; 4227 offset -= shrink; 4228 if (bpf_xdp_shrink_data(xdp, frag, shrink, true)) 4229 n_frags_free++; 4230 } 4231 sinfo->nr_frags -= n_frags_free; 4232 sinfo->xdp_frags_size -= len_free; 4233 4234 if (unlikely(!sinfo->nr_frags)) { 4235 xdp_buff_clear_frags_flag(xdp); 4236 xdp_buff_clear_frag_pfmemalloc(xdp); 4237 xdp->data_end -= offset; 4238 } 4239 4240 return 0; 4241 } 4242 4243 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset) 4244 { 4245 void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */ 4246 void *data_end = xdp->data_end + offset; 4247 4248 if (unlikely(xdp_buff_has_frags(xdp))) { /* non-linear xdp buff */ 4249 if (offset < 0) 4250 return bpf_xdp_frags_shrink_tail(xdp, -offset); 4251 4252 return bpf_xdp_frags_increase_tail(xdp, offset); 4253 } 4254 4255 /* Notice that xdp_data_hard_end have reserved some tailroom */ 4256 if (unlikely(data_end > data_hard_end)) 4257 return -EINVAL; 4258 4259 if (unlikely(data_end < xdp->data + ETH_HLEN)) 4260 return -EINVAL; 4261 4262 /* Clear memory area on grow, can contain uninit kernel memory */ 4263 if (offset > 0) 4264 memset(xdp->data_end, 0, offset); 4265 4266 xdp->data_end = data_end; 4267 4268 return 0; 4269 } 4270 4271 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = { 4272 .func = bpf_xdp_adjust_tail, 4273 .gpl_only = false, 4274 .ret_type = RET_INTEGER, 4275 .arg1_type = ARG_PTR_TO_CTX, 4276 .arg2_type = ARG_ANYTHING, 4277 }; 4278 4279 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset) 4280 { 4281 void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame); 4282 void *meta = xdp->data_meta + offset; 4283 unsigned long metalen = xdp->data - meta; 4284 4285 if (xdp_data_meta_unsupported(xdp)) 4286 return -ENOTSUPP; 4287 if (unlikely(meta < xdp_frame_end || 4288 meta > xdp->data)) 4289 return -EINVAL; 4290 if (unlikely(xdp_metalen_invalid(metalen))) 4291 return -EACCES; 4292 4293 xdp->data_meta = meta; 4294 4295 return 0; 4296 } 4297 4298 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = { 4299 .func = bpf_xdp_adjust_meta, 4300 .gpl_only = false, 4301 .ret_type = RET_INTEGER, 4302 .arg1_type = ARG_PTR_TO_CTX, 4303 .arg2_type = ARG_ANYTHING, 4304 }; 4305 4306 /** 4307 * DOC: xdp redirect 4308 * 4309 * XDP_REDIRECT works by a three-step process, implemented in the functions 4310 * below: 4311 * 4312 * 1. The bpf_redirect() and bpf_redirect_map() helpers will lookup the target 4313 * of the redirect and store it (along with some other metadata) in a per-CPU 4314 * struct bpf_redirect_info. 4315 * 4316 * 2. When the program returns the XDP_REDIRECT return code, the driver will 4317 * call xdp_do_redirect() which will use the information in struct 4318 * bpf_redirect_info to actually enqueue the frame into a map type-specific 4319 * bulk queue structure. 4320 * 4321 * 3. Before exiting its NAPI poll loop, the driver will call 4322 * xdp_do_flush(), which will flush all the different bulk queues, 4323 * thus completing the redirect. Note that xdp_do_flush() must be 4324 * called before napi_complete_done() in the driver, as the 4325 * XDP_REDIRECT logic relies on being inside a single NAPI instance 4326 * through to the xdp_do_flush() call for RCU protection of all 4327 * in-kernel data structures. 4328 */ 4329 /* 4330 * Pointers to the map entries will be kept around for this whole sequence of 4331 * steps, protected by RCU. However, there is no top-level rcu_read_lock() in 4332 * the core code; instead, the RCU protection relies on everything happening 4333 * inside a single NAPI poll sequence, which means it's between a pair of calls 4334 * to local_bh_disable()/local_bh_enable(). 4335 * 4336 * The map entries are marked as __rcu and the map code makes sure to 4337 * dereference those pointers with rcu_dereference_check() in a way that works 4338 * for both sections that to hold an rcu_read_lock() and sections that are 4339 * called from NAPI without a separate rcu_read_lock(). The code below does not 4340 * use RCU annotations, but relies on those in the map code. 4341 */ 4342 void xdp_do_flush(void) 4343 { 4344 struct list_head *lh_map, *lh_dev, *lh_xsk; 4345 4346 bpf_net_ctx_get_all_used_flush_lists(&lh_map, &lh_dev, &lh_xsk); 4347 if (lh_dev) 4348 __dev_flush(lh_dev); 4349 if (lh_map) 4350 __cpu_map_flush(lh_map); 4351 if (lh_xsk) 4352 __xsk_map_flush(lh_xsk); 4353 } 4354 EXPORT_SYMBOL_GPL(xdp_do_flush); 4355 4356 #if defined(CONFIG_DEBUG_NET) && defined(CONFIG_BPF_SYSCALL) 4357 void xdp_do_check_flushed(struct napi_struct *napi) 4358 { 4359 struct list_head *lh_map, *lh_dev, *lh_xsk; 4360 bool missed = false; 4361 4362 bpf_net_ctx_get_all_used_flush_lists(&lh_map, &lh_dev, &lh_xsk); 4363 if (lh_dev) { 4364 __dev_flush(lh_dev); 4365 missed = true; 4366 } 4367 if (lh_map) { 4368 __cpu_map_flush(lh_map); 4369 missed = true; 4370 } 4371 if (lh_xsk) { 4372 __xsk_map_flush(lh_xsk); 4373 missed = true; 4374 } 4375 4376 WARN_ONCE(missed, "Missing xdp_do_flush() invocation after NAPI by %ps\n", 4377 napi->poll); 4378 } 4379 #endif 4380 4381 DEFINE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key); 4382 EXPORT_SYMBOL_GPL(bpf_master_redirect_enabled_key); 4383 4384 u32 xdp_master_redirect(struct xdp_buff *xdp) 4385 { 4386 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri(); 4387 struct net_device *master, *slave; 4388 4389 master = netdev_master_upper_dev_get_rcu(xdp->rxq->dev); 4390 slave = master->netdev_ops->ndo_xdp_get_xmit_slave(master, xdp); 4391 if (slave && slave != xdp->rxq->dev) { 4392 /* The target device is different from the receiving device, so 4393 * redirect it to the new device. 4394 * Using XDP_REDIRECT gets the correct behaviour from XDP enabled 4395 * drivers to unmap the packet from their rx ring. 4396 */ 4397 ri->tgt_index = slave->ifindex; 4398 ri->map_id = INT_MAX; 4399 ri->map_type = BPF_MAP_TYPE_UNSPEC; 4400 return XDP_REDIRECT; 4401 } 4402 return XDP_TX; 4403 } 4404 EXPORT_SYMBOL_GPL(xdp_master_redirect); 4405 4406 static inline int __xdp_do_redirect_xsk(struct bpf_redirect_info *ri, 4407 const struct net_device *dev, 4408 struct xdp_buff *xdp, 4409 const struct bpf_prog *xdp_prog) 4410 { 4411 enum bpf_map_type map_type = ri->map_type; 4412 void *fwd = ri->tgt_value; 4413 u32 map_id = ri->map_id; 4414 int err; 4415 4416 ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */ 4417 ri->map_type = BPF_MAP_TYPE_UNSPEC; 4418 4419 err = __xsk_map_redirect(fwd, xdp); 4420 if (unlikely(err)) 4421 goto err; 4422 4423 _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index); 4424 return 0; 4425 err: 4426 _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err); 4427 return err; 4428 } 4429 4430 static __always_inline int 4431 __xdp_do_redirect_frame(struct bpf_redirect_info *ri, struct net_device *dev, 4432 struct xdp_frame *xdpf, 4433 const struct bpf_prog *xdp_prog) 4434 { 4435 enum bpf_map_type map_type = ri->map_type; 4436 void *fwd = ri->tgt_value; 4437 u32 map_id = ri->map_id; 4438 u32 flags = ri->flags; 4439 struct bpf_map *map; 4440 int err; 4441 4442 ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */ 4443 ri->flags = 0; 4444 ri->map_type = BPF_MAP_TYPE_UNSPEC; 4445 4446 if (unlikely(!xdpf)) { 4447 err = -EOVERFLOW; 4448 goto err; 4449 } 4450 4451 switch (map_type) { 4452 case BPF_MAP_TYPE_DEVMAP: 4453 fallthrough; 4454 case BPF_MAP_TYPE_DEVMAP_HASH: 4455 if (unlikely(flags & BPF_F_BROADCAST)) { 4456 map = READ_ONCE(ri->map); 4457 4458 /* The map pointer is cleared when the map is being torn 4459 * down by dev_map_free() 4460 */ 4461 if (unlikely(!map)) { 4462 err = -ENOENT; 4463 break; 4464 } 4465 4466 WRITE_ONCE(ri->map, NULL); 4467 err = dev_map_enqueue_multi(xdpf, dev, map, 4468 flags & BPF_F_EXCLUDE_INGRESS); 4469 } else { 4470 err = dev_map_enqueue(fwd, xdpf, dev); 4471 } 4472 break; 4473 case BPF_MAP_TYPE_CPUMAP: 4474 err = cpu_map_enqueue(fwd, xdpf, dev); 4475 break; 4476 case BPF_MAP_TYPE_UNSPEC: 4477 if (map_id == INT_MAX) { 4478 fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index); 4479 if (unlikely(!fwd)) { 4480 err = -EINVAL; 4481 break; 4482 } 4483 err = dev_xdp_enqueue(fwd, xdpf, dev); 4484 break; 4485 } 4486 fallthrough; 4487 default: 4488 err = -EBADRQC; 4489 } 4490 4491 if (unlikely(err)) 4492 goto err; 4493 4494 _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index); 4495 return 0; 4496 err: 4497 _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err); 4498 return err; 4499 } 4500 4501 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp, 4502 const struct bpf_prog *xdp_prog) 4503 { 4504 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri(); 4505 enum bpf_map_type map_type = ri->map_type; 4506 4507 if (map_type == BPF_MAP_TYPE_XSKMAP) 4508 return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog); 4509 4510 return __xdp_do_redirect_frame(ri, dev, xdp_convert_buff_to_frame(xdp), 4511 xdp_prog); 4512 } 4513 EXPORT_SYMBOL_GPL(xdp_do_redirect); 4514 4515 int xdp_do_redirect_frame(struct net_device *dev, struct xdp_buff *xdp, 4516 struct xdp_frame *xdpf, 4517 const struct bpf_prog *xdp_prog) 4518 { 4519 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri(); 4520 enum bpf_map_type map_type = ri->map_type; 4521 4522 if (map_type == BPF_MAP_TYPE_XSKMAP) 4523 return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog); 4524 4525 return __xdp_do_redirect_frame(ri, dev, xdpf, xdp_prog); 4526 } 4527 EXPORT_SYMBOL_GPL(xdp_do_redirect_frame); 4528 4529 static int xdp_do_generic_redirect_map(struct net_device *dev, 4530 struct sk_buff *skb, 4531 struct xdp_buff *xdp, 4532 const struct bpf_prog *xdp_prog, 4533 void *fwd, enum bpf_map_type map_type, 4534 u32 map_id, u32 flags) 4535 { 4536 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri(); 4537 struct bpf_map *map; 4538 int err; 4539 4540 switch (map_type) { 4541 case BPF_MAP_TYPE_DEVMAP: 4542 fallthrough; 4543 case BPF_MAP_TYPE_DEVMAP_HASH: 4544 if (unlikely(flags & BPF_F_BROADCAST)) { 4545 map = READ_ONCE(ri->map); 4546 4547 /* The map pointer is cleared when the map is being torn 4548 * down by dev_map_free() 4549 */ 4550 if (unlikely(!map)) { 4551 err = -ENOENT; 4552 break; 4553 } 4554 4555 WRITE_ONCE(ri->map, NULL); 4556 err = dev_map_redirect_multi(dev, skb, xdp_prog, map, 4557 flags & BPF_F_EXCLUDE_INGRESS); 4558 } else { 4559 err = dev_map_generic_redirect(fwd, skb, xdp_prog); 4560 } 4561 if (unlikely(err)) 4562 goto err; 4563 break; 4564 case BPF_MAP_TYPE_XSKMAP: 4565 err = xsk_generic_rcv(fwd, xdp); 4566 if (err) 4567 goto err; 4568 consume_skb(skb); 4569 break; 4570 case BPF_MAP_TYPE_CPUMAP: 4571 err = cpu_map_generic_redirect(fwd, skb); 4572 if (unlikely(err)) 4573 goto err; 4574 break; 4575 default: 4576 err = -EBADRQC; 4577 goto err; 4578 } 4579 4580 _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index); 4581 return 0; 4582 err: 4583 _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err); 4584 return err; 4585 } 4586 4587 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb, 4588 struct xdp_buff *xdp, 4589 const struct bpf_prog *xdp_prog) 4590 { 4591 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri(); 4592 enum bpf_map_type map_type = ri->map_type; 4593 void *fwd = ri->tgt_value; 4594 u32 map_id = ri->map_id; 4595 u32 flags = ri->flags; 4596 int err; 4597 4598 ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */ 4599 ri->flags = 0; 4600 ri->map_type = BPF_MAP_TYPE_UNSPEC; 4601 4602 if (map_type == BPF_MAP_TYPE_UNSPEC && map_id == INT_MAX) { 4603 fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index); 4604 if (unlikely(!fwd)) { 4605 err = -EINVAL; 4606 goto err; 4607 } 4608 4609 err = xdp_ok_fwd_dev(fwd, skb->len); 4610 if (unlikely(err)) 4611 goto err; 4612 4613 skb->dev = fwd; 4614 _trace_xdp_redirect(dev, xdp_prog, ri->tgt_index); 4615 generic_xdp_tx(skb, xdp_prog); 4616 return 0; 4617 } 4618 4619 return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog, fwd, map_type, map_id, flags); 4620 err: 4621 _trace_xdp_redirect_err(dev, xdp_prog, ri->tgt_index, err); 4622 return err; 4623 } 4624 4625 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags) 4626 { 4627 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri(); 4628 4629 if (unlikely(flags)) 4630 return XDP_ABORTED; 4631 4632 /* NB! Map type UNSPEC and map_id == INT_MAX (never generated 4633 * by map_idr) is used for ifindex based XDP redirect. 4634 */ 4635 ri->tgt_index = ifindex; 4636 ri->map_id = INT_MAX; 4637 ri->map_type = BPF_MAP_TYPE_UNSPEC; 4638 4639 return XDP_REDIRECT; 4640 } 4641 4642 static const struct bpf_func_proto bpf_xdp_redirect_proto = { 4643 .func = bpf_xdp_redirect, 4644 .gpl_only = false, 4645 .ret_type = RET_INTEGER, 4646 .arg1_type = ARG_ANYTHING, 4647 .arg2_type = ARG_ANYTHING, 4648 }; 4649 4650 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u64, key, 4651 u64, flags) 4652 { 4653 return map->ops->map_redirect(map, key, flags); 4654 } 4655 4656 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = { 4657 .func = bpf_xdp_redirect_map, 4658 .gpl_only = false, 4659 .ret_type = RET_INTEGER, 4660 .arg1_type = ARG_CONST_MAP_PTR, 4661 .arg2_type = ARG_ANYTHING, 4662 .arg3_type = ARG_ANYTHING, 4663 }; 4664 4665 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb, 4666 unsigned long off, unsigned long len) 4667 { 4668 void *ptr = skb_header_pointer(skb, off, len, dst_buff); 4669 4670 if (unlikely(!ptr)) 4671 return len; 4672 if (ptr != dst_buff) 4673 memcpy(dst_buff, ptr, len); 4674 4675 return 0; 4676 } 4677 4678 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map, 4679 u64, flags, void *, meta, u64, meta_size) 4680 { 4681 u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32; 4682 4683 if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK))) 4684 return -EINVAL; 4685 if (unlikely(!skb || skb_size > skb->len)) 4686 return -EFAULT; 4687 4688 return bpf_event_output(map, flags, meta, meta_size, skb, skb_size, 4689 bpf_skb_copy); 4690 } 4691 4692 static const struct bpf_func_proto bpf_skb_event_output_proto = { 4693 .func = bpf_skb_event_output, 4694 .gpl_only = true, 4695 .ret_type = RET_INTEGER, 4696 .arg1_type = ARG_PTR_TO_CTX, 4697 .arg2_type = ARG_CONST_MAP_PTR, 4698 .arg3_type = ARG_ANYTHING, 4699 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, 4700 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 4701 }; 4702 4703 BTF_ID_LIST_SINGLE(bpf_skb_output_btf_ids, struct, sk_buff) 4704 4705 const struct bpf_func_proto bpf_skb_output_proto = { 4706 .func = bpf_skb_event_output, 4707 .gpl_only = true, 4708 .ret_type = RET_INTEGER, 4709 .arg1_type = ARG_PTR_TO_BTF_ID, 4710 .arg1_btf_id = &bpf_skb_output_btf_ids[0], 4711 .arg2_type = ARG_CONST_MAP_PTR, 4712 .arg3_type = ARG_ANYTHING, 4713 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, 4714 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 4715 }; 4716 4717 static unsigned short bpf_tunnel_key_af(u64 flags) 4718 { 4719 return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET; 4720 } 4721 4722 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to, 4723 u32, size, u64, flags) 4724 { 4725 const struct ip_tunnel_info *info = skb_tunnel_info(skb); 4726 u8 compat[sizeof(struct bpf_tunnel_key)]; 4727 void *to_orig = to; 4728 int err; 4729 4730 if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6 | 4731 BPF_F_TUNINFO_FLAGS)))) { 4732 err = -EINVAL; 4733 goto err_clear; 4734 } 4735 if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) { 4736 err = -EPROTO; 4737 goto err_clear; 4738 } 4739 if (unlikely(size != sizeof(struct bpf_tunnel_key))) { 4740 err = -EINVAL; 4741 switch (size) { 4742 case offsetof(struct bpf_tunnel_key, local_ipv6[0]): 4743 case offsetof(struct bpf_tunnel_key, tunnel_label): 4744 case offsetof(struct bpf_tunnel_key, tunnel_ext): 4745 goto set_compat; 4746 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]): 4747 /* Fixup deprecated structure layouts here, so we have 4748 * a common path later on. 4749 */ 4750 if (ip_tunnel_info_af(info) != AF_INET) 4751 goto err_clear; 4752 set_compat: 4753 to = (struct bpf_tunnel_key *)compat; 4754 break; 4755 default: 4756 goto err_clear; 4757 } 4758 } 4759 4760 to->tunnel_id = be64_to_cpu(info->key.tun_id); 4761 to->tunnel_tos = info->key.tos; 4762 to->tunnel_ttl = info->key.ttl; 4763 if (flags & BPF_F_TUNINFO_FLAGS) 4764 to->tunnel_flags = ip_tunnel_flags_to_be16(info->key.tun_flags); 4765 else 4766 to->tunnel_ext = 0; 4767 4768 if (flags & BPF_F_TUNINFO_IPV6) { 4769 memcpy(to->remote_ipv6, &info->key.u.ipv6.src, 4770 sizeof(to->remote_ipv6)); 4771 memcpy(to->local_ipv6, &info->key.u.ipv6.dst, 4772 sizeof(to->local_ipv6)); 4773 to->tunnel_label = be32_to_cpu(info->key.label); 4774 } else { 4775 to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src); 4776 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3); 4777 to->local_ipv4 = be32_to_cpu(info->key.u.ipv4.dst); 4778 memset(&to->local_ipv6[1], 0, sizeof(__u32) * 3); 4779 to->tunnel_label = 0; 4780 } 4781 4782 if (unlikely(size != sizeof(struct bpf_tunnel_key))) 4783 memcpy(to_orig, to, size); 4784 4785 return 0; 4786 err_clear: 4787 memset(to_orig, 0, size); 4788 return err; 4789 } 4790 4791 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = { 4792 .func = bpf_skb_get_tunnel_key, 4793 .gpl_only = false, 4794 .ret_type = RET_INTEGER, 4795 .arg1_type = ARG_PTR_TO_CTX, 4796 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 4797 .arg3_type = ARG_CONST_SIZE, 4798 .arg4_type = ARG_ANYTHING, 4799 }; 4800 4801 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size) 4802 { 4803 const struct ip_tunnel_info *info = skb_tunnel_info(skb); 4804 int err; 4805 4806 if (unlikely(!info || 4807 !ip_tunnel_is_options_present(info->key.tun_flags))) { 4808 err = -ENOENT; 4809 goto err_clear; 4810 } 4811 if (unlikely(size < info->options_len)) { 4812 err = -ENOMEM; 4813 goto err_clear; 4814 } 4815 4816 ip_tunnel_info_opts_get(to, info); 4817 if (size > info->options_len) 4818 memset(to + info->options_len, 0, size - info->options_len); 4819 4820 return info->options_len; 4821 err_clear: 4822 memset(to, 0, size); 4823 return err; 4824 } 4825 4826 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = { 4827 .func = bpf_skb_get_tunnel_opt, 4828 .gpl_only = false, 4829 .ret_type = RET_INTEGER, 4830 .arg1_type = ARG_PTR_TO_CTX, 4831 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 4832 .arg3_type = ARG_CONST_SIZE, 4833 }; 4834 4835 static struct metadata_dst __percpu *md_dst; 4836 4837 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb, 4838 const struct bpf_tunnel_key *, from, u32, size, u64, flags) 4839 { 4840 struct metadata_dst *md = this_cpu_ptr(md_dst); 4841 u8 compat[sizeof(struct bpf_tunnel_key)]; 4842 struct ip_tunnel_info *info; 4843 4844 if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX | 4845 BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER | 4846 BPF_F_NO_TUNNEL_KEY))) 4847 return -EINVAL; 4848 if (unlikely(size != sizeof(struct bpf_tunnel_key))) { 4849 switch (size) { 4850 case offsetof(struct bpf_tunnel_key, local_ipv6[0]): 4851 case offsetof(struct bpf_tunnel_key, tunnel_label): 4852 case offsetof(struct bpf_tunnel_key, tunnel_ext): 4853 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]): 4854 /* Fixup deprecated structure layouts here, so we have 4855 * a common path later on. 4856 */ 4857 memcpy(compat, from, size); 4858 memset(compat + size, 0, sizeof(compat) - size); 4859 from = (const struct bpf_tunnel_key *) compat; 4860 break; 4861 default: 4862 return -EINVAL; 4863 } 4864 } 4865 if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) || 4866 from->tunnel_ext)) 4867 return -EINVAL; 4868 4869 skb_dst_drop(skb); 4870 dst_hold((struct dst_entry *) md); 4871 skb_dst_set(skb, (struct dst_entry *) md); 4872 4873 info = &md->u.tun_info; 4874 memset(info, 0, sizeof(*info)); 4875 info->mode = IP_TUNNEL_INFO_TX; 4876 4877 __set_bit(IP_TUNNEL_NOCACHE_BIT, info->key.tun_flags); 4878 __assign_bit(IP_TUNNEL_DONT_FRAGMENT_BIT, info->key.tun_flags, 4879 flags & BPF_F_DONT_FRAGMENT); 4880 __assign_bit(IP_TUNNEL_CSUM_BIT, info->key.tun_flags, 4881 !(flags & BPF_F_ZERO_CSUM_TX)); 4882 __assign_bit(IP_TUNNEL_SEQ_BIT, info->key.tun_flags, 4883 flags & BPF_F_SEQ_NUMBER); 4884 __assign_bit(IP_TUNNEL_KEY_BIT, info->key.tun_flags, 4885 !(flags & BPF_F_NO_TUNNEL_KEY)); 4886 4887 info->key.tun_id = cpu_to_be64(from->tunnel_id); 4888 info->key.tos = from->tunnel_tos; 4889 info->key.ttl = from->tunnel_ttl; 4890 4891 if (flags & BPF_F_TUNINFO_IPV6) { 4892 info->mode |= IP_TUNNEL_INFO_IPV6; 4893 memcpy(&info->key.u.ipv6.dst, from->remote_ipv6, 4894 sizeof(from->remote_ipv6)); 4895 memcpy(&info->key.u.ipv6.src, from->local_ipv6, 4896 sizeof(from->local_ipv6)); 4897 info->key.label = cpu_to_be32(from->tunnel_label) & 4898 IPV6_FLOWLABEL_MASK; 4899 } else { 4900 info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4); 4901 info->key.u.ipv4.src = cpu_to_be32(from->local_ipv4); 4902 info->key.flow_flags = FLOWI_FLAG_ANYSRC; 4903 } 4904 4905 return 0; 4906 } 4907 4908 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = { 4909 .func = bpf_skb_set_tunnel_key, 4910 .gpl_only = false, 4911 .ret_type = RET_INTEGER, 4912 .arg1_type = ARG_PTR_TO_CTX, 4913 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 4914 .arg3_type = ARG_CONST_SIZE, 4915 .arg4_type = ARG_ANYTHING, 4916 }; 4917 4918 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb, 4919 const u8 *, from, u32, size) 4920 { 4921 struct ip_tunnel_info *info = skb_tunnel_info(skb); 4922 const struct metadata_dst *md = this_cpu_ptr(md_dst); 4923 IP_TUNNEL_DECLARE_FLAGS(present) = { }; 4924 4925 if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1)))) 4926 return -EINVAL; 4927 if (unlikely(size > IP_TUNNEL_OPTS_MAX)) 4928 return -ENOMEM; 4929 4930 ip_tunnel_set_options_present(present); 4931 ip_tunnel_info_opts_set(info, from, size, present); 4932 4933 return 0; 4934 } 4935 4936 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = { 4937 .func = bpf_skb_set_tunnel_opt, 4938 .gpl_only = false, 4939 .ret_type = RET_INTEGER, 4940 .arg1_type = ARG_PTR_TO_CTX, 4941 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 4942 .arg3_type = ARG_CONST_SIZE, 4943 }; 4944 4945 static const struct bpf_func_proto * 4946 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which) 4947 { 4948 if (!md_dst) { 4949 struct metadata_dst __percpu *tmp; 4950 4951 tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX, 4952 METADATA_IP_TUNNEL, 4953 GFP_KERNEL); 4954 if (!tmp) 4955 return NULL; 4956 if (cmpxchg(&md_dst, NULL, tmp)) 4957 metadata_dst_free_percpu(tmp); 4958 } 4959 4960 switch (which) { 4961 case BPF_FUNC_skb_set_tunnel_key: 4962 return &bpf_skb_set_tunnel_key_proto; 4963 case BPF_FUNC_skb_set_tunnel_opt: 4964 return &bpf_skb_set_tunnel_opt_proto; 4965 default: 4966 return NULL; 4967 } 4968 } 4969 4970 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map, 4971 u32, idx) 4972 { 4973 struct bpf_array *array = container_of(map, struct bpf_array, map); 4974 struct cgroup *cgrp; 4975 struct sock *sk; 4976 4977 sk = skb_to_full_sk(skb); 4978 if (!sk || !sk_fullsock(sk)) 4979 return -ENOENT; 4980 if (unlikely(idx >= array->map.max_entries)) 4981 return -E2BIG; 4982 4983 cgrp = READ_ONCE(array->ptrs[idx]); 4984 if (unlikely(!cgrp)) 4985 return -EAGAIN; 4986 4987 return sk_under_cgroup_hierarchy(sk, cgrp); 4988 } 4989 4990 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = { 4991 .func = bpf_skb_under_cgroup, 4992 .gpl_only = false, 4993 .ret_type = RET_INTEGER, 4994 .arg1_type = ARG_PTR_TO_CTX, 4995 .arg2_type = ARG_CONST_MAP_PTR, 4996 .arg3_type = ARG_ANYTHING, 4997 }; 4998 4999 #ifdef CONFIG_SOCK_CGROUP_DATA 5000 static inline u64 __bpf_sk_cgroup_id(struct sock *sk) 5001 { 5002 struct cgroup *cgrp; 5003 5004 sk = sk_to_full_sk(sk); 5005 if (!sk || !sk_fullsock(sk)) 5006 return 0; 5007 5008 cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 5009 return cgroup_id(cgrp); 5010 } 5011 5012 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb) 5013 { 5014 return __bpf_sk_cgroup_id(skb->sk); 5015 } 5016 5017 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = { 5018 .func = bpf_skb_cgroup_id, 5019 .gpl_only = false, 5020 .ret_type = RET_INTEGER, 5021 .arg1_type = ARG_PTR_TO_CTX, 5022 }; 5023 5024 static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk, 5025 int ancestor_level) 5026 { 5027 struct cgroup *ancestor; 5028 struct cgroup *cgrp; 5029 5030 sk = sk_to_full_sk(sk); 5031 if (!sk || !sk_fullsock(sk)) 5032 return 0; 5033 5034 cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 5035 ancestor = cgroup_ancestor(cgrp, ancestor_level); 5036 if (!ancestor) 5037 return 0; 5038 5039 return cgroup_id(ancestor); 5040 } 5041 5042 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int, 5043 ancestor_level) 5044 { 5045 return __bpf_sk_ancestor_cgroup_id(skb->sk, ancestor_level); 5046 } 5047 5048 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = { 5049 .func = bpf_skb_ancestor_cgroup_id, 5050 .gpl_only = false, 5051 .ret_type = RET_INTEGER, 5052 .arg1_type = ARG_PTR_TO_CTX, 5053 .arg2_type = ARG_ANYTHING, 5054 }; 5055 5056 BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk) 5057 { 5058 return __bpf_sk_cgroup_id(sk); 5059 } 5060 5061 static const struct bpf_func_proto bpf_sk_cgroup_id_proto = { 5062 .func = bpf_sk_cgroup_id, 5063 .gpl_only = false, 5064 .ret_type = RET_INTEGER, 5065 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON, 5066 }; 5067 5068 BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level) 5069 { 5070 return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level); 5071 } 5072 5073 static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = { 5074 .func = bpf_sk_ancestor_cgroup_id, 5075 .gpl_only = false, 5076 .ret_type = RET_INTEGER, 5077 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON, 5078 .arg2_type = ARG_ANYTHING, 5079 }; 5080 #endif 5081 5082 static unsigned long bpf_xdp_copy(void *dst, const void *ctx, 5083 unsigned long off, unsigned long len) 5084 { 5085 struct xdp_buff *xdp = (struct xdp_buff *)ctx; 5086 5087 bpf_xdp_copy_buf(xdp, off, dst, len, false); 5088 return 0; 5089 } 5090 5091 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map, 5092 u64, flags, void *, meta, u64, meta_size) 5093 { 5094 u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32; 5095 5096 if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK))) 5097 return -EINVAL; 5098 5099 if (unlikely(!xdp || xdp_size > xdp_get_buff_len(xdp))) 5100 return -EFAULT; 5101 5102 return bpf_event_output(map, flags, meta, meta_size, xdp, 5103 xdp_size, bpf_xdp_copy); 5104 } 5105 5106 static const struct bpf_func_proto bpf_xdp_event_output_proto = { 5107 .func = bpf_xdp_event_output, 5108 .gpl_only = true, 5109 .ret_type = RET_INTEGER, 5110 .arg1_type = ARG_PTR_TO_CTX, 5111 .arg2_type = ARG_CONST_MAP_PTR, 5112 .arg3_type = ARG_ANYTHING, 5113 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, 5114 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 5115 }; 5116 5117 BTF_ID_LIST_SINGLE(bpf_xdp_output_btf_ids, struct, xdp_buff) 5118 5119 const struct bpf_func_proto bpf_xdp_output_proto = { 5120 .func = bpf_xdp_event_output, 5121 .gpl_only = true, 5122 .ret_type = RET_INTEGER, 5123 .arg1_type = ARG_PTR_TO_BTF_ID, 5124 .arg1_btf_id = &bpf_xdp_output_btf_ids[0], 5125 .arg2_type = ARG_CONST_MAP_PTR, 5126 .arg3_type = ARG_ANYTHING, 5127 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, 5128 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 5129 }; 5130 5131 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb) 5132 { 5133 return skb->sk ? __sock_gen_cookie(skb->sk) : 0; 5134 } 5135 5136 static const struct bpf_func_proto bpf_get_socket_cookie_proto = { 5137 .func = bpf_get_socket_cookie, 5138 .gpl_only = false, 5139 .ret_type = RET_INTEGER, 5140 .arg1_type = ARG_PTR_TO_CTX, 5141 }; 5142 5143 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx) 5144 { 5145 return __sock_gen_cookie(ctx->sk); 5146 } 5147 5148 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = { 5149 .func = bpf_get_socket_cookie_sock_addr, 5150 .gpl_only = false, 5151 .ret_type = RET_INTEGER, 5152 .arg1_type = ARG_PTR_TO_CTX, 5153 }; 5154 5155 BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx) 5156 { 5157 return __sock_gen_cookie(ctx); 5158 } 5159 5160 static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = { 5161 .func = bpf_get_socket_cookie_sock, 5162 .gpl_only = false, 5163 .ret_type = RET_INTEGER, 5164 .arg1_type = ARG_PTR_TO_CTX, 5165 }; 5166 5167 BPF_CALL_1(bpf_get_socket_ptr_cookie, struct sock *, sk) 5168 { 5169 return sk ? sock_gen_cookie(sk) : 0; 5170 } 5171 5172 const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto = { 5173 .func = bpf_get_socket_ptr_cookie, 5174 .gpl_only = false, 5175 .ret_type = RET_INTEGER, 5176 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON | PTR_MAYBE_NULL, 5177 }; 5178 5179 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx) 5180 { 5181 return __sock_gen_cookie(ctx->sk); 5182 } 5183 5184 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = { 5185 .func = bpf_get_socket_cookie_sock_ops, 5186 .gpl_only = false, 5187 .ret_type = RET_INTEGER, 5188 .arg1_type = ARG_PTR_TO_CTX, 5189 }; 5190 5191 static u64 __bpf_get_netns_cookie(struct sock *sk) 5192 { 5193 const struct net *net = sk ? sock_net(sk) : &init_net; 5194 5195 return net->net_cookie; 5196 } 5197 5198 BPF_CALL_1(bpf_get_netns_cookie, struct sk_buff *, skb) 5199 { 5200 return __bpf_get_netns_cookie(skb && skb->sk ? skb->sk : NULL); 5201 } 5202 5203 static const struct bpf_func_proto bpf_get_netns_cookie_proto = { 5204 .func = bpf_get_netns_cookie, 5205 .ret_type = RET_INTEGER, 5206 .arg1_type = ARG_PTR_TO_CTX_OR_NULL, 5207 }; 5208 5209 BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx) 5210 { 5211 return __bpf_get_netns_cookie(ctx); 5212 } 5213 5214 static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = { 5215 .func = bpf_get_netns_cookie_sock, 5216 .gpl_only = false, 5217 .ret_type = RET_INTEGER, 5218 .arg1_type = ARG_PTR_TO_CTX_OR_NULL, 5219 }; 5220 5221 BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx) 5222 { 5223 return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL); 5224 } 5225 5226 static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = { 5227 .func = bpf_get_netns_cookie_sock_addr, 5228 .gpl_only = false, 5229 .ret_type = RET_INTEGER, 5230 .arg1_type = ARG_PTR_TO_CTX_OR_NULL, 5231 }; 5232 5233 BPF_CALL_1(bpf_get_netns_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx) 5234 { 5235 return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL); 5236 } 5237 5238 static const struct bpf_func_proto bpf_get_netns_cookie_sock_ops_proto = { 5239 .func = bpf_get_netns_cookie_sock_ops, 5240 .gpl_only = false, 5241 .ret_type = RET_INTEGER, 5242 .arg1_type = ARG_PTR_TO_CTX_OR_NULL, 5243 }; 5244 5245 BPF_CALL_1(bpf_get_netns_cookie_sk_msg, struct sk_msg *, ctx) 5246 { 5247 return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL); 5248 } 5249 5250 static const struct bpf_func_proto bpf_get_netns_cookie_sk_msg_proto = { 5251 .func = bpf_get_netns_cookie_sk_msg, 5252 .gpl_only = false, 5253 .ret_type = RET_INTEGER, 5254 .arg1_type = ARG_PTR_TO_CTX_OR_NULL, 5255 }; 5256 5257 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb) 5258 { 5259 struct sock *sk = sk_to_full_sk(skb->sk); 5260 kuid_t kuid; 5261 5262 if (!sk || !sk_fullsock(sk)) 5263 return overflowuid; 5264 kuid = sock_net_uid(sock_net(sk), sk); 5265 return from_kuid_munged(sock_net(sk)->user_ns, kuid); 5266 } 5267 5268 static const struct bpf_func_proto bpf_get_socket_uid_proto = { 5269 .func = bpf_get_socket_uid, 5270 .gpl_only = false, 5271 .ret_type = RET_INTEGER, 5272 .arg1_type = ARG_PTR_TO_CTX, 5273 }; 5274 5275 static int sk_bpf_set_get_cb_flags(struct sock *sk, char *optval, bool getopt) 5276 { 5277 u32 sk_bpf_cb_flags; 5278 5279 if (getopt) { 5280 *(u32 *)optval = sk->sk_bpf_cb_flags; 5281 return 0; 5282 } 5283 5284 sk_bpf_cb_flags = *(u32 *)optval; 5285 5286 if (sk_bpf_cb_flags & ~SK_BPF_CB_MASK) 5287 return -EINVAL; 5288 5289 sk->sk_bpf_cb_flags = sk_bpf_cb_flags; 5290 5291 return 0; 5292 } 5293 5294 static int sol_socket_sockopt(struct sock *sk, int optname, 5295 char *optval, int *optlen, 5296 bool getopt) 5297 { 5298 switch (optname) { 5299 case SO_REUSEADDR: 5300 case SO_SNDBUF: 5301 case SO_RCVBUF: 5302 case SO_KEEPALIVE: 5303 case SO_PRIORITY: 5304 case SO_REUSEPORT: 5305 case SO_RCVLOWAT: 5306 case SO_MARK: 5307 case SO_MAX_PACING_RATE: 5308 case SO_BINDTOIFINDEX: 5309 case SO_TXREHASH: 5310 case SK_BPF_CB_FLAGS: 5311 if (*optlen != sizeof(int)) 5312 return -EINVAL; 5313 break; 5314 case SO_BINDTODEVICE: 5315 break; 5316 default: 5317 return -EINVAL; 5318 } 5319 5320 if (optname == SK_BPF_CB_FLAGS) 5321 return sk_bpf_set_get_cb_flags(sk, optval, getopt); 5322 5323 if (getopt) { 5324 if (optname == SO_BINDTODEVICE) 5325 return -EINVAL; 5326 return sk_getsockopt(sk, SOL_SOCKET, optname, 5327 KERNEL_SOCKPTR(optval), 5328 KERNEL_SOCKPTR(optlen)); 5329 } 5330 5331 return sk_setsockopt(sk, SOL_SOCKET, optname, 5332 KERNEL_SOCKPTR(optval), *optlen); 5333 } 5334 5335 static int bpf_sol_tcp_getsockopt(struct sock *sk, int optname, 5336 char *optval, int optlen) 5337 { 5338 if (optlen != sizeof(int)) 5339 return -EINVAL; 5340 5341 switch (optname) { 5342 case TCP_BPF_SOCK_OPS_CB_FLAGS: { 5343 int cb_flags = tcp_sk(sk)->bpf_sock_ops_cb_flags; 5344 5345 memcpy(optval, &cb_flags, optlen); 5346 break; 5347 } 5348 case TCP_BPF_RTO_MIN: { 5349 int rto_min_us = jiffies_to_usecs(inet_csk(sk)->icsk_rto_min); 5350 5351 memcpy(optval, &rto_min_us, optlen); 5352 break; 5353 } 5354 case TCP_BPF_DELACK_MAX: { 5355 int delack_max_us = jiffies_to_usecs(inet_csk(sk)->icsk_delack_max); 5356 5357 memcpy(optval, &delack_max_us, optlen); 5358 break; 5359 } 5360 default: 5361 return -EINVAL; 5362 } 5363 5364 return 0; 5365 } 5366 5367 static int bpf_sol_tcp_setsockopt(struct sock *sk, int optname, 5368 char *optval, int optlen) 5369 { 5370 struct tcp_sock *tp = tcp_sk(sk); 5371 unsigned long timeout; 5372 int val; 5373 5374 if (optlen != sizeof(int)) 5375 return -EINVAL; 5376 5377 val = *(int *)optval; 5378 5379 /* Only some options are supported */ 5380 switch (optname) { 5381 case TCP_BPF_IW: 5382 if (val <= 0 || tp->data_segs_out > tp->syn_data) 5383 return -EINVAL; 5384 tcp_snd_cwnd_set(tp, val); 5385 break; 5386 case TCP_BPF_SNDCWND_CLAMP: 5387 if (val <= 0) 5388 return -EINVAL; 5389 tp->snd_cwnd_clamp = val; 5390 tp->snd_ssthresh = val; 5391 break; 5392 case TCP_BPF_DELACK_MAX: 5393 timeout = usecs_to_jiffies(val); 5394 if (timeout > TCP_DELACK_MAX || 5395 timeout < TCP_TIMEOUT_MIN) 5396 return -EINVAL; 5397 inet_csk(sk)->icsk_delack_max = timeout; 5398 break; 5399 case TCP_BPF_RTO_MIN: 5400 timeout = usecs_to_jiffies(val); 5401 if (timeout > TCP_RTO_MIN || 5402 timeout < TCP_TIMEOUT_MIN) 5403 return -EINVAL; 5404 inet_csk(sk)->icsk_rto_min = timeout; 5405 break; 5406 case TCP_BPF_SOCK_OPS_CB_FLAGS: 5407 if (val & ~(BPF_SOCK_OPS_ALL_CB_FLAGS)) 5408 return -EINVAL; 5409 tp->bpf_sock_ops_cb_flags = val; 5410 break; 5411 default: 5412 return -EINVAL; 5413 } 5414 5415 return 0; 5416 } 5417 5418 static int sol_tcp_sockopt_congestion(struct sock *sk, char *optval, 5419 int *optlen, bool getopt) 5420 { 5421 struct tcp_sock *tp; 5422 int ret; 5423 5424 if (*optlen < 2) 5425 return -EINVAL; 5426 5427 if (getopt) { 5428 if (!inet_csk(sk)->icsk_ca_ops) 5429 return -EINVAL; 5430 /* BPF expects NULL-terminated tcp-cc string */ 5431 optval[--(*optlen)] = '\0'; 5432 return do_tcp_getsockopt(sk, SOL_TCP, TCP_CONGESTION, 5433 KERNEL_SOCKPTR(optval), 5434 KERNEL_SOCKPTR(optlen)); 5435 } 5436 5437 /* "cdg" is the only cc that alloc a ptr 5438 * in inet_csk_ca area. The bpf-tcp-cc may 5439 * overwrite this ptr after switching to cdg. 5440 */ 5441 if (*optlen >= sizeof("cdg") - 1 && !strncmp("cdg", optval, *optlen)) 5442 return -ENOTSUPP; 5443 5444 /* It stops this looping 5445 * 5446 * .init => bpf_setsockopt(tcp_cc) => .init => 5447 * bpf_setsockopt(tcp_cc)" => .init => .... 5448 * 5449 * The second bpf_setsockopt(tcp_cc) is not allowed 5450 * in order to break the loop when both .init 5451 * are the same bpf prog. 5452 * 5453 * This applies even the second bpf_setsockopt(tcp_cc) 5454 * does not cause a loop. This limits only the first 5455 * '.init' can call bpf_setsockopt(TCP_CONGESTION) to 5456 * pick a fallback cc (eg. peer does not support ECN) 5457 * and the second '.init' cannot fallback to 5458 * another. 5459 */ 5460 tp = tcp_sk(sk); 5461 if (tp->bpf_chg_cc_inprogress) 5462 return -EBUSY; 5463 5464 tp->bpf_chg_cc_inprogress = 1; 5465 ret = do_tcp_setsockopt(sk, SOL_TCP, TCP_CONGESTION, 5466 KERNEL_SOCKPTR(optval), *optlen); 5467 tp->bpf_chg_cc_inprogress = 0; 5468 return ret; 5469 } 5470 5471 static int sol_tcp_sockopt(struct sock *sk, int optname, 5472 char *optval, int *optlen, 5473 bool getopt) 5474 { 5475 if (sk->sk_protocol != IPPROTO_TCP) 5476 return -EINVAL; 5477 5478 switch (optname) { 5479 case TCP_NODELAY: 5480 case TCP_MAXSEG: 5481 case TCP_KEEPIDLE: 5482 case TCP_KEEPINTVL: 5483 case TCP_KEEPCNT: 5484 case TCP_SYNCNT: 5485 case TCP_WINDOW_CLAMP: 5486 case TCP_THIN_LINEAR_TIMEOUTS: 5487 case TCP_USER_TIMEOUT: 5488 case TCP_NOTSENT_LOWAT: 5489 case TCP_SAVE_SYN: 5490 case TCP_RTO_MAX_MS: 5491 if (*optlen != sizeof(int)) 5492 return -EINVAL; 5493 break; 5494 case TCP_CONGESTION: 5495 return sol_tcp_sockopt_congestion(sk, optval, optlen, getopt); 5496 case TCP_SAVED_SYN: 5497 if (*optlen < 1) 5498 return -EINVAL; 5499 break; 5500 default: 5501 if (getopt) 5502 return bpf_sol_tcp_getsockopt(sk, optname, optval, *optlen); 5503 return bpf_sol_tcp_setsockopt(sk, optname, optval, *optlen); 5504 } 5505 5506 if (getopt) { 5507 if (optname == TCP_SAVED_SYN) { 5508 struct tcp_sock *tp = tcp_sk(sk); 5509 5510 if (!tp->saved_syn || 5511 *optlen > tcp_saved_syn_len(tp->saved_syn)) 5512 return -EINVAL; 5513 memcpy(optval, tp->saved_syn->data, *optlen); 5514 /* It cannot free tp->saved_syn here because it 5515 * does not know if the user space still needs it. 5516 */ 5517 return 0; 5518 } 5519 5520 return do_tcp_getsockopt(sk, SOL_TCP, optname, 5521 KERNEL_SOCKPTR(optval), 5522 KERNEL_SOCKPTR(optlen)); 5523 } 5524 5525 return do_tcp_setsockopt(sk, SOL_TCP, optname, 5526 KERNEL_SOCKPTR(optval), *optlen); 5527 } 5528 5529 static int sol_ip_sockopt(struct sock *sk, int optname, 5530 char *optval, int *optlen, 5531 bool getopt) 5532 { 5533 if (sk->sk_family != AF_INET) 5534 return -EINVAL; 5535 5536 switch (optname) { 5537 case IP_TOS: 5538 if (*optlen != sizeof(int)) 5539 return -EINVAL; 5540 break; 5541 default: 5542 return -EINVAL; 5543 } 5544 5545 if (getopt) 5546 return do_ip_getsockopt(sk, SOL_IP, optname, 5547 KERNEL_SOCKPTR(optval), 5548 KERNEL_SOCKPTR(optlen)); 5549 5550 return do_ip_setsockopt(sk, SOL_IP, optname, 5551 KERNEL_SOCKPTR(optval), *optlen); 5552 } 5553 5554 static int sol_ipv6_sockopt(struct sock *sk, int optname, 5555 char *optval, int *optlen, 5556 bool getopt) 5557 { 5558 if (sk->sk_family != AF_INET6) 5559 return -EINVAL; 5560 5561 switch (optname) { 5562 case IPV6_TCLASS: 5563 case IPV6_AUTOFLOWLABEL: 5564 if (*optlen != sizeof(int)) 5565 return -EINVAL; 5566 break; 5567 default: 5568 return -EINVAL; 5569 } 5570 5571 if (getopt) 5572 return ipv6_bpf_stub->ipv6_getsockopt(sk, SOL_IPV6, optname, 5573 KERNEL_SOCKPTR(optval), 5574 KERNEL_SOCKPTR(optlen)); 5575 5576 return ipv6_bpf_stub->ipv6_setsockopt(sk, SOL_IPV6, optname, 5577 KERNEL_SOCKPTR(optval), *optlen); 5578 } 5579 5580 static int __bpf_setsockopt(struct sock *sk, int level, int optname, 5581 char *optval, int optlen) 5582 { 5583 if (!sk_fullsock(sk)) 5584 return -EINVAL; 5585 5586 if (level == SOL_SOCKET) 5587 return sol_socket_sockopt(sk, optname, optval, &optlen, false); 5588 else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP) 5589 return sol_ip_sockopt(sk, optname, optval, &optlen, false); 5590 else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6) 5591 return sol_ipv6_sockopt(sk, optname, optval, &optlen, false); 5592 else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP) 5593 return sol_tcp_sockopt(sk, optname, optval, &optlen, false); 5594 5595 return -EINVAL; 5596 } 5597 5598 static bool is_locked_tcp_sock_ops(struct bpf_sock_ops_kern *bpf_sock) 5599 { 5600 return bpf_sock->op <= BPF_SOCK_OPS_WRITE_HDR_OPT_CB; 5601 } 5602 5603 static int _bpf_setsockopt(struct sock *sk, int level, int optname, 5604 char *optval, int optlen) 5605 { 5606 if (sk_fullsock(sk)) 5607 sock_owned_by_me(sk); 5608 return __bpf_setsockopt(sk, level, optname, optval, optlen); 5609 } 5610 5611 static int __bpf_getsockopt(struct sock *sk, int level, int optname, 5612 char *optval, int optlen) 5613 { 5614 int err, saved_optlen = optlen; 5615 5616 if (!sk_fullsock(sk)) { 5617 err = -EINVAL; 5618 goto done; 5619 } 5620 5621 if (level == SOL_SOCKET) 5622 err = sol_socket_sockopt(sk, optname, optval, &optlen, true); 5623 else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP) 5624 err = sol_tcp_sockopt(sk, optname, optval, &optlen, true); 5625 else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP) 5626 err = sol_ip_sockopt(sk, optname, optval, &optlen, true); 5627 else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6) 5628 err = sol_ipv6_sockopt(sk, optname, optval, &optlen, true); 5629 else 5630 err = -EINVAL; 5631 5632 done: 5633 if (err) 5634 optlen = 0; 5635 if (optlen < saved_optlen) 5636 memset(optval + optlen, 0, saved_optlen - optlen); 5637 return err; 5638 } 5639 5640 static int _bpf_getsockopt(struct sock *sk, int level, int optname, 5641 char *optval, int optlen) 5642 { 5643 if (sk_fullsock(sk)) 5644 sock_owned_by_me(sk); 5645 return __bpf_getsockopt(sk, level, optname, optval, optlen); 5646 } 5647 5648 BPF_CALL_5(bpf_sk_setsockopt, struct sock *, sk, int, level, 5649 int, optname, char *, optval, int, optlen) 5650 { 5651 return _bpf_setsockopt(sk, level, optname, optval, optlen); 5652 } 5653 5654 const struct bpf_func_proto bpf_sk_setsockopt_proto = { 5655 .func = bpf_sk_setsockopt, 5656 .gpl_only = false, 5657 .ret_type = RET_INTEGER, 5658 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON, 5659 .arg2_type = ARG_ANYTHING, 5660 .arg3_type = ARG_ANYTHING, 5661 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, 5662 .arg5_type = ARG_CONST_SIZE, 5663 }; 5664 5665 BPF_CALL_5(bpf_sk_getsockopt, struct sock *, sk, int, level, 5666 int, optname, char *, optval, int, optlen) 5667 { 5668 return _bpf_getsockopt(sk, level, optname, optval, optlen); 5669 } 5670 5671 const struct bpf_func_proto bpf_sk_getsockopt_proto = { 5672 .func = bpf_sk_getsockopt, 5673 .gpl_only = false, 5674 .ret_type = RET_INTEGER, 5675 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON, 5676 .arg2_type = ARG_ANYTHING, 5677 .arg3_type = ARG_ANYTHING, 5678 .arg4_type = ARG_PTR_TO_UNINIT_MEM, 5679 .arg5_type = ARG_CONST_SIZE, 5680 }; 5681 5682 BPF_CALL_5(bpf_unlocked_sk_setsockopt, struct sock *, sk, int, level, 5683 int, optname, char *, optval, int, optlen) 5684 { 5685 return __bpf_setsockopt(sk, level, optname, optval, optlen); 5686 } 5687 5688 const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto = { 5689 .func = bpf_unlocked_sk_setsockopt, 5690 .gpl_only = false, 5691 .ret_type = RET_INTEGER, 5692 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON, 5693 .arg2_type = ARG_ANYTHING, 5694 .arg3_type = ARG_ANYTHING, 5695 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, 5696 .arg5_type = ARG_CONST_SIZE, 5697 }; 5698 5699 BPF_CALL_5(bpf_unlocked_sk_getsockopt, struct sock *, sk, int, level, 5700 int, optname, char *, optval, int, optlen) 5701 { 5702 return __bpf_getsockopt(sk, level, optname, optval, optlen); 5703 } 5704 5705 const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto = { 5706 .func = bpf_unlocked_sk_getsockopt, 5707 .gpl_only = false, 5708 .ret_type = RET_INTEGER, 5709 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON, 5710 .arg2_type = ARG_ANYTHING, 5711 .arg3_type = ARG_ANYTHING, 5712 .arg4_type = ARG_PTR_TO_UNINIT_MEM, 5713 .arg5_type = ARG_CONST_SIZE, 5714 }; 5715 5716 BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx, 5717 int, level, int, optname, char *, optval, int, optlen) 5718 { 5719 return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen); 5720 } 5721 5722 static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = { 5723 .func = bpf_sock_addr_setsockopt, 5724 .gpl_only = false, 5725 .ret_type = RET_INTEGER, 5726 .arg1_type = ARG_PTR_TO_CTX, 5727 .arg2_type = ARG_ANYTHING, 5728 .arg3_type = ARG_ANYTHING, 5729 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, 5730 .arg5_type = ARG_CONST_SIZE, 5731 }; 5732 5733 BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx, 5734 int, level, int, optname, char *, optval, int, optlen) 5735 { 5736 return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen); 5737 } 5738 5739 static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = { 5740 .func = bpf_sock_addr_getsockopt, 5741 .gpl_only = false, 5742 .ret_type = RET_INTEGER, 5743 .arg1_type = ARG_PTR_TO_CTX, 5744 .arg2_type = ARG_ANYTHING, 5745 .arg3_type = ARG_ANYTHING, 5746 .arg4_type = ARG_PTR_TO_UNINIT_MEM, 5747 .arg5_type = ARG_CONST_SIZE, 5748 }; 5749 5750 static int sk_bpf_set_get_bypass_prot_mem(struct sock *sk, 5751 char *optval, int optlen, 5752 bool getopt) 5753 { 5754 int val; 5755 5756 if (optlen != sizeof(int)) 5757 return -EINVAL; 5758 5759 if (!sk_has_account(sk)) 5760 return -EOPNOTSUPP; 5761 5762 if (getopt) { 5763 *(int *)optval = sk->sk_bypass_prot_mem; 5764 return 0; 5765 } 5766 5767 val = *(int *)optval; 5768 if (val < 0 || val > 1) 5769 return -EINVAL; 5770 5771 sk->sk_bypass_prot_mem = val; 5772 return 0; 5773 } 5774 5775 BPF_CALL_5(bpf_sock_create_setsockopt, struct sock *, sk, int, level, 5776 int, optname, char *, optval, int, optlen) 5777 { 5778 if (level == SOL_SOCKET && optname == SK_BPF_BYPASS_PROT_MEM) 5779 return sk_bpf_set_get_bypass_prot_mem(sk, optval, optlen, false); 5780 5781 return __bpf_setsockopt(sk, level, optname, optval, optlen); 5782 } 5783 5784 static const struct bpf_func_proto bpf_sock_create_setsockopt_proto = { 5785 .func = bpf_sock_create_setsockopt, 5786 .gpl_only = false, 5787 .ret_type = RET_INTEGER, 5788 .arg1_type = ARG_PTR_TO_CTX, 5789 .arg2_type = ARG_ANYTHING, 5790 .arg3_type = ARG_ANYTHING, 5791 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, 5792 .arg5_type = ARG_CONST_SIZE, 5793 }; 5794 5795 BPF_CALL_5(bpf_sock_create_getsockopt, struct sock *, sk, int, level, 5796 int, optname, char *, optval, int, optlen) 5797 { 5798 if (level == SOL_SOCKET && optname == SK_BPF_BYPASS_PROT_MEM) { 5799 int err = sk_bpf_set_get_bypass_prot_mem(sk, optval, optlen, true); 5800 5801 if (err) 5802 memset(optval, 0, optlen); 5803 5804 return err; 5805 } 5806 5807 return __bpf_getsockopt(sk, level, optname, optval, optlen); 5808 } 5809 5810 static const struct bpf_func_proto bpf_sock_create_getsockopt_proto = { 5811 .func = bpf_sock_create_getsockopt, 5812 .gpl_only = false, 5813 .ret_type = RET_INTEGER, 5814 .arg1_type = ARG_PTR_TO_CTX, 5815 .arg2_type = ARG_ANYTHING, 5816 .arg3_type = ARG_ANYTHING, 5817 .arg4_type = ARG_PTR_TO_UNINIT_MEM, 5818 .arg5_type = ARG_CONST_SIZE, 5819 }; 5820 5821 BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock, 5822 int, level, int, optname, char *, optval, int, optlen) 5823 { 5824 if (!is_locked_tcp_sock_ops(bpf_sock)) 5825 return -EOPNOTSUPP; 5826 5827 return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen); 5828 } 5829 5830 static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = { 5831 .func = bpf_sock_ops_setsockopt, 5832 .gpl_only = false, 5833 .ret_type = RET_INTEGER, 5834 .arg1_type = ARG_PTR_TO_CTX, 5835 .arg2_type = ARG_ANYTHING, 5836 .arg3_type = ARG_ANYTHING, 5837 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, 5838 .arg5_type = ARG_CONST_SIZE, 5839 }; 5840 5841 static int bpf_sock_ops_get_syn(struct bpf_sock_ops_kern *bpf_sock, 5842 int optname, const u8 **start) 5843 { 5844 struct sk_buff *syn_skb = bpf_sock->syn_skb; 5845 const u8 *hdr_start; 5846 int ret; 5847 5848 if (syn_skb) { 5849 /* sk is a request_sock here */ 5850 5851 if (optname == TCP_BPF_SYN) { 5852 hdr_start = syn_skb->data; 5853 ret = tcp_hdrlen(syn_skb); 5854 } else if (optname == TCP_BPF_SYN_IP) { 5855 hdr_start = skb_network_header(syn_skb); 5856 ret = skb_network_header_len(syn_skb) + 5857 tcp_hdrlen(syn_skb); 5858 } else { 5859 /* optname == TCP_BPF_SYN_MAC */ 5860 hdr_start = skb_mac_header(syn_skb); 5861 ret = skb_mac_header_len(syn_skb) + 5862 skb_network_header_len(syn_skb) + 5863 tcp_hdrlen(syn_skb); 5864 } 5865 } else { 5866 struct sock *sk = bpf_sock->sk; 5867 struct saved_syn *saved_syn; 5868 5869 if (sk->sk_state == TCP_NEW_SYN_RECV) 5870 /* synack retransmit. bpf_sock->syn_skb will 5871 * not be available. It has to resort to 5872 * saved_syn (if it is saved). 5873 */ 5874 saved_syn = inet_reqsk(sk)->saved_syn; 5875 else 5876 saved_syn = tcp_sk(sk)->saved_syn; 5877 5878 if (!saved_syn) 5879 return -ENOENT; 5880 5881 if (optname == TCP_BPF_SYN) { 5882 hdr_start = saved_syn->data + 5883 saved_syn->mac_hdrlen + 5884 saved_syn->network_hdrlen; 5885 ret = saved_syn->tcp_hdrlen; 5886 } else if (optname == TCP_BPF_SYN_IP) { 5887 hdr_start = saved_syn->data + 5888 saved_syn->mac_hdrlen; 5889 ret = saved_syn->network_hdrlen + 5890 saved_syn->tcp_hdrlen; 5891 } else { 5892 /* optname == TCP_BPF_SYN_MAC */ 5893 5894 /* TCP_SAVE_SYN may not have saved the mac hdr */ 5895 if (!saved_syn->mac_hdrlen) 5896 return -ENOENT; 5897 5898 hdr_start = saved_syn->data; 5899 ret = saved_syn->mac_hdrlen + 5900 saved_syn->network_hdrlen + 5901 saved_syn->tcp_hdrlen; 5902 } 5903 } 5904 5905 *start = hdr_start; 5906 return ret; 5907 } 5908 5909 BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock, 5910 int, level, int, optname, char *, optval, int, optlen) 5911 { 5912 if (!is_locked_tcp_sock_ops(bpf_sock)) 5913 return -EOPNOTSUPP; 5914 5915 if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP && 5916 optname >= TCP_BPF_SYN && optname <= TCP_BPF_SYN_MAC) { 5917 int ret, copy_len = 0; 5918 const u8 *start; 5919 5920 ret = bpf_sock_ops_get_syn(bpf_sock, optname, &start); 5921 if (ret > 0) { 5922 copy_len = ret; 5923 if (optlen < copy_len) { 5924 copy_len = optlen; 5925 ret = -ENOSPC; 5926 } 5927 5928 memcpy(optval, start, copy_len); 5929 } 5930 5931 /* Zero out unused buffer at the end */ 5932 memset(optval + copy_len, 0, optlen - copy_len); 5933 5934 return ret; 5935 } 5936 5937 return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen); 5938 } 5939 5940 static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = { 5941 .func = bpf_sock_ops_getsockopt, 5942 .gpl_only = false, 5943 .ret_type = RET_INTEGER, 5944 .arg1_type = ARG_PTR_TO_CTX, 5945 .arg2_type = ARG_ANYTHING, 5946 .arg3_type = ARG_ANYTHING, 5947 .arg4_type = ARG_PTR_TO_UNINIT_MEM, 5948 .arg5_type = ARG_CONST_SIZE, 5949 }; 5950 5951 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock, 5952 int, argval) 5953 { 5954 struct sock *sk = bpf_sock->sk; 5955 int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS; 5956 5957 if (!is_locked_tcp_sock_ops(bpf_sock)) 5958 return -EOPNOTSUPP; 5959 5960 if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk)) 5961 return -EINVAL; 5962 5963 tcp_sk(sk)->bpf_sock_ops_cb_flags = val; 5964 5965 return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS); 5966 } 5967 5968 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = { 5969 .func = bpf_sock_ops_cb_flags_set, 5970 .gpl_only = false, 5971 .ret_type = RET_INTEGER, 5972 .arg1_type = ARG_PTR_TO_CTX, 5973 .arg2_type = ARG_ANYTHING, 5974 }; 5975 5976 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly; 5977 EXPORT_SYMBOL_GPL(ipv6_bpf_stub); 5978 5979 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr, 5980 int, addr_len) 5981 { 5982 #ifdef CONFIG_INET 5983 struct sock *sk = ctx->sk; 5984 u32 flags = BIND_FROM_BPF; 5985 int err; 5986 5987 err = -EINVAL; 5988 if (addr_len < offsetofend(struct sockaddr, sa_family)) 5989 return err; 5990 if (addr->sa_family == AF_INET) { 5991 if (addr_len < sizeof(struct sockaddr_in)) 5992 return err; 5993 if (((struct sockaddr_in *)addr)->sin_port == htons(0)) 5994 flags |= BIND_FORCE_ADDRESS_NO_PORT; 5995 return __inet_bind(sk, (struct sockaddr_unsized *)addr, addr_len, flags); 5996 #if IS_ENABLED(CONFIG_IPV6) 5997 } else if (addr->sa_family == AF_INET6) { 5998 if (addr_len < SIN6_LEN_RFC2133) 5999 return err; 6000 if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0)) 6001 flags |= BIND_FORCE_ADDRESS_NO_PORT; 6002 /* ipv6_bpf_stub cannot be NULL, since it's called from 6003 * bpf_cgroup_inet6_connect hook and ipv6 is already loaded 6004 */ 6005 return ipv6_bpf_stub->inet6_bind(sk, (struct sockaddr_unsized *)addr, 6006 addr_len, flags); 6007 #endif /* CONFIG_IPV6 */ 6008 } 6009 #endif /* CONFIG_INET */ 6010 6011 return -EAFNOSUPPORT; 6012 } 6013 6014 static const struct bpf_func_proto bpf_bind_proto = { 6015 .func = bpf_bind, 6016 .gpl_only = false, 6017 .ret_type = RET_INTEGER, 6018 .arg1_type = ARG_PTR_TO_CTX, 6019 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 6020 .arg3_type = ARG_CONST_SIZE, 6021 }; 6022 6023 #ifdef CONFIG_XFRM 6024 6025 #if (IS_BUILTIN(CONFIG_XFRM_INTERFACE) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) || \ 6026 (IS_MODULE(CONFIG_XFRM_INTERFACE) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) 6027 6028 struct metadata_dst __percpu *xfrm_bpf_md_dst; 6029 EXPORT_SYMBOL_GPL(xfrm_bpf_md_dst); 6030 6031 #endif 6032 6033 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index, 6034 struct bpf_xfrm_state *, to, u32, size, u64, flags) 6035 { 6036 const struct sec_path *sp = skb_sec_path(skb); 6037 const struct xfrm_state *x; 6038 6039 if (!sp || unlikely(index >= sp->len || flags)) 6040 goto err_clear; 6041 6042 x = sp->xvec[index]; 6043 6044 if (unlikely(size != sizeof(struct bpf_xfrm_state))) 6045 goto err_clear; 6046 6047 to->reqid = x->props.reqid; 6048 to->spi = x->id.spi; 6049 to->family = x->props.family; 6050 to->ext = 0; 6051 6052 if (to->family == AF_INET6) { 6053 memcpy(to->remote_ipv6, x->props.saddr.a6, 6054 sizeof(to->remote_ipv6)); 6055 } else { 6056 to->remote_ipv4 = x->props.saddr.a4; 6057 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3); 6058 } 6059 6060 return 0; 6061 err_clear: 6062 memset(to, 0, size); 6063 return -EINVAL; 6064 } 6065 6066 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = { 6067 .func = bpf_skb_get_xfrm_state, 6068 .gpl_only = false, 6069 .ret_type = RET_INTEGER, 6070 .arg1_type = ARG_PTR_TO_CTX, 6071 .arg2_type = ARG_ANYTHING, 6072 .arg3_type = ARG_PTR_TO_UNINIT_MEM, 6073 .arg4_type = ARG_CONST_SIZE, 6074 .arg5_type = ARG_ANYTHING, 6075 }; 6076 #endif 6077 6078 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6) 6079 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params, u32 mtu) 6080 { 6081 params->h_vlan_TCI = 0; 6082 params->h_vlan_proto = 0; 6083 if (mtu) 6084 params->mtu_result = mtu; /* union with tot_len */ 6085 6086 return 0; 6087 } 6088 #endif 6089 6090 #if IS_ENABLED(CONFIG_INET) 6091 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params, 6092 u32 flags, bool check_mtu) 6093 { 6094 struct fib_nh_common *nhc; 6095 struct in_device *in_dev; 6096 struct neighbour *neigh; 6097 struct net_device *dev; 6098 struct fib_result res; 6099 struct flowi4 fl4; 6100 u32 mtu = 0; 6101 int err; 6102 6103 dev = dev_get_by_index_rcu(net, params->ifindex); 6104 if (unlikely(!dev)) 6105 return -ENODEV; 6106 6107 /* verify forwarding is enabled on this interface */ 6108 in_dev = __in_dev_get_rcu(dev); 6109 if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev))) 6110 return BPF_FIB_LKUP_RET_FWD_DISABLED; 6111 6112 if (flags & BPF_FIB_LOOKUP_OUTPUT) { 6113 fl4.flowi4_iif = 1; 6114 fl4.flowi4_oif = params->ifindex; 6115 } else { 6116 fl4.flowi4_iif = params->ifindex; 6117 fl4.flowi4_oif = 0; 6118 } 6119 fl4.flowi4_dscp = inet_dsfield_to_dscp(params->tos); 6120 fl4.flowi4_scope = RT_SCOPE_UNIVERSE; 6121 fl4.flowi4_flags = 0; 6122 6123 fl4.flowi4_proto = params->l4_protocol; 6124 fl4.daddr = params->ipv4_dst; 6125 fl4.saddr = params->ipv4_src; 6126 fl4.fl4_sport = params->sport; 6127 fl4.fl4_dport = params->dport; 6128 fl4.flowi4_multipath_hash = 0; 6129 6130 if (flags & BPF_FIB_LOOKUP_DIRECT) { 6131 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN; 6132 struct fib_table *tb; 6133 6134 if (flags & BPF_FIB_LOOKUP_TBID) { 6135 tbid = params->tbid; 6136 /* zero out for vlan output */ 6137 params->tbid = 0; 6138 } 6139 6140 tb = fib_get_table(net, tbid); 6141 if (unlikely(!tb)) 6142 return BPF_FIB_LKUP_RET_NOT_FWDED; 6143 6144 err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF); 6145 } else { 6146 if (flags & BPF_FIB_LOOKUP_MARK) 6147 fl4.flowi4_mark = params->mark; 6148 else 6149 fl4.flowi4_mark = 0; 6150 fl4.flowi4_secid = 0; 6151 fl4.flowi4_tun_key.tun_id = 0; 6152 fl4.flowi4_uid = sock_net_uid(net, NULL); 6153 6154 err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF); 6155 } 6156 6157 if (err) { 6158 /* map fib lookup errors to RTN_ type */ 6159 if (err == -EINVAL) 6160 return BPF_FIB_LKUP_RET_BLACKHOLE; 6161 if (err == -EHOSTUNREACH) 6162 return BPF_FIB_LKUP_RET_UNREACHABLE; 6163 if (err == -EACCES) 6164 return BPF_FIB_LKUP_RET_PROHIBIT; 6165 6166 return BPF_FIB_LKUP_RET_NOT_FWDED; 6167 } 6168 6169 if (res.type != RTN_UNICAST) 6170 return BPF_FIB_LKUP_RET_NOT_FWDED; 6171 6172 if (fib_info_num_path(res.fi) > 1) 6173 fib_select_path(net, &res, &fl4, NULL); 6174 6175 if (check_mtu) { 6176 mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst); 6177 if (params->tot_len > mtu) { 6178 params->mtu_result = mtu; /* union with tot_len */ 6179 return BPF_FIB_LKUP_RET_FRAG_NEEDED; 6180 } 6181 } 6182 6183 nhc = res.nhc; 6184 6185 /* do not handle lwt encaps right now */ 6186 if (nhc->nhc_lwtstate) 6187 return BPF_FIB_LKUP_RET_UNSUPP_LWT; 6188 6189 dev = nhc->nhc_dev; 6190 6191 params->rt_metric = res.fi->fib_priority; 6192 params->ifindex = dev->ifindex; 6193 6194 if (flags & BPF_FIB_LOOKUP_SRC) 6195 params->ipv4_src = fib_result_prefsrc(net, &res); 6196 6197 /* xdp and cls_bpf programs are run in RCU-bh so 6198 * rcu_read_lock_bh is not needed here 6199 */ 6200 if (likely(nhc->nhc_gw_family != AF_INET6)) { 6201 if (nhc->nhc_gw_family) 6202 params->ipv4_dst = nhc->nhc_gw.ipv4; 6203 } else { 6204 struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst; 6205 6206 params->family = AF_INET6; 6207 *dst = nhc->nhc_gw.ipv6; 6208 } 6209 6210 if (flags & BPF_FIB_LOOKUP_SKIP_NEIGH) 6211 goto set_fwd_params; 6212 6213 if (likely(nhc->nhc_gw_family != AF_INET6)) 6214 neigh = __ipv4_neigh_lookup_noref(dev, 6215 (__force u32)params->ipv4_dst); 6216 else 6217 neigh = __ipv6_neigh_lookup_noref_stub(dev, params->ipv6_dst); 6218 6219 if (!neigh || !(READ_ONCE(neigh->nud_state) & NUD_VALID)) 6220 return BPF_FIB_LKUP_RET_NO_NEIGH; 6221 memcpy(params->dmac, neigh->ha, ETH_ALEN); 6222 memcpy(params->smac, dev->dev_addr, ETH_ALEN); 6223 6224 set_fwd_params: 6225 return bpf_fib_set_fwd_params(params, mtu); 6226 } 6227 #endif 6228 6229 #if IS_ENABLED(CONFIG_IPV6) 6230 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params, 6231 u32 flags, bool check_mtu) 6232 { 6233 struct in6_addr *src = (struct in6_addr *) params->ipv6_src; 6234 struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst; 6235 struct fib6_result res = {}; 6236 struct neighbour *neigh; 6237 struct net_device *dev; 6238 struct inet6_dev *idev; 6239 struct flowi6 fl6; 6240 int strict = 0; 6241 int oif, err; 6242 u32 mtu = 0; 6243 6244 /* link local addresses are never forwarded */ 6245 if (rt6_need_strict(dst) || rt6_need_strict(src)) 6246 return BPF_FIB_LKUP_RET_NOT_FWDED; 6247 6248 dev = dev_get_by_index_rcu(net, params->ifindex); 6249 if (unlikely(!dev)) 6250 return -ENODEV; 6251 6252 idev = __in6_dev_get_safely(dev); 6253 if (unlikely(!idev || !READ_ONCE(idev->cnf.forwarding))) 6254 return BPF_FIB_LKUP_RET_FWD_DISABLED; 6255 6256 if (flags & BPF_FIB_LOOKUP_OUTPUT) { 6257 fl6.flowi6_iif = 1; 6258 oif = fl6.flowi6_oif = params->ifindex; 6259 } else { 6260 oif = fl6.flowi6_iif = params->ifindex; 6261 fl6.flowi6_oif = 0; 6262 strict = RT6_LOOKUP_F_HAS_SADDR; 6263 } 6264 fl6.flowlabel = params->flowinfo; 6265 fl6.flowi6_scope = 0; 6266 fl6.flowi6_flags = 0; 6267 fl6.mp_hash = 0; 6268 6269 fl6.flowi6_proto = params->l4_protocol; 6270 fl6.daddr = *dst; 6271 fl6.saddr = *src; 6272 fl6.fl6_sport = params->sport; 6273 fl6.fl6_dport = params->dport; 6274 6275 if (flags & BPF_FIB_LOOKUP_DIRECT) { 6276 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN; 6277 struct fib6_table *tb; 6278 6279 if (flags & BPF_FIB_LOOKUP_TBID) { 6280 tbid = params->tbid; 6281 /* zero out for vlan output */ 6282 params->tbid = 0; 6283 } 6284 6285 tb = ipv6_stub->fib6_get_table(net, tbid); 6286 if (unlikely(!tb)) 6287 return BPF_FIB_LKUP_RET_NOT_FWDED; 6288 6289 err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res, 6290 strict); 6291 } else { 6292 if (flags & BPF_FIB_LOOKUP_MARK) 6293 fl6.flowi6_mark = params->mark; 6294 else 6295 fl6.flowi6_mark = 0; 6296 fl6.flowi6_secid = 0; 6297 fl6.flowi6_tun_key.tun_id = 0; 6298 fl6.flowi6_uid = sock_net_uid(net, NULL); 6299 6300 err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict); 6301 } 6302 6303 if (unlikely(err || IS_ERR_OR_NULL(res.f6i) || 6304 res.f6i == net->ipv6.fib6_null_entry)) 6305 return BPF_FIB_LKUP_RET_NOT_FWDED; 6306 6307 switch (res.fib6_type) { 6308 /* only unicast is forwarded */ 6309 case RTN_UNICAST: 6310 break; 6311 case RTN_BLACKHOLE: 6312 return BPF_FIB_LKUP_RET_BLACKHOLE; 6313 case RTN_UNREACHABLE: 6314 return BPF_FIB_LKUP_RET_UNREACHABLE; 6315 case RTN_PROHIBIT: 6316 return BPF_FIB_LKUP_RET_PROHIBIT; 6317 default: 6318 return BPF_FIB_LKUP_RET_NOT_FWDED; 6319 } 6320 6321 ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif, 6322 fl6.flowi6_oif != 0, NULL, strict); 6323 6324 if (check_mtu) { 6325 mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src); 6326 if (params->tot_len > mtu) { 6327 params->mtu_result = mtu; /* union with tot_len */ 6328 return BPF_FIB_LKUP_RET_FRAG_NEEDED; 6329 } 6330 } 6331 6332 if (res.nh->fib_nh_lws) 6333 return BPF_FIB_LKUP_RET_UNSUPP_LWT; 6334 6335 if (res.nh->fib_nh_gw_family) 6336 *dst = res.nh->fib_nh_gw6; 6337 6338 dev = res.nh->fib_nh_dev; 6339 params->rt_metric = res.f6i->fib6_metric; 6340 params->ifindex = dev->ifindex; 6341 6342 if (flags & BPF_FIB_LOOKUP_SRC) { 6343 if (res.f6i->fib6_prefsrc.plen) { 6344 *src = res.f6i->fib6_prefsrc.addr; 6345 } else { 6346 err = ipv6_bpf_stub->ipv6_dev_get_saddr(net, dev, 6347 &fl6.daddr, 0, 6348 src); 6349 if (err) 6350 return BPF_FIB_LKUP_RET_NO_SRC_ADDR; 6351 } 6352 } 6353 6354 if (flags & BPF_FIB_LOOKUP_SKIP_NEIGH) 6355 goto set_fwd_params; 6356 6357 /* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is 6358 * not needed here. 6359 */ 6360 neigh = __ipv6_neigh_lookup_noref_stub(dev, dst); 6361 if (!neigh || !(READ_ONCE(neigh->nud_state) & NUD_VALID)) 6362 return BPF_FIB_LKUP_RET_NO_NEIGH; 6363 memcpy(params->dmac, neigh->ha, ETH_ALEN); 6364 memcpy(params->smac, dev->dev_addr, ETH_ALEN); 6365 6366 set_fwd_params: 6367 return bpf_fib_set_fwd_params(params, mtu); 6368 } 6369 #endif 6370 6371 #define BPF_FIB_LOOKUP_MASK (BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT | \ 6372 BPF_FIB_LOOKUP_SKIP_NEIGH | BPF_FIB_LOOKUP_TBID | \ 6373 BPF_FIB_LOOKUP_SRC | BPF_FIB_LOOKUP_MARK) 6374 6375 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx, 6376 struct bpf_fib_lookup *, params, int, plen, u32, flags) 6377 { 6378 if (plen < sizeof(*params)) 6379 return -EINVAL; 6380 6381 if (flags & ~BPF_FIB_LOOKUP_MASK) 6382 return -EINVAL; 6383 6384 switch (params->family) { 6385 #if IS_ENABLED(CONFIG_INET) 6386 case AF_INET: 6387 return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params, 6388 flags, true); 6389 #endif 6390 #if IS_ENABLED(CONFIG_IPV6) 6391 case AF_INET6: 6392 return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params, 6393 flags, true); 6394 #endif 6395 } 6396 return -EAFNOSUPPORT; 6397 } 6398 6399 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = { 6400 .func = bpf_xdp_fib_lookup, 6401 .gpl_only = true, 6402 .ret_type = RET_INTEGER, 6403 .arg1_type = ARG_PTR_TO_CTX, 6404 .arg2_type = ARG_PTR_TO_MEM | MEM_WRITE, 6405 .arg3_type = ARG_CONST_SIZE, 6406 .arg4_type = ARG_ANYTHING, 6407 }; 6408 6409 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb, 6410 struct bpf_fib_lookup *, params, int, plen, u32, flags) 6411 { 6412 struct net *net = dev_net(skb->dev); 6413 int rc = -EAFNOSUPPORT; 6414 bool check_mtu = false; 6415 6416 if (plen < sizeof(*params)) 6417 return -EINVAL; 6418 6419 if (flags & ~BPF_FIB_LOOKUP_MASK) 6420 return -EINVAL; 6421 6422 if (params->tot_len) 6423 check_mtu = true; 6424 6425 switch (params->family) { 6426 #if IS_ENABLED(CONFIG_INET) 6427 case AF_INET: 6428 rc = bpf_ipv4_fib_lookup(net, params, flags, check_mtu); 6429 break; 6430 #endif 6431 #if IS_ENABLED(CONFIG_IPV6) 6432 case AF_INET6: 6433 rc = bpf_ipv6_fib_lookup(net, params, flags, check_mtu); 6434 break; 6435 #endif 6436 } 6437 6438 if (rc == BPF_FIB_LKUP_RET_SUCCESS && !check_mtu) { 6439 struct net_device *dev; 6440 6441 /* When tot_len isn't provided by user, check skb 6442 * against MTU of FIB lookup resulting net_device 6443 */ 6444 dev = dev_get_by_index_rcu(net, params->ifindex); 6445 if (!is_skb_forwardable(dev, skb)) 6446 rc = BPF_FIB_LKUP_RET_FRAG_NEEDED; 6447 6448 params->mtu_result = dev->mtu; /* union with tot_len */ 6449 } 6450 6451 return rc; 6452 } 6453 6454 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = { 6455 .func = bpf_skb_fib_lookup, 6456 .gpl_only = true, 6457 .ret_type = RET_INTEGER, 6458 .arg1_type = ARG_PTR_TO_CTX, 6459 .arg2_type = ARG_PTR_TO_MEM | MEM_WRITE, 6460 .arg3_type = ARG_CONST_SIZE, 6461 .arg4_type = ARG_ANYTHING, 6462 }; 6463 6464 static struct net_device *__dev_via_ifindex(struct net_device *dev_curr, 6465 u32 ifindex) 6466 { 6467 struct net *netns = dev_net(dev_curr); 6468 6469 /* Non-redirect use-cases can use ifindex=0 and save ifindex lookup */ 6470 if (ifindex == 0) 6471 return dev_curr; 6472 6473 return dev_get_by_index_rcu(netns, ifindex); 6474 } 6475 6476 BPF_CALL_5(bpf_skb_check_mtu, struct sk_buff *, skb, 6477 u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags) 6478 { 6479 int ret = BPF_MTU_CHK_RET_FRAG_NEEDED; 6480 struct net_device *dev = skb->dev; 6481 int mtu, dev_len, skb_len; 6482 6483 if (unlikely(flags & ~(BPF_MTU_CHK_SEGS))) 6484 return -EINVAL; 6485 if (unlikely(flags & BPF_MTU_CHK_SEGS && (len_diff || *mtu_len))) 6486 return -EINVAL; 6487 6488 dev = __dev_via_ifindex(dev, ifindex); 6489 if (unlikely(!dev)) 6490 return -ENODEV; 6491 6492 mtu = READ_ONCE(dev->mtu); 6493 dev_len = mtu + dev->hard_header_len; 6494 6495 /* If set use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */ 6496 skb_len = *mtu_len ? *mtu_len + dev->hard_header_len : skb->len; 6497 6498 skb_len += len_diff; /* minus result pass check */ 6499 if (skb_len <= dev_len) { 6500 ret = BPF_MTU_CHK_RET_SUCCESS; 6501 goto out; 6502 } 6503 /* At this point, skb->len exceed MTU, but as it include length of all 6504 * segments, it can still be below MTU. The SKB can possibly get 6505 * re-segmented in transmit path (see validate_xmit_skb). Thus, user 6506 * must choose if segs are to be MTU checked. 6507 */ 6508 if (skb_is_gso(skb)) { 6509 ret = BPF_MTU_CHK_RET_SUCCESS; 6510 if (flags & BPF_MTU_CHK_SEGS) { 6511 if (!skb_transport_header_was_set(skb)) 6512 return -EINVAL; 6513 if (!skb_gso_validate_network_len(skb, mtu)) 6514 ret = BPF_MTU_CHK_RET_SEGS_TOOBIG; 6515 } 6516 } 6517 out: 6518 *mtu_len = mtu; 6519 return ret; 6520 } 6521 6522 BPF_CALL_5(bpf_xdp_check_mtu, struct xdp_buff *, xdp, 6523 u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags) 6524 { 6525 struct net_device *dev = xdp->rxq->dev; 6526 int xdp_len = xdp->data_end - xdp->data; 6527 int ret = BPF_MTU_CHK_RET_SUCCESS; 6528 int mtu, dev_len; 6529 6530 /* XDP variant doesn't support multi-buffer segment check (yet) */ 6531 if (unlikely(flags)) 6532 return -EINVAL; 6533 6534 dev = __dev_via_ifindex(dev, ifindex); 6535 if (unlikely(!dev)) 6536 return -ENODEV; 6537 6538 mtu = READ_ONCE(dev->mtu); 6539 dev_len = mtu + dev->hard_header_len; 6540 6541 /* Use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */ 6542 if (*mtu_len) 6543 xdp_len = *mtu_len + dev->hard_header_len; 6544 6545 xdp_len += len_diff; /* minus result pass check */ 6546 if (xdp_len > dev_len) 6547 ret = BPF_MTU_CHK_RET_FRAG_NEEDED; 6548 6549 *mtu_len = mtu; 6550 return ret; 6551 } 6552 6553 static const struct bpf_func_proto bpf_skb_check_mtu_proto = { 6554 .func = bpf_skb_check_mtu, 6555 .gpl_only = true, 6556 .ret_type = RET_INTEGER, 6557 .arg1_type = ARG_PTR_TO_CTX, 6558 .arg2_type = ARG_ANYTHING, 6559 .arg3_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_WRITE | MEM_ALIGNED, 6560 .arg3_size = sizeof(u32), 6561 .arg4_type = ARG_ANYTHING, 6562 .arg5_type = ARG_ANYTHING, 6563 }; 6564 6565 static const struct bpf_func_proto bpf_xdp_check_mtu_proto = { 6566 .func = bpf_xdp_check_mtu, 6567 .gpl_only = true, 6568 .ret_type = RET_INTEGER, 6569 .arg1_type = ARG_PTR_TO_CTX, 6570 .arg2_type = ARG_ANYTHING, 6571 .arg3_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_WRITE | MEM_ALIGNED, 6572 .arg3_size = sizeof(u32), 6573 .arg4_type = ARG_ANYTHING, 6574 .arg5_type = ARG_ANYTHING, 6575 }; 6576 6577 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF) 6578 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len) 6579 { 6580 int err; 6581 struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr; 6582 6583 if (!seg6_validate_srh(srh, len, false)) 6584 return -EINVAL; 6585 6586 switch (type) { 6587 case BPF_LWT_ENCAP_SEG6_INLINE: 6588 if (skb->protocol != htons(ETH_P_IPV6)) 6589 return -EBADMSG; 6590 6591 err = seg6_do_srh_inline(skb, srh); 6592 break; 6593 case BPF_LWT_ENCAP_SEG6: 6594 skb_reset_inner_headers(skb); 6595 skb->encapsulation = 1; 6596 err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6); 6597 break; 6598 default: 6599 return -EINVAL; 6600 } 6601 6602 bpf_compute_data_pointers(skb); 6603 if (err) 6604 return err; 6605 6606 skb_set_transport_header(skb, sizeof(struct ipv6hdr)); 6607 6608 return seg6_lookup_nexthop(skb, NULL, 0); 6609 } 6610 #endif /* CONFIG_IPV6_SEG6_BPF */ 6611 6612 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF) 6613 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len, 6614 bool ingress) 6615 { 6616 return bpf_lwt_push_ip_encap(skb, hdr, len, ingress); 6617 } 6618 #endif 6619 6620 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr, 6621 u32, len) 6622 { 6623 switch (type) { 6624 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF) 6625 case BPF_LWT_ENCAP_SEG6: 6626 case BPF_LWT_ENCAP_SEG6_INLINE: 6627 return bpf_push_seg6_encap(skb, type, hdr, len); 6628 #endif 6629 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF) 6630 case BPF_LWT_ENCAP_IP: 6631 return bpf_push_ip_encap(skb, hdr, len, true /* ingress */); 6632 #endif 6633 default: 6634 return -EINVAL; 6635 } 6636 } 6637 6638 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type, 6639 void *, hdr, u32, len) 6640 { 6641 switch (type) { 6642 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF) 6643 case BPF_LWT_ENCAP_IP: 6644 return bpf_push_ip_encap(skb, hdr, len, false /* egress */); 6645 #endif 6646 default: 6647 return -EINVAL; 6648 } 6649 } 6650 6651 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = { 6652 .func = bpf_lwt_in_push_encap, 6653 .gpl_only = false, 6654 .ret_type = RET_INTEGER, 6655 .arg1_type = ARG_PTR_TO_CTX, 6656 .arg2_type = ARG_ANYTHING, 6657 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY, 6658 .arg4_type = ARG_CONST_SIZE 6659 }; 6660 6661 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = { 6662 .func = bpf_lwt_xmit_push_encap, 6663 .gpl_only = false, 6664 .ret_type = RET_INTEGER, 6665 .arg1_type = ARG_PTR_TO_CTX, 6666 .arg2_type = ARG_ANYTHING, 6667 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY, 6668 .arg4_type = ARG_CONST_SIZE 6669 }; 6670 6671 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF) 6672 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset, 6673 const void *, from, u32, len) 6674 { 6675 struct seg6_bpf_srh_state *srh_state = 6676 this_cpu_ptr(&seg6_bpf_srh_states); 6677 struct ipv6_sr_hdr *srh = srh_state->srh; 6678 void *srh_tlvs, *srh_end, *ptr; 6679 int srhoff = 0; 6680 6681 lockdep_assert_held(&srh_state->bh_lock); 6682 if (srh == NULL) 6683 return -EINVAL; 6684 6685 srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4)); 6686 srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen); 6687 6688 ptr = skb->data + offset; 6689 if (ptr >= srh_tlvs && ptr + len <= srh_end) 6690 srh_state->valid = false; 6691 else if (ptr < (void *)&srh->flags || 6692 ptr + len > (void *)&srh->segments) 6693 return -EFAULT; 6694 6695 if (unlikely(bpf_try_make_writable(skb, offset + len))) 6696 return -EFAULT; 6697 if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) 6698 return -EINVAL; 6699 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff); 6700 6701 memcpy(skb->data + offset, from, len); 6702 return 0; 6703 } 6704 6705 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = { 6706 .func = bpf_lwt_seg6_store_bytes, 6707 .gpl_only = false, 6708 .ret_type = RET_INTEGER, 6709 .arg1_type = ARG_PTR_TO_CTX, 6710 .arg2_type = ARG_ANYTHING, 6711 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY, 6712 .arg4_type = ARG_CONST_SIZE 6713 }; 6714 6715 static void bpf_update_srh_state(struct sk_buff *skb) 6716 { 6717 struct seg6_bpf_srh_state *srh_state = 6718 this_cpu_ptr(&seg6_bpf_srh_states); 6719 int srhoff = 0; 6720 6721 if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) { 6722 srh_state->srh = NULL; 6723 } else { 6724 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff); 6725 srh_state->hdrlen = srh_state->srh->hdrlen << 3; 6726 srh_state->valid = true; 6727 } 6728 } 6729 6730 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb, 6731 u32, action, void *, param, u32, param_len) 6732 { 6733 struct seg6_bpf_srh_state *srh_state = 6734 this_cpu_ptr(&seg6_bpf_srh_states); 6735 int hdroff = 0; 6736 int err; 6737 6738 lockdep_assert_held(&srh_state->bh_lock); 6739 switch (action) { 6740 case SEG6_LOCAL_ACTION_END_X: 6741 if (!seg6_bpf_has_valid_srh(skb)) 6742 return -EBADMSG; 6743 if (param_len != sizeof(struct in6_addr)) 6744 return -EINVAL; 6745 return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0); 6746 case SEG6_LOCAL_ACTION_END_T: 6747 if (!seg6_bpf_has_valid_srh(skb)) 6748 return -EBADMSG; 6749 if (param_len != sizeof(int)) 6750 return -EINVAL; 6751 return seg6_lookup_nexthop(skb, NULL, *(int *)param); 6752 case SEG6_LOCAL_ACTION_END_DT6: 6753 if (!seg6_bpf_has_valid_srh(skb)) 6754 return -EBADMSG; 6755 if (param_len != sizeof(int)) 6756 return -EINVAL; 6757 6758 if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0) 6759 return -EBADMSG; 6760 if (!pskb_pull(skb, hdroff)) 6761 return -EBADMSG; 6762 6763 skb_postpull_rcsum(skb, skb_network_header(skb), hdroff); 6764 skb_reset_network_header(skb); 6765 skb_reset_transport_header(skb); 6766 skb->encapsulation = 0; 6767 6768 bpf_compute_data_pointers(skb); 6769 bpf_update_srh_state(skb); 6770 return seg6_lookup_nexthop(skb, NULL, *(int *)param); 6771 case SEG6_LOCAL_ACTION_END_B6: 6772 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb)) 6773 return -EBADMSG; 6774 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE, 6775 param, param_len); 6776 if (!err) 6777 bpf_update_srh_state(skb); 6778 6779 return err; 6780 case SEG6_LOCAL_ACTION_END_B6_ENCAP: 6781 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb)) 6782 return -EBADMSG; 6783 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6, 6784 param, param_len); 6785 if (!err) 6786 bpf_update_srh_state(skb); 6787 6788 return err; 6789 default: 6790 return -EINVAL; 6791 } 6792 } 6793 6794 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = { 6795 .func = bpf_lwt_seg6_action, 6796 .gpl_only = false, 6797 .ret_type = RET_INTEGER, 6798 .arg1_type = ARG_PTR_TO_CTX, 6799 .arg2_type = ARG_ANYTHING, 6800 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY, 6801 .arg4_type = ARG_CONST_SIZE 6802 }; 6803 6804 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset, 6805 s32, len) 6806 { 6807 struct seg6_bpf_srh_state *srh_state = 6808 this_cpu_ptr(&seg6_bpf_srh_states); 6809 struct ipv6_sr_hdr *srh = srh_state->srh; 6810 void *srh_end, *srh_tlvs, *ptr; 6811 struct ipv6hdr *hdr; 6812 int srhoff = 0; 6813 int ret; 6814 6815 lockdep_assert_held(&srh_state->bh_lock); 6816 if (unlikely(srh == NULL)) 6817 return -EINVAL; 6818 6819 srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) + 6820 ((srh->first_segment + 1) << 4)); 6821 srh_end = (void *)((unsigned char *)srh + sizeof(*srh) + 6822 srh_state->hdrlen); 6823 ptr = skb->data + offset; 6824 6825 if (unlikely(ptr < srh_tlvs || ptr > srh_end)) 6826 return -EFAULT; 6827 if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end)) 6828 return -EFAULT; 6829 6830 if (len > 0) { 6831 ret = skb_cow_head(skb, len); 6832 if (unlikely(ret < 0)) 6833 return ret; 6834 6835 ret = bpf_skb_net_hdr_push(skb, offset, len); 6836 } else { 6837 ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len); 6838 } 6839 6840 bpf_compute_data_pointers(skb); 6841 if (unlikely(ret < 0)) 6842 return ret; 6843 6844 hdr = (struct ipv6hdr *)skb->data; 6845 hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr)); 6846 6847 if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) 6848 return -EINVAL; 6849 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff); 6850 srh_state->hdrlen += len; 6851 srh_state->valid = false; 6852 return 0; 6853 } 6854 6855 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = { 6856 .func = bpf_lwt_seg6_adjust_srh, 6857 .gpl_only = false, 6858 .ret_type = RET_INTEGER, 6859 .arg1_type = ARG_PTR_TO_CTX, 6860 .arg2_type = ARG_ANYTHING, 6861 .arg3_type = ARG_ANYTHING, 6862 }; 6863 #endif /* CONFIG_IPV6_SEG6_BPF */ 6864 6865 #ifdef CONFIG_INET 6866 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple, 6867 int dif, int sdif, u8 family, u8 proto) 6868 { 6869 bool refcounted = false; 6870 struct sock *sk = NULL; 6871 6872 if (family == AF_INET) { 6873 __be32 src4 = tuple->ipv4.saddr; 6874 __be32 dst4 = tuple->ipv4.daddr; 6875 6876 if (proto == IPPROTO_TCP) 6877 sk = __inet_lookup(net, NULL, 0, 6878 src4, tuple->ipv4.sport, 6879 dst4, tuple->ipv4.dport, 6880 dif, sdif, &refcounted); 6881 else 6882 sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport, 6883 dst4, tuple->ipv4.dport, 6884 dif, sdif, net->ipv4.udp_table, NULL); 6885 #if IS_ENABLED(CONFIG_IPV6) 6886 } else { 6887 struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr; 6888 struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr; 6889 6890 if (proto == IPPROTO_TCP) 6891 sk = __inet6_lookup(net, NULL, 0, 6892 src6, tuple->ipv6.sport, 6893 dst6, ntohs(tuple->ipv6.dport), 6894 dif, sdif, &refcounted); 6895 else if (likely(ipv6_bpf_stub)) 6896 sk = ipv6_bpf_stub->udp6_lib_lookup(net, 6897 src6, tuple->ipv6.sport, 6898 dst6, tuple->ipv6.dport, 6899 dif, sdif, 6900 net->ipv4.udp_table, NULL); 6901 #endif 6902 } 6903 6904 if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) { 6905 WARN_ONCE(1, "Found non-RCU, unreferenced socket!"); 6906 sk = NULL; 6907 } 6908 return sk; 6909 } 6910 6911 /* bpf_skc_lookup performs the core lookup for different types of sockets, 6912 * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE. 6913 */ 6914 static struct sock * 6915 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len, 6916 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id, 6917 u64 flags, int sdif) 6918 { 6919 struct sock *sk = NULL; 6920 struct net *net; 6921 u8 family; 6922 6923 if (len == sizeof(tuple->ipv4)) 6924 family = AF_INET; 6925 else if (len == sizeof(tuple->ipv6)) 6926 family = AF_INET6; 6927 else 6928 return NULL; 6929 6930 if (unlikely(flags || !((s32)netns_id < 0 || netns_id <= S32_MAX))) 6931 goto out; 6932 6933 if (sdif < 0) { 6934 if (family == AF_INET) 6935 sdif = inet_sdif(skb); 6936 else 6937 sdif = inet6_sdif(skb); 6938 } 6939 6940 if ((s32)netns_id < 0) { 6941 net = caller_net; 6942 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto); 6943 } else { 6944 net = get_net_ns_by_id(caller_net, netns_id); 6945 if (unlikely(!net)) 6946 goto out; 6947 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto); 6948 put_net(net); 6949 } 6950 6951 out: 6952 return sk; 6953 } 6954 6955 static struct sock * 6956 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len, 6957 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id, 6958 u64 flags, int sdif) 6959 { 6960 struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net, 6961 ifindex, proto, netns_id, flags, 6962 sdif); 6963 6964 if (sk) { 6965 struct sock *sk2 = sk_to_full_sk(sk); 6966 6967 /* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk 6968 * sock refcnt is decremented to prevent a request_sock leak. 6969 */ 6970 if (sk2 != sk) { 6971 sock_gen_put(sk); 6972 /* Ensure there is no need to bump sk2 refcnt */ 6973 if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) { 6974 WARN_ONCE(1, "Found non-RCU, unreferenced socket!"); 6975 return NULL; 6976 } 6977 sk = sk2; 6978 } 6979 } 6980 6981 return sk; 6982 } 6983 6984 static struct sock * 6985 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len, 6986 u8 proto, u64 netns_id, u64 flags) 6987 { 6988 struct net *caller_net; 6989 int ifindex; 6990 6991 if (skb->dev) { 6992 caller_net = dev_net(skb->dev); 6993 ifindex = skb->dev->ifindex; 6994 } else { 6995 caller_net = sock_net(skb->sk); 6996 ifindex = 0; 6997 } 6998 6999 return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto, 7000 netns_id, flags, -1); 7001 } 7002 7003 static struct sock * 7004 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len, 7005 u8 proto, u64 netns_id, u64 flags) 7006 { 7007 struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id, 7008 flags); 7009 7010 if (sk) { 7011 struct sock *sk2 = sk_to_full_sk(sk); 7012 7013 /* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk 7014 * sock refcnt is decremented to prevent a request_sock leak. 7015 */ 7016 if (sk2 != sk) { 7017 sock_gen_put(sk); 7018 /* Ensure there is no need to bump sk2 refcnt */ 7019 if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) { 7020 WARN_ONCE(1, "Found non-RCU, unreferenced socket!"); 7021 return NULL; 7022 } 7023 sk = sk2; 7024 } 7025 } 7026 7027 return sk; 7028 } 7029 7030 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb, 7031 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags) 7032 { 7033 return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP, 7034 netns_id, flags); 7035 } 7036 7037 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = { 7038 .func = bpf_skc_lookup_tcp, 7039 .gpl_only = false, 7040 .pkt_access = true, 7041 .ret_type = RET_PTR_TO_SOCK_COMMON_OR_NULL, 7042 .arg1_type = ARG_PTR_TO_CTX, 7043 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 7044 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 7045 .arg4_type = ARG_ANYTHING, 7046 .arg5_type = ARG_ANYTHING, 7047 }; 7048 7049 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb, 7050 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags) 7051 { 7052 return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP, 7053 netns_id, flags); 7054 } 7055 7056 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = { 7057 .func = bpf_sk_lookup_tcp, 7058 .gpl_only = false, 7059 .pkt_access = true, 7060 .ret_type = RET_PTR_TO_SOCKET_OR_NULL, 7061 .arg1_type = ARG_PTR_TO_CTX, 7062 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 7063 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 7064 .arg4_type = ARG_ANYTHING, 7065 .arg5_type = ARG_ANYTHING, 7066 }; 7067 7068 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb, 7069 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags) 7070 { 7071 return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP, 7072 netns_id, flags); 7073 } 7074 7075 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = { 7076 .func = bpf_sk_lookup_udp, 7077 .gpl_only = false, 7078 .pkt_access = true, 7079 .ret_type = RET_PTR_TO_SOCKET_OR_NULL, 7080 .arg1_type = ARG_PTR_TO_CTX, 7081 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 7082 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 7083 .arg4_type = ARG_ANYTHING, 7084 .arg5_type = ARG_ANYTHING, 7085 }; 7086 7087 BPF_CALL_5(bpf_tc_skc_lookup_tcp, struct sk_buff *, skb, 7088 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags) 7089 { 7090 struct net_device *dev = skb->dev; 7091 int ifindex = dev->ifindex, sdif = dev_sdif(dev); 7092 struct net *caller_net = dev_net(dev); 7093 7094 return (unsigned long)__bpf_skc_lookup(skb, tuple, len, caller_net, 7095 ifindex, IPPROTO_TCP, netns_id, 7096 flags, sdif); 7097 } 7098 7099 static const struct bpf_func_proto bpf_tc_skc_lookup_tcp_proto = { 7100 .func = bpf_tc_skc_lookup_tcp, 7101 .gpl_only = false, 7102 .pkt_access = true, 7103 .ret_type = RET_PTR_TO_SOCK_COMMON_OR_NULL, 7104 .arg1_type = ARG_PTR_TO_CTX, 7105 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 7106 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 7107 .arg4_type = ARG_ANYTHING, 7108 .arg5_type = ARG_ANYTHING, 7109 }; 7110 7111 BPF_CALL_5(bpf_tc_sk_lookup_tcp, struct sk_buff *, skb, 7112 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags) 7113 { 7114 struct net_device *dev = skb->dev; 7115 int ifindex = dev->ifindex, sdif = dev_sdif(dev); 7116 struct net *caller_net = dev_net(dev); 7117 7118 return (unsigned long)__bpf_sk_lookup(skb, tuple, len, caller_net, 7119 ifindex, IPPROTO_TCP, netns_id, 7120 flags, sdif); 7121 } 7122 7123 static const struct bpf_func_proto bpf_tc_sk_lookup_tcp_proto = { 7124 .func = bpf_tc_sk_lookup_tcp, 7125 .gpl_only = false, 7126 .pkt_access = true, 7127 .ret_type = RET_PTR_TO_SOCKET_OR_NULL, 7128 .arg1_type = ARG_PTR_TO_CTX, 7129 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 7130 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 7131 .arg4_type = ARG_ANYTHING, 7132 .arg5_type = ARG_ANYTHING, 7133 }; 7134 7135 BPF_CALL_5(bpf_tc_sk_lookup_udp, struct sk_buff *, skb, 7136 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags) 7137 { 7138 struct net_device *dev = skb->dev; 7139 int ifindex = dev->ifindex, sdif = dev_sdif(dev); 7140 struct net *caller_net = dev_net(dev); 7141 7142 return (unsigned long)__bpf_sk_lookup(skb, tuple, len, caller_net, 7143 ifindex, IPPROTO_UDP, netns_id, 7144 flags, sdif); 7145 } 7146 7147 static const struct bpf_func_proto bpf_tc_sk_lookup_udp_proto = { 7148 .func = bpf_tc_sk_lookup_udp, 7149 .gpl_only = false, 7150 .pkt_access = true, 7151 .ret_type = RET_PTR_TO_SOCKET_OR_NULL, 7152 .arg1_type = ARG_PTR_TO_CTX, 7153 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 7154 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 7155 .arg4_type = ARG_ANYTHING, 7156 .arg5_type = ARG_ANYTHING, 7157 }; 7158 7159 BPF_CALL_1(bpf_sk_release, struct sock *, sk) 7160 { 7161 if (sk && sk_is_refcounted(sk)) 7162 sock_gen_put(sk); 7163 return 0; 7164 } 7165 7166 static const struct bpf_func_proto bpf_sk_release_proto = { 7167 .func = bpf_sk_release, 7168 .gpl_only = false, 7169 .ret_type = RET_INTEGER, 7170 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON | OBJ_RELEASE, 7171 }; 7172 7173 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx, 7174 struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags) 7175 { 7176 struct net_device *dev = ctx->rxq->dev; 7177 int ifindex = dev->ifindex, sdif = dev_sdif(dev); 7178 struct net *caller_net = dev_net(dev); 7179 7180 return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net, 7181 ifindex, IPPROTO_UDP, netns_id, 7182 flags, sdif); 7183 } 7184 7185 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = { 7186 .func = bpf_xdp_sk_lookup_udp, 7187 .gpl_only = false, 7188 .pkt_access = true, 7189 .ret_type = RET_PTR_TO_SOCKET_OR_NULL, 7190 .arg1_type = ARG_PTR_TO_CTX, 7191 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 7192 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 7193 .arg4_type = ARG_ANYTHING, 7194 .arg5_type = ARG_ANYTHING, 7195 }; 7196 7197 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx, 7198 struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags) 7199 { 7200 struct net_device *dev = ctx->rxq->dev; 7201 int ifindex = dev->ifindex, sdif = dev_sdif(dev); 7202 struct net *caller_net = dev_net(dev); 7203 7204 return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net, 7205 ifindex, IPPROTO_TCP, netns_id, 7206 flags, sdif); 7207 } 7208 7209 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = { 7210 .func = bpf_xdp_skc_lookup_tcp, 7211 .gpl_only = false, 7212 .pkt_access = true, 7213 .ret_type = RET_PTR_TO_SOCK_COMMON_OR_NULL, 7214 .arg1_type = ARG_PTR_TO_CTX, 7215 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 7216 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 7217 .arg4_type = ARG_ANYTHING, 7218 .arg5_type = ARG_ANYTHING, 7219 }; 7220 7221 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx, 7222 struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags) 7223 { 7224 struct net_device *dev = ctx->rxq->dev; 7225 int ifindex = dev->ifindex, sdif = dev_sdif(dev); 7226 struct net *caller_net = dev_net(dev); 7227 7228 return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net, 7229 ifindex, IPPROTO_TCP, netns_id, 7230 flags, sdif); 7231 } 7232 7233 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = { 7234 .func = bpf_xdp_sk_lookup_tcp, 7235 .gpl_only = false, 7236 .pkt_access = true, 7237 .ret_type = RET_PTR_TO_SOCKET_OR_NULL, 7238 .arg1_type = ARG_PTR_TO_CTX, 7239 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 7240 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 7241 .arg4_type = ARG_ANYTHING, 7242 .arg5_type = ARG_ANYTHING, 7243 }; 7244 7245 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx, 7246 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags) 7247 { 7248 return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, 7249 sock_net(ctx->sk), 0, 7250 IPPROTO_TCP, netns_id, flags, 7251 -1); 7252 } 7253 7254 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = { 7255 .func = bpf_sock_addr_skc_lookup_tcp, 7256 .gpl_only = false, 7257 .ret_type = RET_PTR_TO_SOCK_COMMON_OR_NULL, 7258 .arg1_type = ARG_PTR_TO_CTX, 7259 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 7260 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 7261 .arg4_type = ARG_ANYTHING, 7262 .arg5_type = ARG_ANYTHING, 7263 }; 7264 7265 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx, 7266 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags) 7267 { 7268 return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, 7269 sock_net(ctx->sk), 0, IPPROTO_TCP, 7270 netns_id, flags, -1); 7271 } 7272 7273 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = { 7274 .func = bpf_sock_addr_sk_lookup_tcp, 7275 .gpl_only = false, 7276 .ret_type = RET_PTR_TO_SOCKET_OR_NULL, 7277 .arg1_type = ARG_PTR_TO_CTX, 7278 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 7279 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 7280 .arg4_type = ARG_ANYTHING, 7281 .arg5_type = ARG_ANYTHING, 7282 }; 7283 7284 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx, 7285 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags) 7286 { 7287 return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, 7288 sock_net(ctx->sk), 0, IPPROTO_UDP, 7289 netns_id, flags, -1); 7290 } 7291 7292 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = { 7293 .func = bpf_sock_addr_sk_lookup_udp, 7294 .gpl_only = false, 7295 .ret_type = RET_PTR_TO_SOCKET_OR_NULL, 7296 .arg1_type = ARG_PTR_TO_CTX, 7297 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 7298 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 7299 .arg4_type = ARG_ANYTHING, 7300 .arg5_type = ARG_ANYTHING, 7301 }; 7302 7303 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type, 7304 struct bpf_insn_access_aux *info) 7305 { 7306 if (off < 0 || off >= offsetofend(struct bpf_tcp_sock, 7307 icsk_retransmits)) 7308 return false; 7309 7310 if (off % size != 0) 7311 return false; 7312 7313 switch (off) { 7314 case offsetof(struct bpf_tcp_sock, bytes_received): 7315 case offsetof(struct bpf_tcp_sock, bytes_acked): 7316 return size == sizeof(__u64); 7317 default: 7318 return size == sizeof(__u32); 7319 } 7320 } 7321 7322 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type, 7323 const struct bpf_insn *si, 7324 struct bpf_insn *insn_buf, 7325 struct bpf_prog *prog, u32 *target_size) 7326 { 7327 struct bpf_insn *insn = insn_buf; 7328 7329 #define BPF_TCP_SOCK_GET_COMMON(FIELD) \ 7330 do { \ 7331 BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) > \ 7332 sizeof_field(struct bpf_tcp_sock, FIELD)); \ 7333 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\ 7334 si->dst_reg, si->src_reg, \ 7335 offsetof(struct tcp_sock, FIELD)); \ 7336 } while (0) 7337 7338 #define BPF_INET_SOCK_GET_COMMON(FIELD) \ 7339 do { \ 7340 BUILD_BUG_ON(sizeof_field(struct inet_connection_sock, \ 7341 FIELD) > \ 7342 sizeof_field(struct bpf_tcp_sock, FIELD)); \ 7343 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \ 7344 struct inet_connection_sock, \ 7345 FIELD), \ 7346 si->dst_reg, si->src_reg, \ 7347 offsetof( \ 7348 struct inet_connection_sock, \ 7349 FIELD)); \ 7350 } while (0) 7351 7352 BTF_TYPE_EMIT(struct bpf_tcp_sock); 7353 7354 switch (si->off) { 7355 case offsetof(struct bpf_tcp_sock, rtt_min): 7356 BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) != 7357 sizeof(struct minmax)); 7358 BUILD_BUG_ON(sizeof(struct minmax) < 7359 sizeof(struct minmax_sample)); 7360 7361 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, 7362 offsetof(struct tcp_sock, rtt_min) + 7363 offsetof(struct minmax_sample, v)); 7364 break; 7365 case offsetof(struct bpf_tcp_sock, snd_cwnd): 7366 BPF_TCP_SOCK_GET_COMMON(snd_cwnd); 7367 break; 7368 case offsetof(struct bpf_tcp_sock, srtt_us): 7369 BPF_TCP_SOCK_GET_COMMON(srtt_us); 7370 break; 7371 case offsetof(struct bpf_tcp_sock, snd_ssthresh): 7372 BPF_TCP_SOCK_GET_COMMON(snd_ssthresh); 7373 break; 7374 case offsetof(struct bpf_tcp_sock, rcv_nxt): 7375 BPF_TCP_SOCK_GET_COMMON(rcv_nxt); 7376 break; 7377 case offsetof(struct bpf_tcp_sock, snd_nxt): 7378 BPF_TCP_SOCK_GET_COMMON(snd_nxt); 7379 break; 7380 case offsetof(struct bpf_tcp_sock, snd_una): 7381 BPF_TCP_SOCK_GET_COMMON(snd_una); 7382 break; 7383 case offsetof(struct bpf_tcp_sock, mss_cache): 7384 BPF_TCP_SOCK_GET_COMMON(mss_cache); 7385 break; 7386 case offsetof(struct bpf_tcp_sock, ecn_flags): 7387 BPF_TCP_SOCK_GET_COMMON(ecn_flags); 7388 break; 7389 case offsetof(struct bpf_tcp_sock, rate_delivered): 7390 BPF_TCP_SOCK_GET_COMMON(rate_delivered); 7391 break; 7392 case offsetof(struct bpf_tcp_sock, rate_interval_us): 7393 BPF_TCP_SOCK_GET_COMMON(rate_interval_us); 7394 break; 7395 case offsetof(struct bpf_tcp_sock, packets_out): 7396 BPF_TCP_SOCK_GET_COMMON(packets_out); 7397 break; 7398 case offsetof(struct bpf_tcp_sock, retrans_out): 7399 BPF_TCP_SOCK_GET_COMMON(retrans_out); 7400 break; 7401 case offsetof(struct bpf_tcp_sock, total_retrans): 7402 BPF_TCP_SOCK_GET_COMMON(total_retrans); 7403 break; 7404 case offsetof(struct bpf_tcp_sock, segs_in): 7405 BPF_TCP_SOCK_GET_COMMON(segs_in); 7406 break; 7407 case offsetof(struct bpf_tcp_sock, data_segs_in): 7408 BPF_TCP_SOCK_GET_COMMON(data_segs_in); 7409 break; 7410 case offsetof(struct bpf_tcp_sock, segs_out): 7411 BPF_TCP_SOCK_GET_COMMON(segs_out); 7412 break; 7413 case offsetof(struct bpf_tcp_sock, data_segs_out): 7414 BPF_TCP_SOCK_GET_COMMON(data_segs_out); 7415 break; 7416 case offsetof(struct bpf_tcp_sock, lost_out): 7417 BPF_TCP_SOCK_GET_COMMON(lost_out); 7418 break; 7419 case offsetof(struct bpf_tcp_sock, sacked_out): 7420 BPF_TCP_SOCK_GET_COMMON(sacked_out); 7421 break; 7422 case offsetof(struct bpf_tcp_sock, bytes_received): 7423 BPF_TCP_SOCK_GET_COMMON(bytes_received); 7424 break; 7425 case offsetof(struct bpf_tcp_sock, bytes_acked): 7426 BPF_TCP_SOCK_GET_COMMON(bytes_acked); 7427 break; 7428 case offsetof(struct bpf_tcp_sock, dsack_dups): 7429 BPF_TCP_SOCK_GET_COMMON(dsack_dups); 7430 break; 7431 case offsetof(struct bpf_tcp_sock, delivered): 7432 BPF_TCP_SOCK_GET_COMMON(delivered); 7433 break; 7434 case offsetof(struct bpf_tcp_sock, delivered_ce): 7435 BPF_TCP_SOCK_GET_COMMON(delivered_ce); 7436 break; 7437 case offsetof(struct bpf_tcp_sock, icsk_retransmits): 7438 BPF_INET_SOCK_GET_COMMON(icsk_retransmits); 7439 break; 7440 } 7441 7442 return insn - insn_buf; 7443 } 7444 7445 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk) 7446 { 7447 if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP) 7448 return (unsigned long)sk; 7449 7450 return (unsigned long)NULL; 7451 } 7452 7453 const struct bpf_func_proto bpf_tcp_sock_proto = { 7454 .func = bpf_tcp_sock, 7455 .gpl_only = false, 7456 .ret_type = RET_PTR_TO_TCP_SOCK_OR_NULL, 7457 .arg1_type = ARG_PTR_TO_SOCK_COMMON, 7458 }; 7459 7460 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk) 7461 { 7462 sk = sk_to_full_sk(sk); 7463 7464 if (sk && sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE)) 7465 return (unsigned long)sk; 7466 7467 return (unsigned long)NULL; 7468 } 7469 7470 static const struct bpf_func_proto bpf_get_listener_sock_proto = { 7471 .func = bpf_get_listener_sock, 7472 .gpl_only = false, 7473 .ret_type = RET_PTR_TO_SOCKET_OR_NULL, 7474 .arg1_type = ARG_PTR_TO_SOCK_COMMON, 7475 }; 7476 7477 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb) 7478 { 7479 unsigned int iphdr_len; 7480 7481 switch (skb_protocol(skb, true)) { 7482 case cpu_to_be16(ETH_P_IP): 7483 iphdr_len = sizeof(struct iphdr); 7484 break; 7485 case cpu_to_be16(ETH_P_IPV6): 7486 iphdr_len = sizeof(struct ipv6hdr); 7487 break; 7488 default: 7489 return 0; 7490 } 7491 7492 if (skb_headlen(skb) < iphdr_len) 7493 return 0; 7494 7495 if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len)) 7496 return 0; 7497 7498 return INET_ECN_set_ce(skb); 7499 } 7500 7501 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type, 7502 struct bpf_insn_access_aux *info) 7503 { 7504 if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id)) 7505 return false; 7506 7507 if (off % size != 0) 7508 return false; 7509 7510 switch (off) { 7511 default: 7512 return size == sizeof(__u32); 7513 } 7514 } 7515 7516 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type, 7517 const struct bpf_insn *si, 7518 struct bpf_insn *insn_buf, 7519 struct bpf_prog *prog, u32 *target_size) 7520 { 7521 struct bpf_insn *insn = insn_buf; 7522 7523 #define BPF_XDP_SOCK_GET(FIELD) \ 7524 do { \ 7525 BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) > \ 7526 sizeof_field(struct bpf_xdp_sock, FIELD)); \ 7527 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\ 7528 si->dst_reg, si->src_reg, \ 7529 offsetof(struct xdp_sock, FIELD)); \ 7530 } while (0) 7531 7532 BTF_TYPE_EMIT(struct bpf_xdp_sock); 7533 7534 switch (si->off) { 7535 case offsetof(struct bpf_xdp_sock, queue_id): 7536 BPF_XDP_SOCK_GET(queue_id); 7537 break; 7538 } 7539 7540 return insn - insn_buf; 7541 } 7542 7543 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = { 7544 .func = bpf_skb_ecn_set_ce, 7545 .gpl_only = false, 7546 .ret_type = RET_INTEGER, 7547 .arg1_type = ARG_PTR_TO_CTX, 7548 }; 7549 7550 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len, 7551 struct tcphdr *, th, u32, th_len) 7552 { 7553 #ifdef CONFIG_SYN_COOKIES 7554 int ret; 7555 7556 if (unlikely(!sk || th_len < sizeof(*th))) 7557 return -EINVAL; 7558 7559 /* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */ 7560 if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN) 7561 return -EINVAL; 7562 7563 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies)) 7564 return -EINVAL; 7565 7566 if (!th->ack || th->rst || th->syn) 7567 return -ENOENT; 7568 7569 if (unlikely(iph_len < sizeof(struct iphdr))) 7570 return -EINVAL; 7571 7572 if (tcp_synq_no_recent_overflow(sk)) 7573 return -ENOENT; 7574 7575 /* Both struct iphdr and struct ipv6hdr have the version field at the 7576 * same offset so we can cast to the shorter header (struct iphdr). 7577 */ 7578 switch (((struct iphdr *)iph)->version) { 7579 case 4: 7580 if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk)) 7581 return -EINVAL; 7582 7583 ret = __cookie_v4_check((struct iphdr *)iph, th); 7584 break; 7585 7586 #if IS_BUILTIN(CONFIG_IPV6) 7587 case 6: 7588 if (unlikely(iph_len < sizeof(struct ipv6hdr))) 7589 return -EINVAL; 7590 7591 if (sk->sk_family != AF_INET6) 7592 return -EINVAL; 7593 7594 ret = __cookie_v6_check((struct ipv6hdr *)iph, th); 7595 break; 7596 #endif /* CONFIG_IPV6 */ 7597 7598 default: 7599 return -EPROTONOSUPPORT; 7600 } 7601 7602 if (ret > 0) 7603 return 0; 7604 7605 return -ENOENT; 7606 #else 7607 return -ENOTSUPP; 7608 #endif 7609 } 7610 7611 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = { 7612 .func = bpf_tcp_check_syncookie, 7613 .gpl_only = true, 7614 .pkt_access = true, 7615 .ret_type = RET_INTEGER, 7616 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON, 7617 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 7618 .arg3_type = ARG_CONST_SIZE, 7619 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, 7620 .arg5_type = ARG_CONST_SIZE, 7621 }; 7622 7623 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len, 7624 struct tcphdr *, th, u32, th_len) 7625 { 7626 #ifdef CONFIG_SYN_COOKIES 7627 u32 cookie; 7628 u16 mss; 7629 7630 if (unlikely(!sk || th_len < sizeof(*th) || th_len != th->doff * 4)) 7631 return -EINVAL; 7632 7633 if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN) 7634 return -EINVAL; 7635 7636 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies)) 7637 return -ENOENT; 7638 7639 if (!th->syn || th->ack || th->fin || th->rst) 7640 return -EINVAL; 7641 7642 if (unlikely(iph_len < sizeof(struct iphdr))) 7643 return -EINVAL; 7644 7645 /* Both struct iphdr and struct ipv6hdr have the version field at the 7646 * same offset so we can cast to the shorter header (struct iphdr). 7647 */ 7648 switch (((struct iphdr *)iph)->version) { 7649 case 4: 7650 if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk)) 7651 return -EINVAL; 7652 7653 mss = tcp_v4_get_syncookie(sk, iph, th, &cookie); 7654 break; 7655 7656 #if IS_BUILTIN(CONFIG_IPV6) 7657 case 6: 7658 if (unlikely(iph_len < sizeof(struct ipv6hdr))) 7659 return -EINVAL; 7660 7661 if (sk->sk_family != AF_INET6) 7662 return -EINVAL; 7663 7664 mss = tcp_v6_get_syncookie(sk, iph, th, &cookie); 7665 break; 7666 #endif /* CONFIG_IPV6 */ 7667 7668 default: 7669 return -EPROTONOSUPPORT; 7670 } 7671 if (mss == 0) 7672 return -ENOENT; 7673 7674 return cookie | ((u64)mss << 32); 7675 #else 7676 return -EOPNOTSUPP; 7677 #endif /* CONFIG_SYN_COOKIES */ 7678 } 7679 7680 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = { 7681 .func = bpf_tcp_gen_syncookie, 7682 .gpl_only = true, /* __cookie_v*_init_sequence() is GPL */ 7683 .pkt_access = true, 7684 .ret_type = RET_INTEGER, 7685 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON, 7686 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 7687 .arg3_type = ARG_CONST_SIZE, 7688 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, 7689 .arg5_type = ARG_CONST_SIZE, 7690 }; 7691 7692 BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags) 7693 { 7694 if (!sk || flags != 0) 7695 return -EINVAL; 7696 if (!skb_at_tc_ingress(skb)) 7697 return -EOPNOTSUPP; 7698 if (unlikely(dev_net(skb->dev) != sock_net(sk))) 7699 return -ENETUNREACH; 7700 if (sk_unhashed(sk)) 7701 return -EOPNOTSUPP; 7702 if (sk_is_refcounted(sk) && 7703 unlikely(!refcount_inc_not_zero(&sk->sk_refcnt))) 7704 return -ENOENT; 7705 7706 skb_orphan(skb); 7707 skb->sk = sk; 7708 skb->destructor = sock_pfree; 7709 7710 return 0; 7711 } 7712 7713 static const struct bpf_func_proto bpf_sk_assign_proto = { 7714 .func = bpf_sk_assign, 7715 .gpl_only = false, 7716 .ret_type = RET_INTEGER, 7717 .arg1_type = ARG_PTR_TO_CTX, 7718 .arg2_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON, 7719 .arg3_type = ARG_ANYTHING, 7720 }; 7721 7722 static const u8 *bpf_search_tcp_opt(const u8 *op, const u8 *opend, 7723 u8 search_kind, const u8 *magic, 7724 u8 magic_len, bool *eol) 7725 { 7726 u8 kind, kind_len; 7727 7728 *eol = false; 7729 7730 while (op < opend) { 7731 kind = op[0]; 7732 7733 if (kind == TCPOPT_EOL) { 7734 *eol = true; 7735 return ERR_PTR(-ENOMSG); 7736 } else if (kind == TCPOPT_NOP) { 7737 op++; 7738 continue; 7739 } 7740 7741 if (opend - op < 2 || opend - op < op[1] || op[1] < 2) 7742 /* Something is wrong in the received header. 7743 * Follow the TCP stack's tcp_parse_options() 7744 * and just bail here. 7745 */ 7746 return ERR_PTR(-EFAULT); 7747 7748 kind_len = op[1]; 7749 if (search_kind == kind) { 7750 if (!magic_len) 7751 return op; 7752 7753 if (magic_len > kind_len - 2) 7754 return ERR_PTR(-ENOMSG); 7755 7756 if (!memcmp(&op[2], magic, magic_len)) 7757 return op; 7758 } 7759 7760 op += kind_len; 7761 } 7762 7763 return ERR_PTR(-ENOMSG); 7764 } 7765 7766 BPF_CALL_4(bpf_sock_ops_load_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock, 7767 void *, search_res, u32, len, u64, flags) 7768 { 7769 bool eol, load_syn = flags & BPF_LOAD_HDR_OPT_TCP_SYN; 7770 const u8 *op, *opend, *magic, *search = search_res; 7771 u8 search_kind, search_len, copy_len, magic_len; 7772 int ret; 7773 7774 if (!is_locked_tcp_sock_ops(bpf_sock)) 7775 return -EOPNOTSUPP; 7776 7777 /* 2 byte is the minimal option len except TCPOPT_NOP and 7778 * TCPOPT_EOL which are useless for the bpf prog to learn 7779 * and this helper disallow loading them also. 7780 */ 7781 if (len < 2 || flags & ~BPF_LOAD_HDR_OPT_TCP_SYN) 7782 return -EINVAL; 7783 7784 search_kind = search[0]; 7785 search_len = search[1]; 7786 7787 if (search_len > len || search_kind == TCPOPT_NOP || 7788 search_kind == TCPOPT_EOL) 7789 return -EINVAL; 7790 7791 if (search_kind == TCPOPT_EXP || search_kind == 253) { 7792 /* 16 or 32 bit magic. +2 for kind and kind length */ 7793 if (search_len != 4 && search_len != 6) 7794 return -EINVAL; 7795 magic = &search[2]; 7796 magic_len = search_len - 2; 7797 } else { 7798 if (search_len) 7799 return -EINVAL; 7800 magic = NULL; 7801 magic_len = 0; 7802 } 7803 7804 if (load_syn) { 7805 ret = bpf_sock_ops_get_syn(bpf_sock, TCP_BPF_SYN, &op); 7806 if (ret < 0) 7807 return ret; 7808 7809 opend = op + ret; 7810 op += sizeof(struct tcphdr); 7811 } else { 7812 if (!bpf_sock->skb || 7813 bpf_sock->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB) 7814 /* This bpf_sock->op cannot call this helper */ 7815 return -EPERM; 7816 7817 opend = bpf_sock->skb_data_end; 7818 op = bpf_sock->skb->data + sizeof(struct tcphdr); 7819 } 7820 7821 op = bpf_search_tcp_opt(op, opend, search_kind, magic, magic_len, 7822 &eol); 7823 if (IS_ERR(op)) 7824 return PTR_ERR(op); 7825 7826 copy_len = op[1]; 7827 ret = copy_len; 7828 if (copy_len > len) { 7829 ret = -ENOSPC; 7830 copy_len = len; 7831 } 7832 7833 memcpy(search_res, op, copy_len); 7834 return ret; 7835 } 7836 7837 static const struct bpf_func_proto bpf_sock_ops_load_hdr_opt_proto = { 7838 .func = bpf_sock_ops_load_hdr_opt, 7839 .gpl_only = false, 7840 .ret_type = RET_INTEGER, 7841 .arg1_type = ARG_PTR_TO_CTX, 7842 .arg2_type = ARG_PTR_TO_MEM | MEM_WRITE, 7843 .arg3_type = ARG_CONST_SIZE, 7844 .arg4_type = ARG_ANYTHING, 7845 }; 7846 7847 BPF_CALL_4(bpf_sock_ops_store_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock, 7848 const void *, from, u32, len, u64, flags) 7849 { 7850 u8 new_kind, new_kind_len, magic_len = 0, *opend; 7851 const u8 *op, *new_op, *magic = NULL; 7852 struct sk_buff *skb; 7853 bool eol; 7854 7855 if (bpf_sock->op != BPF_SOCK_OPS_WRITE_HDR_OPT_CB) 7856 return -EPERM; 7857 7858 if (len < 2 || flags) 7859 return -EINVAL; 7860 7861 new_op = from; 7862 new_kind = new_op[0]; 7863 new_kind_len = new_op[1]; 7864 7865 if (new_kind_len > len || new_kind == TCPOPT_NOP || 7866 new_kind == TCPOPT_EOL) 7867 return -EINVAL; 7868 7869 if (new_kind_len > bpf_sock->remaining_opt_len) 7870 return -ENOSPC; 7871 7872 /* 253 is another experimental kind */ 7873 if (new_kind == TCPOPT_EXP || new_kind == 253) { 7874 if (new_kind_len < 4) 7875 return -EINVAL; 7876 /* Match for the 2 byte magic also. 7877 * RFC 6994: the magic could be 2 or 4 bytes. 7878 * Hence, matching by 2 byte only is on the 7879 * conservative side but it is the right 7880 * thing to do for the 'search-for-duplication' 7881 * purpose. 7882 */ 7883 magic = &new_op[2]; 7884 magic_len = 2; 7885 } 7886 7887 /* Check for duplication */ 7888 skb = bpf_sock->skb; 7889 op = skb->data + sizeof(struct tcphdr); 7890 opend = bpf_sock->skb_data_end; 7891 7892 op = bpf_search_tcp_opt(op, opend, new_kind, magic, magic_len, 7893 &eol); 7894 if (!IS_ERR(op)) 7895 return -EEXIST; 7896 7897 if (PTR_ERR(op) != -ENOMSG) 7898 return PTR_ERR(op); 7899 7900 if (eol) 7901 /* The option has been ended. Treat it as no more 7902 * header option can be written. 7903 */ 7904 return -ENOSPC; 7905 7906 /* No duplication found. Store the header option. */ 7907 memcpy(opend, from, new_kind_len); 7908 7909 bpf_sock->remaining_opt_len -= new_kind_len; 7910 bpf_sock->skb_data_end += new_kind_len; 7911 7912 return 0; 7913 } 7914 7915 static const struct bpf_func_proto bpf_sock_ops_store_hdr_opt_proto = { 7916 .func = bpf_sock_ops_store_hdr_opt, 7917 .gpl_only = false, 7918 .ret_type = RET_INTEGER, 7919 .arg1_type = ARG_PTR_TO_CTX, 7920 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 7921 .arg3_type = ARG_CONST_SIZE, 7922 .arg4_type = ARG_ANYTHING, 7923 }; 7924 7925 BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock, 7926 u32, len, u64, flags) 7927 { 7928 if (bpf_sock->op != BPF_SOCK_OPS_HDR_OPT_LEN_CB) 7929 return -EPERM; 7930 7931 if (flags || len < 2) 7932 return -EINVAL; 7933 7934 if (len > bpf_sock->remaining_opt_len) 7935 return -ENOSPC; 7936 7937 bpf_sock->remaining_opt_len -= len; 7938 7939 return 0; 7940 } 7941 7942 static const struct bpf_func_proto bpf_sock_ops_reserve_hdr_opt_proto = { 7943 .func = bpf_sock_ops_reserve_hdr_opt, 7944 .gpl_only = false, 7945 .ret_type = RET_INTEGER, 7946 .arg1_type = ARG_PTR_TO_CTX, 7947 .arg2_type = ARG_ANYTHING, 7948 .arg3_type = ARG_ANYTHING, 7949 }; 7950 7951 BPF_CALL_3(bpf_skb_set_tstamp, struct sk_buff *, skb, 7952 u64, tstamp, u32, tstamp_type) 7953 { 7954 /* skb_clear_delivery_time() is done for inet protocol */ 7955 if (skb->protocol != htons(ETH_P_IP) && 7956 skb->protocol != htons(ETH_P_IPV6)) 7957 return -EOPNOTSUPP; 7958 7959 switch (tstamp_type) { 7960 case BPF_SKB_CLOCK_REALTIME: 7961 skb->tstamp = tstamp; 7962 skb->tstamp_type = SKB_CLOCK_REALTIME; 7963 break; 7964 case BPF_SKB_CLOCK_MONOTONIC: 7965 if (!tstamp) 7966 return -EINVAL; 7967 skb->tstamp = tstamp; 7968 skb->tstamp_type = SKB_CLOCK_MONOTONIC; 7969 break; 7970 case BPF_SKB_CLOCK_TAI: 7971 if (!tstamp) 7972 return -EINVAL; 7973 skb->tstamp = tstamp; 7974 skb->tstamp_type = SKB_CLOCK_TAI; 7975 break; 7976 default: 7977 return -EINVAL; 7978 } 7979 7980 return 0; 7981 } 7982 7983 static const struct bpf_func_proto bpf_skb_set_tstamp_proto = { 7984 .func = bpf_skb_set_tstamp, 7985 .gpl_only = false, 7986 .ret_type = RET_INTEGER, 7987 .arg1_type = ARG_PTR_TO_CTX, 7988 .arg2_type = ARG_ANYTHING, 7989 .arg3_type = ARG_ANYTHING, 7990 }; 7991 7992 #ifdef CONFIG_SYN_COOKIES 7993 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv4, struct iphdr *, iph, 7994 struct tcphdr *, th, u32, th_len) 7995 { 7996 u32 cookie; 7997 u16 mss; 7998 7999 if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4)) 8000 return -EINVAL; 8001 8002 mss = tcp_parse_mss_option(th, 0) ?: TCP_MSS_DEFAULT; 8003 cookie = __cookie_v4_init_sequence(iph, th, &mss); 8004 8005 return cookie | ((u64)mss << 32); 8006 } 8007 8008 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv4_proto = { 8009 .func = bpf_tcp_raw_gen_syncookie_ipv4, 8010 .gpl_only = true, /* __cookie_v4_init_sequence() is GPL */ 8011 .pkt_access = true, 8012 .ret_type = RET_INTEGER, 8013 .arg1_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_RDONLY, 8014 .arg1_size = sizeof(struct iphdr), 8015 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 8016 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 8017 }; 8018 8019 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv6, struct ipv6hdr *, iph, 8020 struct tcphdr *, th, u32, th_len) 8021 { 8022 #if IS_BUILTIN(CONFIG_IPV6) 8023 const u16 mss_clamp = IPV6_MIN_MTU - sizeof(struct tcphdr) - 8024 sizeof(struct ipv6hdr); 8025 u32 cookie; 8026 u16 mss; 8027 8028 if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4)) 8029 return -EINVAL; 8030 8031 mss = tcp_parse_mss_option(th, 0) ?: mss_clamp; 8032 cookie = __cookie_v6_init_sequence(iph, th, &mss); 8033 8034 return cookie | ((u64)mss << 32); 8035 #else 8036 return -EPROTONOSUPPORT; 8037 #endif 8038 } 8039 8040 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv6_proto = { 8041 .func = bpf_tcp_raw_gen_syncookie_ipv6, 8042 .gpl_only = true, /* __cookie_v6_init_sequence() is GPL */ 8043 .pkt_access = true, 8044 .ret_type = RET_INTEGER, 8045 .arg1_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_RDONLY, 8046 .arg1_size = sizeof(struct ipv6hdr), 8047 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 8048 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 8049 }; 8050 8051 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv4, struct iphdr *, iph, 8052 struct tcphdr *, th) 8053 { 8054 if (__cookie_v4_check(iph, th) > 0) 8055 return 0; 8056 8057 return -EACCES; 8058 } 8059 8060 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv4_proto = { 8061 .func = bpf_tcp_raw_check_syncookie_ipv4, 8062 .gpl_only = true, /* __cookie_v4_check is GPL */ 8063 .pkt_access = true, 8064 .ret_type = RET_INTEGER, 8065 .arg1_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_RDONLY, 8066 .arg1_size = sizeof(struct iphdr), 8067 .arg2_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_RDONLY, 8068 .arg2_size = sizeof(struct tcphdr), 8069 }; 8070 8071 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv6, struct ipv6hdr *, iph, 8072 struct tcphdr *, th) 8073 { 8074 #if IS_BUILTIN(CONFIG_IPV6) 8075 if (__cookie_v6_check(iph, th) > 0) 8076 return 0; 8077 8078 return -EACCES; 8079 #else 8080 return -EPROTONOSUPPORT; 8081 #endif 8082 } 8083 8084 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv6_proto = { 8085 .func = bpf_tcp_raw_check_syncookie_ipv6, 8086 .gpl_only = true, /* __cookie_v6_check is GPL */ 8087 .pkt_access = true, 8088 .ret_type = RET_INTEGER, 8089 .arg1_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_RDONLY, 8090 .arg1_size = sizeof(struct ipv6hdr), 8091 .arg2_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_RDONLY, 8092 .arg2_size = sizeof(struct tcphdr), 8093 }; 8094 #endif /* CONFIG_SYN_COOKIES */ 8095 8096 #endif /* CONFIG_INET */ 8097 8098 bool bpf_helper_changes_pkt_data(enum bpf_func_id func_id) 8099 { 8100 switch (func_id) { 8101 case BPF_FUNC_clone_redirect: 8102 case BPF_FUNC_l3_csum_replace: 8103 case BPF_FUNC_l4_csum_replace: 8104 case BPF_FUNC_lwt_push_encap: 8105 case BPF_FUNC_lwt_seg6_action: 8106 case BPF_FUNC_lwt_seg6_adjust_srh: 8107 case BPF_FUNC_lwt_seg6_store_bytes: 8108 case BPF_FUNC_msg_pop_data: 8109 case BPF_FUNC_msg_pull_data: 8110 case BPF_FUNC_msg_push_data: 8111 case BPF_FUNC_skb_adjust_room: 8112 case BPF_FUNC_skb_change_head: 8113 case BPF_FUNC_skb_change_proto: 8114 case BPF_FUNC_skb_change_tail: 8115 case BPF_FUNC_skb_pull_data: 8116 case BPF_FUNC_skb_store_bytes: 8117 case BPF_FUNC_skb_vlan_pop: 8118 case BPF_FUNC_skb_vlan_push: 8119 case BPF_FUNC_store_hdr_opt: 8120 case BPF_FUNC_xdp_adjust_head: 8121 case BPF_FUNC_xdp_adjust_meta: 8122 case BPF_FUNC_xdp_adjust_tail: 8123 /* tail-called program could call any of the above */ 8124 case BPF_FUNC_tail_call: 8125 return true; 8126 default: 8127 return false; 8128 } 8129 } 8130 8131 const struct bpf_func_proto bpf_event_output_data_proto __weak; 8132 const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak; 8133 8134 static const struct bpf_func_proto * 8135 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 8136 { 8137 const struct bpf_func_proto *func_proto; 8138 8139 func_proto = cgroup_common_func_proto(func_id, prog); 8140 if (func_proto) 8141 return func_proto; 8142 8143 switch (func_id) { 8144 case BPF_FUNC_get_socket_cookie: 8145 return &bpf_get_socket_cookie_sock_proto; 8146 case BPF_FUNC_get_netns_cookie: 8147 return &bpf_get_netns_cookie_sock_proto; 8148 case BPF_FUNC_perf_event_output: 8149 return &bpf_event_output_data_proto; 8150 case BPF_FUNC_sk_storage_get: 8151 return &bpf_sk_storage_get_cg_sock_proto; 8152 case BPF_FUNC_ktime_get_coarse_ns: 8153 return &bpf_ktime_get_coarse_ns_proto; 8154 case BPF_FUNC_setsockopt: 8155 switch (prog->expected_attach_type) { 8156 case BPF_CGROUP_INET_SOCK_CREATE: 8157 return &bpf_sock_create_setsockopt_proto; 8158 default: 8159 return NULL; 8160 } 8161 case BPF_FUNC_getsockopt: 8162 switch (prog->expected_attach_type) { 8163 case BPF_CGROUP_INET_SOCK_CREATE: 8164 return &bpf_sock_create_getsockopt_proto; 8165 default: 8166 return NULL; 8167 } 8168 default: 8169 return bpf_base_func_proto(func_id, prog); 8170 } 8171 } 8172 8173 static const struct bpf_func_proto * 8174 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 8175 { 8176 const struct bpf_func_proto *func_proto; 8177 8178 func_proto = cgroup_common_func_proto(func_id, prog); 8179 if (func_proto) 8180 return func_proto; 8181 8182 switch (func_id) { 8183 case BPF_FUNC_bind: 8184 switch (prog->expected_attach_type) { 8185 case BPF_CGROUP_INET4_CONNECT: 8186 case BPF_CGROUP_INET6_CONNECT: 8187 return &bpf_bind_proto; 8188 default: 8189 return NULL; 8190 } 8191 case BPF_FUNC_get_socket_cookie: 8192 return &bpf_get_socket_cookie_sock_addr_proto; 8193 case BPF_FUNC_get_netns_cookie: 8194 return &bpf_get_netns_cookie_sock_addr_proto; 8195 case BPF_FUNC_perf_event_output: 8196 return &bpf_event_output_data_proto; 8197 #ifdef CONFIG_INET 8198 case BPF_FUNC_sk_lookup_tcp: 8199 return &bpf_sock_addr_sk_lookup_tcp_proto; 8200 case BPF_FUNC_sk_lookup_udp: 8201 return &bpf_sock_addr_sk_lookup_udp_proto; 8202 case BPF_FUNC_sk_release: 8203 return &bpf_sk_release_proto; 8204 case BPF_FUNC_skc_lookup_tcp: 8205 return &bpf_sock_addr_skc_lookup_tcp_proto; 8206 #endif /* CONFIG_INET */ 8207 case BPF_FUNC_sk_storage_get: 8208 return &bpf_sk_storage_get_proto; 8209 case BPF_FUNC_sk_storage_delete: 8210 return &bpf_sk_storage_delete_proto; 8211 case BPF_FUNC_setsockopt: 8212 switch (prog->expected_attach_type) { 8213 case BPF_CGROUP_INET4_BIND: 8214 case BPF_CGROUP_INET6_BIND: 8215 case BPF_CGROUP_INET4_CONNECT: 8216 case BPF_CGROUP_INET6_CONNECT: 8217 case BPF_CGROUP_UNIX_CONNECT: 8218 case BPF_CGROUP_UDP4_RECVMSG: 8219 case BPF_CGROUP_UDP6_RECVMSG: 8220 case BPF_CGROUP_UNIX_RECVMSG: 8221 case BPF_CGROUP_UDP4_SENDMSG: 8222 case BPF_CGROUP_UDP6_SENDMSG: 8223 case BPF_CGROUP_UNIX_SENDMSG: 8224 case BPF_CGROUP_INET4_GETPEERNAME: 8225 case BPF_CGROUP_INET6_GETPEERNAME: 8226 case BPF_CGROUP_UNIX_GETPEERNAME: 8227 case BPF_CGROUP_INET4_GETSOCKNAME: 8228 case BPF_CGROUP_INET6_GETSOCKNAME: 8229 case BPF_CGROUP_UNIX_GETSOCKNAME: 8230 return &bpf_sock_addr_setsockopt_proto; 8231 default: 8232 return NULL; 8233 } 8234 case BPF_FUNC_getsockopt: 8235 switch (prog->expected_attach_type) { 8236 case BPF_CGROUP_INET4_BIND: 8237 case BPF_CGROUP_INET6_BIND: 8238 case BPF_CGROUP_INET4_CONNECT: 8239 case BPF_CGROUP_INET6_CONNECT: 8240 case BPF_CGROUP_UNIX_CONNECT: 8241 case BPF_CGROUP_UDP4_RECVMSG: 8242 case BPF_CGROUP_UDP6_RECVMSG: 8243 case BPF_CGROUP_UNIX_RECVMSG: 8244 case BPF_CGROUP_UDP4_SENDMSG: 8245 case BPF_CGROUP_UDP6_SENDMSG: 8246 case BPF_CGROUP_UNIX_SENDMSG: 8247 case BPF_CGROUP_INET4_GETPEERNAME: 8248 case BPF_CGROUP_INET6_GETPEERNAME: 8249 case BPF_CGROUP_UNIX_GETPEERNAME: 8250 case BPF_CGROUP_INET4_GETSOCKNAME: 8251 case BPF_CGROUP_INET6_GETSOCKNAME: 8252 case BPF_CGROUP_UNIX_GETSOCKNAME: 8253 return &bpf_sock_addr_getsockopt_proto; 8254 default: 8255 return NULL; 8256 } 8257 default: 8258 return bpf_sk_base_func_proto(func_id, prog); 8259 } 8260 } 8261 8262 static const struct bpf_func_proto * 8263 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 8264 { 8265 switch (func_id) { 8266 case BPF_FUNC_skb_load_bytes: 8267 return &bpf_skb_load_bytes_proto; 8268 case BPF_FUNC_skb_load_bytes_relative: 8269 return &bpf_skb_load_bytes_relative_proto; 8270 case BPF_FUNC_get_socket_cookie: 8271 return &bpf_get_socket_cookie_proto; 8272 case BPF_FUNC_get_netns_cookie: 8273 return &bpf_get_netns_cookie_proto; 8274 case BPF_FUNC_get_socket_uid: 8275 return &bpf_get_socket_uid_proto; 8276 case BPF_FUNC_perf_event_output: 8277 return &bpf_skb_event_output_proto; 8278 default: 8279 return bpf_sk_base_func_proto(func_id, prog); 8280 } 8281 } 8282 8283 const struct bpf_func_proto bpf_sk_storage_get_proto __weak; 8284 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak; 8285 8286 static const struct bpf_func_proto * 8287 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 8288 { 8289 const struct bpf_func_proto *func_proto; 8290 8291 func_proto = cgroup_common_func_proto(func_id, prog); 8292 if (func_proto) 8293 return func_proto; 8294 8295 switch (func_id) { 8296 case BPF_FUNC_sk_fullsock: 8297 return &bpf_sk_fullsock_proto; 8298 case BPF_FUNC_sk_storage_get: 8299 return &bpf_sk_storage_get_proto; 8300 case BPF_FUNC_sk_storage_delete: 8301 return &bpf_sk_storage_delete_proto; 8302 case BPF_FUNC_perf_event_output: 8303 return &bpf_skb_event_output_proto; 8304 #ifdef CONFIG_SOCK_CGROUP_DATA 8305 case BPF_FUNC_skb_cgroup_id: 8306 return &bpf_skb_cgroup_id_proto; 8307 case BPF_FUNC_skb_ancestor_cgroup_id: 8308 return &bpf_skb_ancestor_cgroup_id_proto; 8309 case BPF_FUNC_sk_cgroup_id: 8310 return &bpf_sk_cgroup_id_proto; 8311 case BPF_FUNC_sk_ancestor_cgroup_id: 8312 return &bpf_sk_ancestor_cgroup_id_proto; 8313 #endif 8314 #ifdef CONFIG_INET 8315 case BPF_FUNC_sk_lookup_tcp: 8316 return &bpf_sk_lookup_tcp_proto; 8317 case BPF_FUNC_sk_lookup_udp: 8318 return &bpf_sk_lookup_udp_proto; 8319 case BPF_FUNC_sk_release: 8320 return &bpf_sk_release_proto; 8321 case BPF_FUNC_skc_lookup_tcp: 8322 return &bpf_skc_lookup_tcp_proto; 8323 case BPF_FUNC_tcp_sock: 8324 return &bpf_tcp_sock_proto; 8325 case BPF_FUNC_get_listener_sock: 8326 return &bpf_get_listener_sock_proto; 8327 case BPF_FUNC_skb_ecn_set_ce: 8328 return &bpf_skb_ecn_set_ce_proto; 8329 #endif 8330 default: 8331 return sk_filter_func_proto(func_id, prog); 8332 } 8333 } 8334 8335 static const struct bpf_func_proto * 8336 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 8337 { 8338 switch (func_id) { 8339 case BPF_FUNC_skb_store_bytes: 8340 return &bpf_skb_store_bytes_proto; 8341 case BPF_FUNC_skb_load_bytes: 8342 return &bpf_skb_load_bytes_proto; 8343 case BPF_FUNC_skb_load_bytes_relative: 8344 return &bpf_skb_load_bytes_relative_proto; 8345 case BPF_FUNC_skb_pull_data: 8346 return &bpf_skb_pull_data_proto; 8347 case BPF_FUNC_csum_diff: 8348 return &bpf_csum_diff_proto; 8349 case BPF_FUNC_csum_update: 8350 return &bpf_csum_update_proto; 8351 case BPF_FUNC_csum_level: 8352 return &bpf_csum_level_proto; 8353 case BPF_FUNC_l3_csum_replace: 8354 return &bpf_l3_csum_replace_proto; 8355 case BPF_FUNC_l4_csum_replace: 8356 return &bpf_l4_csum_replace_proto; 8357 case BPF_FUNC_clone_redirect: 8358 return &bpf_clone_redirect_proto; 8359 case BPF_FUNC_get_cgroup_classid: 8360 return &bpf_get_cgroup_classid_proto; 8361 case BPF_FUNC_skb_vlan_push: 8362 return &bpf_skb_vlan_push_proto; 8363 case BPF_FUNC_skb_vlan_pop: 8364 return &bpf_skb_vlan_pop_proto; 8365 case BPF_FUNC_skb_change_proto: 8366 return &bpf_skb_change_proto_proto; 8367 case BPF_FUNC_skb_change_type: 8368 return &bpf_skb_change_type_proto; 8369 case BPF_FUNC_skb_adjust_room: 8370 return &bpf_skb_adjust_room_proto; 8371 case BPF_FUNC_skb_change_tail: 8372 return &bpf_skb_change_tail_proto; 8373 case BPF_FUNC_skb_change_head: 8374 return &bpf_skb_change_head_proto; 8375 case BPF_FUNC_skb_get_tunnel_key: 8376 return &bpf_skb_get_tunnel_key_proto; 8377 case BPF_FUNC_skb_set_tunnel_key: 8378 return bpf_get_skb_set_tunnel_proto(func_id); 8379 case BPF_FUNC_skb_get_tunnel_opt: 8380 return &bpf_skb_get_tunnel_opt_proto; 8381 case BPF_FUNC_skb_set_tunnel_opt: 8382 return bpf_get_skb_set_tunnel_proto(func_id); 8383 case BPF_FUNC_redirect: 8384 return &bpf_redirect_proto; 8385 case BPF_FUNC_redirect_neigh: 8386 return &bpf_redirect_neigh_proto; 8387 case BPF_FUNC_redirect_peer: 8388 return &bpf_redirect_peer_proto; 8389 case BPF_FUNC_get_route_realm: 8390 return &bpf_get_route_realm_proto; 8391 case BPF_FUNC_get_hash_recalc: 8392 return &bpf_get_hash_recalc_proto; 8393 case BPF_FUNC_set_hash_invalid: 8394 return &bpf_set_hash_invalid_proto; 8395 case BPF_FUNC_set_hash: 8396 return &bpf_set_hash_proto; 8397 case BPF_FUNC_perf_event_output: 8398 return &bpf_skb_event_output_proto; 8399 case BPF_FUNC_get_smp_processor_id: 8400 return &bpf_get_smp_processor_id_proto; 8401 case BPF_FUNC_skb_under_cgroup: 8402 return &bpf_skb_under_cgroup_proto; 8403 case BPF_FUNC_get_socket_cookie: 8404 return &bpf_get_socket_cookie_proto; 8405 case BPF_FUNC_get_netns_cookie: 8406 return &bpf_get_netns_cookie_proto; 8407 case BPF_FUNC_get_socket_uid: 8408 return &bpf_get_socket_uid_proto; 8409 case BPF_FUNC_fib_lookup: 8410 return &bpf_skb_fib_lookup_proto; 8411 case BPF_FUNC_check_mtu: 8412 return &bpf_skb_check_mtu_proto; 8413 case BPF_FUNC_sk_fullsock: 8414 return &bpf_sk_fullsock_proto; 8415 case BPF_FUNC_sk_storage_get: 8416 return &bpf_sk_storage_get_proto; 8417 case BPF_FUNC_sk_storage_delete: 8418 return &bpf_sk_storage_delete_proto; 8419 #ifdef CONFIG_XFRM 8420 case BPF_FUNC_skb_get_xfrm_state: 8421 return &bpf_skb_get_xfrm_state_proto; 8422 #endif 8423 #ifdef CONFIG_CGROUP_NET_CLASSID 8424 case BPF_FUNC_skb_cgroup_classid: 8425 return &bpf_skb_cgroup_classid_proto; 8426 #endif 8427 #ifdef CONFIG_SOCK_CGROUP_DATA 8428 case BPF_FUNC_skb_cgroup_id: 8429 return &bpf_skb_cgroup_id_proto; 8430 case BPF_FUNC_skb_ancestor_cgroup_id: 8431 return &bpf_skb_ancestor_cgroup_id_proto; 8432 #endif 8433 #ifdef CONFIG_INET 8434 case BPF_FUNC_sk_lookup_tcp: 8435 return &bpf_tc_sk_lookup_tcp_proto; 8436 case BPF_FUNC_sk_lookup_udp: 8437 return &bpf_tc_sk_lookup_udp_proto; 8438 case BPF_FUNC_sk_release: 8439 return &bpf_sk_release_proto; 8440 case BPF_FUNC_tcp_sock: 8441 return &bpf_tcp_sock_proto; 8442 case BPF_FUNC_get_listener_sock: 8443 return &bpf_get_listener_sock_proto; 8444 case BPF_FUNC_skc_lookup_tcp: 8445 return &bpf_tc_skc_lookup_tcp_proto; 8446 case BPF_FUNC_tcp_check_syncookie: 8447 return &bpf_tcp_check_syncookie_proto; 8448 case BPF_FUNC_skb_ecn_set_ce: 8449 return &bpf_skb_ecn_set_ce_proto; 8450 case BPF_FUNC_tcp_gen_syncookie: 8451 return &bpf_tcp_gen_syncookie_proto; 8452 case BPF_FUNC_sk_assign: 8453 return &bpf_sk_assign_proto; 8454 case BPF_FUNC_skb_set_tstamp: 8455 return &bpf_skb_set_tstamp_proto; 8456 #ifdef CONFIG_SYN_COOKIES 8457 case BPF_FUNC_tcp_raw_gen_syncookie_ipv4: 8458 return &bpf_tcp_raw_gen_syncookie_ipv4_proto; 8459 case BPF_FUNC_tcp_raw_gen_syncookie_ipv6: 8460 return &bpf_tcp_raw_gen_syncookie_ipv6_proto; 8461 case BPF_FUNC_tcp_raw_check_syncookie_ipv4: 8462 return &bpf_tcp_raw_check_syncookie_ipv4_proto; 8463 case BPF_FUNC_tcp_raw_check_syncookie_ipv6: 8464 return &bpf_tcp_raw_check_syncookie_ipv6_proto; 8465 #endif 8466 #endif 8467 default: 8468 return bpf_sk_base_func_proto(func_id, prog); 8469 } 8470 } 8471 8472 static const struct bpf_func_proto * 8473 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 8474 { 8475 switch (func_id) { 8476 case BPF_FUNC_perf_event_output: 8477 return &bpf_xdp_event_output_proto; 8478 case BPF_FUNC_get_smp_processor_id: 8479 return &bpf_get_smp_processor_id_proto; 8480 case BPF_FUNC_csum_diff: 8481 return &bpf_csum_diff_proto; 8482 case BPF_FUNC_xdp_adjust_head: 8483 return &bpf_xdp_adjust_head_proto; 8484 case BPF_FUNC_xdp_adjust_meta: 8485 return &bpf_xdp_adjust_meta_proto; 8486 case BPF_FUNC_redirect: 8487 return &bpf_xdp_redirect_proto; 8488 case BPF_FUNC_redirect_map: 8489 return &bpf_xdp_redirect_map_proto; 8490 case BPF_FUNC_xdp_adjust_tail: 8491 return &bpf_xdp_adjust_tail_proto; 8492 case BPF_FUNC_xdp_get_buff_len: 8493 return &bpf_xdp_get_buff_len_proto; 8494 case BPF_FUNC_xdp_load_bytes: 8495 return &bpf_xdp_load_bytes_proto; 8496 case BPF_FUNC_xdp_store_bytes: 8497 return &bpf_xdp_store_bytes_proto; 8498 case BPF_FUNC_fib_lookup: 8499 return &bpf_xdp_fib_lookup_proto; 8500 case BPF_FUNC_check_mtu: 8501 return &bpf_xdp_check_mtu_proto; 8502 #ifdef CONFIG_INET 8503 case BPF_FUNC_sk_lookup_udp: 8504 return &bpf_xdp_sk_lookup_udp_proto; 8505 case BPF_FUNC_sk_lookup_tcp: 8506 return &bpf_xdp_sk_lookup_tcp_proto; 8507 case BPF_FUNC_sk_release: 8508 return &bpf_sk_release_proto; 8509 case BPF_FUNC_skc_lookup_tcp: 8510 return &bpf_xdp_skc_lookup_tcp_proto; 8511 case BPF_FUNC_tcp_check_syncookie: 8512 return &bpf_tcp_check_syncookie_proto; 8513 case BPF_FUNC_tcp_gen_syncookie: 8514 return &bpf_tcp_gen_syncookie_proto; 8515 #ifdef CONFIG_SYN_COOKIES 8516 case BPF_FUNC_tcp_raw_gen_syncookie_ipv4: 8517 return &bpf_tcp_raw_gen_syncookie_ipv4_proto; 8518 case BPF_FUNC_tcp_raw_gen_syncookie_ipv6: 8519 return &bpf_tcp_raw_gen_syncookie_ipv6_proto; 8520 case BPF_FUNC_tcp_raw_check_syncookie_ipv4: 8521 return &bpf_tcp_raw_check_syncookie_ipv4_proto; 8522 case BPF_FUNC_tcp_raw_check_syncookie_ipv6: 8523 return &bpf_tcp_raw_check_syncookie_ipv6_proto; 8524 #endif 8525 #endif 8526 default: 8527 return bpf_sk_base_func_proto(func_id, prog); 8528 } 8529 8530 #if IS_MODULE(CONFIG_NF_CONNTRACK) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES) 8531 /* The nf_conn___init type is used in the NF_CONNTRACK kfuncs. The 8532 * kfuncs are defined in two different modules, and we want to be able 8533 * to use them interchangeably with the same BTF type ID. Because modules 8534 * can't de-duplicate BTF IDs between each other, we need the type to be 8535 * referenced in the vmlinux BTF or the verifier will get confused about 8536 * the different types. So we add this dummy type reference which will 8537 * be included in vmlinux BTF, allowing both modules to refer to the 8538 * same type ID. 8539 */ 8540 BTF_TYPE_EMIT(struct nf_conn___init); 8541 #endif 8542 } 8543 8544 const struct bpf_func_proto bpf_sock_map_update_proto __weak; 8545 const struct bpf_func_proto bpf_sock_hash_update_proto __weak; 8546 8547 static const struct bpf_func_proto * 8548 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 8549 { 8550 const struct bpf_func_proto *func_proto; 8551 8552 func_proto = cgroup_common_func_proto(func_id, prog); 8553 if (func_proto) 8554 return func_proto; 8555 8556 switch (func_id) { 8557 case BPF_FUNC_setsockopt: 8558 return &bpf_sock_ops_setsockopt_proto; 8559 case BPF_FUNC_getsockopt: 8560 return &bpf_sock_ops_getsockopt_proto; 8561 case BPF_FUNC_sock_ops_cb_flags_set: 8562 return &bpf_sock_ops_cb_flags_set_proto; 8563 case BPF_FUNC_sock_map_update: 8564 return &bpf_sock_map_update_proto; 8565 case BPF_FUNC_sock_hash_update: 8566 return &bpf_sock_hash_update_proto; 8567 case BPF_FUNC_get_socket_cookie: 8568 return &bpf_get_socket_cookie_sock_ops_proto; 8569 case BPF_FUNC_perf_event_output: 8570 return &bpf_event_output_data_proto; 8571 case BPF_FUNC_sk_storage_get: 8572 return &bpf_sk_storage_get_proto; 8573 case BPF_FUNC_sk_storage_delete: 8574 return &bpf_sk_storage_delete_proto; 8575 case BPF_FUNC_get_netns_cookie: 8576 return &bpf_get_netns_cookie_sock_ops_proto; 8577 #ifdef CONFIG_INET 8578 case BPF_FUNC_load_hdr_opt: 8579 return &bpf_sock_ops_load_hdr_opt_proto; 8580 case BPF_FUNC_store_hdr_opt: 8581 return &bpf_sock_ops_store_hdr_opt_proto; 8582 case BPF_FUNC_reserve_hdr_opt: 8583 return &bpf_sock_ops_reserve_hdr_opt_proto; 8584 case BPF_FUNC_tcp_sock: 8585 return &bpf_tcp_sock_proto; 8586 #endif /* CONFIG_INET */ 8587 default: 8588 return bpf_sk_base_func_proto(func_id, prog); 8589 } 8590 } 8591 8592 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak; 8593 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak; 8594 8595 static const struct bpf_func_proto * 8596 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 8597 { 8598 switch (func_id) { 8599 case BPF_FUNC_msg_redirect_map: 8600 return &bpf_msg_redirect_map_proto; 8601 case BPF_FUNC_msg_redirect_hash: 8602 return &bpf_msg_redirect_hash_proto; 8603 case BPF_FUNC_msg_apply_bytes: 8604 return &bpf_msg_apply_bytes_proto; 8605 case BPF_FUNC_msg_cork_bytes: 8606 return &bpf_msg_cork_bytes_proto; 8607 case BPF_FUNC_msg_pull_data: 8608 return &bpf_msg_pull_data_proto; 8609 case BPF_FUNC_msg_push_data: 8610 return &bpf_msg_push_data_proto; 8611 case BPF_FUNC_msg_pop_data: 8612 return &bpf_msg_pop_data_proto; 8613 case BPF_FUNC_perf_event_output: 8614 return &bpf_event_output_data_proto; 8615 case BPF_FUNC_sk_storage_get: 8616 return &bpf_sk_storage_get_proto; 8617 case BPF_FUNC_sk_storage_delete: 8618 return &bpf_sk_storage_delete_proto; 8619 case BPF_FUNC_get_netns_cookie: 8620 return &bpf_get_netns_cookie_sk_msg_proto; 8621 default: 8622 return bpf_sk_base_func_proto(func_id, prog); 8623 } 8624 } 8625 8626 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak; 8627 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak; 8628 8629 static const struct bpf_func_proto * 8630 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 8631 { 8632 switch (func_id) { 8633 case BPF_FUNC_skb_store_bytes: 8634 return &bpf_skb_store_bytes_proto; 8635 case BPF_FUNC_skb_load_bytes: 8636 return &bpf_skb_load_bytes_proto; 8637 case BPF_FUNC_skb_pull_data: 8638 return &sk_skb_pull_data_proto; 8639 case BPF_FUNC_skb_change_tail: 8640 return &sk_skb_change_tail_proto; 8641 case BPF_FUNC_skb_change_head: 8642 return &sk_skb_change_head_proto; 8643 case BPF_FUNC_skb_adjust_room: 8644 return &sk_skb_adjust_room_proto; 8645 case BPF_FUNC_get_socket_cookie: 8646 return &bpf_get_socket_cookie_proto; 8647 case BPF_FUNC_get_socket_uid: 8648 return &bpf_get_socket_uid_proto; 8649 case BPF_FUNC_sk_redirect_map: 8650 return &bpf_sk_redirect_map_proto; 8651 case BPF_FUNC_sk_redirect_hash: 8652 return &bpf_sk_redirect_hash_proto; 8653 case BPF_FUNC_perf_event_output: 8654 return &bpf_skb_event_output_proto; 8655 #ifdef CONFIG_INET 8656 case BPF_FUNC_sk_lookup_tcp: 8657 return &bpf_sk_lookup_tcp_proto; 8658 case BPF_FUNC_sk_lookup_udp: 8659 return &bpf_sk_lookup_udp_proto; 8660 case BPF_FUNC_sk_release: 8661 return &bpf_sk_release_proto; 8662 case BPF_FUNC_skc_lookup_tcp: 8663 return &bpf_skc_lookup_tcp_proto; 8664 #endif 8665 default: 8666 return bpf_sk_base_func_proto(func_id, prog); 8667 } 8668 } 8669 8670 static const struct bpf_func_proto * 8671 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 8672 { 8673 switch (func_id) { 8674 case BPF_FUNC_skb_load_bytes: 8675 return &bpf_flow_dissector_load_bytes_proto; 8676 default: 8677 return bpf_sk_base_func_proto(func_id, prog); 8678 } 8679 } 8680 8681 static const struct bpf_func_proto * 8682 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 8683 { 8684 switch (func_id) { 8685 case BPF_FUNC_skb_load_bytes: 8686 return &bpf_skb_load_bytes_proto; 8687 case BPF_FUNC_skb_pull_data: 8688 return &bpf_skb_pull_data_proto; 8689 case BPF_FUNC_csum_diff: 8690 return &bpf_csum_diff_proto; 8691 case BPF_FUNC_get_cgroup_classid: 8692 return &bpf_get_cgroup_classid_proto; 8693 case BPF_FUNC_get_route_realm: 8694 return &bpf_get_route_realm_proto; 8695 case BPF_FUNC_get_hash_recalc: 8696 return &bpf_get_hash_recalc_proto; 8697 case BPF_FUNC_perf_event_output: 8698 return &bpf_skb_event_output_proto; 8699 case BPF_FUNC_get_smp_processor_id: 8700 return &bpf_get_smp_processor_id_proto; 8701 case BPF_FUNC_skb_under_cgroup: 8702 return &bpf_skb_under_cgroup_proto; 8703 default: 8704 return bpf_sk_base_func_proto(func_id, prog); 8705 } 8706 } 8707 8708 static const struct bpf_func_proto * 8709 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 8710 { 8711 switch (func_id) { 8712 case BPF_FUNC_lwt_push_encap: 8713 return &bpf_lwt_in_push_encap_proto; 8714 default: 8715 return lwt_out_func_proto(func_id, prog); 8716 } 8717 } 8718 8719 static const struct bpf_func_proto * 8720 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 8721 { 8722 switch (func_id) { 8723 case BPF_FUNC_skb_get_tunnel_key: 8724 return &bpf_skb_get_tunnel_key_proto; 8725 case BPF_FUNC_skb_set_tunnel_key: 8726 return bpf_get_skb_set_tunnel_proto(func_id); 8727 case BPF_FUNC_skb_get_tunnel_opt: 8728 return &bpf_skb_get_tunnel_opt_proto; 8729 case BPF_FUNC_skb_set_tunnel_opt: 8730 return bpf_get_skb_set_tunnel_proto(func_id); 8731 case BPF_FUNC_redirect: 8732 return &bpf_redirect_proto; 8733 case BPF_FUNC_clone_redirect: 8734 return &bpf_clone_redirect_proto; 8735 case BPF_FUNC_skb_change_tail: 8736 return &bpf_skb_change_tail_proto; 8737 case BPF_FUNC_skb_change_head: 8738 return &bpf_skb_change_head_proto; 8739 case BPF_FUNC_skb_store_bytes: 8740 return &bpf_skb_store_bytes_proto; 8741 case BPF_FUNC_csum_update: 8742 return &bpf_csum_update_proto; 8743 case BPF_FUNC_csum_level: 8744 return &bpf_csum_level_proto; 8745 case BPF_FUNC_l3_csum_replace: 8746 return &bpf_l3_csum_replace_proto; 8747 case BPF_FUNC_l4_csum_replace: 8748 return &bpf_l4_csum_replace_proto; 8749 case BPF_FUNC_set_hash_invalid: 8750 return &bpf_set_hash_invalid_proto; 8751 case BPF_FUNC_lwt_push_encap: 8752 return &bpf_lwt_xmit_push_encap_proto; 8753 default: 8754 return lwt_out_func_proto(func_id, prog); 8755 } 8756 } 8757 8758 static const struct bpf_func_proto * 8759 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 8760 { 8761 switch (func_id) { 8762 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF) 8763 case BPF_FUNC_lwt_seg6_store_bytes: 8764 return &bpf_lwt_seg6_store_bytes_proto; 8765 case BPF_FUNC_lwt_seg6_action: 8766 return &bpf_lwt_seg6_action_proto; 8767 case BPF_FUNC_lwt_seg6_adjust_srh: 8768 return &bpf_lwt_seg6_adjust_srh_proto; 8769 #endif 8770 default: 8771 return lwt_out_func_proto(func_id, prog); 8772 } 8773 } 8774 8775 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type, 8776 const struct bpf_prog *prog, 8777 struct bpf_insn_access_aux *info) 8778 { 8779 const int size_default = sizeof(__u32); 8780 8781 if (off < 0 || off >= sizeof(struct __sk_buff)) 8782 return false; 8783 8784 /* The verifier guarantees that size > 0. */ 8785 if (off % size != 0) 8786 return false; 8787 8788 switch (off) { 8789 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]): 8790 if (off + size > offsetofend(struct __sk_buff, cb[4])) 8791 return false; 8792 break; 8793 case bpf_ctx_range(struct __sk_buff, data): 8794 case bpf_ctx_range(struct __sk_buff, data_meta): 8795 case bpf_ctx_range(struct __sk_buff, data_end): 8796 if (info->is_ldsx || size != size_default) 8797 return false; 8798 break; 8799 case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]): 8800 case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]): 8801 case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4): 8802 case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4): 8803 if (size != size_default) 8804 return false; 8805 break; 8806 case bpf_ctx_range_ptr(struct __sk_buff, flow_keys): 8807 return false; 8808 case bpf_ctx_range(struct __sk_buff, hwtstamp): 8809 if (type == BPF_WRITE || size != sizeof(__u64)) 8810 return false; 8811 break; 8812 case bpf_ctx_range(struct __sk_buff, tstamp): 8813 if (size != sizeof(__u64)) 8814 return false; 8815 break; 8816 case bpf_ctx_range_ptr(struct __sk_buff, sk): 8817 if (type == BPF_WRITE || size != sizeof(__u64)) 8818 return false; 8819 info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL; 8820 break; 8821 case offsetof(struct __sk_buff, tstamp_type): 8822 return false; 8823 case offsetofend(struct __sk_buff, tstamp_type) ... offsetof(struct __sk_buff, hwtstamp) - 1: 8824 /* Explicitly prohibit access to padding in __sk_buff. */ 8825 return false; 8826 default: 8827 /* Only narrow read access allowed for now. */ 8828 if (type == BPF_WRITE) { 8829 if (size != size_default) 8830 return false; 8831 } else { 8832 bpf_ctx_record_field_size(info, size_default); 8833 if (!bpf_ctx_narrow_access_ok(off, size, size_default)) 8834 return false; 8835 } 8836 } 8837 8838 return true; 8839 } 8840 8841 static bool sk_filter_is_valid_access(int off, int size, 8842 enum bpf_access_type type, 8843 const struct bpf_prog *prog, 8844 struct bpf_insn_access_aux *info) 8845 { 8846 switch (off) { 8847 case bpf_ctx_range(struct __sk_buff, tc_classid): 8848 case bpf_ctx_range(struct __sk_buff, data): 8849 case bpf_ctx_range(struct __sk_buff, data_meta): 8850 case bpf_ctx_range(struct __sk_buff, data_end): 8851 case bpf_ctx_range_till(struct __sk_buff, family, local_port): 8852 case bpf_ctx_range(struct __sk_buff, tstamp): 8853 case bpf_ctx_range(struct __sk_buff, wire_len): 8854 case bpf_ctx_range(struct __sk_buff, hwtstamp): 8855 return false; 8856 } 8857 8858 if (type == BPF_WRITE) { 8859 switch (off) { 8860 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]): 8861 break; 8862 default: 8863 return false; 8864 } 8865 } 8866 8867 return bpf_skb_is_valid_access(off, size, type, prog, info); 8868 } 8869 8870 static bool cg_skb_is_valid_access(int off, int size, 8871 enum bpf_access_type type, 8872 const struct bpf_prog *prog, 8873 struct bpf_insn_access_aux *info) 8874 { 8875 switch (off) { 8876 case bpf_ctx_range(struct __sk_buff, tc_classid): 8877 case bpf_ctx_range(struct __sk_buff, data_meta): 8878 case bpf_ctx_range(struct __sk_buff, wire_len): 8879 return false; 8880 case bpf_ctx_range(struct __sk_buff, data): 8881 case bpf_ctx_range(struct __sk_buff, data_end): 8882 if (!bpf_token_capable(prog->aux->token, CAP_BPF)) 8883 return false; 8884 break; 8885 } 8886 8887 if (type == BPF_WRITE) { 8888 switch (off) { 8889 case bpf_ctx_range(struct __sk_buff, mark): 8890 case bpf_ctx_range(struct __sk_buff, priority): 8891 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]): 8892 break; 8893 case bpf_ctx_range(struct __sk_buff, tstamp): 8894 if (!bpf_token_capable(prog->aux->token, CAP_BPF)) 8895 return false; 8896 break; 8897 default: 8898 return false; 8899 } 8900 } 8901 8902 switch (off) { 8903 case bpf_ctx_range(struct __sk_buff, data): 8904 info->reg_type = PTR_TO_PACKET; 8905 break; 8906 case bpf_ctx_range(struct __sk_buff, data_end): 8907 info->reg_type = PTR_TO_PACKET_END; 8908 break; 8909 } 8910 8911 return bpf_skb_is_valid_access(off, size, type, prog, info); 8912 } 8913 8914 static bool lwt_is_valid_access(int off, int size, 8915 enum bpf_access_type type, 8916 const struct bpf_prog *prog, 8917 struct bpf_insn_access_aux *info) 8918 { 8919 switch (off) { 8920 case bpf_ctx_range(struct __sk_buff, tc_classid): 8921 case bpf_ctx_range_till(struct __sk_buff, family, local_port): 8922 case bpf_ctx_range(struct __sk_buff, data_meta): 8923 case bpf_ctx_range(struct __sk_buff, tstamp): 8924 case bpf_ctx_range(struct __sk_buff, wire_len): 8925 case bpf_ctx_range(struct __sk_buff, hwtstamp): 8926 return false; 8927 } 8928 8929 if (type == BPF_WRITE) { 8930 switch (off) { 8931 case bpf_ctx_range(struct __sk_buff, mark): 8932 case bpf_ctx_range(struct __sk_buff, priority): 8933 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]): 8934 break; 8935 default: 8936 return false; 8937 } 8938 } 8939 8940 switch (off) { 8941 case bpf_ctx_range(struct __sk_buff, data): 8942 info->reg_type = PTR_TO_PACKET; 8943 break; 8944 case bpf_ctx_range(struct __sk_buff, data_end): 8945 info->reg_type = PTR_TO_PACKET_END; 8946 break; 8947 } 8948 8949 return bpf_skb_is_valid_access(off, size, type, prog, info); 8950 } 8951 8952 /* Attach type specific accesses */ 8953 static bool __sock_filter_check_attach_type(int off, 8954 enum bpf_access_type access_type, 8955 enum bpf_attach_type attach_type) 8956 { 8957 switch (off) { 8958 case offsetof(struct bpf_sock, bound_dev_if): 8959 case offsetof(struct bpf_sock, mark): 8960 case offsetof(struct bpf_sock, priority): 8961 switch (attach_type) { 8962 case BPF_CGROUP_INET_SOCK_CREATE: 8963 case BPF_CGROUP_INET_SOCK_RELEASE: 8964 goto full_access; 8965 default: 8966 return false; 8967 } 8968 case bpf_ctx_range(struct bpf_sock, src_ip4): 8969 switch (attach_type) { 8970 case BPF_CGROUP_INET4_POST_BIND: 8971 goto read_only; 8972 default: 8973 return false; 8974 } 8975 case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]): 8976 switch (attach_type) { 8977 case BPF_CGROUP_INET6_POST_BIND: 8978 goto read_only; 8979 default: 8980 return false; 8981 } 8982 case bpf_ctx_range(struct bpf_sock, src_port): 8983 switch (attach_type) { 8984 case BPF_CGROUP_INET4_POST_BIND: 8985 case BPF_CGROUP_INET6_POST_BIND: 8986 goto read_only; 8987 default: 8988 return false; 8989 } 8990 } 8991 read_only: 8992 return access_type == BPF_READ; 8993 full_access: 8994 return true; 8995 } 8996 8997 bool bpf_sock_common_is_valid_access(int off, int size, 8998 enum bpf_access_type type, 8999 struct bpf_insn_access_aux *info) 9000 { 9001 switch (off) { 9002 case bpf_ctx_range_till(struct bpf_sock, type, priority): 9003 return false; 9004 default: 9005 return bpf_sock_is_valid_access(off, size, type, info); 9006 } 9007 } 9008 9009 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type, 9010 struct bpf_insn_access_aux *info) 9011 { 9012 const int size_default = sizeof(__u32); 9013 int field_size; 9014 9015 if (off < 0 || off >= sizeof(struct bpf_sock)) 9016 return false; 9017 if (off % size != 0) 9018 return false; 9019 9020 switch (off) { 9021 case offsetof(struct bpf_sock, state): 9022 case offsetof(struct bpf_sock, family): 9023 case offsetof(struct bpf_sock, type): 9024 case offsetof(struct bpf_sock, protocol): 9025 case offsetof(struct bpf_sock, src_port): 9026 case offsetof(struct bpf_sock, rx_queue_mapping): 9027 case bpf_ctx_range(struct bpf_sock, src_ip4): 9028 case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]): 9029 case bpf_ctx_range(struct bpf_sock, dst_ip4): 9030 case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]): 9031 bpf_ctx_record_field_size(info, size_default); 9032 return bpf_ctx_narrow_access_ok(off, size, size_default); 9033 case bpf_ctx_range(struct bpf_sock, dst_port): 9034 field_size = size == size_default ? 9035 size_default : sizeof_field(struct bpf_sock, dst_port); 9036 bpf_ctx_record_field_size(info, field_size); 9037 return bpf_ctx_narrow_access_ok(off, size, field_size); 9038 case offsetofend(struct bpf_sock, dst_port) ... 9039 offsetof(struct bpf_sock, dst_ip4) - 1: 9040 return false; 9041 } 9042 9043 return size == size_default; 9044 } 9045 9046 static bool sock_filter_is_valid_access(int off, int size, 9047 enum bpf_access_type type, 9048 const struct bpf_prog *prog, 9049 struct bpf_insn_access_aux *info) 9050 { 9051 if (!bpf_sock_is_valid_access(off, size, type, info)) 9052 return false; 9053 return __sock_filter_check_attach_type(off, type, 9054 prog->expected_attach_type); 9055 } 9056 9057 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write, 9058 const struct bpf_prog *prog) 9059 { 9060 /* Neither direct read nor direct write requires any preliminary 9061 * action. 9062 */ 9063 return 0; 9064 } 9065 9066 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write, 9067 const struct bpf_prog *prog, int drop_verdict) 9068 { 9069 struct bpf_insn *insn = insn_buf; 9070 9071 if (!direct_write) 9072 return 0; 9073 9074 /* if (!skb->cloned) 9075 * goto start; 9076 * 9077 * (Fast-path, otherwise approximation that we might be 9078 * a clone, do the rest in helper.) 9079 */ 9080 *insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET); 9081 *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK); 9082 *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7); 9083 9084 /* ret = bpf_skb_pull_data(skb, 0); */ 9085 *insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); 9086 *insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2); 9087 *insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 9088 BPF_FUNC_skb_pull_data); 9089 /* if (!ret) 9090 * goto restore; 9091 * return TC_ACT_SHOT; 9092 */ 9093 *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2); 9094 *insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict); 9095 *insn++ = BPF_EXIT_INSN(); 9096 9097 /* restore: */ 9098 *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6); 9099 /* start: */ 9100 *insn++ = prog->insnsi[0]; 9101 9102 return insn - insn_buf; 9103 } 9104 9105 static int bpf_gen_ld_abs(const struct bpf_insn *orig, 9106 struct bpf_insn *insn_buf) 9107 { 9108 bool indirect = BPF_MODE(orig->code) == BPF_IND; 9109 struct bpf_insn *insn = insn_buf; 9110 9111 if (!indirect) { 9112 *insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm); 9113 } else { 9114 *insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg); 9115 if (orig->imm) 9116 *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm); 9117 } 9118 /* We're guaranteed here that CTX is in R6. */ 9119 *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX); 9120 9121 switch (BPF_SIZE(orig->code)) { 9122 case BPF_B: 9123 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache); 9124 break; 9125 case BPF_H: 9126 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache); 9127 break; 9128 case BPF_W: 9129 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache); 9130 break; 9131 } 9132 9133 *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2); 9134 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0); 9135 *insn++ = BPF_EXIT_INSN(); 9136 9137 return insn - insn_buf; 9138 } 9139 9140 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write, 9141 const struct bpf_prog *prog) 9142 { 9143 return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT); 9144 } 9145 9146 static bool tc_cls_act_is_valid_access(int off, int size, 9147 enum bpf_access_type type, 9148 const struct bpf_prog *prog, 9149 struct bpf_insn_access_aux *info) 9150 { 9151 if (type == BPF_WRITE) { 9152 switch (off) { 9153 case bpf_ctx_range(struct __sk_buff, mark): 9154 case bpf_ctx_range(struct __sk_buff, tc_index): 9155 case bpf_ctx_range(struct __sk_buff, priority): 9156 case bpf_ctx_range(struct __sk_buff, tc_classid): 9157 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]): 9158 case bpf_ctx_range(struct __sk_buff, tstamp): 9159 case bpf_ctx_range(struct __sk_buff, queue_mapping): 9160 break; 9161 default: 9162 return false; 9163 } 9164 } 9165 9166 switch (off) { 9167 case bpf_ctx_range(struct __sk_buff, data): 9168 info->reg_type = PTR_TO_PACKET; 9169 break; 9170 case bpf_ctx_range(struct __sk_buff, data_meta): 9171 info->reg_type = PTR_TO_PACKET_META; 9172 break; 9173 case bpf_ctx_range(struct __sk_buff, data_end): 9174 info->reg_type = PTR_TO_PACKET_END; 9175 break; 9176 case bpf_ctx_range_till(struct __sk_buff, family, local_port): 9177 return false; 9178 case offsetof(struct __sk_buff, tstamp_type): 9179 /* The convert_ctx_access() on reading and writing 9180 * __sk_buff->tstamp depends on whether the bpf prog 9181 * has used __sk_buff->tstamp_type or not. 9182 * Thus, we need to set prog->tstamp_type_access 9183 * earlier during is_valid_access() here. 9184 */ 9185 ((struct bpf_prog *)prog)->tstamp_type_access = 1; 9186 return size == sizeof(__u8); 9187 } 9188 9189 return bpf_skb_is_valid_access(off, size, type, prog, info); 9190 } 9191 9192 DEFINE_MUTEX(nf_conn_btf_access_lock); 9193 EXPORT_SYMBOL_GPL(nf_conn_btf_access_lock); 9194 9195 int (*nfct_btf_struct_access)(struct bpf_verifier_log *log, 9196 const struct bpf_reg_state *reg, 9197 int off, int size); 9198 EXPORT_SYMBOL_GPL(nfct_btf_struct_access); 9199 9200 static int tc_cls_act_btf_struct_access(struct bpf_verifier_log *log, 9201 const struct bpf_reg_state *reg, 9202 int off, int size) 9203 { 9204 int ret = -EACCES; 9205 9206 mutex_lock(&nf_conn_btf_access_lock); 9207 if (nfct_btf_struct_access) 9208 ret = nfct_btf_struct_access(log, reg, off, size); 9209 mutex_unlock(&nf_conn_btf_access_lock); 9210 9211 return ret; 9212 } 9213 9214 static bool __is_valid_xdp_access(int off, int size) 9215 { 9216 if (off < 0 || off >= sizeof(struct xdp_md)) 9217 return false; 9218 if (off % size != 0) 9219 return false; 9220 if (size != sizeof(__u32)) 9221 return false; 9222 9223 return true; 9224 } 9225 9226 static bool xdp_is_valid_access(int off, int size, 9227 enum bpf_access_type type, 9228 const struct bpf_prog *prog, 9229 struct bpf_insn_access_aux *info) 9230 { 9231 if (prog->expected_attach_type != BPF_XDP_DEVMAP) { 9232 switch (off) { 9233 case offsetof(struct xdp_md, egress_ifindex): 9234 return false; 9235 } 9236 } 9237 9238 if (type == BPF_WRITE) { 9239 if (bpf_prog_is_offloaded(prog->aux)) { 9240 switch (off) { 9241 case offsetof(struct xdp_md, rx_queue_index): 9242 return __is_valid_xdp_access(off, size); 9243 } 9244 } 9245 return false; 9246 } else { 9247 switch (off) { 9248 case offsetof(struct xdp_md, data_meta): 9249 case offsetof(struct xdp_md, data): 9250 case offsetof(struct xdp_md, data_end): 9251 if (info->is_ldsx) 9252 return false; 9253 } 9254 } 9255 9256 switch (off) { 9257 case offsetof(struct xdp_md, data): 9258 info->reg_type = PTR_TO_PACKET; 9259 break; 9260 case offsetof(struct xdp_md, data_meta): 9261 info->reg_type = PTR_TO_PACKET_META; 9262 break; 9263 case offsetof(struct xdp_md, data_end): 9264 info->reg_type = PTR_TO_PACKET_END; 9265 break; 9266 } 9267 9268 return __is_valid_xdp_access(off, size); 9269 } 9270 9271 void bpf_warn_invalid_xdp_action(const struct net_device *dev, 9272 const struct bpf_prog *prog, u32 act) 9273 { 9274 const u32 act_max = XDP_REDIRECT; 9275 9276 pr_warn_once("%s XDP return value %u on prog %s (id %d) dev %s, expect packet loss!\n", 9277 act > act_max ? "Illegal" : "Driver unsupported", 9278 act, prog->aux->name, prog->aux->id, dev ? dev->name : "N/A"); 9279 } 9280 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action); 9281 9282 static int xdp_btf_struct_access(struct bpf_verifier_log *log, 9283 const struct bpf_reg_state *reg, 9284 int off, int size) 9285 { 9286 int ret = -EACCES; 9287 9288 mutex_lock(&nf_conn_btf_access_lock); 9289 if (nfct_btf_struct_access) 9290 ret = nfct_btf_struct_access(log, reg, off, size); 9291 mutex_unlock(&nf_conn_btf_access_lock); 9292 9293 return ret; 9294 } 9295 9296 static bool sock_addr_is_valid_access(int off, int size, 9297 enum bpf_access_type type, 9298 const struct bpf_prog *prog, 9299 struct bpf_insn_access_aux *info) 9300 { 9301 const int size_default = sizeof(__u32); 9302 9303 if (off < 0 || off >= sizeof(struct bpf_sock_addr)) 9304 return false; 9305 if (off % size != 0) 9306 return false; 9307 9308 /* Disallow access to fields not belonging to the attach type's address 9309 * family. 9310 */ 9311 switch (off) { 9312 case bpf_ctx_range(struct bpf_sock_addr, user_ip4): 9313 switch (prog->expected_attach_type) { 9314 case BPF_CGROUP_INET4_BIND: 9315 case BPF_CGROUP_INET4_CONNECT: 9316 case BPF_CGROUP_INET4_GETPEERNAME: 9317 case BPF_CGROUP_INET4_GETSOCKNAME: 9318 case BPF_CGROUP_UDP4_SENDMSG: 9319 case BPF_CGROUP_UDP4_RECVMSG: 9320 break; 9321 default: 9322 return false; 9323 } 9324 break; 9325 case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]): 9326 switch (prog->expected_attach_type) { 9327 case BPF_CGROUP_INET6_BIND: 9328 case BPF_CGROUP_INET6_CONNECT: 9329 case BPF_CGROUP_INET6_GETPEERNAME: 9330 case BPF_CGROUP_INET6_GETSOCKNAME: 9331 case BPF_CGROUP_UDP6_SENDMSG: 9332 case BPF_CGROUP_UDP6_RECVMSG: 9333 break; 9334 default: 9335 return false; 9336 } 9337 break; 9338 case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4): 9339 switch (prog->expected_attach_type) { 9340 case BPF_CGROUP_UDP4_SENDMSG: 9341 break; 9342 default: 9343 return false; 9344 } 9345 break; 9346 case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0], 9347 msg_src_ip6[3]): 9348 switch (prog->expected_attach_type) { 9349 case BPF_CGROUP_UDP6_SENDMSG: 9350 break; 9351 default: 9352 return false; 9353 } 9354 break; 9355 } 9356 9357 switch (off) { 9358 case bpf_ctx_range(struct bpf_sock_addr, user_ip4): 9359 case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]): 9360 case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4): 9361 case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0], 9362 msg_src_ip6[3]): 9363 case bpf_ctx_range(struct bpf_sock_addr, user_port): 9364 if (type == BPF_READ) { 9365 bpf_ctx_record_field_size(info, size_default); 9366 9367 if (bpf_ctx_wide_access_ok(off, size, 9368 struct bpf_sock_addr, 9369 user_ip6)) 9370 return true; 9371 9372 if (bpf_ctx_wide_access_ok(off, size, 9373 struct bpf_sock_addr, 9374 msg_src_ip6)) 9375 return true; 9376 9377 if (!bpf_ctx_narrow_access_ok(off, size, size_default)) 9378 return false; 9379 } else { 9380 if (bpf_ctx_wide_access_ok(off, size, 9381 struct bpf_sock_addr, 9382 user_ip6)) 9383 return true; 9384 9385 if (bpf_ctx_wide_access_ok(off, size, 9386 struct bpf_sock_addr, 9387 msg_src_ip6)) 9388 return true; 9389 9390 if (size != size_default) 9391 return false; 9392 } 9393 break; 9394 case bpf_ctx_range_ptr(struct bpf_sock_addr, sk): 9395 if (type != BPF_READ) 9396 return false; 9397 if (size != sizeof(__u64)) 9398 return false; 9399 info->reg_type = PTR_TO_SOCKET; 9400 break; 9401 case bpf_ctx_range(struct bpf_sock_addr, user_family): 9402 case bpf_ctx_range(struct bpf_sock_addr, family): 9403 case bpf_ctx_range(struct bpf_sock_addr, type): 9404 case bpf_ctx_range(struct bpf_sock_addr, protocol): 9405 if (type != BPF_READ) 9406 return false; 9407 if (size != size_default) 9408 return false; 9409 break; 9410 default: 9411 return false; 9412 } 9413 9414 return true; 9415 } 9416 9417 static bool sock_ops_is_valid_access(int off, int size, 9418 enum bpf_access_type type, 9419 const struct bpf_prog *prog, 9420 struct bpf_insn_access_aux *info) 9421 { 9422 const int size_default = sizeof(__u32); 9423 9424 if (off < 0 || off >= sizeof(struct bpf_sock_ops)) 9425 return false; 9426 9427 /* The verifier guarantees that size > 0. */ 9428 if (off % size != 0) 9429 return false; 9430 9431 if (type == BPF_WRITE) { 9432 switch (off) { 9433 case offsetof(struct bpf_sock_ops, reply): 9434 case offsetof(struct bpf_sock_ops, sk_txhash): 9435 if (size != size_default) 9436 return false; 9437 break; 9438 default: 9439 return false; 9440 } 9441 } else { 9442 switch (off) { 9443 case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received, 9444 bytes_acked): 9445 if (size != sizeof(__u64)) 9446 return false; 9447 break; 9448 case bpf_ctx_range_ptr(struct bpf_sock_ops, sk): 9449 if (size != sizeof(__u64)) 9450 return false; 9451 info->reg_type = PTR_TO_SOCKET_OR_NULL; 9452 break; 9453 case bpf_ctx_range_ptr(struct bpf_sock_ops, skb_data): 9454 if (size != sizeof(__u64)) 9455 return false; 9456 info->reg_type = PTR_TO_PACKET; 9457 break; 9458 case bpf_ctx_range_ptr(struct bpf_sock_ops, skb_data_end): 9459 if (size != sizeof(__u64)) 9460 return false; 9461 info->reg_type = PTR_TO_PACKET_END; 9462 break; 9463 case offsetof(struct bpf_sock_ops, skb_tcp_flags): 9464 bpf_ctx_record_field_size(info, size_default); 9465 return bpf_ctx_narrow_access_ok(off, size, 9466 size_default); 9467 case bpf_ctx_range(struct bpf_sock_ops, skb_hwtstamp): 9468 if (size != sizeof(__u64)) 9469 return false; 9470 break; 9471 default: 9472 if (size != size_default) 9473 return false; 9474 break; 9475 } 9476 } 9477 9478 return true; 9479 } 9480 9481 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write, 9482 const struct bpf_prog *prog) 9483 { 9484 return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP); 9485 } 9486 9487 static bool sk_skb_is_valid_access(int off, int size, 9488 enum bpf_access_type type, 9489 const struct bpf_prog *prog, 9490 struct bpf_insn_access_aux *info) 9491 { 9492 switch (off) { 9493 case bpf_ctx_range(struct __sk_buff, tc_classid): 9494 case bpf_ctx_range(struct __sk_buff, data_meta): 9495 case bpf_ctx_range(struct __sk_buff, tstamp): 9496 case bpf_ctx_range(struct __sk_buff, wire_len): 9497 case bpf_ctx_range(struct __sk_buff, hwtstamp): 9498 return false; 9499 } 9500 9501 if (type == BPF_WRITE) { 9502 switch (off) { 9503 case bpf_ctx_range(struct __sk_buff, tc_index): 9504 case bpf_ctx_range(struct __sk_buff, priority): 9505 break; 9506 default: 9507 return false; 9508 } 9509 } 9510 9511 switch (off) { 9512 case bpf_ctx_range(struct __sk_buff, mark): 9513 return false; 9514 case bpf_ctx_range(struct __sk_buff, data): 9515 info->reg_type = PTR_TO_PACKET; 9516 break; 9517 case bpf_ctx_range(struct __sk_buff, data_end): 9518 info->reg_type = PTR_TO_PACKET_END; 9519 break; 9520 } 9521 9522 return bpf_skb_is_valid_access(off, size, type, prog, info); 9523 } 9524 9525 static bool sk_msg_is_valid_access(int off, int size, 9526 enum bpf_access_type type, 9527 const struct bpf_prog *prog, 9528 struct bpf_insn_access_aux *info) 9529 { 9530 if (type == BPF_WRITE) 9531 return false; 9532 9533 if (off % size != 0) 9534 return false; 9535 9536 switch (off) { 9537 case bpf_ctx_range_ptr(struct sk_msg_md, data): 9538 info->reg_type = PTR_TO_PACKET; 9539 if (size != sizeof(__u64)) 9540 return false; 9541 break; 9542 case bpf_ctx_range_ptr(struct sk_msg_md, data_end): 9543 info->reg_type = PTR_TO_PACKET_END; 9544 if (size != sizeof(__u64)) 9545 return false; 9546 break; 9547 case bpf_ctx_range_ptr(struct sk_msg_md, sk): 9548 if (size != sizeof(__u64)) 9549 return false; 9550 info->reg_type = PTR_TO_SOCKET; 9551 break; 9552 case bpf_ctx_range(struct sk_msg_md, family): 9553 case bpf_ctx_range(struct sk_msg_md, remote_ip4): 9554 case bpf_ctx_range(struct sk_msg_md, local_ip4): 9555 case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]): 9556 case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]): 9557 case bpf_ctx_range(struct sk_msg_md, remote_port): 9558 case bpf_ctx_range(struct sk_msg_md, local_port): 9559 case bpf_ctx_range(struct sk_msg_md, size): 9560 if (size != sizeof(__u32)) 9561 return false; 9562 break; 9563 default: 9564 return false; 9565 } 9566 return true; 9567 } 9568 9569 static bool flow_dissector_is_valid_access(int off, int size, 9570 enum bpf_access_type type, 9571 const struct bpf_prog *prog, 9572 struct bpf_insn_access_aux *info) 9573 { 9574 const int size_default = sizeof(__u32); 9575 9576 if (off < 0 || off >= sizeof(struct __sk_buff)) 9577 return false; 9578 9579 if (off % size != 0) 9580 return false; 9581 9582 if (type == BPF_WRITE) 9583 return false; 9584 9585 switch (off) { 9586 case bpf_ctx_range(struct __sk_buff, data): 9587 if (info->is_ldsx || size != size_default) 9588 return false; 9589 info->reg_type = PTR_TO_PACKET; 9590 return true; 9591 case bpf_ctx_range(struct __sk_buff, data_end): 9592 if (info->is_ldsx || size != size_default) 9593 return false; 9594 info->reg_type = PTR_TO_PACKET_END; 9595 return true; 9596 case bpf_ctx_range_ptr(struct __sk_buff, flow_keys): 9597 if (size != sizeof(__u64)) 9598 return false; 9599 info->reg_type = PTR_TO_FLOW_KEYS; 9600 return true; 9601 default: 9602 return false; 9603 } 9604 } 9605 9606 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type, 9607 const struct bpf_insn *si, 9608 struct bpf_insn *insn_buf, 9609 struct bpf_prog *prog, 9610 u32 *target_size) 9611 9612 { 9613 struct bpf_insn *insn = insn_buf; 9614 9615 switch (si->off) { 9616 case offsetof(struct __sk_buff, data): 9617 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data), 9618 si->dst_reg, si->src_reg, 9619 offsetof(struct bpf_flow_dissector, data)); 9620 break; 9621 9622 case offsetof(struct __sk_buff, data_end): 9623 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end), 9624 si->dst_reg, si->src_reg, 9625 offsetof(struct bpf_flow_dissector, data_end)); 9626 break; 9627 9628 case offsetof(struct __sk_buff, flow_keys): 9629 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys), 9630 si->dst_reg, si->src_reg, 9631 offsetof(struct bpf_flow_dissector, flow_keys)); 9632 break; 9633 } 9634 9635 return insn - insn_buf; 9636 } 9637 9638 static struct bpf_insn *bpf_convert_tstamp_type_read(const struct bpf_insn *si, 9639 struct bpf_insn *insn) 9640 { 9641 __u8 value_reg = si->dst_reg; 9642 __u8 skb_reg = si->src_reg; 9643 BUILD_BUG_ON(__SKB_CLOCK_MAX != (int)BPF_SKB_CLOCK_TAI); 9644 BUILD_BUG_ON(SKB_CLOCK_REALTIME != (int)BPF_SKB_CLOCK_REALTIME); 9645 BUILD_BUG_ON(SKB_CLOCK_MONOTONIC != (int)BPF_SKB_CLOCK_MONOTONIC); 9646 BUILD_BUG_ON(SKB_CLOCK_TAI != (int)BPF_SKB_CLOCK_TAI); 9647 *insn++ = BPF_LDX_MEM(BPF_B, value_reg, skb_reg, SKB_BF_MONO_TC_OFFSET); 9648 *insn++ = BPF_ALU32_IMM(BPF_AND, value_reg, SKB_TSTAMP_TYPE_MASK); 9649 #ifdef __BIG_ENDIAN_BITFIELD 9650 *insn++ = BPF_ALU32_IMM(BPF_RSH, value_reg, SKB_TSTAMP_TYPE_RSHIFT); 9651 #else 9652 BUILD_BUG_ON(!(SKB_TSTAMP_TYPE_MASK & 0x1)); 9653 #endif 9654 9655 return insn; 9656 } 9657 9658 static struct bpf_insn *bpf_convert_shinfo_access(__u8 dst_reg, __u8 skb_reg, 9659 struct bpf_insn *insn) 9660 { 9661 /* si->dst_reg = skb_shinfo(SKB); */ 9662 #ifdef NET_SKBUFF_DATA_USES_OFFSET 9663 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end), 9664 BPF_REG_AX, skb_reg, 9665 offsetof(struct sk_buff, end)); 9666 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head), 9667 dst_reg, skb_reg, 9668 offsetof(struct sk_buff, head)); 9669 *insn++ = BPF_ALU64_REG(BPF_ADD, dst_reg, BPF_REG_AX); 9670 #else 9671 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end), 9672 dst_reg, skb_reg, 9673 offsetof(struct sk_buff, end)); 9674 #endif 9675 9676 return insn; 9677 } 9678 9679 static struct bpf_insn *bpf_convert_tstamp_read(const struct bpf_prog *prog, 9680 const struct bpf_insn *si, 9681 struct bpf_insn *insn) 9682 { 9683 __u8 value_reg = si->dst_reg; 9684 __u8 skb_reg = si->src_reg; 9685 9686 #ifdef CONFIG_NET_XGRESS 9687 /* If the tstamp_type is read, 9688 * the bpf prog is aware the tstamp could have delivery time. 9689 * Thus, read skb->tstamp as is if tstamp_type_access is true. 9690 */ 9691 if (!prog->tstamp_type_access) { 9692 /* AX is needed because src_reg and dst_reg could be the same */ 9693 __u8 tmp_reg = BPF_REG_AX; 9694 9695 *insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, SKB_BF_MONO_TC_OFFSET); 9696 /* check if ingress mask bits is set */ 9697 *insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, TC_AT_INGRESS_MASK, 1); 9698 *insn++ = BPF_JMP_A(4); 9699 *insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, SKB_TSTAMP_TYPE_MASK, 1); 9700 *insn++ = BPF_JMP_A(2); 9701 /* skb->tc_at_ingress && skb->tstamp_type, 9702 * read 0 as the (rcv) timestamp. 9703 */ 9704 *insn++ = BPF_MOV64_IMM(value_reg, 0); 9705 *insn++ = BPF_JMP_A(1); 9706 } 9707 #endif 9708 9709 *insn++ = BPF_LDX_MEM(BPF_DW, value_reg, skb_reg, 9710 offsetof(struct sk_buff, tstamp)); 9711 return insn; 9712 } 9713 9714 static struct bpf_insn *bpf_convert_tstamp_write(const struct bpf_prog *prog, 9715 const struct bpf_insn *si, 9716 struct bpf_insn *insn) 9717 { 9718 __u8 value_reg = si->src_reg; 9719 __u8 skb_reg = si->dst_reg; 9720 9721 #ifdef CONFIG_NET_XGRESS 9722 /* If the tstamp_type is read, 9723 * the bpf prog is aware the tstamp could have delivery time. 9724 * Thus, write skb->tstamp as is if tstamp_type_access is true. 9725 * Otherwise, writing at ingress will have to clear the 9726 * skb->tstamp_type bit also. 9727 */ 9728 if (!prog->tstamp_type_access) { 9729 __u8 tmp_reg = BPF_REG_AX; 9730 9731 *insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, SKB_BF_MONO_TC_OFFSET); 9732 /* Writing __sk_buff->tstamp as ingress, goto <clear> */ 9733 *insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, TC_AT_INGRESS_MASK, 1); 9734 /* goto <store> */ 9735 *insn++ = BPF_JMP_A(2); 9736 /* <clear>: skb->tstamp_type */ 9737 *insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg, ~SKB_TSTAMP_TYPE_MASK); 9738 *insn++ = BPF_STX_MEM(BPF_B, skb_reg, tmp_reg, SKB_BF_MONO_TC_OFFSET); 9739 } 9740 #endif 9741 9742 /* <store>: skb->tstamp = tstamp */ 9743 *insn++ = BPF_RAW_INSN(BPF_CLASS(si->code) | BPF_DW | BPF_MEM, 9744 skb_reg, value_reg, offsetof(struct sk_buff, tstamp), si->imm); 9745 return insn; 9746 } 9747 9748 #define BPF_EMIT_STORE(size, si, off) \ 9749 BPF_RAW_INSN(BPF_CLASS((si)->code) | (size) | BPF_MEM, \ 9750 (si)->dst_reg, (si)->src_reg, (off), (si)->imm) 9751 9752 static u32 bpf_convert_ctx_access(enum bpf_access_type type, 9753 const struct bpf_insn *si, 9754 struct bpf_insn *insn_buf, 9755 struct bpf_prog *prog, u32 *target_size) 9756 { 9757 struct bpf_insn *insn = insn_buf; 9758 int off; 9759 9760 switch (si->off) { 9761 case offsetof(struct __sk_buff, len): 9762 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, 9763 bpf_target_off(struct sk_buff, len, 4, 9764 target_size)); 9765 break; 9766 9767 case offsetof(struct __sk_buff, protocol): 9768 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg, 9769 bpf_target_off(struct sk_buff, protocol, 2, 9770 target_size)); 9771 break; 9772 9773 case offsetof(struct __sk_buff, vlan_proto): 9774 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg, 9775 bpf_target_off(struct sk_buff, vlan_proto, 2, 9776 target_size)); 9777 break; 9778 9779 case offsetof(struct __sk_buff, priority): 9780 if (type == BPF_WRITE) 9781 *insn++ = BPF_EMIT_STORE(BPF_W, si, 9782 bpf_target_off(struct sk_buff, priority, 4, 9783 target_size)); 9784 else 9785 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, 9786 bpf_target_off(struct sk_buff, priority, 4, 9787 target_size)); 9788 break; 9789 9790 case offsetof(struct __sk_buff, ingress_ifindex): 9791 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, 9792 bpf_target_off(struct sk_buff, skb_iif, 4, 9793 target_size)); 9794 break; 9795 9796 case offsetof(struct __sk_buff, ifindex): 9797 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev), 9798 si->dst_reg, si->src_reg, 9799 offsetof(struct sk_buff, dev)); 9800 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1); 9801 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, 9802 bpf_target_off(struct net_device, ifindex, 4, 9803 target_size)); 9804 break; 9805 9806 case offsetof(struct __sk_buff, hash): 9807 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, 9808 bpf_target_off(struct sk_buff, hash, 4, 9809 target_size)); 9810 break; 9811 9812 case offsetof(struct __sk_buff, mark): 9813 if (type == BPF_WRITE) 9814 *insn++ = BPF_EMIT_STORE(BPF_W, si, 9815 bpf_target_off(struct sk_buff, mark, 4, 9816 target_size)); 9817 else 9818 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, 9819 bpf_target_off(struct sk_buff, mark, 4, 9820 target_size)); 9821 break; 9822 9823 case offsetof(struct __sk_buff, pkt_type): 9824 *target_size = 1; 9825 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg, 9826 PKT_TYPE_OFFSET); 9827 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX); 9828 #ifdef __BIG_ENDIAN_BITFIELD 9829 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5); 9830 #endif 9831 break; 9832 9833 case offsetof(struct __sk_buff, queue_mapping): 9834 if (type == BPF_WRITE) { 9835 u32 offset = bpf_target_off(struct sk_buff, queue_mapping, 2, target_size); 9836 9837 if (BPF_CLASS(si->code) == BPF_ST && si->imm >= NO_QUEUE_MAPPING) { 9838 *insn++ = BPF_JMP_A(0); /* noop */ 9839 break; 9840 } 9841 9842 if (BPF_CLASS(si->code) == BPF_STX) 9843 *insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1); 9844 *insn++ = BPF_EMIT_STORE(BPF_H, si, offset); 9845 } else { 9846 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg, 9847 bpf_target_off(struct sk_buff, 9848 queue_mapping, 9849 2, target_size)); 9850 } 9851 break; 9852 9853 case offsetof(struct __sk_buff, vlan_present): 9854 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, 9855 bpf_target_off(struct sk_buff, 9856 vlan_all, 4, target_size)); 9857 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1); 9858 *insn++ = BPF_ALU32_IMM(BPF_MOV, si->dst_reg, 1); 9859 break; 9860 9861 case offsetof(struct __sk_buff, vlan_tci): 9862 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg, 9863 bpf_target_off(struct sk_buff, vlan_tci, 2, 9864 target_size)); 9865 break; 9866 9867 case offsetof(struct __sk_buff, cb[0]) ... 9868 offsetofend(struct __sk_buff, cb[4]) - 1: 9869 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20); 9870 BUILD_BUG_ON((offsetof(struct sk_buff, cb) + 9871 offsetof(struct qdisc_skb_cb, data)) % 9872 sizeof(__u64)); 9873 9874 prog->cb_access = 1; 9875 off = si->off; 9876 off -= offsetof(struct __sk_buff, cb[0]); 9877 off += offsetof(struct sk_buff, cb); 9878 off += offsetof(struct qdisc_skb_cb, data); 9879 if (type == BPF_WRITE) 9880 *insn++ = BPF_EMIT_STORE(BPF_SIZE(si->code), si, off); 9881 else 9882 *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg, 9883 si->src_reg, off); 9884 break; 9885 9886 case offsetof(struct __sk_buff, tc_classid): 9887 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2); 9888 9889 off = si->off; 9890 off -= offsetof(struct __sk_buff, tc_classid); 9891 off += offsetof(struct sk_buff, cb); 9892 off += offsetof(struct qdisc_skb_cb, tc_classid); 9893 *target_size = 2; 9894 if (type == BPF_WRITE) 9895 *insn++ = BPF_EMIT_STORE(BPF_H, si, off); 9896 else 9897 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, 9898 si->src_reg, off); 9899 break; 9900 9901 case offsetof(struct __sk_buff, data): 9902 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data), 9903 si->dst_reg, si->src_reg, 9904 offsetof(struct sk_buff, data)); 9905 break; 9906 9907 case offsetof(struct __sk_buff, data_meta): 9908 off = si->off; 9909 off -= offsetof(struct __sk_buff, data_meta); 9910 off += offsetof(struct sk_buff, cb); 9911 off += offsetof(struct bpf_skb_data_end, data_meta); 9912 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, 9913 si->src_reg, off); 9914 break; 9915 9916 case offsetof(struct __sk_buff, data_end): 9917 off = si->off; 9918 off -= offsetof(struct __sk_buff, data_end); 9919 off += offsetof(struct sk_buff, cb); 9920 off += offsetof(struct bpf_skb_data_end, data_end); 9921 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, 9922 si->src_reg, off); 9923 break; 9924 9925 case offsetof(struct __sk_buff, tc_index): 9926 #ifdef CONFIG_NET_SCHED 9927 if (type == BPF_WRITE) 9928 *insn++ = BPF_EMIT_STORE(BPF_H, si, 9929 bpf_target_off(struct sk_buff, tc_index, 2, 9930 target_size)); 9931 else 9932 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg, 9933 bpf_target_off(struct sk_buff, tc_index, 2, 9934 target_size)); 9935 #else 9936 *target_size = 2; 9937 if (type == BPF_WRITE) 9938 *insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg); 9939 else 9940 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0); 9941 #endif 9942 break; 9943 9944 case offsetof(struct __sk_buff, napi_id): 9945 #if defined(CONFIG_NET_RX_BUSY_POLL) 9946 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, 9947 bpf_target_off(struct sk_buff, napi_id, 4, 9948 target_size)); 9949 *insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1); 9950 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0); 9951 #else 9952 *target_size = 4; 9953 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0); 9954 #endif 9955 break; 9956 case offsetof(struct __sk_buff, family): 9957 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2); 9958 9959 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk), 9960 si->dst_reg, si->src_reg, 9961 offsetof(struct sk_buff, sk)); 9962 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg, 9963 bpf_target_off(struct sock_common, 9964 skc_family, 9965 2, target_size)); 9966 break; 9967 case offsetof(struct __sk_buff, remote_ip4): 9968 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4); 9969 9970 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk), 9971 si->dst_reg, si->src_reg, 9972 offsetof(struct sk_buff, sk)); 9973 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, 9974 bpf_target_off(struct sock_common, 9975 skc_daddr, 9976 4, target_size)); 9977 break; 9978 case offsetof(struct __sk_buff, local_ip4): 9979 BUILD_BUG_ON(sizeof_field(struct sock_common, 9980 skc_rcv_saddr) != 4); 9981 9982 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk), 9983 si->dst_reg, si->src_reg, 9984 offsetof(struct sk_buff, sk)); 9985 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, 9986 bpf_target_off(struct sock_common, 9987 skc_rcv_saddr, 9988 4, target_size)); 9989 break; 9990 case offsetof(struct __sk_buff, remote_ip6[0]) ... 9991 offsetof(struct __sk_buff, remote_ip6[3]): 9992 #if IS_ENABLED(CONFIG_IPV6) 9993 BUILD_BUG_ON(sizeof_field(struct sock_common, 9994 skc_v6_daddr.s6_addr32[0]) != 4); 9995 9996 off = si->off; 9997 off -= offsetof(struct __sk_buff, remote_ip6[0]); 9998 9999 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk), 10000 si->dst_reg, si->src_reg, 10001 offsetof(struct sk_buff, sk)); 10002 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, 10003 offsetof(struct sock_common, 10004 skc_v6_daddr.s6_addr32[0]) + 10005 off); 10006 #else 10007 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0); 10008 #endif 10009 break; 10010 case offsetof(struct __sk_buff, local_ip6[0]) ... 10011 offsetof(struct __sk_buff, local_ip6[3]): 10012 #if IS_ENABLED(CONFIG_IPV6) 10013 BUILD_BUG_ON(sizeof_field(struct sock_common, 10014 skc_v6_rcv_saddr.s6_addr32[0]) != 4); 10015 10016 off = si->off; 10017 off -= offsetof(struct __sk_buff, local_ip6[0]); 10018 10019 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk), 10020 si->dst_reg, si->src_reg, 10021 offsetof(struct sk_buff, sk)); 10022 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, 10023 offsetof(struct sock_common, 10024 skc_v6_rcv_saddr.s6_addr32[0]) + 10025 off); 10026 #else 10027 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0); 10028 #endif 10029 break; 10030 10031 case offsetof(struct __sk_buff, remote_port): 10032 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2); 10033 10034 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk), 10035 si->dst_reg, si->src_reg, 10036 offsetof(struct sk_buff, sk)); 10037 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg, 10038 bpf_target_off(struct sock_common, 10039 skc_dport, 10040 2, target_size)); 10041 #ifndef __BIG_ENDIAN_BITFIELD 10042 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16); 10043 #endif 10044 break; 10045 10046 case offsetof(struct __sk_buff, local_port): 10047 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2); 10048 10049 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk), 10050 si->dst_reg, si->src_reg, 10051 offsetof(struct sk_buff, sk)); 10052 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg, 10053 bpf_target_off(struct sock_common, 10054 skc_num, 2, target_size)); 10055 break; 10056 10057 case offsetof(struct __sk_buff, tstamp): 10058 BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8); 10059 10060 if (type == BPF_WRITE) 10061 insn = bpf_convert_tstamp_write(prog, si, insn); 10062 else 10063 insn = bpf_convert_tstamp_read(prog, si, insn); 10064 break; 10065 10066 case offsetof(struct __sk_buff, tstamp_type): 10067 insn = bpf_convert_tstamp_type_read(si, insn); 10068 break; 10069 10070 case offsetof(struct __sk_buff, gso_segs): 10071 insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn); 10072 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs), 10073 si->dst_reg, si->dst_reg, 10074 bpf_target_off(struct skb_shared_info, 10075 gso_segs, 2, 10076 target_size)); 10077 break; 10078 case offsetof(struct __sk_buff, gso_size): 10079 insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn); 10080 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size), 10081 si->dst_reg, si->dst_reg, 10082 bpf_target_off(struct skb_shared_info, 10083 gso_size, 2, 10084 target_size)); 10085 break; 10086 case offsetof(struct __sk_buff, wire_len): 10087 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4); 10088 10089 off = si->off; 10090 off -= offsetof(struct __sk_buff, wire_len); 10091 off += offsetof(struct sk_buff, cb); 10092 off += offsetof(struct qdisc_skb_cb, pkt_len); 10093 *target_size = 4; 10094 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off); 10095 break; 10096 10097 case offsetof(struct __sk_buff, sk): 10098 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk), 10099 si->dst_reg, si->src_reg, 10100 offsetof(struct sk_buff, sk)); 10101 break; 10102 case offsetof(struct __sk_buff, hwtstamp): 10103 BUILD_BUG_ON(sizeof_field(struct skb_shared_hwtstamps, hwtstamp) != 8); 10104 BUILD_BUG_ON(offsetof(struct skb_shared_hwtstamps, hwtstamp) != 0); 10105 10106 insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn); 10107 *insn++ = BPF_LDX_MEM(BPF_DW, 10108 si->dst_reg, si->dst_reg, 10109 bpf_target_off(struct skb_shared_info, 10110 hwtstamps, 8, 10111 target_size)); 10112 break; 10113 } 10114 10115 return insn - insn_buf; 10116 } 10117 10118 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type, 10119 const struct bpf_insn *si, 10120 struct bpf_insn *insn_buf, 10121 struct bpf_prog *prog, u32 *target_size) 10122 { 10123 struct bpf_insn *insn = insn_buf; 10124 int off; 10125 10126 switch (si->off) { 10127 case offsetof(struct bpf_sock, bound_dev_if): 10128 BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4); 10129 10130 if (type == BPF_WRITE) 10131 *insn++ = BPF_EMIT_STORE(BPF_W, si, 10132 offsetof(struct sock, sk_bound_dev_if)); 10133 else 10134 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, 10135 offsetof(struct sock, sk_bound_dev_if)); 10136 break; 10137 10138 case offsetof(struct bpf_sock, mark): 10139 BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4); 10140 10141 if (type == BPF_WRITE) 10142 *insn++ = BPF_EMIT_STORE(BPF_W, si, 10143 offsetof(struct sock, sk_mark)); 10144 else 10145 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, 10146 offsetof(struct sock, sk_mark)); 10147 break; 10148 10149 case offsetof(struct bpf_sock, priority): 10150 BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4); 10151 10152 if (type == BPF_WRITE) 10153 *insn++ = BPF_EMIT_STORE(BPF_W, si, 10154 offsetof(struct sock, sk_priority)); 10155 else 10156 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, 10157 offsetof(struct sock, sk_priority)); 10158 break; 10159 10160 case offsetof(struct bpf_sock, family): 10161 *insn++ = BPF_LDX_MEM( 10162 BPF_FIELD_SIZEOF(struct sock_common, skc_family), 10163 si->dst_reg, si->src_reg, 10164 bpf_target_off(struct sock_common, 10165 skc_family, 10166 sizeof_field(struct sock_common, 10167 skc_family), 10168 target_size)); 10169 break; 10170 10171 case offsetof(struct bpf_sock, type): 10172 *insn++ = BPF_LDX_MEM( 10173 BPF_FIELD_SIZEOF(struct sock, sk_type), 10174 si->dst_reg, si->src_reg, 10175 bpf_target_off(struct sock, sk_type, 10176 sizeof_field(struct sock, sk_type), 10177 target_size)); 10178 break; 10179 10180 case offsetof(struct bpf_sock, protocol): 10181 *insn++ = BPF_LDX_MEM( 10182 BPF_FIELD_SIZEOF(struct sock, sk_protocol), 10183 si->dst_reg, si->src_reg, 10184 bpf_target_off(struct sock, sk_protocol, 10185 sizeof_field(struct sock, sk_protocol), 10186 target_size)); 10187 break; 10188 10189 case offsetof(struct bpf_sock, src_ip4): 10190 *insn++ = BPF_LDX_MEM( 10191 BPF_SIZE(si->code), si->dst_reg, si->src_reg, 10192 bpf_target_off(struct sock_common, skc_rcv_saddr, 10193 sizeof_field(struct sock_common, 10194 skc_rcv_saddr), 10195 target_size)); 10196 break; 10197 10198 case offsetof(struct bpf_sock, dst_ip4): 10199 *insn++ = BPF_LDX_MEM( 10200 BPF_SIZE(si->code), si->dst_reg, si->src_reg, 10201 bpf_target_off(struct sock_common, skc_daddr, 10202 sizeof_field(struct sock_common, 10203 skc_daddr), 10204 target_size)); 10205 break; 10206 10207 case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]): 10208 #if IS_ENABLED(CONFIG_IPV6) 10209 off = si->off; 10210 off -= offsetof(struct bpf_sock, src_ip6[0]); 10211 *insn++ = BPF_LDX_MEM( 10212 BPF_SIZE(si->code), si->dst_reg, si->src_reg, 10213 bpf_target_off( 10214 struct sock_common, 10215 skc_v6_rcv_saddr.s6_addr32[0], 10216 sizeof_field(struct sock_common, 10217 skc_v6_rcv_saddr.s6_addr32[0]), 10218 target_size) + off); 10219 #else 10220 (void)off; 10221 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0); 10222 #endif 10223 break; 10224 10225 case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]): 10226 #if IS_ENABLED(CONFIG_IPV6) 10227 off = si->off; 10228 off -= offsetof(struct bpf_sock, dst_ip6[0]); 10229 *insn++ = BPF_LDX_MEM( 10230 BPF_SIZE(si->code), si->dst_reg, si->src_reg, 10231 bpf_target_off(struct sock_common, 10232 skc_v6_daddr.s6_addr32[0], 10233 sizeof_field(struct sock_common, 10234 skc_v6_daddr.s6_addr32[0]), 10235 target_size) + off); 10236 #else 10237 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0); 10238 *target_size = 4; 10239 #endif 10240 break; 10241 10242 case offsetof(struct bpf_sock, src_port): 10243 *insn++ = BPF_LDX_MEM( 10244 BPF_FIELD_SIZEOF(struct sock_common, skc_num), 10245 si->dst_reg, si->src_reg, 10246 bpf_target_off(struct sock_common, skc_num, 10247 sizeof_field(struct sock_common, 10248 skc_num), 10249 target_size)); 10250 break; 10251 10252 case offsetof(struct bpf_sock, dst_port): 10253 *insn++ = BPF_LDX_MEM( 10254 BPF_FIELD_SIZEOF(struct sock_common, skc_dport), 10255 si->dst_reg, si->src_reg, 10256 bpf_target_off(struct sock_common, skc_dport, 10257 sizeof_field(struct sock_common, 10258 skc_dport), 10259 target_size)); 10260 break; 10261 10262 case offsetof(struct bpf_sock, state): 10263 *insn++ = BPF_LDX_MEM( 10264 BPF_FIELD_SIZEOF(struct sock_common, skc_state), 10265 si->dst_reg, si->src_reg, 10266 bpf_target_off(struct sock_common, skc_state, 10267 sizeof_field(struct sock_common, 10268 skc_state), 10269 target_size)); 10270 break; 10271 case offsetof(struct bpf_sock, rx_queue_mapping): 10272 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING 10273 *insn++ = BPF_LDX_MEM( 10274 BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping), 10275 si->dst_reg, si->src_reg, 10276 bpf_target_off(struct sock, sk_rx_queue_mapping, 10277 sizeof_field(struct sock, 10278 sk_rx_queue_mapping), 10279 target_size)); 10280 *insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING, 10281 1); 10282 *insn++ = BPF_MOV64_IMM(si->dst_reg, -1); 10283 #else 10284 *insn++ = BPF_MOV64_IMM(si->dst_reg, -1); 10285 *target_size = 2; 10286 #endif 10287 break; 10288 } 10289 10290 return insn - insn_buf; 10291 } 10292 10293 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type, 10294 const struct bpf_insn *si, 10295 struct bpf_insn *insn_buf, 10296 struct bpf_prog *prog, u32 *target_size) 10297 { 10298 struct bpf_insn *insn = insn_buf; 10299 10300 switch (si->off) { 10301 case offsetof(struct __sk_buff, ifindex): 10302 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev), 10303 si->dst_reg, si->src_reg, 10304 offsetof(struct sk_buff, dev)); 10305 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, 10306 bpf_target_off(struct net_device, ifindex, 4, 10307 target_size)); 10308 break; 10309 default: 10310 return bpf_convert_ctx_access(type, si, insn_buf, prog, 10311 target_size); 10312 } 10313 10314 return insn - insn_buf; 10315 } 10316 10317 static u32 xdp_convert_ctx_access(enum bpf_access_type type, 10318 const struct bpf_insn *si, 10319 struct bpf_insn *insn_buf, 10320 struct bpf_prog *prog, u32 *target_size) 10321 { 10322 struct bpf_insn *insn = insn_buf; 10323 10324 switch (si->off) { 10325 case offsetof(struct xdp_md, data): 10326 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data), 10327 si->dst_reg, si->src_reg, 10328 offsetof(struct xdp_buff, data)); 10329 break; 10330 case offsetof(struct xdp_md, data_meta): 10331 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta), 10332 si->dst_reg, si->src_reg, 10333 offsetof(struct xdp_buff, data_meta)); 10334 break; 10335 case offsetof(struct xdp_md, data_end): 10336 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end), 10337 si->dst_reg, si->src_reg, 10338 offsetof(struct xdp_buff, data_end)); 10339 break; 10340 case offsetof(struct xdp_md, ingress_ifindex): 10341 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq), 10342 si->dst_reg, si->src_reg, 10343 offsetof(struct xdp_buff, rxq)); 10344 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev), 10345 si->dst_reg, si->dst_reg, 10346 offsetof(struct xdp_rxq_info, dev)); 10347 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, 10348 offsetof(struct net_device, ifindex)); 10349 break; 10350 case offsetof(struct xdp_md, rx_queue_index): 10351 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq), 10352 si->dst_reg, si->src_reg, 10353 offsetof(struct xdp_buff, rxq)); 10354 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, 10355 offsetof(struct xdp_rxq_info, 10356 queue_index)); 10357 break; 10358 case offsetof(struct xdp_md, egress_ifindex): 10359 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq), 10360 si->dst_reg, si->src_reg, 10361 offsetof(struct xdp_buff, txq)); 10362 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev), 10363 si->dst_reg, si->dst_reg, 10364 offsetof(struct xdp_txq_info, dev)); 10365 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, 10366 offsetof(struct net_device, ifindex)); 10367 break; 10368 } 10369 10370 return insn - insn_buf; 10371 } 10372 10373 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of 10374 * context Structure, F is Field in context structure that contains a pointer 10375 * to Nested Structure of type NS that has the field NF. 10376 * 10377 * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make 10378 * sure that SIZE is not greater than actual size of S.F.NF. 10379 * 10380 * If offset OFF is provided, the load happens from that offset relative to 10381 * offset of NF. 10382 */ 10383 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF) \ 10384 do { \ 10385 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg, \ 10386 si->src_reg, offsetof(S, F)); \ 10387 *insn++ = BPF_LDX_MEM( \ 10388 SIZE, si->dst_reg, si->dst_reg, \ 10389 bpf_target_off(NS, NF, sizeof_field(NS, NF), \ 10390 target_size) \ 10391 + OFF); \ 10392 } while (0) 10393 10394 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF) \ 10395 SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, \ 10396 BPF_FIELD_SIZEOF(NS, NF), 0) 10397 10398 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to 10399 * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation. 10400 * 10401 * In addition it uses Temporary Field TF (member of struct S) as the 3rd 10402 * "register" since two registers available in convert_ctx_access are not 10403 * enough: we can't override neither SRC, since it contains value to store, nor 10404 * DST since it contains pointer to context that may be used by later 10405 * instructions. But we need a temporary place to save pointer to nested 10406 * structure whose field we want to store to. 10407 */ 10408 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF) \ 10409 do { \ 10410 int tmp_reg = BPF_REG_9; \ 10411 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg) \ 10412 --tmp_reg; \ 10413 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg) \ 10414 --tmp_reg; \ 10415 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg, \ 10416 offsetof(S, TF)); \ 10417 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg, \ 10418 si->dst_reg, offsetof(S, F)); \ 10419 *insn++ = BPF_RAW_INSN(SIZE | BPF_MEM | BPF_CLASS(si->code), \ 10420 tmp_reg, si->src_reg, \ 10421 bpf_target_off(NS, NF, sizeof_field(NS, NF), \ 10422 target_size) \ 10423 + OFF, \ 10424 si->imm); \ 10425 *insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg, \ 10426 offsetof(S, TF)); \ 10427 } while (0) 10428 10429 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \ 10430 TF) \ 10431 do { \ 10432 if (type == BPF_WRITE) { \ 10433 SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, \ 10434 OFF, TF); \ 10435 } else { \ 10436 SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF( \ 10437 S, NS, F, NF, SIZE, OFF); \ 10438 } \ 10439 } while (0) 10440 10441 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type, 10442 const struct bpf_insn *si, 10443 struct bpf_insn *insn_buf, 10444 struct bpf_prog *prog, u32 *target_size) 10445 { 10446 int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port); 10447 struct bpf_insn *insn = insn_buf; 10448 10449 switch (si->off) { 10450 case offsetof(struct bpf_sock_addr, user_family): 10451 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern, 10452 struct sockaddr, uaddr, sa_family); 10453 break; 10454 10455 case offsetof(struct bpf_sock_addr, user_ip4): 10456 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF( 10457 struct bpf_sock_addr_kern, struct sockaddr_in, uaddr, 10458 sin_addr, BPF_SIZE(si->code), 0, tmp_reg); 10459 break; 10460 10461 case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]): 10462 off = si->off; 10463 off -= offsetof(struct bpf_sock_addr, user_ip6[0]); 10464 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF( 10465 struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr, 10466 sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off, 10467 tmp_reg); 10468 break; 10469 10470 case offsetof(struct bpf_sock_addr, user_port): 10471 /* To get port we need to know sa_family first and then treat 10472 * sockaddr as either sockaddr_in or sockaddr_in6. 10473 * Though we can simplify since port field has same offset and 10474 * size in both structures. 10475 * Here we check this invariant and use just one of the 10476 * structures if it's true. 10477 */ 10478 BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) != 10479 offsetof(struct sockaddr_in6, sin6_port)); 10480 BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) != 10481 sizeof_field(struct sockaddr_in6, sin6_port)); 10482 /* Account for sin6_port being smaller than user_port. */ 10483 port_size = min(port_size, BPF_LDST_BYTES(si)); 10484 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF( 10485 struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr, 10486 sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg); 10487 break; 10488 10489 case offsetof(struct bpf_sock_addr, family): 10490 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern, 10491 struct sock, sk, sk_family); 10492 break; 10493 10494 case offsetof(struct bpf_sock_addr, type): 10495 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern, 10496 struct sock, sk, sk_type); 10497 break; 10498 10499 case offsetof(struct bpf_sock_addr, protocol): 10500 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern, 10501 struct sock, sk, sk_protocol); 10502 break; 10503 10504 case offsetof(struct bpf_sock_addr, msg_src_ip4): 10505 /* Treat t_ctx as struct in_addr for msg_src_ip4. */ 10506 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF( 10507 struct bpf_sock_addr_kern, struct in_addr, t_ctx, 10508 s_addr, BPF_SIZE(si->code), 0, tmp_reg); 10509 break; 10510 10511 case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0], 10512 msg_src_ip6[3]): 10513 off = si->off; 10514 off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]); 10515 /* Treat t_ctx as struct in6_addr for msg_src_ip6. */ 10516 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF( 10517 struct bpf_sock_addr_kern, struct in6_addr, t_ctx, 10518 s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg); 10519 break; 10520 case offsetof(struct bpf_sock_addr, sk): 10521 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk), 10522 si->dst_reg, si->src_reg, 10523 offsetof(struct bpf_sock_addr_kern, sk)); 10524 break; 10525 } 10526 10527 return insn - insn_buf; 10528 } 10529 10530 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type, 10531 const struct bpf_insn *si, 10532 struct bpf_insn *insn_buf, 10533 struct bpf_prog *prog, 10534 u32 *target_size) 10535 { 10536 struct bpf_insn *insn = insn_buf; 10537 int off; 10538 10539 /* Helper macro for adding read access to tcp_sock or sock fields. */ 10540 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ) \ 10541 do { \ 10542 int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2; \ 10543 BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) > \ 10544 sizeof_field(struct bpf_sock_ops, BPF_FIELD)); \ 10545 if (si->dst_reg == reg || si->src_reg == reg) \ 10546 reg--; \ 10547 if (si->dst_reg == reg || si->src_reg == reg) \ 10548 reg--; \ 10549 if (si->dst_reg == si->src_reg) { \ 10550 *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, \ 10551 offsetof(struct bpf_sock_ops_kern, \ 10552 temp)); \ 10553 fullsock_reg = reg; \ 10554 jmp += 2; \ 10555 } \ 10556 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \ 10557 struct bpf_sock_ops_kern, \ 10558 is_locked_tcp_sock), \ 10559 fullsock_reg, si->src_reg, \ 10560 offsetof(struct bpf_sock_ops_kern, \ 10561 is_locked_tcp_sock)); \ 10562 *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp); \ 10563 if (si->dst_reg == si->src_reg) \ 10564 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg, \ 10565 offsetof(struct bpf_sock_ops_kern, \ 10566 temp)); \ 10567 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \ 10568 struct bpf_sock_ops_kern, sk),\ 10569 si->dst_reg, si->src_reg, \ 10570 offsetof(struct bpf_sock_ops_kern, sk));\ 10571 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ, \ 10572 OBJ_FIELD), \ 10573 si->dst_reg, si->dst_reg, \ 10574 offsetof(OBJ, OBJ_FIELD)); \ 10575 if (si->dst_reg == si->src_reg) { \ 10576 *insn++ = BPF_JMP_A(1); \ 10577 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg, \ 10578 offsetof(struct bpf_sock_ops_kern, \ 10579 temp)); \ 10580 } \ 10581 } while (0) 10582 10583 #define SOCK_OPS_GET_SK() \ 10584 do { \ 10585 int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1; \ 10586 if (si->dst_reg == reg || si->src_reg == reg) \ 10587 reg--; \ 10588 if (si->dst_reg == reg || si->src_reg == reg) \ 10589 reg--; \ 10590 if (si->dst_reg == si->src_reg) { \ 10591 *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, \ 10592 offsetof(struct bpf_sock_ops_kern, \ 10593 temp)); \ 10594 fullsock_reg = reg; \ 10595 jmp += 2; \ 10596 } \ 10597 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \ 10598 struct bpf_sock_ops_kern, \ 10599 is_fullsock), \ 10600 fullsock_reg, si->src_reg, \ 10601 offsetof(struct bpf_sock_ops_kern, \ 10602 is_fullsock)); \ 10603 *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp); \ 10604 if (si->dst_reg == si->src_reg) \ 10605 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg, \ 10606 offsetof(struct bpf_sock_ops_kern, \ 10607 temp)); \ 10608 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \ 10609 struct bpf_sock_ops_kern, sk),\ 10610 si->dst_reg, si->src_reg, \ 10611 offsetof(struct bpf_sock_ops_kern, sk));\ 10612 if (si->dst_reg == si->src_reg) { \ 10613 *insn++ = BPF_JMP_A(1); \ 10614 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg, \ 10615 offsetof(struct bpf_sock_ops_kern, \ 10616 temp)); \ 10617 } \ 10618 } while (0) 10619 10620 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \ 10621 SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock) 10622 10623 /* Helper macro for adding write access to tcp_sock or sock fields. 10624 * The macro is called with two registers, dst_reg which contains a pointer 10625 * to ctx (context) and src_reg which contains the value that should be 10626 * stored. However, we need an additional register since we cannot overwrite 10627 * dst_reg because it may be used later in the program. 10628 * Instead we "borrow" one of the other register. We first save its value 10629 * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore 10630 * it at the end of the macro. 10631 */ 10632 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ) \ 10633 do { \ 10634 int reg = BPF_REG_9; \ 10635 BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) > \ 10636 sizeof_field(struct bpf_sock_ops, BPF_FIELD)); \ 10637 if (si->dst_reg == reg || si->src_reg == reg) \ 10638 reg--; \ 10639 if (si->dst_reg == reg || si->src_reg == reg) \ 10640 reg--; \ 10641 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg, \ 10642 offsetof(struct bpf_sock_ops_kern, \ 10643 temp)); \ 10644 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \ 10645 struct bpf_sock_ops_kern, \ 10646 is_locked_tcp_sock), \ 10647 reg, si->dst_reg, \ 10648 offsetof(struct bpf_sock_ops_kern, \ 10649 is_locked_tcp_sock)); \ 10650 *insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2); \ 10651 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \ 10652 struct bpf_sock_ops_kern, sk),\ 10653 reg, si->dst_reg, \ 10654 offsetof(struct bpf_sock_ops_kern, sk));\ 10655 *insn++ = BPF_RAW_INSN(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD) | \ 10656 BPF_MEM | BPF_CLASS(si->code), \ 10657 reg, si->src_reg, \ 10658 offsetof(OBJ, OBJ_FIELD), \ 10659 si->imm); \ 10660 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg, \ 10661 offsetof(struct bpf_sock_ops_kern, \ 10662 temp)); \ 10663 } while (0) 10664 10665 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE) \ 10666 do { \ 10667 if (TYPE == BPF_WRITE) \ 10668 SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ); \ 10669 else \ 10670 SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ); \ 10671 } while (0) 10672 10673 switch (si->off) { 10674 case offsetof(struct bpf_sock_ops, op): 10675 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern, 10676 op), 10677 si->dst_reg, si->src_reg, 10678 offsetof(struct bpf_sock_ops_kern, op)); 10679 break; 10680 10681 case offsetof(struct bpf_sock_ops, replylong[0]) ... 10682 offsetof(struct bpf_sock_ops, replylong[3]): 10683 BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) != 10684 sizeof_field(struct bpf_sock_ops_kern, reply)); 10685 BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) != 10686 sizeof_field(struct bpf_sock_ops_kern, replylong)); 10687 off = si->off; 10688 off -= offsetof(struct bpf_sock_ops, replylong[0]); 10689 off += offsetof(struct bpf_sock_ops_kern, replylong[0]); 10690 if (type == BPF_WRITE) 10691 *insn++ = BPF_EMIT_STORE(BPF_W, si, off); 10692 else 10693 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, 10694 off); 10695 break; 10696 10697 case offsetof(struct bpf_sock_ops, family): 10698 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2); 10699 10700 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( 10701 struct bpf_sock_ops_kern, sk), 10702 si->dst_reg, si->src_reg, 10703 offsetof(struct bpf_sock_ops_kern, sk)); 10704 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg, 10705 offsetof(struct sock_common, skc_family)); 10706 break; 10707 10708 case offsetof(struct bpf_sock_ops, remote_ip4): 10709 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4); 10710 10711 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( 10712 struct bpf_sock_ops_kern, sk), 10713 si->dst_reg, si->src_reg, 10714 offsetof(struct bpf_sock_ops_kern, sk)); 10715 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, 10716 offsetof(struct sock_common, skc_daddr)); 10717 break; 10718 10719 case offsetof(struct bpf_sock_ops, local_ip4): 10720 BUILD_BUG_ON(sizeof_field(struct sock_common, 10721 skc_rcv_saddr) != 4); 10722 10723 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( 10724 struct bpf_sock_ops_kern, sk), 10725 si->dst_reg, si->src_reg, 10726 offsetof(struct bpf_sock_ops_kern, sk)); 10727 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, 10728 offsetof(struct sock_common, 10729 skc_rcv_saddr)); 10730 break; 10731 10732 case offsetof(struct bpf_sock_ops, remote_ip6[0]) ... 10733 offsetof(struct bpf_sock_ops, remote_ip6[3]): 10734 #if IS_ENABLED(CONFIG_IPV6) 10735 BUILD_BUG_ON(sizeof_field(struct sock_common, 10736 skc_v6_daddr.s6_addr32[0]) != 4); 10737 10738 off = si->off; 10739 off -= offsetof(struct bpf_sock_ops, remote_ip6[0]); 10740 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( 10741 struct bpf_sock_ops_kern, sk), 10742 si->dst_reg, si->src_reg, 10743 offsetof(struct bpf_sock_ops_kern, sk)); 10744 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, 10745 offsetof(struct sock_common, 10746 skc_v6_daddr.s6_addr32[0]) + 10747 off); 10748 #else 10749 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0); 10750 #endif 10751 break; 10752 10753 case offsetof(struct bpf_sock_ops, local_ip6[0]) ... 10754 offsetof(struct bpf_sock_ops, local_ip6[3]): 10755 #if IS_ENABLED(CONFIG_IPV6) 10756 BUILD_BUG_ON(sizeof_field(struct sock_common, 10757 skc_v6_rcv_saddr.s6_addr32[0]) != 4); 10758 10759 off = si->off; 10760 off -= offsetof(struct bpf_sock_ops, local_ip6[0]); 10761 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( 10762 struct bpf_sock_ops_kern, sk), 10763 si->dst_reg, si->src_reg, 10764 offsetof(struct bpf_sock_ops_kern, sk)); 10765 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, 10766 offsetof(struct sock_common, 10767 skc_v6_rcv_saddr.s6_addr32[0]) + 10768 off); 10769 #else 10770 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0); 10771 #endif 10772 break; 10773 10774 case offsetof(struct bpf_sock_ops, remote_port): 10775 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2); 10776 10777 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( 10778 struct bpf_sock_ops_kern, sk), 10779 si->dst_reg, si->src_reg, 10780 offsetof(struct bpf_sock_ops_kern, sk)); 10781 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg, 10782 offsetof(struct sock_common, skc_dport)); 10783 #ifndef __BIG_ENDIAN_BITFIELD 10784 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16); 10785 #endif 10786 break; 10787 10788 case offsetof(struct bpf_sock_ops, local_port): 10789 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2); 10790 10791 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( 10792 struct bpf_sock_ops_kern, sk), 10793 si->dst_reg, si->src_reg, 10794 offsetof(struct bpf_sock_ops_kern, sk)); 10795 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg, 10796 offsetof(struct sock_common, skc_num)); 10797 break; 10798 10799 case offsetof(struct bpf_sock_ops, is_fullsock): 10800 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( 10801 struct bpf_sock_ops_kern, 10802 is_fullsock), 10803 si->dst_reg, si->src_reg, 10804 offsetof(struct bpf_sock_ops_kern, 10805 is_fullsock)); 10806 break; 10807 10808 case offsetof(struct bpf_sock_ops, state): 10809 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1); 10810 10811 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( 10812 struct bpf_sock_ops_kern, sk), 10813 si->dst_reg, si->src_reg, 10814 offsetof(struct bpf_sock_ops_kern, sk)); 10815 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg, 10816 offsetof(struct sock_common, skc_state)); 10817 break; 10818 10819 case offsetof(struct bpf_sock_ops, rtt_min): 10820 BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) != 10821 sizeof(struct minmax)); 10822 BUILD_BUG_ON(sizeof(struct minmax) < 10823 sizeof(struct minmax_sample)); 10824 10825 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( 10826 struct bpf_sock_ops_kern, sk), 10827 si->dst_reg, si->src_reg, 10828 offsetof(struct bpf_sock_ops_kern, sk)); 10829 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, 10830 offsetof(struct tcp_sock, rtt_min) + 10831 sizeof_field(struct minmax_sample, t)); 10832 break; 10833 10834 case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags): 10835 SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags, 10836 struct tcp_sock); 10837 break; 10838 10839 case offsetof(struct bpf_sock_ops, sk_txhash): 10840 SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash, 10841 struct sock, type); 10842 break; 10843 case offsetof(struct bpf_sock_ops, snd_cwnd): 10844 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd); 10845 break; 10846 case offsetof(struct bpf_sock_ops, srtt_us): 10847 SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us); 10848 break; 10849 case offsetof(struct bpf_sock_ops, snd_ssthresh): 10850 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh); 10851 break; 10852 case offsetof(struct bpf_sock_ops, rcv_nxt): 10853 SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt); 10854 break; 10855 case offsetof(struct bpf_sock_ops, snd_nxt): 10856 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt); 10857 break; 10858 case offsetof(struct bpf_sock_ops, snd_una): 10859 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una); 10860 break; 10861 case offsetof(struct bpf_sock_ops, mss_cache): 10862 SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache); 10863 break; 10864 case offsetof(struct bpf_sock_ops, ecn_flags): 10865 SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags); 10866 break; 10867 case offsetof(struct bpf_sock_ops, rate_delivered): 10868 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered); 10869 break; 10870 case offsetof(struct bpf_sock_ops, rate_interval_us): 10871 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us); 10872 break; 10873 case offsetof(struct bpf_sock_ops, packets_out): 10874 SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out); 10875 break; 10876 case offsetof(struct bpf_sock_ops, retrans_out): 10877 SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out); 10878 break; 10879 case offsetof(struct bpf_sock_ops, total_retrans): 10880 SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans); 10881 break; 10882 case offsetof(struct bpf_sock_ops, segs_in): 10883 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in); 10884 break; 10885 case offsetof(struct bpf_sock_ops, data_segs_in): 10886 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in); 10887 break; 10888 case offsetof(struct bpf_sock_ops, segs_out): 10889 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out); 10890 break; 10891 case offsetof(struct bpf_sock_ops, data_segs_out): 10892 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out); 10893 break; 10894 case offsetof(struct bpf_sock_ops, lost_out): 10895 SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out); 10896 break; 10897 case offsetof(struct bpf_sock_ops, sacked_out): 10898 SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out); 10899 break; 10900 case offsetof(struct bpf_sock_ops, bytes_received): 10901 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received); 10902 break; 10903 case offsetof(struct bpf_sock_ops, bytes_acked): 10904 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked); 10905 break; 10906 case offsetof(struct bpf_sock_ops, sk): 10907 SOCK_OPS_GET_SK(); 10908 break; 10909 case offsetof(struct bpf_sock_ops, skb_data_end): 10910 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern, 10911 skb_data_end), 10912 si->dst_reg, si->src_reg, 10913 offsetof(struct bpf_sock_ops_kern, 10914 skb_data_end)); 10915 break; 10916 case offsetof(struct bpf_sock_ops, skb_data): 10917 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern, 10918 skb), 10919 si->dst_reg, si->src_reg, 10920 offsetof(struct bpf_sock_ops_kern, 10921 skb)); 10922 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1); 10923 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data), 10924 si->dst_reg, si->dst_reg, 10925 offsetof(struct sk_buff, data)); 10926 break; 10927 case offsetof(struct bpf_sock_ops, skb_len): 10928 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern, 10929 skb), 10930 si->dst_reg, si->src_reg, 10931 offsetof(struct bpf_sock_ops_kern, 10932 skb)); 10933 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1); 10934 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len), 10935 si->dst_reg, si->dst_reg, 10936 offsetof(struct sk_buff, len)); 10937 break; 10938 case offsetof(struct bpf_sock_ops, skb_tcp_flags): 10939 off = offsetof(struct sk_buff, cb); 10940 off += offsetof(struct tcp_skb_cb, tcp_flags); 10941 *target_size = sizeof_field(struct tcp_skb_cb, tcp_flags); 10942 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern, 10943 skb), 10944 si->dst_reg, si->src_reg, 10945 offsetof(struct bpf_sock_ops_kern, 10946 skb)); 10947 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1); 10948 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_skb_cb, 10949 tcp_flags), 10950 si->dst_reg, si->dst_reg, off); 10951 break; 10952 case offsetof(struct bpf_sock_ops, skb_hwtstamp): { 10953 struct bpf_insn *jmp_on_null_skb; 10954 10955 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern, 10956 skb), 10957 si->dst_reg, si->src_reg, 10958 offsetof(struct bpf_sock_ops_kern, 10959 skb)); 10960 /* Reserve one insn to test skb == NULL */ 10961 jmp_on_null_skb = insn++; 10962 insn = bpf_convert_shinfo_access(si->dst_reg, si->dst_reg, insn); 10963 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg, 10964 bpf_target_off(struct skb_shared_info, 10965 hwtstamps, 8, 10966 target_size)); 10967 *jmp_on_null_skb = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 10968 insn - jmp_on_null_skb - 1); 10969 break; 10970 } 10971 } 10972 return insn - insn_buf; 10973 } 10974 10975 /* data_end = skb->data + skb_headlen() */ 10976 static struct bpf_insn *bpf_convert_data_end_access(const struct bpf_insn *si, 10977 struct bpf_insn *insn) 10978 { 10979 int reg; 10980 int temp_reg_off = offsetof(struct sk_buff, cb) + 10981 offsetof(struct sk_skb_cb, temp_reg); 10982 10983 if (si->src_reg == si->dst_reg) { 10984 /* We need an extra register, choose and save a register. */ 10985 reg = BPF_REG_9; 10986 if (si->src_reg == reg || si->dst_reg == reg) 10987 reg--; 10988 if (si->src_reg == reg || si->dst_reg == reg) 10989 reg--; 10990 *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, temp_reg_off); 10991 } else { 10992 reg = si->dst_reg; 10993 } 10994 10995 /* reg = skb->data */ 10996 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data), 10997 reg, si->src_reg, 10998 offsetof(struct sk_buff, data)); 10999 /* AX = skb->len */ 11000 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len), 11001 BPF_REG_AX, si->src_reg, 11002 offsetof(struct sk_buff, len)); 11003 /* reg = skb->data + skb->len */ 11004 *insn++ = BPF_ALU64_REG(BPF_ADD, reg, BPF_REG_AX); 11005 /* AX = skb->data_len */ 11006 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data_len), 11007 BPF_REG_AX, si->src_reg, 11008 offsetof(struct sk_buff, data_len)); 11009 11010 /* reg = skb->data + skb->len - skb->data_len */ 11011 *insn++ = BPF_ALU64_REG(BPF_SUB, reg, BPF_REG_AX); 11012 11013 if (si->src_reg == si->dst_reg) { 11014 /* Restore the saved register */ 11015 *insn++ = BPF_MOV64_REG(BPF_REG_AX, si->src_reg); 11016 *insn++ = BPF_MOV64_REG(si->dst_reg, reg); 11017 *insn++ = BPF_LDX_MEM(BPF_DW, reg, BPF_REG_AX, temp_reg_off); 11018 } 11019 11020 return insn; 11021 } 11022 11023 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type, 11024 const struct bpf_insn *si, 11025 struct bpf_insn *insn_buf, 11026 struct bpf_prog *prog, u32 *target_size) 11027 { 11028 struct bpf_insn *insn = insn_buf; 11029 int off; 11030 11031 switch (si->off) { 11032 case offsetof(struct __sk_buff, data_end): 11033 insn = bpf_convert_data_end_access(si, insn); 11034 break; 11035 case offsetof(struct __sk_buff, cb[0]) ... 11036 offsetofend(struct __sk_buff, cb[4]) - 1: 11037 BUILD_BUG_ON(sizeof_field(struct sk_skb_cb, data) < 20); 11038 BUILD_BUG_ON((offsetof(struct sk_buff, cb) + 11039 offsetof(struct sk_skb_cb, data)) % 11040 sizeof(__u64)); 11041 11042 prog->cb_access = 1; 11043 off = si->off; 11044 off -= offsetof(struct __sk_buff, cb[0]); 11045 off += offsetof(struct sk_buff, cb); 11046 off += offsetof(struct sk_skb_cb, data); 11047 if (type == BPF_WRITE) 11048 *insn++ = BPF_EMIT_STORE(BPF_SIZE(si->code), si, off); 11049 else 11050 *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg, 11051 si->src_reg, off); 11052 break; 11053 11054 11055 default: 11056 return bpf_convert_ctx_access(type, si, insn_buf, prog, 11057 target_size); 11058 } 11059 11060 return insn - insn_buf; 11061 } 11062 11063 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type, 11064 const struct bpf_insn *si, 11065 struct bpf_insn *insn_buf, 11066 struct bpf_prog *prog, u32 *target_size) 11067 { 11068 struct bpf_insn *insn = insn_buf; 11069 #if IS_ENABLED(CONFIG_IPV6) 11070 int off; 11071 #endif 11072 11073 /* convert ctx uses the fact sg element is first in struct */ 11074 BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0); 11075 11076 switch (si->off) { 11077 case offsetof(struct sk_msg_md, data): 11078 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data), 11079 si->dst_reg, si->src_reg, 11080 offsetof(struct sk_msg, data)); 11081 break; 11082 case offsetof(struct sk_msg_md, data_end): 11083 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end), 11084 si->dst_reg, si->src_reg, 11085 offsetof(struct sk_msg, data_end)); 11086 break; 11087 case offsetof(struct sk_msg_md, family): 11088 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2); 11089 11090 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( 11091 struct sk_msg, sk), 11092 si->dst_reg, si->src_reg, 11093 offsetof(struct sk_msg, sk)); 11094 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg, 11095 offsetof(struct sock_common, skc_family)); 11096 break; 11097 11098 case offsetof(struct sk_msg_md, remote_ip4): 11099 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4); 11100 11101 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( 11102 struct sk_msg, sk), 11103 si->dst_reg, si->src_reg, 11104 offsetof(struct sk_msg, sk)); 11105 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, 11106 offsetof(struct sock_common, skc_daddr)); 11107 break; 11108 11109 case offsetof(struct sk_msg_md, local_ip4): 11110 BUILD_BUG_ON(sizeof_field(struct sock_common, 11111 skc_rcv_saddr) != 4); 11112 11113 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( 11114 struct sk_msg, sk), 11115 si->dst_reg, si->src_reg, 11116 offsetof(struct sk_msg, sk)); 11117 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, 11118 offsetof(struct sock_common, 11119 skc_rcv_saddr)); 11120 break; 11121 11122 case offsetof(struct sk_msg_md, remote_ip6[0]) ... 11123 offsetof(struct sk_msg_md, remote_ip6[3]): 11124 #if IS_ENABLED(CONFIG_IPV6) 11125 BUILD_BUG_ON(sizeof_field(struct sock_common, 11126 skc_v6_daddr.s6_addr32[0]) != 4); 11127 11128 off = si->off; 11129 off -= offsetof(struct sk_msg_md, remote_ip6[0]); 11130 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( 11131 struct sk_msg, sk), 11132 si->dst_reg, si->src_reg, 11133 offsetof(struct sk_msg, sk)); 11134 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, 11135 offsetof(struct sock_common, 11136 skc_v6_daddr.s6_addr32[0]) + 11137 off); 11138 #else 11139 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0); 11140 #endif 11141 break; 11142 11143 case offsetof(struct sk_msg_md, local_ip6[0]) ... 11144 offsetof(struct sk_msg_md, local_ip6[3]): 11145 #if IS_ENABLED(CONFIG_IPV6) 11146 BUILD_BUG_ON(sizeof_field(struct sock_common, 11147 skc_v6_rcv_saddr.s6_addr32[0]) != 4); 11148 11149 off = si->off; 11150 off -= offsetof(struct sk_msg_md, local_ip6[0]); 11151 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( 11152 struct sk_msg, sk), 11153 si->dst_reg, si->src_reg, 11154 offsetof(struct sk_msg, sk)); 11155 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, 11156 offsetof(struct sock_common, 11157 skc_v6_rcv_saddr.s6_addr32[0]) + 11158 off); 11159 #else 11160 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0); 11161 #endif 11162 break; 11163 11164 case offsetof(struct sk_msg_md, remote_port): 11165 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2); 11166 11167 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( 11168 struct sk_msg, sk), 11169 si->dst_reg, si->src_reg, 11170 offsetof(struct sk_msg, sk)); 11171 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg, 11172 offsetof(struct sock_common, skc_dport)); 11173 #ifndef __BIG_ENDIAN_BITFIELD 11174 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16); 11175 #endif 11176 break; 11177 11178 case offsetof(struct sk_msg_md, local_port): 11179 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2); 11180 11181 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( 11182 struct sk_msg, sk), 11183 si->dst_reg, si->src_reg, 11184 offsetof(struct sk_msg, sk)); 11185 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg, 11186 offsetof(struct sock_common, skc_num)); 11187 break; 11188 11189 case offsetof(struct sk_msg_md, size): 11190 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size), 11191 si->dst_reg, si->src_reg, 11192 offsetof(struct sk_msg_sg, size)); 11193 break; 11194 11195 case offsetof(struct sk_msg_md, sk): 11196 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk), 11197 si->dst_reg, si->src_reg, 11198 offsetof(struct sk_msg, sk)); 11199 break; 11200 } 11201 11202 return insn - insn_buf; 11203 } 11204 11205 const struct bpf_verifier_ops sk_filter_verifier_ops = { 11206 .get_func_proto = sk_filter_func_proto, 11207 .is_valid_access = sk_filter_is_valid_access, 11208 .convert_ctx_access = bpf_convert_ctx_access, 11209 .gen_ld_abs = bpf_gen_ld_abs, 11210 }; 11211 11212 const struct bpf_prog_ops sk_filter_prog_ops = { 11213 .test_run = bpf_prog_test_run_skb, 11214 }; 11215 11216 const struct bpf_verifier_ops tc_cls_act_verifier_ops = { 11217 .get_func_proto = tc_cls_act_func_proto, 11218 .is_valid_access = tc_cls_act_is_valid_access, 11219 .convert_ctx_access = tc_cls_act_convert_ctx_access, 11220 .gen_prologue = tc_cls_act_prologue, 11221 .gen_ld_abs = bpf_gen_ld_abs, 11222 .btf_struct_access = tc_cls_act_btf_struct_access, 11223 }; 11224 11225 const struct bpf_prog_ops tc_cls_act_prog_ops = { 11226 .test_run = bpf_prog_test_run_skb, 11227 }; 11228 11229 const struct bpf_verifier_ops xdp_verifier_ops = { 11230 .get_func_proto = xdp_func_proto, 11231 .is_valid_access = xdp_is_valid_access, 11232 .convert_ctx_access = xdp_convert_ctx_access, 11233 .gen_prologue = bpf_noop_prologue, 11234 .btf_struct_access = xdp_btf_struct_access, 11235 }; 11236 11237 const struct bpf_prog_ops xdp_prog_ops = { 11238 .test_run = bpf_prog_test_run_xdp, 11239 }; 11240 11241 const struct bpf_verifier_ops cg_skb_verifier_ops = { 11242 .get_func_proto = cg_skb_func_proto, 11243 .is_valid_access = cg_skb_is_valid_access, 11244 .convert_ctx_access = bpf_convert_ctx_access, 11245 }; 11246 11247 const struct bpf_prog_ops cg_skb_prog_ops = { 11248 .test_run = bpf_prog_test_run_skb, 11249 }; 11250 11251 const struct bpf_verifier_ops lwt_in_verifier_ops = { 11252 .get_func_proto = lwt_in_func_proto, 11253 .is_valid_access = lwt_is_valid_access, 11254 .convert_ctx_access = bpf_convert_ctx_access, 11255 }; 11256 11257 const struct bpf_prog_ops lwt_in_prog_ops = { 11258 .test_run = bpf_prog_test_run_skb, 11259 }; 11260 11261 const struct bpf_verifier_ops lwt_out_verifier_ops = { 11262 .get_func_proto = lwt_out_func_proto, 11263 .is_valid_access = lwt_is_valid_access, 11264 .convert_ctx_access = bpf_convert_ctx_access, 11265 }; 11266 11267 const struct bpf_prog_ops lwt_out_prog_ops = { 11268 .test_run = bpf_prog_test_run_skb, 11269 }; 11270 11271 const struct bpf_verifier_ops lwt_xmit_verifier_ops = { 11272 .get_func_proto = lwt_xmit_func_proto, 11273 .is_valid_access = lwt_is_valid_access, 11274 .convert_ctx_access = bpf_convert_ctx_access, 11275 .gen_prologue = tc_cls_act_prologue, 11276 }; 11277 11278 const struct bpf_prog_ops lwt_xmit_prog_ops = { 11279 .test_run = bpf_prog_test_run_skb, 11280 }; 11281 11282 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = { 11283 .get_func_proto = lwt_seg6local_func_proto, 11284 .is_valid_access = lwt_is_valid_access, 11285 .convert_ctx_access = bpf_convert_ctx_access, 11286 }; 11287 11288 const struct bpf_prog_ops lwt_seg6local_prog_ops = { 11289 }; 11290 11291 const struct bpf_verifier_ops cg_sock_verifier_ops = { 11292 .get_func_proto = sock_filter_func_proto, 11293 .is_valid_access = sock_filter_is_valid_access, 11294 .convert_ctx_access = bpf_sock_convert_ctx_access, 11295 }; 11296 11297 const struct bpf_prog_ops cg_sock_prog_ops = { 11298 }; 11299 11300 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = { 11301 .get_func_proto = sock_addr_func_proto, 11302 .is_valid_access = sock_addr_is_valid_access, 11303 .convert_ctx_access = sock_addr_convert_ctx_access, 11304 }; 11305 11306 const struct bpf_prog_ops cg_sock_addr_prog_ops = { 11307 }; 11308 11309 const struct bpf_verifier_ops sock_ops_verifier_ops = { 11310 .get_func_proto = sock_ops_func_proto, 11311 .is_valid_access = sock_ops_is_valid_access, 11312 .convert_ctx_access = sock_ops_convert_ctx_access, 11313 }; 11314 11315 const struct bpf_prog_ops sock_ops_prog_ops = { 11316 }; 11317 11318 const struct bpf_verifier_ops sk_skb_verifier_ops = { 11319 .get_func_proto = sk_skb_func_proto, 11320 .is_valid_access = sk_skb_is_valid_access, 11321 .convert_ctx_access = sk_skb_convert_ctx_access, 11322 .gen_prologue = sk_skb_prologue, 11323 }; 11324 11325 const struct bpf_prog_ops sk_skb_prog_ops = { 11326 }; 11327 11328 const struct bpf_verifier_ops sk_msg_verifier_ops = { 11329 .get_func_proto = sk_msg_func_proto, 11330 .is_valid_access = sk_msg_is_valid_access, 11331 .convert_ctx_access = sk_msg_convert_ctx_access, 11332 .gen_prologue = bpf_noop_prologue, 11333 }; 11334 11335 const struct bpf_prog_ops sk_msg_prog_ops = { 11336 }; 11337 11338 const struct bpf_verifier_ops flow_dissector_verifier_ops = { 11339 .get_func_proto = flow_dissector_func_proto, 11340 .is_valid_access = flow_dissector_is_valid_access, 11341 .convert_ctx_access = flow_dissector_convert_ctx_access, 11342 }; 11343 11344 const struct bpf_prog_ops flow_dissector_prog_ops = { 11345 .test_run = bpf_prog_test_run_flow_dissector, 11346 }; 11347 11348 int sk_detach_filter(struct sock *sk) 11349 { 11350 int ret = -ENOENT; 11351 struct sk_filter *filter; 11352 11353 if (sock_flag(sk, SOCK_FILTER_LOCKED)) 11354 return -EPERM; 11355 11356 filter = rcu_dereference_protected(sk->sk_filter, 11357 lockdep_sock_is_held(sk)); 11358 if (filter) { 11359 RCU_INIT_POINTER(sk->sk_filter, NULL); 11360 sk_filter_uncharge(sk, filter); 11361 ret = 0; 11362 } 11363 11364 return ret; 11365 } 11366 EXPORT_SYMBOL_GPL(sk_detach_filter); 11367 11368 int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len) 11369 { 11370 struct sock_fprog_kern *fprog; 11371 struct sk_filter *filter; 11372 int ret = 0; 11373 11374 sockopt_lock_sock(sk); 11375 filter = rcu_dereference_protected(sk->sk_filter, 11376 lockdep_sock_is_held(sk)); 11377 if (!filter) 11378 goto out; 11379 11380 /* We're copying the filter that has been originally attached, 11381 * so no conversion/decode needed anymore. eBPF programs that 11382 * have no original program cannot be dumped through this. 11383 */ 11384 ret = -EACCES; 11385 fprog = filter->prog->orig_prog; 11386 if (!fprog) 11387 goto out; 11388 11389 ret = fprog->len; 11390 if (!len) 11391 /* User space only enquires number of filter blocks. */ 11392 goto out; 11393 11394 ret = -EINVAL; 11395 if (len < fprog->len) 11396 goto out; 11397 11398 ret = -EFAULT; 11399 if (copy_to_sockptr(optval, fprog->filter, bpf_classic_proglen(fprog))) 11400 goto out; 11401 11402 /* Instead of bytes, the API requests to return the number 11403 * of filter blocks. 11404 */ 11405 ret = fprog->len; 11406 out: 11407 sockopt_release_sock(sk); 11408 return ret; 11409 } 11410 11411 #ifdef CONFIG_INET 11412 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern, 11413 struct sock_reuseport *reuse, 11414 struct sock *sk, struct sk_buff *skb, 11415 struct sock *migrating_sk, 11416 u32 hash) 11417 { 11418 reuse_kern->skb = skb; 11419 reuse_kern->sk = sk; 11420 reuse_kern->selected_sk = NULL; 11421 reuse_kern->migrating_sk = migrating_sk; 11422 reuse_kern->data_end = skb->data + skb_headlen(skb); 11423 reuse_kern->hash = hash; 11424 reuse_kern->reuseport_id = reuse->reuseport_id; 11425 reuse_kern->bind_inany = reuse->bind_inany; 11426 } 11427 11428 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk, 11429 struct bpf_prog *prog, struct sk_buff *skb, 11430 struct sock *migrating_sk, 11431 u32 hash) 11432 { 11433 struct sk_reuseport_kern reuse_kern; 11434 enum sk_action action; 11435 11436 bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, migrating_sk, hash); 11437 action = bpf_prog_run(prog, &reuse_kern); 11438 11439 if (action == SK_PASS) 11440 return reuse_kern.selected_sk; 11441 else 11442 return ERR_PTR(-ECONNREFUSED); 11443 } 11444 11445 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern, 11446 struct bpf_map *, map, void *, key, u32, flags) 11447 { 11448 bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY; 11449 struct sock_reuseport *reuse; 11450 struct sock *selected_sk; 11451 int err; 11452 11453 selected_sk = map->ops->map_lookup_elem(map, key); 11454 if (!selected_sk) 11455 return -ENOENT; 11456 11457 reuse = rcu_dereference(selected_sk->sk_reuseport_cb); 11458 if (!reuse) { 11459 /* reuseport_array has only sk with non NULL sk_reuseport_cb. 11460 * The only (!reuse) case here is - the sk has already been 11461 * unhashed (e.g. by close()), so treat it as -ENOENT. 11462 * 11463 * Other maps (e.g. sock_map) do not provide this guarantee and 11464 * the sk may never be in the reuseport group to begin with. 11465 */ 11466 err = is_sockarray ? -ENOENT : -EINVAL; 11467 goto error; 11468 } 11469 11470 if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) { 11471 struct sock *sk = reuse_kern->sk; 11472 11473 if (sk->sk_protocol != selected_sk->sk_protocol) { 11474 err = -EPROTOTYPE; 11475 } else if (sk->sk_family != selected_sk->sk_family) { 11476 err = -EAFNOSUPPORT; 11477 } else { 11478 /* Catch all. Likely bound to a different sockaddr. */ 11479 err = -EBADFD; 11480 } 11481 goto error; 11482 } 11483 11484 reuse_kern->selected_sk = selected_sk; 11485 11486 return 0; 11487 error: 11488 /* Lookup in sock_map can return TCP ESTABLISHED sockets. */ 11489 if (sk_is_refcounted(selected_sk)) 11490 sock_put(selected_sk); 11491 11492 return err; 11493 } 11494 11495 static const struct bpf_func_proto sk_select_reuseport_proto = { 11496 .func = sk_select_reuseport, 11497 .gpl_only = false, 11498 .ret_type = RET_INTEGER, 11499 .arg1_type = ARG_PTR_TO_CTX, 11500 .arg2_type = ARG_CONST_MAP_PTR, 11501 .arg3_type = ARG_PTR_TO_MAP_KEY, 11502 .arg4_type = ARG_ANYTHING, 11503 }; 11504 11505 BPF_CALL_4(sk_reuseport_load_bytes, 11506 const struct sk_reuseport_kern *, reuse_kern, u32, offset, 11507 void *, to, u32, len) 11508 { 11509 return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len); 11510 } 11511 11512 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = { 11513 .func = sk_reuseport_load_bytes, 11514 .gpl_only = false, 11515 .ret_type = RET_INTEGER, 11516 .arg1_type = ARG_PTR_TO_CTX, 11517 .arg2_type = ARG_ANYTHING, 11518 .arg3_type = ARG_PTR_TO_UNINIT_MEM, 11519 .arg4_type = ARG_CONST_SIZE, 11520 }; 11521 11522 BPF_CALL_5(sk_reuseport_load_bytes_relative, 11523 const struct sk_reuseport_kern *, reuse_kern, u32, offset, 11524 void *, to, u32, len, u32, start_header) 11525 { 11526 return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to, 11527 len, start_header); 11528 } 11529 11530 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = { 11531 .func = sk_reuseport_load_bytes_relative, 11532 .gpl_only = false, 11533 .ret_type = RET_INTEGER, 11534 .arg1_type = ARG_PTR_TO_CTX, 11535 .arg2_type = ARG_ANYTHING, 11536 .arg3_type = ARG_PTR_TO_UNINIT_MEM, 11537 .arg4_type = ARG_CONST_SIZE, 11538 .arg5_type = ARG_ANYTHING, 11539 }; 11540 11541 static const struct bpf_func_proto * 11542 sk_reuseport_func_proto(enum bpf_func_id func_id, 11543 const struct bpf_prog *prog) 11544 { 11545 switch (func_id) { 11546 case BPF_FUNC_sk_select_reuseport: 11547 return &sk_select_reuseport_proto; 11548 case BPF_FUNC_skb_load_bytes: 11549 return &sk_reuseport_load_bytes_proto; 11550 case BPF_FUNC_skb_load_bytes_relative: 11551 return &sk_reuseport_load_bytes_relative_proto; 11552 case BPF_FUNC_get_socket_cookie: 11553 return &bpf_get_socket_ptr_cookie_proto; 11554 case BPF_FUNC_ktime_get_coarse_ns: 11555 return &bpf_ktime_get_coarse_ns_proto; 11556 default: 11557 return bpf_base_func_proto(func_id, prog); 11558 } 11559 } 11560 11561 static bool 11562 sk_reuseport_is_valid_access(int off, int size, 11563 enum bpf_access_type type, 11564 const struct bpf_prog *prog, 11565 struct bpf_insn_access_aux *info) 11566 { 11567 const u32 size_default = sizeof(__u32); 11568 11569 if (off < 0 || off >= sizeof(struct sk_reuseport_md) || 11570 off % size || type != BPF_READ) 11571 return false; 11572 11573 switch (off) { 11574 case offsetof(struct sk_reuseport_md, data): 11575 info->reg_type = PTR_TO_PACKET; 11576 return size == sizeof(__u64); 11577 11578 case offsetof(struct sk_reuseport_md, data_end): 11579 info->reg_type = PTR_TO_PACKET_END; 11580 return size == sizeof(__u64); 11581 11582 case offsetof(struct sk_reuseport_md, hash): 11583 return size == size_default; 11584 11585 case offsetof(struct sk_reuseport_md, sk): 11586 info->reg_type = PTR_TO_SOCKET; 11587 return size == sizeof(__u64); 11588 11589 case offsetof(struct sk_reuseport_md, migrating_sk): 11590 info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL; 11591 return size == sizeof(__u64); 11592 11593 /* Fields that allow narrowing */ 11594 case bpf_ctx_range(struct sk_reuseport_md, eth_protocol): 11595 if (size < sizeof_field(struct sk_buff, protocol)) 11596 return false; 11597 fallthrough; 11598 case bpf_ctx_range(struct sk_reuseport_md, ip_protocol): 11599 case bpf_ctx_range(struct sk_reuseport_md, bind_inany): 11600 case bpf_ctx_range(struct sk_reuseport_md, len): 11601 bpf_ctx_record_field_size(info, size_default); 11602 return bpf_ctx_narrow_access_ok(off, size, size_default); 11603 11604 default: 11605 return false; 11606 } 11607 } 11608 11609 #define SK_REUSEPORT_LOAD_FIELD(F) ({ \ 11610 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \ 11611 si->dst_reg, si->src_reg, \ 11612 bpf_target_off(struct sk_reuseport_kern, F, \ 11613 sizeof_field(struct sk_reuseport_kern, F), \ 11614 target_size)); \ 11615 }) 11616 11617 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD) \ 11618 SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern, \ 11619 struct sk_buff, \ 11620 skb, \ 11621 SKB_FIELD) 11622 11623 #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD) \ 11624 SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern, \ 11625 struct sock, \ 11626 sk, \ 11627 SK_FIELD) 11628 11629 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type, 11630 const struct bpf_insn *si, 11631 struct bpf_insn *insn_buf, 11632 struct bpf_prog *prog, 11633 u32 *target_size) 11634 { 11635 struct bpf_insn *insn = insn_buf; 11636 11637 switch (si->off) { 11638 case offsetof(struct sk_reuseport_md, data): 11639 SK_REUSEPORT_LOAD_SKB_FIELD(data); 11640 break; 11641 11642 case offsetof(struct sk_reuseport_md, len): 11643 SK_REUSEPORT_LOAD_SKB_FIELD(len); 11644 break; 11645 11646 case offsetof(struct sk_reuseport_md, eth_protocol): 11647 SK_REUSEPORT_LOAD_SKB_FIELD(protocol); 11648 break; 11649 11650 case offsetof(struct sk_reuseport_md, ip_protocol): 11651 SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol); 11652 break; 11653 11654 case offsetof(struct sk_reuseport_md, data_end): 11655 SK_REUSEPORT_LOAD_FIELD(data_end); 11656 break; 11657 11658 case offsetof(struct sk_reuseport_md, hash): 11659 SK_REUSEPORT_LOAD_FIELD(hash); 11660 break; 11661 11662 case offsetof(struct sk_reuseport_md, bind_inany): 11663 SK_REUSEPORT_LOAD_FIELD(bind_inany); 11664 break; 11665 11666 case offsetof(struct sk_reuseport_md, sk): 11667 SK_REUSEPORT_LOAD_FIELD(sk); 11668 break; 11669 11670 case offsetof(struct sk_reuseport_md, migrating_sk): 11671 SK_REUSEPORT_LOAD_FIELD(migrating_sk); 11672 break; 11673 } 11674 11675 return insn - insn_buf; 11676 } 11677 11678 const struct bpf_verifier_ops sk_reuseport_verifier_ops = { 11679 .get_func_proto = sk_reuseport_func_proto, 11680 .is_valid_access = sk_reuseport_is_valid_access, 11681 .convert_ctx_access = sk_reuseport_convert_ctx_access, 11682 }; 11683 11684 const struct bpf_prog_ops sk_reuseport_prog_ops = { 11685 }; 11686 11687 DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled); 11688 EXPORT_SYMBOL(bpf_sk_lookup_enabled); 11689 11690 BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx, 11691 struct sock *, sk, u64, flags) 11692 { 11693 if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE | 11694 BPF_SK_LOOKUP_F_NO_REUSEPORT))) 11695 return -EINVAL; 11696 if (unlikely(sk && sk_is_refcounted(sk))) 11697 return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */ 11698 if (unlikely(sk && sk_is_tcp(sk) && sk->sk_state != TCP_LISTEN)) 11699 return -ESOCKTNOSUPPORT; /* only accept TCP socket in LISTEN */ 11700 if (unlikely(sk && sk_is_udp(sk) && sk->sk_state != TCP_CLOSE)) 11701 return -ESOCKTNOSUPPORT; /* only accept UDP socket in CLOSE */ 11702 11703 /* Check if socket is suitable for packet L3/L4 protocol */ 11704 if (sk && sk->sk_protocol != ctx->protocol) 11705 return -EPROTOTYPE; 11706 if (sk && sk->sk_family != ctx->family && 11707 (sk->sk_family == AF_INET || ipv6_only_sock(sk))) 11708 return -EAFNOSUPPORT; 11709 11710 if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE)) 11711 return -EEXIST; 11712 11713 /* Select socket as lookup result */ 11714 ctx->selected_sk = sk; 11715 ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT; 11716 return 0; 11717 } 11718 11719 static const struct bpf_func_proto bpf_sk_lookup_assign_proto = { 11720 .func = bpf_sk_lookup_assign, 11721 .gpl_only = false, 11722 .ret_type = RET_INTEGER, 11723 .arg1_type = ARG_PTR_TO_CTX, 11724 .arg2_type = ARG_PTR_TO_SOCKET_OR_NULL, 11725 .arg3_type = ARG_ANYTHING, 11726 }; 11727 11728 static const struct bpf_func_proto * 11729 sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 11730 { 11731 switch (func_id) { 11732 case BPF_FUNC_perf_event_output: 11733 return &bpf_event_output_data_proto; 11734 case BPF_FUNC_sk_assign: 11735 return &bpf_sk_lookup_assign_proto; 11736 case BPF_FUNC_sk_release: 11737 return &bpf_sk_release_proto; 11738 default: 11739 return bpf_sk_base_func_proto(func_id, prog); 11740 } 11741 } 11742 11743 static bool sk_lookup_is_valid_access(int off, int size, 11744 enum bpf_access_type type, 11745 const struct bpf_prog *prog, 11746 struct bpf_insn_access_aux *info) 11747 { 11748 if (off < 0 || off >= sizeof(struct bpf_sk_lookup)) 11749 return false; 11750 if (off % size != 0) 11751 return false; 11752 if (type != BPF_READ) 11753 return false; 11754 11755 switch (off) { 11756 case bpf_ctx_range_ptr(struct bpf_sk_lookup, sk): 11757 info->reg_type = PTR_TO_SOCKET_OR_NULL; 11758 return size == sizeof(__u64); 11759 11760 case bpf_ctx_range(struct bpf_sk_lookup, family): 11761 case bpf_ctx_range(struct bpf_sk_lookup, protocol): 11762 case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4): 11763 case bpf_ctx_range(struct bpf_sk_lookup, local_ip4): 11764 case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]): 11765 case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]): 11766 case bpf_ctx_range(struct bpf_sk_lookup, local_port): 11767 case bpf_ctx_range(struct bpf_sk_lookup, ingress_ifindex): 11768 bpf_ctx_record_field_size(info, sizeof(__u32)); 11769 return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32)); 11770 11771 case bpf_ctx_range(struct bpf_sk_lookup, remote_port): 11772 /* Allow 4-byte access to 2-byte field for backward compatibility */ 11773 if (size == sizeof(__u32)) 11774 return true; 11775 bpf_ctx_record_field_size(info, sizeof(__be16)); 11776 return bpf_ctx_narrow_access_ok(off, size, sizeof(__be16)); 11777 11778 case offsetofend(struct bpf_sk_lookup, remote_port) ... 11779 offsetof(struct bpf_sk_lookup, local_ip4) - 1: 11780 /* Allow access to zero padding for backward compatibility */ 11781 bpf_ctx_record_field_size(info, sizeof(__u16)); 11782 return bpf_ctx_narrow_access_ok(off, size, sizeof(__u16)); 11783 11784 default: 11785 return false; 11786 } 11787 } 11788 11789 static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type, 11790 const struct bpf_insn *si, 11791 struct bpf_insn *insn_buf, 11792 struct bpf_prog *prog, 11793 u32 *target_size) 11794 { 11795 struct bpf_insn *insn = insn_buf; 11796 11797 switch (si->off) { 11798 case offsetof(struct bpf_sk_lookup, sk): 11799 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg, 11800 offsetof(struct bpf_sk_lookup_kern, selected_sk)); 11801 break; 11802 11803 case offsetof(struct bpf_sk_lookup, family): 11804 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg, 11805 bpf_target_off(struct bpf_sk_lookup_kern, 11806 family, 2, target_size)); 11807 break; 11808 11809 case offsetof(struct bpf_sk_lookup, protocol): 11810 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg, 11811 bpf_target_off(struct bpf_sk_lookup_kern, 11812 protocol, 2, target_size)); 11813 break; 11814 11815 case offsetof(struct bpf_sk_lookup, remote_ip4): 11816 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, 11817 bpf_target_off(struct bpf_sk_lookup_kern, 11818 v4.saddr, 4, target_size)); 11819 break; 11820 11821 case offsetof(struct bpf_sk_lookup, local_ip4): 11822 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, 11823 bpf_target_off(struct bpf_sk_lookup_kern, 11824 v4.daddr, 4, target_size)); 11825 break; 11826 11827 case bpf_ctx_range_till(struct bpf_sk_lookup, 11828 remote_ip6[0], remote_ip6[3]): { 11829 #if IS_ENABLED(CONFIG_IPV6) 11830 int off = si->off; 11831 11832 off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]); 11833 off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size); 11834 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg, 11835 offsetof(struct bpf_sk_lookup_kern, v6.saddr)); 11836 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1); 11837 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off); 11838 #else 11839 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0); 11840 #endif 11841 break; 11842 } 11843 case bpf_ctx_range_till(struct bpf_sk_lookup, 11844 local_ip6[0], local_ip6[3]): { 11845 #if IS_ENABLED(CONFIG_IPV6) 11846 int off = si->off; 11847 11848 off -= offsetof(struct bpf_sk_lookup, local_ip6[0]); 11849 off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size); 11850 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg, 11851 offsetof(struct bpf_sk_lookup_kern, v6.daddr)); 11852 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1); 11853 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off); 11854 #else 11855 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0); 11856 #endif 11857 break; 11858 } 11859 case offsetof(struct bpf_sk_lookup, remote_port): 11860 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg, 11861 bpf_target_off(struct bpf_sk_lookup_kern, 11862 sport, 2, target_size)); 11863 break; 11864 11865 case offsetofend(struct bpf_sk_lookup, remote_port): 11866 *target_size = 2; 11867 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0); 11868 break; 11869 11870 case offsetof(struct bpf_sk_lookup, local_port): 11871 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg, 11872 bpf_target_off(struct bpf_sk_lookup_kern, 11873 dport, 2, target_size)); 11874 break; 11875 11876 case offsetof(struct bpf_sk_lookup, ingress_ifindex): 11877 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, 11878 bpf_target_off(struct bpf_sk_lookup_kern, 11879 ingress_ifindex, 4, target_size)); 11880 break; 11881 } 11882 11883 return insn - insn_buf; 11884 } 11885 11886 const struct bpf_prog_ops sk_lookup_prog_ops = { 11887 .test_run = bpf_prog_test_run_sk_lookup, 11888 }; 11889 11890 const struct bpf_verifier_ops sk_lookup_verifier_ops = { 11891 .get_func_proto = sk_lookup_func_proto, 11892 .is_valid_access = sk_lookup_is_valid_access, 11893 .convert_ctx_access = sk_lookup_convert_ctx_access, 11894 }; 11895 11896 #endif /* CONFIG_INET */ 11897 11898 DEFINE_BPF_DISPATCHER(xdp) 11899 11900 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog) 11901 { 11902 bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog); 11903 } 11904 11905 BTF_ID_LIST_GLOBAL(btf_sock_ids, MAX_BTF_SOCK_TYPE) 11906 #define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type) 11907 BTF_SOCK_TYPE_xxx 11908 #undef BTF_SOCK_TYPE 11909 11910 BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk) 11911 { 11912 /* tcp6_sock type is not generated in dwarf and hence btf, 11913 * trigger an explicit type generation here. 11914 */ 11915 BTF_TYPE_EMIT(struct tcp6_sock); 11916 if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP && 11917 sk->sk_family == AF_INET6) 11918 return (unsigned long)sk; 11919 11920 return (unsigned long)NULL; 11921 } 11922 11923 const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = { 11924 .func = bpf_skc_to_tcp6_sock, 11925 .gpl_only = false, 11926 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL, 11927 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON, 11928 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_TCP6], 11929 }; 11930 11931 BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk) 11932 { 11933 if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP) 11934 return (unsigned long)sk; 11935 11936 return (unsigned long)NULL; 11937 } 11938 11939 const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = { 11940 .func = bpf_skc_to_tcp_sock, 11941 .gpl_only = false, 11942 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL, 11943 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON, 11944 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_TCP], 11945 }; 11946 11947 BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk) 11948 { 11949 /* BTF types for tcp_timewait_sock and inet_timewait_sock are not 11950 * generated if CONFIG_INET=n. Trigger an explicit generation here. 11951 */ 11952 BTF_TYPE_EMIT(struct inet_timewait_sock); 11953 BTF_TYPE_EMIT(struct tcp_timewait_sock); 11954 11955 #ifdef CONFIG_INET 11956 if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT) 11957 return (unsigned long)sk; 11958 #endif 11959 11960 #if IS_BUILTIN(CONFIG_IPV6) 11961 if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT) 11962 return (unsigned long)sk; 11963 #endif 11964 11965 return (unsigned long)NULL; 11966 } 11967 11968 const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = { 11969 .func = bpf_skc_to_tcp_timewait_sock, 11970 .gpl_only = false, 11971 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL, 11972 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON, 11973 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW], 11974 }; 11975 11976 BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk) 11977 { 11978 #ifdef CONFIG_INET 11979 if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV) 11980 return (unsigned long)sk; 11981 #endif 11982 11983 #if IS_BUILTIN(CONFIG_IPV6) 11984 if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV) 11985 return (unsigned long)sk; 11986 #endif 11987 11988 return (unsigned long)NULL; 11989 } 11990 11991 const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = { 11992 .func = bpf_skc_to_tcp_request_sock, 11993 .gpl_only = false, 11994 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL, 11995 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON, 11996 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ], 11997 }; 11998 11999 BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk) 12000 { 12001 /* udp6_sock type is not generated in dwarf and hence btf, 12002 * trigger an explicit type generation here. 12003 */ 12004 BTF_TYPE_EMIT(struct udp6_sock); 12005 if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP && 12006 sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6) 12007 return (unsigned long)sk; 12008 12009 return (unsigned long)NULL; 12010 } 12011 12012 const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = { 12013 .func = bpf_skc_to_udp6_sock, 12014 .gpl_only = false, 12015 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL, 12016 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON, 12017 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_UDP6], 12018 }; 12019 12020 BPF_CALL_1(bpf_skc_to_unix_sock, struct sock *, sk) 12021 { 12022 /* unix_sock type is not generated in dwarf and hence btf, 12023 * trigger an explicit type generation here. 12024 */ 12025 BTF_TYPE_EMIT(struct unix_sock); 12026 if (sk && sk_is_unix(sk)) 12027 return (unsigned long)sk; 12028 12029 return (unsigned long)NULL; 12030 } 12031 12032 const struct bpf_func_proto bpf_skc_to_unix_sock_proto = { 12033 .func = bpf_skc_to_unix_sock, 12034 .gpl_only = false, 12035 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL, 12036 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON, 12037 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_UNIX], 12038 }; 12039 12040 BPF_CALL_1(bpf_skc_to_mptcp_sock, struct sock *, sk) 12041 { 12042 BTF_TYPE_EMIT(struct mptcp_sock); 12043 return (unsigned long)bpf_mptcp_sock_from_subflow(sk); 12044 } 12045 12046 const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto = { 12047 .func = bpf_skc_to_mptcp_sock, 12048 .gpl_only = false, 12049 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL, 12050 .arg1_type = ARG_PTR_TO_SOCK_COMMON, 12051 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_MPTCP], 12052 }; 12053 12054 BPF_CALL_1(bpf_sock_from_file, struct file *, file) 12055 { 12056 return (unsigned long)sock_from_file(file); 12057 } 12058 12059 BTF_ID_LIST(bpf_sock_from_file_btf_ids) 12060 BTF_ID(struct, socket) 12061 BTF_ID(struct, file) 12062 12063 const struct bpf_func_proto bpf_sock_from_file_proto = { 12064 .func = bpf_sock_from_file, 12065 .gpl_only = false, 12066 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL, 12067 .ret_btf_id = &bpf_sock_from_file_btf_ids[0], 12068 .arg1_type = ARG_PTR_TO_BTF_ID, 12069 .arg1_btf_id = &bpf_sock_from_file_btf_ids[1], 12070 }; 12071 12072 static const struct bpf_func_proto * 12073 bpf_sk_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 12074 { 12075 const struct bpf_func_proto *func; 12076 12077 switch (func_id) { 12078 case BPF_FUNC_skc_to_tcp6_sock: 12079 func = &bpf_skc_to_tcp6_sock_proto; 12080 break; 12081 case BPF_FUNC_skc_to_tcp_sock: 12082 func = &bpf_skc_to_tcp_sock_proto; 12083 break; 12084 case BPF_FUNC_skc_to_tcp_timewait_sock: 12085 func = &bpf_skc_to_tcp_timewait_sock_proto; 12086 break; 12087 case BPF_FUNC_skc_to_tcp_request_sock: 12088 func = &bpf_skc_to_tcp_request_sock_proto; 12089 break; 12090 case BPF_FUNC_skc_to_udp6_sock: 12091 func = &bpf_skc_to_udp6_sock_proto; 12092 break; 12093 case BPF_FUNC_skc_to_unix_sock: 12094 func = &bpf_skc_to_unix_sock_proto; 12095 break; 12096 case BPF_FUNC_skc_to_mptcp_sock: 12097 func = &bpf_skc_to_mptcp_sock_proto; 12098 break; 12099 case BPF_FUNC_ktime_get_coarse_ns: 12100 return &bpf_ktime_get_coarse_ns_proto; 12101 default: 12102 return bpf_base_func_proto(func_id, prog); 12103 } 12104 12105 if (!bpf_token_capable(prog->aux->token, CAP_PERFMON)) 12106 return NULL; 12107 12108 return func; 12109 } 12110 12111 /** 12112 * bpf_skb_meta_pointer() - Gets a mutable pointer within the skb metadata area. 12113 * @skb: socket buffer carrying the metadata 12114 * @offset: offset into the metadata area, must be <= skb_metadata_len() 12115 */ 12116 void *bpf_skb_meta_pointer(struct sk_buff *skb, u32 offset) 12117 { 12118 return skb_metadata_end(skb) - skb_metadata_len(skb) + offset; 12119 } 12120 12121 int __bpf_skb_meta_store_bytes(struct sk_buff *skb, u32 offset, 12122 const void *from, u32 len, u64 flags) 12123 { 12124 if (unlikely(flags)) 12125 return -EINVAL; 12126 if (unlikely(bpf_try_make_writable(skb, 0))) 12127 return -EFAULT; 12128 12129 memmove(bpf_skb_meta_pointer(skb, offset), from, len); 12130 return 0; 12131 } 12132 12133 __bpf_kfunc_start_defs(); 12134 __bpf_kfunc int bpf_dynptr_from_skb(struct __sk_buff *s, u64 flags, 12135 struct bpf_dynptr *ptr__uninit) 12136 { 12137 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)ptr__uninit; 12138 struct sk_buff *skb = (struct sk_buff *)s; 12139 12140 if (flags) { 12141 bpf_dynptr_set_null(ptr); 12142 return -EINVAL; 12143 } 12144 12145 bpf_dynptr_init(ptr, skb, BPF_DYNPTR_TYPE_SKB, 0, skb->len); 12146 12147 return 0; 12148 } 12149 12150 /** 12151 * bpf_dynptr_from_skb_meta() - Initialize a dynptr to the skb metadata area. 12152 * @skb_: socket buffer carrying the metadata 12153 * @flags: future use, must be zero 12154 * @ptr__uninit: dynptr to initialize 12155 * 12156 * Set up a dynptr for access to the metadata area earlier allocated from the 12157 * XDP context with bpf_xdp_adjust_meta(). Serves as an alternative to 12158 * &__sk_buff->data_meta. 12159 * 12160 * Return: 12161 * * %0 - dynptr ready to use 12162 * * %-EINVAL - invalid flags, dynptr set to null 12163 */ 12164 __bpf_kfunc int bpf_dynptr_from_skb_meta(struct __sk_buff *skb_, u64 flags, 12165 struct bpf_dynptr *ptr__uninit) 12166 { 12167 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)ptr__uninit; 12168 struct sk_buff *skb = (struct sk_buff *)skb_; 12169 12170 if (flags) { 12171 bpf_dynptr_set_null(ptr); 12172 return -EINVAL; 12173 } 12174 12175 bpf_dynptr_init(ptr, skb, BPF_DYNPTR_TYPE_SKB_META, 0, skb_metadata_len(skb)); 12176 12177 return 0; 12178 } 12179 12180 __bpf_kfunc int bpf_dynptr_from_xdp(struct xdp_md *x, u64 flags, 12181 struct bpf_dynptr *ptr__uninit) 12182 { 12183 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)ptr__uninit; 12184 struct xdp_buff *xdp = (struct xdp_buff *)x; 12185 12186 if (flags) { 12187 bpf_dynptr_set_null(ptr); 12188 return -EINVAL; 12189 } 12190 12191 bpf_dynptr_init(ptr, xdp, BPF_DYNPTR_TYPE_XDP, 0, xdp_get_buff_len(xdp)); 12192 12193 return 0; 12194 } 12195 12196 __bpf_kfunc int bpf_sock_addr_set_sun_path(struct bpf_sock_addr_kern *sa_kern, 12197 const u8 *sun_path, u32 sun_path__sz) 12198 { 12199 struct sockaddr_un *un; 12200 12201 if (sa_kern->sk->sk_family != AF_UNIX) 12202 return -EINVAL; 12203 12204 /* We do not allow changing the address to unnamed or larger than the 12205 * maximum allowed address size for a unix sockaddr. 12206 */ 12207 if (sun_path__sz == 0 || sun_path__sz > UNIX_PATH_MAX) 12208 return -EINVAL; 12209 12210 un = (struct sockaddr_un *)sa_kern->uaddr; 12211 memcpy(un->sun_path, sun_path, sun_path__sz); 12212 sa_kern->uaddrlen = offsetof(struct sockaddr_un, sun_path) + sun_path__sz; 12213 12214 return 0; 12215 } 12216 12217 __bpf_kfunc int bpf_sk_assign_tcp_reqsk(struct __sk_buff *s, struct sock *sk, 12218 struct bpf_tcp_req_attrs *attrs, int attrs__sz) 12219 { 12220 #if IS_ENABLED(CONFIG_SYN_COOKIES) 12221 struct sk_buff *skb = (struct sk_buff *)s; 12222 const struct request_sock_ops *ops; 12223 struct inet_request_sock *ireq; 12224 struct tcp_request_sock *treq; 12225 struct request_sock *req; 12226 struct net *net; 12227 __u16 min_mss; 12228 u32 tsoff = 0; 12229 12230 if (attrs__sz != sizeof(*attrs) || 12231 attrs->reserved[0] || attrs->reserved[1] || attrs->reserved[2]) 12232 return -EINVAL; 12233 12234 if (!skb_at_tc_ingress(skb)) 12235 return -EINVAL; 12236 12237 net = dev_net(skb->dev); 12238 if (net != sock_net(sk)) 12239 return -ENETUNREACH; 12240 12241 switch (skb->protocol) { 12242 case htons(ETH_P_IP): 12243 ops = &tcp_request_sock_ops; 12244 min_mss = 536; 12245 break; 12246 #if IS_BUILTIN(CONFIG_IPV6) 12247 case htons(ETH_P_IPV6): 12248 ops = &tcp6_request_sock_ops; 12249 min_mss = IPV6_MIN_MTU - 60; 12250 break; 12251 #endif 12252 default: 12253 return -EINVAL; 12254 } 12255 12256 if (sk->sk_type != SOCK_STREAM || sk->sk_state != TCP_LISTEN || 12257 sk_is_mptcp(sk)) 12258 return -EINVAL; 12259 12260 if (attrs->mss < min_mss) 12261 return -EINVAL; 12262 12263 if (attrs->wscale_ok) { 12264 if (!READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) 12265 return -EINVAL; 12266 12267 if (attrs->snd_wscale > TCP_MAX_WSCALE || 12268 attrs->rcv_wscale > TCP_MAX_WSCALE) 12269 return -EINVAL; 12270 } 12271 12272 if (attrs->sack_ok && !READ_ONCE(net->ipv4.sysctl_tcp_sack)) 12273 return -EINVAL; 12274 12275 if (attrs->tstamp_ok) { 12276 if (!READ_ONCE(net->ipv4.sysctl_tcp_timestamps)) 12277 return -EINVAL; 12278 12279 tsoff = attrs->rcv_tsecr - tcp_ns_to_ts(attrs->usec_ts_ok, tcp_clock_ns()); 12280 } 12281 12282 req = inet_reqsk_alloc(ops, sk, false); 12283 if (!req) 12284 return -ENOMEM; 12285 12286 ireq = inet_rsk(req); 12287 treq = tcp_rsk(req); 12288 12289 req->rsk_listener = sk; 12290 req->syncookie = 1; 12291 req->mss = attrs->mss; 12292 req->ts_recent = attrs->rcv_tsval; 12293 12294 ireq->snd_wscale = attrs->snd_wscale; 12295 ireq->rcv_wscale = attrs->rcv_wscale; 12296 ireq->tstamp_ok = !!attrs->tstamp_ok; 12297 ireq->sack_ok = !!attrs->sack_ok; 12298 ireq->wscale_ok = !!attrs->wscale_ok; 12299 ireq->ecn_ok = !!attrs->ecn_ok; 12300 12301 treq->req_usec_ts = !!attrs->usec_ts_ok; 12302 treq->ts_off = tsoff; 12303 12304 skb_orphan(skb); 12305 skb->sk = req_to_sk(req); 12306 skb->destructor = sock_pfree; 12307 12308 return 0; 12309 #else 12310 return -EOPNOTSUPP; 12311 #endif 12312 } 12313 12314 __bpf_kfunc int bpf_sock_ops_enable_tx_tstamp(struct bpf_sock_ops_kern *skops, 12315 u64 flags) 12316 { 12317 struct sk_buff *skb; 12318 12319 if (skops->op != BPF_SOCK_OPS_TSTAMP_SENDMSG_CB) 12320 return -EOPNOTSUPP; 12321 12322 if (flags) 12323 return -EINVAL; 12324 12325 skb = skops->skb; 12326 skb_shinfo(skb)->tx_flags |= SKBTX_BPF; 12327 TCP_SKB_CB(skb)->txstamp_ack |= TSTAMP_ACK_BPF; 12328 skb_shinfo(skb)->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 12329 12330 return 0; 12331 } 12332 12333 /** 12334 * bpf_xdp_pull_data() - Pull in non-linear xdp data. 12335 * @x: &xdp_md associated with the XDP buffer 12336 * @len: length of data to be made directly accessible in the linear part 12337 * 12338 * Pull in data in case the XDP buffer associated with @x is non-linear and 12339 * not all @len are in the linear data area. 12340 * 12341 * Direct packet access allows reading and writing linear XDP data through 12342 * packet pointers (i.e., &xdp_md->data + offsets). The amount of data which 12343 * ends up in the linear part of the xdp_buff depends on the NIC and its 12344 * configuration. When a frag-capable XDP program wants to directly access 12345 * headers that may be in the non-linear area, call this kfunc to make sure 12346 * the data is available in the linear area. Alternatively, use dynptr or 12347 * bpf_xdp_{load,store}_bytes() to access data without pulling. 12348 * 12349 * This kfunc can also be used with bpf_xdp_adjust_head() to decapsulate 12350 * headers in the non-linear data area. 12351 * 12352 * A call to this kfunc may reduce headroom. If there is not enough tailroom 12353 * in the linear data area, metadata and data will be shifted down. 12354 * 12355 * A call to this kfunc is susceptible to change the buffer geometry. 12356 * Therefore, at load time, all checks on pointers previously done by the 12357 * verifier are invalidated and must be performed again, if the kfunc is used 12358 * in combination with direct packet access. 12359 * 12360 * Return: 12361 * * %0 - success 12362 * * %-EINVAL - invalid len 12363 */ 12364 __bpf_kfunc int bpf_xdp_pull_data(struct xdp_md *x, u32 len) 12365 { 12366 struct xdp_buff *xdp = (struct xdp_buff *)x; 12367 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp); 12368 int i, delta, shift, headroom, tailroom, n_frags_free = 0; 12369 void *data_hard_end = xdp_data_hard_end(xdp); 12370 int data_len = xdp->data_end - xdp->data; 12371 void *start; 12372 12373 if (len <= data_len) 12374 return 0; 12375 12376 if (unlikely(len > xdp_get_buff_len(xdp))) 12377 return -EINVAL; 12378 12379 start = xdp_data_meta_unsupported(xdp) ? xdp->data : xdp->data_meta; 12380 12381 headroom = start - xdp->data_hard_start - sizeof(struct xdp_frame); 12382 tailroom = data_hard_end - xdp->data_end; 12383 12384 delta = len - data_len; 12385 if (unlikely(delta > tailroom + headroom)) 12386 return -EINVAL; 12387 12388 shift = delta - tailroom; 12389 if (shift > 0) { 12390 memmove(start - shift, start, xdp->data_end - start); 12391 12392 xdp->data_meta -= shift; 12393 xdp->data -= shift; 12394 xdp->data_end -= shift; 12395 } 12396 12397 for (i = 0; i < sinfo->nr_frags && delta; i++) { 12398 skb_frag_t *frag = &sinfo->frags[i]; 12399 u32 shrink = min_t(u32, delta, skb_frag_size(frag)); 12400 12401 memcpy(xdp->data_end, skb_frag_address(frag), shrink); 12402 12403 xdp->data_end += shrink; 12404 sinfo->xdp_frags_size -= shrink; 12405 delta -= shrink; 12406 if (bpf_xdp_shrink_data(xdp, frag, shrink, false)) 12407 n_frags_free++; 12408 } 12409 12410 if (unlikely(n_frags_free)) { 12411 memmove(sinfo->frags, sinfo->frags + n_frags_free, 12412 (sinfo->nr_frags - n_frags_free) * sizeof(skb_frag_t)); 12413 12414 sinfo->nr_frags -= n_frags_free; 12415 12416 if (!sinfo->nr_frags) { 12417 xdp_buff_clear_frags_flag(xdp); 12418 xdp_buff_clear_frag_pfmemalloc(xdp); 12419 } 12420 } 12421 12422 return 0; 12423 } 12424 12425 __bpf_kfunc_end_defs(); 12426 12427 int bpf_dynptr_from_skb_rdonly(struct __sk_buff *skb, u64 flags, 12428 struct bpf_dynptr *ptr__uninit) 12429 { 12430 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)ptr__uninit; 12431 int err; 12432 12433 err = bpf_dynptr_from_skb(skb, flags, ptr__uninit); 12434 if (err) 12435 return err; 12436 12437 bpf_dynptr_set_rdonly(ptr); 12438 12439 return 0; 12440 } 12441 12442 BTF_KFUNCS_START(bpf_kfunc_check_set_skb) 12443 BTF_ID_FLAGS(func, bpf_dynptr_from_skb) 12444 BTF_KFUNCS_END(bpf_kfunc_check_set_skb) 12445 12446 BTF_KFUNCS_START(bpf_kfunc_check_set_skb_meta) 12447 BTF_ID_FLAGS(func, bpf_dynptr_from_skb_meta) 12448 BTF_KFUNCS_END(bpf_kfunc_check_set_skb_meta) 12449 12450 BTF_KFUNCS_START(bpf_kfunc_check_set_xdp) 12451 BTF_ID_FLAGS(func, bpf_dynptr_from_xdp) 12452 BTF_ID_FLAGS(func, bpf_xdp_pull_data) 12453 BTF_KFUNCS_END(bpf_kfunc_check_set_xdp) 12454 12455 BTF_KFUNCS_START(bpf_kfunc_check_set_sock_addr) 12456 BTF_ID_FLAGS(func, bpf_sock_addr_set_sun_path) 12457 BTF_KFUNCS_END(bpf_kfunc_check_set_sock_addr) 12458 12459 BTF_KFUNCS_START(bpf_kfunc_check_set_tcp_reqsk) 12460 BTF_ID_FLAGS(func, bpf_sk_assign_tcp_reqsk) 12461 BTF_KFUNCS_END(bpf_kfunc_check_set_tcp_reqsk) 12462 12463 BTF_KFUNCS_START(bpf_kfunc_check_set_sock_ops) 12464 BTF_ID_FLAGS(func, bpf_sock_ops_enable_tx_tstamp) 12465 BTF_KFUNCS_END(bpf_kfunc_check_set_sock_ops) 12466 12467 static const struct btf_kfunc_id_set bpf_kfunc_set_skb = { 12468 .owner = THIS_MODULE, 12469 .set = &bpf_kfunc_check_set_skb, 12470 }; 12471 12472 static const struct btf_kfunc_id_set bpf_kfunc_set_skb_meta = { 12473 .owner = THIS_MODULE, 12474 .set = &bpf_kfunc_check_set_skb_meta, 12475 }; 12476 12477 static const struct btf_kfunc_id_set bpf_kfunc_set_xdp = { 12478 .owner = THIS_MODULE, 12479 .set = &bpf_kfunc_check_set_xdp, 12480 }; 12481 12482 static const struct btf_kfunc_id_set bpf_kfunc_set_sock_addr = { 12483 .owner = THIS_MODULE, 12484 .set = &bpf_kfunc_check_set_sock_addr, 12485 }; 12486 12487 static const struct btf_kfunc_id_set bpf_kfunc_set_tcp_reqsk = { 12488 .owner = THIS_MODULE, 12489 .set = &bpf_kfunc_check_set_tcp_reqsk, 12490 }; 12491 12492 static const struct btf_kfunc_id_set bpf_kfunc_set_sock_ops = { 12493 .owner = THIS_MODULE, 12494 .set = &bpf_kfunc_check_set_sock_ops, 12495 }; 12496 12497 static int __init bpf_kfunc_init(void) 12498 { 12499 int ret; 12500 12501 ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &bpf_kfunc_set_skb); 12502 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_ACT, &bpf_kfunc_set_skb); 12503 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SK_SKB, &bpf_kfunc_set_skb); 12504 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SOCKET_FILTER, &bpf_kfunc_set_skb); 12505 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SKB, &bpf_kfunc_set_skb); 12506 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_OUT, &bpf_kfunc_set_skb); 12507 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_IN, &bpf_kfunc_set_skb); 12508 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_XMIT, &bpf_kfunc_set_skb); 12509 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_SEG6LOCAL, &bpf_kfunc_set_skb); 12510 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_NETFILTER, &bpf_kfunc_set_skb); 12511 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &bpf_kfunc_set_skb); 12512 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &bpf_kfunc_set_skb_meta); 12513 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_ACT, &bpf_kfunc_set_skb_meta); 12514 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_XDP, &bpf_kfunc_set_xdp); 12515 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 12516 &bpf_kfunc_set_sock_addr); 12517 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &bpf_kfunc_set_tcp_reqsk); 12518 return ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SOCK_OPS, &bpf_kfunc_set_sock_ops); 12519 } 12520 late_initcall(bpf_kfunc_init); 12521 12522 __bpf_kfunc_start_defs(); 12523 12524 /* bpf_sock_destroy: Destroy the given socket with ECONNABORTED error code. 12525 * 12526 * The function expects a non-NULL pointer to a socket, and invokes the 12527 * protocol specific socket destroy handlers. 12528 * 12529 * The helper can only be called from BPF contexts that have acquired the socket 12530 * locks. 12531 * 12532 * Parameters: 12533 * @sock: Pointer to socket to be destroyed 12534 * 12535 * Return: 12536 * On error, may return EPROTONOSUPPORT, EINVAL. 12537 * EPROTONOSUPPORT if protocol specific destroy handler is not supported. 12538 * 0 otherwise 12539 */ 12540 __bpf_kfunc int bpf_sock_destroy(struct sock_common *sock) 12541 { 12542 struct sock *sk = (struct sock *)sock; 12543 12544 /* The locking semantics that allow for synchronous execution of the 12545 * destroy handlers are only supported for TCP and UDP. 12546 * Supporting protocols will need to acquire sock lock in the BPF context 12547 * prior to invoking this kfunc. 12548 */ 12549 if (!sk->sk_prot->diag_destroy || (sk->sk_protocol != IPPROTO_TCP && 12550 sk->sk_protocol != IPPROTO_UDP)) 12551 return -EOPNOTSUPP; 12552 12553 return sk->sk_prot->diag_destroy(sk, ECONNABORTED); 12554 } 12555 12556 __bpf_kfunc_end_defs(); 12557 12558 BTF_KFUNCS_START(bpf_sk_iter_kfunc_ids) 12559 BTF_ID_FLAGS(func, bpf_sock_destroy) 12560 BTF_KFUNCS_END(bpf_sk_iter_kfunc_ids) 12561 12562 static int tracing_iter_filter(const struct bpf_prog *prog, u32 kfunc_id) 12563 { 12564 if (btf_id_set8_contains(&bpf_sk_iter_kfunc_ids, kfunc_id) && 12565 prog->expected_attach_type != BPF_TRACE_ITER) 12566 return -EACCES; 12567 return 0; 12568 } 12569 12570 static const struct btf_kfunc_id_set bpf_sk_iter_kfunc_set = { 12571 .owner = THIS_MODULE, 12572 .set = &bpf_sk_iter_kfunc_ids, 12573 .filter = tracing_iter_filter, 12574 }; 12575 12576 static int init_subsystem(void) 12577 { 12578 return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &bpf_sk_iter_kfunc_set); 12579 } 12580 late_initcall(init_subsystem); 12581