xref: /linux/drivers/dma/qcom/gpi.c (revision 7c775c6056d07eb777f37c7ac1340115b27dc9f8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2017-2020, The Linux Foundation. All rights reserved.
4  * Copyright (c) 2020, Linaro Limited
5  */
6 
7 #include <dt-bindings/dma/qcom-gpi.h>
8 #include <linux/bitfield.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/dmaengine.h>
11 #include <linux/module.h>
12 #include <linux/of_dma.h>
13 #include <linux/platform_device.h>
14 #include <linux/dma/qcom-gpi-dma.h>
15 #include <linux/scatterlist.h>
16 #include <linux/slab.h>
17 #include "../dmaengine.h"
18 #include "../virt-dma.h"
19 
20 #define TRE_TYPE_DMA		0x10
21 #define TRE_TYPE_IMMEDIATE_DMA	0x11
22 #define TRE_TYPE_GO		0x20
23 #define TRE_TYPE_CONFIG0	0x22
24 
25 /* TRE flags */
26 #define TRE_FLAGS_CHAIN		BIT(0)
27 #define TRE_FLAGS_IEOB		BIT(8)
28 #define TRE_FLAGS_IEOT		BIT(9)
29 #define TRE_FLAGS_BEI		BIT(10)
30 #define TRE_FLAGS_LINK		BIT(11)
31 #define TRE_FLAGS_TYPE		GENMASK(23, 16)
32 
33 /* SPI CONFIG0 WD0 */
34 #define TRE_SPI_C0_WORD_SZ	GENMASK(4, 0)
35 #define TRE_SPI_C0_LOOPBACK	BIT(8)
36 #define TRE_SPI_C0_CS		BIT(11)
37 #define TRE_SPI_C0_CPHA		BIT(12)
38 #define TRE_SPI_C0_CPOL		BIT(13)
39 #define TRE_SPI_C0_TX_PACK	BIT(24)
40 #define TRE_SPI_C0_RX_PACK	BIT(25)
41 
42 /* CONFIG0 WD2 */
43 #define TRE_C0_CLK_DIV		GENMASK(11, 0)
44 #define TRE_C0_CLK_SRC		GENMASK(19, 16)
45 
46 /* SPI GO WD0 */
47 #define TRE_SPI_GO_CMD		GENMASK(4, 0)
48 #define TRE_SPI_GO_CS		GENMASK(10, 8)
49 #define TRE_SPI_GO_FRAG		BIT(26)
50 
51 /* GO WD2 */
52 #define TRE_RX_LEN		GENMASK(23, 0)
53 
54 /* I2C Config0 WD0 */
55 #define TRE_I2C_C0_TLOW		GENMASK(7, 0)
56 #define TRE_I2C_C0_THIGH	GENMASK(15, 8)
57 #define TRE_I2C_C0_TCYL		GENMASK(23, 16)
58 #define TRE_I2C_C0_TX_PACK	BIT(24)
59 #define TRE_I2C_C0_RX_PACK      BIT(25)
60 
61 /* I2C GO WD0 */
62 #define TRE_I2C_GO_CMD          GENMASK(4, 0)
63 #define TRE_I2C_GO_ADDR		GENMASK(14, 8)
64 #define TRE_I2C_GO_STRETCH	BIT(26)
65 
66 /* DMA TRE */
67 #define TRE_DMA_LEN		GENMASK(23, 0)
68 #define TRE_DMA_IMMEDIATE_LEN	GENMASK(3, 0)
69 
70 /* Register offsets from gpi-top */
71 #define GPII_n_CH_k_CNTXT_0_OFFS(n, k)	(0x20000 + (0x4000 * (n)) + (0x80 * (k)))
72 #define GPII_n_CH_k_CNTXT_0_EL_SIZE	GENMASK(31, 24)
73 #define GPII_n_CH_k_CNTXT_0_CHSTATE	GENMASK(23, 20)
74 #define GPII_n_CH_k_CNTXT_0_ERIDX	GENMASK(18, 14)
75 #define GPII_n_CH_k_CNTXT_0_DIR		BIT(3)
76 #define GPII_n_CH_k_CNTXT_0_PROTO	GENMASK(2, 0)
77 
78 #define GPII_n_CH_k_CNTXT_0(el_size, erindex, dir, chtype_proto)  \
79 	(FIELD_PREP(GPII_n_CH_k_CNTXT_0_EL_SIZE, el_size)	| \
80 	 FIELD_PREP(GPII_n_CH_k_CNTXT_0_ERIDX, erindex)		| \
81 	 FIELD_PREP(GPII_n_CH_k_CNTXT_0_DIR, dir)		| \
82 	 FIELD_PREP(GPII_n_CH_k_CNTXT_0_PROTO, chtype_proto))
83 
84 #define GPI_CHTYPE_DIR_IN	(0)
85 #define GPI_CHTYPE_DIR_OUT	(1)
86 
87 #define GPI_CHTYPE_PROTO_GPI	(0x2)
88 
89 #define GPII_n_CH_k_DOORBELL_0_OFFS(n, k)	(0x22000 + (0x4000 * (n)) + (0x8 * (k)))
90 #define GPII_n_CH_CMD_OFFS(n)			(0x23008 + (0x4000 * (n)))
91 #define GPII_n_CH_CMD_OPCODE			GENMASK(31, 24)
92 #define GPII_n_CH_CMD_CHID			GENMASK(7, 0)
93 #define GPII_n_CH_CMD(opcode, chid)				 \
94 		     (FIELD_PREP(GPII_n_CH_CMD_OPCODE, opcode) | \
95 		      FIELD_PREP(GPII_n_CH_CMD_CHID, chid))
96 
97 #define GPII_n_CH_CMD_ALLOCATE		(0)
98 #define GPII_n_CH_CMD_START		(1)
99 #define GPII_n_CH_CMD_STOP		(2)
100 #define GPII_n_CH_CMD_RESET		(9)
101 #define GPII_n_CH_CMD_DE_ALLOC		(10)
102 #define GPII_n_CH_CMD_UART_SW_STALE	(32)
103 #define GPII_n_CH_CMD_UART_RFR_READY	(33)
104 #define GPII_n_CH_CMD_UART_RFR_NOT_READY (34)
105 
106 /* EV Context Array */
107 #define GPII_n_EV_CH_k_CNTXT_0_OFFS(n, k) (0x21000 + (0x4000 * (n)) + (0x80 * (k)))
108 #define GPII_n_EV_k_CNTXT_0_EL_SIZE	GENMASK(31, 24)
109 #define GPII_n_EV_k_CNTXT_0_CHSTATE	GENMASK(23, 20)
110 #define GPII_n_EV_k_CNTXT_0_INTYPE	BIT(16)
111 #define GPII_n_EV_k_CNTXT_0_CHTYPE	GENMASK(3, 0)
112 
113 #define GPII_n_EV_k_CNTXT_0(el_size, inttype, chtype)		\
114 	(FIELD_PREP(GPII_n_EV_k_CNTXT_0_EL_SIZE, el_size) |	\
115 	 FIELD_PREP(GPII_n_EV_k_CNTXT_0_INTYPE, inttype)  |	\
116 	 FIELD_PREP(GPII_n_EV_k_CNTXT_0_CHTYPE, chtype))
117 
118 #define GPI_INTTYPE_IRQ		(1)
119 #define GPI_CHTYPE_GPI_EV	(0x2)
120 
121 enum CNTXT_OFFS {
122 	CNTXT_0_CONFIG = 0x0,
123 	CNTXT_1_R_LENGTH = 0x4,
124 	CNTXT_2_RING_BASE_LSB = 0x8,
125 	CNTXT_3_RING_BASE_MSB = 0xC,
126 	CNTXT_4_RING_RP_LSB = 0x10,
127 	CNTXT_5_RING_RP_MSB = 0x14,
128 	CNTXT_6_RING_WP_LSB = 0x18,
129 	CNTXT_7_RING_WP_MSB = 0x1C,
130 	CNTXT_8_RING_INT_MOD = 0x20,
131 	CNTXT_9_RING_INTVEC = 0x24,
132 	CNTXT_10_RING_MSI_LSB = 0x28,
133 	CNTXT_11_RING_MSI_MSB = 0x2C,
134 	CNTXT_12_RING_RP_UPDATE_LSB = 0x30,
135 	CNTXT_13_RING_RP_UPDATE_MSB = 0x34,
136 };
137 
138 #define GPII_n_EV_CH_k_DOORBELL_0_OFFS(n, k)	(0x22100 + (0x4000 * (n)) + (0x8 * (k)))
139 #define GPII_n_EV_CH_CMD_OFFS(n)		(0x23010 + (0x4000 * (n)))
140 #define GPII_n_EV_CMD_OPCODE			GENMASK(31, 24)
141 #define GPII_n_EV_CMD_CHID			GENMASK(7, 0)
142 #define GPII_n_EV_CMD(opcode, chid)				 \
143 		     (FIELD_PREP(GPII_n_EV_CMD_OPCODE, opcode) | \
144 		      FIELD_PREP(GPII_n_EV_CMD_CHID, chid))
145 
146 #define GPII_n_EV_CH_CMD_ALLOCATE		(0x00)
147 #define GPII_n_EV_CH_CMD_RESET			(0x09)
148 #define GPII_n_EV_CH_CMD_DE_ALLOC		(0x0A)
149 
150 #define GPII_n_CNTXT_TYPE_IRQ_OFFS(n)		(0x23080 + (0x4000 * (n)))
151 
152 /* mask type register */
153 #define GPII_n_CNTXT_TYPE_IRQ_MSK_OFFS(n)	(0x23088 + (0x4000 * (n)))
154 #define GPII_n_CNTXT_TYPE_IRQ_MSK_BMSK		GENMASK(6, 0)
155 #define GPII_n_CNTXT_TYPE_IRQ_MSK_GENERAL	BIT(6)
156 #define GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB		BIT(3)
157 #define GPII_n_CNTXT_TYPE_IRQ_MSK_GLOB		BIT(2)
158 #define GPII_n_CNTXT_TYPE_IRQ_MSK_EV_CTRL	BIT(1)
159 #define GPII_n_CNTXT_TYPE_IRQ_MSK_CH_CTRL	BIT(0)
160 
161 #define GPII_n_CNTXT_SRC_GPII_CH_IRQ_OFFS(n)	(0x23090 + (0x4000 * (n)))
162 #define GPII_n_CNTXT_SRC_EV_CH_IRQ_OFFS(n)	(0x23094 + (0x4000 * (n)))
163 
164 /* Mask channel control interrupt register */
165 #define GPII_n_CNTXT_SRC_CH_IRQ_MSK_OFFS(n)	(0x23098 + (0x4000 * (n)))
166 #define GPII_n_CNTXT_SRC_CH_IRQ_MSK_BMSK	GENMASK(1, 0)
167 
168 /* Mask event control interrupt register */
169 #define GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_OFFS(n)	(0x2309C + (0x4000 * (n)))
170 #define GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_BMSK	BIT(0)
171 
172 #define GPII_n_CNTXT_SRC_CH_IRQ_CLR_OFFS(n)	(0x230A0 + (0x4000 * (n)))
173 #define GPII_n_CNTXT_SRC_EV_CH_IRQ_CLR_OFFS(n)	(0x230A4 + (0x4000 * (n)))
174 
175 /* Mask event interrupt register */
176 #define GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_OFFS(n)	(0x230B8 + (0x4000 * (n)))
177 #define GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_BMSK	BIT(0)
178 
179 #define GPII_n_CNTXT_SRC_IEOB_IRQ_CLR_OFFS(n)	(0x230C0 + (0x4000 * (n)))
180 #define GPII_n_CNTXT_GLOB_IRQ_STTS_OFFS(n)	(0x23100 + (0x4000 * (n)))
181 #define GPI_GLOB_IRQ_ERROR_INT_MSK		BIT(0)
182 
183 /* GPII specific Global - Enable bit register */
184 #define GPII_n_CNTXT_GLOB_IRQ_EN_OFFS(n)	(0x23108 + (0x4000 * (n)))
185 #define GPII_n_CNTXT_GLOB_IRQ_CLR_OFFS(n)	(0x23110 + (0x4000 * (n)))
186 #define GPII_n_CNTXT_GPII_IRQ_STTS_OFFS(n)	(0x23118 + (0x4000 * (n)))
187 
188 /* GPII general interrupt - Enable bit register */
189 #define GPII_n_CNTXT_GPII_IRQ_EN_OFFS(n)	(0x23120 + (0x4000 * (n)))
190 #define GPII_n_CNTXT_GPII_IRQ_EN_BMSK		GENMASK(3, 0)
191 
192 #define GPII_n_CNTXT_GPII_IRQ_CLR_OFFS(n)	(0x23128 + (0x4000 * (n)))
193 
194 /* GPII Interrupt Type register */
195 #define GPII_n_CNTXT_INTSET_OFFS(n)		(0x23180 + (0x4000 * (n)))
196 #define GPII_n_CNTXT_INTSET_BMSK		BIT(0)
197 
198 #define GPII_n_CNTXT_MSI_BASE_LSB_OFFS(n)	(0x23188 + (0x4000 * (n)))
199 #define GPII_n_CNTXT_MSI_BASE_MSB_OFFS(n)	(0x2318C + (0x4000 * (n)))
200 #define GPII_n_CNTXT_SCRATCH_0_OFFS(n)		(0x23400 + (0x4000 * (n)))
201 #define GPII_n_CNTXT_SCRATCH_1_OFFS(n)		(0x23404 + (0x4000 * (n)))
202 
203 #define GPII_n_ERROR_LOG_OFFS(n)		(0x23200 + (0x4000 * (n)))
204 
205 /* QOS Registers */
206 #define GPII_n_CH_k_QOS_OFFS(n, k)		(0x2005C + (0x4000 * (n)) + (0x80 * (k)))
207 
208 /* Scratch registers */
209 #define GPII_n_CH_k_SCRATCH_0_OFFS(n, k)	(0x20060 + (0x4000 * (n)) + (0x80 * (k)))
210 #define GPII_n_CH_k_SCRATCH_0_SEID		GENMASK(2, 0)
211 #define GPII_n_CH_k_SCRATCH_0_PROTO		GENMASK(7, 4)
212 #define GPII_n_CH_k_SCRATCH_0_PAIR		GENMASK(20, 16)
213 #define GPII_n_CH_k_SCRATCH_0(pair, proto, seid)		\
214 			     (FIELD_PREP(GPII_n_CH_k_SCRATCH_0_PAIR, pair)	| \
215 			      FIELD_PREP(GPII_n_CH_k_SCRATCH_0_PROTO, proto)	| \
216 			      FIELD_PREP(GPII_n_CH_k_SCRATCH_0_SEID, seid))
217 #define GPII_n_CH_k_SCRATCH_1_OFFS(n, k)	(0x20064 + (0x4000 * (n)) + (0x80 * (k)))
218 #define GPII_n_CH_k_SCRATCH_2_OFFS(n, k)	(0x20068 + (0x4000 * (n)) + (0x80 * (k)))
219 #define GPII_n_CH_k_SCRATCH_3_OFFS(n, k)	(0x2006C + (0x4000 * (n)) + (0x80 * (k)))
220 
221 struct __packed gpi_tre {
222 	u32 dword[4];
223 };
224 
225 enum msm_gpi_tce_code {
226 	MSM_GPI_TCE_SUCCESS = 1,
227 	MSM_GPI_TCE_EOT = 2,
228 	MSM_GPI_TCE_EOB = 4,
229 	MSM_GPI_TCE_UNEXP_ERR = 16,
230 };
231 
232 #define CMD_TIMEOUT_MS		(250)
233 
234 #define MAX_CHANNELS_PER_GPII	(2)
235 #define GPI_TX_CHAN		(0)
236 #define GPI_RX_CHAN		(1)
237 #define STATE_IGNORE		(U32_MAX)
238 #define EV_FACTOR		(2)
239 #define REQ_OF_DMA_ARGS		(5) /* # of arguments required from client */
240 #define CHAN_TRES		64
241 
242 struct __packed xfer_compl_event {
243 	u64 ptr;
244 	u32 length:24;
245 	u8 code;
246 	u16 status;
247 	u8 type;
248 	u8 chid;
249 };
250 
251 struct __packed immediate_data_event {
252 	u8 data_bytes[8];
253 	u8 length:4;
254 	u8 resvd:4;
255 	u16 tre_index;
256 	u8 code;
257 	u16 status;
258 	u8 type;
259 	u8 chid;
260 };
261 
262 struct __packed qup_notif_event {
263 	u32 status;
264 	u32 time;
265 	u32 count:24;
266 	u8 resvd;
267 	u16 resvd1;
268 	u8 type;
269 	u8 chid;
270 };
271 
272 struct __packed gpi_ere {
273 	u32 dword[4];
274 };
275 
276 enum GPI_EV_TYPE {
277 	XFER_COMPLETE_EV_TYPE = 0x22,
278 	IMMEDIATE_DATA_EV_TYPE = 0x30,
279 	QUP_NOTIF_EV_TYPE = 0x31,
280 	STALE_EV_TYPE = 0xFF,
281 };
282 
283 union __packed gpi_event {
284 	struct __packed xfer_compl_event xfer_compl_event;
285 	struct __packed immediate_data_event immediate_data_event;
286 	struct __packed qup_notif_event qup_notif_event;
287 	struct __packed gpi_ere gpi_ere;
288 };
289 
290 enum gpii_irq_settings {
291 	DEFAULT_IRQ_SETTINGS,
292 	MASK_IEOB_SETTINGS,
293 };
294 
295 enum gpi_ev_state {
296 	DEFAULT_EV_CH_STATE = 0,
297 	EV_STATE_NOT_ALLOCATED = DEFAULT_EV_CH_STATE,
298 	EV_STATE_ALLOCATED,
299 	MAX_EV_STATES
300 };
301 
302 static const char *const gpi_ev_state_str[MAX_EV_STATES] = {
303 	[EV_STATE_NOT_ALLOCATED] = "NOT ALLOCATED",
304 	[EV_STATE_ALLOCATED] = "ALLOCATED",
305 };
306 
307 #define TO_GPI_EV_STATE_STR(_state) (((_state) >= MAX_EV_STATES) ? \
308 				    "INVALID" : gpi_ev_state_str[(_state)])
309 
310 enum gpi_ch_state {
311 	DEFAULT_CH_STATE = 0x0,
312 	CH_STATE_NOT_ALLOCATED = DEFAULT_CH_STATE,
313 	CH_STATE_ALLOCATED = 0x1,
314 	CH_STATE_STARTED = 0x2,
315 	CH_STATE_STOPPED = 0x3,
316 	CH_STATE_STOP_IN_PROC = 0x4,
317 	CH_STATE_ERROR = 0xf,
318 	MAX_CH_STATES
319 };
320 
321 enum gpi_cmd {
322 	GPI_CH_CMD_BEGIN,
323 	GPI_CH_CMD_ALLOCATE = GPI_CH_CMD_BEGIN,
324 	GPI_CH_CMD_START,
325 	GPI_CH_CMD_STOP,
326 	GPI_CH_CMD_RESET,
327 	GPI_CH_CMD_DE_ALLOC,
328 	GPI_CH_CMD_UART_SW_STALE,
329 	GPI_CH_CMD_UART_RFR_READY,
330 	GPI_CH_CMD_UART_RFR_NOT_READY,
331 	GPI_CH_CMD_END = GPI_CH_CMD_UART_RFR_NOT_READY,
332 	GPI_EV_CMD_BEGIN,
333 	GPI_EV_CMD_ALLOCATE = GPI_EV_CMD_BEGIN,
334 	GPI_EV_CMD_RESET,
335 	GPI_EV_CMD_DEALLOC,
336 	GPI_EV_CMD_END = GPI_EV_CMD_DEALLOC,
337 	GPI_MAX_CMD,
338 };
339 
340 #define IS_CHAN_CMD(_cmd) ((_cmd) <= GPI_CH_CMD_END)
341 
342 static const char *const gpi_cmd_str[GPI_MAX_CMD] = {
343 	[GPI_CH_CMD_ALLOCATE] = "CH ALLOCATE",
344 	[GPI_CH_CMD_START] = "CH START",
345 	[GPI_CH_CMD_STOP] = "CH STOP",
346 	[GPI_CH_CMD_RESET] = "CH_RESET",
347 	[GPI_CH_CMD_DE_ALLOC] = "DE ALLOC",
348 	[GPI_CH_CMD_UART_SW_STALE] = "UART SW STALE",
349 	[GPI_CH_CMD_UART_RFR_READY] = "UART RFR READY",
350 	[GPI_CH_CMD_UART_RFR_NOT_READY] = "UART RFR NOT READY",
351 	[GPI_EV_CMD_ALLOCATE] = "EV ALLOCATE",
352 	[GPI_EV_CMD_RESET] = "EV RESET",
353 	[GPI_EV_CMD_DEALLOC] = "EV DEALLOC",
354 };
355 
356 #define TO_GPI_CMD_STR(_cmd) (((_cmd) >= GPI_MAX_CMD) ? "INVALID" : \
357 				  gpi_cmd_str[(_cmd)])
358 
359 /*
360  * @DISABLE_STATE: no register access allowed
361  * @CONFIG_STATE:  client has configured the channel
362  * @PREP_HARDWARE: register access is allowed
363  *		   however, no processing EVENTS
364  * @ACTIVE_STATE: channels are fully operational
365  * @PREPARE_TERMINATE: graceful termination of channels
366  *		       register access is allowed
367  * @PAUSE_STATE: channels are active, but not processing any events
368  */
369 enum gpi_pm_state {
370 	DISABLE_STATE,
371 	CONFIG_STATE,
372 	PREPARE_HARDWARE,
373 	ACTIVE_STATE,
374 	PREPARE_TERMINATE,
375 	PAUSE_STATE,
376 	MAX_PM_STATE
377 };
378 
379 #define REG_ACCESS_VALID(_pm_state) ((_pm_state) >= PREPARE_HARDWARE)
380 
381 static const char *const gpi_pm_state_str[MAX_PM_STATE] = {
382 	[DISABLE_STATE] = "DISABLE",
383 	[CONFIG_STATE] = "CONFIG",
384 	[PREPARE_HARDWARE] = "PREPARE HARDWARE",
385 	[ACTIVE_STATE] = "ACTIVE",
386 	[PREPARE_TERMINATE] = "PREPARE TERMINATE",
387 	[PAUSE_STATE] = "PAUSE",
388 };
389 
390 #define TO_GPI_PM_STR(_state) (((_state) >= MAX_PM_STATE) ? \
391 			      "INVALID" : gpi_pm_state_str[(_state)])
392 
393 static const struct {
394 	enum gpi_cmd gpi_cmd;
395 	u32 opcode;
396 	u32 state;
397 } gpi_cmd_info[GPI_MAX_CMD] = {
398 	{
399 		GPI_CH_CMD_ALLOCATE,
400 		GPII_n_CH_CMD_ALLOCATE,
401 		CH_STATE_ALLOCATED,
402 	},
403 	{
404 		GPI_CH_CMD_START,
405 		GPII_n_CH_CMD_START,
406 		CH_STATE_STARTED,
407 	},
408 	{
409 		GPI_CH_CMD_STOP,
410 		GPII_n_CH_CMD_STOP,
411 		CH_STATE_STOPPED,
412 	},
413 	{
414 		GPI_CH_CMD_RESET,
415 		GPII_n_CH_CMD_RESET,
416 		CH_STATE_ALLOCATED,
417 	},
418 	{
419 		GPI_CH_CMD_DE_ALLOC,
420 		GPII_n_CH_CMD_DE_ALLOC,
421 		CH_STATE_NOT_ALLOCATED,
422 	},
423 	{
424 		GPI_CH_CMD_UART_SW_STALE,
425 		GPII_n_CH_CMD_UART_SW_STALE,
426 		STATE_IGNORE,
427 	},
428 	{
429 		GPI_CH_CMD_UART_RFR_READY,
430 		GPII_n_CH_CMD_UART_RFR_READY,
431 		STATE_IGNORE,
432 	},
433 	{
434 		GPI_CH_CMD_UART_RFR_NOT_READY,
435 		GPII_n_CH_CMD_UART_RFR_NOT_READY,
436 		STATE_IGNORE,
437 	},
438 	{
439 		GPI_EV_CMD_ALLOCATE,
440 		GPII_n_EV_CH_CMD_ALLOCATE,
441 		EV_STATE_ALLOCATED,
442 	},
443 	{
444 		GPI_EV_CMD_RESET,
445 		GPII_n_EV_CH_CMD_RESET,
446 		EV_STATE_ALLOCATED,
447 	},
448 	{
449 		GPI_EV_CMD_DEALLOC,
450 		GPII_n_EV_CH_CMD_DE_ALLOC,
451 		EV_STATE_NOT_ALLOCATED,
452 	},
453 };
454 
455 struct gpi_ring {
456 	void *pre_aligned;
457 	size_t alloc_size;
458 	phys_addr_t phys_addr;
459 	dma_addr_t dma_handle;
460 	void *base;
461 	void *wp;
462 	void *rp;
463 	u32 len;
464 	u32 el_size;
465 	u32 elements;
466 	bool configured;
467 };
468 
469 struct gpi_dev {
470 	struct dma_device dma_device;
471 	struct device *dev;
472 	struct resource *res;
473 	void __iomem *regs;
474 	void __iomem *ee_base; /*ee register base address*/
475 	u32 max_gpii; /* maximum # of gpii instances available per gpi block */
476 	u32 gpii_mask; /* gpii instances available for apps */
477 	u32 ev_factor; /* ev ring length factor */
478 	struct gpii *gpiis;
479 };
480 
481 struct gchan {
482 	struct virt_dma_chan vc;
483 	u32 chid;
484 	u32 seid;
485 	u32 protocol;
486 	struct gpii *gpii;
487 	enum gpi_ch_state ch_state;
488 	enum gpi_pm_state pm_state;
489 	void __iomem *ch_cntxt_base_reg;
490 	void __iomem *ch_cntxt_db_reg;
491 	void __iomem *ch_cmd_reg;
492 	u32 dir;
493 	struct gpi_ring ch_ring;
494 	void *config;
495 };
496 
497 struct gpii {
498 	u32 gpii_id;
499 	struct gchan gchan[MAX_CHANNELS_PER_GPII];
500 	struct gpi_dev *gpi_dev;
501 	int irq;
502 	void __iomem *regs; /* points to gpi top */
503 	void __iomem *ev_cntxt_base_reg;
504 	void __iomem *ev_cntxt_db_reg;
505 	void __iomem *ev_ring_rp_lsb_reg;
506 	void __iomem *ev_cmd_reg;
507 	void __iomem *ieob_clr_reg;
508 	struct mutex ctrl_lock;
509 	enum gpi_ev_state ev_state;
510 	bool configured_irq;
511 	enum gpi_pm_state pm_state;
512 	rwlock_t pm_lock;
513 	struct gpi_ring ev_ring;
514 	struct tasklet_struct ev_task; /* event processing tasklet */
515 	struct completion cmd_completion;
516 	enum gpi_cmd gpi_cmd;
517 	u32 cntxt_type_irq_msk;
518 	bool ieob_set;
519 };
520 
521 #define MAX_TRE 3
522 
523 struct gpi_desc {
524 	struct virt_dma_desc vd;
525 	size_t len;
526 	void *db; /* DB register to program */
527 	struct gchan *gchan;
528 	struct gpi_tre tre[MAX_TRE];
529 	u32 num_tre;
530 };
531 
532 static const u32 GPII_CHAN_DIR[MAX_CHANNELS_PER_GPII] = {
533 	GPI_CHTYPE_DIR_OUT, GPI_CHTYPE_DIR_IN
534 };
535 
536 static irqreturn_t gpi_handle_irq(int irq, void *data);
537 static void gpi_ring_recycle_ev_element(struct gpi_ring *ring);
538 static int gpi_ring_add_element(struct gpi_ring *ring, void **wp);
539 static void gpi_process_events(struct gpii *gpii);
540 
541 static inline struct gchan *to_gchan(struct dma_chan *dma_chan)
542 {
543 	return container_of(dma_chan, struct gchan, vc.chan);
544 }
545 
546 static inline struct gpi_desc *to_gpi_desc(struct virt_dma_desc *vd)
547 {
548 	return container_of(vd, struct gpi_desc, vd);
549 }
550 
551 static inline phys_addr_t to_physical(const struct gpi_ring *const ring,
552 				      void *addr)
553 {
554 	return ring->phys_addr + (addr - ring->base);
555 }
556 
557 static inline void *to_virtual(const struct gpi_ring *const ring, phys_addr_t addr)
558 {
559 	return ring->base + (addr - ring->phys_addr);
560 }
561 
562 static inline u32 gpi_read_reg(struct gpii *gpii, void __iomem *addr)
563 {
564 	return readl_relaxed(addr);
565 }
566 
567 static inline void gpi_write_reg(struct gpii *gpii, void __iomem *addr, u32 val)
568 {
569 	writel_relaxed(val, addr);
570 }
571 
572 /* gpi_write_reg_field - write to specific bit field */
573 static inline void gpi_write_reg_field(struct gpii *gpii, void __iomem *addr,
574 				       u32 mask, u32 shift, u32 val)
575 {
576 	u32 tmp = gpi_read_reg(gpii, addr);
577 
578 	tmp &= ~mask;
579 	val = tmp | ((val << shift) & mask);
580 	gpi_write_reg(gpii, addr, val);
581 }
582 
583 static __always_inline void
584 gpi_update_reg(struct gpii *gpii, u32 offset, u32 mask, u32 val)
585 {
586 	void __iomem *addr = gpii->regs + offset;
587 	u32 tmp = gpi_read_reg(gpii, addr);
588 
589 	tmp &= ~mask;
590 	tmp |= u32_encode_bits(val, mask);
591 
592 	gpi_write_reg(gpii, addr, tmp);
593 }
594 
595 static void gpi_disable_interrupts(struct gpii *gpii)
596 {
597 	gpi_update_reg(gpii, GPII_n_CNTXT_TYPE_IRQ_MSK_OFFS(gpii->gpii_id),
598 		       GPII_n_CNTXT_TYPE_IRQ_MSK_BMSK, 0);
599 	gpi_update_reg(gpii, GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_OFFS(gpii->gpii_id),
600 		       GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_BMSK, 0);
601 	gpi_update_reg(gpii, GPII_n_CNTXT_SRC_CH_IRQ_MSK_OFFS(gpii->gpii_id),
602 		       GPII_n_CNTXT_SRC_CH_IRQ_MSK_BMSK, 0);
603 	gpi_update_reg(gpii, GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_OFFS(gpii->gpii_id),
604 		       GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_BMSK, 0);
605 	gpi_update_reg(gpii, GPII_n_CNTXT_GLOB_IRQ_EN_OFFS(gpii->gpii_id),
606 		       GPII_n_CNTXT_GPII_IRQ_EN_BMSK, 0);
607 	gpi_update_reg(gpii, GPII_n_CNTXT_GPII_IRQ_EN_OFFS(gpii->gpii_id),
608 		       GPII_n_CNTXT_GPII_IRQ_EN_BMSK, 0);
609 	gpi_update_reg(gpii, GPII_n_CNTXT_INTSET_OFFS(gpii->gpii_id),
610 		       GPII_n_CNTXT_INTSET_BMSK, 0);
611 
612 	gpii->cntxt_type_irq_msk = 0;
613 	devm_free_irq(gpii->gpi_dev->dev, gpii->irq, gpii);
614 	gpii->configured_irq = false;
615 }
616 
617 /* configure and enable interrupts */
618 static int gpi_config_interrupts(struct gpii *gpii, enum gpii_irq_settings settings, bool mask)
619 {
620 	const u32 enable = (GPII_n_CNTXT_TYPE_IRQ_MSK_GENERAL |
621 			      GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB |
622 			      GPII_n_CNTXT_TYPE_IRQ_MSK_GLOB |
623 			      GPII_n_CNTXT_TYPE_IRQ_MSK_EV_CTRL |
624 			      GPII_n_CNTXT_TYPE_IRQ_MSK_CH_CTRL);
625 	int ret;
626 
627 	if (!gpii->configured_irq) {
628 		ret = devm_request_irq(gpii->gpi_dev->dev, gpii->irq,
629 				       gpi_handle_irq, IRQF_TRIGGER_HIGH,
630 				       "gpi-dma", gpii);
631 		if (ret < 0) {
632 			dev_err(gpii->gpi_dev->dev, "error request irq:%d ret:%d\n",
633 				gpii->irq, ret);
634 			return ret;
635 		}
636 	}
637 
638 	if (settings == MASK_IEOB_SETTINGS) {
639 		/*
640 		 * GPII only uses one EV ring per gpii so we can globally
641 		 * enable/disable IEOB interrupt
642 		 */
643 		if (mask)
644 			gpii->cntxt_type_irq_msk |= GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB;
645 		else
646 			gpii->cntxt_type_irq_msk &= ~(GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB);
647 		gpi_update_reg(gpii, GPII_n_CNTXT_TYPE_IRQ_MSK_OFFS(gpii->gpii_id),
648 			       GPII_n_CNTXT_TYPE_IRQ_MSK_BMSK, gpii->cntxt_type_irq_msk);
649 	} else {
650 		gpi_update_reg(gpii, GPII_n_CNTXT_TYPE_IRQ_MSK_OFFS(gpii->gpii_id),
651 			       GPII_n_CNTXT_TYPE_IRQ_MSK_BMSK, enable);
652 		gpi_update_reg(gpii, GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_OFFS(gpii->gpii_id),
653 			       GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_BMSK,
654 			       GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_BMSK);
655 		gpi_update_reg(gpii, GPII_n_CNTXT_SRC_CH_IRQ_MSK_OFFS(gpii->gpii_id),
656 			       GPII_n_CNTXT_SRC_CH_IRQ_MSK_BMSK,
657 			       GPII_n_CNTXT_SRC_CH_IRQ_MSK_BMSK);
658 		gpi_update_reg(gpii, GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_OFFS(gpii->gpii_id),
659 			       GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_BMSK,
660 			       GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_BMSK);
661 		gpi_update_reg(gpii, GPII_n_CNTXT_GLOB_IRQ_EN_OFFS(gpii->gpii_id),
662 			       GPII_n_CNTXT_GPII_IRQ_EN_BMSK,
663 			       GPII_n_CNTXT_GPII_IRQ_EN_BMSK);
664 		gpi_update_reg(gpii, GPII_n_CNTXT_GPII_IRQ_EN_OFFS(gpii->gpii_id),
665 			       GPII_n_CNTXT_GPII_IRQ_EN_BMSK, GPII_n_CNTXT_GPII_IRQ_EN_BMSK);
666 		gpi_update_reg(gpii, GPII_n_CNTXT_MSI_BASE_LSB_OFFS(gpii->gpii_id), U32_MAX, 0);
667 		gpi_update_reg(gpii, GPII_n_CNTXT_MSI_BASE_MSB_OFFS(gpii->gpii_id), U32_MAX, 0);
668 		gpi_update_reg(gpii, GPII_n_CNTXT_SCRATCH_0_OFFS(gpii->gpii_id), U32_MAX, 0);
669 		gpi_update_reg(gpii, GPII_n_CNTXT_SCRATCH_1_OFFS(gpii->gpii_id), U32_MAX, 0);
670 		gpi_update_reg(gpii, GPII_n_CNTXT_INTSET_OFFS(gpii->gpii_id),
671 			       GPII_n_CNTXT_INTSET_BMSK, 1);
672 		gpi_update_reg(gpii, GPII_n_ERROR_LOG_OFFS(gpii->gpii_id), U32_MAX, 0);
673 
674 		gpii->cntxt_type_irq_msk = enable;
675 	}
676 
677 	gpii->configured_irq = true;
678 	return 0;
679 }
680 
681 /* Sends gpii event or channel command */
682 static int gpi_send_cmd(struct gpii *gpii, struct gchan *gchan,
683 			enum gpi_cmd gpi_cmd)
684 {
685 	u32 chid = MAX_CHANNELS_PER_GPII;
686 	unsigned long timeout;
687 	void __iomem *cmd_reg;
688 	u32 cmd;
689 
690 	if (gpi_cmd >= GPI_MAX_CMD)
691 		return -EINVAL;
692 	if (IS_CHAN_CMD(gpi_cmd))
693 		chid = gchan->chid;
694 
695 	dev_dbg(gpii->gpi_dev->dev,
696 		"sending cmd: %s:%u\n", TO_GPI_CMD_STR(gpi_cmd), chid);
697 
698 	/* send opcode and wait for completion */
699 	reinit_completion(&gpii->cmd_completion);
700 	gpii->gpi_cmd = gpi_cmd;
701 
702 	cmd_reg = IS_CHAN_CMD(gpi_cmd) ? gchan->ch_cmd_reg : gpii->ev_cmd_reg;
703 	cmd = IS_CHAN_CMD(gpi_cmd) ? GPII_n_CH_CMD(gpi_cmd_info[gpi_cmd].opcode, chid) :
704 				     GPII_n_EV_CMD(gpi_cmd_info[gpi_cmd].opcode, 0);
705 	gpi_write_reg(gpii, cmd_reg, cmd);
706 	timeout = wait_for_completion_timeout(&gpii->cmd_completion,
707 					      msecs_to_jiffies(CMD_TIMEOUT_MS));
708 	if (!timeout) {
709 		dev_err(gpii->gpi_dev->dev, "cmd: %s completion timeout:%u\n",
710 			TO_GPI_CMD_STR(gpi_cmd), chid);
711 		return -EIO;
712 	}
713 
714 	/* confirm new ch state is correct , if the cmd is a state change cmd */
715 	if (gpi_cmd_info[gpi_cmd].state == STATE_IGNORE)
716 		return 0;
717 
718 	if (IS_CHAN_CMD(gpi_cmd) && gchan->ch_state == gpi_cmd_info[gpi_cmd].state)
719 		return 0;
720 
721 	if (!IS_CHAN_CMD(gpi_cmd) && gpii->ev_state == gpi_cmd_info[gpi_cmd].state)
722 		return 0;
723 
724 	return -EIO;
725 }
726 
727 /* program transfer ring DB register */
728 static inline void gpi_write_ch_db(struct gchan *gchan,
729 				   struct gpi_ring *ring, void *wp)
730 {
731 	struct gpii *gpii = gchan->gpii;
732 	phys_addr_t p_wp;
733 
734 	p_wp = to_physical(ring, wp);
735 	gpi_write_reg(gpii, gchan->ch_cntxt_db_reg, p_wp);
736 }
737 
738 /* program event ring DB register */
739 static inline void gpi_write_ev_db(struct gpii *gpii,
740 				   struct gpi_ring *ring, void *wp)
741 {
742 	phys_addr_t p_wp;
743 
744 	p_wp = ring->phys_addr + (wp - ring->base);
745 	gpi_write_reg(gpii, gpii->ev_cntxt_db_reg, p_wp);
746 }
747 
748 /* process transfer completion interrupt */
749 static void gpi_process_ieob(struct gpii *gpii)
750 {
751 	gpi_write_reg(gpii, gpii->ieob_clr_reg, BIT(0));
752 
753 	gpi_config_interrupts(gpii, MASK_IEOB_SETTINGS, 0);
754 	tasklet_hi_schedule(&gpii->ev_task);
755 }
756 
757 /* process channel control interrupt */
758 static void gpi_process_ch_ctrl_irq(struct gpii *gpii)
759 {
760 	u32 gpii_id = gpii->gpii_id;
761 	u32 offset = GPII_n_CNTXT_SRC_GPII_CH_IRQ_OFFS(gpii_id);
762 	u32 ch_irq = gpi_read_reg(gpii, gpii->regs + offset);
763 	struct gchan *gchan;
764 	u32 chid, state;
765 
766 	/* clear the status */
767 	offset = GPII_n_CNTXT_SRC_CH_IRQ_CLR_OFFS(gpii_id);
768 	gpi_write_reg(gpii, gpii->regs + offset, (u32)ch_irq);
769 
770 	for (chid = 0; chid < MAX_CHANNELS_PER_GPII; chid++) {
771 		if (!(BIT(chid) & ch_irq))
772 			continue;
773 
774 		gchan = &gpii->gchan[chid];
775 		state = gpi_read_reg(gpii, gchan->ch_cntxt_base_reg +
776 				     CNTXT_0_CONFIG);
777 		state = FIELD_GET(GPII_n_CH_k_CNTXT_0_CHSTATE, state);
778 
779 		/*
780 		 * CH_CMD_DEALLOC cmd always successful. However cmd does
781 		 * not change hardware status. So overwriting software state
782 		 * to default state.
783 		 */
784 		if (gpii->gpi_cmd == GPI_CH_CMD_DE_ALLOC)
785 			state = DEFAULT_CH_STATE;
786 		gchan->ch_state = state;
787 
788 		/*
789 		 * Triggering complete all if ch_state is not a stop in process.
790 		 * Stop in process is a transition state and we will wait for
791 		 * stop interrupt before notifying.
792 		 */
793 		if (gchan->ch_state != CH_STATE_STOP_IN_PROC)
794 			complete_all(&gpii->cmd_completion);
795 	}
796 }
797 
798 /* processing gpi general error interrupts */
799 static void gpi_process_gen_err_irq(struct gpii *gpii)
800 {
801 	u32 gpii_id = gpii->gpii_id;
802 	u32 offset = GPII_n_CNTXT_GPII_IRQ_STTS_OFFS(gpii_id);
803 	u32 irq_stts = gpi_read_reg(gpii, gpii->regs + offset);
804 
805 	/* clear the status */
806 	dev_dbg(gpii->gpi_dev->dev, "irq_stts:0x%x\n", irq_stts);
807 
808 	/* Clear the register */
809 	offset = GPII_n_CNTXT_GPII_IRQ_CLR_OFFS(gpii_id);
810 	gpi_write_reg(gpii, gpii->regs + offset, irq_stts);
811 }
812 
813 /* processing gpi level error interrupts */
814 static void gpi_process_glob_err_irq(struct gpii *gpii)
815 {
816 	u32 gpii_id = gpii->gpii_id;
817 	u32 offset = GPII_n_CNTXT_GLOB_IRQ_STTS_OFFS(gpii_id);
818 	u32 irq_stts = gpi_read_reg(gpii, gpii->regs + offset);
819 
820 	offset = GPII_n_CNTXT_GLOB_IRQ_CLR_OFFS(gpii_id);
821 	gpi_write_reg(gpii, gpii->regs + offset, irq_stts);
822 
823 	/* only error interrupt should be set */
824 	if (irq_stts & ~GPI_GLOB_IRQ_ERROR_INT_MSK) {
825 		dev_err(gpii->gpi_dev->dev, "invalid error status:0x%x\n", irq_stts);
826 		return;
827 	}
828 
829 	offset = GPII_n_ERROR_LOG_OFFS(gpii_id);
830 	gpi_write_reg(gpii, gpii->regs + offset, 0);
831 }
832 
833 /* gpii interrupt handler */
834 static irqreturn_t gpi_handle_irq(int irq, void *data)
835 {
836 	struct gpii *gpii = data;
837 	u32 gpii_id = gpii->gpii_id;
838 	u32 type, offset;
839 	unsigned long flags;
840 
841 	read_lock_irqsave(&gpii->pm_lock, flags);
842 
843 	/*
844 	 * States are out of sync to receive interrupt
845 	 * while software state is in DISABLE state, bailing out.
846 	 */
847 	if (!REG_ACCESS_VALID(gpii->pm_state)) {
848 		dev_err(gpii->gpi_dev->dev, "receive interrupt while in %s state\n",
849 			TO_GPI_PM_STR(gpii->pm_state));
850 		goto exit_irq;
851 	}
852 
853 	offset = GPII_n_CNTXT_TYPE_IRQ_OFFS(gpii->gpii_id);
854 	type = gpi_read_reg(gpii, gpii->regs + offset);
855 
856 	do {
857 		/* global gpii error */
858 		if (type & GPII_n_CNTXT_TYPE_IRQ_MSK_GLOB) {
859 			gpi_process_glob_err_irq(gpii);
860 			type &= ~(GPII_n_CNTXT_TYPE_IRQ_MSK_GLOB);
861 		}
862 
863 		/* transfer complete interrupt */
864 		if (type & GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB) {
865 			gpi_process_ieob(gpii);
866 			type &= ~GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB;
867 		}
868 
869 		/* event control irq */
870 		if (type & GPII_n_CNTXT_TYPE_IRQ_MSK_EV_CTRL) {
871 			u32 ev_state;
872 			u32 ev_ch_irq;
873 
874 			dev_dbg(gpii->gpi_dev->dev,
875 				"processing EV CTRL interrupt\n");
876 			offset = GPII_n_CNTXT_SRC_EV_CH_IRQ_OFFS(gpii_id);
877 			ev_ch_irq = gpi_read_reg(gpii, gpii->regs + offset);
878 
879 			offset = GPII_n_CNTXT_SRC_EV_CH_IRQ_CLR_OFFS
880 				(gpii_id);
881 			gpi_write_reg(gpii, gpii->regs + offset, ev_ch_irq);
882 			ev_state = gpi_read_reg(gpii, gpii->ev_cntxt_base_reg +
883 						CNTXT_0_CONFIG);
884 			ev_state = FIELD_GET(GPII_n_EV_k_CNTXT_0_CHSTATE, ev_state);
885 
886 			/*
887 			 * CMD EV_CMD_DEALLOC is always successful. However
888 			 * cmd does not change hardware status. So overwriting
889 			 * software state to default state.
890 			 */
891 			if (gpii->gpi_cmd == GPI_EV_CMD_DEALLOC)
892 				ev_state = DEFAULT_EV_CH_STATE;
893 
894 			gpii->ev_state = ev_state;
895 			dev_dbg(gpii->gpi_dev->dev, "setting EV state to %s\n",
896 				TO_GPI_EV_STATE_STR(gpii->ev_state));
897 			complete_all(&gpii->cmd_completion);
898 			type &= ~(GPII_n_CNTXT_TYPE_IRQ_MSK_EV_CTRL);
899 		}
900 
901 		/* channel control irq */
902 		if (type & GPII_n_CNTXT_TYPE_IRQ_MSK_CH_CTRL) {
903 			dev_dbg(gpii->gpi_dev->dev, "process CH CTRL interrupts\n");
904 			gpi_process_ch_ctrl_irq(gpii);
905 			type &= ~(GPII_n_CNTXT_TYPE_IRQ_MSK_CH_CTRL);
906 		}
907 
908 		if (type) {
909 			dev_err(gpii->gpi_dev->dev, "Unhandled interrupt status:0x%x\n", type);
910 			gpi_process_gen_err_irq(gpii);
911 			goto exit_irq;
912 		}
913 
914 		offset = GPII_n_CNTXT_TYPE_IRQ_OFFS(gpii->gpii_id);
915 		type = gpi_read_reg(gpii, gpii->regs + offset);
916 	} while (type);
917 
918 exit_irq:
919 	read_unlock_irqrestore(&gpii->pm_lock, flags);
920 
921 	return IRQ_HANDLED;
922 }
923 
924 /* process DMA Immediate completion data events */
925 static void gpi_process_imed_data_event(struct gchan *gchan,
926 					struct immediate_data_event *imed_event)
927 {
928 	struct gpii *gpii = gchan->gpii;
929 	struct gpi_ring *ch_ring = &gchan->ch_ring;
930 	void *tre = ch_ring->base + (ch_ring->el_size * imed_event->tre_index);
931 	struct dmaengine_result result;
932 	struct gpi_desc *gpi_desc;
933 	struct virt_dma_desc *vd;
934 	unsigned long flags;
935 	u32 chid;
936 
937 	/*
938 	 * If channel not active don't process event
939 	 */
940 	if (gchan->pm_state != ACTIVE_STATE) {
941 		dev_err(gpii->gpi_dev->dev, "skipping processing event because ch @ %s state\n",
942 			TO_GPI_PM_STR(gchan->pm_state));
943 		return;
944 	}
945 
946 	spin_lock_irqsave(&gchan->vc.lock, flags);
947 	vd = vchan_next_desc(&gchan->vc);
948 	if (!vd) {
949 		struct gpi_ere *gpi_ere;
950 		struct gpi_tre *gpi_tre;
951 
952 		spin_unlock_irqrestore(&gchan->vc.lock, flags);
953 		dev_dbg(gpii->gpi_dev->dev, "event without a pending descriptor!\n");
954 		gpi_ere = (struct gpi_ere *)imed_event;
955 		dev_dbg(gpii->gpi_dev->dev,
956 			"Event: %08x %08x %08x %08x\n",
957 			gpi_ere->dword[0], gpi_ere->dword[1],
958 			gpi_ere->dword[2], gpi_ere->dword[3]);
959 		gpi_tre = tre;
960 		dev_dbg(gpii->gpi_dev->dev,
961 			"Pending TRE: %08x %08x %08x %08x\n",
962 			gpi_tre->dword[0], gpi_tre->dword[1],
963 			gpi_tre->dword[2], gpi_tre->dword[3]);
964 		return;
965 	}
966 	gpi_desc = to_gpi_desc(vd);
967 	spin_unlock_irqrestore(&gchan->vc.lock, flags);
968 
969 	/*
970 	 * RP pointed by Event is to last TRE processed,
971 	 * we need to update ring rp to tre + 1
972 	 */
973 	tre += ch_ring->el_size;
974 	if (tre >= (ch_ring->base + ch_ring->len))
975 		tre = ch_ring->base;
976 	ch_ring->rp = tre;
977 
978 	/* make sure rp updates are immediately visible to all cores */
979 	smp_wmb();
980 
981 	chid = imed_event->chid;
982 	if (imed_event->code == MSM_GPI_TCE_EOT && gpii->ieob_set) {
983 		if (chid == GPI_RX_CHAN)
984 			goto gpi_free_desc;
985 		else
986 			return;
987 	}
988 
989 	if (imed_event->code == MSM_GPI_TCE_UNEXP_ERR)
990 		result.result = DMA_TRANS_ABORTED;
991 	else
992 		result.result = DMA_TRANS_NOERROR;
993 	result.residue = gpi_desc->len - imed_event->length;
994 
995 	dma_cookie_complete(&vd->tx);
996 	dmaengine_desc_get_callback_invoke(&vd->tx, &result);
997 
998 gpi_free_desc:
999 	spin_lock_irqsave(&gchan->vc.lock, flags);
1000 	list_del(&vd->node);
1001 	spin_unlock_irqrestore(&gchan->vc.lock, flags);
1002 	kfree(gpi_desc);
1003 	gpi_desc = NULL;
1004 }
1005 
1006 /* processing transfer completion events */
1007 static void gpi_process_xfer_compl_event(struct gchan *gchan,
1008 					 struct xfer_compl_event *compl_event)
1009 {
1010 	struct gpii *gpii = gchan->gpii;
1011 	struct gpi_ring *ch_ring = &gchan->ch_ring;
1012 	void *ev_rp = to_virtual(ch_ring, compl_event->ptr);
1013 	struct virt_dma_desc *vd;
1014 	struct gpi_desc *gpi_desc;
1015 	struct dmaengine_result result;
1016 	unsigned long flags;
1017 	u32 chid;
1018 
1019 	/* only process events on active channel */
1020 	if (unlikely(gchan->pm_state != ACTIVE_STATE)) {
1021 		dev_err(gpii->gpi_dev->dev, "skipping processing event because ch @ %s state\n",
1022 			TO_GPI_PM_STR(gchan->pm_state));
1023 		return;
1024 	}
1025 
1026 	spin_lock_irqsave(&gchan->vc.lock, flags);
1027 	vd = vchan_next_desc(&gchan->vc);
1028 	if (!vd) {
1029 		struct gpi_ere *gpi_ere;
1030 
1031 		spin_unlock_irqrestore(&gchan->vc.lock, flags);
1032 		dev_err(gpii->gpi_dev->dev, "Event without a pending descriptor!\n");
1033 		gpi_ere = (struct gpi_ere *)compl_event;
1034 		dev_err(gpii->gpi_dev->dev,
1035 			"Event: %08x %08x %08x %08x\n",
1036 			gpi_ere->dword[0], gpi_ere->dword[1],
1037 			gpi_ere->dword[2], gpi_ere->dword[3]);
1038 		return;
1039 	}
1040 
1041 	gpi_desc = to_gpi_desc(vd);
1042 	spin_unlock_irqrestore(&gchan->vc.lock, flags);
1043 
1044 	/*
1045 	 * RP pointed by Event is to last TRE processed,
1046 	 * we need to update ring rp to ev_rp + 1
1047 	 */
1048 	ev_rp += ch_ring->el_size;
1049 	if (ev_rp >= (ch_ring->base + ch_ring->len))
1050 		ev_rp = ch_ring->base;
1051 	ch_ring->rp = ev_rp;
1052 
1053 	/* update must be visible to other cores */
1054 	smp_wmb();
1055 
1056 	chid = compl_event->chid;
1057 	if (compl_event->code == MSM_GPI_TCE_EOT && gpii->ieob_set) {
1058 		if (chid == GPI_RX_CHAN)
1059 			goto gpi_free_desc;
1060 		else
1061 			return;
1062 	}
1063 
1064 	if (compl_event->code == MSM_GPI_TCE_UNEXP_ERR) {
1065 		dev_err(gpii->gpi_dev->dev, "Error in Transaction\n");
1066 		result.result = DMA_TRANS_ABORTED;
1067 	} else {
1068 		dev_dbg(gpii->gpi_dev->dev, "Transaction Success\n");
1069 		result.result = DMA_TRANS_NOERROR;
1070 	}
1071 	result.residue = gpi_desc->len - compl_event->length;
1072 	dev_dbg(gpii->gpi_dev->dev, "Residue %d\n", result.residue);
1073 
1074 	dma_cookie_complete(&vd->tx);
1075 	dmaengine_desc_get_callback_invoke(&vd->tx, &result);
1076 
1077 gpi_free_desc:
1078 	spin_lock_irqsave(&gchan->vc.lock, flags);
1079 	list_del(&vd->node);
1080 	spin_unlock_irqrestore(&gchan->vc.lock, flags);
1081 	kfree(gpi_desc);
1082 	gpi_desc = NULL;
1083 }
1084 
1085 /* process all events */
1086 static void gpi_process_events(struct gpii *gpii)
1087 {
1088 	struct gpi_ring *ev_ring = &gpii->ev_ring;
1089 	phys_addr_t cntxt_rp;
1090 	void *rp;
1091 	union gpi_event *gpi_event;
1092 	struct gchan *gchan;
1093 	u32 chid, type;
1094 
1095 	cntxt_rp = gpi_read_reg(gpii, gpii->ev_ring_rp_lsb_reg);
1096 	rp = to_virtual(ev_ring, cntxt_rp);
1097 
1098 	do {
1099 		while (rp != ev_ring->rp) {
1100 			gpi_event = ev_ring->rp;
1101 			chid = gpi_event->xfer_compl_event.chid;
1102 			type = gpi_event->xfer_compl_event.type;
1103 
1104 			dev_dbg(gpii->gpi_dev->dev,
1105 				"Event: CHID:%u, type:%x %08x %08x %08x %08x\n",
1106 				chid, type, gpi_event->gpi_ere.dword[0],
1107 				gpi_event->gpi_ere.dword[1], gpi_event->gpi_ere.dword[2],
1108 				gpi_event->gpi_ere.dword[3]);
1109 
1110 			switch (type) {
1111 			case XFER_COMPLETE_EV_TYPE:
1112 				gchan = &gpii->gchan[chid];
1113 				gpi_process_xfer_compl_event(gchan,
1114 							     &gpi_event->xfer_compl_event);
1115 				break;
1116 			case STALE_EV_TYPE:
1117 				dev_dbg(gpii->gpi_dev->dev, "stale event, not processing\n");
1118 				break;
1119 			case IMMEDIATE_DATA_EV_TYPE:
1120 				gchan = &gpii->gchan[chid];
1121 				gpi_process_imed_data_event(gchan,
1122 							    &gpi_event->immediate_data_event);
1123 				break;
1124 			case QUP_NOTIF_EV_TYPE:
1125 				dev_dbg(gpii->gpi_dev->dev, "QUP_NOTIF_EV_TYPE\n");
1126 				break;
1127 			default:
1128 				dev_dbg(gpii->gpi_dev->dev,
1129 					"not supported event type:0x%x\n", type);
1130 			}
1131 			gpi_ring_recycle_ev_element(ev_ring);
1132 		}
1133 		gpi_write_ev_db(gpii, ev_ring, ev_ring->wp);
1134 
1135 		/* clear pending IEOB events */
1136 		gpi_write_reg(gpii, gpii->ieob_clr_reg, BIT(0));
1137 
1138 		cntxt_rp = gpi_read_reg(gpii, gpii->ev_ring_rp_lsb_reg);
1139 		rp = to_virtual(ev_ring, cntxt_rp);
1140 
1141 	} while (rp != ev_ring->rp);
1142 }
1143 
1144 /* processing events using tasklet */
1145 static void gpi_ev_tasklet(unsigned long data)
1146 {
1147 	struct gpii *gpii = (struct gpii *)data;
1148 
1149 	read_lock(&gpii->pm_lock);
1150 	if (!REG_ACCESS_VALID(gpii->pm_state)) {
1151 		read_unlock(&gpii->pm_lock);
1152 		dev_err(gpii->gpi_dev->dev, "not processing any events, pm_state:%s\n",
1153 			TO_GPI_PM_STR(gpii->pm_state));
1154 		return;
1155 	}
1156 
1157 	/* process the events */
1158 	gpi_process_events(gpii);
1159 
1160 	/* enable IEOB, switching back to interrupts */
1161 	gpi_config_interrupts(gpii, MASK_IEOB_SETTINGS, 1);
1162 	read_unlock(&gpii->pm_lock);
1163 }
1164 
1165 /* marks all pending events for the channel as stale */
1166 static void gpi_mark_stale_events(struct gchan *gchan)
1167 {
1168 	struct gpii *gpii = gchan->gpii;
1169 	struct gpi_ring *ev_ring = &gpii->ev_ring;
1170 	u32 cntxt_rp, local_rp;
1171 	void *ev_rp;
1172 
1173 	cntxt_rp = gpi_read_reg(gpii, gpii->ev_ring_rp_lsb_reg);
1174 
1175 	ev_rp = ev_ring->rp;
1176 	local_rp = (u32)to_physical(ev_ring, ev_rp);
1177 	while (local_rp != cntxt_rp) {
1178 		union gpi_event *gpi_event = ev_rp;
1179 		u32 chid = gpi_event->xfer_compl_event.chid;
1180 
1181 		if (chid == gchan->chid)
1182 			gpi_event->xfer_compl_event.type = STALE_EV_TYPE;
1183 		ev_rp += ev_ring->el_size;
1184 		if (ev_rp >= (ev_ring->base + ev_ring->len))
1185 			ev_rp = ev_ring->base;
1186 		cntxt_rp = gpi_read_reg(gpii, gpii->ev_ring_rp_lsb_reg);
1187 		local_rp = (u32)to_physical(ev_ring, ev_rp);
1188 	}
1189 }
1190 
1191 /* reset sw state and issue channel reset or de-alloc */
1192 static int gpi_reset_chan(struct gchan *gchan, enum gpi_cmd gpi_cmd)
1193 {
1194 	struct gpii *gpii = gchan->gpii;
1195 	struct gpi_ring *ch_ring = &gchan->ch_ring;
1196 	LIST_HEAD(list);
1197 	int ret;
1198 
1199 	ret = gpi_send_cmd(gpii, gchan, gpi_cmd);
1200 	if (ret) {
1201 		dev_err(gpii->gpi_dev->dev, "Error with cmd:%s ret:%d\n",
1202 			TO_GPI_CMD_STR(gpi_cmd), ret);
1203 		return ret;
1204 	}
1205 
1206 	/* initialize the local ring ptrs */
1207 	ch_ring->rp = ch_ring->base;
1208 	ch_ring->wp = ch_ring->base;
1209 
1210 	/* visible to other cores */
1211 	smp_wmb();
1212 
1213 	/* check event ring for any stale events */
1214 	write_lock_irq(&gpii->pm_lock);
1215 	gpi_mark_stale_events(gchan);
1216 
1217 	/* remove all async descriptors */
1218 	spin_lock(&gchan->vc.lock);
1219 	vchan_get_all_descriptors(&gchan->vc, &list);
1220 	spin_unlock(&gchan->vc.lock);
1221 	write_unlock_irq(&gpii->pm_lock);
1222 	vchan_dma_desc_free_list(&gchan->vc, &list);
1223 
1224 	return 0;
1225 }
1226 
1227 static int gpi_start_chan(struct gchan *gchan)
1228 {
1229 	struct gpii *gpii = gchan->gpii;
1230 	int ret;
1231 
1232 	ret = gpi_send_cmd(gpii, gchan, GPI_CH_CMD_START);
1233 	if (ret) {
1234 		dev_err(gpii->gpi_dev->dev, "Error with cmd:%s ret:%d\n",
1235 			TO_GPI_CMD_STR(GPI_CH_CMD_START), ret);
1236 		return ret;
1237 	}
1238 
1239 	/* gpii CH is active now */
1240 	write_lock_irq(&gpii->pm_lock);
1241 	gchan->pm_state = ACTIVE_STATE;
1242 	write_unlock_irq(&gpii->pm_lock);
1243 
1244 	return 0;
1245 }
1246 
1247 static int gpi_stop_chan(struct gchan *gchan)
1248 {
1249 	struct gpii *gpii = gchan->gpii;
1250 	int ret;
1251 
1252 	ret = gpi_send_cmd(gpii, gchan, GPI_CH_CMD_STOP);
1253 	if (ret) {
1254 		dev_err(gpii->gpi_dev->dev, "Error with cmd:%s ret:%d\n",
1255 			TO_GPI_CMD_STR(GPI_CH_CMD_STOP), ret);
1256 		return ret;
1257 	}
1258 
1259 	return 0;
1260 }
1261 
1262 /* allocate and configure the transfer channel */
1263 static int gpi_alloc_chan(struct gchan *chan, bool send_alloc_cmd)
1264 {
1265 	struct gpii *gpii = chan->gpii;
1266 	struct gpi_ring *ring = &chan->ch_ring;
1267 	int ret;
1268 	u32 id = gpii->gpii_id;
1269 	u32 chid = chan->chid;
1270 	u32 pair_chid = !chid;
1271 
1272 	if (send_alloc_cmd) {
1273 		ret = gpi_send_cmd(gpii, chan, GPI_CH_CMD_ALLOCATE);
1274 		if (ret) {
1275 			dev_err(gpii->gpi_dev->dev, "Error with cmd:%s ret:%d\n",
1276 				TO_GPI_CMD_STR(GPI_CH_CMD_ALLOCATE), ret);
1277 			return ret;
1278 		}
1279 	}
1280 
1281 	gpi_write_reg(gpii, chan->ch_cntxt_base_reg + CNTXT_0_CONFIG,
1282 		      GPII_n_CH_k_CNTXT_0(ring->el_size, 0, chan->dir, GPI_CHTYPE_PROTO_GPI));
1283 	gpi_write_reg(gpii, chan->ch_cntxt_base_reg + CNTXT_1_R_LENGTH, ring->len);
1284 	gpi_write_reg(gpii, chan->ch_cntxt_base_reg + CNTXT_2_RING_BASE_LSB, ring->phys_addr);
1285 	gpi_write_reg(gpii, chan->ch_cntxt_base_reg + CNTXT_3_RING_BASE_MSB,
1286 		      upper_32_bits(ring->phys_addr));
1287 	gpi_write_reg(gpii, chan->ch_cntxt_db_reg + CNTXT_5_RING_RP_MSB - CNTXT_4_RING_RP_LSB,
1288 		      upper_32_bits(ring->phys_addr));
1289 	gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_SCRATCH_0_OFFS(id, chid),
1290 		      GPII_n_CH_k_SCRATCH_0(pair_chid, chan->protocol, chan->seid));
1291 	gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_SCRATCH_1_OFFS(id, chid), 0);
1292 	gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_SCRATCH_2_OFFS(id, chid), 0);
1293 	gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_SCRATCH_3_OFFS(id, chid), 0);
1294 	gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_QOS_OFFS(id, chid), 1);
1295 
1296 	/* flush all the writes */
1297 	wmb();
1298 	return 0;
1299 }
1300 
1301 /* allocate and configure event ring */
1302 static int gpi_alloc_ev_chan(struct gpii *gpii)
1303 {
1304 	struct gpi_ring *ring = &gpii->ev_ring;
1305 	void __iomem *base = gpii->ev_cntxt_base_reg;
1306 	int ret;
1307 
1308 	ret = gpi_send_cmd(gpii, NULL, GPI_EV_CMD_ALLOCATE);
1309 	if (ret) {
1310 		dev_err(gpii->gpi_dev->dev, "error with cmd:%s ret:%d\n",
1311 			TO_GPI_CMD_STR(GPI_EV_CMD_ALLOCATE), ret);
1312 		return ret;
1313 	}
1314 
1315 	/* program event context */
1316 	gpi_write_reg(gpii, base + CNTXT_0_CONFIG,
1317 		      GPII_n_EV_k_CNTXT_0(ring->el_size, GPI_INTTYPE_IRQ, GPI_CHTYPE_GPI_EV));
1318 	gpi_write_reg(gpii, base + CNTXT_1_R_LENGTH, ring->len);
1319 	gpi_write_reg(gpii, base + CNTXT_2_RING_BASE_LSB, lower_32_bits(ring->phys_addr));
1320 	gpi_write_reg(gpii, base + CNTXT_3_RING_BASE_MSB, upper_32_bits(ring->phys_addr));
1321 	gpi_write_reg(gpii, gpii->ev_cntxt_db_reg + CNTXT_5_RING_RP_MSB - CNTXT_4_RING_RP_LSB,
1322 		      upper_32_bits(ring->phys_addr));
1323 	gpi_write_reg(gpii, base + CNTXT_8_RING_INT_MOD, 0);
1324 	gpi_write_reg(gpii, base + CNTXT_10_RING_MSI_LSB, 0);
1325 	gpi_write_reg(gpii, base + CNTXT_11_RING_MSI_MSB, 0);
1326 	gpi_write_reg(gpii, base + CNTXT_8_RING_INT_MOD, 0);
1327 	gpi_write_reg(gpii, base + CNTXT_12_RING_RP_UPDATE_LSB, 0);
1328 	gpi_write_reg(gpii, base + CNTXT_13_RING_RP_UPDATE_MSB, 0);
1329 
1330 	/* add events to ring */
1331 	ring->wp = (ring->base + ring->len - ring->el_size);
1332 
1333 	/* flush all the writes */
1334 	wmb();
1335 
1336 	/* gpii is active now */
1337 	write_lock_irq(&gpii->pm_lock);
1338 	gpii->pm_state = ACTIVE_STATE;
1339 	write_unlock_irq(&gpii->pm_lock);
1340 	gpi_write_ev_db(gpii, ring, ring->wp);
1341 
1342 	return 0;
1343 }
1344 
1345 /* calculate # of ERE/TRE available to queue */
1346 static int gpi_ring_num_elements_avail(const struct gpi_ring * const ring)
1347 {
1348 	int elements = 0;
1349 
1350 	if (ring->wp < ring->rp) {
1351 		elements = ((ring->rp - ring->wp) / ring->el_size) - 1;
1352 	} else {
1353 		elements = (ring->rp - ring->base) / ring->el_size;
1354 		elements += ((ring->base + ring->len - ring->wp) / ring->el_size) - 1;
1355 	}
1356 
1357 	return elements;
1358 }
1359 
1360 static int gpi_ring_add_element(struct gpi_ring *ring, void **wp)
1361 {
1362 	if (gpi_ring_num_elements_avail(ring) <= 0)
1363 		return -ENOMEM;
1364 
1365 	*wp = ring->wp;
1366 	ring->wp += ring->el_size;
1367 	if (ring->wp  >= (ring->base + ring->len))
1368 		ring->wp = ring->base;
1369 
1370 	/* visible to other cores */
1371 	smp_wmb();
1372 
1373 	return 0;
1374 }
1375 
1376 static void gpi_ring_recycle_ev_element(struct gpi_ring *ring)
1377 {
1378 	/* Update the WP */
1379 	ring->wp += ring->el_size;
1380 	if (ring->wp  >= (ring->base + ring->len))
1381 		ring->wp = ring->base;
1382 
1383 	/* Update the RP */
1384 	ring->rp += ring->el_size;
1385 	if (ring->rp  >= (ring->base + ring->len))
1386 		ring->rp = ring->base;
1387 
1388 	/* visible to other cores */
1389 	smp_wmb();
1390 }
1391 
1392 static void gpi_free_ring(struct gpi_ring *ring,
1393 			  struct gpii *gpii)
1394 {
1395 	dma_free_coherent(gpii->gpi_dev->dev, ring->alloc_size,
1396 			  ring->pre_aligned, ring->dma_handle);
1397 	memset(ring, 0, sizeof(*ring));
1398 }
1399 
1400 /* allocate memory for transfer and event rings */
1401 static int gpi_alloc_ring(struct gpi_ring *ring, u32 elements,
1402 			  u32 el_size, struct gpii *gpii)
1403 {
1404 	u64 len = elements * el_size;
1405 	int bit;
1406 
1407 	/* ring len must be power of 2 */
1408 	bit = find_last_bit((unsigned long *)&len, 32);
1409 	if (((1 << bit) - 1) & len)
1410 		bit++;
1411 	len = 1 << bit;
1412 	ring->alloc_size = (len + (len - 1));
1413 	dev_dbg(gpii->gpi_dev->dev,
1414 		"#el:%u el_size:%u len:%u actual_len:%llu alloc_size:%zu\n",
1415 		  elements, el_size, (elements * el_size), len,
1416 		  ring->alloc_size);
1417 
1418 	ring->pre_aligned = dma_alloc_coherent(gpii->gpi_dev->dev,
1419 					       ring->alloc_size,
1420 					       &ring->dma_handle, GFP_KERNEL);
1421 	if (!ring->pre_aligned) {
1422 		dev_err(gpii->gpi_dev->dev, "could not alloc size:%zu mem for ring\n",
1423 			ring->alloc_size);
1424 		return -ENOMEM;
1425 	}
1426 
1427 	/* align the physical mem */
1428 	ring->phys_addr = (ring->dma_handle + (len - 1)) & ~(len - 1);
1429 	ring->base = ring->pre_aligned + (ring->phys_addr - ring->dma_handle);
1430 	ring->rp = ring->base;
1431 	ring->wp = ring->base;
1432 	ring->len = len;
1433 	ring->el_size = el_size;
1434 	ring->elements = ring->len / ring->el_size;
1435 	memset(ring->base, 0, ring->len);
1436 	ring->configured = true;
1437 
1438 	/* update to other cores */
1439 	smp_wmb();
1440 
1441 	dev_dbg(gpii->gpi_dev->dev,
1442 		"phy_pre:%pad phy_alig:%pa len:%u el_size:%u elements:%u\n",
1443 		&ring->dma_handle, &ring->phys_addr, ring->len,
1444 		ring->el_size, ring->elements);
1445 
1446 	return 0;
1447 }
1448 
1449 /* copy tre into transfer ring */
1450 static void gpi_queue_xfer(struct gpii *gpii, struct gchan *gchan,
1451 			   struct gpi_tre *gpi_tre, void **wp)
1452 {
1453 	struct gpi_tre *ch_tre;
1454 	int ret;
1455 
1456 	/* get next tre location we can copy */
1457 	ret = gpi_ring_add_element(&gchan->ch_ring, (void **)&ch_tre);
1458 	if (unlikely(ret)) {
1459 		dev_err(gpii->gpi_dev->dev, "Error adding ring element to xfer ring\n");
1460 		return;
1461 	}
1462 
1463 	/* copy the tre info */
1464 	memcpy(ch_tre, gpi_tre, sizeof(*ch_tre));
1465 	*wp = ch_tre;
1466 }
1467 
1468 /* reset and restart transfer channel */
1469 static int gpi_terminate_all(struct dma_chan *chan)
1470 {
1471 	struct gchan *gchan = to_gchan(chan);
1472 	struct gpii *gpii = gchan->gpii;
1473 	int schid, echid, i;
1474 	int ret = 0;
1475 
1476 	mutex_lock(&gpii->ctrl_lock);
1477 
1478 	/*
1479 	 * treat both channels as a group if its protocol is not UART
1480 	 * STOP, RESET, or START needs to be in lockstep
1481 	 */
1482 	schid = (gchan->protocol == QCOM_GPI_UART) ? gchan->chid : 0;
1483 	echid = (gchan->protocol == QCOM_GPI_UART) ? schid + 1 : MAX_CHANNELS_PER_GPII;
1484 
1485 	/* stop the channel */
1486 	for (i = schid; i < echid; i++) {
1487 		gchan = &gpii->gchan[i];
1488 
1489 		/* disable ch state so no more TRE processing */
1490 		write_lock_irq(&gpii->pm_lock);
1491 		gchan->pm_state = PREPARE_TERMINATE;
1492 		write_unlock_irq(&gpii->pm_lock);
1493 
1494 		/* send command to Stop the channel */
1495 		ret = gpi_stop_chan(gchan);
1496 	}
1497 
1498 	/* reset the channels (clears any pending tre) */
1499 	for (i = schid; i < echid; i++) {
1500 		gchan = &gpii->gchan[i];
1501 
1502 		ret = gpi_reset_chan(gchan, GPI_CH_CMD_RESET);
1503 		if (ret) {
1504 			dev_err(gpii->gpi_dev->dev, "Error resetting channel ret:%d\n", ret);
1505 			goto terminate_exit;
1506 		}
1507 
1508 		/* reprogram channel CNTXT */
1509 		ret = gpi_alloc_chan(gchan, false);
1510 		if (ret) {
1511 			dev_err(gpii->gpi_dev->dev, "Error alloc_channel ret:%d\n", ret);
1512 			goto terminate_exit;
1513 		}
1514 	}
1515 
1516 	/* restart the channels */
1517 	for (i = schid; i < echid; i++) {
1518 		gchan = &gpii->gchan[i];
1519 
1520 		ret = gpi_start_chan(gchan);
1521 		if (ret) {
1522 			dev_err(gpii->gpi_dev->dev, "Error Starting Channel ret:%d\n", ret);
1523 			goto terminate_exit;
1524 		}
1525 	}
1526 
1527 terminate_exit:
1528 	mutex_unlock(&gpii->ctrl_lock);
1529 	return ret;
1530 }
1531 
1532 /* pause dma transfer for all channels */
1533 static int gpi_pause(struct dma_chan *chan)
1534 {
1535 	struct gchan *gchan = to_gchan(chan);
1536 	struct gpii *gpii = gchan->gpii;
1537 	int i, ret;
1538 
1539 	mutex_lock(&gpii->ctrl_lock);
1540 
1541 	/*
1542 	 * pause/resume are per gpii not per channel, so
1543 	 * client needs to call pause only once
1544 	 */
1545 	if (gpii->pm_state == PAUSE_STATE) {
1546 		dev_dbg(gpii->gpi_dev->dev, "channel is already paused\n");
1547 		mutex_unlock(&gpii->ctrl_lock);
1548 		return 0;
1549 	}
1550 
1551 	/* send stop command to stop the channels */
1552 	for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) {
1553 		ret = gpi_stop_chan(&gpii->gchan[i]);
1554 		if (ret) {
1555 			mutex_unlock(&gpii->ctrl_lock);
1556 			return ret;
1557 		}
1558 	}
1559 
1560 	disable_irq(gpii->irq);
1561 
1562 	/* Wait for threads to complete out */
1563 	tasklet_kill(&gpii->ev_task);
1564 
1565 	write_lock_irq(&gpii->pm_lock);
1566 	gpii->pm_state = PAUSE_STATE;
1567 	write_unlock_irq(&gpii->pm_lock);
1568 	mutex_unlock(&gpii->ctrl_lock);
1569 
1570 	return 0;
1571 }
1572 
1573 /* resume dma transfer */
1574 static int gpi_resume(struct dma_chan *chan)
1575 {
1576 	struct gchan *gchan = to_gchan(chan);
1577 	struct gpii *gpii = gchan->gpii;
1578 	int i, ret;
1579 
1580 	mutex_lock(&gpii->ctrl_lock);
1581 	if (gpii->pm_state == ACTIVE_STATE) {
1582 		dev_dbg(gpii->gpi_dev->dev, "channel is already active\n");
1583 		mutex_unlock(&gpii->ctrl_lock);
1584 		return 0;
1585 	}
1586 
1587 	enable_irq(gpii->irq);
1588 
1589 	/* send start command to start the channels */
1590 	for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) {
1591 		ret = gpi_send_cmd(gpii, &gpii->gchan[i], GPI_CH_CMD_START);
1592 		if (ret) {
1593 			dev_err(gpii->gpi_dev->dev, "Error starting chan, ret:%d\n", ret);
1594 			mutex_unlock(&gpii->ctrl_lock);
1595 			return ret;
1596 		}
1597 	}
1598 
1599 	write_lock_irq(&gpii->pm_lock);
1600 	gpii->pm_state = ACTIVE_STATE;
1601 	write_unlock_irq(&gpii->pm_lock);
1602 	mutex_unlock(&gpii->ctrl_lock);
1603 
1604 	return 0;
1605 }
1606 
1607 static void gpi_desc_free(struct virt_dma_desc *vd)
1608 {
1609 	struct gpi_desc *gpi_desc = to_gpi_desc(vd);
1610 
1611 	kfree(gpi_desc);
1612 	gpi_desc = NULL;
1613 }
1614 
1615 static int
1616 gpi_peripheral_config(struct dma_chan *chan, struct dma_slave_config *config)
1617 {
1618 	struct gchan *gchan = to_gchan(chan);
1619 
1620 	if (!config->peripheral_config)
1621 		return -EINVAL;
1622 
1623 	gchan->config = krealloc(gchan->config, config->peripheral_size, GFP_NOWAIT);
1624 	if (!gchan->config)
1625 		return -ENOMEM;
1626 
1627 	memcpy(gchan->config, config->peripheral_config, config->peripheral_size);
1628 
1629 	return 0;
1630 }
1631 
1632 static int gpi_create_i2c_tre(struct gchan *chan, struct gpi_desc *desc,
1633 			      struct scatterlist *sgl, enum dma_transfer_direction direction)
1634 {
1635 	struct gpi_i2c_config *i2c = chan->config;
1636 	struct device *dev = chan->gpii->gpi_dev->dev;
1637 	unsigned int tre_idx = 0;
1638 	dma_addr_t address;
1639 	struct gpi_tre *tre;
1640 	unsigned int i;
1641 
1642 	/* first create config tre if applicable */
1643 	if (i2c->set_config) {
1644 		tre = &desc->tre[tre_idx];
1645 		tre_idx++;
1646 
1647 		tre->dword[0] = u32_encode_bits(i2c->low_count, TRE_I2C_C0_TLOW);
1648 		tre->dword[0] |= u32_encode_bits(i2c->high_count, TRE_I2C_C0_THIGH);
1649 		tre->dword[0] |= u32_encode_bits(i2c->cycle_count, TRE_I2C_C0_TCYL);
1650 		tre->dword[0] |= u32_encode_bits(i2c->pack_enable, TRE_I2C_C0_TX_PACK);
1651 		tre->dword[0] |= u32_encode_bits(i2c->pack_enable, TRE_I2C_C0_RX_PACK);
1652 
1653 		tre->dword[1] = 0;
1654 
1655 		tre->dword[2] = u32_encode_bits(i2c->clk_div, TRE_C0_CLK_DIV);
1656 
1657 		tre->dword[3] = u32_encode_bits(TRE_TYPE_CONFIG0, TRE_FLAGS_TYPE);
1658 		tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN);
1659 	}
1660 
1661 	/* create the GO tre for Tx */
1662 	if (i2c->op == I2C_WRITE) {
1663 		tre = &desc->tre[tre_idx];
1664 		tre_idx++;
1665 
1666 		if (i2c->multi_msg)
1667 			tre->dword[0] = u32_encode_bits(I2C_READ, TRE_I2C_GO_CMD);
1668 		else
1669 			tre->dword[0] = u32_encode_bits(i2c->op, TRE_I2C_GO_CMD);
1670 
1671 		tre->dword[0] |= u32_encode_bits(i2c->addr, TRE_I2C_GO_ADDR);
1672 		tre->dword[0] |= u32_encode_bits(i2c->stretch, TRE_I2C_GO_STRETCH);
1673 
1674 		tre->dword[1] = 0;
1675 		tre->dword[2] = u32_encode_bits(i2c->rx_len, TRE_RX_LEN);
1676 
1677 		tre->dword[3] = u32_encode_bits(TRE_TYPE_GO, TRE_FLAGS_TYPE);
1678 
1679 		if (i2c->multi_msg)
1680 			tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_LINK);
1681 		else
1682 			tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN);
1683 	}
1684 
1685 	if (i2c->op == I2C_READ || i2c->multi_msg == false) {
1686 		/* create the DMA TRE */
1687 		tre = &desc->tre[tre_idx];
1688 		tre_idx++;
1689 
1690 		address = sg_dma_address(sgl);
1691 		tre->dword[0] = lower_32_bits(address);
1692 		tre->dword[1] = upper_32_bits(address);
1693 
1694 		tre->dword[2] = u32_encode_bits(sg_dma_len(sgl), TRE_DMA_LEN);
1695 
1696 		tre->dword[3] = u32_encode_bits(TRE_TYPE_DMA, TRE_FLAGS_TYPE);
1697 		tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_IEOT);
1698 	}
1699 
1700 	for (i = 0; i < tre_idx; i++)
1701 		dev_dbg(dev, "TRE:%d %x:%x:%x:%x\n", i, desc->tre[i].dword[0],
1702 			desc->tre[i].dword[1], desc->tre[i].dword[2], desc->tre[i].dword[3]);
1703 
1704 	return tre_idx;
1705 }
1706 
1707 static int gpi_create_spi_tre(struct gchan *chan, struct gpi_desc *desc,
1708 			      struct scatterlist *sgl, enum dma_transfer_direction direction)
1709 {
1710 	struct gpi_spi_config *spi = chan->config;
1711 	struct device *dev = chan->gpii->gpi_dev->dev;
1712 	unsigned int tre_idx = 0;
1713 	dma_addr_t address;
1714 	struct gpi_tre *tre;
1715 	unsigned int i;
1716 	int len;
1717 
1718 	/* first create config tre if applicable */
1719 	if (direction == DMA_MEM_TO_DEV && spi->set_config) {
1720 		tre = &desc->tre[tre_idx];
1721 		tre_idx++;
1722 
1723 		tre->dword[0] = u32_encode_bits(spi->word_len, TRE_SPI_C0_WORD_SZ);
1724 		tre->dword[0] |= u32_encode_bits(spi->loopback_en, TRE_SPI_C0_LOOPBACK);
1725 		tre->dword[0] |= u32_encode_bits(spi->clock_pol_high, TRE_SPI_C0_CPOL);
1726 		tre->dword[0] |= u32_encode_bits(spi->data_pol_high, TRE_SPI_C0_CPHA);
1727 		tre->dword[0] |= u32_encode_bits(spi->pack_en, TRE_SPI_C0_TX_PACK);
1728 		tre->dword[0] |= u32_encode_bits(spi->pack_en, TRE_SPI_C0_RX_PACK);
1729 
1730 		tre->dword[1] = 0;
1731 
1732 		tre->dword[2] = u32_encode_bits(spi->clk_div, TRE_C0_CLK_DIV);
1733 		tre->dword[2] |= u32_encode_bits(spi->clk_src, TRE_C0_CLK_SRC);
1734 
1735 		tre->dword[3] = u32_encode_bits(TRE_TYPE_CONFIG0, TRE_FLAGS_TYPE);
1736 		tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN);
1737 	}
1738 
1739 	/* create the GO tre for Tx */
1740 	if (direction == DMA_MEM_TO_DEV) {
1741 		tre = &desc->tre[tre_idx];
1742 		tre_idx++;
1743 
1744 		tre->dword[0] = u32_encode_bits(spi->fragmentation, TRE_SPI_GO_FRAG);
1745 		tre->dword[0] |= u32_encode_bits(spi->cs, TRE_SPI_GO_CS);
1746 		tre->dword[0] |= u32_encode_bits(spi->cmd, TRE_SPI_GO_CMD);
1747 
1748 		tre->dword[1] = 0;
1749 
1750 		tre->dword[2] = u32_encode_bits(spi->rx_len, TRE_RX_LEN);
1751 
1752 		tre->dword[3] = u32_encode_bits(TRE_TYPE_GO, TRE_FLAGS_TYPE);
1753 		if (spi->cmd == SPI_RX) {
1754 			tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_IEOB);
1755 			tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_LINK);
1756 		} else if (spi->cmd == SPI_TX) {
1757 			tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN);
1758 		} else { /* SPI_DUPLEX */
1759 			tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN);
1760 			tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_LINK);
1761 		}
1762 	}
1763 
1764 	/* create the dma tre */
1765 	tre = &desc->tre[tre_idx];
1766 	tre_idx++;
1767 
1768 	address = sg_dma_address(sgl);
1769 	len = sg_dma_len(sgl);
1770 
1771 	/* Support Immediate dma for write transfers for data length up to 8 bytes */
1772 	if (direction == DMA_MEM_TO_DEV && len <= 2 * sizeof(tre->dword[0])) {
1773 		/*
1774 		 * For Immediate dma, data length may not always be length of 8 bytes,
1775 		 * it can be length less than 8, hence initialize both dword's with 0
1776 		 */
1777 		tre->dword[0] = 0;
1778 		tre->dword[1] = 0;
1779 		memcpy(&tre->dword[0], sg_virt(sgl), len);
1780 
1781 		tre->dword[2] = u32_encode_bits(len, TRE_DMA_IMMEDIATE_LEN);
1782 		tre->dword[3] = u32_encode_bits(TRE_TYPE_IMMEDIATE_DMA, TRE_FLAGS_TYPE);
1783 	} else {
1784 		tre->dword[0] = lower_32_bits(address);
1785 		tre->dword[1] = upper_32_bits(address);
1786 
1787 		tre->dword[2] = u32_encode_bits(len, TRE_DMA_LEN);
1788 		tre->dword[3] = u32_encode_bits(TRE_TYPE_DMA, TRE_FLAGS_TYPE);
1789 	}
1790 
1791 	tre->dword[3] |= u32_encode_bits(direction == DMA_MEM_TO_DEV,
1792 					 TRE_FLAGS_IEOT);
1793 
1794 	for (i = 0; i < tre_idx; i++)
1795 		dev_dbg(dev, "TRE:%d %x:%x:%x:%x\n", i, desc->tre[i].dword[0],
1796 			desc->tre[i].dword[1], desc->tre[i].dword[2], desc->tre[i].dword[3]);
1797 
1798 	return tre_idx;
1799 }
1800 
1801 /* copy tre into transfer ring */
1802 static struct dma_async_tx_descriptor *
1803 gpi_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1804 		  unsigned int sg_len, enum dma_transfer_direction direction,
1805 		  unsigned long flags, void *context)
1806 {
1807 	struct gchan *gchan = to_gchan(chan);
1808 	struct gpii *gpii = gchan->gpii;
1809 	struct device *dev = gpii->gpi_dev->dev;
1810 	struct gpi_ring *ch_ring = &gchan->ch_ring;
1811 	struct gpi_desc *gpi_desc;
1812 	u32 nr, nr_tre = 0;
1813 	u8 set_config;
1814 	int i;
1815 
1816 	gpii->ieob_set = false;
1817 	if (!is_slave_direction(direction)) {
1818 		dev_err(gpii->gpi_dev->dev, "invalid dma direction: %d\n", direction);
1819 		return NULL;
1820 	}
1821 
1822 	if (sg_len > 1) {
1823 		dev_err(dev, "Multi sg sent, we support only one atm: %d\n", sg_len);
1824 		return NULL;
1825 	}
1826 
1827 	nr_tre = 3;
1828 	set_config = *(u32 *)gchan->config;
1829 	if (!set_config)
1830 		nr_tre = 2;
1831 	if (direction == DMA_DEV_TO_MEM) /* rx */
1832 		nr_tre = 1;
1833 
1834 	/* calculate # of elements required & available */
1835 	nr = gpi_ring_num_elements_avail(ch_ring);
1836 	if (nr < nr_tre) {
1837 		dev_err(dev, "not enough space in ring, avail:%u required:%u\n", nr, nr_tre);
1838 		return NULL;
1839 	}
1840 
1841 	gpi_desc = kzalloc(sizeof(*gpi_desc), GFP_NOWAIT);
1842 	if (!gpi_desc)
1843 		return NULL;
1844 
1845 	/* create TREs for xfer */
1846 	if (gchan->protocol == QCOM_GPI_SPI) {
1847 		i = gpi_create_spi_tre(gchan, gpi_desc, sgl, direction);
1848 	} else if (gchan->protocol == QCOM_GPI_I2C) {
1849 		i = gpi_create_i2c_tre(gchan, gpi_desc, sgl, direction);
1850 	} else {
1851 		dev_err(dev, "invalid peripheral: %d\n", gchan->protocol);
1852 		kfree(gpi_desc);
1853 		return NULL;
1854 	}
1855 
1856 	/* set up the descriptor */
1857 	gpi_desc->gchan = gchan;
1858 	gpi_desc->len = sg_dma_len(sgl);
1859 	gpi_desc->num_tre  = i;
1860 
1861 	return vchan_tx_prep(&gchan->vc, &gpi_desc->vd, flags);
1862 }
1863 
1864 /* rings transfer ring db to being transfer */
1865 static void gpi_issue_pending(struct dma_chan *chan)
1866 {
1867 	struct gchan *gchan = to_gchan(chan);
1868 	struct gpii *gpii = gchan->gpii;
1869 	unsigned long flags, pm_lock_flags;
1870 	struct virt_dma_desc *vd = NULL;
1871 	struct gpi_desc *gpi_desc;
1872 	struct gpi_ring *ch_ring = &gchan->ch_ring;
1873 	void *tre, *wp = NULL;
1874 	int i;
1875 
1876 	read_lock_irqsave(&gpii->pm_lock, pm_lock_flags);
1877 
1878 	/* move all submitted descriptors to issued list */
1879 	spin_lock_irqsave(&gchan->vc.lock, flags);
1880 	if (vchan_issue_pending(&gchan->vc))
1881 		vd = list_last_entry(&gchan->vc.desc_issued,
1882 				     struct virt_dma_desc, node);
1883 	spin_unlock_irqrestore(&gchan->vc.lock, flags);
1884 
1885 	/* nothing to do list is empty */
1886 	if (!vd) {
1887 		read_unlock_irqrestore(&gpii->pm_lock, pm_lock_flags);
1888 		return;
1889 	}
1890 
1891 	gpi_desc = to_gpi_desc(vd);
1892 	for (i = 0; i < gpi_desc->num_tre; i++) {
1893 		tre = &gpi_desc->tre[i];
1894 		gpi_queue_xfer(gpii, gchan, tre, &wp);
1895 	}
1896 
1897 	gpi_desc->db = ch_ring->wp;
1898 	gpi_write_ch_db(gchan, &gchan->ch_ring, gpi_desc->db);
1899 	read_unlock_irqrestore(&gpii->pm_lock, pm_lock_flags);
1900 }
1901 
1902 static int gpi_ch_init(struct gchan *gchan)
1903 {
1904 	struct gpii *gpii = gchan->gpii;
1905 	const int ev_factor = gpii->gpi_dev->ev_factor;
1906 	u32 elements;
1907 	int i = 0, ret = 0;
1908 
1909 	gchan->pm_state = CONFIG_STATE;
1910 
1911 	/* check if both channels are configured before continue */
1912 	for (i = 0; i < MAX_CHANNELS_PER_GPII; i++)
1913 		if (gpii->gchan[i].pm_state != CONFIG_STATE)
1914 			goto exit_gpi_init;
1915 
1916 	/* protocol must be same for both channels */
1917 	if (gpii->gchan[0].protocol != gpii->gchan[1].protocol) {
1918 		dev_err(gpii->gpi_dev->dev, "protocol did not match protocol %u != %u\n",
1919 			gpii->gchan[0].protocol, gpii->gchan[1].protocol);
1920 		ret = -EINVAL;
1921 		goto exit_gpi_init;
1922 	}
1923 
1924 	/* allocate memory for event ring */
1925 	elements = CHAN_TRES << ev_factor;
1926 	ret = gpi_alloc_ring(&gpii->ev_ring, elements,
1927 			     sizeof(union gpi_event), gpii);
1928 	if (ret)
1929 		goto exit_gpi_init;
1930 
1931 	/* configure interrupts */
1932 	write_lock_irq(&gpii->pm_lock);
1933 	gpii->pm_state = PREPARE_HARDWARE;
1934 	write_unlock_irq(&gpii->pm_lock);
1935 	ret = gpi_config_interrupts(gpii, DEFAULT_IRQ_SETTINGS, 0);
1936 	if (ret) {
1937 		dev_err(gpii->gpi_dev->dev, "error config. interrupts, ret:%d\n", ret);
1938 		goto error_config_int;
1939 	}
1940 
1941 	/* allocate event rings */
1942 	ret = gpi_alloc_ev_chan(gpii);
1943 	if (ret) {
1944 		dev_err(gpii->gpi_dev->dev, "error alloc_ev_chan:%d\n", ret);
1945 		goto error_alloc_ev_ring;
1946 	}
1947 
1948 	/* Allocate all channels */
1949 	for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) {
1950 		ret = gpi_alloc_chan(&gpii->gchan[i], true);
1951 		if (ret) {
1952 			dev_err(gpii->gpi_dev->dev, "Error allocating chan:%d\n", ret);
1953 			goto error_alloc_chan;
1954 		}
1955 	}
1956 
1957 	/* start channels  */
1958 	for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) {
1959 		ret = gpi_start_chan(&gpii->gchan[i]);
1960 		if (ret) {
1961 			dev_err(gpii->gpi_dev->dev, "Error start chan:%d\n", ret);
1962 			goto error_start_chan;
1963 		}
1964 	}
1965 	return ret;
1966 
1967 error_start_chan:
1968 	for (i = i - 1; i >= 0; i--) {
1969 		gpi_stop_chan(&gpii->gchan[i]);
1970 		gpi_send_cmd(gpii, gchan, GPI_CH_CMD_RESET);
1971 	}
1972 	i = 2;
1973 error_alloc_chan:
1974 	for (i = i - 1; i >= 0; i--)
1975 		gpi_reset_chan(gchan, GPI_CH_CMD_DE_ALLOC);
1976 error_alloc_ev_ring:
1977 	gpi_disable_interrupts(gpii);
1978 error_config_int:
1979 	gpi_free_ring(&gpii->ev_ring, gpii);
1980 exit_gpi_init:
1981 	return ret;
1982 }
1983 
1984 /* release all channel resources */
1985 static void gpi_free_chan_resources(struct dma_chan *chan)
1986 {
1987 	struct gchan *gchan = to_gchan(chan);
1988 	struct gpii *gpii = gchan->gpii;
1989 	enum gpi_pm_state cur_state;
1990 	int ret, i;
1991 
1992 	mutex_lock(&gpii->ctrl_lock);
1993 
1994 	cur_state = gchan->pm_state;
1995 
1996 	/* disable ch state so no more TRE processing for this channel */
1997 	write_lock_irq(&gpii->pm_lock);
1998 	gchan->pm_state = PREPARE_TERMINATE;
1999 	write_unlock_irq(&gpii->pm_lock);
2000 
2001 	/* attempt to do graceful hardware shutdown */
2002 	if (cur_state == ACTIVE_STATE) {
2003 		gpi_stop_chan(gchan);
2004 
2005 		ret = gpi_send_cmd(gpii, gchan, GPI_CH_CMD_RESET);
2006 		if (ret)
2007 			dev_err(gpii->gpi_dev->dev, "error resetting channel:%d\n", ret);
2008 
2009 		gpi_reset_chan(gchan, GPI_CH_CMD_DE_ALLOC);
2010 	}
2011 
2012 	/* free all allocated memory */
2013 	gpi_free_ring(&gchan->ch_ring, gpii);
2014 	vchan_free_chan_resources(&gchan->vc);
2015 	kfree(gchan->config);
2016 
2017 	write_lock_irq(&gpii->pm_lock);
2018 	gchan->pm_state = DISABLE_STATE;
2019 	write_unlock_irq(&gpii->pm_lock);
2020 
2021 	/* if other rings are still active exit */
2022 	for (i = 0; i < MAX_CHANNELS_PER_GPII; i++)
2023 		if (gpii->gchan[i].ch_ring.configured)
2024 			goto exit_free;
2025 
2026 	/* deallocate EV Ring */
2027 	cur_state = gpii->pm_state;
2028 	write_lock_irq(&gpii->pm_lock);
2029 	gpii->pm_state = PREPARE_TERMINATE;
2030 	write_unlock_irq(&gpii->pm_lock);
2031 
2032 	/* wait for threads to complete out */
2033 	tasklet_kill(&gpii->ev_task);
2034 
2035 	/* send command to de allocate event ring */
2036 	if (cur_state == ACTIVE_STATE)
2037 		gpi_send_cmd(gpii, NULL, GPI_EV_CMD_DEALLOC);
2038 
2039 	gpi_free_ring(&gpii->ev_ring, gpii);
2040 
2041 	/* disable interrupts */
2042 	if (cur_state == ACTIVE_STATE)
2043 		gpi_disable_interrupts(gpii);
2044 
2045 	/* set final state to disable */
2046 	write_lock_irq(&gpii->pm_lock);
2047 	gpii->pm_state = DISABLE_STATE;
2048 	write_unlock_irq(&gpii->pm_lock);
2049 
2050 exit_free:
2051 	mutex_unlock(&gpii->ctrl_lock);
2052 }
2053 
2054 /* allocate channel resources */
2055 static int gpi_alloc_chan_resources(struct dma_chan *chan)
2056 {
2057 	struct gchan *gchan = to_gchan(chan);
2058 	struct gpii *gpii = gchan->gpii;
2059 	int ret;
2060 
2061 	mutex_lock(&gpii->ctrl_lock);
2062 
2063 	/* allocate memory for transfer ring */
2064 	ret = gpi_alloc_ring(&gchan->ch_ring, CHAN_TRES,
2065 			     sizeof(struct gpi_tre), gpii);
2066 	if (ret)
2067 		goto xfer_alloc_err;
2068 
2069 	ret = gpi_ch_init(gchan);
2070 
2071 	mutex_unlock(&gpii->ctrl_lock);
2072 
2073 	return ret;
2074 xfer_alloc_err:
2075 	mutex_unlock(&gpii->ctrl_lock);
2076 
2077 	return ret;
2078 }
2079 
2080 static int gpi_find_avail_gpii(struct gpi_dev *gpi_dev, u32 seid)
2081 {
2082 	struct gchan *tx_chan, *rx_chan;
2083 	unsigned int gpii;
2084 
2085 	/* check if same seid is already configured for another chid */
2086 	for (gpii = 0; gpii < gpi_dev->max_gpii; gpii++) {
2087 		if (!((1 << gpii) & gpi_dev->gpii_mask))
2088 			continue;
2089 
2090 		tx_chan = &gpi_dev->gpiis[gpii].gchan[GPI_TX_CHAN];
2091 		rx_chan = &gpi_dev->gpiis[gpii].gchan[GPI_RX_CHAN];
2092 
2093 		if (rx_chan->vc.chan.client_count && rx_chan->seid == seid)
2094 			return gpii;
2095 		if (tx_chan->vc.chan.client_count && tx_chan->seid == seid)
2096 			return gpii;
2097 	}
2098 
2099 	/* no channels configured with same seid, return next avail gpii */
2100 	for (gpii = 0; gpii < gpi_dev->max_gpii; gpii++) {
2101 		if (!((1 << gpii) & gpi_dev->gpii_mask))
2102 			continue;
2103 
2104 		tx_chan = &gpi_dev->gpiis[gpii].gchan[GPI_TX_CHAN];
2105 		rx_chan = &gpi_dev->gpiis[gpii].gchan[GPI_RX_CHAN];
2106 
2107 		/* check if gpii is configured */
2108 		if (tx_chan->vc.chan.client_count ||
2109 		    rx_chan->vc.chan.client_count)
2110 			continue;
2111 
2112 		/* found a free gpii */
2113 		return gpii;
2114 	}
2115 
2116 	/* no gpii instance available to use */
2117 	return -EIO;
2118 }
2119 
2120 /* gpi_of_dma_xlate: open client requested channel */
2121 static struct dma_chan *gpi_of_dma_xlate(struct of_phandle_args *args,
2122 					 struct of_dma *of_dma)
2123 {
2124 	struct gpi_dev *gpi_dev = (struct gpi_dev *)of_dma->of_dma_data;
2125 	u32 seid, chid;
2126 	int gpii;
2127 	struct gchan *gchan;
2128 
2129 	if (args->args_count < 3) {
2130 		dev_err(gpi_dev->dev, "gpii require minimum 2 args, client passed:%d args\n",
2131 			args->args_count);
2132 		return NULL;
2133 	}
2134 
2135 	chid = args->args[0];
2136 	if (chid >= MAX_CHANNELS_PER_GPII) {
2137 		dev_err(gpi_dev->dev, "gpii channel:%d not valid\n", chid);
2138 		return NULL;
2139 	}
2140 
2141 	seid = args->args[1];
2142 
2143 	/* find next available gpii to use */
2144 	gpii = gpi_find_avail_gpii(gpi_dev, seid);
2145 	if (gpii < 0) {
2146 		dev_err(gpi_dev->dev, "no available gpii instances\n");
2147 		return NULL;
2148 	}
2149 
2150 	gchan = &gpi_dev->gpiis[gpii].gchan[chid];
2151 	if (gchan->vc.chan.client_count) {
2152 		dev_err(gpi_dev->dev, "gpii:%d chid:%d seid:%d already configured\n",
2153 			gpii, chid, gchan->seid);
2154 		return NULL;
2155 	}
2156 
2157 	gchan->seid = seid;
2158 	gchan->protocol = args->args[2];
2159 
2160 	return dma_get_slave_channel(&gchan->vc.chan);
2161 }
2162 
2163 static int gpi_probe(struct platform_device *pdev)
2164 {
2165 	struct gpi_dev *gpi_dev;
2166 	unsigned int i;
2167 	u32 ee_offset;
2168 	int ret;
2169 
2170 	gpi_dev = devm_kzalloc(&pdev->dev, sizeof(*gpi_dev), GFP_KERNEL);
2171 	if (!gpi_dev)
2172 		return -ENOMEM;
2173 
2174 	gpi_dev->dev = &pdev->dev;
2175 	gpi_dev->regs = devm_platform_get_and_ioremap_resource(pdev, 0, &gpi_dev->res);
2176 	if (IS_ERR(gpi_dev->regs))
2177 		return PTR_ERR(gpi_dev->regs);
2178 	gpi_dev->ee_base = gpi_dev->regs;
2179 
2180 	ret = of_property_read_u32(gpi_dev->dev->of_node, "dma-channels",
2181 				   &gpi_dev->max_gpii);
2182 	if (ret) {
2183 		dev_err(gpi_dev->dev, "missing 'max-no-gpii' DT node\n");
2184 		return ret;
2185 	}
2186 
2187 	ret = of_property_read_u32(gpi_dev->dev->of_node, "dma-channel-mask",
2188 				   &gpi_dev->gpii_mask);
2189 	if (ret) {
2190 		dev_err(gpi_dev->dev, "missing 'gpii-mask' DT node\n");
2191 		return ret;
2192 	}
2193 
2194 	ee_offset = (uintptr_t)device_get_match_data(gpi_dev->dev);
2195 	gpi_dev->ee_base = gpi_dev->ee_base - ee_offset;
2196 
2197 	gpi_dev->ev_factor = EV_FACTOR;
2198 
2199 	ret = dma_set_mask(gpi_dev->dev, DMA_BIT_MASK(64));
2200 	if (ret) {
2201 		dev_err(gpi_dev->dev, "Error setting dma_mask to 64, ret:%d\n", ret);
2202 		return ret;
2203 	}
2204 
2205 	gpi_dev->gpiis = devm_kzalloc(gpi_dev->dev, sizeof(*gpi_dev->gpiis) *
2206 				      gpi_dev->max_gpii, GFP_KERNEL);
2207 	if (!gpi_dev->gpiis)
2208 		return -ENOMEM;
2209 
2210 	/* setup all the supported gpii */
2211 	INIT_LIST_HEAD(&gpi_dev->dma_device.channels);
2212 	for (i = 0; i < gpi_dev->max_gpii; i++) {
2213 		struct gpii *gpii = &gpi_dev->gpiis[i];
2214 		int chan;
2215 
2216 		if (!((1 << i) & gpi_dev->gpii_mask))
2217 			continue;
2218 
2219 		/* set up ev cntxt register map */
2220 		gpii->ev_cntxt_base_reg = gpi_dev->ee_base + GPII_n_EV_CH_k_CNTXT_0_OFFS(i, 0);
2221 		gpii->ev_cntxt_db_reg = gpi_dev->ee_base + GPII_n_EV_CH_k_DOORBELL_0_OFFS(i, 0);
2222 		gpii->ev_ring_rp_lsb_reg = gpii->ev_cntxt_base_reg + CNTXT_4_RING_RP_LSB;
2223 		gpii->ev_cmd_reg = gpi_dev->ee_base + GPII_n_EV_CH_CMD_OFFS(i);
2224 		gpii->ieob_clr_reg = gpi_dev->ee_base + GPII_n_CNTXT_SRC_IEOB_IRQ_CLR_OFFS(i);
2225 
2226 		/* set up irq */
2227 		ret = platform_get_irq(pdev, i);
2228 		if (ret < 0)
2229 			return ret;
2230 		gpii->irq = ret;
2231 
2232 		/* set up channel specific register info */
2233 		for (chan = 0; chan < MAX_CHANNELS_PER_GPII; chan++) {
2234 			struct gchan *gchan = &gpii->gchan[chan];
2235 
2236 			/* set up ch cntxt register map */
2237 			gchan->ch_cntxt_base_reg = gpi_dev->ee_base +
2238 				GPII_n_CH_k_CNTXT_0_OFFS(i, chan);
2239 			gchan->ch_cntxt_db_reg = gpi_dev->ee_base +
2240 				GPII_n_CH_k_DOORBELL_0_OFFS(i, chan);
2241 			gchan->ch_cmd_reg = gpi_dev->ee_base + GPII_n_CH_CMD_OFFS(i);
2242 
2243 			/* vchan setup */
2244 			vchan_init(&gchan->vc, &gpi_dev->dma_device);
2245 			gchan->vc.desc_free = gpi_desc_free;
2246 			gchan->chid = chan;
2247 			gchan->gpii = gpii;
2248 			gchan->dir = GPII_CHAN_DIR[chan];
2249 		}
2250 		mutex_init(&gpii->ctrl_lock);
2251 		rwlock_init(&gpii->pm_lock);
2252 		tasklet_init(&gpii->ev_task, gpi_ev_tasklet,
2253 			     (unsigned long)gpii);
2254 		init_completion(&gpii->cmd_completion);
2255 		gpii->gpii_id = i;
2256 		gpii->regs = gpi_dev->ee_base;
2257 		gpii->gpi_dev = gpi_dev;
2258 	}
2259 
2260 	platform_set_drvdata(pdev, gpi_dev);
2261 
2262 	/* clear and Set capabilities */
2263 	dma_cap_zero(gpi_dev->dma_device.cap_mask);
2264 	dma_cap_set(DMA_SLAVE, gpi_dev->dma_device.cap_mask);
2265 
2266 	/* configure dmaengine apis */
2267 	gpi_dev->dma_device.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2268 	gpi_dev->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
2269 	gpi_dev->dma_device.src_addr_widths = DMA_SLAVE_BUSWIDTH_8_BYTES;
2270 	gpi_dev->dma_device.dst_addr_widths = DMA_SLAVE_BUSWIDTH_8_BYTES;
2271 	gpi_dev->dma_device.device_alloc_chan_resources = gpi_alloc_chan_resources;
2272 	gpi_dev->dma_device.device_free_chan_resources = gpi_free_chan_resources;
2273 	gpi_dev->dma_device.device_tx_status = dma_cookie_status;
2274 	gpi_dev->dma_device.device_issue_pending = gpi_issue_pending;
2275 	gpi_dev->dma_device.device_prep_slave_sg = gpi_prep_slave_sg;
2276 	gpi_dev->dma_device.device_config = gpi_peripheral_config;
2277 	gpi_dev->dma_device.device_terminate_all = gpi_terminate_all;
2278 	gpi_dev->dma_device.dev = gpi_dev->dev;
2279 	gpi_dev->dma_device.device_pause = gpi_pause;
2280 	gpi_dev->dma_device.device_resume = gpi_resume;
2281 
2282 	/* register with dmaengine framework */
2283 	ret = dma_async_device_register(&gpi_dev->dma_device);
2284 	if (ret) {
2285 		dev_err(gpi_dev->dev, "async_device_register failed ret:%d", ret);
2286 		return ret;
2287 	}
2288 
2289 	ret = of_dma_controller_register(gpi_dev->dev->of_node,
2290 					 gpi_of_dma_xlate, gpi_dev);
2291 	if (ret) {
2292 		dev_err(gpi_dev->dev, "of_dma_controller_reg failed ret:%d", ret);
2293 		return ret;
2294 	}
2295 
2296 	return ret;
2297 }
2298 
2299 static const struct of_device_id gpi_of_match[] = {
2300 	{ .compatible = "qcom,sdm845-gpi-dma", .data = (void *)0x0 },
2301 	{ .compatible = "qcom,sm6350-gpi-dma", .data = (void *)0x10000 },
2302 	/*
2303 	 * Do not grow the list for compatible devices. Instead use
2304 	 * qcom,sdm845-gpi-dma (for ee_offset = 0x0) or qcom,sm6350-gpi-dma
2305 	 * (for ee_offset = 0x10000).
2306 	 */
2307 	{ .compatible = "qcom,sc7280-gpi-dma", .data = (void *)0x10000 },
2308 	{ .compatible = "qcom,sm8150-gpi-dma", .data = (void *)0x0 },
2309 	{ .compatible = "qcom,sm8250-gpi-dma", .data = (void *)0x0 },
2310 	{ .compatible = "qcom,sm8350-gpi-dma", .data = (void *)0x10000 },
2311 	{ .compatible = "qcom,sm8450-gpi-dma", .data = (void *)0x10000 },
2312 	{ },
2313 };
2314 MODULE_DEVICE_TABLE(of, gpi_of_match);
2315 
2316 static struct platform_driver gpi_driver = {
2317 	.probe = gpi_probe,
2318 	.driver = {
2319 		.name = KBUILD_MODNAME,
2320 		.of_match_table = gpi_of_match,
2321 	},
2322 };
2323 
2324 static int __init gpi_init(void)
2325 {
2326 	return platform_driver_register(&gpi_driver);
2327 }
2328 subsys_initcall(gpi_init)
2329 
2330 MODULE_DESCRIPTION("QCOM GPI DMA engine driver");
2331 MODULE_LICENSE("GPL v2");
2332