xref: /linux/net/ipv4/fib_trie.c (revision dbf8fe85a16a33d6b6bd01f2bc606fc017771465)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *
4  *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
5  *     & Swedish University of Agricultural Sciences.
6  *
7  *   Jens Laas <jens.laas@data.slu.se> Swedish University of
8  *     Agricultural Sciences.
9  *
10  *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
11  *
12  * This work is based on the LPC-trie which is originally described in:
13  *
14  * An experimental study of compression methods for dynamic tries
15  * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
16  * https://www.csc.kth.se/~snilsson/software/dyntrie2/
17  *
18  * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
19  * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
20  *
21  * Code from fib_hash has been reused which includes the following header:
22  *
23  * INET		An implementation of the TCP/IP protocol suite for the LINUX
24  *		operating system.  INET is implemented using the  BSD Socket
25  *		interface as the means of communication with the user level.
26  *
27  *		IPv4 FIB: lookup engine and maintenance routines.
28  *
29  * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
30  *
31  * Substantial contributions to this work comes from:
32  *
33  *		David S. Miller, <davem@davemloft.net>
34  *		Stephen Hemminger <shemminger@osdl.org>
35  *		Paul E. McKenney <paulmck@us.ibm.com>
36  *		Patrick McHardy <kaber@trash.net>
37  */
38 #include <linux/cache.h>
39 #include <linux/uaccess.h>
40 #include <linux/bitops.h>
41 #include <linux/types.h>
42 #include <linux/kernel.h>
43 #include <linux/mm.h>
44 #include <linux/string.h>
45 #include <linux/socket.h>
46 #include <linux/sockios.h>
47 #include <linux/errno.h>
48 #include <linux/in.h>
49 #include <linux/inet.h>
50 #include <linux/inetdevice.h>
51 #include <linux/netdevice.h>
52 #include <linux/if_arp.h>
53 #include <linux/proc_fs.h>
54 #include <linux/rcupdate.h>
55 #include <linux/rcupdate_wait.h>
56 #include <linux/skbuff.h>
57 #include <linux/netlink.h>
58 #include <linux/init.h>
59 #include <linux/list.h>
60 #include <linux/slab.h>
61 #include <linux/export.h>
62 #include <linux/vmalloc.h>
63 #include <linux/notifier.h>
64 #include <net/net_namespace.h>
65 #include <net/inet_dscp.h>
66 #include <net/ip.h>
67 #include <net/protocol.h>
68 #include <net/route.h>
69 #include <net/tcp.h>
70 #include <net/sock.h>
71 #include <net/ip_fib.h>
72 #include <net/fib_notifier.h>
73 #include <trace/events/fib.h>
74 #include "fib_lookup.h"
75 
call_fib_entry_notifier(struct notifier_block * nb,enum fib_event_type event_type,u32 dst,int dst_len,struct fib_alias * fa,struct netlink_ext_ack * extack)76 static int call_fib_entry_notifier(struct notifier_block *nb,
77 				   enum fib_event_type event_type, u32 dst,
78 				   int dst_len, struct fib_alias *fa,
79 				   struct netlink_ext_ack *extack)
80 {
81 	struct fib_entry_notifier_info info = {
82 		.info.extack = extack,
83 		.dst = dst,
84 		.dst_len = dst_len,
85 		.fi = fa->fa_info,
86 		.dscp = fa->fa_dscp,
87 		.type = fa->fa_type,
88 		.tb_id = fa->tb_id,
89 	};
90 	return call_fib4_notifier(nb, event_type, &info.info);
91 }
92 
call_fib_entry_notifiers(struct net * net,enum fib_event_type event_type,u32 dst,int dst_len,struct fib_alias * fa,struct netlink_ext_ack * extack)93 static int call_fib_entry_notifiers(struct net *net,
94 				    enum fib_event_type event_type, u32 dst,
95 				    int dst_len, struct fib_alias *fa,
96 				    struct netlink_ext_ack *extack)
97 {
98 	struct fib_entry_notifier_info info = {
99 		.info.extack = extack,
100 		.dst = dst,
101 		.dst_len = dst_len,
102 		.fi = fa->fa_info,
103 		.dscp = fa->fa_dscp,
104 		.type = fa->fa_type,
105 		.tb_id = fa->tb_id,
106 	};
107 	return call_fib4_notifiers(net, event_type, &info.info);
108 }
109 
110 #define MAX_STAT_DEPTH 32
111 
112 #define KEYLENGTH	(8*sizeof(t_key))
113 #define KEY_MAX		((t_key)~0)
114 
115 typedef unsigned int t_key;
116 
117 #define IS_TRIE(n)	((n)->pos >= KEYLENGTH)
118 #define IS_TNODE(n)	((n)->bits)
119 #define IS_LEAF(n)	(!(n)->bits)
120 
121 struct key_vector {
122 	t_key key;
123 	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
124 	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
125 	unsigned char slen;
126 	union {
127 		/* This list pointer if valid if (pos | bits) == 0 (LEAF) */
128 		struct hlist_head leaf;
129 		/* This array is valid if (pos | bits) > 0 (TNODE) */
130 		DECLARE_FLEX_ARRAY(struct key_vector __rcu *, tnode);
131 	};
132 };
133 
134 struct tnode {
135 	struct rcu_head rcu;
136 	t_key empty_children;		/* KEYLENGTH bits needed */
137 	t_key full_children;		/* KEYLENGTH bits needed */
138 	struct key_vector __rcu *parent;
139 	struct key_vector kv[1];
140 #define tn_bits kv[0].bits
141 };
142 
143 #define TNODE_SIZE(n)	offsetof(struct tnode, kv[0].tnode[n])
144 #define LEAF_SIZE	TNODE_SIZE(1)
145 
146 #ifdef CONFIG_IP_FIB_TRIE_STATS
147 struct trie_use_stats {
148 	unsigned int gets;
149 	unsigned int backtrack;
150 	unsigned int semantic_match_passed;
151 	unsigned int semantic_match_miss;
152 	unsigned int null_node_hit;
153 	unsigned int resize_node_skipped;
154 };
155 #endif
156 
157 struct trie_stat {
158 	unsigned int totdepth;
159 	unsigned int maxdepth;
160 	unsigned int tnodes;
161 	unsigned int leaves;
162 	unsigned int nullpointers;
163 	unsigned int prefixes;
164 	unsigned int nodesizes[MAX_STAT_DEPTH];
165 };
166 
167 struct trie {
168 	struct key_vector kv[1];
169 #ifdef CONFIG_IP_FIB_TRIE_STATS
170 	struct trie_use_stats __percpu *stats;
171 #endif
172 };
173 
174 static struct key_vector *resize(struct trie *t, struct key_vector *tn);
175 static unsigned int tnode_free_size;
176 
177 /*
178  * synchronize_rcu after call_rcu for outstanding dirty memory; it should be
179  * especially useful before resizing the root node with PREEMPT_NONE configs;
180  * the value was obtained experimentally, aiming to avoid visible slowdown.
181  */
182 unsigned int sysctl_fib_sync_mem = 512 * 1024;
183 unsigned int sysctl_fib_sync_mem_min = 64 * 1024;
184 unsigned int sysctl_fib_sync_mem_max = 64 * 1024 * 1024;
185 
186 static struct kmem_cache *fn_alias_kmem __ro_after_init;
187 static struct kmem_cache *trie_leaf_kmem __ro_after_init;
188 
tn_info(struct key_vector * kv)189 static inline struct tnode *tn_info(struct key_vector *kv)
190 {
191 	return container_of(kv, struct tnode, kv[0]);
192 }
193 
194 /* caller must hold RTNL */
195 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
196 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
197 
198 /* caller must hold RCU read lock or RTNL */
199 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
200 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
201 
202 /* wrapper for rcu_assign_pointer */
node_set_parent(struct key_vector * n,struct key_vector * tp)203 static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
204 {
205 	if (n)
206 		rcu_assign_pointer(tn_info(n)->parent, tp);
207 }
208 
209 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
210 
211 /* This provides us with the number of children in this node, in the case of a
212  * leaf this will return 0 meaning none of the children are accessible.
213  */
child_length(const struct key_vector * tn)214 static inline unsigned long child_length(const struct key_vector *tn)
215 {
216 	return (1ul << tn->bits) & ~(1ul);
217 }
218 
219 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
220 
get_index(t_key key,struct key_vector * kv)221 static inline unsigned long get_index(t_key key, struct key_vector *kv)
222 {
223 	unsigned long index = key ^ kv->key;
224 
225 	if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
226 		return 0;
227 
228 	return index >> kv->pos;
229 }
230 
231 /* To understand this stuff, an understanding of keys and all their bits is
232  * necessary. Every node in the trie has a key associated with it, but not
233  * all of the bits in that key are significant.
234  *
235  * Consider a node 'n' and its parent 'tp'.
236  *
237  * If n is a leaf, every bit in its key is significant. Its presence is
238  * necessitated by path compression, since during a tree traversal (when
239  * searching for a leaf - unless we are doing an insertion) we will completely
240  * ignore all skipped bits we encounter. Thus we need to verify, at the end of
241  * a potentially successful search, that we have indeed been walking the
242  * correct key path.
243  *
244  * Note that we can never "miss" the correct key in the tree if present by
245  * following the wrong path. Path compression ensures that segments of the key
246  * that are the same for all keys with a given prefix are skipped, but the
247  * skipped part *is* identical for each node in the subtrie below the skipped
248  * bit! trie_insert() in this implementation takes care of that.
249  *
250  * if n is an internal node - a 'tnode' here, the various parts of its key
251  * have many different meanings.
252  *
253  * Example:
254  * _________________________________________________________________
255  * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
256  * -----------------------------------------------------------------
257  *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
258  *
259  * _________________________________________________________________
260  * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
261  * -----------------------------------------------------------------
262  *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
263  *
264  * tp->pos = 22
265  * tp->bits = 3
266  * n->pos = 13
267  * n->bits = 4
268  *
269  * First, let's just ignore the bits that come before the parent tp, that is
270  * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
271  * point we do not use them for anything.
272  *
273  * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
274  * index into the parent's child array. That is, they will be used to find
275  * 'n' among tp's children.
276  *
277  * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
278  * for the node n.
279  *
280  * All the bits we have seen so far are significant to the node n. The rest
281  * of the bits are really not needed or indeed known in n->key.
282  *
283  * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
284  * n's child array, and will of course be different for each child.
285  *
286  * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
287  * at this point.
288  */
289 
290 static const int halve_threshold = 25;
291 static const int inflate_threshold = 50;
292 static const int halve_threshold_root = 15;
293 static const int inflate_threshold_root = 30;
294 
alias_free_mem_rcu(struct fib_alias * fa)295 static inline void alias_free_mem_rcu(struct fib_alias *fa)
296 {
297 	kfree_rcu(fa, rcu);
298 }
299 
300 #define TNODE_VMALLOC_MAX \
301 	ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
302 
__node_free_rcu(struct rcu_head * head)303 static void __node_free_rcu(struct rcu_head *head)
304 {
305 	struct tnode *n = container_of(head, struct tnode, rcu);
306 
307 	if (!n->tn_bits)
308 		kmem_cache_free(trie_leaf_kmem, n);
309 	else
310 		kvfree(n);
311 }
312 
313 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
314 
tnode_alloc(int bits)315 static struct tnode *tnode_alloc(int bits)
316 {
317 	size_t size;
318 
319 	/* verify bits is within bounds */
320 	if (bits > TNODE_VMALLOC_MAX)
321 		return NULL;
322 
323 	/* determine size and verify it is non-zero and didn't overflow */
324 	size = TNODE_SIZE(1ul << bits);
325 
326 	if (size <= PAGE_SIZE)
327 		return kzalloc(size, GFP_KERNEL);
328 	else
329 		return vzalloc(size);
330 }
331 
empty_child_inc(struct key_vector * n)332 static inline void empty_child_inc(struct key_vector *n)
333 {
334 	tn_info(n)->empty_children++;
335 
336 	if (!tn_info(n)->empty_children)
337 		tn_info(n)->full_children++;
338 }
339 
empty_child_dec(struct key_vector * n)340 static inline void empty_child_dec(struct key_vector *n)
341 {
342 	if (!tn_info(n)->empty_children)
343 		tn_info(n)->full_children--;
344 
345 	tn_info(n)->empty_children--;
346 }
347 
leaf_new(t_key key,struct fib_alias * fa)348 static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
349 {
350 	struct key_vector *l;
351 	struct tnode *kv;
352 
353 	kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
354 	if (!kv)
355 		return NULL;
356 
357 	/* initialize key vector */
358 	l = kv->kv;
359 	l->key = key;
360 	l->pos = 0;
361 	l->bits = 0;
362 	l->slen = fa->fa_slen;
363 
364 	/* link leaf to fib alias */
365 	INIT_HLIST_HEAD(&l->leaf);
366 	hlist_add_head(&fa->fa_list, &l->leaf);
367 
368 	return l;
369 }
370 
tnode_new(t_key key,int pos,int bits)371 static struct key_vector *tnode_new(t_key key, int pos, int bits)
372 {
373 	unsigned int shift = pos + bits;
374 	struct key_vector *tn;
375 	struct tnode *tnode;
376 
377 	/* verify bits and pos their msb bits clear and values are valid */
378 	BUG_ON(!bits || (shift > KEYLENGTH));
379 
380 	tnode = tnode_alloc(bits);
381 	if (!tnode)
382 		return NULL;
383 
384 	pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
385 		 sizeof(struct key_vector *) << bits);
386 
387 	if (bits == KEYLENGTH)
388 		tnode->full_children = 1;
389 	else
390 		tnode->empty_children = 1ul << bits;
391 
392 	tn = tnode->kv;
393 	tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
394 	tn->pos = pos;
395 	tn->bits = bits;
396 	tn->slen = pos;
397 
398 	return tn;
399 }
400 
401 /* Check whether a tnode 'n' is "full", i.e. it is an internal node
402  * and no bits are skipped. See discussion in dyntree paper p. 6
403  */
tnode_full(struct key_vector * tn,struct key_vector * n)404 static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
405 {
406 	return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
407 }
408 
409 /* Add a child at position i overwriting the old value.
410  * Update the value of full_children and empty_children.
411  */
put_child(struct key_vector * tn,unsigned long i,struct key_vector * n)412 static void put_child(struct key_vector *tn, unsigned long i,
413 		      struct key_vector *n)
414 {
415 	struct key_vector *chi = get_child(tn, i);
416 	int isfull, wasfull;
417 
418 	BUG_ON(i >= child_length(tn));
419 
420 	/* update emptyChildren, overflow into fullChildren */
421 	if (!n && chi)
422 		empty_child_inc(tn);
423 	if (n && !chi)
424 		empty_child_dec(tn);
425 
426 	/* update fullChildren */
427 	wasfull = tnode_full(tn, chi);
428 	isfull = tnode_full(tn, n);
429 
430 	if (wasfull && !isfull)
431 		tn_info(tn)->full_children--;
432 	else if (!wasfull && isfull)
433 		tn_info(tn)->full_children++;
434 
435 	if (n && (tn->slen < n->slen))
436 		tn->slen = n->slen;
437 
438 	rcu_assign_pointer(tn->tnode[i], n);
439 }
440 
update_children(struct key_vector * tn)441 static void update_children(struct key_vector *tn)
442 {
443 	unsigned long i;
444 
445 	/* update all of the child parent pointers */
446 	for (i = child_length(tn); i;) {
447 		struct key_vector *inode = get_child(tn, --i);
448 
449 		if (!inode)
450 			continue;
451 
452 		/* Either update the children of a tnode that
453 		 * already belongs to us or update the child
454 		 * to point to ourselves.
455 		 */
456 		if (node_parent(inode) == tn)
457 			update_children(inode);
458 		else
459 			node_set_parent(inode, tn);
460 	}
461 }
462 
put_child_root(struct key_vector * tp,t_key key,struct key_vector * n)463 static inline void put_child_root(struct key_vector *tp, t_key key,
464 				  struct key_vector *n)
465 {
466 	if (IS_TRIE(tp))
467 		rcu_assign_pointer(tp->tnode[0], n);
468 	else
469 		put_child(tp, get_index(key, tp), n);
470 }
471 
tnode_free_init(struct key_vector * tn)472 static inline void tnode_free_init(struct key_vector *tn)
473 {
474 	tn_info(tn)->rcu.next = NULL;
475 }
476 
tnode_free_append(struct key_vector * tn,struct key_vector * n)477 static inline void tnode_free_append(struct key_vector *tn,
478 				     struct key_vector *n)
479 {
480 	tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
481 	tn_info(tn)->rcu.next = &tn_info(n)->rcu;
482 }
483 
tnode_free(struct key_vector * tn)484 static void tnode_free(struct key_vector *tn)
485 {
486 	struct callback_head *head = &tn_info(tn)->rcu;
487 
488 	while (head) {
489 		head = head->next;
490 		tnode_free_size += TNODE_SIZE(1ul << tn->bits);
491 		node_free(tn);
492 
493 		tn = container_of(head, struct tnode, rcu)->kv;
494 	}
495 
496 	if (tnode_free_size >= READ_ONCE(sysctl_fib_sync_mem)) {
497 		tnode_free_size = 0;
498 		synchronize_net();
499 	}
500 }
501 
replace(struct trie * t,struct key_vector * oldtnode,struct key_vector * tn)502 static struct key_vector *replace(struct trie *t,
503 				  struct key_vector *oldtnode,
504 				  struct key_vector *tn)
505 {
506 	struct key_vector *tp = node_parent(oldtnode);
507 	unsigned long i;
508 
509 	/* setup the parent pointer out of and back into this node */
510 	NODE_INIT_PARENT(tn, tp);
511 	put_child_root(tp, tn->key, tn);
512 
513 	/* update all of the child parent pointers */
514 	update_children(tn);
515 
516 	/* all pointers should be clean so we are done */
517 	tnode_free(oldtnode);
518 
519 	/* resize children now that oldtnode is freed */
520 	for (i = child_length(tn); i;) {
521 		struct key_vector *inode = get_child(tn, --i);
522 
523 		/* resize child node */
524 		if (tnode_full(tn, inode))
525 			tn = resize(t, inode);
526 	}
527 
528 	return tp;
529 }
530 
inflate(struct trie * t,struct key_vector * oldtnode)531 static struct key_vector *inflate(struct trie *t,
532 				  struct key_vector *oldtnode)
533 {
534 	struct key_vector *tn;
535 	unsigned long i;
536 	t_key m;
537 
538 	pr_debug("In inflate\n");
539 
540 	tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
541 	if (!tn)
542 		goto notnode;
543 
544 	/* prepare oldtnode to be freed */
545 	tnode_free_init(oldtnode);
546 
547 	/* Assemble all of the pointers in our cluster, in this case that
548 	 * represents all of the pointers out of our allocated nodes that
549 	 * point to existing tnodes and the links between our allocated
550 	 * nodes.
551 	 */
552 	for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
553 		struct key_vector *inode = get_child(oldtnode, --i);
554 		struct key_vector *node0, *node1;
555 		unsigned long j, k;
556 
557 		/* An empty child */
558 		if (!inode)
559 			continue;
560 
561 		/* A leaf or an internal node with skipped bits */
562 		if (!tnode_full(oldtnode, inode)) {
563 			put_child(tn, get_index(inode->key, tn), inode);
564 			continue;
565 		}
566 
567 		/* drop the node in the old tnode free list */
568 		tnode_free_append(oldtnode, inode);
569 
570 		/* An internal node with two children */
571 		if (inode->bits == 1) {
572 			put_child(tn, 2 * i + 1, get_child(inode, 1));
573 			put_child(tn, 2 * i, get_child(inode, 0));
574 			continue;
575 		}
576 
577 		/* We will replace this node 'inode' with two new
578 		 * ones, 'node0' and 'node1', each with half of the
579 		 * original children. The two new nodes will have
580 		 * a position one bit further down the key and this
581 		 * means that the "significant" part of their keys
582 		 * (see the discussion near the top of this file)
583 		 * will differ by one bit, which will be "0" in
584 		 * node0's key and "1" in node1's key. Since we are
585 		 * moving the key position by one step, the bit that
586 		 * we are moving away from - the bit at position
587 		 * (tn->pos) - is the one that will differ between
588 		 * node0 and node1. So... we synthesize that bit in the
589 		 * two new keys.
590 		 */
591 		node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
592 		if (!node1)
593 			goto nomem;
594 		node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
595 
596 		tnode_free_append(tn, node1);
597 		if (!node0)
598 			goto nomem;
599 		tnode_free_append(tn, node0);
600 
601 		/* populate child pointers in new nodes */
602 		for (k = child_length(inode), j = k / 2; j;) {
603 			put_child(node1, --j, get_child(inode, --k));
604 			put_child(node0, j, get_child(inode, j));
605 			put_child(node1, --j, get_child(inode, --k));
606 			put_child(node0, j, get_child(inode, j));
607 		}
608 
609 		/* link new nodes to parent */
610 		NODE_INIT_PARENT(node1, tn);
611 		NODE_INIT_PARENT(node0, tn);
612 
613 		/* link parent to nodes */
614 		put_child(tn, 2 * i + 1, node1);
615 		put_child(tn, 2 * i, node0);
616 	}
617 
618 	/* setup the parent pointers into and out of this node */
619 	return replace(t, oldtnode, tn);
620 nomem:
621 	/* all pointers should be clean so we are done */
622 	tnode_free(tn);
623 notnode:
624 	return NULL;
625 }
626 
halve(struct trie * t,struct key_vector * oldtnode)627 static struct key_vector *halve(struct trie *t,
628 				struct key_vector *oldtnode)
629 {
630 	struct key_vector *tn;
631 	unsigned long i;
632 
633 	pr_debug("In halve\n");
634 
635 	tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
636 	if (!tn)
637 		goto notnode;
638 
639 	/* prepare oldtnode to be freed */
640 	tnode_free_init(oldtnode);
641 
642 	/* Assemble all of the pointers in our cluster, in this case that
643 	 * represents all of the pointers out of our allocated nodes that
644 	 * point to existing tnodes and the links between our allocated
645 	 * nodes.
646 	 */
647 	for (i = child_length(oldtnode); i;) {
648 		struct key_vector *node1 = get_child(oldtnode, --i);
649 		struct key_vector *node0 = get_child(oldtnode, --i);
650 		struct key_vector *inode;
651 
652 		/* At least one of the children is empty */
653 		if (!node1 || !node0) {
654 			put_child(tn, i / 2, node1 ? : node0);
655 			continue;
656 		}
657 
658 		/* Two nonempty children */
659 		inode = tnode_new(node0->key, oldtnode->pos, 1);
660 		if (!inode)
661 			goto nomem;
662 		tnode_free_append(tn, inode);
663 
664 		/* initialize pointers out of node */
665 		put_child(inode, 1, node1);
666 		put_child(inode, 0, node0);
667 		NODE_INIT_PARENT(inode, tn);
668 
669 		/* link parent to node */
670 		put_child(tn, i / 2, inode);
671 	}
672 
673 	/* setup the parent pointers into and out of this node */
674 	return replace(t, oldtnode, tn);
675 nomem:
676 	/* all pointers should be clean so we are done */
677 	tnode_free(tn);
678 notnode:
679 	return NULL;
680 }
681 
collapse(struct trie * t,struct key_vector * oldtnode)682 static struct key_vector *collapse(struct trie *t,
683 				   struct key_vector *oldtnode)
684 {
685 	struct key_vector *n, *tp;
686 	unsigned long i;
687 
688 	/* scan the tnode looking for that one child that might still exist */
689 	for (n = NULL, i = child_length(oldtnode); !n && i;)
690 		n = get_child(oldtnode, --i);
691 
692 	/* compress one level */
693 	tp = node_parent(oldtnode);
694 	put_child_root(tp, oldtnode->key, n);
695 	node_set_parent(n, tp);
696 
697 	/* drop dead node */
698 	node_free(oldtnode);
699 
700 	return tp;
701 }
702 
update_suffix(struct key_vector * tn)703 static unsigned char update_suffix(struct key_vector *tn)
704 {
705 	unsigned char slen = tn->pos;
706 	unsigned long stride, i;
707 	unsigned char slen_max;
708 
709 	/* only vector 0 can have a suffix length greater than or equal to
710 	 * tn->pos + tn->bits, the second highest node will have a suffix
711 	 * length at most of tn->pos + tn->bits - 1
712 	 */
713 	slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
714 
715 	/* search though the list of children looking for nodes that might
716 	 * have a suffix greater than the one we currently have.  This is
717 	 * why we start with a stride of 2 since a stride of 1 would
718 	 * represent the nodes with suffix length equal to tn->pos
719 	 */
720 	for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
721 		struct key_vector *n = get_child(tn, i);
722 
723 		if (!n || (n->slen <= slen))
724 			continue;
725 
726 		/* update stride and slen based on new value */
727 		stride <<= (n->slen - slen);
728 		slen = n->slen;
729 		i &= ~(stride - 1);
730 
731 		/* stop searching if we have hit the maximum possible value */
732 		if (slen >= slen_max)
733 			break;
734 	}
735 
736 	tn->slen = slen;
737 
738 	return slen;
739 }
740 
741 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
742  * the Helsinki University of Technology and Matti Tikkanen of Nokia
743  * Telecommunications, page 6:
744  * "A node is doubled if the ratio of non-empty children to all
745  * children in the *doubled* node is at least 'high'."
746  *
747  * 'high' in this instance is the variable 'inflate_threshold'. It
748  * is expressed as a percentage, so we multiply it with
749  * child_length() and instead of multiplying by 2 (since the
750  * child array will be doubled by inflate()) and multiplying
751  * the left-hand side by 100 (to handle the percentage thing) we
752  * multiply the left-hand side by 50.
753  *
754  * The left-hand side may look a bit weird: child_length(tn)
755  * - tn->empty_children is of course the number of non-null children
756  * in the current node. tn->full_children is the number of "full"
757  * children, that is non-null tnodes with a skip value of 0.
758  * All of those will be doubled in the resulting inflated tnode, so
759  * we just count them one extra time here.
760  *
761  * A clearer way to write this would be:
762  *
763  * to_be_doubled = tn->full_children;
764  * not_to_be_doubled = child_length(tn) - tn->empty_children -
765  *     tn->full_children;
766  *
767  * new_child_length = child_length(tn) * 2;
768  *
769  * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
770  *      new_child_length;
771  * if (new_fill_factor >= inflate_threshold)
772  *
773  * ...and so on, tho it would mess up the while () loop.
774  *
775  * anyway,
776  * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
777  *      inflate_threshold
778  *
779  * avoid a division:
780  * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
781  *      inflate_threshold * new_child_length
782  *
783  * expand not_to_be_doubled and to_be_doubled, and shorten:
784  * 100 * (child_length(tn) - tn->empty_children +
785  *    tn->full_children) >= inflate_threshold * new_child_length
786  *
787  * expand new_child_length:
788  * 100 * (child_length(tn) - tn->empty_children +
789  *    tn->full_children) >=
790  *      inflate_threshold * child_length(tn) * 2
791  *
792  * shorten again:
793  * 50 * (tn->full_children + child_length(tn) -
794  *    tn->empty_children) >= inflate_threshold *
795  *    child_length(tn)
796  *
797  */
should_inflate(struct key_vector * tp,struct key_vector * tn)798 static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
799 {
800 	unsigned long used = child_length(tn);
801 	unsigned long threshold = used;
802 
803 	/* Keep root node larger */
804 	threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
805 	used -= tn_info(tn)->empty_children;
806 	used += tn_info(tn)->full_children;
807 
808 	/* if bits == KEYLENGTH then pos = 0, and will fail below */
809 
810 	return (used > 1) && tn->pos && ((50 * used) >= threshold);
811 }
812 
should_halve(struct key_vector * tp,struct key_vector * tn)813 static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
814 {
815 	unsigned long used = child_length(tn);
816 	unsigned long threshold = used;
817 
818 	/* Keep root node larger */
819 	threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
820 	used -= tn_info(tn)->empty_children;
821 
822 	/* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
823 
824 	return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
825 }
826 
should_collapse(struct key_vector * tn)827 static inline bool should_collapse(struct key_vector *tn)
828 {
829 	unsigned long used = child_length(tn);
830 
831 	used -= tn_info(tn)->empty_children;
832 
833 	/* account for bits == KEYLENGTH case */
834 	if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
835 		used -= KEY_MAX;
836 
837 	/* One child or none, time to drop us from the trie */
838 	return used < 2;
839 }
840 
841 #define MAX_WORK 10
resize(struct trie * t,struct key_vector * tn)842 static struct key_vector *resize(struct trie *t, struct key_vector *tn)
843 {
844 #ifdef CONFIG_IP_FIB_TRIE_STATS
845 	struct trie_use_stats __percpu *stats = t->stats;
846 #endif
847 	struct key_vector *tp = node_parent(tn);
848 	unsigned long cindex = get_index(tn->key, tp);
849 	int max_work = MAX_WORK;
850 
851 	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
852 		 tn, inflate_threshold, halve_threshold);
853 
854 	/* track the tnode via the pointer from the parent instead of
855 	 * doing it ourselves.  This way we can let RCU fully do its
856 	 * thing without us interfering
857 	 */
858 	BUG_ON(tn != get_child(tp, cindex));
859 
860 	/* Double as long as the resulting node has a number of
861 	 * nonempty nodes that are above the threshold.
862 	 */
863 	while (should_inflate(tp, tn) && max_work) {
864 		tp = inflate(t, tn);
865 		if (!tp) {
866 #ifdef CONFIG_IP_FIB_TRIE_STATS
867 			this_cpu_inc(stats->resize_node_skipped);
868 #endif
869 			break;
870 		}
871 
872 		max_work--;
873 		tn = get_child(tp, cindex);
874 	}
875 
876 	/* update parent in case inflate failed */
877 	tp = node_parent(tn);
878 
879 	/* Return if at least one inflate is run */
880 	if (max_work != MAX_WORK)
881 		return tp;
882 
883 	/* Halve as long as the number of empty children in this
884 	 * node is above threshold.
885 	 */
886 	while (should_halve(tp, tn) && max_work) {
887 		tp = halve(t, tn);
888 		if (!tp) {
889 #ifdef CONFIG_IP_FIB_TRIE_STATS
890 			this_cpu_inc(stats->resize_node_skipped);
891 #endif
892 			break;
893 		}
894 
895 		max_work--;
896 		tn = get_child(tp, cindex);
897 	}
898 
899 	/* Only one child remains */
900 	if (should_collapse(tn))
901 		return collapse(t, tn);
902 
903 	/* update parent in case halve failed */
904 	return node_parent(tn);
905 }
906 
node_pull_suffix(struct key_vector * tn,unsigned char slen)907 static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
908 {
909 	unsigned char node_slen = tn->slen;
910 
911 	while ((node_slen > tn->pos) && (node_slen > slen)) {
912 		slen = update_suffix(tn);
913 		if (node_slen == slen)
914 			break;
915 
916 		tn = node_parent(tn);
917 		node_slen = tn->slen;
918 	}
919 }
920 
node_push_suffix(struct key_vector * tn,unsigned char slen)921 static void node_push_suffix(struct key_vector *tn, unsigned char slen)
922 {
923 	while (tn->slen < slen) {
924 		tn->slen = slen;
925 		tn = node_parent(tn);
926 	}
927 }
928 
929 /* rcu_read_lock needs to be hold by caller from readside */
fib_find_node(struct trie * t,struct key_vector ** tp,u32 key)930 static struct key_vector *fib_find_node(struct trie *t,
931 					struct key_vector **tp, u32 key)
932 {
933 	struct key_vector *pn, *n = t->kv;
934 	unsigned long index = 0;
935 
936 	do {
937 		pn = n;
938 		n = get_child_rcu(n, index);
939 
940 		if (!n)
941 			break;
942 
943 		index = get_cindex(key, n);
944 
945 		/* This bit of code is a bit tricky but it combines multiple
946 		 * checks into a single check.  The prefix consists of the
947 		 * prefix plus zeros for the bits in the cindex. The index
948 		 * is the difference between the key and this value.  From
949 		 * this we can actually derive several pieces of data.
950 		 *   if (index >= (1ul << bits))
951 		 *     we have a mismatch in skip bits and failed
952 		 *   else
953 		 *     we know the value is cindex
954 		 *
955 		 * This check is safe even if bits == KEYLENGTH due to the
956 		 * fact that we can only allocate a node with 32 bits if a
957 		 * long is greater than 32 bits.
958 		 */
959 		if (index >= (1ul << n->bits)) {
960 			n = NULL;
961 			break;
962 		}
963 
964 		/* keep searching until we find a perfect match leaf or NULL */
965 	} while (IS_TNODE(n));
966 
967 	*tp = pn;
968 
969 	return n;
970 }
971 
972 /* Return the first fib alias matching DSCP with
973  * priority less than or equal to PRIO.
974  * If 'find_first' is set, return the first matching
975  * fib alias, regardless of DSCP and priority.
976  */
fib_find_alias(struct hlist_head * fah,u8 slen,dscp_t dscp,u32 prio,u32 tb_id,bool find_first)977 static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
978 					dscp_t dscp, u32 prio, u32 tb_id,
979 					bool find_first)
980 {
981 	struct fib_alias *fa;
982 
983 	if (!fah)
984 		return NULL;
985 
986 	hlist_for_each_entry(fa, fah, fa_list) {
987 		/* Avoid Sparse warning when using dscp_t in inequalities */
988 		u8 __fa_dscp = inet_dscp_to_dsfield(fa->fa_dscp);
989 		u8 __dscp = inet_dscp_to_dsfield(dscp);
990 
991 		if (fa->fa_slen < slen)
992 			continue;
993 		if (fa->fa_slen != slen)
994 			break;
995 		if (fa->tb_id > tb_id)
996 			continue;
997 		if (fa->tb_id != tb_id)
998 			break;
999 		if (find_first)
1000 			return fa;
1001 		if (__fa_dscp > __dscp)
1002 			continue;
1003 		if (fa->fa_info->fib_priority >= prio || __fa_dscp < __dscp)
1004 			return fa;
1005 	}
1006 
1007 	return NULL;
1008 }
1009 
1010 static struct fib_alias *
fib_find_matching_alias(struct net * net,const struct fib_rt_info * fri)1011 fib_find_matching_alias(struct net *net, const struct fib_rt_info *fri)
1012 {
1013 	u8 slen = KEYLENGTH - fri->dst_len;
1014 	struct key_vector *l, *tp;
1015 	struct fib_table *tb;
1016 	struct fib_alias *fa;
1017 	struct trie *t;
1018 
1019 	tb = fib_get_table(net, fri->tb_id);
1020 	if (!tb)
1021 		return NULL;
1022 
1023 	t = (struct trie *)tb->tb_data;
1024 	l = fib_find_node(t, &tp, be32_to_cpu(fri->dst));
1025 	if (!l)
1026 		return NULL;
1027 
1028 	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1029 		if (fa->fa_slen == slen && fa->tb_id == fri->tb_id &&
1030 		    fa->fa_dscp == fri->dscp && fa->fa_info == fri->fi &&
1031 		    fa->fa_type == fri->type)
1032 			return fa;
1033 	}
1034 
1035 	return NULL;
1036 }
1037 
fib_alias_hw_flags_set(struct net * net,const struct fib_rt_info * fri)1038 void fib_alias_hw_flags_set(struct net *net, const struct fib_rt_info *fri)
1039 {
1040 	u8 fib_notify_on_flag_change;
1041 	struct fib_alias *fa_match;
1042 	struct sk_buff *skb;
1043 	int err;
1044 
1045 	rcu_read_lock();
1046 
1047 	fa_match = fib_find_matching_alias(net, fri);
1048 	if (!fa_match)
1049 		goto out;
1050 
1051 	/* These are paired with the WRITE_ONCE() happening in this function.
1052 	 * The reason is that we are only protected by RCU at this point.
1053 	 */
1054 	if (READ_ONCE(fa_match->offload) == fri->offload &&
1055 	    READ_ONCE(fa_match->trap) == fri->trap &&
1056 	    READ_ONCE(fa_match->offload_failed) == fri->offload_failed)
1057 		goto out;
1058 
1059 	WRITE_ONCE(fa_match->offload, fri->offload);
1060 	WRITE_ONCE(fa_match->trap, fri->trap);
1061 
1062 	fib_notify_on_flag_change = READ_ONCE(net->ipv4.sysctl_fib_notify_on_flag_change);
1063 
1064 	/* 2 means send notifications only if offload_failed was changed. */
1065 	if (fib_notify_on_flag_change == 2 &&
1066 	    READ_ONCE(fa_match->offload_failed) == fri->offload_failed)
1067 		goto out;
1068 
1069 	WRITE_ONCE(fa_match->offload_failed, fri->offload_failed);
1070 
1071 	if (!fib_notify_on_flag_change)
1072 		goto out;
1073 
1074 	skb = nlmsg_new(fib_nlmsg_size(fa_match->fa_info), GFP_ATOMIC);
1075 	if (!skb) {
1076 		err = -ENOBUFS;
1077 		goto errout;
1078 	}
1079 
1080 	err = fib_dump_info(skb, 0, 0, RTM_NEWROUTE, fri, 0);
1081 	if (err < 0) {
1082 		/* -EMSGSIZE implies BUG in fib_nlmsg_size() */
1083 		WARN_ON(err == -EMSGSIZE);
1084 		kfree_skb(skb);
1085 		goto errout;
1086 	}
1087 
1088 	rtnl_notify(skb, net, 0, RTNLGRP_IPV4_ROUTE, NULL, GFP_ATOMIC);
1089 	goto out;
1090 
1091 errout:
1092 	rtnl_set_sk_err(net, RTNLGRP_IPV4_ROUTE, err);
1093 out:
1094 	rcu_read_unlock();
1095 }
1096 EXPORT_SYMBOL_GPL(fib_alias_hw_flags_set);
1097 
trie_rebalance(struct trie * t,struct key_vector * tn)1098 static void trie_rebalance(struct trie *t, struct key_vector *tn)
1099 {
1100 	while (!IS_TRIE(tn))
1101 		tn = resize(t, tn);
1102 }
1103 
fib_insert_node(struct trie * t,struct key_vector * tp,struct fib_alias * new,t_key key)1104 static int fib_insert_node(struct trie *t, struct key_vector *tp,
1105 			   struct fib_alias *new, t_key key)
1106 {
1107 	struct key_vector *n, *l;
1108 
1109 	l = leaf_new(key, new);
1110 	if (!l)
1111 		goto noleaf;
1112 
1113 	/* retrieve child from parent node */
1114 	n = get_child(tp, get_index(key, tp));
1115 
1116 	/* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1117 	 *
1118 	 *  Add a new tnode here
1119 	 *  first tnode need some special handling
1120 	 *  leaves us in position for handling as case 3
1121 	 */
1122 	if (n) {
1123 		struct key_vector *tn;
1124 
1125 		tn = tnode_new(key, __fls(key ^ n->key), 1);
1126 		if (!tn)
1127 			goto notnode;
1128 
1129 		/* initialize routes out of node */
1130 		NODE_INIT_PARENT(tn, tp);
1131 		put_child(tn, get_index(key, tn) ^ 1, n);
1132 
1133 		/* start adding routes into the node */
1134 		put_child_root(tp, key, tn);
1135 		node_set_parent(n, tn);
1136 
1137 		/* parent now has a NULL spot where the leaf can go */
1138 		tp = tn;
1139 	}
1140 
1141 	/* Case 3: n is NULL, and will just insert a new leaf */
1142 	node_push_suffix(tp, new->fa_slen);
1143 	NODE_INIT_PARENT(l, tp);
1144 	put_child_root(tp, key, l);
1145 	trie_rebalance(t, tp);
1146 
1147 	return 0;
1148 notnode:
1149 	node_free(l);
1150 noleaf:
1151 	return -ENOMEM;
1152 }
1153 
fib_insert_alias(struct trie * t,struct key_vector * tp,struct key_vector * l,struct fib_alias * new,struct fib_alias * fa,t_key key)1154 static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1155 			    struct key_vector *l, struct fib_alias *new,
1156 			    struct fib_alias *fa, t_key key)
1157 {
1158 	if (!l)
1159 		return fib_insert_node(t, tp, new, key);
1160 
1161 	if (fa) {
1162 		hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1163 	} else {
1164 		struct fib_alias *last;
1165 
1166 		hlist_for_each_entry(last, &l->leaf, fa_list) {
1167 			if (new->fa_slen < last->fa_slen)
1168 				break;
1169 			if ((new->fa_slen == last->fa_slen) &&
1170 			    (new->tb_id > last->tb_id))
1171 				break;
1172 			fa = last;
1173 		}
1174 
1175 		if (fa)
1176 			hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1177 		else
1178 			hlist_add_head_rcu(&new->fa_list, &l->leaf);
1179 	}
1180 
1181 	/* if we added to the tail node then we need to update slen */
1182 	if (l->slen < new->fa_slen) {
1183 		l->slen = new->fa_slen;
1184 		node_push_suffix(tp, new->fa_slen);
1185 	}
1186 
1187 	return 0;
1188 }
1189 
1190 static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1191 			     struct key_vector *l, struct fib_alias *old);
1192 
1193 /* Caller must hold RTNL. */
fib_table_insert(struct net * net,struct fib_table * tb,struct fib_config * cfg,struct netlink_ext_ack * extack)1194 int fib_table_insert(struct net *net, struct fib_table *tb,
1195 		     struct fib_config *cfg, struct netlink_ext_ack *extack)
1196 {
1197 	struct trie *t = (struct trie *)tb->tb_data;
1198 	struct fib_alias *fa, *new_fa;
1199 	struct key_vector *l, *tp;
1200 	u16 nlflags = NLM_F_EXCL;
1201 	struct fib_info *fi;
1202 	u8 plen = cfg->fc_dst_len;
1203 	u8 slen = KEYLENGTH - plen;
1204 	dscp_t dscp;
1205 	u32 key;
1206 	int err;
1207 
1208 	key = ntohl(cfg->fc_dst);
1209 
1210 	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1211 
1212 	fi = fib_create_info(cfg, extack);
1213 	if (IS_ERR(fi)) {
1214 		err = PTR_ERR(fi);
1215 		goto err;
1216 	}
1217 
1218 	dscp = cfg->fc_dscp;
1219 	l = fib_find_node(t, &tp, key);
1220 	fa = l ? fib_find_alias(&l->leaf, slen, dscp, fi->fib_priority,
1221 				tb->tb_id, false) : NULL;
1222 
1223 	/* Now fa, if non-NULL, points to the first fib alias
1224 	 * with the same keys [prefix,dscp,priority], if such key already
1225 	 * exists or to the node before which we will insert new one.
1226 	 *
1227 	 * If fa is NULL, we will need to allocate a new one and
1228 	 * insert to the tail of the section matching the suffix length
1229 	 * of the new alias.
1230 	 */
1231 
1232 	if (fa && fa->fa_dscp == dscp &&
1233 	    fa->fa_info->fib_priority == fi->fib_priority) {
1234 		struct fib_alias *fa_first, *fa_match;
1235 
1236 		err = -EEXIST;
1237 		if (cfg->fc_nlflags & NLM_F_EXCL)
1238 			goto out;
1239 
1240 		nlflags &= ~NLM_F_EXCL;
1241 
1242 		/* We have 2 goals:
1243 		 * 1. Find exact match for type, scope, fib_info to avoid
1244 		 * duplicate routes
1245 		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1246 		 */
1247 		fa_match = NULL;
1248 		fa_first = fa;
1249 		hlist_for_each_entry_from(fa, fa_list) {
1250 			if ((fa->fa_slen != slen) ||
1251 			    (fa->tb_id != tb->tb_id) ||
1252 			    (fa->fa_dscp != dscp))
1253 				break;
1254 			if (fa->fa_info->fib_priority != fi->fib_priority)
1255 				break;
1256 			if (fa->fa_type == cfg->fc_type &&
1257 			    fa->fa_info == fi) {
1258 				fa_match = fa;
1259 				break;
1260 			}
1261 		}
1262 
1263 		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1264 			struct fib_info *fi_drop;
1265 			u8 state;
1266 
1267 			nlflags |= NLM_F_REPLACE;
1268 			fa = fa_first;
1269 			if (fa_match) {
1270 				if (fa == fa_match)
1271 					err = 0;
1272 				goto out;
1273 			}
1274 			err = -ENOBUFS;
1275 			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1276 			if (!new_fa)
1277 				goto out;
1278 
1279 			fi_drop = fa->fa_info;
1280 			new_fa->fa_dscp = fa->fa_dscp;
1281 			new_fa->fa_info = fi;
1282 			new_fa->fa_type = cfg->fc_type;
1283 			state = fa->fa_state;
1284 			new_fa->fa_state = state & ~FA_S_ACCESSED;
1285 			new_fa->fa_slen = fa->fa_slen;
1286 			new_fa->tb_id = tb->tb_id;
1287 			new_fa->fa_default = -1;
1288 			new_fa->offload = 0;
1289 			new_fa->trap = 0;
1290 			new_fa->offload_failed = 0;
1291 
1292 			hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1293 
1294 			if (fib_find_alias(&l->leaf, fa->fa_slen, 0, 0,
1295 					   tb->tb_id, true) == new_fa) {
1296 				enum fib_event_type fib_event;
1297 
1298 				fib_event = FIB_EVENT_ENTRY_REPLACE;
1299 				err = call_fib_entry_notifiers(net, fib_event,
1300 							       key, plen,
1301 							       new_fa, extack);
1302 				if (err) {
1303 					hlist_replace_rcu(&new_fa->fa_list,
1304 							  &fa->fa_list);
1305 					goto out_free_new_fa;
1306 				}
1307 			}
1308 
1309 			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1310 				  tb->tb_id, &cfg->fc_nlinfo, nlflags);
1311 
1312 			alias_free_mem_rcu(fa);
1313 
1314 			fib_release_info(fi_drop);
1315 			if (state & FA_S_ACCESSED)
1316 				rt_cache_flush(cfg->fc_nlinfo.nl_net);
1317 
1318 			goto succeeded;
1319 		}
1320 		/* Error if we find a perfect match which
1321 		 * uses the same scope, type, and nexthop
1322 		 * information.
1323 		 */
1324 		if (fa_match)
1325 			goto out;
1326 
1327 		if (cfg->fc_nlflags & NLM_F_APPEND)
1328 			nlflags |= NLM_F_APPEND;
1329 		else
1330 			fa = fa_first;
1331 	}
1332 	err = -ENOENT;
1333 	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1334 		goto out;
1335 
1336 	nlflags |= NLM_F_CREATE;
1337 	err = -ENOBUFS;
1338 	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1339 	if (!new_fa)
1340 		goto out;
1341 
1342 	new_fa->fa_info = fi;
1343 	new_fa->fa_dscp = dscp;
1344 	new_fa->fa_type = cfg->fc_type;
1345 	new_fa->fa_state = 0;
1346 	new_fa->fa_slen = slen;
1347 	new_fa->tb_id = tb->tb_id;
1348 	new_fa->fa_default = -1;
1349 	new_fa->offload = 0;
1350 	new_fa->trap = 0;
1351 	new_fa->offload_failed = 0;
1352 
1353 	/* Insert new entry to the list. */
1354 	err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1355 	if (err)
1356 		goto out_free_new_fa;
1357 
1358 	/* The alias was already inserted, so the node must exist. */
1359 	l = l ? l : fib_find_node(t, &tp, key);
1360 	if (WARN_ON_ONCE(!l)) {
1361 		err = -ENOENT;
1362 		goto out_free_new_fa;
1363 	}
1364 
1365 	if (fib_find_alias(&l->leaf, new_fa->fa_slen, 0, 0, tb->tb_id, true) ==
1366 	    new_fa) {
1367 		enum fib_event_type fib_event;
1368 
1369 		fib_event = FIB_EVENT_ENTRY_REPLACE;
1370 		err = call_fib_entry_notifiers(net, fib_event, key, plen,
1371 					       new_fa, extack);
1372 		if (err)
1373 			goto out_remove_new_fa;
1374 	}
1375 
1376 	if (!plen)
1377 		tb->tb_num_default++;
1378 
1379 	rt_cache_flush(cfg->fc_nlinfo.nl_net);
1380 	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1381 		  &cfg->fc_nlinfo, nlflags);
1382 succeeded:
1383 	return 0;
1384 
1385 out_remove_new_fa:
1386 	fib_remove_alias(t, tp, l, new_fa);
1387 out_free_new_fa:
1388 	kmem_cache_free(fn_alias_kmem, new_fa);
1389 out:
1390 	fib_release_info(fi);
1391 err:
1392 	return err;
1393 }
1394 
prefix_mismatch(t_key key,struct key_vector * n)1395 static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1396 {
1397 	t_key prefix = n->key;
1398 
1399 	return (key ^ prefix) & (prefix | -prefix);
1400 }
1401 
fib_lookup_good_nhc(const struct fib_nh_common * nhc,int fib_flags,const struct flowi4 * flp)1402 bool fib_lookup_good_nhc(const struct fib_nh_common *nhc, int fib_flags,
1403 			 const struct flowi4 *flp)
1404 {
1405 	if (nhc->nhc_flags & RTNH_F_DEAD)
1406 		return false;
1407 
1408 	if (ip_ignore_linkdown(nhc->nhc_dev) &&
1409 	    nhc->nhc_flags & RTNH_F_LINKDOWN &&
1410 	    !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1411 		return false;
1412 
1413 	if (flp->flowi4_oif && flp->flowi4_oif != nhc->nhc_oif)
1414 		return false;
1415 
1416 	return true;
1417 }
1418 
1419 /* should be called with rcu_read_lock */
fib_table_lookup(struct fib_table * tb,const struct flowi4 * flp,struct fib_result * res,int fib_flags)1420 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1421 		     struct fib_result *res, int fib_flags)
1422 {
1423 	struct trie *t = (struct trie *) tb->tb_data;
1424 #ifdef CONFIG_IP_FIB_TRIE_STATS
1425 	struct trie_use_stats __percpu *stats = t->stats;
1426 #endif
1427 	const t_key key = ntohl(flp->daddr);
1428 	struct key_vector *n, *pn;
1429 	struct fib_alias *fa;
1430 	unsigned long index;
1431 	t_key cindex;
1432 
1433 	pn = t->kv;
1434 	cindex = 0;
1435 
1436 	n = get_child_rcu(pn, cindex);
1437 	if (!n) {
1438 		trace_fib_table_lookup(tb->tb_id, flp, NULL, -EAGAIN);
1439 		return -EAGAIN;
1440 	}
1441 
1442 #ifdef CONFIG_IP_FIB_TRIE_STATS
1443 	this_cpu_inc(stats->gets);
1444 #endif
1445 
1446 	/* Step 1: Travel to the longest prefix match in the trie */
1447 	for (;;) {
1448 		index = get_cindex(key, n);
1449 
1450 		/* This bit of code is a bit tricky but it combines multiple
1451 		 * checks into a single check.  The prefix consists of the
1452 		 * prefix plus zeros for the "bits" in the prefix. The index
1453 		 * is the difference between the key and this value.  From
1454 		 * this we can actually derive several pieces of data.
1455 		 *   if (index >= (1ul << bits))
1456 		 *     we have a mismatch in skip bits and failed
1457 		 *   else
1458 		 *     we know the value is cindex
1459 		 *
1460 		 * This check is safe even if bits == KEYLENGTH due to the
1461 		 * fact that we can only allocate a node with 32 bits if a
1462 		 * long is greater than 32 bits.
1463 		 */
1464 		if (index >= (1ul << n->bits))
1465 			break;
1466 
1467 		/* we have found a leaf. Prefixes have already been compared */
1468 		if (IS_LEAF(n))
1469 			goto found;
1470 
1471 		/* only record pn and cindex if we are going to be chopping
1472 		 * bits later.  Otherwise we are just wasting cycles.
1473 		 */
1474 		if (n->slen > n->pos) {
1475 			pn = n;
1476 			cindex = index;
1477 		}
1478 
1479 		n = get_child_rcu(n, index);
1480 		if (unlikely(!n))
1481 			goto backtrace;
1482 	}
1483 
1484 	/* Step 2: Sort out leaves and begin backtracing for longest prefix */
1485 	for (;;) {
1486 		/* record the pointer where our next node pointer is stored */
1487 		struct key_vector __rcu **cptr = n->tnode;
1488 
1489 		/* This test verifies that none of the bits that differ
1490 		 * between the key and the prefix exist in the region of
1491 		 * the lsb and higher in the prefix.
1492 		 */
1493 		if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1494 			goto backtrace;
1495 
1496 		/* exit out and process leaf */
1497 		if (unlikely(IS_LEAF(n)))
1498 			break;
1499 
1500 		/* Don't bother recording parent info.  Since we are in
1501 		 * prefix match mode we will have to come back to wherever
1502 		 * we started this traversal anyway
1503 		 */
1504 
1505 		while ((n = rcu_dereference(*cptr)) == NULL) {
1506 backtrace:
1507 #ifdef CONFIG_IP_FIB_TRIE_STATS
1508 			if (!n)
1509 				this_cpu_inc(stats->null_node_hit);
1510 #endif
1511 			/* If we are at cindex 0 there are no more bits for
1512 			 * us to strip at this level so we must ascend back
1513 			 * up one level to see if there are any more bits to
1514 			 * be stripped there.
1515 			 */
1516 			while (!cindex) {
1517 				t_key pkey = pn->key;
1518 
1519 				/* If we don't have a parent then there is
1520 				 * nothing for us to do as we do not have any
1521 				 * further nodes to parse.
1522 				 */
1523 				if (IS_TRIE(pn)) {
1524 					trace_fib_table_lookup(tb->tb_id, flp,
1525 							       NULL, -EAGAIN);
1526 					return -EAGAIN;
1527 				}
1528 #ifdef CONFIG_IP_FIB_TRIE_STATS
1529 				this_cpu_inc(stats->backtrack);
1530 #endif
1531 				/* Get Child's index */
1532 				pn = node_parent_rcu(pn);
1533 				cindex = get_index(pkey, pn);
1534 			}
1535 
1536 			/* strip the least significant bit from the cindex */
1537 			cindex &= cindex - 1;
1538 
1539 			/* grab pointer for next child node */
1540 			cptr = &pn->tnode[cindex];
1541 		}
1542 	}
1543 
1544 found:
1545 	/* this line carries forward the xor from earlier in the function */
1546 	index = key ^ n->key;
1547 
1548 	/* Step 3: Process the leaf, if that fails fall back to backtracing */
1549 	hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1550 		struct fib_info *fi = fa->fa_info;
1551 		struct fib_nh_common *nhc;
1552 		int nhsel, err;
1553 
1554 		if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
1555 			if (index >= (1ul << fa->fa_slen))
1556 				continue;
1557 		}
1558 		if (fa->fa_dscp && !fib_dscp_masked_match(fa->fa_dscp, flp))
1559 			continue;
1560 		/* Paired with WRITE_ONCE() in fib_release_info() */
1561 		if (READ_ONCE(fi->fib_dead))
1562 			continue;
1563 		if (fa->fa_info->fib_scope < flp->flowi4_scope)
1564 			continue;
1565 		fib_alias_accessed(fa);
1566 		err = fib_props[fa->fa_type].error;
1567 		if (unlikely(err < 0)) {
1568 out_reject:
1569 #ifdef CONFIG_IP_FIB_TRIE_STATS
1570 			this_cpu_inc(stats->semantic_match_passed);
1571 #endif
1572 			trace_fib_table_lookup(tb->tb_id, flp, NULL, err);
1573 			return err;
1574 		}
1575 		if (fi->fib_flags & RTNH_F_DEAD)
1576 			continue;
1577 
1578 		if (unlikely(fi->nh)) {
1579 			if (nexthop_is_blackhole(fi->nh)) {
1580 				err = fib_props[RTN_BLACKHOLE].error;
1581 				goto out_reject;
1582 			}
1583 
1584 			nhc = nexthop_get_nhc_lookup(fi->nh, fib_flags, flp,
1585 						     &nhsel);
1586 			if (nhc)
1587 				goto set_result;
1588 			goto miss;
1589 		}
1590 
1591 		for (nhsel = 0; nhsel < fib_info_num_path(fi); nhsel++) {
1592 			nhc = fib_info_nhc(fi, nhsel);
1593 
1594 			if (!fib_lookup_good_nhc(nhc, fib_flags, flp))
1595 				continue;
1596 set_result:
1597 			if (!(fib_flags & FIB_LOOKUP_NOREF))
1598 				refcount_inc(&fi->fib_clntref);
1599 
1600 			res->prefix = htonl(n->key);
1601 			res->prefixlen = KEYLENGTH - fa->fa_slen;
1602 			res->nh_sel = nhsel;
1603 			res->nhc = nhc;
1604 			res->type = fa->fa_type;
1605 			res->scope = fi->fib_scope;
1606 			res->dscp = fa->fa_dscp;
1607 			res->fi = fi;
1608 			res->table = tb;
1609 			res->fa_head = &n->leaf;
1610 #ifdef CONFIG_IP_FIB_TRIE_STATS
1611 			this_cpu_inc(stats->semantic_match_passed);
1612 #endif
1613 			trace_fib_table_lookup(tb->tb_id, flp, nhc, err);
1614 
1615 			return err;
1616 		}
1617 	}
1618 miss:
1619 #ifdef CONFIG_IP_FIB_TRIE_STATS
1620 	this_cpu_inc(stats->semantic_match_miss);
1621 #endif
1622 	goto backtrace;
1623 }
1624 EXPORT_SYMBOL_GPL(fib_table_lookup);
1625 
fib_remove_alias(struct trie * t,struct key_vector * tp,struct key_vector * l,struct fib_alias * old)1626 static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1627 			     struct key_vector *l, struct fib_alias *old)
1628 {
1629 	/* record the location of the previous list_info entry */
1630 	struct hlist_node **pprev = old->fa_list.pprev;
1631 	struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1632 
1633 	/* remove the fib_alias from the list */
1634 	hlist_del_rcu(&old->fa_list);
1635 
1636 	/* if we emptied the list this leaf will be freed and we can sort
1637 	 * out parent suffix lengths as a part of trie_rebalance
1638 	 */
1639 	if (hlist_empty(&l->leaf)) {
1640 		if (tp->slen == l->slen)
1641 			node_pull_suffix(tp, tp->pos);
1642 		put_child_root(tp, l->key, NULL);
1643 		node_free(l);
1644 		trie_rebalance(t, tp);
1645 		return;
1646 	}
1647 
1648 	/* only access fa if it is pointing at the last valid hlist_node */
1649 	if (*pprev)
1650 		return;
1651 
1652 	/* update the trie with the latest suffix length */
1653 	l->slen = fa->fa_slen;
1654 	node_pull_suffix(tp, fa->fa_slen);
1655 }
1656 
fib_notify_alias_delete(struct net * net,u32 key,struct hlist_head * fah,struct fib_alias * fa_to_delete,struct netlink_ext_ack * extack)1657 static void fib_notify_alias_delete(struct net *net, u32 key,
1658 				    struct hlist_head *fah,
1659 				    struct fib_alias *fa_to_delete,
1660 				    struct netlink_ext_ack *extack)
1661 {
1662 	struct fib_alias *fa_next, *fa_to_notify;
1663 	u32 tb_id = fa_to_delete->tb_id;
1664 	u8 slen = fa_to_delete->fa_slen;
1665 	enum fib_event_type fib_event;
1666 
1667 	/* Do not notify if we do not care about the route. */
1668 	if (fib_find_alias(fah, slen, 0, 0, tb_id, true) != fa_to_delete)
1669 		return;
1670 
1671 	/* Determine if the route should be replaced by the next route in the
1672 	 * list.
1673 	 */
1674 	fa_next = hlist_entry_safe(fa_to_delete->fa_list.next,
1675 				   struct fib_alias, fa_list);
1676 	if (fa_next && fa_next->fa_slen == slen && fa_next->tb_id == tb_id) {
1677 		fib_event = FIB_EVENT_ENTRY_REPLACE;
1678 		fa_to_notify = fa_next;
1679 	} else {
1680 		fib_event = FIB_EVENT_ENTRY_DEL;
1681 		fa_to_notify = fa_to_delete;
1682 	}
1683 	call_fib_entry_notifiers(net, fib_event, key, KEYLENGTH - slen,
1684 				 fa_to_notify, extack);
1685 }
1686 
1687 /* Caller must hold RTNL. */
fib_table_delete(struct net * net,struct fib_table * tb,struct fib_config * cfg,struct netlink_ext_ack * extack)1688 int fib_table_delete(struct net *net, struct fib_table *tb,
1689 		     struct fib_config *cfg, struct netlink_ext_ack *extack)
1690 {
1691 	struct trie *t = (struct trie *) tb->tb_data;
1692 	struct fib_alias *fa, *fa_to_delete;
1693 	struct key_vector *l, *tp;
1694 	u8 plen = cfg->fc_dst_len;
1695 	u8 slen = KEYLENGTH - plen;
1696 	dscp_t dscp;
1697 	u32 key;
1698 
1699 	key = ntohl(cfg->fc_dst);
1700 
1701 	l = fib_find_node(t, &tp, key);
1702 	if (!l)
1703 		return -ESRCH;
1704 
1705 	dscp = cfg->fc_dscp;
1706 	fa = fib_find_alias(&l->leaf, slen, dscp, 0, tb->tb_id, false);
1707 	if (!fa)
1708 		return -ESRCH;
1709 
1710 	pr_debug("Deleting %08x/%d dsfield=0x%02x t=%p\n", key, plen,
1711 		 inet_dscp_to_dsfield(dscp), t);
1712 
1713 	fa_to_delete = NULL;
1714 	hlist_for_each_entry_from(fa, fa_list) {
1715 		struct fib_info *fi = fa->fa_info;
1716 
1717 		if ((fa->fa_slen != slen) ||
1718 		    (fa->tb_id != tb->tb_id) ||
1719 		    (fa->fa_dscp != dscp))
1720 			break;
1721 
1722 		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1723 		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1724 		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1725 		    (!cfg->fc_prefsrc ||
1726 		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1727 		    (!cfg->fc_protocol ||
1728 		     fi->fib_protocol == cfg->fc_protocol) &&
1729 		    fib_nh_match(net, cfg, fi, extack) == 0 &&
1730 		    fib_metrics_match(cfg, fi)) {
1731 			fa_to_delete = fa;
1732 			break;
1733 		}
1734 	}
1735 
1736 	if (!fa_to_delete)
1737 		return -ESRCH;
1738 
1739 	fib_notify_alias_delete(net, key, &l->leaf, fa_to_delete, extack);
1740 	rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1741 		  &cfg->fc_nlinfo, 0);
1742 
1743 	if (!plen)
1744 		tb->tb_num_default--;
1745 
1746 	fib_remove_alias(t, tp, l, fa_to_delete);
1747 
1748 	if (fa_to_delete->fa_state & FA_S_ACCESSED)
1749 		rt_cache_flush(cfg->fc_nlinfo.nl_net);
1750 
1751 	fib_release_info(fa_to_delete->fa_info);
1752 	alias_free_mem_rcu(fa_to_delete);
1753 	return 0;
1754 }
1755 
1756 /* Scan for the next leaf starting at the provided key value */
leaf_walk_rcu(struct key_vector ** tn,t_key key)1757 static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1758 {
1759 	struct key_vector *pn, *n = *tn;
1760 	unsigned long cindex;
1761 
1762 	/* this loop is meant to try and find the key in the trie */
1763 	do {
1764 		/* record parent and next child index */
1765 		pn = n;
1766 		cindex = (key > pn->key) ? get_index(key, pn) : 0;
1767 
1768 		if (cindex >> pn->bits)
1769 			break;
1770 
1771 		/* descend into the next child */
1772 		n = get_child_rcu(pn, cindex++);
1773 		if (!n)
1774 			break;
1775 
1776 		/* guarantee forward progress on the keys */
1777 		if (IS_LEAF(n) && (n->key >= key))
1778 			goto found;
1779 	} while (IS_TNODE(n));
1780 
1781 	/* this loop will search for the next leaf with a greater key */
1782 	while (!IS_TRIE(pn)) {
1783 		/* if we exhausted the parent node we will need to climb */
1784 		if (cindex >= (1ul << pn->bits)) {
1785 			t_key pkey = pn->key;
1786 
1787 			pn = node_parent_rcu(pn);
1788 			cindex = get_index(pkey, pn) + 1;
1789 			continue;
1790 		}
1791 
1792 		/* grab the next available node */
1793 		n = get_child_rcu(pn, cindex++);
1794 		if (!n)
1795 			continue;
1796 
1797 		/* no need to compare keys since we bumped the index */
1798 		if (IS_LEAF(n))
1799 			goto found;
1800 
1801 		/* Rescan start scanning in new node */
1802 		pn = n;
1803 		cindex = 0;
1804 	}
1805 
1806 	*tn = pn;
1807 	return NULL; /* Root of trie */
1808 found:
1809 	/* if we are at the limit for keys just return NULL for the tnode */
1810 	*tn = pn;
1811 	return n;
1812 }
1813 
fib_trie_free(struct fib_table * tb)1814 static void fib_trie_free(struct fib_table *tb)
1815 {
1816 	struct trie *t = (struct trie *)tb->tb_data;
1817 	struct key_vector *pn = t->kv;
1818 	unsigned long cindex = 1;
1819 	struct hlist_node *tmp;
1820 	struct fib_alias *fa;
1821 
1822 	/* walk trie in reverse order and free everything */
1823 	for (;;) {
1824 		struct key_vector *n;
1825 
1826 		if (!(cindex--)) {
1827 			t_key pkey = pn->key;
1828 
1829 			if (IS_TRIE(pn))
1830 				break;
1831 
1832 			n = pn;
1833 			pn = node_parent(pn);
1834 
1835 			/* drop emptied tnode */
1836 			put_child_root(pn, n->key, NULL);
1837 			node_free(n);
1838 
1839 			cindex = get_index(pkey, pn);
1840 
1841 			continue;
1842 		}
1843 
1844 		/* grab the next available node */
1845 		n = get_child(pn, cindex);
1846 		if (!n)
1847 			continue;
1848 
1849 		if (IS_TNODE(n)) {
1850 			/* record pn and cindex for leaf walking */
1851 			pn = n;
1852 			cindex = 1ul << n->bits;
1853 
1854 			continue;
1855 		}
1856 
1857 		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1858 			hlist_del_rcu(&fa->fa_list);
1859 			alias_free_mem_rcu(fa);
1860 		}
1861 
1862 		put_child_root(pn, n->key, NULL);
1863 		node_free(n);
1864 	}
1865 
1866 #ifdef CONFIG_IP_FIB_TRIE_STATS
1867 	free_percpu(t->stats);
1868 #endif
1869 	kfree(tb);
1870 }
1871 
fib_trie_unmerge(struct fib_table * oldtb)1872 struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1873 {
1874 	struct trie *ot = (struct trie *)oldtb->tb_data;
1875 	struct key_vector *l, *tp = ot->kv;
1876 	struct fib_table *local_tb;
1877 	struct fib_alias *fa;
1878 	struct trie *lt;
1879 	t_key key = 0;
1880 
1881 	if (oldtb->tb_data == oldtb->__data)
1882 		return oldtb;
1883 
1884 	local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1885 	if (!local_tb)
1886 		return NULL;
1887 
1888 	lt = (struct trie *)local_tb->tb_data;
1889 
1890 	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1891 		struct key_vector *local_l = NULL, *local_tp;
1892 
1893 		hlist_for_each_entry(fa, &l->leaf, fa_list) {
1894 			struct fib_alias *new_fa;
1895 
1896 			if (local_tb->tb_id != fa->tb_id)
1897 				continue;
1898 
1899 			/* clone fa for new local table */
1900 			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1901 			if (!new_fa)
1902 				goto out;
1903 
1904 			memcpy(new_fa, fa, sizeof(*fa));
1905 
1906 			/* insert clone into table */
1907 			if (!local_l)
1908 				local_l = fib_find_node(lt, &local_tp, l->key);
1909 
1910 			if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1911 					     NULL, l->key)) {
1912 				kmem_cache_free(fn_alias_kmem, new_fa);
1913 				goto out;
1914 			}
1915 		}
1916 
1917 		/* stop loop if key wrapped back to 0 */
1918 		key = l->key + 1;
1919 		if (key < l->key)
1920 			break;
1921 	}
1922 
1923 	return local_tb;
1924 out:
1925 	fib_trie_free(local_tb);
1926 
1927 	return NULL;
1928 }
1929 
1930 /* Caller must hold RTNL */
fib_table_flush_external(struct fib_table * tb)1931 void fib_table_flush_external(struct fib_table *tb)
1932 {
1933 	struct trie *t = (struct trie *)tb->tb_data;
1934 	struct key_vector *pn = t->kv;
1935 	unsigned long cindex = 1;
1936 	struct hlist_node *tmp;
1937 	struct fib_alias *fa;
1938 
1939 	/* walk trie in reverse order */
1940 	for (;;) {
1941 		unsigned char slen = 0;
1942 		struct key_vector *n;
1943 
1944 		if (!(cindex--)) {
1945 			t_key pkey = pn->key;
1946 
1947 			/* cannot resize the trie vector */
1948 			if (IS_TRIE(pn))
1949 				break;
1950 
1951 			/* update the suffix to address pulled leaves */
1952 			if (pn->slen > pn->pos)
1953 				update_suffix(pn);
1954 
1955 			/* resize completed node */
1956 			pn = resize(t, pn);
1957 			cindex = get_index(pkey, pn);
1958 
1959 			continue;
1960 		}
1961 
1962 		/* grab the next available node */
1963 		n = get_child(pn, cindex);
1964 		if (!n)
1965 			continue;
1966 
1967 		if (IS_TNODE(n)) {
1968 			/* record pn and cindex for leaf walking */
1969 			pn = n;
1970 			cindex = 1ul << n->bits;
1971 
1972 			continue;
1973 		}
1974 
1975 		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1976 			/* if alias was cloned to local then we just
1977 			 * need to remove the local copy from main
1978 			 */
1979 			if (tb->tb_id != fa->tb_id) {
1980 				hlist_del_rcu(&fa->fa_list);
1981 				alias_free_mem_rcu(fa);
1982 				continue;
1983 			}
1984 
1985 			/* record local slen */
1986 			slen = fa->fa_slen;
1987 		}
1988 
1989 		/* update leaf slen */
1990 		n->slen = slen;
1991 
1992 		if (hlist_empty(&n->leaf)) {
1993 			put_child_root(pn, n->key, NULL);
1994 			node_free(n);
1995 		}
1996 	}
1997 }
1998 
1999 /* Caller must hold RTNL. */
fib_table_flush(struct net * net,struct fib_table * tb,bool flush_all)2000 int fib_table_flush(struct net *net, struct fib_table *tb, bool flush_all)
2001 {
2002 	struct trie *t = (struct trie *)tb->tb_data;
2003 	struct nl_info info = { .nl_net = net };
2004 	struct key_vector *pn = t->kv;
2005 	unsigned long cindex = 1;
2006 	struct hlist_node *tmp;
2007 	struct fib_alias *fa;
2008 	int found = 0;
2009 
2010 	/* walk trie in reverse order */
2011 	for (;;) {
2012 		unsigned char slen = 0;
2013 		struct key_vector *n;
2014 
2015 		if (!(cindex--)) {
2016 			t_key pkey = pn->key;
2017 
2018 			/* cannot resize the trie vector */
2019 			if (IS_TRIE(pn))
2020 				break;
2021 
2022 			/* update the suffix to address pulled leaves */
2023 			if (pn->slen > pn->pos)
2024 				update_suffix(pn);
2025 
2026 			/* resize completed node */
2027 			pn = resize(t, pn);
2028 			cindex = get_index(pkey, pn);
2029 
2030 			continue;
2031 		}
2032 
2033 		/* grab the next available node */
2034 		n = get_child(pn, cindex);
2035 		if (!n)
2036 			continue;
2037 
2038 		if (IS_TNODE(n)) {
2039 			/* record pn and cindex for leaf walking */
2040 			pn = n;
2041 			cindex = 1ul << n->bits;
2042 
2043 			continue;
2044 		}
2045 
2046 		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
2047 			struct fib_info *fi = fa->fa_info;
2048 
2049 			if (!fi || tb->tb_id != fa->tb_id ||
2050 			    (!(fi->fib_flags & RTNH_F_DEAD) &&
2051 			     !fib_props[fa->fa_type].error)) {
2052 				slen = fa->fa_slen;
2053 				continue;
2054 			}
2055 
2056 			/* When not flushing the entire table, skip error
2057 			 * routes that are not marked for deletion.
2058 			 */
2059 			if (!flush_all && fib_props[fa->fa_type].error &&
2060 			    !(fi->fib_flags & RTNH_F_DEAD)) {
2061 				slen = fa->fa_slen;
2062 				continue;
2063 			}
2064 
2065 			fib_notify_alias_delete(net, n->key, &n->leaf, fa,
2066 						NULL);
2067 			if (fi->pfsrc_removed)
2068 				rtmsg_fib(RTM_DELROUTE, htonl(n->key), fa,
2069 					  KEYLENGTH - fa->fa_slen, tb->tb_id, &info, 0);
2070 			hlist_del_rcu(&fa->fa_list);
2071 			fib_release_info(fa->fa_info);
2072 			alias_free_mem_rcu(fa);
2073 			found++;
2074 		}
2075 
2076 		/* update leaf slen */
2077 		n->slen = slen;
2078 
2079 		if (hlist_empty(&n->leaf)) {
2080 			put_child_root(pn, n->key, NULL);
2081 			node_free(n);
2082 		}
2083 	}
2084 
2085 	pr_debug("trie_flush found=%d\n", found);
2086 	return found;
2087 }
2088 
2089 /* derived from fib_trie_free */
__fib_info_notify_update(struct net * net,struct fib_table * tb,struct nl_info * info)2090 static void __fib_info_notify_update(struct net *net, struct fib_table *tb,
2091 				     struct nl_info *info)
2092 {
2093 	struct trie *t = (struct trie *)tb->tb_data;
2094 	struct key_vector *pn = t->kv;
2095 	unsigned long cindex = 1;
2096 	struct fib_alias *fa;
2097 
2098 	for (;;) {
2099 		struct key_vector *n;
2100 
2101 		if (!(cindex--)) {
2102 			t_key pkey = pn->key;
2103 
2104 			if (IS_TRIE(pn))
2105 				break;
2106 
2107 			pn = node_parent(pn);
2108 			cindex = get_index(pkey, pn);
2109 			continue;
2110 		}
2111 
2112 		/* grab the next available node */
2113 		n = get_child(pn, cindex);
2114 		if (!n)
2115 			continue;
2116 
2117 		if (IS_TNODE(n)) {
2118 			/* record pn and cindex for leaf walking */
2119 			pn = n;
2120 			cindex = 1ul << n->bits;
2121 
2122 			continue;
2123 		}
2124 
2125 		hlist_for_each_entry(fa, &n->leaf, fa_list) {
2126 			struct fib_info *fi = fa->fa_info;
2127 
2128 			if (!fi || !fi->nh_updated || fa->tb_id != tb->tb_id)
2129 				continue;
2130 
2131 			rtmsg_fib(RTM_NEWROUTE, htonl(n->key), fa,
2132 				  KEYLENGTH - fa->fa_slen, tb->tb_id,
2133 				  info, NLM_F_REPLACE);
2134 		}
2135 	}
2136 }
2137 
fib_info_notify_update(struct net * net,struct nl_info * info)2138 void fib_info_notify_update(struct net *net, struct nl_info *info)
2139 {
2140 	unsigned int h;
2141 
2142 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2143 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2144 		struct fib_table *tb;
2145 
2146 		hlist_for_each_entry_rcu(tb, head, tb_hlist,
2147 					 lockdep_rtnl_is_held())
2148 			__fib_info_notify_update(net, tb, info);
2149 	}
2150 }
2151 
fib_leaf_notify(struct key_vector * l,struct fib_table * tb,struct notifier_block * nb,struct netlink_ext_ack * extack)2152 static int fib_leaf_notify(struct key_vector *l, struct fib_table *tb,
2153 			   struct notifier_block *nb,
2154 			   struct netlink_ext_ack *extack)
2155 {
2156 	struct fib_alias *fa;
2157 	int last_slen = -1;
2158 	int err;
2159 
2160 	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2161 		struct fib_info *fi = fa->fa_info;
2162 
2163 		if (!fi)
2164 			continue;
2165 
2166 		/* local and main table can share the same trie,
2167 		 * so don't notify twice for the same entry.
2168 		 */
2169 		if (tb->tb_id != fa->tb_id)
2170 			continue;
2171 
2172 		if (fa->fa_slen == last_slen)
2173 			continue;
2174 
2175 		last_slen = fa->fa_slen;
2176 		err = call_fib_entry_notifier(nb, FIB_EVENT_ENTRY_REPLACE,
2177 					      l->key, KEYLENGTH - fa->fa_slen,
2178 					      fa, extack);
2179 		if (err)
2180 			return err;
2181 	}
2182 	return 0;
2183 }
2184 
fib_table_notify(struct fib_table * tb,struct notifier_block * nb,struct netlink_ext_ack * extack)2185 static int fib_table_notify(struct fib_table *tb, struct notifier_block *nb,
2186 			    struct netlink_ext_ack *extack)
2187 {
2188 	struct trie *t = (struct trie *)tb->tb_data;
2189 	struct key_vector *l, *tp = t->kv;
2190 	t_key key = 0;
2191 	int err;
2192 
2193 	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2194 		err = fib_leaf_notify(l, tb, nb, extack);
2195 		if (err)
2196 			return err;
2197 
2198 		key = l->key + 1;
2199 		/* stop in case of wrap around */
2200 		if (key < l->key)
2201 			break;
2202 	}
2203 	return 0;
2204 }
2205 
fib_notify(struct net * net,struct notifier_block * nb,struct netlink_ext_ack * extack)2206 int fib_notify(struct net *net, struct notifier_block *nb,
2207 	       struct netlink_ext_ack *extack)
2208 {
2209 	unsigned int h;
2210 	int err;
2211 
2212 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2213 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2214 		struct fib_table *tb;
2215 
2216 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2217 			err = fib_table_notify(tb, nb, extack);
2218 			if (err)
2219 				return err;
2220 		}
2221 	}
2222 	return 0;
2223 }
2224 
__trie_free_rcu(struct rcu_head * head)2225 static void __trie_free_rcu(struct rcu_head *head)
2226 {
2227 	struct fib_table *tb = container_of(head, struct fib_table, rcu);
2228 #ifdef CONFIG_IP_FIB_TRIE_STATS
2229 	struct trie *t = (struct trie *)tb->tb_data;
2230 
2231 	if (tb->tb_data == tb->__data)
2232 		free_percpu(t->stats);
2233 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2234 	kfree(tb);
2235 }
2236 
fib_free_table(struct fib_table * tb)2237 void fib_free_table(struct fib_table *tb)
2238 {
2239 	call_rcu(&tb->rcu, __trie_free_rcu);
2240 }
2241 
fn_trie_dump_leaf(struct key_vector * l,struct fib_table * tb,struct sk_buff * skb,struct netlink_callback * cb,struct fib_dump_filter * filter)2242 static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
2243 			     struct sk_buff *skb, struct netlink_callback *cb,
2244 			     struct fib_dump_filter *filter)
2245 {
2246 	unsigned int flags = NLM_F_MULTI;
2247 	__be32 xkey = htonl(l->key);
2248 	int i, s_i, i_fa, s_fa, err;
2249 	struct fib_alias *fa;
2250 
2251 	if (filter->filter_set ||
2252 	    !filter->dump_exceptions || !filter->dump_routes)
2253 		flags |= NLM_F_DUMP_FILTERED;
2254 
2255 	s_i = cb->args[4];
2256 	s_fa = cb->args[5];
2257 	i = 0;
2258 
2259 	/* rcu_read_lock is hold by caller */
2260 	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2261 		struct fib_info *fi = fa->fa_info;
2262 
2263 		if (i < s_i)
2264 			goto next;
2265 
2266 		i_fa = 0;
2267 
2268 		if (tb->tb_id != fa->tb_id)
2269 			goto next;
2270 
2271 		if (filter->filter_set) {
2272 			if (filter->rt_type && fa->fa_type != filter->rt_type)
2273 				goto next;
2274 
2275 			if ((filter->protocol &&
2276 			     fi->fib_protocol != filter->protocol))
2277 				goto next;
2278 
2279 			if (filter->dev &&
2280 			    !fib_info_nh_uses_dev(fi, filter->dev))
2281 				goto next;
2282 		}
2283 
2284 		if (filter->dump_routes) {
2285 			if (!s_fa) {
2286 				struct fib_rt_info fri;
2287 
2288 				fri.fi = fi;
2289 				fri.tb_id = tb->tb_id;
2290 				fri.dst = xkey;
2291 				fri.dst_len = KEYLENGTH - fa->fa_slen;
2292 				fri.dscp = fa->fa_dscp;
2293 				fri.type = fa->fa_type;
2294 				fri.offload = READ_ONCE(fa->offload);
2295 				fri.trap = READ_ONCE(fa->trap);
2296 				fri.offload_failed = READ_ONCE(fa->offload_failed);
2297 				err = fib_dump_info(skb,
2298 						    NETLINK_CB(cb->skb).portid,
2299 						    cb->nlh->nlmsg_seq,
2300 						    RTM_NEWROUTE, &fri, flags);
2301 				if (err < 0)
2302 					goto stop;
2303 			}
2304 
2305 			i_fa++;
2306 		}
2307 
2308 		if (filter->dump_exceptions) {
2309 			err = fib_dump_info_fnhe(skb, cb, tb->tb_id, fi,
2310 						 &i_fa, s_fa, flags);
2311 			if (err < 0)
2312 				goto stop;
2313 		}
2314 
2315 next:
2316 		i++;
2317 	}
2318 
2319 	cb->args[4] = i;
2320 	return skb->len;
2321 
2322 stop:
2323 	cb->args[4] = i;
2324 	cb->args[5] = i_fa;
2325 	return err;
2326 }
2327 
2328 /* rcu_read_lock needs to be hold by caller from readside */
fib_table_dump(struct fib_table * tb,struct sk_buff * skb,struct netlink_callback * cb,struct fib_dump_filter * filter)2329 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
2330 		   struct netlink_callback *cb, struct fib_dump_filter *filter)
2331 {
2332 	struct trie *t = (struct trie *)tb->tb_data;
2333 	struct key_vector *l, *tp = t->kv;
2334 	/* Dump starting at last key.
2335 	 * Note: 0.0.0.0/0 (ie default) is first key.
2336 	 */
2337 	int count = cb->args[2];
2338 	t_key key = cb->args[3];
2339 
2340 	/* First time here, count and key are both always 0. Count > 0
2341 	 * and key == 0 means the dump has wrapped around and we are done.
2342 	 */
2343 	if (count && !key)
2344 		return 0;
2345 
2346 	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2347 		int err;
2348 
2349 		err = fn_trie_dump_leaf(l, tb, skb, cb, filter);
2350 		if (err < 0) {
2351 			cb->args[3] = key;
2352 			cb->args[2] = count;
2353 			return err;
2354 		}
2355 
2356 		++count;
2357 		key = l->key + 1;
2358 
2359 		memset(&cb->args[4], 0,
2360 		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
2361 
2362 		/* stop loop if key wrapped back to 0 */
2363 		if (key < l->key)
2364 			break;
2365 	}
2366 
2367 	cb->args[3] = key;
2368 	cb->args[2] = count;
2369 
2370 	return 0;
2371 }
2372 
fib_trie_init(void)2373 void __init fib_trie_init(void)
2374 {
2375 	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
2376 					  sizeof(struct fib_alias),
2377 					  0, SLAB_PANIC | SLAB_ACCOUNT, NULL);
2378 
2379 	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2380 					   LEAF_SIZE,
2381 					   0, SLAB_PANIC | SLAB_ACCOUNT, NULL);
2382 }
2383 
fib_trie_table(u32 id,struct fib_table * alias)2384 struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
2385 {
2386 	struct fib_table *tb;
2387 	struct trie *t;
2388 	size_t sz = sizeof(*tb);
2389 
2390 	if (!alias)
2391 		sz += sizeof(struct trie);
2392 
2393 	tb = kzalloc(sz, GFP_KERNEL);
2394 	if (!tb)
2395 		return NULL;
2396 
2397 	tb->tb_id = id;
2398 	tb->tb_num_default = 0;
2399 	tb->tb_data = (alias ? alias->__data : tb->__data);
2400 
2401 	if (alias)
2402 		return tb;
2403 
2404 	t = (struct trie *) tb->tb_data;
2405 	t->kv[0].pos = KEYLENGTH;
2406 	t->kv[0].slen = KEYLENGTH;
2407 #ifdef CONFIG_IP_FIB_TRIE_STATS
2408 	t->stats = alloc_percpu(struct trie_use_stats);
2409 	if (!t->stats) {
2410 		kfree(tb);
2411 		tb = NULL;
2412 	}
2413 #endif
2414 
2415 	return tb;
2416 }
2417 
2418 #ifdef CONFIG_PROC_FS
2419 /* Depth first Trie walk iterator */
2420 struct fib_trie_iter {
2421 	struct seq_net_private p;
2422 	struct fib_table *tb;
2423 	struct key_vector *tnode;
2424 	unsigned int index;
2425 	unsigned int depth;
2426 };
2427 
fib_trie_get_next(struct fib_trie_iter * iter)2428 static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2429 {
2430 	unsigned long cindex = iter->index;
2431 	struct key_vector *pn = iter->tnode;
2432 	t_key pkey;
2433 
2434 	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2435 		 iter->tnode, iter->index, iter->depth);
2436 
2437 	while (!IS_TRIE(pn)) {
2438 		while (cindex < child_length(pn)) {
2439 			struct key_vector *n = get_child_rcu(pn, cindex++);
2440 
2441 			if (!n)
2442 				continue;
2443 
2444 			if (IS_LEAF(n)) {
2445 				iter->tnode = pn;
2446 				iter->index = cindex;
2447 			} else {
2448 				/* push down one level */
2449 				iter->tnode = n;
2450 				iter->index = 0;
2451 				++iter->depth;
2452 			}
2453 
2454 			return n;
2455 		}
2456 
2457 		/* Current node exhausted, pop back up */
2458 		pkey = pn->key;
2459 		pn = node_parent_rcu(pn);
2460 		cindex = get_index(pkey, pn) + 1;
2461 		--iter->depth;
2462 	}
2463 
2464 	/* record root node so further searches know we are done */
2465 	iter->tnode = pn;
2466 	iter->index = 0;
2467 
2468 	return NULL;
2469 }
2470 
fib_trie_get_first(struct fib_trie_iter * iter,struct trie * t)2471 static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2472 					     struct trie *t)
2473 {
2474 	struct key_vector *n, *pn;
2475 
2476 	if (!t)
2477 		return NULL;
2478 
2479 	pn = t->kv;
2480 	n = rcu_dereference(pn->tnode[0]);
2481 	if (!n)
2482 		return NULL;
2483 
2484 	if (IS_TNODE(n)) {
2485 		iter->tnode = n;
2486 		iter->index = 0;
2487 		iter->depth = 1;
2488 	} else {
2489 		iter->tnode = pn;
2490 		iter->index = 0;
2491 		iter->depth = 0;
2492 	}
2493 
2494 	return n;
2495 }
2496 
trie_collect_stats(struct trie * t,struct trie_stat * s)2497 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2498 {
2499 	struct key_vector *n;
2500 	struct fib_trie_iter iter;
2501 
2502 	memset(s, 0, sizeof(*s));
2503 
2504 	rcu_read_lock();
2505 	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2506 		if (IS_LEAF(n)) {
2507 			struct fib_alias *fa;
2508 
2509 			s->leaves++;
2510 			s->totdepth += iter.depth;
2511 			if (iter.depth > s->maxdepth)
2512 				s->maxdepth = iter.depth;
2513 
2514 			hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2515 				++s->prefixes;
2516 		} else {
2517 			s->tnodes++;
2518 			if (n->bits < MAX_STAT_DEPTH)
2519 				s->nodesizes[n->bits]++;
2520 			s->nullpointers += tn_info(n)->empty_children;
2521 		}
2522 	}
2523 	rcu_read_unlock();
2524 }
2525 
2526 /*
2527  *	This outputs /proc/net/fib_triestats
2528  */
trie_show_stats(struct seq_file * seq,struct trie_stat * stat)2529 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2530 {
2531 	unsigned int i, max, pointers, bytes, avdepth;
2532 
2533 	if (stat->leaves)
2534 		avdepth = stat->totdepth*100 / stat->leaves;
2535 	else
2536 		avdepth = 0;
2537 
2538 	seq_printf(seq, "\tAver depth:     %u.%02d\n",
2539 		   avdepth / 100, avdepth % 100);
2540 	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
2541 
2542 	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2543 	bytes = LEAF_SIZE * stat->leaves;
2544 
2545 	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
2546 	bytes += sizeof(struct fib_alias) * stat->prefixes;
2547 
2548 	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2549 	bytes += TNODE_SIZE(0) * stat->tnodes;
2550 
2551 	max = MAX_STAT_DEPTH;
2552 	while (max > 0 && stat->nodesizes[max-1] == 0)
2553 		max--;
2554 
2555 	pointers = 0;
2556 	for (i = 1; i < max; i++)
2557 		if (stat->nodesizes[i] != 0) {
2558 			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2559 			pointers += (1<<i) * stat->nodesizes[i];
2560 		}
2561 	seq_putc(seq, '\n');
2562 	seq_printf(seq, "\tPointers: %u\n", pointers);
2563 
2564 	bytes += sizeof(struct key_vector *) * pointers;
2565 	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2566 	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2567 }
2568 
2569 #ifdef CONFIG_IP_FIB_TRIE_STATS
trie_show_usage(struct seq_file * seq,const struct trie_use_stats __percpu * stats)2570 static void trie_show_usage(struct seq_file *seq,
2571 			    const struct trie_use_stats __percpu *stats)
2572 {
2573 	struct trie_use_stats s = { 0 };
2574 	int cpu;
2575 
2576 	/* loop through all of the CPUs and gather up the stats */
2577 	for_each_possible_cpu(cpu) {
2578 		const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2579 
2580 		s.gets += pcpu->gets;
2581 		s.backtrack += pcpu->backtrack;
2582 		s.semantic_match_passed += pcpu->semantic_match_passed;
2583 		s.semantic_match_miss += pcpu->semantic_match_miss;
2584 		s.null_node_hit += pcpu->null_node_hit;
2585 		s.resize_node_skipped += pcpu->resize_node_skipped;
2586 	}
2587 
2588 	seq_printf(seq, "\nCounters:\n---------\n");
2589 	seq_printf(seq, "gets = %u\n", s.gets);
2590 	seq_printf(seq, "backtracks = %u\n", s.backtrack);
2591 	seq_printf(seq, "semantic match passed = %u\n",
2592 		   s.semantic_match_passed);
2593 	seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2594 	seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2595 	seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2596 }
2597 #endif /*  CONFIG_IP_FIB_TRIE_STATS */
2598 
fib_table_print(struct seq_file * seq,struct fib_table * tb)2599 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2600 {
2601 	if (tb->tb_id == RT_TABLE_LOCAL)
2602 		seq_puts(seq, "Local:\n");
2603 	else if (tb->tb_id == RT_TABLE_MAIN)
2604 		seq_puts(seq, "Main:\n");
2605 	else
2606 		seq_printf(seq, "Id %d:\n", tb->tb_id);
2607 }
2608 
2609 
fib_triestat_seq_show(struct seq_file * seq,void * v)2610 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2611 {
2612 	struct net *net = seq->private;
2613 	unsigned int h;
2614 
2615 	seq_printf(seq,
2616 		   "Basic info: size of leaf:"
2617 		   " %zd bytes, size of tnode: %zd bytes.\n",
2618 		   LEAF_SIZE, TNODE_SIZE(0));
2619 
2620 	rcu_read_lock();
2621 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2622 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2623 		struct fib_table *tb;
2624 
2625 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2626 			struct trie *t = (struct trie *) tb->tb_data;
2627 			struct trie_stat stat;
2628 
2629 			if (!t)
2630 				continue;
2631 
2632 			fib_table_print(seq, tb);
2633 
2634 			trie_collect_stats(t, &stat);
2635 			trie_show_stats(seq, &stat);
2636 #ifdef CONFIG_IP_FIB_TRIE_STATS
2637 			trie_show_usage(seq, t->stats);
2638 #endif
2639 		}
2640 		cond_resched_rcu();
2641 	}
2642 	rcu_read_unlock();
2643 
2644 	return 0;
2645 }
2646 
fib_trie_get_idx(struct seq_file * seq,loff_t pos)2647 static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2648 {
2649 	struct fib_trie_iter *iter = seq->private;
2650 	struct net *net = seq_file_net(seq);
2651 	loff_t idx = 0;
2652 	unsigned int h;
2653 
2654 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2655 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2656 		struct fib_table *tb;
2657 
2658 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2659 			struct key_vector *n;
2660 
2661 			for (n = fib_trie_get_first(iter,
2662 						    (struct trie *) tb->tb_data);
2663 			     n; n = fib_trie_get_next(iter))
2664 				if (pos == idx++) {
2665 					iter->tb = tb;
2666 					return n;
2667 				}
2668 		}
2669 	}
2670 
2671 	return NULL;
2672 }
2673 
fib_trie_seq_start(struct seq_file * seq,loff_t * pos)2674 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2675 	__acquires(RCU)
2676 {
2677 	rcu_read_lock();
2678 	return fib_trie_get_idx(seq, *pos);
2679 }
2680 
fib_trie_seq_next(struct seq_file * seq,void * v,loff_t * pos)2681 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2682 {
2683 	struct fib_trie_iter *iter = seq->private;
2684 	struct net *net = seq_file_net(seq);
2685 	struct fib_table *tb = iter->tb;
2686 	struct hlist_node *tb_node;
2687 	unsigned int h;
2688 	struct key_vector *n;
2689 
2690 	++*pos;
2691 	/* next node in same table */
2692 	n = fib_trie_get_next(iter);
2693 	if (n)
2694 		return n;
2695 
2696 	/* walk rest of this hash chain */
2697 	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2698 	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2699 		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2700 		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2701 		if (n)
2702 			goto found;
2703 	}
2704 
2705 	/* new hash chain */
2706 	while (++h < FIB_TABLE_HASHSZ) {
2707 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2708 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2709 			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2710 			if (n)
2711 				goto found;
2712 		}
2713 	}
2714 	return NULL;
2715 
2716 found:
2717 	iter->tb = tb;
2718 	return n;
2719 }
2720 
fib_trie_seq_stop(struct seq_file * seq,void * v)2721 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2722 	__releases(RCU)
2723 {
2724 	rcu_read_unlock();
2725 }
2726 
seq_indent(struct seq_file * seq,int n)2727 static void seq_indent(struct seq_file *seq, int n)
2728 {
2729 	while (n-- > 0)
2730 		seq_puts(seq, "   ");
2731 }
2732 
rtn_scope(char * buf,size_t len,enum rt_scope_t s)2733 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2734 {
2735 	switch (s) {
2736 	case RT_SCOPE_UNIVERSE: return "universe";
2737 	case RT_SCOPE_SITE:	return "site";
2738 	case RT_SCOPE_LINK:	return "link";
2739 	case RT_SCOPE_HOST:	return "host";
2740 	case RT_SCOPE_NOWHERE:	return "nowhere";
2741 	default:
2742 		snprintf(buf, len, "scope=%d", s);
2743 		return buf;
2744 	}
2745 }
2746 
2747 static const char *const rtn_type_names[__RTN_MAX] = {
2748 	[RTN_UNSPEC] = "UNSPEC",
2749 	[RTN_UNICAST] = "UNICAST",
2750 	[RTN_LOCAL] = "LOCAL",
2751 	[RTN_BROADCAST] = "BROADCAST",
2752 	[RTN_ANYCAST] = "ANYCAST",
2753 	[RTN_MULTICAST] = "MULTICAST",
2754 	[RTN_BLACKHOLE] = "BLACKHOLE",
2755 	[RTN_UNREACHABLE] = "UNREACHABLE",
2756 	[RTN_PROHIBIT] = "PROHIBIT",
2757 	[RTN_THROW] = "THROW",
2758 	[RTN_NAT] = "NAT",
2759 	[RTN_XRESOLVE] = "XRESOLVE",
2760 };
2761 
rtn_type(char * buf,size_t len,unsigned int t)2762 static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2763 {
2764 	if (t < __RTN_MAX && rtn_type_names[t])
2765 		return rtn_type_names[t];
2766 	snprintf(buf, len, "type %u", t);
2767 	return buf;
2768 }
2769 
2770 /* Pretty print the trie */
fib_trie_seq_show(struct seq_file * seq,void * v)2771 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2772 {
2773 	const struct fib_trie_iter *iter = seq->private;
2774 	struct key_vector *n = v;
2775 
2776 	if (IS_TRIE(node_parent_rcu(n)))
2777 		fib_table_print(seq, iter->tb);
2778 
2779 	if (IS_TNODE(n)) {
2780 		__be32 prf = htonl(n->key);
2781 
2782 		seq_indent(seq, iter->depth-1);
2783 		seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
2784 			   &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2785 			   tn_info(n)->full_children,
2786 			   tn_info(n)->empty_children);
2787 	} else {
2788 		__be32 val = htonl(n->key);
2789 		struct fib_alias *fa;
2790 
2791 		seq_indent(seq, iter->depth);
2792 		seq_printf(seq, "  |-- %pI4\n", &val);
2793 
2794 		hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2795 			char buf1[32], buf2[32];
2796 
2797 			seq_indent(seq, iter->depth + 1);
2798 			seq_printf(seq, "  /%zu %s %s",
2799 				   KEYLENGTH - fa->fa_slen,
2800 				   rtn_scope(buf1, sizeof(buf1),
2801 					     fa->fa_info->fib_scope),
2802 				   rtn_type(buf2, sizeof(buf2),
2803 					    fa->fa_type));
2804 			if (fa->fa_dscp)
2805 				seq_printf(seq, " tos=%d",
2806 					   inet_dscp_to_dsfield(fa->fa_dscp));
2807 			seq_putc(seq, '\n');
2808 		}
2809 	}
2810 
2811 	return 0;
2812 }
2813 
2814 static const struct seq_operations fib_trie_seq_ops = {
2815 	.start  = fib_trie_seq_start,
2816 	.next   = fib_trie_seq_next,
2817 	.stop   = fib_trie_seq_stop,
2818 	.show   = fib_trie_seq_show,
2819 };
2820 
2821 struct fib_route_iter {
2822 	struct seq_net_private p;
2823 	struct fib_table *main_tb;
2824 	struct key_vector *tnode;
2825 	loff_t	pos;
2826 	t_key	key;
2827 };
2828 
fib_route_get_idx(struct fib_route_iter * iter,loff_t pos)2829 static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2830 					    loff_t pos)
2831 {
2832 	struct key_vector *l, **tp = &iter->tnode;
2833 	t_key key;
2834 
2835 	/* use cached location of previously found key */
2836 	if (iter->pos > 0 && pos >= iter->pos) {
2837 		key = iter->key;
2838 	} else {
2839 		iter->pos = 1;
2840 		key = 0;
2841 	}
2842 
2843 	pos -= iter->pos;
2844 
2845 	while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
2846 		key = l->key + 1;
2847 		iter->pos++;
2848 		l = NULL;
2849 
2850 		/* handle unlikely case of a key wrap */
2851 		if (!key)
2852 			break;
2853 	}
2854 
2855 	if (l)
2856 		iter->key = l->key;	/* remember it */
2857 	else
2858 		iter->pos = 0;		/* forget it */
2859 
2860 	return l;
2861 }
2862 
fib_route_seq_start(struct seq_file * seq,loff_t * pos)2863 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2864 	__acquires(RCU)
2865 {
2866 	struct fib_route_iter *iter = seq->private;
2867 	struct fib_table *tb;
2868 	struct trie *t;
2869 
2870 	rcu_read_lock();
2871 
2872 	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2873 	if (!tb)
2874 		return NULL;
2875 
2876 	iter->main_tb = tb;
2877 	t = (struct trie *)tb->tb_data;
2878 	iter->tnode = t->kv;
2879 
2880 	if (*pos != 0)
2881 		return fib_route_get_idx(iter, *pos);
2882 
2883 	iter->pos = 0;
2884 	iter->key = KEY_MAX;
2885 
2886 	return SEQ_START_TOKEN;
2887 }
2888 
fib_route_seq_next(struct seq_file * seq,void * v,loff_t * pos)2889 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2890 {
2891 	struct fib_route_iter *iter = seq->private;
2892 	struct key_vector *l = NULL;
2893 	t_key key = iter->key + 1;
2894 
2895 	++*pos;
2896 
2897 	/* only allow key of 0 for start of sequence */
2898 	if ((v == SEQ_START_TOKEN) || key)
2899 		l = leaf_walk_rcu(&iter->tnode, key);
2900 
2901 	if (l) {
2902 		iter->key = l->key;
2903 		iter->pos++;
2904 	} else {
2905 		iter->pos = 0;
2906 	}
2907 
2908 	return l;
2909 }
2910 
fib_route_seq_stop(struct seq_file * seq,void * v)2911 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2912 	__releases(RCU)
2913 {
2914 	rcu_read_unlock();
2915 }
2916 
fib_flag_trans(int type,__be32 mask,struct fib_info * fi)2917 static unsigned int fib_flag_trans(int type, __be32 mask, struct fib_info *fi)
2918 {
2919 	unsigned int flags = 0;
2920 
2921 	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2922 		flags = RTF_REJECT;
2923 	if (fi) {
2924 		const struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
2925 
2926 		if (nhc->nhc_gw.ipv4)
2927 			flags |= RTF_GATEWAY;
2928 	}
2929 	if (mask == htonl(0xFFFFFFFF))
2930 		flags |= RTF_HOST;
2931 	flags |= RTF_UP;
2932 	return flags;
2933 }
2934 
2935 /*
2936  *	This outputs /proc/net/route.
2937  *	The format of the file is not supposed to be changed
2938  *	and needs to be same as fib_hash output to avoid breaking
2939  *	legacy utilities
2940  */
fib_route_seq_show(struct seq_file * seq,void * v)2941 static int fib_route_seq_show(struct seq_file *seq, void *v)
2942 {
2943 	struct fib_route_iter *iter = seq->private;
2944 	struct fib_table *tb = iter->main_tb;
2945 	struct fib_alias *fa;
2946 	struct key_vector *l = v;
2947 	__be32 prefix;
2948 
2949 	if (v == SEQ_START_TOKEN) {
2950 		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2951 			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2952 			   "\tWindow\tIRTT");
2953 		return 0;
2954 	}
2955 
2956 	prefix = htonl(l->key);
2957 
2958 	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2959 		struct fib_info *fi = fa->fa_info;
2960 		__be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2961 		unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2962 
2963 		if ((fa->fa_type == RTN_BROADCAST) ||
2964 		    (fa->fa_type == RTN_MULTICAST))
2965 			continue;
2966 
2967 		if (fa->tb_id != tb->tb_id)
2968 			continue;
2969 
2970 		seq_setwidth(seq, 127);
2971 
2972 		if (fi) {
2973 			struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
2974 			__be32 gw = 0;
2975 
2976 			if (nhc->nhc_gw_family == AF_INET)
2977 				gw = nhc->nhc_gw.ipv4;
2978 
2979 			seq_printf(seq,
2980 				   "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2981 				   "%u\t%08X\t%d\t%u\t%u",
2982 				   nhc->nhc_dev ? nhc->nhc_dev->name : "*",
2983 				   prefix, gw, flags, 0, 0,
2984 				   fi->fib_priority,
2985 				   mask,
2986 				   (fi->fib_advmss ?
2987 				    fi->fib_advmss + 40 : 0),
2988 				   fi->fib_window,
2989 				   fi->fib_rtt >> 3);
2990 		} else {
2991 			seq_printf(seq,
2992 				   "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2993 				   "%u\t%08X\t%d\t%u\t%u",
2994 				   prefix, 0, flags, 0, 0, 0,
2995 				   mask, 0, 0, 0);
2996 		}
2997 		seq_pad(seq, '\n');
2998 	}
2999 
3000 	return 0;
3001 }
3002 
3003 static const struct seq_operations fib_route_seq_ops = {
3004 	.start  = fib_route_seq_start,
3005 	.next   = fib_route_seq_next,
3006 	.stop   = fib_route_seq_stop,
3007 	.show   = fib_route_seq_show,
3008 };
3009 
fib_proc_init(struct net * net)3010 int __net_init fib_proc_init(struct net *net)
3011 {
3012 	if (!proc_create_net("fib_trie", 0444, net->proc_net, &fib_trie_seq_ops,
3013 			sizeof(struct fib_trie_iter)))
3014 		goto out1;
3015 
3016 	if (!proc_create_net_single("fib_triestat", 0444, net->proc_net,
3017 			fib_triestat_seq_show, NULL))
3018 		goto out2;
3019 
3020 	if (!proc_create_net("route", 0444, net->proc_net, &fib_route_seq_ops,
3021 			sizeof(struct fib_route_iter)))
3022 		goto out3;
3023 
3024 	return 0;
3025 
3026 out3:
3027 	remove_proc_entry("fib_triestat", net->proc_net);
3028 out2:
3029 	remove_proc_entry("fib_trie", net->proc_net);
3030 out1:
3031 	return -ENOMEM;
3032 }
3033 
fib_proc_exit(struct net * net)3034 void __net_exit fib_proc_exit(struct net *net)
3035 {
3036 	remove_proc_entry("fib_trie", net->proc_net);
3037 	remove_proc_entry("fib_triestat", net->proc_net);
3038 	remove_proc_entry("route", net->proc_net);
3039 }
3040 
3041 #endif /* CONFIG_PROC_FS */
3042