xref: /linux/drivers/edac/altera_edac.c (revision 5c858d6c66304b4c7579582ec5235f02d43578ea)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 2017-2018, Intel Corporation. All rights reserved
4  *  Copyright Altera Corporation (C) 2014-2016. All rights reserved.
5  *  Copyright 2011-2012 Calxeda, Inc.
6  */
7 
8 #include <asm/cacheflush.h>
9 #include <linux/ctype.h>
10 #include <linux/delay.h>
11 #include <linux/edac.h>
12 #include <linux/firmware/intel/stratix10-smc.h>
13 #include <linux/genalloc.h>
14 #include <linux/interrupt.h>
15 #include <linux/irqchip/chained_irq.h>
16 #include <linux/kernel.h>
17 #include <linux/mfd/altera-sysmgr.h>
18 #include <linux/mfd/syscon.h>
19 #include <linux/notifier.h>
20 #include <linux/of_address.h>
21 #include <linux/of_irq.h>
22 #include <linux/of_platform.h>
23 #include <linux/panic_notifier.h>
24 #include <linux/platform_device.h>
25 #include <linux/property.h>
26 #include <linux/regmap.h>
27 #include <linux/types.h>
28 #include <linux/uaccess.h>
29 
30 #include "altera_edac.h"
31 #include "edac_module.h"
32 
33 #define EDAC_MOD_STR		"altera_edac"
34 #define EDAC_DEVICE		"Altera"
35 
36 #ifdef CONFIG_EDAC_ALTERA_SDRAM
37 static const struct altr_sdram_prv_data c5_data = {
38 	.ecc_ctrl_offset    = CV_CTLCFG_OFST,
39 	.ecc_ctl_en_mask    = CV_CTLCFG_ECC_AUTO_EN,
40 	.ecc_stat_offset    = CV_DRAMSTS_OFST,
41 	.ecc_stat_ce_mask   = CV_DRAMSTS_SBEERR,
42 	.ecc_stat_ue_mask   = CV_DRAMSTS_DBEERR,
43 	.ecc_saddr_offset   = CV_ERRADDR_OFST,
44 	.ecc_daddr_offset   = CV_ERRADDR_OFST,
45 	.ecc_cecnt_offset   = CV_SBECOUNT_OFST,
46 	.ecc_uecnt_offset   = CV_DBECOUNT_OFST,
47 	.ecc_irq_en_offset  = CV_DRAMINTR_OFST,
48 	.ecc_irq_en_mask    = CV_DRAMINTR_INTREN,
49 	.ecc_irq_clr_offset = CV_DRAMINTR_OFST,
50 	.ecc_irq_clr_mask   = (CV_DRAMINTR_INTRCLR | CV_DRAMINTR_INTREN),
51 	.ecc_cnt_rst_offset = CV_DRAMINTR_OFST,
52 	.ecc_cnt_rst_mask   = CV_DRAMINTR_INTRCLR,
53 	.ce_ue_trgr_offset  = CV_CTLCFG_OFST,
54 	.ce_set_mask        = CV_CTLCFG_GEN_SB_ERR,
55 	.ue_set_mask        = CV_CTLCFG_GEN_DB_ERR,
56 };
57 
58 static const struct altr_sdram_prv_data a10_data = {
59 	.ecc_ctrl_offset    = A10_ECCCTRL1_OFST,
60 	.ecc_ctl_en_mask    = A10_ECCCTRL1_ECC_EN,
61 	.ecc_stat_offset    = A10_INTSTAT_OFST,
62 	.ecc_stat_ce_mask   = A10_INTSTAT_SBEERR,
63 	.ecc_stat_ue_mask   = A10_INTSTAT_DBEERR,
64 	.ecc_saddr_offset   = A10_SERRADDR_OFST,
65 	.ecc_daddr_offset   = A10_DERRADDR_OFST,
66 	.ecc_irq_en_offset  = A10_ERRINTEN_OFST,
67 	.ecc_irq_en_mask    = A10_ECC_IRQ_EN_MASK,
68 	.ecc_irq_clr_offset = A10_INTSTAT_OFST,
69 	.ecc_irq_clr_mask   = (A10_INTSTAT_SBEERR | A10_INTSTAT_DBEERR),
70 	.ecc_cnt_rst_offset = A10_ECCCTRL1_OFST,
71 	.ecc_cnt_rst_mask   = A10_ECC_CNT_RESET_MASK,
72 	.ce_ue_trgr_offset  = A10_DIAGINTTEST_OFST,
73 	.ce_set_mask        = A10_DIAGINT_TSERRA_MASK,
74 	.ue_set_mask        = A10_DIAGINT_TDERRA_MASK,
75 };
76 
77 /*********************** EDAC Memory Controller Functions ****************/
78 
79 /* The SDRAM controller uses the EDAC Memory Controller framework.       */
80 
81 static irqreturn_t altr_sdram_mc_err_handler(int irq, void *dev_id)
82 {
83 	struct mem_ctl_info *mci = dev_id;
84 	struct altr_sdram_mc_data *drvdata = mci->pvt_info;
85 	const struct altr_sdram_prv_data *priv = drvdata->data;
86 	u32 status, err_count = 1, err_addr;
87 
88 	regmap_read(drvdata->mc_vbase, priv->ecc_stat_offset, &status);
89 
90 	if (status & priv->ecc_stat_ue_mask) {
91 		regmap_read(drvdata->mc_vbase, priv->ecc_daddr_offset,
92 			    &err_addr);
93 		if (priv->ecc_uecnt_offset)
94 			regmap_read(drvdata->mc_vbase, priv->ecc_uecnt_offset,
95 				    &err_count);
96 		panic("\nEDAC: [%d Uncorrectable errors @ 0x%08X]\n",
97 		      err_count, err_addr);
98 	}
99 	if (status & priv->ecc_stat_ce_mask) {
100 		regmap_read(drvdata->mc_vbase, priv->ecc_saddr_offset,
101 			    &err_addr);
102 		if (priv->ecc_cecnt_offset)
103 			regmap_read(drvdata->mc_vbase,  priv->ecc_cecnt_offset,
104 				    &err_count);
105 		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, err_count,
106 				     err_addr >> PAGE_SHIFT,
107 				     err_addr & ~PAGE_MASK, 0,
108 				     0, 0, -1, mci->ctl_name, "");
109 		/* Clear IRQ to resume */
110 		regmap_write(drvdata->mc_vbase,	priv->ecc_irq_clr_offset,
111 			     priv->ecc_irq_clr_mask);
112 
113 		return IRQ_HANDLED;
114 	}
115 	return IRQ_NONE;
116 }
117 
118 static ssize_t altr_sdr_mc_err_inject_write(struct file *file,
119 					    const char __user *data,
120 					    size_t count, loff_t *ppos)
121 {
122 	struct mem_ctl_info *mci = file->private_data;
123 	struct altr_sdram_mc_data *drvdata = mci->pvt_info;
124 	const struct altr_sdram_prv_data *priv = drvdata->data;
125 	u32 *ptemp;
126 	dma_addr_t dma_handle;
127 	u32 reg, read_reg;
128 
129 	ptemp = dma_alloc_coherent(mci->pdev, 16, &dma_handle, GFP_KERNEL);
130 	if (!ptemp) {
131 		edac_printk(KERN_ERR, EDAC_MC,
132 			    "Inject: Buffer Allocation error\n");
133 		return -ENOMEM;
134 	}
135 
136 	regmap_read(drvdata->mc_vbase, priv->ce_ue_trgr_offset,
137 		    &read_reg);
138 	read_reg &= ~(priv->ce_set_mask | priv->ue_set_mask);
139 
140 	/* Error are injected by writing a word while the SBE or DBE
141 	 * bit in the CTLCFG register is set. Reading the word will
142 	 * trigger the SBE or DBE error and the corresponding IRQ.
143 	 */
144 	if (count == 3) {
145 		edac_printk(KERN_ALERT, EDAC_MC,
146 			    "Inject Double bit error\n");
147 		local_irq_disable();
148 		regmap_write(drvdata->mc_vbase, priv->ce_ue_trgr_offset,
149 			     (read_reg | priv->ue_set_mask));
150 		local_irq_enable();
151 	} else {
152 		edac_printk(KERN_ALERT, EDAC_MC,
153 			    "Inject Single bit error\n");
154 		local_irq_disable();
155 		regmap_write(drvdata->mc_vbase,	priv->ce_ue_trgr_offset,
156 			     (read_reg | priv->ce_set_mask));
157 		local_irq_enable();
158 	}
159 
160 	ptemp[0] = 0x5A5A5A5A;
161 	ptemp[1] = 0xA5A5A5A5;
162 
163 	/* Clear the error injection bits */
164 	regmap_write(drvdata->mc_vbase,	priv->ce_ue_trgr_offset, read_reg);
165 	/* Ensure it has been written out */
166 	wmb();
167 
168 	/*
169 	 * To trigger the error, we need to read the data back
170 	 * (the data was written with errors above).
171 	 * The READ_ONCE macros and printk are used to prevent the
172 	 * the compiler optimizing these reads out.
173 	 */
174 	reg = READ_ONCE(ptemp[0]);
175 	read_reg = READ_ONCE(ptemp[1]);
176 	/* Force Read */
177 	rmb();
178 
179 	edac_printk(KERN_ALERT, EDAC_MC, "Read Data [0x%X, 0x%X]\n",
180 		    reg, read_reg);
181 
182 	dma_free_coherent(mci->pdev, 16, ptemp, dma_handle);
183 
184 	return count;
185 }
186 
187 static const struct file_operations altr_sdr_mc_debug_inject_fops = {
188 	.open = simple_open,
189 	.write = altr_sdr_mc_err_inject_write,
190 	.llseek = generic_file_llseek,
191 };
192 
193 static void altr_sdr_mc_create_debugfs_nodes(struct mem_ctl_info *mci)
194 {
195 	if (!IS_ENABLED(CONFIG_EDAC_DEBUG))
196 		return;
197 
198 	if (!mci->debugfs)
199 		return;
200 
201 	edac_debugfs_create_file("altr_trigger", S_IWUSR, mci->debugfs, mci,
202 				 &altr_sdr_mc_debug_inject_fops);
203 }
204 
205 /* Get total memory size from Open Firmware DTB */
206 static unsigned long get_total_mem(void)
207 {
208 	struct device_node *np = NULL;
209 	struct resource res;
210 	int ret;
211 	unsigned long total_mem = 0;
212 
213 	for_each_node_by_type(np, "memory") {
214 		ret = of_address_to_resource(np, 0, &res);
215 		if (ret)
216 			continue;
217 
218 		total_mem += resource_size(&res);
219 	}
220 	edac_dbg(0, "total_mem 0x%lx\n", total_mem);
221 	return total_mem;
222 }
223 
224 static const struct of_device_id altr_sdram_ctrl_of_match[] = {
225 	{ .compatible = "altr,sdram-edac", .data = &c5_data},
226 	{ .compatible = "altr,sdram-edac-a10", .data = &a10_data},
227 	{},
228 };
229 MODULE_DEVICE_TABLE(of, altr_sdram_ctrl_of_match);
230 
231 static int a10_init(struct regmap *mc_vbase)
232 {
233 	if (regmap_update_bits(mc_vbase, A10_INTMODE_OFST,
234 			       A10_INTMODE_SB_INT, A10_INTMODE_SB_INT)) {
235 		edac_printk(KERN_ERR, EDAC_MC,
236 			    "Error setting SB IRQ mode\n");
237 		return -ENODEV;
238 	}
239 
240 	if (regmap_write(mc_vbase, A10_SERRCNTREG_OFST, 1)) {
241 		edac_printk(KERN_ERR, EDAC_MC,
242 			    "Error setting trigger count\n");
243 		return -ENODEV;
244 	}
245 
246 	return 0;
247 }
248 
249 static int a10_unmask_irq(struct platform_device *pdev, u32 mask)
250 {
251 	void __iomem  *sm_base;
252 	int  ret = 0;
253 
254 	if (!request_mem_region(A10_SYMAN_INTMASK_CLR, sizeof(u32),
255 				dev_name(&pdev->dev))) {
256 		edac_printk(KERN_ERR, EDAC_MC,
257 			    "Unable to request mem region\n");
258 		return -EBUSY;
259 	}
260 
261 	sm_base = ioremap(A10_SYMAN_INTMASK_CLR, sizeof(u32));
262 	if (!sm_base) {
263 		edac_printk(KERN_ERR, EDAC_MC,
264 			    "Unable to ioremap device\n");
265 
266 		ret = -ENOMEM;
267 		goto release;
268 	}
269 
270 	iowrite32(mask, sm_base);
271 
272 	iounmap(sm_base);
273 
274 release:
275 	release_mem_region(A10_SYMAN_INTMASK_CLR, sizeof(u32));
276 
277 	return ret;
278 }
279 
280 static int altr_sdram_probe(struct platform_device *pdev)
281 {
282 	struct edac_mc_layer layers[2];
283 	struct mem_ctl_info *mci;
284 	struct altr_sdram_mc_data *drvdata;
285 	const struct altr_sdram_prv_data *priv;
286 	struct regmap *mc_vbase;
287 	struct dimm_info *dimm;
288 	u32 read_reg;
289 	int irq, irq2, res = 0;
290 	unsigned long mem_size, irqflags = 0;
291 
292 	/* Grab the register range from the sdr controller in device tree */
293 	mc_vbase = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
294 						   "altr,sdr-syscon");
295 	if (IS_ERR(mc_vbase)) {
296 		edac_printk(KERN_ERR, EDAC_MC,
297 			    "regmap for altr,sdr-syscon lookup failed.\n");
298 		return -ENODEV;
299 	}
300 
301 	/* Check specific dependencies for the module */
302 	priv = device_get_match_data(&pdev->dev);
303 
304 	/* Validate the SDRAM controller has ECC enabled */
305 	if (regmap_read(mc_vbase, priv->ecc_ctrl_offset, &read_reg) ||
306 	    ((read_reg & priv->ecc_ctl_en_mask) != priv->ecc_ctl_en_mask)) {
307 		edac_printk(KERN_ERR, EDAC_MC,
308 			    "No ECC/ECC disabled [0x%08X]\n", read_reg);
309 		return -ENODEV;
310 	}
311 
312 	/* Grab memory size from device tree. */
313 	mem_size = get_total_mem();
314 	if (!mem_size) {
315 		edac_printk(KERN_ERR, EDAC_MC, "Unable to calculate memory size\n");
316 		return -ENODEV;
317 	}
318 
319 	/* Ensure the SDRAM Interrupt is disabled */
320 	if (regmap_update_bits(mc_vbase, priv->ecc_irq_en_offset,
321 			       priv->ecc_irq_en_mask, 0)) {
322 		edac_printk(KERN_ERR, EDAC_MC,
323 			    "Error disabling SDRAM ECC IRQ\n");
324 		return -ENODEV;
325 	}
326 
327 	/* Toggle to clear the SDRAM Error count */
328 	if (regmap_update_bits(mc_vbase, priv->ecc_cnt_rst_offset,
329 			       priv->ecc_cnt_rst_mask,
330 			       priv->ecc_cnt_rst_mask)) {
331 		edac_printk(KERN_ERR, EDAC_MC,
332 			    "Error clearing SDRAM ECC count\n");
333 		return -ENODEV;
334 	}
335 
336 	if (regmap_update_bits(mc_vbase, priv->ecc_cnt_rst_offset,
337 			       priv->ecc_cnt_rst_mask, 0)) {
338 		edac_printk(KERN_ERR, EDAC_MC,
339 			    "Error clearing SDRAM ECC count\n");
340 		return -ENODEV;
341 	}
342 
343 	irq = platform_get_irq(pdev, 0);
344 	if (irq < 0) {
345 		edac_printk(KERN_ERR, EDAC_MC,
346 			    "No irq %d in DT\n", irq);
347 		return irq;
348 	}
349 
350 	/* Arria10 has a 2nd IRQ */
351 	irq2 = platform_get_irq(pdev, 1);
352 
353 	layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
354 	layers[0].size = 1;
355 	layers[0].is_virt_csrow = true;
356 	layers[1].type = EDAC_MC_LAYER_CHANNEL;
357 	layers[1].size = 1;
358 	layers[1].is_virt_csrow = false;
359 	mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers,
360 			    sizeof(struct altr_sdram_mc_data));
361 	if (!mci)
362 		return -ENOMEM;
363 
364 	mci->pdev = &pdev->dev;
365 	drvdata = mci->pvt_info;
366 	drvdata->mc_vbase = mc_vbase;
367 	drvdata->data = priv;
368 	platform_set_drvdata(pdev, mci);
369 
370 	if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) {
371 		edac_printk(KERN_ERR, EDAC_MC,
372 			    "Unable to get managed device resource\n");
373 		res = -ENOMEM;
374 		goto free;
375 	}
376 
377 	mci->mtype_cap = MEM_FLAG_DDR3;
378 	mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED;
379 	mci->edac_cap = EDAC_FLAG_SECDED;
380 	mci->mod_name = EDAC_MOD_STR;
381 	mci->ctl_name = dev_name(&pdev->dev);
382 	mci->scrub_mode = SCRUB_SW_SRC;
383 	mci->dev_name = dev_name(&pdev->dev);
384 
385 	dimm = *mci->dimms;
386 	dimm->nr_pages = ((mem_size - 1) >> PAGE_SHIFT) + 1;
387 	dimm->grain = 8;
388 	dimm->dtype = DEV_X8;
389 	dimm->mtype = MEM_DDR3;
390 	dimm->edac_mode = EDAC_SECDED;
391 
392 	res = edac_mc_add_mc(mci);
393 	if (res < 0)
394 		goto err;
395 
396 	/* Only the Arria10 has separate IRQs */
397 	if (of_machine_is_compatible("altr,socfpga-arria10")) {
398 		/* Arria10 specific initialization */
399 		res = a10_init(mc_vbase);
400 		if (res < 0)
401 			goto err2;
402 
403 		res = devm_request_irq(&pdev->dev, irq2,
404 				       altr_sdram_mc_err_handler,
405 				       IRQF_SHARED, dev_name(&pdev->dev), mci);
406 		if (res < 0) {
407 			edac_mc_printk(mci, KERN_ERR,
408 				       "Unable to request irq %d\n", irq2);
409 			res = -ENODEV;
410 			goto err2;
411 		}
412 
413 		res = a10_unmask_irq(pdev, A10_DDR0_IRQ_MASK);
414 		if (res < 0)
415 			goto err2;
416 
417 		irqflags = IRQF_SHARED;
418 	}
419 
420 	res = devm_request_irq(&pdev->dev, irq, altr_sdram_mc_err_handler,
421 			       irqflags, dev_name(&pdev->dev), mci);
422 	if (res < 0) {
423 		edac_mc_printk(mci, KERN_ERR,
424 			       "Unable to request irq %d\n", irq);
425 		res = -ENODEV;
426 		goto err2;
427 	}
428 
429 	/* Infrastructure ready - enable the IRQ */
430 	if (regmap_update_bits(drvdata->mc_vbase, priv->ecc_irq_en_offset,
431 			       priv->ecc_irq_en_mask, priv->ecc_irq_en_mask)) {
432 		edac_mc_printk(mci, KERN_ERR,
433 			       "Error enabling SDRAM ECC IRQ\n");
434 		res = -ENODEV;
435 		goto err2;
436 	}
437 
438 	altr_sdr_mc_create_debugfs_nodes(mci);
439 
440 	devres_close_group(&pdev->dev, NULL);
441 
442 	return 0;
443 
444 err2:
445 	edac_mc_del_mc(&pdev->dev);
446 err:
447 	devres_release_group(&pdev->dev, NULL);
448 free:
449 	edac_mc_free(mci);
450 	edac_printk(KERN_ERR, EDAC_MC,
451 		    "EDAC Probe Failed; Error %d\n", res);
452 
453 	return res;
454 }
455 
456 static void altr_sdram_remove(struct platform_device *pdev)
457 {
458 	struct mem_ctl_info *mci = platform_get_drvdata(pdev);
459 
460 	edac_mc_del_mc(&pdev->dev);
461 	edac_mc_free(mci);
462 	platform_set_drvdata(pdev, NULL);
463 }
464 
465 /*
466  * If you want to suspend, need to disable EDAC by removing it
467  * from the device tree or defconfig.
468  */
469 #ifdef CONFIG_PM
470 static int altr_sdram_prepare(struct device *dev)
471 {
472 	pr_err("Suspend not allowed when EDAC is enabled.\n");
473 
474 	return -EPERM;
475 }
476 
477 static const struct dev_pm_ops altr_sdram_pm_ops = {
478 	.prepare = altr_sdram_prepare,
479 };
480 #endif
481 
482 static struct platform_driver altr_sdram_edac_driver = {
483 	.probe = altr_sdram_probe,
484 	.remove = altr_sdram_remove,
485 	.driver = {
486 		.name = "altr_sdram_edac",
487 #ifdef CONFIG_PM
488 		.pm = &altr_sdram_pm_ops,
489 #endif
490 		.of_match_table = altr_sdram_ctrl_of_match,
491 	},
492 };
493 
494 module_platform_driver(altr_sdram_edac_driver);
495 
496 #endif	/* CONFIG_EDAC_ALTERA_SDRAM */
497 
498 /************************* EDAC Parent Probe *************************/
499 
500 static const struct of_device_id altr_edac_device_of_match[];
501 
502 static const struct of_device_id altr_edac_of_match[] = {
503 	{ .compatible = "altr,socfpga-ecc-manager" },
504 	{},
505 };
506 MODULE_DEVICE_TABLE(of, altr_edac_of_match);
507 
508 static int altr_edac_probe(struct platform_device *pdev)
509 {
510 	of_platform_populate(pdev->dev.of_node, altr_edac_device_of_match,
511 			     NULL, &pdev->dev);
512 	return 0;
513 }
514 
515 static struct platform_driver altr_edac_driver = {
516 	.probe =  altr_edac_probe,
517 	.driver = {
518 		.name = "socfpga_ecc_manager",
519 		.of_match_table = altr_edac_of_match,
520 	},
521 };
522 module_platform_driver(altr_edac_driver);
523 
524 /************************* EDAC Device Functions *************************/
525 
526 /*
527  * EDAC Device Functions (shared between various IPs).
528  * The discrete memories use the EDAC Device framework. The probe
529  * and error handling functions are very similar between memories
530  * so they are shared. The memory allocation and freeing for EDAC
531  * trigger testing are different for each memory.
532  */
533 
534 #ifdef CONFIG_EDAC_ALTERA_OCRAM
535 static const struct edac_device_prv_data ocramecc_data;
536 #endif
537 #ifdef CONFIG_EDAC_ALTERA_L2C
538 static const struct edac_device_prv_data l2ecc_data;
539 #endif
540 #ifdef CONFIG_EDAC_ALTERA_OCRAM
541 static const struct edac_device_prv_data a10_ocramecc_data;
542 #endif
543 #ifdef CONFIG_EDAC_ALTERA_L2C
544 static const struct edac_device_prv_data a10_l2ecc_data;
545 #endif
546 
547 static irqreturn_t altr_edac_device_handler(int irq, void *dev_id)
548 {
549 	irqreturn_t ret_value = IRQ_NONE;
550 	struct edac_device_ctl_info *dci = dev_id;
551 	struct altr_edac_device_dev *drvdata = dci->pvt_info;
552 	const struct edac_device_prv_data *priv = drvdata->data;
553 
554 	if (irq == drvdata->sb_irq) {
555 		if (priv->ce_clear_mask)
556 			writel(priv->ce_clear_mask, drvdata->base);
557 		edac_device_handle_ce(dci, 0, 0, drvdata->edac_dev_name);
558 		ret_value = IRQ_HANDLED;
559 	} else if (irq == drvdata->db_irq) {
560 		if (priv->ue_clear_mask)
561 			writel(priv->ue_clear_mask, drvdata->base);
562 		edac_device_handle_ue(dci, 0, 0, drvdata->edac_dev_name);
563 		panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n");
564 		ret_value = IRQ_HANDLED;
565 	} else {
566 		WARN_ON(1);
567 	}
568 
569 	return ret_value;
570 }
571 
572 static ssize_t __maybe_unused
573 altr_edac_device_trig(struct file *file, const char __user *user_buf,
574 		      size_t count, loff_t *ppos)
575 
576 {
577 	u32 *ptemp, i, error_mask;
578 	int result = 0;
579 	u8 trig_type;
580 	unsigned long flags;
581 	struct edac_device_ctl_info *edac_dci = file->private_data;
582 	struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
583 	const struct edac_device_prv_data *priv = drvdata->data;
584 	void *generic_ptr = edac_dci->dev;
585 
586 	if (!user_buf || get_user(trig_type, user_buf))
587 		return -EFAULT;
588 
589 	if (!priv->alloc_mem)
590 		return -ENOMEM;
591 
592 	/*
593 	 * Note that generic_ptr is initialized to the device * but in
594 	 * some alloc_functions, this is overridden and returns data.
595 	 */
596 	ptemp = priv->alloc_mem(priv->trig_alloc_sz, &generic_ptr);
597 	if (!ptemp) {
598 		edac_printk(KERN_ERR, EDAC_DEVICE,
599 			    "Inject: Buffer Allocation error\n");
600 		return -ENOMEM;
601 	}
602 
603 	if (trig_type == ALTR_UE_TRIGGER_CHAR)
604 		error_mask = priv->ue_set_mask;
605 	else
606 		error_mask = priv->ce_set_mask;
607 
608 	edac_printk(KERN_ALERT, EDAC_DEVICE,
609 		    "Trigger Error Mask (0x%X)\n", error_mask);
610 
611 	local_irq_save(flags);
612 	/* write ECC corrupted data out. */
613 	for (i = 0; i < (priv->trig_alloc_sz / sizeof(*ptemp)); i++) {
614 		/* Read data so we're in the correct state */
615 		rmb();
616 		if (READ_ONCE(ptemp[i]))
617 			result = -1;
618 		/* Toggle Error bit (it is latched), leave ECC enabled */
619 		writel(error_mask, (drvdata->base + priv->set_err_ofst));
620 		writel(priv->ecc_enable_mask, (drvdata->base +
621 					       priv->set_err_ofst));
622 		ptemp[i] = i;
623 	}
624 	/* Ensure it has been written out */
625 	wmb();
626 	local_irq_restore(flags);
627 
628 	if (result)
629 		edac_printk(KERN_ERR, EDAC_DEVICE, "Mem Not Cleared\n");
630 
631 	/* Read out written data. ECC error caused here */
632 	for (i = 0; i < ALTR_TRIGGER_READ_WRD_CNT; i++)
633 		if (READ_ONCE(ptemp[i]) != i)
634 			edac_printk(KERN_ERR, EDAC_DEVICE,
635 				    "Read doesn't match written data\n");
636 
637 	if (priv->free_mem)
638 		priv->free_mem(ptemp, priv->trig_alloc_sz, generic_ptr);
639 
640 	return count;
641 }
642 
643 static const struct file_operations altr_edac_device_inject_fops __maybe_unused = {
644 	.open = simple_open,
645 	.write = altr_edac_device_trig,
646 	.llseek = generic_file_llseek,
647 };
648 
649 static ssize_t __maybe_unused
650 altr_edac_a10_device_trig(struct file *file, const char __user *user_buf,
651 			  size_t count, loff_t *ppos);
652 
653 static const struct file_operations altr_edac_a10_device_inject_fops __maybe_unused = {
654 	.open = simple_open,
655 	.write = altr_edac_a10_device_trig,
656 	.llseek = generic_file_llseek,
657 };
658 
659 static ssize_t __maybe_unused
660 altr_edac_a10_device_trig2(struct file *file, const char __user *user_buf,
661 			   size_t count, loff_t *ppos);
662 
663 static const struct file_operations altr_edac_a10_device_inject2_fops __maybe_unused = {
664 	.open = simple_open,
665 	.write = altr_edac_a10_device_trig2,
666 	.llseek = generic_file_llseek,
667 };
668 
669 static void altr_create_edacdev_dbgfs(struct edac_device_ctl_info *edac_dci,
670 				      const struct edac_device_prv_data *priv)
671 {
672 	struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
673 
674 	if (!IS_ENABLED(CONFIG_EDAC_DEBUG))
675 		return;
676 
677 	drvdata->debugfs_dir = edac_debugfs_create_dir(drvdata->edac_dev_name);
678 	if (!drvdata->debugfs_dir)
679 		return;
680 
681 	if (!edac_debugfs_create_file("altr_trigger", S_IWUSR,
682 				      drvdata->debugfs_dir, edac_dci,
683 				      priv->inject_fops))
684 		debugfs_remove_recursive(drvdata->debugfs_dir);
685 }
686 
687 static const struct of_device_id altr_edac_device_of_match[] = {
688 #ifdef CONFIG_EDAC_ALTERA_L2C
689 	{ .compatible = "altr,socfpga-l2-ecc", .data = &l2ecc_data },
690 #endif
691 #ifdef CONFIG_EDAC_ALTERA_OCRAM
692 	{ .compatible = "altr,socfpga-ocram-ecc", .data = &ocramecc_data },
693 #endif
694 	{},
695 };
696 MODULE_DEVICE_TABLE(of, altr_edac_device_of_match);
697 
698 /*
699  * altr_edac_device_probe()
700  *	This is a generic EDAC device driver that will support
701  *	various Altera memory devices such as the L2 cache ECC and
702  *	OCRAM ECC as well as the memories for other peripherals.
703  *	Module specific initialization is done by passing the
704  *	function index in the device tree.
705  */
706 static int altr_edac_device_probe(struct platform_device *pdev)
707 {
708 	struct edac_device_ctl_info *dci;
709 	struct altr_edac_device_dev *drvdata;
710 	struct resource *r;
711 	int res = 0;
712 	struct device_node *np = pdev->dev.of_node;
713 	char *ecc_name = (char *)np->name;
714 	static int dev_instance;
715 
716 	if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) {
717 		edac_printk(KERN_ERR, EDAC_DEVICE,
718 			    "Unable to open devm\n");
719 		return -ENOMEM;
720 	}
721 
722 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
723 	if (!r) {
724 		edac_printk(KERN_ERR, EDAC_DEVICE,
725 			    "Unable to get mem resource\n");
726 		res = -ENODEV;
727 		goto fail;
728 	}
729 
730 	if (!devm_request_mem_region(&pdev->dev, r->start, resource_size(r),
731 				     dev_name(&pdev->dev))) {
732 		edac_printk(KERN_ERR, EDAC_DEVICE,
733 			    "%s:Error requesting mem region\n", ecc_name);
734 		res = -EBUSY;
735 		goto fail;
736 	}
737 
738 	dci = edac_device_alloc_ctl_info(sizeof(*drvdata), ecc_name,
739 					 1, ecc_name, 1, 0, dev_instance++);
740 
741 	if (!dci) {
742 		edac_printk(KERN_ERR, EDAC_DEVICE,
743 			    "%s: Unable to allocate EDAC device\n", ecc_name);
744 		res = -ENOMEM;
745 		goto fail;
746 	}
747 
748 	drvdata = dci->pvt_info;
749 	dci->dev = &pdev->dev;
750 	platform_set_drvdata(pdev, dci);
751 	drvdata->edac_dev_name = ecc_name;
752 
753 	drvdata->base = devm_ioremap(&pdev->dev, r->start, resource_size(r));
754 	if (!drvdata->base) {
755 		res = -ENOMEM;
756 		goto fail1;
757 	}
758 
759 	/* Get driver specific data for this EDAC device */
760 	drvdata->data = of_match_node(altr_edac_device_of_match, np)->data;
761 
762 	/* Check specific dependencies for the module */
763 	if (drvdata->data->setup) {
764 		res = drvdata->data->setup(drvdata);
765 		if (res)
766 			goto fail1;
767 	}
768 
769 	drvdata->sb_irq = platform_get_irq(pdev, 0);
770 	res = devm_request_irq(&pdev->dev, drvdata->sb_irq,
771 			       altr_edac_device_handler,
772 			       0, dev_name(&pdev->dev), dci);
773 	if (res)
774 		goto fail1;
775 
776 	drvdata->db_irq = platform_get_irq(pdev, 1);
777 	res = devm_request_irq(&pdev->dev, drvdata->db_irq,
778 			       altr_edac_device_handler,
779 			       0, dev_name(&pdev->dev), dci);
780 	if (res)
781 		goto fail1;
782 
783 	dci->mod_name = "Altera ECC Manager";
784 	dci->dev_name = drvdata->edac_dev_name;
785 
786 	res = edac_device_add_device(dci);
787 	if (res)
788 		goto fail1;
789 
790 	altr_create_edacdev_dbgfs(dci, drvdata->data);
791 
792 	devres_close_group(&pdev->dev, NULL);
793 
794 	return 0;
795 
796 fail1:
797 	edac_device_free_ctl_info(dci);
798 fail:
799 	devres_release_group(&pdev->dev, NULL);
800 	edac_printk(KERN_ERR, EDAC_DEVICE,
801 		    "%s:Error setting up EDAC device: %d\n", ecc_name, res);
802 
803 	return res;
804 }
805 
806 static void altr_edac_device_remove(struct platform_device *pdev)
807 {
808 	struct edac_device_ctl_info *dci = platform_get_drvdata(pdev);
809 	struct altr_edac_device_dev *drvdata = dci->pvt_info;
810 
811 	debugfs_remove_recursive(drvdata->debugfs_dir);
812 	edac_device_del_device(&pdev->dev);
813 	edac_device_free_ctl_info(dci);
814 }
815 
816 static struct platform_driver altr_edac_device_driver = {
817 	.probe =  altr_edac_device_probe,
818 	.remove = altr_edac_device_remove,
819 	.driver = {
820 		.name = "altr_edac_device",
821 		.of_match_table = altr_edac_device_of_match,
822 	},
823 };
824 module_platform_driver(altr_edac_device_driver);
825 
826 /******************* Arria10 Device ECC Shared Functions *****************/
827 
828 /*
829  *  Test for memory's ECC dependencies upon entry because platform specific
830  *  startup should have initialized the memory and enabled the ECC.
831  *  Can't turn on ECC here because accessing un-initialized memory will
832  *  cause CE/UE errors possibly causing an ABORT.
833  */
834 static int __maybe_unused
835 altr_check_ecc_deps(struct altr_edac_device_dev *device)
836 {
837 	void __iomem  *base = device->base;
838 	const struct edac_device_prv_data *prv = device->data;
839 
840 	if (readl(base + prv->ecc_en_ofst) & prv->ecc_enable_mask)
841 		return 0;
842 
843 	edac_printk(KERN_ERR, EDAC_DEVICE,
844 		    "%s: No ECC present or ECC disabled.\n",
845 		    device->edac_dev_name);
846 	return -ENODEV;
847 }
848 
849 static irqreturn_t __maybe_unused altr_edac_a10_ecc_irq(int irq, void *dev_id)
850 {
851 	struct altr_edac_device_dev *dci = dev_id;
852 	void __iomem  *base = dci->base;
853 
854 	if (irq == dci->sb_irq) {
855 		writel(ALTR_A10_ECC_SERRPENA,
856 		       base + ALTR_A10_ECC_INTSTAT_OFST);
857 		edac_device_handle_ce(dci->edac_dev, 0, 0, dci->edac_dev_name);
858 
859 		return IRQ_HANDLED;
860 	} else if (irq == dci->db_irq) {
861 		writel(ALTR_A10_ECC_DERRPENA,
862 		       base + ALTR_A10_ECC_INTSTAT_OFST);
863 		edac_device_handle_ue(dci->edac_dev, 0, 0, dci->edac_dev_name);
864 		if (dci->data->panic)
865 			panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n");
866 
867 		return IRQ_HANDLED;
868 	}
869 
870 	WARN_ON(1);
871 
872 	return IRQ_NONE;
873 }
874 
875 /******************* Arria10 Memory Buffer Functions *********************/
876 
877 static inline int a10_get_irq_mask(struct device_node *np)
878 {
879 	int irq;
880 	const u32 *handle = of_get_property(np, "interrupts", NULL);
881 
882 	if (!handle)
883 		return -ENODEV;
884 	irq = be32_to_cpup(handle);
885 	return irq;
886 }
887 
888 static inline void ecc_set_bits(u32 bit_mask, void __iomem *ioaddr)
889 {
890 	u32 value = readl(ioaddr);
891 
892 	value |= bit_mask;
893 	writel(value, ioaddr);
894 }
895 
896 static inline void ecc_clear_bits(u32 bit_mask, void __iomem *ioaddr)
897 {
898 	u32 value = readl(ioaddr);
899 
900 	value &= ~bit_mask;
901 	writel(value, ioaddr);
902 }
903 
904 static inline int ecc_test_bits(u32 bit_mask, void __iomem *ioaddr)
905 {
906 	u32 value = readl(ioaddr);
907 
908 	return (value & bit_mask) ? 1 : 0;
909 }
910 
911 /*
912  * This function uses the memory initialization block in the Arria10 ECC
913  * controller to initialize/clear the entire memory data and ECC data.
914  */
915 static int __maybe_unused altr_init_memory_port(void __iomem *ioaddr, int port)
916 {
917 	int limit = ALTR_A10_ECC_INIT_WATCHDOG_10US;
918 	u32 init_mask, stat_mask, clear_mask;
919 	int ret = 0;
920 
921 	if (port) {
922 		init_mask = ALTR_A10_ECC_INITB;
923 		stat_mask = ALTR_A10_ECC_INITCOMPLETEB;
924 		clear_mask = ALTR_A10_ECC_ERRPENB_MASK;
925 	} else {
926 		init_mask = ALTR_A10_ECC_INITA;
927 		stat_mask = ALTR_A10_ECC_INITCOMPLETEA;
928 		clear_mask = ALTR_A10_ECC_ERRPENA_MASK;
929 	}
930 
931 	ecc_set_bits(init_mask, (ioaddr + ALTR_A10_ECC_CTRL_OFST));
932 	while (limit--) {
933 		if (ecc_test_bits(stat_mask,
934 				  (ioaddr + ALTR_A10_ECC_INITSTAT_OFST)))
935 			break;
936 		udelay(1);
937 	}
938 	if (limit < 0)
939 		ret = -EBUSY;
940 
941 	/* Clear any pending ECC interrupts */
942 	writel(clear_mask, (ioaddr + ALTR_A10_ECC_INTSTAT_OFST));
943 
944 	return ret;
945 }
946 
947 static __init int __maybe_unused
948 altr_init_a10_ecc_block(struct device_node *np, u32 irq_mask,
949 			u32 ecc_ctrl_en_mask, bool dual_port)
950 {
951 	int ret = 0;
952 	void __iomem *ecc_block_base;
953 	struct regmap *ecc_mgr_map;
954 	char *ecc_name;
955 	struct device_node *np_eccmgr;
956 
957 	ecc_name = (char *)np->name;
958 
959 	/* Get the ECC Manager - parent of the device EDACs */
960 	np_eccmgr = of_get_parent(np);
961 
962 	ecc_mgr_map =
963 		altr_sysmgr_regmap_lookup_by_phandle(np_eccmgr,
964 						     "altr,sysmgr-syscon");
965 
966 	of_node_put(np_eccmgr);
967 	if (IS_ERR(ecc_mgr_map)) {
968 		edac_printk(KERN_ERR, EDAC_DEVICE,
969 			    "Unable to get syscon altr,sysmgr-syscon\n");
970 		return -ENODEV;
971 	}
972 
973 	/* Map the ECC Block */
974 	ecc_block_base = of_iomap(np, 0);
975 	if (!ecc_block_base) {
976 		edac_printk(KERN_ERR, EDAC_DEVICE,
977 			    "Unable to map %s ECC block\n", ecc_name);
978 		return -ENODEV;
979 	}
980 
981 	/* Disable ECC */
982 	regmap_write(ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_SET_OFST, irq_mask);
983 	writel(ALTR_A10_ECC_SERRINTEN,
984 	       (ecc_block_base + ALTR_A10_ECC_ERRINTENR_OFST));
985 	ecc_clear_bits(ecc_ctrl_en_mask,
986 		       (ecc_block_base + ALTR_A10_ECC_CTRL_OFST));
987 	/* Ensure all writes complete */
988 	wmb();
989 	/* Use HW initialization block to initialize memory for ECC */
990 	ret = altr_init_memory_port(ecc_block_base, 0);
991 	if (ret) {
992 		edac_printk(KERN_ERR, EDAC_DEVICE,
993 			    "ECC: cannot init %s PORTA memory\n", ecc_name);
994 		goto out;
995 	}
996 
997 	if (dual_port) {
998 		ret = altr_init_memory_port(ecc_block_base, 1);
999 		if (ret) {
1000 			edac_printk(KERN_ERR, EDAC_DEVICE,
1001 				    "ECC: cannot init %s PORTB memory\n",
1002 				    ecc_name);
1003 			goto out;
1004 		}
1005 	}
1006 
1007 	/* Enable ECC */
1008 	ecc_set_bits(ecc_ctrl_en_mask, (ecc_block_base +
1009 					ALTR_A10_ECC_CTRL_OFST));
1010 	writel(ALTR_A10_ECC_SERRINTEN,
1011 	       (ecc_block_base + ALTR_A10_ECC_ERRINTENS_OFST));
1012 	regmap_write(ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_CLR_OFST, irq_mask);
1013 	/* Ensure all writes complete */
1014 	wmb();
1015 out:
1016 	iounmap(ecc_block_base);
1017 	return ret;
1018 }
1019 
1020 static int validate_parent_available(struct device_node *np);
1021 static const struct of_device_id altr_edac_a10_device_of_match[];
1022 static int __init __maybe_unused altr_init_a10_ecc_device_type(char *compat)
1023 {
1024 	int irq;
1025 	struct device_node *child, *np;
1026 
1027 	np = of_find_compatible_node(NULL, NULL,
1028 				     "altr,socfpga-a10-ecc-manager");
1029 	if (!np) {
1030 		edac_printk(KERN_ERR, EDAC_DEVICE, "ECC Manager not found\n");
1031 		return -ENODEV;
1032 	}
1033 
1034 	for_each_child_of_node(np, child) {
1035 		const struct of_device_id *pdev_id;
1036 		const struct edac_device_prv_data *prv;
1037 
1038 		if (!of_device_is_available(child))
1039 			continue;
1040 		if (!of_device_is_compatible(child, compat))
1041 			continue;
1042 
1043 		if (validate_parent_available(child))
1044 			continue;
1045 
1046 		irq = a10_get_irq_mask(child);
1047 		if (irq < 0)
1048 			continue;
1049 
1050 		/* Get matching node and check for valid result */
1051 		pdev_id = of_match_node(altr_edac_a10_device_of_match, child);
1052 		if (IS_ERR_OR_NULL(pdev_id))
1053 			continue;
1054 
1055 		/* Validate private data pointer before dereferencing */
1056 		prv = pdev_id->data;
1057 		if (!prv)
1058 			continue;
1059 
1060 		altr_init_a10_ecc_block(child, BIT(irq),
1061 					prv->ecc_enable_mask, 0);
1062 	}
1063 
1064 	of_node_put(np);
1065 	return 0;
1066 }
1067 
1068 /*********************** SDRAM EDAC Device Functions *********************/
1069 
1070 #ifdef CONFIG_EDAC_ALTERA_SDRAM
1071 
1072 /*
1073  * A legacy U-Boot bug only enabled memory mapped access to the ECC Enable
1074  * register if ECC is enabled. Linux checks the ECC Enable register to
1075  * determine ECC status.
1076  * Use an SMC call (which always works) to determine ECC enablement.
1077  */
1078 static int altr_s10_sdram_check_ecc_deps(struct altr_edac_device_dev *device)
1079 {
1080 	const struct edac_device_prv_data *prv = device->data;
1081 	unsigned long sdram_ecc_addr;
1082 	struct arm_smccc_res result;
1083 	struct device_node *np;
1084 	phys_addr_t sdram_addr;
1085 	u32 read_reg;
1086 	int ret;
1087 
1088 	np = of_find_compatible_node(NULL, NULL, "altr,sdr-ctl");
1089 	if (!np)
1090 		goto sdram_err;
1091 
1092 	sdram_addr = of_translate_address(np, of_get_address(np, 0,
1093 							     NULL, NULL));
1094 	of_node_put(np);
1095 	sdram_ecc_addr = (unsigned long)sdram_addr + prv->ecc_en_ofst;
1096 	arm_smccc_smc(INTEL_SIP_SMC_REG_READ, sdram_ecc_addr,
1097 		      0, 0, 0, 0, 0, 0, &result);
1098 	read_reg = (unsigned int)result.a1;
1099 	ret = (int)result.a0;
1100 	if (!ret && (read_reg & prv->ecc_enable_mask))
1101 		return 0;
1102 
1103 sdram_err:
1104 	edac_printk(KERN_ERR, EDAC_DEVICE,
1105 		    "%s: No ECC present or ECC disabled.\n",
1106 		    device->edac_dev_name);
1107 	return -ENODEV;
1108 }
1109 
1110 static const struct edac_device_prv_data s10_sdramecc_data = {
1111 	.setup = altr_s10_sdram_check_ecc_deps,
1112 	.ce_clear_mask = ALTR_S10_ECC_SERRPENA,
1113 	.ue_clear_mask = ALTR_S10_ECC_DERRPENA,
1114 	.ecc_enable_mask = ALTR_S10_ECC_EN,
1115 	.ecc_en_ofst = ALTR_S10_ECC_CTRL_SDRAM_OFST,
1116 	.ce_set_mask = ALTR_S10_ECC_TSERRA,
1117 	.ue_set_mask = ALTR_S10_ECC_TDERRA,
1118 	.set_err_ofst = ALTR_S10_ECC_INTTEST_OFST,
1119 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1120 	.inject_fops = &altr_edac_a10_device_inject_fops,
1121 };
1122 #endif /* CONFIG_EDAC_ALTERA_SDRAM */
1123 
1124 /*********************** OCRAM EDAC Device Functions *********************/
1125 
1126 #ifdef CONFIG_EDAC_ALTERA_OCRAM
1127 
1128 static void *ocram_alloc_mem(size_t size, void **other)
1129 {
1130 	struct device_node *np;
1131 	struct gen_pool *gp;
1132 	void *sram_addr;
1133 
1134 	np = of_find_compatible_node(NULL, NULL, "altr,socfpga-ocram-ecc");
1135 	if (!np)
1136 		return NULL;
1137 
1138 	gp = of_gen_pool_get(np, "iram", 0);
1139 	of_node_put(np);
1140 	if (!gp)
1141 		return NULL;
1142 
1143 	sram_addr = (void *)gen_pool_alloc(gp, size);
1144 	if (!sram_addr)
1145 		return NULL;
1146 
1147 	memset(sram_addr, 0, size);
1148 	/* Ensure data is written out */
1149 	wmb();
1150 
1151 	/* Remember this handle for freeing  later */
1152 	*other = gp;
1153 
1154 	return sram_addr;
1155 }
1156 
1157 static void ocram_free_mem(void *p, size_t size, void *other)
1158 {
1159 	gen_pool_free((struct gen_pool *)other, (unsigned long)p, size);
1160 }
1161 
1162 static const struct edac_device_prv_data ocramecc_data = {
1163 	.setup = altr_check_ecc_deps,
1164 	.ce_clear_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_SERR),
1165 	.ue_clear_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_DERR),
1166 	.alloc_mem = ocram_alloc_mem,
1167 	.free_mem = ocram_free_mem,
1168 	.ecc_enable_mask = ALTR_OCR_ECC_EN,
1169 	.ecc_en_ofst = ALTR_OCR_ECC_REG_OFFSET,
1170 	.ce_set_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_INJS),
1171 	.ue_set_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_INJD),
1172 	.set_err_ofst = ALTR_OCR_ECC_REG_OFFSET,
1173 	.trig_alloc_sz = ALTR_TRIG_OCRAM_BYTE_SIZE,
1174 	.inject_fops = &altr_edac_device_inject_fops,
1175 };
1176 
1177 static int __maybe_unused
1178 altr_check_ocram_deps_init(struct altr_edac_device_dev *device)
1179 {
1180 	void __iomem  *base = device->base;
1181 	int ret;
1182 
1183 	ret = altr_check_ecc_deps(device);
1184 	if (ret)
1185 		return ret;
1186 
1187 	/*
1188 	 * Verify that OCRAM has been initialized.
1189 	 * During a warm reset, OCRAM contents are retained, but the control
1190 	 * and status registers are reset to their default values. Therefore,
1191 	 * ECC must be explicitly re-enabled in the control register.
1192 	 * Error condition: if INITCOMPLETEA is clear and ECC_EN is already set.
1193 	 */
1194 	if (!ecc_test_bits(ALTR_A10_ECC_INITCOMPLETEA,
1195 			   (base + ALTR_A10_ECC_INITSTAT_OFST))) {
1196 		if (!ecc_test_bits(ALTR_A10_ECC_EN,
1197 				   (base + ALTR_A10_ECC_CTRL_OFST)))
1198 			ecc_set_bits(ALTR_A10_ECC_EN,
1199 				     (base + ALTR_A10_ECC_CTRL_OFST));
1200 		else
1201 			return -ENODEV;
1202 	}
1203 
1204 	/* Enable IRQ on Single Bit Error */
1205 	writel(ALTR_A10_ECC_SERRINTEN, (base + ALTR_A10_ECC_ERRINTENS_OFST));
1206 	/* Ensure all writes complete */
1207 	wmb();
1208 
1209 	return 0;
1210 }
1211 
1212 static const struct edac_device_prv_data a10_ocramecc_data = {
1213 	.setup = altr_check_ocram_deps_init,
1214 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1215 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1216 	.irq_status_mask = A10_SYSMGR_ECC_INTSTAT_OCRAM,
1217 	.ecc_enable_mask = ALTR_A10_OCRAM_ECC_EN_CTL,
1218 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1219 	.ce_set_mask = ALTR_A10_ECC_TSERRA,
1220 	.ue_set_mask = ALTR_A10_ECC_TDERRA,
1221 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1222 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1223 	.inject_fops = &altr_edac_a10_device_inject2_fops,
1224 	/*
1225 	 * OCRAM panic on uncorrectable error because sleep/resume
1226 	 * functions and FPGA contents are stored in OCRAM. Prefer
1227 	 * a kernel panic over executing/loading corrupted data.
1228 	 */
1229 	.panic = true,
1230 };
1231 
1232 #endif	/* CONFIG_EDAC_ALTERA_OCRAM */
1233 
1234 /********************* L2 Cache EDAC Device Functions ********************/
1235 
1236 #ifdef CONFIG_EDAC_ALTERA_L2C
1237 
1238 static void *l2_alloc_mem(size_t size, void **other)
1239 {
1240 	struct device *dev = *other;
1241 	void *ptemp = devm_kzalloc(dev, size, GFP_KERNEL);
1242 
1243 	if (!ptemp)
1244 		return NULL;
1245 
1246 	/* Make sure everything is written out */
1247 	wmb();
1248 
1249 	/*
1250 	 * Clean all cache levels up to LoC (includes L2)
1251 	 * This ensures the corrupted data is written into
1252 	 * L2 cache for readback test (which causes ECC error).
1253 	 */
1254 	flush_cache_all();
1255 
1256 	return ptemp;
1257 }
1258 
1259 static void l2_free_mem(void *p, size_t size, void *other)
1260 {
1261 	struct device *dev = other;
1262 
1263 	if (dev && p)
1264 		devm_kfree(dev, p);
1265 }
1266 
1267 /*
1268  * altr_l2_check_deps()
1269  *	Test for L2 cache ECC dependencies upon entry because
1270  *	platform specific startup should have initialized the L2
1271  *	memory and enabled the ECC.
1272  *	Bail if ECC is not enabled.
1273  *	Note that L2 Cache Enable is forced at build time.
1274  */
1275 static int altr_l2_check_deps(struct altr_edac_device_dev *device)
1276 {
1277 	void __iomem *base = device->base;
1278 	const struct edac_device_prv_data *prv = device->data;
1279 
1280 	if ((readl(base) & prv->ecc_enable_mask) ==
1281 	     prv->ecc_enable_mask)
1282 		return 0;
1283 
1284 	edac_printk(KERN_ERR, EDAC_DEVICE,
1285 		    "L2: No ECC present, or ECC disabled\n");
1286 	return -ENODEV;
1287 }
1288 
1289 static irqreturn_t altr_edac_a10_l2_irq(int irq, void *dev_id)
1290 {
1291 	struct altr_edac_device_dev *dci = dev_id;
1292 
1293 	if (irq == dci->sb_irq) {
1294 		regmap_write(dci->edac->ecc_mgr_map,
1295 			     A10_SYSGMR_MPU_CLEAR_L2_ECC_OFST,
1296 			     A10_SYSGMR_MPU_CLEAR_L2_ECC_SB);
1297 		edac_device_handle_ce(dci->edac_dev, 0, 0, dci->edac_dev_name);
1298 
1299 		return IRQ_HANDLED;
1300 	} else if (irq == dci->db_irq) {
1301 		regmap_write(dci->edac->ecc_mgr_map,
1302 			     A10_SYSGMR_MPU_CLEAR_L2_ECC_OFST,
1303 			     A10_SYSGMR_MPU_CLEAR_L2_ECC_MB);
1304 		edac_device_handle_ue(dci->edac_dev, 0, 0, dci->edac_dev_name);
1305 		panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n");
1306 
1307 		return IRQ_HANDLED;
1308 	}
1309 
1310 	WARN_ON(1);
1311 
1312 	return IRQ_NONE;
1313 }
1314 
1315 static const struct edac_device_prv_data l2ecc_data = {
1316 	.setup = altr_l2_check_deps,
1317 	.ce_clear_mask = 0,
1318 	.ue_clear_mask = 0,
1319 	.alloc_mem = l2_alloc_mem,
1320 	.free_mem = l2_free_mem,
1321 	.ecc_enable_mask = ALTR_L2_ECC_EN,
1322 	.ce_set_mask = (ALTR_L2_ECC_EN | ALTR_L2_ECC_INJS),
1323 	.ue_set_mask = (ALTR_L2_ECC_EN | ALTR_L2_ECC_INJD),
1324 	.set_err_ofst = ALTR_L2_ECC_REG_OFFSET,
1325 	.trig_alloc_sz = ALTR_TRIG_L2C_BYTE_SIZE,
1326 	.inject_fops = &altr_edac_device_inject_fops,
1327 };
1328 
1329 static const struct edac_device_prv_data a10_l2ecc_data = {
1330 	.setup = altr_l2_check_deps,
1331 	.ce_clear_mask = ALTR_A10_L2_ECC_SERR_CLR,
1332 	.ue_clear_mask = ALTR_A10_L2_ECC_MERR_CLR,
1333 	.irq_status_mask = A10_SYSMGR_ECC_INTSTAT_L2,
1334 	.alloc_mem = l2_alloc_mem,
1335 	.free_mem = l2_free_mem,
1336 	.ecc_enable_mask = ALTR_A10_L2_ECC_EN_CTL,
1337 	.ce_set_mask = ALTR_A10_L2_ECC_CE_INJ_MASK,
1338 	.ue_set_mask = ALTR_A10_L2_ECC_UE_INJ_MASK,
1339 	.set_err_ofst = ALTR_A10_L2_ECC_INJ_OFST,
1340 	.ecc_irq_handler = altr_edac_a10_l2_irq,
1341 	.trig_alloc_sz = ALTR_TRIG_L2C_BYTE_SIZE,
1342 	.inject_fops = &altr_edac_device_inject_fops,
1343 };
1344 
1345 #endif	/* CONFIG_EDAC_ALTERA_L2C */
1346 
1347 /********************* Ethernet Device Functions ********************/
1348 
1349 #ifdef CONFIG_EDAC_ALTERA_ETHERNET
1350 
1351 static int __init socfpga_init_ethernet_ecc(struct altr_edac_device_dev *dev)
1352 {
1353 	int ret;
1354 
1355 	ret = altr_init_a10_ecc_device_type("altr,socfpga-eth-mac-ecc");
1356 	if (ret)
1357 		return ret;
1358 
1359 	return altr_check_ecc_deps(dev);
1360 }
1361 
1362 static const struct edac_device_prv_data a10_enetecc_data = {
1363 	.setup = socfpga_init_ethernet_ecc,
1364 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1365 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1366 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1367 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1368 	.ce_set_mask = ALTR_A10_ECC_TSERRA,
1369 	.ue_set_mask = ALTR_A10_ECC_TDERRA,
1370 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1371 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1372 	.inject_fops = &altr_edac_a10_device_inject_fops,
1373 };
1374 
1375 #endif	/* CONFIG_EDAC_ALTERA_ETHERNET */
1376 
1377 /********************** NAND Device Functions **********************/
1378 
1379 #ifdef CONFIG_EDAC_ALTERA_NAND
1380 
1381 static int __init socfpga_init_nand_ecc(struct altr_edac_device_dev *device)
1382 {
1383 	int ret;
1384 
1385 	ret = altr_init_a10_ecc_device_type("altr,socfpga-nand-ecc");
1386 	if (ret)
1387 		return ret;
1388 
1389 	return altr_check_ecc_deps(device);
1390 }
1391 
1392 static const struct edac_device_prv_data a10_nandecc_data = {
1393 	.setup = socfpga_init_nand_ecc,
1394 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1395 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1396 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1397 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1398 	.ce_set_mask = ALTR_A10_ECC_TSERRA,
1399 	.ue_set_mask = ALTR_A10_ECC_TDERRA,
1400 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1401 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1402 	.inject_fops = &altr_edac_a10_device_inject_fops,
1403 };
1404 
1405 #endif	/* CONFIG_EDAC_ALTERA_NAND */
1406 
1407 /********************** DMA Device Functions **********************/
1408 
1409 #ifdef CONFIG_EDAC_ALTERA_DMA
1410 
1411 static int __init socfpga_init_dma_ecc(struct altr_edac_device_dev *device)
1412 {
1413 	int ret;
1414 
1415 	ret = altr_init_a10_ecc_device_type("altr,socfpga-dma-ecc");
1416 	if (ret)
1417 		return ret;
1418 
1419 	return altr_check_ecc_deps(device);
1420 }
1421 
1422 static const struct edac_device_prv_data a10_dmaecc_data = {
1423 	.setup = socfpga_init_dma_ecc,
1424 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1425 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1426 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1427 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1428 	.ce_set_mask = ALTR_A10_ECC_TSERRA,
1429 	.ue_set_mask = ALTR_A10_ECC_TDERRA,
1430 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1431 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1432 	.inject_fops = &altr_edac_a10_device_inject_fops,
1433 };
1434 
1435 #endif	/* CONFIG_EDAC_ALTERA_DMA */
1436 
1437 /********************** USB Device Functions **********************/
1438 
1439 #ifdef CONFIG_EDAC_ALTERA_USB
1440 
1441 static int __init socfpga_init_usb_ecc(struct altr_edac_device_dev *device)
1442 {
1443 	int ret;
1444 
1445 	ret = altr_init_a10_ecc_device_type("altr,socfpga-usb-ecc");
1446 	if (ret)
1447 		return ret;
1448 
1449 	return altr_check_ecc_deps(device);
1450 }
1451 
1452 static const struct edac_device_prv_data a10_usbecc_data = {
1453 	.setup = socfpga_init_usb_ecc,
1454 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1455 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1456 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1457 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1458 	.ce_set_mask = ALTR_A10_ECC_TSERRA,
1459 	.ue_set_mask = ALTR_A10_ECC_TDERRA,
1460 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1461 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1462 	.inject_fops = &altr_edac_a10_device_inject_fops,
1463 };
1464 
1465 #endif	/* CONFIG_EDAC_ALTERA_USB */
1466 
1467 /********************** QSPI Device Functions **********************/
1468 
1469 #ifdef CONFIG_EDAC_ALTERA_QSPI
1470 
1471 static int __init socfpga_init_qspi_ecc(struct altr_edac_device_dev *device)
1472 {
1473 	int ret;
1474 
1475 	ret = altr_init_a10_ecc_device_type("altr,socfpga-qspi-ecc");
1476 	if (ret)
1477 		return ret;
1478 
1479 	return altr_check_ecc_deps(device);
1480 }
1481 
1482 static const struct edac_device_prv_data a10_qspiecc_data = {
1483 	.setup = socfpga_init_qspi_ecc,
1484 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1485 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1486 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1487 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1488 	.ce_set_mask = ALTR_A10_ECC_TSERRA,
1489 	.ue_set_mask = ALTR_A10_ECC_TDERRA,
1490 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1491 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1492 	.inject_fops = &altr_edac_a10_device_inject_fops,
1493 };
1494 
1495 #endif	/* CONFIG_EDAC_ALTERA_QSPI */
1496 
1497 /********************* SDMMC Device Functions **********************/
1498 
1499 #ifdef CONFIG_EDAC_ALTERA_SDMMC
1500 
1501 static const struct edac_device_prv_data a10_sdmmceccb_data;
1502 static int altr_portb_setup(struct altr_edac_device_dev *device)
1503 {
1504 	struct edac_device_ctl_info *dci;
1505 	struct altr_edac_device_dev *altdev;
1506 	char *ecc_name = "sdmmcb-ecc";
1507 	int edac_idx, rc;
1508 	struct device_node *np;
1509 	const struct edac_device_prv_data *prv = &a10_sdmmceccb_data;
1510 
1511 	rc = altr_check_ecc_deps(device);
1512 	if (rc)
1513 		return rc;
1514 
1515 	np = of_find_compatible_node(NULL, NULL, "altr,socfpga-sdmmc-ecc");
1516 	if (!np) {
1517 		edac_printk(KERN_WARNING, EDAC_DEVICE, "SDMMC node not found\n");
1518 		return -ENODEV;
1519 	}
1520 
1521 	/* Create the PortB EDAC device */
1522 	edac_idx = edac_device_alloc_index();
1523 	dci = edac_device_alloc_ctl_info(sizeof(*altdev), ecc_name, 1,
1524 					 ecc_name, 1, 0, edac_idx);
1525 	if (!dci) {
1526 		edac_printk(KERN_ERR, EDAC_DEVICE,
1527 			    "%s: Unable to allocate PortB EDAC device\n",
1528 			    ecc_name);
1529 		return -ENOMEM;
1530 	}
1531 
1532 	/* Initialize the PortB EDAC device structure from PortA structure */
1533 	altdev = dci->pvt_info;
1534 	*altdev = *device;
1535 
1536 	if (!devres_open_group(&altdev->ddev, altr_portb_setup, GFP_KERNEL))
1537 		return -ENOMEM;
1538 
1539 	/* Update PortB specific values */
1540 	altdev->edac_dev_name = ecc_name;
1541 	altdev->edac_idx = edac_idx;
1542 	altdev->edac_dev = dci;
1543 	altdev->data = prv;
1544 	dci->dev = &altdev->ddev;
1545 	dci->ctl_name = "Altera ECC Manager";
1546 	dci->mod_name = ecc_name;
1547 	dci->dev_name = ecc_name;
1548 
1549 	/*
1550 	 * Update the PortB IRQs - A10 has 4, S10 has 2, Index accordingly
1551 	 *
1552 	 * FIXME: Instead of ifdefs with different architectures the driver
1553 	 *        should properly use compatibles.
1554 	 */
1555 #ifdef CONFIG_64BIT
1556 	altdev->sb_irq = irq_of_parse_and_map(np, 1);
1557 #else
1558 	altdev->sb_irq = irq_of_parse_and_map(np, 2);
1559 #endif
1560 	if (!altdev->sb_irq) {
1561 		edac_printk(KERN_ERR, EDAC_DEVICE, "Error PortB SBIRQ alloc\n");
1562 		rc = -ENODEV;
1563 		goto err_release_group_1;
1564 	}
1565 	rc = devm_request_irq(&altdev->ddev, altdev->sb_irq,
1566 			      prv->ecc_irq_handler, IRQF_TRIGGER_HIGH,
1567 			      ecc_name, altdev);
1568 	if (rc) {
1569 		edac_printk(KERN_ERR, EDAC_DEVICE, "PortB SBERR IRQ error\n");
1570 		goto err_release_group_1;
1571 	}
1572 
1573 #ifdef CONFIG_64BIT
1574 	/* Use IRQ to determine SError origin instead of assigning IRQ */
1575 	rc = of_property_read_u32_index(np, "interrupts", 1, &altdev->db_irq);
1576 	if (rc) {
1577 		edac_printk(KERN_ERR, EDAC_DEVICE,
1578 			    "Error PortB DBIRQ alloc\n");
1579 		goto err_release_group_1;
1580 	}
1581 #else
1582 	altdev->db_irq = irq_of_parse_and_map(np, 3);
1583 	if (!altdev->db_irq) {
1584 		edac_printk(KERN_ERR, EDAC_DEVICE, "Error PortB DBIRQ alloc\n");
1585 		rc = -ENODEV;
1586 		goto err_release_group_1;
1587 	}
1588 	rc = devm_request_irq(&altdev->ddev, altdev->db_irq,
1589 			      prv->ecc_irq_handler, IRQF_TRIGGER_HIGH,
1590 			      ecc_name, altdev);
1591 	if (rc) {
1592 		edac_printk(KERN_ERR, EDAC_DEVICE, "PortB DBERR IRQ error\n");
1593 		goto err_release_group_1;
1594 	}
1595 #endif
1596 
1597 	rc = edac_device_add_device(dci);
1598 	if (rc) {
1599 		edac_printk(KERN_ERR, EDAC_DEVICE,
1600 			    "edac_device_add_device portB failed\n");
1601 		rc = -ENOMEM;
1602 		goto err_release_group_1;
1603 	}
1604 	altr_create_edacdev_dbgfs(dci, prv);
1605 
1606 	list_add(&altdev->next, &altdev->edac->a10_ecc_devices);
1607 
1608 	devres_remove_group(&altdev->ddev, altr_portb_setup);
1609 
1610 	return 0;
1611 
1612 err_release_group_1:
1613 	edac_device_free_ctl_info(dci);
1614 	devres_release_group(&altdev->ddev, altr_portb_setup);
1615 	edac_printk(KERN_ERR, EDAC_DEVICE,
1616 		    "%s:Error setting up EDAC device: %d\n", ecc_name, rc);
1617 	return rc;
1618 }
1619 
1620 static int __init socfpga_init_sdmmc_ecc(struct altr_edac_device_dev *device)
1621 {
1622 	int rc = -ENODEV;
1623 	struct device_node *child;
1624 
1625 	child = of_find_compatible_node(NULL, NULL, "altr,socfpga-sdmmc-ecc");
1626 	if (!child)
1627 		return -ENODEV;
1628 
1629 	if (!of_device_is_available(child))
1630 		goto exit;
1631 
1632 	if (validate_parent_available(child))
1633 		goto exit;
1634 
1635 	/* Init portB */
1636 	rc = altr_init_a10_ecc_block(child, ALTR_A10_SDMMC_IRQ_MASK,
1637 				     a10_sdmmceccb_data.ecc_enable_mask, 1);
1638 	if (rc)
1639 		goto exit;
1640 
1641 	/* Setup portB */
1642 	return altr_portb_setup(device);
1643 
1644 exit:
1645 	of_node_put(child);
1646 	return rc;
1647 }
1648 
1649 static irqreturn_t altr_edac_a10_ecc_irq_portb(int irq, void *dev_id)
1650 {
1651 	struct altr_edac_device_dev *ad = dev_id;
1652 	void __iomem  *base = ad->base;
1653 	const struct edac_device_prv_data *priv = ad->data;
1654 
1655 	if (irq == ad->sb_irq) {
1656 		writel(priv->ce_clear_mask,
1657 		       base + ALTR_A10_ECC_INTSTAT_OFST);
1658 		edac_device_handle_ce(ad->edac_dev, 0, 0, ad->edac_dev_name);
1659 		return IRQ_HANDLED;
1660 	} else if (irq == ad->db_irq) {
1661 		writel(priv->ue_clear_mask,
1662 		       base + ALTR_A10_ECC_INTSTAT_OFST);
1663 		edac_device_handle_ue(ad->edac_dev, 0, 0, ad->edac_dev_name);
1664 		return IRQ_HANDLED;
1665 	}
1666 
1667 	WARN_ONCE(1, "Unhandled IRQ%d on Port B.", irq);
1668 
1669 	return IRQ_NONE;
1670 }
1671 
1672 static const struct edac_device_prv_data a10_sdmmcecca_data = {
1673 	.setup = socfpga_init_sdmmc_ecc,
1674 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1675 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1676 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1677 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1678 	.ce_set_mask = ALTR_A10_ECC_SERRPENA,
1679 	.ue_set_mask = ALTR_A10_ECC_DERRPENA,
1680 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1681 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1682 	.inject_fops = &altr_edac_a10_device_inject_fops,
1683 };
1684 
1685 static const struct edac_device_prv_data a10_sdmmceccb_data = {
1686 	.setup = socfpga_init_sdmmc_ecc,
1687 	.ce_clear_mask = ALTR_A10_ECC_SERRPENB,
1688 	.ue_clear_mask = ALTR_A10_ECC_DERRPENB,
1689 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1690 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1691 	.ce_set_mask = ALTR_A10_ECC_TSERRB,
1692 	.ue_set_mask = ALTR_A10_ECC_TDERRB,
1693 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1694 	.ecc_irq_handler = altr_edac_a10_ecc_irq_portb,
1695 	.inject_fops = &altr_edac_a10_device_inject_fops,
1696 };
1697 
1698 #endif	/* CONFIG_EDAC_ALTERA_SDMMC */
1699 
1700 /********************* Arria10 EDAC Device Functions *************************/
1701 static const struct of_device_id altr_edac_a10_device_of_match[] = {
1702 #ifdef CONFIG_EDAC_ALTERA_L2C
1703 	{ .compatible = "altr,socfpga-a10-l2-ecc", .data = &a10_l2ecc_data },
1704 #endif
1705 #ifdef CONFIG_EDAC_ALTERA_OCRAM
1706 	{ .compatible = "altr,socfpga-a10-ocram-ecc",
1707 	  .data = &a10_ocramecc_data },
1708 #endif
1709 #ifdef CONFIG_EDAC_ALTERA_ETHERNET
1710 	{ .compatible = "altr,socfpga-eth-mac-ecc",
1711 	  .data = &a10_enetecc_data },
1712 #endif
1713 #ifdef CONFIG_EDAC_ALTERA_NAND
1714 	{ .compatible = "altr,socfpga-nand-ecc", .data = &a10_nandecc_data },
1715 #endif
1716 #ifdef CONFIG_EDAC_ALTERA_DMA
1717 	{ .compatible = "altr,socfpga-dma-ecc", .data = &a10_dmaecc_data },
1718 #endif
1719 #ifdef CONFIG_EDAC_ALTERA_USB
1720 	{ .compatible = "altr,socfpga-usb-ecc", .data = &a10_usbecc_data },
1721 #endif
1722 #ifdef CONFIG_EDAC_ALTERA_QSPI
1723 	{ .compatible = "altr,socfpga-qspi-ecc", .data = &a10_qspiecc_data },
1724 #endif
1725 #ifdef CONFIG_EDAC_ALTERA_SDMMC
1726 	{ .compatible = "altr,socfpga-sdmmc-ecc", .data = &a10_sdmmcecca_data },
1727 #endif
1728 #ifdef CONFIG_EDAC_ALTERA_SDRAM
1729 	{ .compatible = "altr,sdram-edac-s10", .data = &s10_sdramecc_data },
1730 #endif
1731 	{},
1732 };
1733 MODULE_DEVICE_TABLE(of, altr_edac_a10_device_of_match);
1734 
1735 /*
1736  * The Arria10 EDAC Device Functions differ from the Cyclone5/Arria5
1737  * because 2 IRQs are shared among the all ECC peripherals. The ECC
1738  * manager manages the IRQs and the children.
1739  * Based on xgene_edac.c peripheral code.
1740  */
1741 
1742 static ssize_t __maybe_unused
1743 altr_edac_a10_device_trig(struct file *file, const char __user *user_buf,
1744 			  size_t count, loff_t *ppos)
1745 {
1746 	struct edac_device_ctl_info *edac_dci = file->private_data;
1747 	struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
1748 	const struct edac_device_prv_data *priv = drvdata->data;
1749 	void __iomem *set_addr = (drvdata->base + priv->set_err_ofst);
1750 	unsigned long flags;
1751 	u8 trig_type;
1752 
1753 	if (!user_buf || get_user(trig_type, user_buf))
1754 		return -EFAULT;
1755 
1756 	local_irq_save(flags);
1757 	if (trig_type == ALTR_UE_TRIGGER_CHAR)
1758 		writew(priv->ue_set_mask, set_addr);
1759 	else
1760 		writew(priv->ce_set_mask, set_addr);
1761 
1762 	/* Ensure the interrupt test bits are set */
1763 	wmb();
1764 	local_irq_restore(flags);
1765 
1766 	return count;
1767 }
1768 
1769 /*
1770  * The Stratix10 EDAC Error Injection Functions differ from Arria10
1771  * slightly. A few Arria10 peripherals can use this injection function.
1772  * Inject the error into the memory and then readback to trigger the IRQ.
1773  */
1774 static ssize_t __maybe_unused
1775 altr_edac_a10_device_trig2(struct file *file, const char __user *user_buf,
1776 			   size_t count, loff_t *ppos)
1777 {
1778 	struct edac_device_ctl_info *edac_dci = file->private_data;
1779 	struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
1780 	const struct edac_device_prv_data *priv = drvdata->data;
1781 	void __iomem *set_addr = (drvdata->base + priv->set_err_ofst);
1782 	unsigned long flags;
1783 	u8 trig_type;
1784 
1785 	if (!user_buf || get_user(trig_type, user_buf))
1786 		return -EFAULT;
1787 
1788 	local_irq_save(flags);
1789 	if (trig_type == ALTR_UE_TRIGGER_CHAR) {
1790 		writew(priv->ue_set_mask, set_addr);
1791 	} else {
1792 		/* Setup read/write of 4 bytes */
1793 		writel(ECC_WORD_WRITE, drvdata->base + ECC_BLK_DBYTECTRL_OFST);
1794 		/* Setup Address to 0 */
1795 		writel(0, drvdata->base + ECC_BLK_ADDRESS_OFST);
1796 		/* Setup accctrl to read & ecc & data override */
1797 		writel(ECC_READ_EDOVR, drvdata->base + ECC_BLK_ACCCTRL_OFST);
1798 		/* Kick it. */
1799 		writel(ECC_XACT_KICK, drvdata->base + ECC_BLK_STARTACC_OFST);
1800 		/* Setup write for single bit change */
1801 		writel(readl(drvdata->base + ECC_BLK_RDATA0_OFST) ^ 0x1,
1802 		       drvdata->base + ECC_BLK_WDATA0_OFST);
1803 		writel(readl(drvdata->base + ECC_BLK_RDATA1_OFST),
1804 		       drvdata->base + ECC_BLK_WDATA1_OFST);
1805 		writel(readl(drvdata->base + ECC_BLK_RDATA2_OFST),
1806 		       drvdata->base + ECC_BLK_WDATA2_OFST);
1807 		writel(readl(drvdata->base + ECC_BLK_RDATA3_OFST),
1808 		       drvdata->base + ECC_BLK_WDATA3_OFST);
1809 
1810 		/* Copy Read ECC to Write ECC */
1811 		writel(readl(drvdata->base + ECC_BLK_RECC0_OFST),
1812 		       drvdata->base + ECC_BLK_WECC0_OFST);
1813 		writel(readl(drvdata->base + ECC_BLK_RECC1_OFST),
1814 		       drvdata->base + ECC_BLK_WECC1_OFST);
1815 		/* Setup accctrl to write & ecc override & data override */
1816 		writel(ECC_WRITE_EDOVR, drvdata->base + ECC_BLK_ACCCTRL_OFST);
1817 		/* Kick it. */
1818 		writel(ECC_XACT_KICK, drvdata->base + ECC_BLK_STARTACC_OFST);
1819 		/* Setup accctrl to read & ecc overwrite & data overwrite */
1820 		writel(ECC_READ_EDOVR, drvdata->base + ECC_BLK_ACCCTRL_OFST);
1821 		/* Kick it. */
1822 		writel(ECC_XACT_KICK, drvdata->base + ECC_BLK_STARTACC_OFST);
1823 	}
1824 
1825 	/* Ensure the interrupt test bits are set */
1826 	wmb();
1827 	local_irq_restore(flags);
1828 
1829 	return count;
1830 }
1831 
1832 static void altr_edac_a10_irq_handler(struct irq_desc *desc)
1833 {
1834 	int dberr, bit, sm_offset, irq_status;
1835 	struct altr_arria10_edac *edac = irq_desc_get_handler_data(desc);
1836 	struct irq_chip *chip = irq_desc_get_chip(desc);
1837 	int irq = irq_desc_get_irq(desc);
1838 	unsigned long bits;
1839 
1840 	dberr = (irq == edac->db_irq) ? 1 : 0;
1841 	sm_offset = dberr ? A10_SYSMGR_ECC_INTSTAT_DERR_OFST :
1842 			    A10_SYSMGR_ECC_INTSTAT_SERR_OFST;
1843 
1844 	chained_irq_enter(chip, desc);
1845 
1846 	regmap_read(edac->ecc_mgr_map, sm_offset, &irq_status);
1847 
1848 	bits = irq_status;
1849 	for_each_set_bit(bit, &bits, 32)
1850 		generic_handle_domain_irq(edac->domain, dberr * 32 + bit);
1851 
1852 	chained_irq_exit(chip, desc);
1853 }
1854 
1855 static int validate_parent_available(struct device_node *np)
1856 {
1857 	struct device_node *parent;
1858 	int ret = 0;
1859 
1860 	/* SDRAM must be present for Linux (implied parent) */
1861 	if (of_device_is_compatible(np, "altr,sdram-edac-s10"))
1862 		return 0;
1863 
1864 	/* Ensure parent device is enabled if parent node exists */
1865 	parent = of_parse_phandle(np, "altr,ecc-parent", 0);
1866 	if (parent && !of_device_is_available(parent))
1867 		ret = -ENODEV;
1868 
1869 	of_node_put(parent);
1870 	return ret;
1871 }
1872 
1873 static int get_s10_sdram_edac_resource(struct device_node *np,
1874 				       struct resource *res)
1875 {
1876 	struct device_node *parent;
1877 	int ret;
1878 
1879 	parent = of_parse_phandle(np, "altr,sdr-syscon", 0);
1880 	if (!parent)
1881 		return -ENODEV;
1882 
1883 	ret = of_address_to_resource(parent, 0, res);
1884 	of_node_put(parent);
1885 
1886 	return ret;
1887 }
1888 
1889 static int altr_edac_a10_device_add(struct altr_arria10_edac *edac,
1890 				    struct device_node *np)
1891 {
1892 	struct edac_device_ctl_info *dci;
1893 	struct altr_edac_device_dev *altdev;
1894 	char *ecc_name = (char *)np->name;
1895 	struct resource res;
1896 	int edac_idx;
1897 	int rc = 0;
1898 	const struct edac_device_prv_data *prv;
1899 	/* Get matching node and check for valid result */
1900 	const struct of_device_id *pdev_id =
1901 		of_match_node(altr_edac_a10_device_of_match, np);
1902 	if (IS_ERR_OR_NULL(pdev_id))
1903 		return -ENODEV;
1904 
1905 	/* Get driver specific data for this EDAC device */
1906 	prv = pdev_id->data;
1907 	if (IS_ERR_OR_NULL(prv))
1908 		return -ENODEV;
1909 
1910 	if (validate_parent_available(np))
1911 		return -ENODEV;
1912 
1913 	if (!devres_open_group(edac->dev, altr_edac_a10_device_add, GFP_KERNEL))
1914 		return -ENOMEM;
1915 
1916 	if (of_device_is_compatible(np, "altr,sdram-edac-s10"))
1917 		rc = get_s10_sdram_edac_resource(np, &res);
1918 	else
1919 		rc = of_address_to_resource(np, 0, &res);
1920 
1921 	if (rc < 0) {
1922 		edac_printk(KERN_ERR, EDAC_DEVICE,
1923 			    "%s: no resource address\n", ecc_name);
1924 		goto err_release_group;
1925 	}
1926 
1927 	edac_idx = edac_device_alloc_index();
1928 	dci = edac_device_alloc_ctl_info(sizeof(*altdev), ecc_name,
1929 					 1, ecc_name, 1, 0, edac_idx);
1930 
1931 	if (!dci) {
1932 		edac_printk(KERN_ERR, EDAC_DEVICE,
1933 			    "%s: Unable to allocate EDAC device\n", ecc_name);
1934 		rc = -ENOMEM;
1935 		goto err_release_group;
1936 	}
1937 
1938 	altdev = dci->pvt_info;
1939 	dci->dev = edac->dev;
1940 	altdev->edac_dev_name = ecc_name;
1941 	altdev->edac_idx = edac_idx;
1942 	altdev->edac = edac;
1943 	altdev->edac_dev = dci;
1944 	altdev->data = prv;
1945 	altdev->ddev = *edac->dev;
1946 	dci->dev = &altdev->ddev;
1947 	dci->ctl_name = "Altera ECC Manager";
1948 	dci->mod_name = ecc_name;
1949 	dci->dev_name = ecc_name;
1950 
1951 	altdev->base = devm_ioremap_resource(edac->dev, &res);
1952 	if (IS_ERR(altdev->base)) {
1953 		rc = PTR_ERR(altdev->base);
1954 		goto err_release_group1;
1955 	}
1956 
1957 	/* Check specific dependencies for the module */
1958 	if (altdev->data->setup) {
1959 		rc = altdev->data->setup(altdev);
1960 		if (rc)
1961 			goto err_release_group1;
1962 	}
1963 
1964 	altdev->sb_irq = irq_of_parse_and_map(np, 0);
1965 	if (!altdev->sb_irq) {
1966 		edac_printk(KERN_ERR, EDAC_DEVICE, "Error allocating SBIRQ\n");
1967 		rc = -ENODEV;
1968 		goto err_release_group1;
1969 	}
1970 	rc = devm_request_irq(edac->dev, altdev->sb_irq, prv->ecc_irq_handler,
1971 			      IRQF_TRIGGER_HIGH, ecc_name, altdev);
1972 	if (rc) {
1973 		edac_printk(KERN_ERR, EDAC_DEVICE, "No SBERR IRQ resource\n");
1974 		goto err_release_group1;
1975 	}
1976 
1977 #ifdef CONFIG_64BIT
1978 	/* Use IRQ to determine SError origin instead of assigning IRQ */
1979 	rc = of_property_read_u32_index(np, "interrupts", 0, &altdev->db_irq);
1980 	if (rc) {
1981 		edac_printk(KERN_ERR, EDAC_DEVICE,
1982 			    "Unable to parse DB IRQ index\n");
1983 		goto err_release_group1;
1984 	}
1985 #else
1986 	altdev->db_irq = irq_of_parse_and_map(np, 1);
1987 	if (!altdev->db_irq) {
1988 		edac_printk(KERN_ERR, EDAC_DEVICE, "Error allocating DBIRQ\n");
1989 		rc = -ENODEV;
1990 		goto err_release_group1;
1991 	}
1992 	rc = devm_request_irq(edac->dev, altdev->db_irq, prv->ecc_irq_handler,
1993 			      IRQF_TRIGGER_HIGH,
1994 			      ecc_name, altdev);
1995 	if (rc) {
1996 		edac_printk(KERN_ERR, EDAC_DEVICE, "No DBERR IRQ resource\n");
1997 		goto err_release_group1;
1998 	}
1999 #endif
2000 
2001 	rc = edac_device_add_device(dci);
2002 	if (rc) {
2003 		dev_err(edac->dev, "edac_device_add_device failed\n");
2004 		rc = -ENOMEM;
2005 		goto err_release_group1;
2006 	}
2007 
2008 	altr_create_edacdev_dbgfs(dci, prv);
2009 
2010 	list_add(&altdev->next, &edac->a10_ecc_devices);
2011 
2012 	devres_remove_group(edac->dev, altr_edac_a10_device_add);
2013 
2014 	return 0;
2015 
2016 err_release_group1:
2017 	edac_device_free_ctl_info(dci);
2018 err_release_group:
2019 	devres_release_group(edac->dev, NULL);
2020 	edac_printk(KERN_ERR, EDAC_DEVICE,
2021 		    "%s:Error setting up EDAC device: %d\n", ecc_name, rc);
2022 
2023 	return rc;
2024 }
2025 
2026 static void a10_eccmgr_irq_mask(struct irq_data *d)
2027 {
2028 	struct altr_arria10_edac *edac = irq_data_get_irq_chip_data(d);
2029 
2030 	regmap_write(edac->ecc_mgr_map,	A10_SYSMGR_ECC_INTMASK_SET_OFST,
2031 		     BIT(d->hwirq));
2032 }
2033 
2034 static void a10_eccmgr_irq_unmask(struct irq_data *d)
2035 {
2036 	struct altr_arria10_edac *edac = irq_data_get_irq_chip_data(d);
2037 
2038 	regmap_write(edac->ecc_mgr_map,	A10_SYSMGR_ECC_INTMASK_CLR_OFST,
2039 		     BIT(d->hwirq));
2040 }
2041 
2042 static int a10_eccmgr_irqdomain_map(struct irq_domain *d, unsigned int irq,
2043 				    irq_hw_number_t hwirq)
2044 {
2045 	struct altr_arria10_edac *edac = d->host_data;
2046 
2047 	irq_set_chip_and_handler(irq, &edac->irq_chip, handle_simple_irq);
2048 	irq_set_chip_data(irq, edac);
2049 	irq_set_noprobe(irq);
2050 
2051 	return 0;
2052 }
2053 
2054 static const struct irq_domain_ops a10_eccmgr_ic_ops = {
2055 	.map = a10_eccmgr_irqdomain_map,
2056 	.xlate = irq_domain_xlate_twocell,
2057 };
2058 
2059 /************** Stratix 10 EDAC Double Bit Error Handler ************/
2060 #define to_a10edac(p, m) container_of(p, struct altr_arria10_edac, m)
2061 
2062 #ifdef CONFIG_64BIT
2063 /* panic routine issues reboot on non-zero panic_timeout */
2064 extern int panic_timeout;
2065 
2066 /*
2067  * The double bit error is handled through SError which is fatal. This is
2068  * called as a panic notifier to printout ECC error info as part of the panic.
2069  */
2070 static int s10_edac_dberr_handler(struct notifier_block *this,
2071 				  unsigned long event, void *ptr)
2072 {
2073 	struct altr_arria10_edac *edac = to_a10edac(this, panic_notifier);
2074 	int err_addr, dberror;
2075 
2076 	regmap_read(edac->ecc_mgr_map, S10_SYSMGR_ECC_INTSTAT_DERR_OFST,
2077 		    &dberror);
2078 	regmap_write(edac->ecc_mgr_map, S10_SYSMGR_UE_VAL_OFST, dberror);
2079 	if (dberror & S10_DBE_IRQ_MASK) {
2080 		struct list_head *position;
2081 		struct altr_edac_device_dev *ed;
2082 		struct arm_smccc_res result;
2083 
2084 		/* Find the matching DBE in the list of devices */
2085 		list_for_each(position, &edac->a10_ecc_devices) {
2086 			ed = list_entry(position, struct altr_edac_device_dev,
2087 					next);
2088 			if (!(BIT(ed->db_irq) & dberror))
2089 				continue;
2090 
2091 			writel(ALTR_A10_ECC_DERRPENA,
2092 			       ed->base + ALTR_A10_ECC_INTSTAT_OFST);
2093 			err_addr = readl(ed->base + ALTR_S10_DERR_ADDRA_OFST);
2094 			regmap_write(edac->ecc_mgr_map,
2095 				     S10_SYSMGR_UE_ADDR_OFST, err_addr);
2096 			edac_printk(KERN_ERR, EDAC_DEVICE,
2097 				    "EDAC: [Fatal DBE on %s @ 0x%08X]\n",
2098 				    ed->edac_dev_name, err_addr);
2099 			break;
2100 		}
2101 		/* Notify the System through SMC. Reboot delay = 1 second */
2102 		panic_timeout = 1;
2103 		arm_smccc_smc(INTEL_SIP_SMC_ECC_DBE, dberror, 0, 0, 0, 0,
2104 			      0, 0, &result);
2105 	}
2106 
2107 	return NOTIFY_DONE;
2108 }
2109 #endif
2110 
2111 /****************** Arria 10 EDAC Probe Function *********************/
2112 static int altr_edac_a10_probe(struct platform_device *pdev)
2113 {
2114 	struct altr_arria10_edac *edac;
2115 	struct device_node *child;
2116 
2117 	edac = devm_kzalloc(&pdev->dev, sizeof(*edac), GFP_KERNEL);
2118 	if (!edac)
2119 		return -ENOMEM;
2120 
2121 	edac->dev = &pdev->dev;
2122 	platform_set_drvdata(pdev, edac);
2123 	INIT_LIST_HEAD(&edac->a10_ecc_devices);
2124 
2125 	edac->ecc_mgr_map =
2126 		altr_sysmgr_regmap_lookup_by_phandle(pdev->dev.of_node,
2127 						     "altr,sysmgr-syscon");
2128 
2129 	if (IS_ERR(edac->ecc_mgr_map)) {
2130 		edac_printk(KERN_ERR, EDAC_DEVICE,
2131 			    "Unable to get syscon altr,sysmgr-syscon\n");
2132 		return PTR_ERR(edac->ecc_mgr_map);
2133 	}
2134 
2135 	/* Set irq mask for DDR SBE to avoid any pending irq before registration */
2136 	regmap_write(edac->ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_SET_OFST,
2137 		     (A10_SYSMGR_ECC_INTMASK_SDMMCB | A10_SYSMGR_ECC_INTMASK_DDR0));
2138 
2139 	edac->irq_chip.name = pdev->dev.of_node->name;
2140 	edac->irq_chip.irq_mask = a10_eccmgr_irq_mask;
2141 	edac->irq_chip.irq_unmask = a10_eccmgr_irq_unmask;
2142 	edac->domain = irq_domain_create_linear(dev_fwnode(&pdev->dev), 64, &a10_eccmgr_ic_ops,
2143 						edac);
2144 	if (!edac->domain) {
2145 		dev_err(&pdev->dev, "Error adding IRQ domain\n");
2146 		return -ENOMEM;
2147 	}
2148 
2149 	edac->sb_irq = platform_get_irq(pdev, 0);
2150 	if (edac->sb_irq < 0)
2151 		return edac->sb_irq;
2152 
2153 	irq_set_chained_handler_and_data(edac->sb_irq,
2154 					 altr_edac_a10_irq_handler,
2155 					 edac);
2156 
2157 #ifdef CONFIG_64BIT
2158 	{
2159 		int dberror, err_addr;
2160 
2161 		edac->panic_notifier.notifier_call = s10_edac_dberr_handler;
2162 		atomic_notifier_chain_register(&panic_notifier_list,
2163 					       &edac->panic_notifier);
2164 
2165 		/* Printout a message if uncorrectable error previously. */
2166 		regmap_read(edac->ecc_mgr_map, S10_SYSMGR_UE_VAL_OFST,
2167 			    &dberror);
2168 		if (dberror) {
2169 			regmap_read(edac->ecc_mgr_map, S10_SYSMGR_UE_ADDR_OFST,
2170 				    &err_addr);
2171 			edac_printk(KERN_ERR, EDAC_DEVICE,
2172 				    "Previous Boot UE detected[0x%X] @ 0x%X\n",
2173 				    dberror, err_addr);
2174 			/* Reset the sticky registers */
2175 			regmap_write(edac->ecc_mgr_map,
2176 				     S10_SYSMGR_UE_VAL_OFST, 0);
2177 			regmap_write(edac->ecc_mgr_map,
2178 				     S10_SYSMGR_UE_ADDR_OFST, 0);
2179 		}
2180 	}
2181 #else
2182 	edac->db_irq = platform_get_irq(pdev, 1);
2183 	if (edac->db_irq < 0)
2184 		return edac->db_irq;
2185 
2186 	irq_set_chained_handler_and_data(edac->db_irq,
2187 					 altr_edac_a10_irq_handler, edac);
2188 #endif
2189 
2190 	for_each_child_of_node(pdev->dev.of_node, child) {
2191 		if (!of_device_is_available(child))
2192 			continue;
2193 
2194 		if (of_match_node(altr_edac_a10_device_of_match, child))
2195 			altr_edac_a10_device_add(edac, child);
2196 
2197 #ifdef CONFIG_EDAC_ALTERA_SDRAM
2198 		else if (of_device_is_compatible(child, "altr,sdram-edac-a10"))
2199 			of_platform_populate(pdev->dev.of_node,
2200 					     altr_sdram_ctrl_of_match,
2201 					     NULL, &pdev->dev);
2202 #endif
2203 	}
2204 
2205 	return 0;
2206 }
2207 
2208 static const struct of_device_id altr_edac_a10_of_match[] = {
2209 	{ .compatible = "altr,socfpga-a10-ecc-manager" },
2210 	{ .compatible = "altr,socfpga-s10-ecc-manager" },
2211 	{},
2212 };
2213 MODULE_DEVICE_TABLE(of, altr_edac_a10_of_match);
2214 
2215 static struct platform_driver altr_edac_a10_driver = {
2216 	.probe =  altr_edac_a10_probe,
2217 	.driver = {
2218 		.name = "socfpga_a10_ecc_manager",
2219 		.of_match_table = altr_edac_a10_of_match,
2220 	},
2221 };
2222 module_platform_driver(altr_edac_a10_driver);
2223 
2224 MODULE_AUTHOR("Thor Thayer");
2225 MODULE_DESCRIPTION("EDAC Driver for Altera Memories");
2226