1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2012 Alexander Block. All rights reserved.
4 */
5
6 #include <linux/bsearch.h>
7 #include <linux/falloc.h>
8 #include <linux/fs.h>
9 #include <linux/file.h>
10 #include <linux/sort.h>
11 #include <linux/mount.h>
12 #include <linux/xattr.h>
13 #include <linux/posix_acl_xattr.h>
14 #include <linux/radix-tree.h>
15 #include <linux/vmalloc.h>
16 #include <linux/string.h>
17 #include <linux/compat.h>
18 #include <linux/crc32c.h>
19 #include <linux/fsverity.h>
20 #include "send.h"
21 #include "ctree.h"
22 #include "backref.h"
23 #include "locking.h"
24 #include "disk-io.h"
25 #include "btrfs_inode.h"
26 #include "transaction.h"
27 #include "compression.h"
28 #include "print-tree.h"
29 #include "accessors.h"
30 #include "dir-item.h"
31 #include "file-item.h"
32 #include "ioctl.h"
33 #include "verity.h"
34 #include "lru_cache.h"
35
36 /*
37 * Maximum number of references an extent can have in order for us to attempt to
38 * issue clone operations instead of write operations. This currently exists to
39 * avoid hitting limitations of the backreference walking code (taking a lot of
40 * time and using too much memory for extents with large number of references).
41 */
42 #define SEND_MAX_EXTENT_REFS 1024
43
44 /*
45 * A fs_path is a helper to dynamically build path names with unknown size.
46 * It reallocates the internal buffer on demand.
47 * It allows fast adding of path elements on the right side (normal path) and
48 * fast adding to the left side (reversed path). A reversed path can also be
49 * unreversed if needed.
50 *
51 * The definition of struct fs_path relies on -fms-extensions to allow
52 * including a tagged struct as an anonymous member.
53 */
54 struct __fs_path {
55 char *start;
56 char *end;
57
58 char *buf;
59 unsigned short buf_len:15;
60 unsigned short reversed:1;
61 };
62 static_assert(sizeof(struct __fs_path) < 256);
63 struct fs_path {
64 struct __fs_path;
65 /*
66 * Average path length does not exceed 200 bytes, we'll have
67 * better packing in the slab and higher chance to satisfy
68 * an allocation later during send.
69 */
70 char inline_buf[256 - sizeof(struct __fs_path)];
71 };
72 #define FS_PATH_INLINE_SIZE \
73 sizeof_field(struct fs_path, inline_buf)
74
75
76 /* reused for each extent */
77 struct clone_root {
78 struct btrfs_root *root;
79 u64 ino;
80 u64 offset;
81 u64 num_bytes;
82 bool found_ref;
83 };
84
85 #define SEND_MAX_NAME_CACHE_SIZE 256
86
87 /*
88 * Limit the root_ids array of struct backref_cache_entry to 17 elements.
89 * This makes the size of a cache entry to be exactly 192 bytes on x86_64, which
90 * can be satisfied from the kmalloc-192 slab, without wasting any space.
91 * The most common case is to have a single root for cloning, which corresponds
92 * to the send root. Having the user specify more than 16 clone roots is not
93 * common, and in such rare cases we simply don't use caching if the number of
94 * cloning roots that lead down to a leaf is more than 17.
95 */
96 #define SEND_MAX_BACKREF_CACHE_ROOTS 17
97
98 /*
99 * Max number of entries in the cache.
100 * With SEND_MAX_BACKREF_CACHE_ROOTS as 17, the size in bytes, excluding
101 * maple tree's internal nodes, is 24K.
102 */
103 #define SEND_MAX_BACKREF_CACHE_SIZE 128
104
105 /*
106 * A backref cache entry maps a leaf to a list of IDs of roots from which the
107 * leaf is accessible and we can use for clone operations.
108 * With SEND_MAX_BACKREF_CACHE_ROOTS as 12, each cache entry is 128 bytes (on
109 * x86_64).
110 */
111 struct backref_cache_entry {
112 struct btrfs_lru_cache_entry entry;
113 u64 root_ids[SEND_MAX_BACKREF_CACHE_ROOTS];
114 /* Number of valid elements in the root_ids array. */
115 int num_roots;
116 };
117
118 /* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */
119 static_assert(offsetof(struct backref_cache_entry, entry) == 0);
120
121 /*
122 * Max number of entries in the cache that stores directories that were already
123 * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses
124 * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but
125 * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64).
126 */
127 #define SEND_MAX_DIR_CREATED_CACHE_SIZE 64
128
129 /*
130 * Max number of entries in the cache that stores directories that were already
131 * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses
132 * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but
133 * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64).
134 */
135 #define SEND_MAX_DIR_UTIMES_CACHE_SIZE 64
136
137 struct send_ctx {
138 struct file *send_filp;
139 loff_t send_off;
140 char *send_buf;
141 u32 send_size;
142 u32 send_max_size;
143 /*
144 * Whether BTRFS_SEND_A_DATA attribute was already added to current
145 * command (since protocol v2, data must be the last attribute).
146 */
147 bool put_data;
148 struct page **send_buf_pages;
149 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */
150 /* Protocol version compatibility requested */
151 u32 proto;
152
153 struct btrfs_root *send_root;
154 struct btrfs_root *parent_root;
155 struct clone_root *clone_roots;
156 int clone_roots_cnt;
157
158 /* current state of the compare_tree call */
159 struct btrfs_path *left_path;
160 struct btrfs_path *right_path;
161 struct btrfs_key *cmp_key;
162
163 /*
164 * Keep track of the generation of the last transaction that was used
165 * for relocating a block group. This is periodically checked in order
166 * to detect if a relocation happened since the last check, so that we
167 * don't operate on stale extent buffers for nodes (level >= 1) or on
168 * stale disk_bytenr values of file extent items.
169 */
170 u64 last_reloc_trans;
171
172 /*
173 * infos of the currently processed inode. In case of deleted inodes,
174 * these are the values from the deleted inode.
175 */
176 u64 cur_ino;
177 u64 cur_inode_gen;
178 u64 cur_inode_size;
179 u64 cur_inode_mode;
180 u64 cur_inode_rdev;
181 u64 cur_inode_last_extent;
182 u64 cur_inode_next_write_offset;
183 bool cur_inode_new;
184 bool cur_inode_new_gen;
185 bool cur_inode_deleted;
186 bool ignore_cur_inode;
187 bool cur_inode_needs_verity;
188 void *verity_descriptor;
189
190 u64 send_progress;
191
192 struct list_head new_refs;
193 struct list_head deleted_refs;
194
195 struct btrfs_lru_cache name_cache;
196
197 /*
198 * The inode we are currently processing. It's not NULL only when we
199 * need to issue write commands for data extents from this inode.
200 */
201 struct inode *cur_inode;
202 struct file_ra_state ra;
203 u64 page_cache_clear_start;
204 bool clean_page_cache;
205
206 /*
207 * We process inodes by their increasing order, so if before an
208 * incremental send we reverse the parent/child relationship of
209 * directories such that a directory with a lower inode number was
210 * the parent of a directory with a higher inode number, and the one
211 * becoming the new parent got renamed too, we can't rename/move the
212 * directory with lower inode number when we finish processing it - we
213 * must process the directory with higher inode number first, then
214 * rename/move it and then rename/move the directory with lower inode
215 * number. Example follows.
216 *
217 * Tree state when the first send was performed:
218 *
219 * .
220 * |-- a (ino 257)
221 * |-- b (ino 258)
222 * |
223 * |
224 * |-- c (ino 259)
225 * | |-- d (ino 260)
226 * |
227 * |-- c2 (ino 261)
228 *
229 * Tree state when the second (incremental) send is performed:
230 *
231 * .
232 * |-- a (ino 257)
233 * |-- b (ino 258)
234 * |-- c2 (ino 261)
235 * |-- d2 (ino 260)
236 * |-- cc (ino 259)
237 *
238 * The sequence of steps that lead to the second state was:
239 *
240 * mv /a/b/c/d /a/b/c2/d2
241 * mv /a/b/c /a/b/c2/d2/cc
242 *
243 * "c" has lower inode number, but we can't move it (2nd mv operation)
244 * before we move "d", which has higher inode number.
245 *
246 * So we just memorize which move/rename operations must be performed
247 * later when their respective parent is processed and moved/renamed.
248 */
249
250 /* Indexed by parent directory inode number. */
251 struct rb_root pending_dir_moves;
252
253 /*
254 * Reverse index, indexed by the inode number of a directory that
255 * is waiting for the move/rename of its immediate parent before its
256 * own move/rename can be performed.
257 */
258 struct rb_root waiting_dir_moves;
259
260 /*
261 * A directory that is going to be rm'ed might have a child directory
262 * which is in the pending directory moves index above. In this case,
263 * the directory can only be removed after the move/rename of its child
264 * is performed. Example:
265 *
266 * Parent snapshot:
267 *
268 * . (ino 256)
269 * |-- a/ (ino 257)
270 * |-- b/ (ino 258)
271 * |-- c/ (ino 259)
272 * | |-- x/ (ino 260)
273 * |
274 * |-- y/ (ino 261)
275 *
276 * Send snapshot:
277 *
278 * . (ino 256)
279 * |-- a/ (ino 257)
280 * |-- b/ (ino 258)
281 * |-- YY/ (ino 261)
282 * |-- x/ (ino 260)
283 *
284 * Sequence of steps that lead to the send snapshot:
285 * rm -f /a/b/c/foo.txt
286 * mv /a/b/y /a/b/YY
287 * mv /a/b/c/x /a/b/YY
288 * rmdir /a/b/c
289 *
290 * When the child is processed, its move/rename is delayed until its
291 * parent is processed (as explained above), but all other operations
292 * like update utimes, chown, chgrp, etc, are performed and the paths
293 * that it uses for those operations must use the orphanized name of
294 * its parent (the directory we're going to rm later), so we need to
295 * memorize that name.
296 *
297 * Indexed by the inode number of the directory to be deleted.
298 */
299 struct rb_root orphan_dirs;
300
301 struct rb_root rbtree_new_refs;
302 struct rb_root rbtree_deleted_refs;
303
304 struct btrfs_lru_cache backref_cache;
305 u64 backref_cache_last_reloc_trans;
306
307 struct btrfs_lru_cache dir_created_cache;
308 struct btrfs_lru_cache dir_utimes_cache;
309
310 struct fs_path cur_inode_path;
311 };
312
313 struct pending_dir_move {
314 struct rb_node node;
315 struct list_head list;
316 u64 parent_ino;
317 u64 ino;
318 u64 gen;
319 struct list_head update_refs;
320 };
321
322 struct waiting_dir_move {
323 struct rb_node node;
324 u64 ino;
325 /*
326 * There might be some directory that could not be removed because it
327 * was waiting for this directory inode to be moved first. Therefore
328 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
329 */
330 u64 rmdir_ino;
331 u64 rmdir_gen;
332 bool orphanized;
333 };
334
335 struct orphan_dir_info {
336 struct rb_node node;
337 u64 ino;
338 u64 gen;
339 u64 last_dir_index_offset;
340 u64 dir_high_seq_ino;
341 };
342
343 struct name_cache_entry {
344 /*
345 * The key in the entry is an inode number, and the generation matches
346 * the inode's generation.
347 */
348 struct btrfs_lru_cache_entry entry;
349 u64 parent_ino;
350 u64 parent_gen;
351 int ret;
352 int need_later_update;
353 /* Name length without NUL terminator. */
354 int name_len;
355 /* Not NUL terminated. */
356 char name[] __counted_by(name_len) __nonstring;
357 };
358
359 /* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */
360 static_assert(offsetof(struct name_cache_entry, entry) == 0);
361
362 #define ADVANCE 1
363 #define ADVANCE_ONLY_NEXT -1
364
365 enum btrfs_compare_tree_result {
366 BTRFS_COMPARE_TREE_NEW,
367 BTRFS_COMPARE_TREE_DELETED,
368 BTRFS_COMPARE_TREE_CHANGED,
369 BTRFS_COMPARE_TREE_SAME,
370 };
371
372 __cold
inconsistent_snapshot_error(struct send_ctx * sctx,enum btrfs_compare_tree_result result,const char * what)373 static void inconsistent_snapshot_error(struct send_ctx *sctx,
374 enum btrfs_compare_tree_result result,
375 const char *what)
376 {
377 const char *result_string;
378
379 switch (result) {
380 case BTRFS_COMPARE_TREE_NEW:
381 result_string = "new";
382 break;
383 case BTRFS_COMPARE_TREE_DELETED:
384 result_string = "deleted";
385 break;
386 case BTRFS_COMPARE_TREE_CHANGED:
387 result_string = "updated";
388 break;
389 case BTRFS_COMPARE_TREE_SAME:
390 DEBUG_WARN("no change between trees");
391 result_string = "unchanged";
392 break;
393 default:
394 DEBUG_WARN("unexpected comparison result %d", result);
395 result_string = "unexpected";
396 }
397
398 btrfs_err(sctx->send_root->fs_info,
399 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
400 result_string, what, sctx->cmp_key->objectid,
401 btrfs_root_id(sctx->send_root),
402 (sctx->parent_root ? btrfs_root_id(sctx->parent_root) : 0));
403 }
404
405 __maybe_unused
proto_cmd_ok(const struct send_ctx * sctx,int cmd)406 static bool proto_cmd_ok(const struct send_ctx *sctx, int cmd)
407 {
408 switch (sctx->proto) {
409 case 1: return cmd <= BTRFS_SEND_C_MAX_V1;
410 case 2: return cmd <= BTRFS_SEND_C_MAX_V2;
411 case 3: return cmd <= BTRFS_SEND_C_MAX_V3;
412 default: return false;
413 }
414 }
415
416 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
417
418 static struct waiting_dir_move *
419 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
420
421 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen);
422
need_send_hole(struct send_ctx * sctx)423 static int need_send_hole(struct send_ctx *sctx)
424 {
425 return (sctx->parent_root && !sctx->cur_inode_new &&
426 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
427 S_ISREG(sctx->cur_inode_mode));
428 }
429
fs_path_reset(struct fs_path * p)430 static void fs_path_reset(struct fs_path *p)
431 {
432 if (p->reversed)
433 p->start = p->buf + p->buf_len - 1;
434 else
435 p->start = p->buf;
436
437 p->end = p->start;
438 *p->start = 0;
439 }
440
init_path(struct fs_path * p)441 static void init_path(struct fs_path *p)
442 {
443 p->reversed = 0;
444 p->buf = p->inline_buf;
445 p->buf_len = FS_PATH_INLINE_SIZE;
446 fs_path_reset(p);
447 }
448
fs_path_alloc(void)449 static struct fs_path *fs_path_alloc(void)
450 {
451 struct fs_path *p;
452
453 p = kmalloc(sizeof(*p), GFP_KERNEL);
454 if (!p)
455 return NULL;
456 init_path(p);
457 return p;
458 }
459
fs_path_alloc_reversed(void)460 static struct fs_path *fs_path_alloc_reversed(void)
461 {
462 struct fs_path *p;
463
464 p = fs_path_alloc();
465 if (!p)
466 return NULL;
467 p->reversed = 1;
468 fs_path_reset(p);
469 return p;
470 }
471
fs_path_free(struct fs_path * p)472 static void fs_path_free(struct fs_path *p)
473 {
474 if (!p)
475 return;
476 if (p->buf != p->inline_buf)
477 kfree(p->buf);
478 kfree(p);
479 }
480
fs_path_len(const struct fs_path * p)481 static inline int fs_path_len(const struct fs_path *p)
482 {
483 return p->end - p->start;
484 }
485
fs_path_ensure_buf(struct fs_path * p,int len)486 static int fs_path_ensure_buf(struct fs_path *p, int len)
487 {
488 char *tmp_buf;
489 int path_len;
490 int old_buf_len;
491
492 len++;
493
494 if (p->buf_len >= len)
495 return 0;
496
497 if (WARN_ON(len > PATH_MAX))
498 return -ENAMETOOLONG;
499
500 path_len = fs_path_len(p);
501 old_buf_len = p->buf_len;
502
503 /*
504 * Allocate to the next largest kmalloc bucket size, to let
505 * the fast path happen most of the time.
506 */
507 len = kmalloc_size_roundup(len);
508 /*
509 * First time the inline_buf does not suffice
510 */
511 if (p->buf == p->inline_buf) {
512 tmp_buf = kmalloc(len, GFP_KERNEL);
513 if (tmp_buf)
514 memcpy(tmp_buf, p->buf, old_buf_len);
515 } else {
516 tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
517 }
518 if (!tmp_buf)
519 return -ENOMEM;
520 p->buf = tmp_buf;
521 p->buf_len = len;
522
523 if (p->reversed) {
524 tmp_buf = p->buf + old_buf_len - path_len - 1;
525 p->end = p->buf + p->buf_len - 1;
526 p->start = p->end - path_len;
527 memmove(p->start, tmp_buf, path_len + 1);
528 } else {
529 p->start = p->buf;
530 p->end = p->start + path_len;
531 }
532 return 0;
533 }
534
fs_path_prepare_for_add(struct fs_path * p,int name_len,char ** prepared)535 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
536 char **prepared)
537 {
538 int ret;
539 int new_len;
540
541 new_len = fs_path_len(p) + name_len;
542 if (p->start != p->end)
543 new_len++;
544 ret = fs_path_ensure_buf(p, new_len);
545 if (ret < 0)
546 return ret;
547
548 if (p->reversed) {
549 if (p->start != p->end)
550 *--p->start = '/';
551 p->start -= name_len;
552 *prepared = p->start;
553 } else {
554 if (p->start != p->end)
555 *p->end++ = '/';
556 *prepared = p->end;
557 p->end += name_len;
558 *p->end = 0;
559 }
560
561 return 0;
562 }
563
fs_path_add(struct fs_path * p,const char * name,int name_len)564 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
565 {
566 int ret;
567 char *prepared;
568
569 ret = fs_path_prepare_for_add(p, name_len, &prepared);
570 if (ret < 0)
571 return ret;
572 memcpy(prepared, name, name_len);
573
574 return 0;
575 }
576
fs_path_add_path(struct fs_path * p,const struct fs_path * p2)577 static inline int fs_path_add_path(struct fs_path *p, const struct fs_path *p2)
578 {
579 return fs_path_add(p, p2->start, fs_path_len(p2));
580 }
581
fs_path_add_from_extent_buffer(struct fs_path * p,struct extent_buffer * eb,unsigned long off,int len)582 static int fs_path_add_from_extent_buffer(struct fs_path *p,
583 struct extent_buffer *eb,
584 unsigned long off, int len)
585 {
586 int ret;
587 char *prepared;
588
589 ret = fs_path_prepare_for_add(p, len, &prepared);
590 if (ret < 0)
591 return ret;
592
593 read_extent_buffer(eb, prepared, off, len);
594
595 return 0;
596 }
597
fs_path_copy(struct fs_path * p,struct fs_path * from)598 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
599 {
600 p->reversed = from->reversed;
601 fs_path_reset(p);
602
603 return fs_path_add_path(p, from);
604 }
605
fs_path_unreverse(struct fs_path * p)606 static void fs_path_unreverse(struct fs_path *p)
607 {
608 char *tmp;
609 int len;
610
611 if (!p->reversed)
612 return;
613
614 tmp = p->start;
615 len = fs_path_len(p);
616 p->start = p->buf;
617 p->end = p->start + len;
618 memmove(p->start, tmp, len + 1);
619 p->reversed = 0;
620 }
621
is_current_inode_path(const struct send_ctx * sctx,const struct fs_path * path)622 static inline bool is_current_inode_path(const struct send_ctx *sctx,
623 const struct fs_path *path)
624 {
625 const struct fs_path *cur = &sctx->cur_inode_path;
626
627 return (strncmp(path->start, cur->start, fs_path_len(cur)) == 0);
628 }
629
alloc_path_for_send(void)630 static struct btrfs_path *alloc_path_for_send(void)
631 {
632 struct btrfs_path *path;
633
634 path = btrfs_alloc_path();
635 if (!path)
636 return NULL;
637 path->search_commit_root = true;
638 path->skip_locking = true;
639 path->need_commit_sem = true;
640 return path;
641 }
642
write_buf(struct file * filp,const void * buf,u32 len,loff_t * off)643 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
644 {
645 int ret;
646 u32 pos = 0;
647
648 while (pos < len) {
649 ret = kernel_write(filp, buf + pos, len - pos, off);
650 if (ret < 0)
651 return ret;
652 if (unlikely(ret == 0))
653 return -EIO;
654 pos += ret;
655 }
656
657 return 0;
658 }
659
tlv_put(struct send_ctx * sctx,u16 attr,const void * data,int len)660 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
661 {
662 struct btrfs_tlv_header *hdr;
663 int total_len = sizeof(*hdr) + len;
664 int left = sctx->send_max_size - sctx->send_size;
665
666 if (WARN_ON_ONCE(sctx->put_data))
667 return -EINVAL;
668
669 if (unlikely(left < total_len))
670 return -EOVERFLOW;
671
672 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
673 put_unaligned_le16(attr, &hdr->tlv_type);
674 put_unaligned_le16(len, &hdr->tlv_len);
675 memcpy(hdr + 1, data, len);
676 sctx->send_size += total_len;
677
678 return 0;
679 }
680
681 #define TLV_PUT_DEFINE_INT(bits) \
682 static int tlv_put_u##bits(struct send_ctx *sctx, \
683 u##bits attr, u##bits value) \
684 { \
685 __le##bits __tmp = cpu_to_le##bits(value); \
686 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \
687 }
688
689 TLV_PUT_DEFINE_INT(8)
690 TLV_PUT_DEFINE_INT(32)
691 TLV_PUT_DEFINE_INT(64)
692
tlv_put_string(struct send_ctx * sctx,u16 attr,const char * str,int len)693 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
694 const char *str, int len)
695 {
696 if (len == -1)
697 len = strlen(str);
698 return tlv_put(sctx, attr, str, len);
699 }
700
tlv_put_uuid(struct send_ctx * sctx,u16 attr,const u8 * uuid)701 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
702 const u8 *uuid)
703 {
704 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
705 }
706
tlv_put_btrfs_timespec(struct send_ctx * sctx,u16 attr,struct extent_buffer * eb,struct btrfs_timespec * ts)707 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
708 struct extent_buffer *eb,
709 struct btrfs_timespec *ts)
710 {
711 struct btrfs_timespec bts;
712 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
713 return tlv_put(sctx, attr, &bts, sizeof(bts));
714 }
715
716
717 #define TLV_PUT(sctx, attrtype, data, attrlen) \
718 do { \
719 ret = tlv_put(sctx, attrtype, data, attrlen); \
720 if (ret < 0) \
721 goto tlv_put_failure; \
722 } while (0)
723
724 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
725 do { \
726 ret = tlv_put_u##bits(sctx, attrtype, value); \
727 if (ret < 0) \
728 goto tlv_put_failure; \
729 } while (0)
730
731 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
732 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
733 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
734 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
735 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
736 do { \
737 ret = tlv_put_string(sctx, attrtype, str, len); \
738 if (ret < 0) \
739 goto tlv_put_failure; \
740 } while (0)
741 #define TLV_PUT_PATH(sctx, attrtype, p) \
742 do { \
743 ret = tlv_put_string(sctx, attrtype, p->start, \
744 fs_path_len((p))); \
745 if (ret < 0) \
746 goto tlv_put_failure; \
747 } while(0)
748 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
749 do { \
750 ret = tlv_put_uuid(sctx, attrtype, uuid); \
751 if (ret < 0) \
752 goto tlv_put_failure; \
753 } while (0)
754 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
755 do { \
756 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
757 if (ret < 0) \
758 goto tlv_put_failure; \
759 } while (0)
760
send_header(struct send_ctx * sctx)761 static int send_header(struct send_ctx *sctx)
762 {
763 struct btrfs_stream_header hdr;
764
765 strscpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
766 hdr.version = cpu_to_le32(sctx->proto);
767 return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
768 &sctx->send_off);
769 }
770
771 /*
772 * For each command/item we want to send to userspace, we call this function.
773 */
begin_cmd(struct send_ctx * sctx,int cmd)774 static int begin_cmd(struct send_ctx *sctx, int cmd)
775 {
776 struct btrfs_cmd_header *hdr;
777
778 if (WARN_ON(!sctx->send_buf))
779 return -EINVAL;
780
781 if (unlikely(sctx->send_size != 0)) {
782 btrfs_err(sctx->send_root->fs_info,
783 "send: command header buffer not empty cmd %d offset %llu",
784 cmd, sctx->send_off);
785 return -EINVAL;
786 }
787
788 sctx->send_size += sizeof(*hdr);
789 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
790 put_unaligned_le16(cmd, &hdr->cmd);
791
792 return 0;
793 }
794
send_cmd(struct send_ctx * sctx)795 static int send_cmd(struct send_ctx *sctx)
796 {
797 int ret;
798 struct btrfs_cmd_header *hdr;
799 u32 crc;
800
801 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
802 put_unaligned_le32(sctx->send_size - sizeof(*hdr), &hdr->len);
803 put_unaligned_le32(0, &hdr->crc);
804
805 crc = crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
806 put_unaligned_le32(crc, &hdr->crc);
807
808 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
809 &sctx->send_off);
810
811 sctx->send_size = 0;
812 sctx->put_data = false;
813
814 return ret;
815 }
816
817 /*
818 * Sends a move instruction to user space
819 */
send_rename(struct send_ctx * sctx,struct fs_path * from,struct fs_path * to)820 static int send_rename(struct send_ctx *sctx,
821 struct fs_path *from, struct fs_path *to)
822 {
823 int ret;
824
825 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
826 if (ret < 0)
827 return ret;
828
829 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
830 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
831
832 ret = send_cmd(sctx);
833
834 tlv_put_failure:
835 return ret;
836 }
837
838 /*
839 * Sends a link instruction to user space
840 */
send_link(struct send_ctx * sctx,struct fs_path * path,struct fs_path * lnk)841 static int send_link(struct send_ctx *sctx,
842 struct fs_path *path, struct fs_path *lnk)
843 {
844 int ret;
845
846 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
847 if (ret < 0)
848 return ret;
849
850 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
851 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
852
853 ret = send_cmd(sctx);
854
855 tlv_put_failure:
856 return ret;
857 }
858
859 /*
860 * Sends an unlink instruction to user space
861 */
send_unlink(struct send_ctx * sctx,struct fs_path * path)862 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
863 {
864 int ret;
865
866 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
867 if (ret < 0)
868 return ret;
869
870 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
871
872 ret = send_cmd(sctx);
873
874 tlv_put_failure:
875 return ret;
876 }
877
878 /*
879 * Sends a rmdir instruction to user space
880 */
send_rmdir(struct send_ctx * sctx,struct fs_path * path)881 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
882 {
883 int ret;
884
885 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
886 if (ret < 0)
887 return ret;
888
889 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
890
891 ret = send_cmd(sctx);
892
893 tlv_put_failure:
894 return ret;
895 }
896
897 struct btrfs_inode_info {
898 u64 size;
899 u64 gen;
900 u64 mode;
901 u64 uid;
902 u64 gid;
903 u64 rdev;
904 u64 fileattr;
905 u64 nlink;
906 };
907
908 /*
909 * Helper function to retrieve some fields from an inode item.
910 */
get_inode_info(struct btrfs_root * root,u64 ino,struct btrfs_inode_info * info)911 static int get_inode_info(struct btrfs_root *root, u64 ino,
912 struct btrfs_inode_info *info)
913 {
914 int ret;
915 BTRFS_PATH_AUTO_FREE(path);
916 struct btrfs_inode_item *ii;
917 struct btrfs_key key;
918
919 path = alloc_path_for_send();
920 if (!path)
921 return -ENOMEM;
922
923 key.objectid = ino;
924 key.type = BTRFS_INODE_ITEM_KEY;
925 key.offset = 0;
926 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
927 if (ret) {
928 if (ret > 0)
929 ret = -ENOENT;
930 return ret;
931 }
932
933 if (!info)
934 return 0;
935
936 ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
937 struct btrfs_inode_item);
938 info->size = btrfs_inode_size(path->nodes[0], ii);
939 info->gen = btrfs_inode_generation(path->nodes[0], ii);
940 info->mode = btrfs_inode_mode(path->nodes[0], ii);
941 info->uid = btrfs_inode_uid(path->nodes[0], ii);
942 info->gid = btrfs_inode_gid(path->nodes[0], ii);
943 info->rdev = btrfs_inode_rdev(path->nodes[0], ii);
944 info->nlink = btrfs_inode_nlink(path->nodes[0], ii);
945 /*
946 * Transfer the unchanged u64 value of btrfs_inode_item::flags, that's
947 * otherwise logically split to 32/32 parts.
948 */
949 info->fileattr = btrfs_inode_flags(path->nodes[0], ii);
950
951 return 0;
952 }
953
get_inode_gen(struct btrfs_root * root,u64 ino,u64 * gen)954 static int get_inode_gen(struct btrfs_root *root, u64 ino, u64 *gen)
955 {
956 int ret;
957 struct btrfs_inode_info info = { 0 };
958
959 ASSERT(gen);
960
961 ret = get_inode_info(root, ino, &info);
962 *gen = info.gen;
963 return ret;
964 }
965
966 typedef int (*iterate_inode_ref_t)(u64 dir, struct fs_path *p, void *ctx);
967
968 /*
969 * Helper function to iterate the entries in ONE btrfs_inode_ref or
970 * btrfs_inode_extref.
971 * The iterate callback may return a non zero value to stop iteration. This can
972 * be a negative value for error codes or 1 to simply stop it.
973 *
974 * path must point to the INODE_REF or INODE_EXTREF when called.
975 */
iterate_inode_ref(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * found_key,bool resolve,iterate_inode_ref_t iterate,void * ctx)976 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
977 struct btrfs_key *found_key, bool resolve,
978 iterate_inode_ref_t iterate, void *ctx)
979 {
980 struct extent_buffer *eb = path->nodes[0];
981 struct btrfs_inode_ref *iref;
982 struct btrfs_inode_extref *extref;
983 BTRFS_PATH_AUTO_FREE(tmp_path);
984 struct fs_path *p;
985 u32 cur = 0;
986 u32 total;
987 int slot = path->slots[0];
988 u32 name_len;
989 char *start;
990 int ret = 0;
991 u64 dir;
992 unsigned long name_off;
993 unsigned long elem_size;
994 unsigned long ptr;
995
996 p = fs_path_alloc_reversed();
997 if (!p)
998 return -ENOMEM;
999
1000 tmp_path = alloc_path_for_send();
1001 if (!tmp_path) {
1002 fs_path_free(p);
1003 return -ENOMEM;
1004 }
1005
1006
1007 if (found_key->type == BTRFS_INODE_REF_KEY) {
1008 ptr = (unsigned long)btrfs_item_ptr(eb, slot,
1009 struct btrfs_inode_ref);
1010 total = btrfs_item_size(eb, slot);
1011 elem_size = sizeof(*iref);
1012 } else {
1013 ptr = btrfs_item_ptr_offset(eb, slot);
1014 total = btrfs_item_size(eb, slot);
1015 elem_size = sizeof(*extref);
1016 }
1017
1018 while (cur < total) {
1019 fs_path_reset(p);
1020
1021 if (found_key->type == BTRFS_INODE_REF_KEY) {
1022 iref = (struct btrfs_inode_ref *)(ptr + cur);
1023 name_len = btrfs_inode_ref_name_len(eb, iref);
1024 name_off = (unsigned long)(iref + 1);
1025 dir = found_key->offset;
1026 } else {
1027 extref = (struct btrfs_inode_extref *)(ptr + cur);
1028 name_len = btrfs_inode_extref_name_len(eb, extref);
1029 name_off = (unsigned long)&extref->name;
1030 dir = btrfs_inode_extref_parent(eb, extref);
1031 }
1032
1033 if (resolve) {
1034 start = btrfs_ref_to_path(root, tmp_path, name_len,
1035 name_off, eb, dir,
1036 p->buf, p->buf_len);
1037 if (IS_ERR(start)) {
1038 ret = PTR_ERR(start);
1039 goto out;
1040 }
1041 if (start < p->buf) {
1042 /* overflow , try again with larger buffer */
1043 ret = fs_path_ensure_buf(p,
1044 p->buf_len + p->buf - start);
1045 if (ret < 0)
1046 goto out;
1047 start = btrfs_ref_to_path(root, tmp_path,
1048 name_len, name_off,
1049 eb, dir,
1050 p->buf, p->buf_len);
1051 if (IS_ERR(start)) {
1052 ret = PTR_ERR(start);
1053 goto out;
1054 }
1055 if (unlikely(start < p->buf)) {
1056 btrfs_err(root->fs_info,
1057 "send: path ref buffer underflow for key " BTRFS_KEY_FMT,
1058 BTRFS_KEY_FMT_VALUE(found_key));
1059 ret = -EINVAL;
1060 goto out;
1061 }
1062 }
1063 p->start = start;
1064 } else {
1065 ret = fs_path_add_from_extent_buffer(p, eb, name_off,
1066 name_len);
1067 if (ret < 0)
1068 goto out;
1069 }
1070
1071 cur += elem_size + name_len;
1072 ret = iterate(dir, p, ctx);
1073 if (ret)
1074 goto out;
1075 }
1076
1077 out:
1078 fs_path_free(p);
1079 return ret;
1080 }
1081
1082 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
1083 const char *name, int name_len,
1084 const char *data, int data_len,
1085 void *ctx);
1086
1087 /*
1088 * Helper function to iterate the entries in ONE btrfs_dir_item.
1089 * The iterate callback may return a non zero value to stop iteration. This can
1090 * be a negative value for error codes or 1 to simply stop it.
1091 *
1092 * path must point to the dir item when called.
1093 */
iterate_dir_item(struct btrfs_root * root,struct btrfs_path * path,iterate_dir_item_t iterate,void * ctx)1094 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
1095 iterate_dir_item_t iterate, void *ctx)
1096 {
1097 int ret = 0;
1098 struct extent_buffer *eb;
1099 struct btrfs_dir_item *di;
1100 struct btrfs_key di_key;
1101 char *buf = NULL;
1102 int buf_len;
1103 u32 name_len;
1104 u32 data_len;
1105 u32 cur;
1106 u32 len;
1107 u32 total;
1108 int slot;
1109 int num;
1110
1111 /*
1112 * Start with a small buffer (1 page). If later we end up needing more
1113 * space, which can happen for xattrs on a fs with a leaf size greater
1114 * than the page size, attempt to increase the buffer. Typically xattr
1115 * values are small.
1116 */
1117 buf_len = PATH_MAX;
1118 buf = kmalloc(buf_len, GFP_KERNEL);
1119 if (!buf) {
1120 ret = -ENOMEM;
1121 goto out;
1122 }
1123
1124 eb = path->nodes[0];
1125 slot = path->slots[0];
1126 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1127 cur = 0;
1128 len = 0;
1129 total = btrfs_item_size(eb, slot);
1130
1131 num = 0;
1132 while (cur < total) {
1133 name_len = btrfs_dir_name_len(eb, di);
1134 data_len = btrfs_dir_data_len(eb, di);
1135 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1136
1137 if (btrfs_dir_ftype(eb, di) == BTRFS_FT_XATTR) {
1138 if (unlikely(name_len > XATTR_NAME_MAX)) {
1139 ret = -ENAMETOOLONG;
1140 goto out;
1141 }
1142 if (unlikely(name_len + data_len >
1143 BTRFS_MAX_XATTR_SIZE(root->fs_info))) {
1144 ret = -E2BIG;
1145 goto out;
1146 }
1147 } else {
1148 /*
1149 * Path too long
1150 */
1151 if (unlikely(name_len + data_len > PATH_MAX)) {
1152 ret = -ENAMETOOLONG;
1153 goto out;
1154 }
1155 }
1156
1157 if (name_len + data_len > buf_len) {
1158 buf_len = name_len + data_len;
1159 if (is_vmalloc_addr(buf)) {
1160 vfree(buf);
1161 buf = NULL;
1162 } else {
1163 char *tmp = krealloc(buf, buf_len,
1164 GFP_KERNEL | __GFP_NOWARN);
1165
1166 if (!tmp)
1167 kfree(buf);
1168 buf = tmp;
1169 }
1170 if (!buf) {
1171 buf = kvmalloc(buf_len, GFP_KERNEL);
1172 if (!buf) {
1173 ret = -ENOMEM;
1174 goto out;
1175 }
1176 }
1177 }
1178
1179 read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1180 name_len + data_len);
1181
1182 len = sizeof(*di) + name_len + data_len;
1183 di = (struct btrfs_dir_item *)((char *)di + len);
1184 cur += len;
1185
1186 ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1187 data_len, ctx);
1188 if (ret < 0)
1189 goto out;
1190 if (ret) {
1191 ret = 0;
1192 goto out;
1193 }
1194
1195 num++;
1196 }
1197
1198 out:
1199 kvfree(buf);
1200 return ret;
1201 }
1202
__copy_first_ref(u64 dir,struct fs_path * p,void * ctx)1203 static int __copy_first_ref(u64 dir, struct fs_path *p, void *ctx)
1204 {
1205 int ret;
1206 struct fs_path *pt = ctx;
1207
1208 ret = fs_path_copy(pt, p);
1209 if (ret < 0)
1210 return ret;
1211
1212 /* we want the first only */
1213 return 1;
1214 }
1215
1216 /*
1217 * Retrieve the first path of an inode. If an inode has more then one
1218 * ref/hardlink, this is ignored.
1219 */
get_inode_path(struct btrfs_root * root,u64 ino,struct fs_path * path)1220 static int get_inode_path(struct btrfs_root *root,
1221 u64 ino, struct fs_path *path)
1222 {
1223 int ret;
1224 struct btrfs_key key, found_key;
1225 BTRFS_PATH_AUTO_FREE(p);
1226
1227 p = alloc_path_for_send();
1228 if (!p)
1229 return -ENOMEM;
1230
1231 fs_path_reset(path);
1232
1233 key.objectid = ino;
1234 key.type = BTRFS_INODE_REF_KEY;
1235 key.offset = 0;
1236
1237 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1238 if (ret < 0)
1239 return ret;
1240 if (ret)
1241 return 1;
1242
1243 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1244 if (found_key.objectid != ino ||
1245 (found_key.type != BTRFS_INODE_REF_KEY &&
1246 found_key.type != BTRFS_INODE_EXTREF_KEY))
1247 return -ENOENT;
1248
1249 ret = iterate_inode_ref(root, p, &found_key, true, __copy_first_ref, path);
1250 if (ret < 0)
1251 return ret;
1252 return 0;
1253 }
1254
1255 struct backref_ctx {
1256 struct send_ctx *sctx;
1257
1258 /* number of total found references */
1259 u64 found;
1260
1261 /*
1262 * used for clones found in send_root. clones found behind cur_objectid
1263 * and cur_offset are not considered as allowed clones.
1264 */
1265 u64 cur_objectid;
1266 u64 cur_offset;
1267
1268 /* may be truncated in case it's the last extent in a file */
1269 u64 extent_len;
1270
1271 /* The bytenr the file extent item we are processing refers to. */
1272 u64 bytenr;
1273 /* The owner (root id) of the data backref for the current extent. */
1274 u64 backref_owner;
1275 /* The offset of the data backref for the current extent. */
1276 u64 backref_offset;
1277 };
1278
__clone_root_cmp_bsearch(const void * key,const void * elt)1279 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1280 {
1281 u64 root = (u64)(uintptr_t)key;
1282 const struct clone_root *cr = elt;
1283
1284 if (root < btrfs_root_id(cr->root))
1285 return -1;
1286 if (root > btrfs_root_id(cr->root))
1287 return 1;
1288 return 0;
1289 }
1290
__clone_root_cmp_sort(const void * e1,const void * e2)1291 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1292 {
1293 const struct clone_root *cr1 = e1;
1294 const struct clone_root *cr2 = e2;
1295
1296 if (btrfs_root_id(cr1->root) < btrfs_root_id(cr2->root))
1297 return -1;
1298 if (btrfs_root_id(cr1->root) > btrfs_root_id(cr2->root))
1299 return 1;
1300 return 0;
1301 }
1302
1303 /*
1304 * Called for every backref that is found for the current extent.
1305 * Results are collected in sctx->clone_roots->ino/offset.
1306 */
iterate_backrefs(u64 ino,u64 offset,u64 num_bytes,u64 root_id,void * ctx_)1307 static int iterate_backrefs(u64 ino, u64 offset, u64 num_bytes, u64 root_id,
1308 void *ctx_)
1309 {
1310 struct backref_ctx *bctx = ctx_;
1311 struct clone_root *clone_root;
1312
1313 /* First check if the root is in the list of accepted clone sources */
1314 clone_root = bsearch((void *)(uintptr_t)root_id, bctx->sctx->clone_roots,
1315 bctx->sctx->clone_roots_cnt,
1316 sizeof(struct clone_root),
1317 __clone_root_cmp_bsearch);
1318 if (!clone_root)
1319 return 0;
1320
1321 /* This is our own reference, bail out as we can't clone from it. */
1322 if (clone_root->root == bctx->sctx->send_root &&
1323 ino == bctx->cur_objectid &&
1324 offset == bctx->cur_offset)
1325 return 0;
1326
1327 /*
1328 * Make sure we don't consider clones from send_root that are
1329 * behind the current inode/offset.
1330 */
1331 if (clone_root->root == bctx->sctx->send_root) {
1332 /*
1333 * If the source inode was not yet processed we can't issue a
1334 * clone operation, as the source extent does not exist yet at
1335 * the destination of the stream.
1336 */
1337 if (ino > bctx->cur_objectid)
1338 return 0;
1339 /*
1340 * We clone from the inode currently being sent as long as the
1341 * source extent is already processed, otherwise we could try
1342 * to clone from an extent that does not exist yet at the
1343 * destination of the stream.
1344 */
1345 if (ino == bctx->cur_objectid &&
1346 offset + bctx->extent_len >
1347 bctx->sctx->cur_inode_next_write_offset)
1348 return 0;
1349 }
1350
1351 bctx->found++;
1352 clone_root->found_ref = true;
1353
1354 /*
1355 * If the given backref refers to a file extent item with a larger
1356 * number of bytes than what we found before, use the new one so that
1357 * we clone more optimally and end up doing less writes and getting
1358 * less exclusive, non-shared extents at the destination.
1359 */
1360 if (num_bytes > clone_root->num_bytes) {
1361 clone_root->ino = ino;
1362 clone_root->offset = offset;
1363 clone_root->num_bytes = num_bytes;
1364
1365 /*
1366 * Found a perfect candidate, so there's no need to continue
1367 * backref walking.
1368 */
1369 if (num_bytes >= bctx->extent_len)
1370 return BTRFS_ITERATE_EXTENT_INODES_STOP;
1371 }
1372
1373 return 0;
1374 }
1375
lookup_backref_cache(u64 leaf_bytenr,void * ctx,const u64 ** root_ids_ret,int * root_count_ret)1376 static bool lookup_backref_cache(u64 leaf_bytenr, void *ctx,
1377 const u64 **root_ids_ret, int *root_count_ret)
1378 {
1379 struct backref_ctx *bctx = ctx;
1380 struct send_ctx *sctx = bctx->sctx;
1381 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1382 const u64 key = leaf_bytenr >> fs_info->nodesize_bits;
1383 struct btrfs_lru_cache_entry *raw_entry;
1384 struct backref_cache_entry *entry;
1385
1386 if (sctx->backref_cache.size == 0)
1387 return false;
1388
1389 /*
1390 * If relocation happened since we first filled the cache, then we must
1391 * empty the cache and can not use it, because even though we operate on
1392 * read-only roots, their leaves and nodes may have been reallocated and
1393 * now be used for different nodes/leaves of the same tree or some other
1394 * tree.
1395 *
1396 * We are called from iterate_extent_inodes() while either holding a
1397 * transaction handle or holding fs_info->commit_root_sem, so no need
1398 * to take any lock here.
1399 */
1400 if (fs_info->last_reloc_trans > sctx->backref_cache_last_reloc_trans) {
1401 btrfs_lru_cache_clear(&sctx->backref_cache);
1402 return false;
1403 }
1404
1405 raw_entry = btrfs_lru_cache_lookup(&sctx->backref_cache, key, 0);
1406 if (!raw_entry)
1407 return false;
1408
1409 entry = container_of(raw_entry, struct backref_cache_entry, entry);
1410 *root_ids_ret = entry->root_ids;
1411 *root_count_ret = entry->num_roots;
1412
1413 return true;
1414 }
1415
store_backref_cache(u64 leaf_bytenr,const struct ulist * root_ids,void * ctx)1416 static void store_backref_cache(u64 leaf_bytenr, const struct ulist *root_ids,
1417 void *ctx)
1418 {
1419 struct backref_ctx *bctx = ctx;
1420 struct send_ctx *sctx = bctx->sctx;
1421 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1422 struct backref_cache_entry *new_entry;
1423 struct ulist_iterator uiter;
1424 struct ulist_node *node;
1425 int ret;
1426
1427 /*
1428 * We're called while holding a transaction handle or while holding
1429 * fs_info->commit_root_sem (at iterate_extent_inodes()), so must do a
1430 * NOFS allocation.
1431 */
1432 new_entry = kmalloc(sizeof(struct backref_cache_entry), GFP_NOFS);
1433 /* No worries, cache is optional. */
1434 if (!new_entry)
1435 return;
1436
1437 new_entry->entry.key = leaf_bytenr >> fs_info->nodesize_bits;
1438 new_entry->entry.gen = 0;
1439 new_entry->num_roots = 0;
1440 ULIST_ITER_INIT(&uiter);
1441 while ((node = ulist_next(root_ids, &uiter)) != NULL) {
1442 const u64 root_id = node->val;
1443 struct clone_root *root;
1444
1445 root = bsearch((void *)(uintptr_t)root_id, sctx->clone_roots,
1446 sctx->clone_roots_cnt, sizeof(struct clone_root),
1447 __clone_root_cmp_bsearch);
1448 if (!root)
1449 continue;
1450
1451 /* Too many roots, just exit, no worries as caching is optional. */
1452 if (new_entry->num_roots >= SEND_MAX_BACKREF_CACHE_ROOTS) {
1453 kfree(new_entry);
1454 return;
1455 }
1456
1457 new_entry->root_ids[new_entry->num_roots] = root_id;
1458 new_entry->num_roots++;
1459 }
1460
1461 /*
1462 * We may have not added any roots to the new cache entry, which means
1463 * none of the roots is part of the list of roots from which we are
1464 * allowed to clone. Cache the new entry as it's still useful to avoid
1465 * backref walking to determine which roots have a path to the leaf.
1466 *
1467 * Also use GFP_NOFS because we're called while holding a transaction
1468 * handle or while holding fs_info->commit_root_sem.
1469 */
1470 ret = btrfs_lru_cache_store(&sctx->backref_cache, &new_entry->entry,
1471 GFP_NOFS);
1472 ASSERT(ret == 0 || ret == -ENOMEM);
1473 if (ret) {
1474 /* Caching is optional, no worries. */
1475 kfree(new_entry);
1476 return;
1477 }
1478
1479 /*
1480 * We are called from iterate_extent_inodes() while either holding a
1481 * transaction handle or holding fs_info->commit_root_sem, so no need
1482 * to take any lock here.
1483 */
1484 if (sctx->backref_cache.size == 1)
1485 sctx->backref_cache_last_reloc_trans = fs_info->last_reloc_trans;
1486 }
1487
check_extent_item(u64 bytenr,const struct btrfs_extent_item * ei,const struct extent_buffer * leaf,void * ctx)1488 static int check_extent_item(u64 bytenr, const struct btrfs_extent_item *ei,
1489 const struct extent_buffer *leaf, void *ctx)
1490 {
1491 const u64 refs = btrfs_extent_refs(leaf, ei);
1492 const struct backref_ctx *bctx = ctx;
1493 const struct send_ctx *sctx = bctx->sctx;
1494
1495 if (bytenr == bctx->bytenr) {
1496 const u64 flags = btrfs_extent_flags(leaf, ei);
1497
1498 if (WARN_ON(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
1499 return -EUCLEAN;
1500
1501 /*
1502 * If we have only one reference and only the send root as a
1503 * clone source - meaning no clone roots were given in the
1504 * struct btrfs_ioctl_send_args passed to the send ioctl - then
1505 * it's our reference and there's no point in doing backref
1506 * walking which is expensive, so exit early.
1507 */
1508 if (refs == 1 && sctx->clone_roots_cnt == 1)
1509 return -ENOENT;
1510 }
1511
1512 /*
1513 * Backreference walking (iterate_extent_inodes() below) is currently
1514 * too expensive when an extent has a large number of references, both
1515 * in time spent and used memory. So for now just fallback to write
1516 * operations instead of clone operations when an extent has more than
1517 * a certain amount of references.
1518 */
1519 if (refs > SEND_MAX_EXTENT_REFS)
1520 return -ENOENT;
1521
1522 return 0;
1523 }
1524
skip_self_data_ref(u64 root,u64 ino,u64 offset,void * ctx)1525 static bool skip_self_data_ref(u64 root, u64 ino, u64 offset, void *ctx)
1526 {
1527 const struct backref_ctx *bctx = ctx;
1528
1529 if (ino == bctx->cur_objectid &&
1530 root == bctx->backref_owner &&
1531 offset == bctx->backref_offset)
1532 return true;
1533
1534 return false;
1535 }
1536
1537 /*
1538 * Given an inode, offset and extent item, it finds a good clone for a clone
1539 * instruction. Returns -ENOENT when none could be found. The function makes
1540 * sure that the returned clone is usable at the point where sending is at the
1541 * moment. This means, that no clones are accepted which lie behind the current
1542 * inode+offset.
1543 *
1544 * path must point to the extent item when called.
1545 */
find_extent_clone(struct send_ctx * sctx,struct btrfs_path * path,u64 ino,u64 data_offset,u64 ino_size,struct clone_root ** found)1546 static int find_extent_clone(struct send_ctx *sctx,
1547 struct btrfs_path *path,
1548 u64 ino, u64 data_offset,
1549 u64 ino_size,
1550 struct clone_root **found)
1551 {
1552 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1553 int ret;
1554 int extent_type;
1555 u64 disk_byte;
1556 u64 num_bytes;
1557 struct btrfs_file_extent_item *fi;
1558 struct extent_buffer *eb = path->nodes[0];
1559 struct backref_ctx backref_ctx = { 0 };
1560 struct btrfs_backref_walk_ctx backref_walk_ctx = { 0 };
1561 struct clone_root *cur_clone_root;
1562 int compressed;
1563 u32 i;
1564
1565 /*
1566 * With fallocate we can get prealloc extents beyond the inode's i_size,
1567 * so we don't do anything here because clone operations can not clone
1568 * to a range beyond i_size without increasing the i_size of the
1569 * destination inode.
1570 */
1571 if (data_offset >= ino_size)
1572 return 0;
1573
1574 fi = btrfs_item_ptr(eb, path->slots[0], struct btrfs_file_extent_item);
1575 extent_type = btrfs_file_extent_type(eb, fi);
1576 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1577 return -ENOENT;
1578
1579 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1580 if (disk_byte == 0)
1581 return -ENOENT;
1582
1583 compressed = btrfs_file_extent_compression(eb, fi);
1584 num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1585
1586 /*
1587 * Setup the clone roots.
1588 */
1589 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1590 cur_clone_root = sctx->clone_roots + i;
1591 cur_clone_root->ino = (u64)-1;
1592 cur_clone_root->offset = 0;
1593 cur_clone_root->num_bytes = 0;
1594 cur_clone_root->found_ref = false;
1595 }
1596
1597 backref_ctx.sctx = sctx;
1598 backref_ctx.cur_objectid = ino;
1599 backref_ctx.cur_offset = data_offset;
1600 backref_ctx.bytenr = disk_byte;
1601 /*
1602 * Use the header owner and not the send root's id, because in case of a
1603 * snapshot we can have shared subtrees.
1604 */
1605 backref_ctx.backref_owner = btrfs_header_owner(eb);
1606 backref_ctx.backref_offset = data_offset - btrfs_file_extent_offset(eb, fi);
1607
1608 /*
1609 * The last extent of a file may be too large due to page alignment.
1610 * We need to adjust extent_len in this case so that the checks in
1611 * iterate_backrefs() work.
1612 */
1613 if (data_offset + num_bytes >= ino_size)
1614 backref_ctx.extent_len = ino_size - data_offset;
1615 else
1616 backref_ctx.extent_len = num_bytes;
1617
1618 /*
1619 * Now collect all backrefs.
1620 */
1621 backref_walk_ctx.bytenr = disk_byte;
1622 if (compressed == BTRFS_COMPRESS_NONE)
1623 backref_walk_ctx.extent_item_pos = btrfs_file_extent_offset(eb, fi);
1624 backref_walk_ctx.fs_info = fs_info;
1625 backref_walk_ctx.cache_lookup = lookup_backref_cache;
1626 backref_walk_ctx.cache_store = store_backref_cache;
1627 backref_walk_ctx.indirect_ref_iterator = iterate_backrefs;
1628 backref_walk_ctx.check_extent_item = check_extent_item;
1629 backref_walk_ctx.user_ctx = &backref_ctx;
1630
1631 /*
1632 * If have a single clone root, then it's the send root and we can tell
1633 * the backref walking code to skip our own backref and not resolve it,
1634 * since we can not use it for cloning - the source and destination
1635 * ranges can't overlap and in case the leaf is shared through a subtree
1636 * due to snapshots, we can't use those other roots since they are not
1637 * in the list of clone roots.
1638 */
1639 if (sctx->clone_roots_cnt == 1)
1640 backref_walk_ctx.skip_data_ref = skip_self_data_ref;
1641
1642 ret = iterate_extent_inodes(&backref_walk_ctx, true, iterate_backrefs,
1643 &backref_ctx);
1644 if (ret < 0)
1645 return ret;
1646
1647 down_read(&fs_info->commit_root_sem);
1648 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
1649 /*
1650 * A transaction commit for a transaction in which block group
1651 * relocation was done just happened.
1652 * The disk_bytenr of the file extent item we processed is
1653 * possibly stale, referring to the extent's location before
1654 * relocation. So act as if we haven't found any clone sources
1655 * and fallback to write commands, which will read the correct
1656 * data from the new extent location. Otherwise we will fail
1657 * below because we haven't found our own back reference or we
1658 * could be getting incorrect sources in case the old extent
1659 * was already reallocated after the relocation.
1660 */
1661 up_read(&fs_info->commit_root_sem);
1662 return -ENOENT;
1663 }
1664 up_read(&fs_info->commit_root_sem);
1665
1666 if (!backref_ctx.found)
1667 return -ENOENT;
1668
1669 cur_clone_root = NULL;
1670 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1671 struct clone_root *clone_root = &sctx->clone_roots[i];
1672
1673 if (!clone_root->found_ref)
1674 continue;
1675
1676 /*
1677 * Choose the root from which we can clone more bytes, to
1678 * minimize write operations and therefore have more extent
1679 * sharing at the destination (the same as in the source).
1680 */
1681 if (!cur_clone_root ||
1682 clone_root->num_bytes > cur_clone_root->num_bytes) {
1683 cur_clone_root = clone_root;
1684
1685 /*
1686 * We found an optimal clone candidate (any inode from
1687 * any root is fine), so we're done.
1688 */
1689 if (clone_root->num_bytes >= backref_ctx.extent_len)
1690 break;
1691 }
1692 }
1693
1694 if (cur_clone_root) {
1695 *found = cur_clone_root;
1696 ret = 0;
1697 } else {
1698 ret = -ENOENT;
1699 }
1700
1701 return ret;
1702 }
1703
read_symlink(struct btrfs_root * root,u64 ino,struct fs_path * dest)1704 static int read_symlink(struct btrfs_root *root,
1705 u64 ino,
1706 struct fs_path *dest)
1707 {
1708 int ret;
1709 BTRFS_PATH_AUTO_FREE(path);
1710 struct btrfs_key key;
1711 struct btrfs_file_extent_item *ei;
1712 u8 type;
1713 u8 compression;
1714 unsigned long off;
1715 int len;
1716
1717 path = alloc_path_for_send();
1718 if (!path)
1719 return -ENOMEM;
1720
1721 key.objectid = ino;
1722 key.type = BTRFS_EXTENT_DATA_KEY;
1723 key.offset = 0;
1724 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1725 if (ret < 0)
1726 return ret;
1727 if (unlikely(ret)) {
1728 /*
1729 * An empty symlink inode. Can happen in rare error paths when
1730 * creating a symlink (transaction committed before the inode
1731 * eviction handler removed the symlink inode items and a crash
1732 * happened in between or the subvol was snapshotted in between).
1733 * Print an informative message to dmesg/syslog so that the user
1734 * can delete the symlink.
1735 */
1736 btrfs_err(root->fs_info,
1737 "Found empty symlink inode %llu at root %llu",
1738 ino, btrfs_root_id(root));
1739 return -EIO;
1740 }
1741
1742 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1743 struct btrfs_file_extent_item);
1744 type = btrfs_file_extent_type(path->nodes[0], ei);
1745 if (unlikely(type != BTRFS_FILE_EXTENT_INLINE)) {
1746 ret = -EUCLEAN;
1747 btrfs_crit(root->fs_info,
1748 "send: found symlink extent that is not inline, ino %llu root %llu extent type %d",
1749 ino, btrfs_root_id(root), type);
1750 return ret;
1751 }
1752 compression = btrfs_file_extent_compression(path->nodes[0], ei);
1753 if (unlikely(compression != BTRFS_COMPRESS_NONE)) {
1754 ret = -EUCLEAN;
1755 btrfs_crit(root->fs_info,
1756 "send: found symlink extent with compression, ino %llu root %llu compression type %d",
1757 ino, btrfs_root_id(root), compression);
1758 return ret;
1759 }
1760
1761 off = btrfs_file_extent_inline_start(ei);
1762 len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
1763
1764 return fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1765 }
1766
1767 /*
1768 * Helper function to generate a file name that is unique in the root of
1769 * send_root and parent_root. This is used to generate names for orphan inodes.
1770 */
gen_unique_name(struct send_ctx * sctx,u64 ino,u64 gen,struct fs_path * dest)1771 static int gen_unique_name(struct send_ctx *sctx,
1772 u64 ino, u64 gen,
1773 struct fs_path *dest)
1774 {
1775 BTRFS_PATH_AUTO_FREE(path);
1776 struct btrfs_dir_item *di;
1777 char tmp[64];
1778 int len;
1779 u64 idx = 0;
1780
1781 path = alloc_path_for_send();
1782 if (!path)
1783 return -ENOMEM;
1784
1785 while (1) {
1786 struct fscrypt_str tmp_name;
1787
1788 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1789 ino, gen, idx);
1790 ASSERT(len < sizeof(tmp));
1791 tmp_name.name = tmp;
1792 tmp_name.len = len;
1793
1794 di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1795 path, BTRFS_FIRST_FREE_OBJECTID,
1796 &tmp_name, 0);
1797 btrfs_release_path(path);
1798 if (IS_ERR(di))
1799 return PTR_ERR(di);
1800
1801 if (di) {
1802 /* not unique, try again */
1803 idx++;
1804 continue;
1805 }
1806
1807 if (!sctx->parent_root) {
1808 /* unique */
1809 break;
1810 }
1811
1812 di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1813 path, BTRFS_FIRST_FREE_OBJECTID,
1814 &tmp_name, 0);
1815 btrfs_release_path(path);
1816 if (IS_ERR(di))
1817 return PTR_ERR(di);
1818
1819 if (di) {
1820 /* not unique, try again */
1821 idx++;
1822 continue;
1823 }
1824 /* unique */
1825 break;
1826 }
1827
1828 return fs_path_add(dest, tmp, len);
1829 }
1830
1831 enum inode_state {
1832 inode_state_no_change,
1833 inode_state_will_create,
1834 inode_state_did_create,
1835 inode_state_will_delete,
1836 inode_state_did_delete,
1837 };
1838
get_cur_inode_state(struct send_ctx * sctx,u64 ino,u64 gen,u64 * send_gen,u64 * parent_gen)1839 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen,
1840 u64 *send_gen, u64 *parent_gen)
1841 {
1842 int ret;
1843 int left_ret;
1844 int right_ret;
1845 u64 left_gen;
1846 u64 right_gen = 0;
1847 struct btrfs_inode_info info;
1848
1849 ret = get_inode_info(sctx->send_root, ino, &info);
1850 if (ret < 0 && ret != -ENOENT)
1851 return ret;
1852 left_ret = (info.nlink == 0) ? -ENOENT : ret;
1853 left_gen = info.gen;
1854 if (send_gen)
1855 *send_gen = ((left_ret == -ENOENT) ? 0 : info.gen);
1856
1857 if (!sctx->parent_root) {
1858 right_ret = -ENOENT;
1859 } else {
1860 ret = get_inode_info(sctx->parent_root, ino, &info);
1861 if (ret < 0 && ret != -ENOENT)
1862 return ret;
1863 right_ret = (info.nlink == 0) ? -ENOENT : ret;
1864 right_gen = info.gen;
1865 if (parent_gen)
1866 *parent_gen = ((right_ret == -ENOENT) ? 0 : info.gen);
1867 }
1868
1869 if (!left_ret && !right_ret) {
1870 if (left_gen == gen && right_gen == gen) {
1871 ret = inode_state_no_change;
1872 } else if (left_gen == gen) {
1873 if (ino < sctx->send_progress)
1874 ret = inode_state_did_create;
1875 else
1876 ret = inode_state_will_create;
1877 } else if (right_gen == gen) {
1878 if (ino < sctx->send_progress)
1879 ret = inode_state_did_delete;
1880 else
1881 ret = inode_state_will_delete;
1882 } else {
1883 ret = -ENOENT;
1884 }
1885 } else if (!left_ret) {
1886 if (left_gen == gen) {
1887 if (ino < sctx->send_progress)
1888 ret = inode_state_did_create;
1889 else
1890 ret = inode_state_will_create;
1891 } else {
1892 ret = -ENOENT;
1893 }
1894 } else if (!right_ret) {
1895 if (right_gen == gen) {
1896 if (ino < sctx->send_progress)
1897 ret = inode_state_did_delete;
1898 else
1899 ret = inode_state_will_delete;
1900 } else {
1901 ret = -ENOENT;
1902 }
1903 } else {
1904 ret = -ENOENT;
1905 }
1906
1907 return ret;
1908 }
1909
is_inode_existent(struct send_ctx * sctx,u64 ino,u64 gen,u64 * send_gen,u64 * parent_gen)1910 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen,
1911 u64 *send_gen, u64 *parent_gen)
1912 {
1913 int ret;
1914
1915 if (ino == BTRFS_FIRST_FREE_OBJECTID)
1916 return 1;
1917
1918 ret = get_cur_inode_state(sctx, ino, gen, send_gen, parent_gen);
1919 if (ret < 0)
1920 return ret;
1921
1922 if (ret == inode_state_no_change ||
1923 ret == inode_state_did_create ||
1924 ret == inode_state_will_delete)
1925 return 1;
1926
1927 return 0;
1928 }
1929
1930 /*
1931 * Helper function to lookup a dir item in a dir.
1932 */
lookup_dir_item_inode(struct btrfs_root * root,u64 dir,const char * name,int name_len,u64 * found_inode)1933 static int lookup_dir_item_inode(struct btrfs_root *root,
1934 u64 dir, const char *name, int name_len,
1935 u64 *found_inode)
1936 {
1937 int ret = 0;
1938 struct btrfs_dir_item *di;
1939 struct btrfs_key key;
1940 BTRFS_PATH_AUTO_FREE(path);
1941 struct fscrypt_str name_str = FSTR_INIT((char *)name, name_len);
1942
1943 path = alloc_path_for_send();
1944 if (!path)
1945 return -ENOMEM;
1946
1947 di = btrfs_lookup_dir_item(NULL, root, path, dir, &name_str, 0);
1948 if (IS_ERR_OR_NULL(di))
1949 return di ? PTR_ERR(di) : -ENOENT;
1950
1951 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1952 if (key.type == BTRFS_ROOT_ITEM_KEY)
1953 return -ENOENT;
1954
1955 *found_inode = key.objectid;
1956
1957 return ret;
1958 }
1959
1960 /*
1961 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1962 * generation of the parent dir and the name of the dir entry.
1963 */
get_first_ref(struct btrfs_root * root,u64 ino,u64 * dir,u64 * dir_gen,struct fs_path * name)1964 static int get_first_ref(struct btrfs_root *root, u64 ino,
1965 u64 *dir, u64 *dir_gen, struct fs_path *name)
1966 {
1967 int ret;
1968 struct btrfs_key key;
1969 struct btrfs_key found_key;
1970 BTRFS_PATH_AUTO_FREE(path);
1971 int len;
1972 u64 parent_dir;
1973
1974 path = alloc_path_for_send();
1975 if (!path)
1976 return -ENOMEM;
1977
1978 key.objectid = ino;
1979 key.type = BTRFS_INODE_REF_KEY;
1980 key.offset = 0;
1981
1982 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1983 if (ret < 0)
1984 return ret;
1985 if (!ret)
1986 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1987 path->slots[0]);
1988 if (ret || found_key.objectid != ino ||
1989 (found_key.type != BTRFS_INODE_REF_KEY &&
1990 found_key.type != BTRFS_INODE_EXTREF_KEY))
1991 return -ENOENT;
1992
1993 if (found_key.type == BTRFS_INODE_REF_KEY) {
1994 struct btrfs_inode_ref *iref;
1995 iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1996 struct btrfs_inode_ref);
1997 len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1998 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1999 (unsigned long)(iref + 1),
2000 len);
2001 parent_dir = found_key.offset;
2002 } else {
2003 struct btrfs_inode_extref *extref;
2004 extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
2005 struct btrfs_inode_extref);
2006 len = btrfs_inode_extref_name_len(path->nodes[0], extref);
2007 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
2008 (unsigned long)&extref->name, len);
2009 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
2010 }
2011 if (ret < 0)
2012 return ret;
2013 btrfs_release_path(path);
2014
2015 if (dir_gen) {
2016 ret = get_inode_gen(root, parent_dir, dir_gen);
2017 if (ret < 0)
2018 return ret;
2019 }
2020
2021 *dir = parent_dir;
2022
2023 return ret;
2024 }
2025
is_first_ref(struct btrfs_root * root,u64 ino,u64 dir,const char * name,int name_len)2026 static int is_first_ref(struct btrfs_root *root,
2027 u64 ino, u64 dir,
2028 const char *name, int name_len)
2029 {
2030 int ret;
2031 struct fs_path *tmp_name;
2032 u64 tmp_dir;
2033
2034 tmp_name = fs_path_alloc();
2035 if (!tmp_name)
2036 return -ENOMEM;
2037
2038 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
2039 if (ret < 0)
2040 goto out;
2041
2042 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
2043 ret = 0;
2044 goto out;
2045 }
2046
2047 ret = !memcmp(tmp_name->start, name, name_len);
2048
2049 out:
2050 fs_path_free(tmp_name);
2051 return ret;
2052 }
2053
2054 /*
2055 * Used by process_recorded_refs to determine if a new ref would overwrite an
2056 * already existing ref. In case it detects an overwrite, it returns the
2057 * inode/gen in who_ino/who_gen.
2058 * When an overwrite is detected, process_recorded_refs does proper orphanizing
2059 * to make sure later references to the overwritten inode are possible.
2060 * Orphanizing is however only required for the first ref of an inode.
2061 * process_recorded_refs does an additional is_first_ref check to see if
2062 * orphanizing is really required.
2063 */
will_overwrite_ref(struct send_ctx * sctx,u64 dir,u64 dir_gen,const char * name,int name_len,u64 * who_ino,u64 * who_gen,u64 * who_mode)2064 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2065 const char *name, int name_len,
2066 u64 *who_ino, u64 *who_gen, u64 *who_mode)
2067 {
2068 int ret;
2069 u64 parent_root_dir_gen;
2070 u64 other_inode = 0;
2071 struct btrfs_inode_info info;
2072
2073 if (!sctx->parent_root)
2074 return 0;
2075
2076 ret = is_inode_existent(sctx, dir, dir_gen, NULL, &parent_root_dir_gen);
2077 if (ret <= 0)
2078 return 0;
2079
2080 /*
2081 * If we have a parent root we need to verify that the parent dir was
2082 * not deleted and then re-created, if it was then we have no overwrite
2083 * and we can just unlink this entry.
2084 *
2085 * @parent_root_dir_gen was set to 0 if the inode does not exist in the
2086 * parent root.
2087 */
2088 if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID &&
2089 parent_root_dir_gen != dir_gen)
2090 return 0;
2091
2092 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
2093 &other_inode);
2094 if (ret == -ENOENT)
2095 return 0;
2096 else if (ret < 0)
2097 return ret;
2098
2099 /*
2100 * Check if the overwritten ref was already processed. If yes, the ref
2101 * was already unlinked/moved, so we can safely assume that we will not
2102 * overwrite anything at this point in time.
2103 */
2104 if (other_inode > sctx->send_progress ||
2105 is_waiting_for_move(sctx, other_inode)) {
2106 ret = get_inode_info(sctx->parent_root, other_inode, &info);
2107 if (ret < 0)
2108 return ret;
2109
2110 *who_ino = other_inode;
2111 *who_gen = info.gen;
2112 *who_mode = info.mode;
2113 return 1;
2114 }
2115
2116 return 0;
2117 }
2118
2119 /*
2120 * Checks if the ref was overwritten by an already processed inode. This is
2121 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
2122 * thus the orphan name needs be used.
2123 * process_recorded_refs also uses it to avoid unlinking of refs that were
2124 * overwritten.
2125 */
did_overwrite_ref(struct send_ctx * sctx,u64 dir,u64 dir_gen,u64 ino,u64 ino_gen,const char * name,int name_len)2126 static int did_overwrite_ref(struct send_ctx *sctx,
2127 u64 dir, u64 dir_gen,
2128 u64 ino, u64 ino_gen,
2129 const char *name, int name_len)
2130 {
2131 int ret;
2132 u64 ow_inode;
2133 u64 ow_gen = 0;
2134 u64 send_root_dir_gen;
2135
2136 if (!sctx->parent_root)
2137 return 0;
2138
2139 ret = is_inode_existent(sctx, dir, dir_gen, &send_root_dir_gen, NULL);
2140 if (ret <= 0)
2141 return ret;
2142
2143 /*
2144 * @send_root_dir_gen was set to 0 if the inode does not exist in the
2145 * send root.
2146 */
2147 if (dir != BTRFS_FIRST_FREE_OBJECTID && send_root_dir_gen != dir_gen)
2148 return 0;
2149
2150 /* check if the ref was overwritten by another ref */
2151 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
2152 &ow_inode);
2153 if (ret == -ENOENT) {
2154 /* was never and will never be overwritten */
2155 return 0;
2156 } else if (ret < 0) {
2157 return ret;
2158 }
2159
2160 if (ow_inode == ino) {
2161 ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen);
2162 if (ret < 0)
2163 return ret;
2164
2165 /* It's the same inode, so no overwrite happened. */
2166 if (ow_gen == ino_gen)
2167 return 0;
2168 }
2169
2170 /*
2171 * We know that it is or will be overwritten. Check this now.
2172 * The current inode being processed might have been the one that caused
2173 * inode 'ino' to be orphanized, therefore check if ow_inode matches
2174 * the current inode being processed.
2175 */
2176 if (ow_inode < sctx->send_progress)
2177 return 1;
2178
2179 if (ino != sctx->cur_ino && ow_inode == sctx->cur_ino) {
2180 if (ow_gen == 0) {
2181 ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen);
2182 if (ret < 0)
2183 return ret;
2184 }
2185 if (ow_gen == sctx->cur_inode_gen)
2186 return 1;
2187 }
2188
2189 return 0;
2190 }
2191
2192 /*
2193 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
2194 * that got overwritten. This is used by process_recorded_refs to determine
2195 * if it has to use the path as returned by get_cur_path or the orphan name.
2196 */
did_overwrite_first_ref(struct send_ctx * sctx,u64 ino,u64 gen)2197 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
2198 {
2199 int ret = 0;
2200 struct fs_path *name = NULL;
2201 u64 dir;
2202 u64 dir_gen;
2203
2204 if (!sctx->parent_root)
2205 goto out;
2206
2207 name = fs_path_alloc();
2208 if (!name)
2209 return -ENOMEM;
2210
2211 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
2212 if (ret < 0)
2213 goto out;
2214
2215 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
2216 name->start, fs_path_len(name));
2217
2218 out:
2219 fs_path_free(name);
2220 return ret;
2221 }
2222
name_cache_search(struct send_ctx * sctx,u64 ino,u64 gen)2223 static inline struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2224 u64 ino, u64 gen)
2225 {
2226 struct btrfs_lru_cache_entry *entry;
2227
2228 entry = btrfs_lru_cache_lookup(&sctx->name_cache, ino, gen);
2229 if (!entry)
2230 return NULL;
2231
2232 return container_of(entry, struct name_cache_entry, entry);
2233 }
2234
2235 /*
2236 * Used by get_cur_path for each ref up to the root.
2237 * Returns 0 if it succeeded.
2238 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2239 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2240 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2241 * Returns <0 in case of error.
2242 */
__get_cur_name_and_parent(struct send_ctx * sctx,u64 ino,u64 gen,u64 * parent_ino,u64 * parent_gen,struct fs_path * dest)2243 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2244 u64 ino, u64 gen,
2245 u64 *parent_ino,
2246 u64 *parent_gen,
2247 struct fs_path *dest)
2248 {
2249 int ret;
2250 int nce_ret;
2251 struct name_cache_entry *nce;
2252
2253 /*
2254 * First check if we already did a call to this function with the same
2255 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2256 * return the cached result.
2257 */
2258 nce = name_cache_search(sctx, ino, gen);
2259 if (nce) {
2260 if (ino < sctx->send_progress && nce->need_later_update) {
2261 btrfs_lru_cache_remove(&sctx->name_cache, &nce->entry);
2262 nce = NULL;
2263 } else {
2264 *parent_ino = nce->parent_ino;
2265 *parent_gen = nce->parent_gen;
2266 ret = fs_path_add(dest, nce->name, nce->name_len);
2267 if (ret < 0)
2268 return ret;
2269 return nce->ret;
2270 }
2271 }
2272
2273 /*
2274 * If the inode is not existent yet, add the orphan name and return 1.
2275 * This should only happen for the parent dir that we determine in
2276 * record_new_ref_if_needed().
2277 */
2278 ret = is_inode_existent(sctx, ino, gen, NULL, NULL);
2279 if (ret < 0)
2280 return ret;
2281
2282 if (!ret) {
2283 ret = gen_unique_name(sctx, ino, gen, dest);
2284 if (ret < 0)
2285 return ret;
2286 ret = 1;
2287 goto out_cache;
2288 }
2289
2290 /*
2291 * Depending on whether the inode was already processed or not, use
2292 * send_root or parent_root for ref lookup.
2293 */
2294 if (ino < sctx->send_progress)
2295 ret = get_first_ref(sctx->send_root, ino,
2296 parent_ino, parent_gen, dest);
2297 else
2298 ret = get_first_ref(sctx->parent_root, ino,
2299 parent_ino, parent_gen, dest);
2300 if (ret < 0)
2301 return ret;
2302
2303 /*
2304 * Check if the ref was overwritten by an inode's ref that was processed
2305 * earlier. If yes, treat as orphan and return 1.
2306 */
2307 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2308 dest->start, fs_path_len(dest));
2309 if (ret < 0)
2310 return ret;
2311 if (ret) {
2312 fs_path_reset(dest);
2313 ret = gen_unique_name(sctx, ino, gen, dest);
2314 if (ret < 0)
2315 return ret;
2316 ret = 1;
2317 }
2318
2319 out_cache:
2320 /*
2321 * Store the result of the lookup in the name cache.
2322 */
2323 nce = kmalloc(sizeof(*nce) + fs_path_len(dest), GFP_KERNEL);
2324 if (!nce)
2325 return -ENOMEM;
2326
2327 nce->entry.key = ino;
2328 nce->entry.gen = gen;
2329 nce->parent_ino = *parent_ino;
2330 nce->parent_gen = *parent_gen;
2331 nce->name_len = fs_path_len(dest);
2332 nce->ret = ret;
2333 memcpy(nce->name, dest->start, nce->name_len);
2334
2335 if (ino < sctx->send_progress)
2336 nce->need_later_update = 0;
2337 else
2338 nce->need_later_update = 1;
2339
2340 nce_ret = btrfs_lru_cache_store(&sctx->name_cache, &nce->entry, GFP_KERNEL);
2341 if (nce_ret < 0) {
2342 kfree(nce);
2343 return nce_ret;
2344 }
2345
2346 return ret;
2347 }
2348
2349 /*
2350 * Magic happens here. This function returns the first ref to an inode as it
2351 * would look like while receiving the stream at this point in time.
2352 * We walk the path up to the root. For every inode in between, we check if it
2353 * was already processed/sent. If yes, we continue with the parent as found
2354 * in send_root. If not, we continue with the parent as found in parent_root.
2355 * If we encounter an inode that was deleted at this point in time, we use the
2356 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2357 * that were not created yet and overwritten inodes/refs.
2358 *
2359 * When do we have orphan inodes:
2360 * 1. When an inode is freshly created and thus no valid refs are available yet
2361 * 2. When a directory lost all it's refs (deleted) but still has dir items
2362 * inside which were not processed yet (pending for move/delete). If anyone
2363 * tried to get the path to the dir items, it would get a path inside that
2364 * orphan directory.
2365 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2366 * of an unprocessed inode. If in that case the first ref would be
2367 * overwritten, the overwritten inode gets "orphanized". Later when we
2368 * process this overwritten inode, it is restored at a new place by moving
2369 * the orphan inode.
2370 *
2371 * sctx->send_progress tells this function at which point in time receiving
2372 * would be.
2373 */
get_cur_path(struct send_ctx * sctx,u64 ino,u64 gen,struct fs_path * dest)2374 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2375 struct fs_path *dest)
2376 {
2377 int ret = 0;
2378 struct fs_path *name = NULL;
2379 u64 parent_inode = 0;
2380 u64 parent_gen = 0;
2381 int stop = 0;
2382 const bool is_cur_inode = (ino == sctx->cur_ino && gen == sctx->cur_inode_gen);
2383
2384 if (is_cur_inode && fs_path_len(&sctx->cur_inode_path) > 0) {
2385 if (dest != &sctx->cur_inode_path)
2386 return fs_path_copy(dest, &sctx->cur_inode_path);
2387
2388 return 0;
2389 }
2390
2391 name = fs_path_alloc();
2392 if (!name) {
2393 ret = -ENOMEM;
2394 goto out;
2395 }
2396
2397 dest->reversed = 1;
2398 fs_path_reset(dest);
2399
2400 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2401 struct waiting_dir_move *wdm;
2402
2403 fs_path_reset(name);
2404
2405 if (is_waiting_for_rm(sctx, ino, gen)) {
2406 ret = gen_unique_name(sctx, ino, gen, name);
2407 if (ret < 0)
2408 goto out;
2409 ret = fs_path_add_path(dest, name);
2410 break;
2411 }
2412
2413 wdm = get_waiting_dir_move(sctx, ino);
2414 if (wdm && wdm->orphanized) {
2415 ret = gen_unique_name(sctx, ino, gen, name);
2416 stop = 1;
2417 } else if (wdm) {
2418 ret = get_first_ref(sctx->parent_root, ino,
2419 &parent_inode, &parent_gen, name);
2420 } else {
2421 ret = __get_cur_name_and_parent(sctx, ino, gen,
2422 &parent_inode,
2423 &parent_gen, name);
2424 if (ret)
2425 stop = 1;
2426 }
2427
2428 if (ret < 0)
2429 goto out;
2430
2431 ret = fs_path_add_path(dest, name);
2432 if (ret < 0)
2433 goto out;
2434
2435 ino = parent_inode;
2436 gen = parent_gen;
2437 }
2438
2439 out:
2440 fs_path_free(name);
2441 if (!ret) {
2442 fs_path_unreverse(dest);
2443 if (is_cur_inode && dest != &sctx->cur_inode_path)
2444 ret = fs_path_copy(&sctx->cur_inode_path, dest);
2445 }
2446
2447 return ret;
2448 }
2449
2450 /*
2451 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2452 */
send_subvol_begin(struct send_ctx * sctx)2453 static int send_subvol_begin(struct send_ctx *sctx)
2454 {
2455 int ret;
2456 struct btrfs_root *send_root = sctx->send_root;
2457 struct btrfs_root *parent_root = sctx->parent_root;
2458 BTRFS_PATH_AUTO_FREE(path);
2459 struct btrfs_key key;
2460 struct btrfs_root_ref *ref;
2461 struct extent_buffer *leaf;
2462 char AUTO_KFREE(name);
2463 int namelen;
2464
2465 path = btrfs_alloc_path();
2466 if (!path)
2467 return -ENOMEM;
2468
2469 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2470 if (!name)
2471 return -ENOMEM;
2472
2473 key.objectid = btrfs_root_id(send_root);
2474 key.type = BTRFS_ROOT_BACKREF_KEY;
2475 key.offset = 0;
2476
2477 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2478 &key, path, 1, 0);
2479 if (ret < 0)
2480 return ret;
2481 if (ret)
2482 return -ENOENT;
2483
2484 leaf = path->nodes[0];
2485 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2486 if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2487 key.objectid != btrfs_root_id(send_root)) {
2488 return -ENOENT;
2489 }
2490 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2491 namelen = btrfs_root_ref_name_len(leaf, ref);
2492 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2493 btrfs_release_path(path);
2494
2495 if (parent_root) {
2496 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2497 if (ret < 0)
2498 return ret;
2499 } else {
2500 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2501 if (ret < 0)
2502 return ret;
2503 }
2504
2505 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2506
2507 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2508 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2509 sctx->send_root->root_item.received_uuid);
2510 else
2511 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2512 sctx->send_root->root_item.uuid);
2513
2514 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2515 btrfs_root_ctransid(&sctx->send_root->root_item));
2516 if (parent_root) {
2517 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2518 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2519 parent_root->root_item.received_uuid);
2520 else
2521 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2522 parent_root->root_item.uuid);
2523 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2524 btrfs_root_ctransid(&sctx->parent_root->root_item));
2525 }
2526
2527 ret = send_cmd(sctx);
2528
2529 tlv_put_failure:
2530 return ret;
2531 }
2532
get_cur_inode_path(struct send_ctx * sctx)2533 static struct fs_path *get_cur_inode_path(struct send_ctx *sctx)
2534 {
2535 if (fs_path_len(&sctx->cur_inode_path) == 0) {
2536 int ret;
2537
2538 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
2539 &sctx->cur_inode_path);
2540 if (ret < 0)
2541 return ERR_PTR(ret);
2542 }
2543
2544 return &sctx->cur_inode_path;
2545 }
2546
get_path_for_command(struct send_ctx * sctx,u64 ino,u64 gen)2547 static struct fs_path *get_path_for_command(struct send_ctx *sctx, u64 ino, u64 gen)
2548 {
2549 struct fs_path *path;
2550 int ret;
2551
2552 if (ino == sctx->cur_ino && gen == sctx->cur_inode_gen)
2553 return get_cur_inode_path(sctx);
2554
2555 path = fs_path_alloc();
2556 if (!path)
2557 return ERR_PTR(-ENOMEM);
2558
2559 ret = get_cur_path(sctx, ino, gen, path);
2560 if (ret < 0) {
2561 fs_path_free(path);
2562 return ERR_PTR(ret);
2563 }
2564
2565 return path;
2566 }
2567
free_path_for_command(const struct send_ctx * sctx,struct fs_path * path)2568 static void free_path_for_command(const struct send_ctx *sctx, struct fs_path *path)
2569 {
2570 if (path != &sctx->cur_inode_path)
2571 fs_path_free(path);
2572 }
2573
send_truncate(struct send_ctx * sctx,u64 ino,u64 gen,u64 size)2574 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2575 {
2576 int ret = 0;
2577 struct fs_path *p;
2578
2579 p = get_path_for_command(sctx, ino, gen);
2580 if (IS_ERR(p))
2581 return PTR_ERR(p);
2582
2583 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2584 if (ret < 0)
2585 goto out;
2586
2587 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2588 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2589
2590 ret = send_cmd(sctx);
2591
2592 tlv_put_failure:
2593 out:
2594 free_path_for_command(sctx, p);
2595 return ret;
2596 }
2597
send_chmod(struct send_ctx * sctx,u64 ino,u64 gen,u64 mode)2598 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2599 {
2600 int ret = 0;
2601 struct fs_path *p;
2602
2603 p = get_path_for_command(sctx, ino, gen);
2604 if (IS_ERR(p))
2605 return PTR_ERR(p);
2606
2607 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2608 if (ret < 0)
2609 goto out;
2610
2611 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2612 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2613
2614 ret = send_cmd(sctx);
2615
2616 tlv_put_failure:
2617 out:
2618 free_path_for_command(sctx, p);
2619 return ret;
2620 }
2621
send_fileattr(struct send_ctx * sctx,u64 ino,u64 gen,u64 fileattr)2622 static int send_fileattr(struct send_ctx *sctx, u64 ino, u64 gen, u64 fileattr)
2623 {
2624 int ret = 0;
2625 struct fs_path *p;
2626
2627 if (sctx->proto < 2)
2628 return 0;
2629
2630 p = get_path_for_command(sctx, ino, gen);
2631 if (IS_ERR(p))
2632 return PTR_ERR(p);
2633
2634 ret = begin_cmd(sctx, BTRFS_SEND_C_FILEATTR);
2635 if (ret < 0)
2636 goto out;
2637
2638 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2639 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILEATTR, fileattr);
2640
2641 ret = send_cmd(sctx);
2642
2643 tlv_put_failure:
2644 out:
2645 free_path_for_command(sctx, p);
2646 return ret;
2647 }
2648
send_chown(struct send_ctx * sctx,u64 ino,u64 gen,u64 uid,u64 gid)2649 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2650 {
2651 int ret = 0;
2652 struct fs_path *p;
2653
2654 p = get_path_for_command(sctx, ino, gen);
2655 if (IS_ERR(p))
2656 return PTR_ERR(p);
2657
2658 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2659 if (ret < 0)
2660 goto out;
2661
2662 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2663 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2664 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2665
2666 ret = send_cmd(sctx);
2667
2668 tlv_put_failure:
2669 out:
2670 free_path_for_command(sctx, p);
2671 return ret;
2672 }
2673
send_utimes(struct send_ctx * sctx,u64 ino,u64 gen)2674 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2675 {
2676 int ret = 0;
2677 struct fs_path *p = NULL;
2678 struct btrfs_inode_item *ii;
2679 BTRFS_PATH_AUTO_FREE(path);
2680 struct extent_buffer *eb;
2681 struct btrfs_key key;
2682 int slot;
2683
2684 p = get_path_for_command(sctx, ino, gen);
2685 if (IS_ERR(p))
2686 return PTR_ERR(p);
2687
2688 path = alloc_path_for_send();
2689 if (!path) {
2690 ret = -ENOMEM;
2691 goto out;
2692 }
2693
2694 key.objectid = ino;
2695 key.type = BTRFS_INODE_ITEM_KEY;
2696 key.offset = 0;
2697 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2698 if (ret > 0)
2699 ret = -ENOENT;
2700 if (ret < 0)
2701 goto out;
2702
2703 eb = path->nodes[0];
2704 slot = path->slots[0];
2705 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2706
2707 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2708 if (ret < 0)
2709 goto out;
2710
2711 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2712 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2713 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2714 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2715 if (sctx->proto >= 2)
2716 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_OTIME, eb, &ii->otime);
2717
2718 ret = send_cmd(sctx);
2719
2720 tlv_put_failure:
2721 out:
2722 free_path_for_command(sctx, p);
2723 return ret;
2724 }
2725
2726 /*
2727 * If the cache is full, we can't remove entries from it and do a call to
2728 * send_utimes() for each respective inode, because we might be finishing
2729 * processing an inode that is a directory and it just got renamed, and existing
2730 * entries in the cache may refer to inodes that have the directory in their
2731 * full path - in which case we would generate outdated paths (pre-rename)
2732 * for the inodes that the cache entries point to. Instead of pruning the
2733 * cache when inserting, do it after we finish processing each inode at
2734 * finish_inode_if_needed().
2735 */
cache_dir_utimes(struct send_ctx * sctx,u64 dir,u64 gen)2736 static int cache_dir_utimes(struct send_ctx *sctx, u64 dir, u64 gen)
2737 {
2738 struct btrfs_lru_cache_entry *entry;
2739 int ret;
2740
2741 entry = btrfs_lru_cache_lookup(&sctx->dir_utimes_cache, dir, gen);
2742 if (entry != NULL)
2743 return 0;
2744
2745 /* Caching is optional, don't fail if we can't allocate memory. */
2746 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2747 if (!entry)
2748 return send_utimes(sctx, dir, gen);
2749
2750 entry->key = dir;
2751 entry->gen = gen;
2752
2753 ret = btrfs_lru_cache_store(&sctx->dir_utimes_cache, entry, GFP_KERNEL);
2754 ASSERT(ret != -EEXIST);
2755 if (ret) {
2756 kfree(entry);
2757 return send_utimes(sctx, dir, gen);
2758 }
2759
2760 return 0;
2761 }
2762
trim_dir_utimes_cache(struct send_ctx * sctx)2763 static int trim_dir_utimes_cache(struct send_ctx *sctx)
2764 {
2765 while (sctx->dir_utimes_cache.size > SEND_MAX_DIR_UTIMES_CACHE_SIZE) {
2766 struct btrfs_lru_cache_entry *lru;
2767 int ret;
2768
2769 lru = btrfs_lru_cache_lru_entry(&sctx->dir_utimes_cache);
2770 ASSERT(lru != NULL);
2771
2772 ret = send_utimes(sctx, lru->key, lru->gen);
2773 if (ret)
2774 return ret;
2775
2776 btrfs_lru_cache_remove(&sctx->dir_utimes_cache, lru);
2777 }
2778
2779 return 0;
2780 }
2781
2782 /*
2783 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2784 * a valid path yet because we did not process the refs yet. So, the inode
2785 * is created as orphan.
2786 */
send_create_inode(struct send_ctx * sctx,u64 ino)2787 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2788 {
2789 int ret = 0;
2790 struct fs_path *p;
2791 int cmd;
2792 struct btrfs_inode_info info;
2793 u64 gen;
2794 u64 mode;
2795 u64 rdev;
2796
2797 p = fs_path_alloc();
2798 if (!p)
2799 return -ENOMEM;
2800
2801 if (ino != sctx->cur_ino) {
2802 ret = get_inode_info(sctx->send_root, ino, &info);
2803 if (ret < 0)
2804 goto out;
2805 gen = info.gen;
2806 mode = info.mode;
2807 rdev = info.rdev;
2808 } else {
2809 gen = sctx->cur_inode_gen;
2810 mode = sctx->cur_inode_mode;
2811 rdev = sctx->cur_inode_rdev;
2812 }
2813
2814 if (S_ISREG(mode)) {
2815 cmd = BTRFS_SEND_C_MKFILE;
2816 } else if (S_ISDIR(mode)) {
2817 cmd = BTRFS_SEND_C_MKDIR;
2818 } else if (S_ISLNK(mode)) {
2819 cmd = BTRFS_SEND_C_SYMLINK;
2820 } else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2821 cmd = BTRFS_SEND_C_MKNOD;
2822 } else if (S_ISFIFO(mode)) {
2823 cmd = BTRFS_SEND_C_MKFIFO;
2824 } else if (S_ISSOCK(mode)) {
2825 cmd = BTRFS_SEND_C_MKSOCK;
2826 } else {
2827 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2828 (int)(mode & S_IFMT));
2829 ret = -EOPNOTSUPP;
2830 goto out;
2831 }
2832
2833 ret = begin_cmd(sctx, cmd);
2834 if (ret < 0)
2835 goto out;
2836
2837 ret = gen_unique_name(sctx, ino, gen, p);
2838 if (ret < 0)
2839 goto out;
2840
2841 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2842 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2843
2844 if (S_ISLNK(mode)) {
2845 fs_path_reset(p);
2846 ret = read_symlink(sctx->send_root, ino, p);
2847 if (ret < 0)
2848 goto out;
2849 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2850 } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2851 S_ISFIFO(mode) || S_ISSOCK(mode)) {
2852 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2853 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2854 }
2855
2856 ret = send_cmd(sctx);
2857 if (ret < 0)
2858 goto out;
2859
2860
2861 tlv_put_failure:
2862 out:
2863 fs_path_free(p);
2864 return ret;
2865 }
2866
cache_dir_created(struct send_ctx * sctx,u64 dir)2867 static void cache_dir_created(struct send_ctx *sctx, u64 dir)
2868 {
2869 struct btrfs_lru_cache_entry *entry;
2870 int ret;
2871
2872 /* Caching is optional, ignore any failures. */
2873 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2874 if (!entry)
2875 return;
2876
2877 entry->key = dir;
2878 entry->gen = 0;
2879 ret = btrfs_lru_cache_store(&sctx->dir_created_cache, entry, GFP_KERNEL);
2880 if (ret < 0)
2881 kfree(entry);
2882 }
2883
2884 /*
2885 * We need some special handling for inodes that get processed before the parent
2886 * directory got created. See process_recorded_refs for details.
2887 * This function does the check if we already created the dir out of order.
2888 */
did_create_dir(struct send_ctx * sctx,u64 dir)2889 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2890 {
2891 int ret = 0;
2892 int iter_ret = 0;
2893 BTRFS_PATH_AUTO_FREE(path);
2894 struct btrfs_key key;
2895 struct btrfs_key found_key;
2896 struct btrfs_key di_key;
2897 struct btrfs_dir_item *di;
2898
2899 if (btrfs_lru_cache_lookup(&sctx->dir_created_cache, dir, 0))
2900 return 1;
2901
2902 path = alloc_path_for_send();
2903 if (!path)
2904 return -ENOMEM;
2905
2906 key.objectid = dir;
2907 key.type = BTRFS_DIR_INDEX_KEY;
2908 key.offset = 0;
2909
2910 btrfs_for_each_slot(sctx->send_root, &key, &found_key, path, iter_ret) {
2911 struct extent_buffer *eb = path->nodes[0];
2912
2913 if (found_key.objectid != key.objectid ||
2914 found_key.type != key.type) {
2915 ret = 0;
2916 break;
2917 }
2918
2919 di = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dir_item);
2920 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2921
2922 if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2923 di_key.objectid < sctx->send_progress) {
2924 ret = 1;
2925 cache_dir_created(sctx, dir);
2926 break;
2927 }
2928 }
2929 /* Catch error found during iteration */
2930 if (iter_ret < 0)
2931 ret = iter_ret;
2932
2933 return ret;
2934 }
2935
2936 /*
2937 * Only creates the inode if it is:
2938 * 1. Not a directory
2939 * 2. Or a directory which was not created already due to out of order
2940 * directories. See did_create_dir and process_recorded_refs for details.
2941 */
send_create_inode_if_needed(struct send_ctx * sctx)2942 static int send_create_inode_if_needed(struct send_ctx *sctx)
2943 {
2944 int ret;
2945
2946 if (S_ISDIR(sctx->cur_inode_mode)) {
2947 ret = did_create_dir(sctx, sctx->cur_ino);
2948 if (ret < 0)
2949 return ret;
2950 else if (ret > 0)
2951 return 0;
2952 }
2953
2954 ret = send_create_inode(sctx, sctx->cur_ino);
2955
2956 if (ret == 0 && S_ISDIR(sctx->cur_inode_mode))
2957 cache_dir_created(sctx, sctx->cur_ino);
2958
2959 return ret;
2960 }
2961
2962 struct recorded_ref {
2963 struct list_head list;
2964 char *name;
2965 struct fs_path *full_path;
2966 u64 dir;
2967 u64 dir_gen;
2968 int name_len;
2969 struct rb_node node;
2970 struct rb_root *root;
2971 };
2972
recorded_ref_alloc(void)2973 static struct recorded_ref *recorded_ref_alloc(void)
2974 {
2975 struct recorded_ref *ref;
2976
2977 ref = kzalloc(sizeof(*ref), GFP_KERNEL);
2978 if (!ref)
2979 return NULL;
2980 RB_CLEAR_NODE(&ref->node);
2981 INIT_LIST_HEAD(&ref->list);
2982 return ref;
2983 }
2984
recorded_ref_free(struct recorded_ref * ref)2985 static void recorded_ref_free(struct recorded_ref *ref)
2986 {
2987 if (!ref)
2988 return;
2989 if (!RB_EMPTY_NODE(&ref->node))
2990 rb_erase(&ref->node, ref->root);
2991 list_del(&ref->list);
2992 fs_path_free(ref->full_path);
2993 kfree(ref);
2994 }
2995
set_ref_path(struct recorded_ref * ref,struct fs_path * path)2996 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
2997 {
2998 ref->full_path = path;
2999 ref->name = (char *)kbasename(ref->full_path->start);
3000 ref->name_len = ref->full_path->end - ref->name;
3001 }
3002
dup_ref(struct recorded_ref * ref,struct list_head * list)3003 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
3004 {
3005 struct recorded_ref *new;
3006
3007 new = recorded_ref_alloc();
3008 if (!new)
3009 return -ENOMEM;
3010
3011 new->dir = ref->dir;
3012 new->dir_gen = ref->dir_gen;
3013 list_add_tail(&new->list, list);
3014 return 0;
3015 }
3016
__free_recorded_refs(struct list_head * head)3017 static void __free_recorded_refs(struct list_head *head)
3018 {
3019 struct recorded_ref *cur;
3020
3021 while (!list_empty(head)) {
3022 cur = list_first_entry(head, struct recorded_ref, list);
3023 recorded_ref_free(cur);
3024 }
3025 }
3026
free_recorded_refs(struct send_ctx * sctx)3027 static void free_recorded_refs(struct send_ctx *sctx)
3028 {
3029 __free_recorded_refs(&sctx->new_refs);
3030 __free_recorded_refs(&sctx->deleted_refs);
3031 }
3032
3033 /*
3034 * Renames/moves a file/dir to its orphan name. Used when the first
3035 * ref of an unprocessed inode gets overwritten and for all non empty
3036 * directories.
3037 */
orphanize_inode(struct send_ctx * sctx,u64 ino,u64 gen,struct fs_path * path)3038 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
3039 struct fs_path *path)
3040 {
3041 int ret;
3042 struct fs_path *orphan;
3043
3044 orphan = fs_path_alloc();
3045 if (!orphan)
3046 return -ENOMEM;
3047
3048 ret = gen_unique_name(sctx, ino, gen, orphan);
3049 if (ret < 0)
3050 goto out;
3051
3052 ret = send_rename(sctx, path, orphan);
3053 if (ret < 0)
3054 goto out;
3055
3056 if (ino == sctx->cur_ino && gen == sctx->cur_inode_gen)
3057 ret = fs_path_copy(&sctx->cur_inode_path, orphan);
3058
3059 out:
3060 fs_path_free(orphan);
3061 return ret;
3062 }
3063
add_orphan_dir_info(struct send_ctx * sctx,u64 dir_ino,u64 dir_gen)3064 static struct orphan_dir_info *add_orphan_dir_info(struct send_ctx *sctx,
3065 u64 dir_ino, u64 dir_gen)
3066 {
3067 struct rb_node **p = &sctx->orphan_dirs.rb_node;
3068 struct rb_node *parent = NULL;
3069 struct orphan_dir_info *entry, *odi;
3070
3071 while (*p) {
3072 parent = *p;
3073 entry = rb_entry(parent, struct orphan_dir_info, node);
3074 if (dir_ino < entry->ino)
3075 p = &(*p)->rb_left;
3076 else if (dir_ino > entry->ino)
3077 p = &(*p)->rb_right;
3078 else if (dir_gen < entry->gen)
3079 p = &(*p)->rb_left;
3080 else if (dir_gen > entry->gen)
3081 p = &(*p)->rb_right;
3082 else
3083 return entry;
3084 }
3085
3086 odi = kmalloc(sizeof(*odi), GFP_KERNEL);
3087 if (!odi)
3088 return ERR_PTR(-ENOMEM);
3089 odi->ino = dir_ino;
3090 odi->gen = dir_gen;
3091 odi->last_dir_index_offset = 0;
3092 odi->dir_high_seq_ino = 0;
3093
3094 rb_link_node(&odi->node, parent, p);
3095 rb_insert_color(&odi->node, &sctx->orphan_dirs);
3096 return odi;
3097 }
3098
get_orphan_dir_info(struct send_ctx * sctx,u64 dir_ino,u64 gen)3099 static struct orphan_dir_info *get_orphan_dir_info(struct send_ctx *sctx,
3100 u64 dir_ino, u64 gen)
3101 {
3102 struct rb_node *n = sctx->orphan_dirs.rb_node;
3103 struct orphan_dir_info *entry;
3104
3105 while (n) {
3106 entry = rb_entry(n, struct orphan_dir_info, node);
3107 if (dir_ino < entry->ino)
3108 n = n->rb_left;
3109 else if (dir_ino > entry->ino)
3110 n = n->rb_right;
3111 else if (gen < entry->gen)
3112 n = n->rb_left;
3113 else if (gen > entry->gen)
3114 n = n->rb_right;
3115 else
3116 return entry;
3117 }
3118 return NULL;
3119 }
3120
is_waiting_for_rm(struct send_ctx * sctx,u64 dir_ino,u64 gen)3121 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen)
3122 {
3123 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino, gen);
3124
3125 return odi != NULL;
3126 }
3127
free_orphan_dir_info(struct send_ctx * sctx,struct orphan_dir_info * odi)3128 static void free_orphan_dir_info(struct send_ctx *sctx,
3129 struct orphan_dir_info *odi)
3130 {
3131 if (!odi)
3132 return;
3133 rb_erase(&odi->node, &sctx->orphan_dirs);
3134 kfree(odi);
3135 }
3136
3137 /*
3138 * Returns 1 if a directory can be removed at this point in time.
3139 * We check this by iterating all dir items and checking if the inode behind
3140 * the dir item was already processed.
3141 */
can_rmdir(struct send_ctx * sctx,u64 dir,u64 dir_gen)3142 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen)
3143 {
3144 int ret = 0;
3145 int iter_ret = 0;
3146 struct btrfs_root *root = sctx->parent_root;
3147 struct btrfs_path *path;
3148 struct btrfs_key key;
3149 struct btrfs_key found_key;
3150 struct btrfs_key loc;
3151 struct btrfs_dir_item *di;
3152 struct orphan_dir_info *odi = NULL;
3153 u64 dir_high_seq_ino = 0;
3154 u64 last_dir_index_offset = 0;
3155
3156 /*
3157 * Don't try to rmdir the top/root subvolume dir.
3158 */
3159 if (dir == BTRFS_FIRST_FREE_OBJECTID)
3160 return 0;
3161
3162 odi = get_orphan_dir_info(sctx, dir, dir_gen);
3163 if (odi && sctx->cur_ino < odi->dir_high_seq_ino)
3164 return 0;
3165
3166 path = alloc_path_for_send();
3167 if (!path)
3168 return -ENOMEM;
3169
3170 if (!odi) {
3171 /*
3172 * Find the inode number associated with the last dir index
3173 * entry. This is very likely the inode with the highest number
3174 * of all inodes that have an entry in the directory. We can
3175 * then use it to avoid future calls to can_rmdir(), when
3176 * processing inodes with a lower number, from having to search
3177 * the parent root b+tree for dir index keys.
3178 */
3179 key.objectid = dir;
3180 key.type = BTRFS_DIR_INDEX_KEY;
3181 key.offset = (u64)-1;
3182
3183 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3184 if (ret < 0) {
3185 goto out;
3186 } else if (ret > 0) {
3187 /* Can't happen, the root is never empty. */
3188 ASSERT(path->slots[0] > 0);
3189 if (WARN_ON(path->slots[0] == 0)) {
3190 ret = -EUCLEAN;
3191 goto out;
3192 }
3193 path->slots[0]--;
3194 }
3195
3196 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3197 if (key.objectid != dir || key.type != BTRFS_DIR_INDEX_KEY) {
3198 /* No index keys, dir can be removed. */
3199 ret = 1;
3200 goto out;
3201 }
3202
3203 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
3204 struct btrfs_dir_item);
3205 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
3206 dir_high_seq_ino = loc.objectid;
3207 if (sctx->cur_ino < dir_high_seq_ino) {
3208 ret = 0;
3209 goto out;
3210 }
3211
3212 btrfs_release_path(path);
3213 }
3214
3215 key.objectid = dir;
3216 key.type = BTRFS_DIR_INDEX_KEY;
3217 key.offset = (odi ? odi->last_dir_index_offset : 0);
3218
3219 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
3220 struct waiting_dir_move *dm;
3221
3222 if (found_key.objectid != key.objectid ||
3223 found_key.type != key.type)
3224 break;
3225
3226 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
3227 struct btrfs_dir_item);
3228 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
3229
3230 dir_high_seq_ino = max(dir_high_seq_ino, loc.objectid);
3231 last_dir_index_offset = found_key.offset;
3232
3233 dm = get_waiting_dir_move(sctx, loc.objectid);
3234 if (dm) {
3235 dm->rmdir_ino = dir;
3236 dm->rmdir_gen = dir_gen;
3237 ret = 0;
3238 goto out;
3239 }
3240
3241 if (loc.objectid > sctx->cur_ino) {
3242 ret = 0;
3243 goto out;
3244 }
3245 }
3246 if (iter_ret < 0) {
3247 ret = iter_ret;
3248 goto out;
3249 }
3250 free_orphan_dir_info(sctx, odi);
3251
3252 ret = 1;
3253
3254 out:
3255 btrfs_free_path(path);
3256
3257 if (ret)
3258 return ret;
3259
3260 if (!odi) {
3261 odi = add_orphan_dir_info(sctx, dir, dir_gen);
3262 if (IS_ERR(odi))
3263 return PTR_ERR(odi);
3264
3265 odi->gen = dir_gen;
3266 }
3267
3268 odi->last_dir_index_offset = last_dir_index_offset;
3269 odi->dir_high_seq_ino = max(odi->dir_high_seq_ino, dir_high_seq_ino);
3270
3271 return 0;
3272 }
3273
is_waiting_for_move(struct send_ctx * sctx,u64 ino)3274 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3275 {
3276 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3277
3278 return entry != NULL;
3279 }
3280
add_waiting_dir_move(struct send_ctx * sctx,u64 ino,bool orphanized)3281 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3282 {
3283 struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3284 struct rb_node *parent = NULL;
3285 struct waiting_dir_move *entry, *dm;
3286
3287 dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3288 if (!dm)
3289 return -ENOMEM;
3290 dm->ino = ino;
3291 dm->rmdir_ino = 0;
3292 dm->rmdir_gen = 0;
3293 dm->orphanized = orphanized;
3294
3295 while (*p) {
3296 parent = *p;
3297 entry = rb_entry(parent, struct waiting_dir_move, node);
3298 if (ino < entry->ino) {
3299 p = &(*p)->rb_left;
3300 } else if (ino > entry->ino) {
3301 p = &(*p)->rb_right;
3302 } else {
3303 kfree(dm);
3304 return -EEXIST;
3305 }
3306 }
3307
3308 rb_link_node(&dm->node, parent, p);
3309 rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3310 return 0;
3311 }
3312
3313 static struct waiting_dir_move *
get_waiting_dir_move(struct send_ctx * sctx,u64 ino)3314 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3315 {
3316 struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3317 struct waiting_dir_move *entry;
3318
3319 while (n) {
3320 entry = rb_entry(n, struct waiting_dir_move, node);
3321 if (ino < entry->ino)
3322 n = n->rb_left;
3323 else if (ino > entry->ino)
3324 n = n->rb_right;
3325 else
3326 return entry;
3327 }
3328 return NULL;
3329 }
3330
free_waiting_dir_move(struct send_ctx * sctx,struct waiting_dir_move * dm)3331 static void free_waiting_dir_move(struct send_ctx *sctx,
3332 struct waiting_dir_move *dm)
3333 {
3334 if (!dm)
3335 return;
3336 rb_erase(&dm->node, &sctx->waiting_dir_moves);
3337 kfree(dm);
3338 }
3339
add_pending_dir_move(struct send_ctx * sctx,u64 ino,u64 ino_gen,u64 parent_ino,struct list_head * new_refs,struct list_head * deleted_refs,const bool is_orphan)3340 static int add_pending_dir_move(struct send_ctx *sctx,
3341 u64 ino,
3342 u64 ino_gen,
3343 u64 parent_ino,
3344 struct list_head *new_refs,
3345 struct list_head *deleted_refs,
3346 const bool is_orphan)
3347 {
3348 struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3349 struct rb_node *parent = NULL;
3350 struct pending_dir_move *entry = NULL, *pm;
3351 struct recorded_ref *cur;
3352 int exists = 0;
3353 int ret;
3354
3355 pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3356 if (!pm)
3357 return -ENOMEM;
3358 pm->parent_ino = parent_ino;
3359 pm->ino = ino;
3360 pm->gen = ino_gen;
3361 INIT_LIST_HEAD(&pm->list);
3362 INIT_LIST_HEAD(&pm->update_refs);
3363 RB_CLEAR_NODE(&pm->node);
3364
3365 while (*p) {
3366 parent = *p;
3367 entry = rb_entry(parent, struct pending_dir_move, node);
3368 if (parent_ino < entry->parent_ino) {
3369 p = &(*p)->rb_left;
3370 } else if (parent_ino > entry->parent_ino) {
3371 p = &(*p)->rb_right;
3372 } else {
3373 exists = 1;
3374 break;
3375 }
3376 }
3377
3378 list_for_each_entry(cur, deleted_refs, list) {
3379 ret = dup_ref(cur, &pm->update_refs);
3380 if (ret < 0)
3381 goto out;
3382 }
3383 list_for_each_entry(cur, new_refs, list) {
3384 ret = dup_ref(cur, &pm->update_refs);
3385 if (ret < 0)
3386 goto out;
3387 }
3388
3389 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3390 if (ret)
3391 goto out;
3392
3393 if (exists) {
3394 list_add_tail(&pm->list, &entry->list);
3395 } else {
3396 rb_link_node(&pm->node, parent, p);
3397 rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3398 }
3399 ret = 0;
3400 out:
3401 if (ret) {
3402 __free_recorded_refs(&pm->update_refs);
3403 kfree(pm);
3404 }
3405 return ret;
3406 }
3407
get_pending_dir_moves(struct send_ctx * sctx,u64 parent_ino)3408 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3409 u64 parent_ino)
3410 {
3411 struct rb_node *n = sctx->pending_dir_moves.rb_node;
3412 struct pending_dir_move *entry;
3413
3414 while (n) {
3415 entry = rb_entry(n, struct pending_dir_move, node);
3416 if (parent_ino < entry->parent_ino)
3417 n = n->rb_left;
3418 else if (parent_ino > entry->parent_ino)
3419 n = n->rb_right;
3420 else
3421 return entry;
3422 }
3423 return NULL;
3424 }
3425
path_loop(struct send_ctx * sctx,struct fs_path * name,u64 ino,u64 gen,u64 * ancestor_ino)3426 static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3427 u64 ino, u64 gen, u64 *ancestor_ino)
3428 {
3429 int ret = 0;
3430 u64 parent_inode = 0;
3431 u64 parent_gen = 0;
3432 u64 start_ino = ino;
3433
3434 *ancestor_ino = 0;
3435 while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3436 fs_path_reset(name);
3437
3438 if (is_waiting_for_rm(sctx, ino, gen))
3439 break;
3440 if (is_waiting_for_move(sctx, ino)) {
3441 if (*ancestor_ino == 0)
3442 *ancestor_ino = ino;
3443 ret = get_first_ref(sctx->parent_root, ino,
3444 &parent_inode, &parent_gen, name);
3445 } else {
3446 ret = __get_cur_name_and_parent(sctx, ino, gen,
3447 &parent_inode,
3448 &parent_gen, name);
3449 if (ret > 0) {
3450 ret = 0;
3451 break;
3452 }
3453 }
3454 if (ret < 0)
3455 break;
3456 if (parent_inode == start_ino) {
3457 ret = 1;
3458 if (*ancestor_ino == 0)
3459 *ancestor_ino = ino;
3460 break;
3461 }
3462 ino = parent_inode;
3463 gen = parent_gen;
3464 }
3465 return ret;
3466 }
3467
apply_dir_move(struct send_ctx * sctx,struct pending_dir_move * pm)3468 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3469 {
3470 struct fs_path *from_path = NULL;
3471 struct fs_path *to_path = NULL;
3472 struct fs_path *name = NULL;
3473 u64 orig_progress = sctx->send_progress;
3474 struct recorded_ref *cur;
3475 u64 parent_ino, parent_gen;
3476 struct waiting_dir_move *dm = NULL;
3477 u64 rmdir_ino = 0;
3478 u64 rmdir_gen;
3479 u64 ancestor;
3480 bool is_orphan;
3481 int ret;
3482
3483 name = fs_path_alloc();
3484 from_path = fs_path_alloc();
3485 if (!name || !from_path) {
3486 ret = -ENOMEM;
3487 goto out;
3488 }
3489
3490 dm = get_waiting_dir_move(sctx, pm->ino);
3491 ASSERT(dm);
3492 rmdir_ino = dm->rmdir_ino;
3493 rmdir_gen = dm->rmdir_gen;
3494 is_orphan = dm->orphanized;
3495 free_waiting_dir_move(sctx, dm);
3496
3497 if (is_orphan) {
3498 ret = gen_unique_name(sctx, pm->ino,
3499 pm->gen, from_path);
3500 } else {
3501 ret = get_first_ref(sctx->parent_root, pm->ino,
3502 &parent_ino, &parent_gen, name);
3503 if (ret < 0)
3504 goto out;
3505 ret = get_cur_path(sctx, parent_ino, parent_gen,
3506 from_path);
3507 if (ret < 0)
3508 goto out;
3509 ret = fs_path_add_path(from_path, name);
3510 }
3511 if (ret < 0)
3512 goto out;
3513
3514 sctx->send_progress = sctx->cur_ino + 1;
3515 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3516 if (ret < 0)
3517 goto out;
3518 if (ret) {
3519 LIST_HEAD(deleted_refs);
3520 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3521 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3522 &pm->update_refs, &deleted_refs,
3523 is_orphan);
3524 if (ret < 0)
3525 goto out;
3526 if (rmdir_ino) {
3527 dm = get_waiting_dir_move(sctx, pm->ino);
3528 ASSERT(dm);
3529 dm->rmdir_ino = rmdir_ino;
3530 dm->rmdir_gen = rmdir_gen;
3531 }
3532 goto out;
3533 }
3534 fs_path_reset(name);
3535 to_path = name;
3536 name = NULL;
3537 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3538 if (ret < 0)
3539 goto out;
3540
3541 ret = send_rename(sctx, from_path, to_path);
3542 if (ret < 0)
3543 goto out;
3544
3545 if (rmdir_ino) {
3546 struct orphan_dir_info *odi;
3547 u64 gen;
3548
3549 odi = get_orphan_dir_info(sctx, rmdir_ino, rmdir_gen);
3550 if (!odi) {
3551 /* already deleted */
3552 goto finish;
3553 }
3554 gen = odi->gen;
3555
3556 ret = can_rmdir(sctx, rmdir_ino, gen);
3557 if (ret < 0)
3558 goto out;
3559 if (!ret)
3560 goto finish;
3561
3562 name = fs_path_alloc();
3563 if (!name) {
3564 ret = -ENOMEM;
3565 goto out;
3566 }
3567 ret = get_cur_path(sctx, rmdir_ino, gen, name);
3568 if (ret < 0)
3569 goto out;
3570 ret = send_rmdir(sctx, name);
3571 if (ret < 0)
3572 goto out;
3573 }
3574
3575 finish:
3576 ret = cache_dir_utimes(sctx, pm->ino, pm->gen);
3577 if (ret < 0)
3578 goto out;
3579
3580 /*
3581 * After rename/move, need to update the utimes of both new parent(s)
3582 * and old parent(s).
3583 */
3584 list_for_each_entry(cur, &pm->update_refs, list) {
3585 /*
3586 * The parent inode might have been deleted in the send snapshot
3587 */
3588 ret = get_inode_info(sctx->send_root, cur->dir, NULL);
3589 if (ret == -ENOENT) {
3590 ret = 0;
3591 continue;
3592 }
3593 if (ret < 0)
3594 goto out;
3595
3596 ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen);
3597 if (ret < 0)
3598 goto out;
3599 }
3600
3601 out:
3602 fs_path_free(name);
3603 fs_path_free(from_path);
3604 fs_path_free(to_path);
3605 sctx->send_progress = orig_progress;
3606
3607 return ret;
3608 }
3609
free_pending_move(struct send_ctx * sctx,struct pending_dir_move * m)3610 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3611 {
3612 if (!list_empty(&m->list))
3613 list_del(&m->list);
3614 if (!RB_EMPTY_NODE(&m->node))
3615 rb_erase(&m->node, &sctx->pending_dir_moves);
3616 __free_recorded_refs(&m->update_refs);
3617 kfree(m);
3618 }
3619
tail_append_pending_moves(struct send_ctx * sctx,struct pending_dir_move * moves,struct list_head * stack)3620 static void tail_append_pending_moves(struct send_ctx *sctx,
3621 struct pending_dir_move *moves,
3622 struct list_head *stack)
3623 {
3624 if (list_empty(&moves->list)) {
3625 list_add_tail(&moves->list, stack);
3626 } else {
3627 LIST_HEAD(list);
3628 list_splice_init(&moves->list, &list);
3629 list_add_tail(&moves->list, stack);
3630 list_splice_tail(&list, stack);
3631 }
3632 if (!RB_EMPTY_NODE(&moves->node)) {
3633 rb_erase(&moves->node, &sctx->pending_dir_moves);
3634 RB_CLEAR_NODE(&moves->node);
3635 }
3636 }
3637
apply_children_dir_moves(struct send_ctx * sctx)3638 static int apply_children_dir_moves(struct send_ctx *sctx)
3639 {
3640 struct pending_dir_move *pm;
3641 LIST_HEAD(stack);
3642 u64 parent_ino = sctx->cur_ino;
3643 int ret = 0;
3644
3645 pm = get_pending_dir_moves(sctx, parent_ino);
3646 if (!pm)
3647 return 0;
3648
3649 tail_append_pending_moves(sctx, pm, &stack);
3650
3651 while (!list_empty(&stack)) {
3652 pm = list_first_entry(&stack, struct pending_dir_move, list);
3653 parent_ino = pm->ino;
3654 ret = apply_dir_move(sctx, pm);
3655 free_pending_move(sctx, pm);
3656 if (ret)
3657 goto out;
3658 pm = get_pending_dir_moves(sctx, parent_ino);
3659 if (pm)
3660 tail_append_pending_moves(sctx, pm, &stack);
3661 }
3662 return 0;
3663
3664 out:
3665 while (!list_empty(&stack)) {
3666 pm = list_first_entry(&stack, struct pending_dir_move, list);
3667 free_pending_move(sctx, pm);
3668 }
3669 return ret;
3670 }
3671
3672 /*
3673 * We might need to delay a directory rename even when no ancestor directory
3674 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3675 * renamed. This happens when we rename a directory to the old name (the name
3676 * in the parent root) of some other unrelated directory that got its rename
3677 * delayed due to some ancestor with higher number that got renamed.
3678 *
3679 * Example:
3680 *
3681 * Parent snapshot:
3682 * . (ino 256)
3683 * |---- a/ (ino 257)
3684 * | |---- file (ino 260)
3685 * |
3686 * |---- b/ (ino 258)
3687 * |---- c/ (ino 259)
3688 *
3689 * Send snapshot:
3690 * . (ino 256)
3691 * |---- a/ (ino 258)
3692 * |---- x/ (ino 259)
3693 * |---- y/ (ino 257)
3694 * |----- file (ino 260)
3695 *
3696 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3697 * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3698 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3699 * must issue is:
3700 *
3701 * 1 - rename 259 from 'c' to 'x'
3702 * 2 - rename 257 from 'a' to 'x/y'
3703 * 3 - rename 258 from 'b' to 'a'
3704 *
3705 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3706 * be done right away and < 0 on error.
3707 */
wait_for_dest_dir_move(struct send_ctx * sctx,struct recorded_ref * parent_ref,const bool is_orphan)3708 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3709 struct recorded_ref *parent_ref,
3710 const bool is_orphan)
3711 {
3712 BTRFS_PATH_AUTO_FREE(path);
3713 struct btrfs_key key;
3714 struct btrfs_key di_key;
3715 struct btrfs_dir_item *di;
3716 u64 left_gen;
3717 u64 right_gen;
3718 int ret = 0;
3719 struct waiting_dir_move *wdm;
3720
3721 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3722 return 0;
3723
3724 path = alloc_path_for_send();
3725 if (!path)
3726 return -ENOMEM;
3727
3728 key.objectid = parent_ref->dir;
3729 key.type = BTRFS_DIR_ITEM_KEY;
3730 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3731
3732 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3733 if (ret < 0)
3734 return ret;
3735 if (ret > 0)
3736 return 0;
3737
3738 di = btrfs_match_dir_item_name(path, parent_ref->name,
3739 parent_ref->name_len);
3740 if (!di)
3741 return 0;
3742 /*
3743 * di_key.objectid has the number of the inode that has a dentry in the
3744 * parent directory with the same name that sctx->cur_ino is being
3745 * renamed to. We need to check if that inode is in the send root as
3746 * well and if it is currently marked as an inode with a pending rename,
3747 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3748 * that it happens after that other inode is renamed.
3749 */
3750 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3751 if (di_key.type != BTRFS_INODE_ITEM_KEY)
3752 return 0;
3753
3754 ret = get_inode_gen(sctx->parent_root, di_key.objectid, &left_gen);
3755 if (ret < 0)
3756 return ret;
3757 ret = get_inode_gen(sctx->send_root, di_key.objectid, &right_gen);
3758 if (ret < 0) {
3759 if (ret == -ENOENT)
3760 ret = 0;
3761 return ret;
3762 }
3763
3764 /* Different inode, no need to delay the rename of sctx->cur_ino */
3765 if (right_gen != left_gen)
3766 return 0;
3767
3768 wdm = get_waiting_dir_move(sctx, di_key.objectid);
3769 if (wdm && !wdm->orphanized) {
3770 ret = add_pending_dir_move(sctx,
3771 sctx->cur_ino,
3772 sctx->cur_inode_gen,
3773 di_key.objectid,
3774 &sctx->new_refs,
3775 &sctx->deleted_refs,
3776 is_orphan);
3777 if (!ret)
3778 ret = 1;
3779 }
3780 return ret;
3781 }
3782
3783 /*
3784 * Check if inode ino2, or any of its ancestors, is inode ino1.
3785 * Return 1 if true, 0 if false and < 0 on error.
3786 */
check_ino_in_path(struct btrfs_root * root,const u64 ino1,const u64 ino1_gen,const u64 ino2,const u64 ino2_gen,struct fs_path * fs_path)3787 static int check_ino_in_path(struct btrfs_root *root,
3788 const u64 ino1,
3789 const u64 ino1_gen,
3790 const u64 ino2,
3791 const u64 ino2_gen,
3792 struct fs_path *fs_path)
3793 {
3794 u64 ino = ino2;
3795
3796 if (ino1 == ino2)
3797 return ino1_gen == ino2_gen;
3798
3799 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3800 u64 parent;
3801 u64 parent_gen;
3802 int ret;
3803
3804 fs_path_reset(fs_path);
3805 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3806 if (ret < 0)
3807 return ret;
3808 if (parent == ino1)
3809 return parent_gen == ino1_gen;
3810 ino = parent;
3811 }
3812 return 0;
3813 }
3814
3815 /*
3816 * Check if inode ino1 is an ancestor of inode ino2 in the given root for any
3817 * possible path (in case ino2 is not a directory and has multiple hard links).
3818 * Return 1 if true, 0 if false and < 0 on error.
3819 */
is_ancestor(struct btrfs_root * root,const u64 ino1,const u64 ino1_gen,const u64 ino2,struct fs_path * fs_path)3820 static int is_ancestor(struct btrfs_root *root,
3821 const u64 ino1,
3822 const u64 ino1_gen,
3823 const u64 ino2,
3824 struct fs_path *fs_path)
3825 {
3826 bool free_fs_path = false;
3827 int ret = 0;
3828 int iter_ret = 0;
3829 BTRFS_PATH_AUTO_FREE(path);
3830 struct btrfs_key key;
3831
3832 if (!fs_path) {
3833 fs_path = fs_path_alloc();
3834 if (!fs_path)
3835 return -ENOMEM;
3836 free_fs_path = true;
3837 }
3838
3839 path = alloc_path_for_send();
3840 if (!path) {
3841 ret = -ENOMEM;
3842 goto out;
3843 }
3844
3845 key.objectid = ino2;
3846 key.type = BTRFS_INODE_REF_KEY;
3847 key.offset = 0;
3848
3849 btrfs_for_each_slot(root, &key, &key, path, iter_ret) {
3850 struct extent_buffer *leaf = path->nodes[0];
3851 int slot = path->slots[0];
3852 u32 cur_offset = 0;
3853 u32 item_size;
3854
3855 if (key.objectid != ino2)
3856 break;
3857 if (key.type != BTRFS_INODE_REF_KEY &&
3858 key.type != BTRFS_INODE_EXTREF_KEY)
3859 break;
3860
3861 item_size = btrfs_item_size(leaf, slot);
3862 while (cur_offset < item_size) {
3863 u64 parent;
3864 u64 parent_gen;
3865
3866 if (key.type == BTRFS_INODE_EXTREF_KEY) {
3867 unsigned long ptr;
3868 struct btrfs_inode_extref *extref;
3869
3870 ptr = btrfs_item_ptr_offset(leaf, slot);
3871 extref = (struct btrfs_inode_extref *)
3872 (ptr + cur_offset);
3873 parent = btrfs_inode_extref_parent(leaf,
3874 extref);
3875 cur_offset += sizeof(*extref);
3876 cur_offset += btrfs_inode_extref_name_len(leaf,
3877 extref);
3878 } else {
3879 parent = key.offset;
3880 cur_offset = item_size;
3881 }
3882
3883 ret = get_inode_gen(root, parent, &parent_gen);
3884 if (ret < 0)
3885 goto out;
3886 ret = check_ino_in_path(root, ino1, ino1_gen,
3887 parent, parent_gen, fs_path);
3888 if (ret)
3889 goto out;
3890 }
3891 }
3892 ret = 0;
3893 if (iter_ret < 0)
3894 ret = iter_ret;
3895
3896 out:
3897 if (free_fs_path)
3898 fs_path_free(fs_path);
3899 return ret;
3900 }
3901
wait_for_parent_move(struct send_ctx * sctx,struct recorded_ref * parent_ref,const bool is_orphan)3902 static int wait_for_parent_move(struct send_ctx *sctx,
3903 struct recorded_ref *parent_ref,
3904 const bool is_orphan)
3905 {
3906 int ret = 0;
3907 u64 ino = parent_ref->dir;
3908 u64 ino_gen = parent_ref->dir_gen;
3909 u64 parent_ino_before, parent_ino_after;
3910 struct fs_path *path_before = NULL;
3911 struct fs_path *path_after = NULL;
3912 int len1, len2;
3913
3914 path_after = fs_path_alloc();
3915 path_before = fs_path_alloc();
3916 if (!path_after || !path_before) {
3917 ret = -ENOMEM;
3918 goto out;
3919 }
3920
3921 /*
3922 * Our current directory inode may not yet be renamed/moved because some
3923 * ancestor (immediate or not) has to be renamed/moved first. So find if
3924 * such ancestor exists and make sure our own rename/move happens after
3925 * that ancestor is processed to avoid path build infinite loops (done
3926 * at get_cur_path()).
3927 */
3928 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3929 u64 parent_ino_after_gen;
3930
3931 if (is_waiting_for_move(sctx, ino)) {
3932 /*
3933 * If the current inode is an ancestor of ino in the
3934 * parent root, we need to delay the rename of the
3935 * current inode, otherwise don't delayed the rename
3936 * because we can end up with a circular dependency
3937 * of renames, resulting in some directories never
3938 * getting the respective rename operations issued in
3939 * the send stream or getting into infinite path build
3940 * loops.
3941 */
3942 ret = is_ancestor(sctx->parent_root,
3943 sctx->cur_ino, sctx->cur_inode_gen,
3944 ino, path_before);
3945 if (ret)
3946 break;
3947 }
3948
3949 fs_path_reset(path_before);
3950 fs_path_reset(path_after);
3951
3952 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3953 &parent_ino_after_gen, path_after);
3954 if (ret < 0)
3955 goto out;
3956 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3957 NULL, path_before);
3958 if (ret < 0 && ret != -ENOENT) {
3959 goto out;
3960 } else if (ret == -ENOENT) {
3961 ret = 0;
3962 break;
3963 }
3964
3965 len1 = fs_path_len(path_before);
3966 len2 = fs_path_len(path_after);
3967 if (ino > sctx->cur_ino &&
3968 (parent_ino_before != parent_ino_after || len1 != len2 ||
3969 memcmp(path_before->start, path_after->start, len1))) {
3970 u64 parent_ino_gen;
3971
3972 ret = get_inode_gen(sctx->parent_root, ino, &parent_ino_gen);
3973 if (ret < 0)
3974 goto out;
3975 if (ino_gen == parent_ino_gen) {
3976 ret = 1;
3977 break;
3978 }
3979 }
3980 ino = parent_ino_after;
3981 ino_gen = parent_ino_after_gen;
3982 }
3983
3984 out:
3985 fs_path_free(path_before);
3986 fs_path_free(path_after);
3987
3988 if (ret == 1) {
3989 ret = add_pending_dir_move(sctx,
3990 sctx->cur_ino,
3991 sctx->cur_inode_gen,
3992 ino,
3993 &sctx->new_refs,
3994 &sctx->deleted_refs,
3995 is_orphan);
3996 if (!ret)
3997 ret = 1;
3998 }
3999
4000 return ret;
4001 }
4002
update_ref_path(struct send_ctx * sctx,struct recorded_ref * ref)4003 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
4004 {
4005 int ret;
4006 struct fs_path *new_path;
4007
4008 /*
4009 * Our reference's name member points to its full_path member string, so
4010 * we use here a new path.
4011 */
4012 new_path = fs_path_alloc();
4013 if (!new_path)
4014 return -ENOMEM;
4015
4016 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
4017 if (ret < 0) {
4018 fs_path_free(new_path);
4019 return ret;
4020 }
4021 ret = fs_path_add(new_path, ref->name, ref->name_len);
4022 if (ret < 0) {
4023 fs_path_free(new_path);
4024 return ret;
4025 }
4026
4027 fs_path_free(ref->full_path);
4028 set_ref_path(ref, new_path);
4029
4030 return 0;
4031 }
4032
4033 /*
4034 * When processing the new references for an inode we may orphanize an existing
4035 * directory inode because its old name conflicts with one of the new references
4036 * of the current inode. Later, when processing another new reference of our
4037 * inode, we might need to orphanize another inode, but the path we have in the
4038 * reference reflects the pre-orphanization name of the directory we previously
4039 * orphanized. For example:
4040 *
4041 * parent snapshot looks like:
4042 *
4043 * . (ino 256)
4044 * |----- f1 (ino 257)
4045 * |----- f2 (ino 258)
4046 * |----- d1/ (ino 259)
4047 * |----- d2/ (ino 260)
4048 *
4049 * send snapshot looks like:
4050 *
4051 * . (ino 256)
4052 * |----- d1 (ino 258)
4053 * |----- f2/ (ino 259)
4054 * |----- f2_link/ (ino 260)
4055 * | |----- f1 (ino 257)
4056 * |
4057 * |----- d2 (ino 258)
4058 *
4059 * When processing inode 257 we compute the name for inode 259 as "d1", and we
4060 * cache it in the name cache. Later when we start processing inode 258, when
4061 * collecting all its new references we set a full path of "d1/d2" for its new
4062 * reference with name "d2". When we start processing the new references we
4063 * start by processing the new reference with name "d1", and this results in
4064 * orphanizing inode 259, since its old reference causes a conflict. Then we
4065 * move on the next new reference, with name "d2", and we find out we must
4066 * orphanize inode 260, as its old reference conflicts with ours - but for the
4067 * orphanization we use a source path corresponding to the path we stored in the
4068 * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the
4069 * receiver fail since the path component "d1/" no longer exists, it was renamed
4070 * to "o259-6-0/" when processing the previous new reference. So in this case we
4071 * must recompute the path in the new reference and use it for the new
4072 * orphanization operation.
4073 */
refresh_ref_path(struct send_ctx * sctx,struct recorded_ref * ref)4074 static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
4075 {
4076 char AUTO_KFREE(name);
4077 int ret;
4078
4079 name = kmemdup(ref->name, ref->name_len, GFP_KERNEL);
4080 if (!name)
4081 return -ENOMEM;
4082
4083 fs_path_reset(ref->full_path);
4084 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path);
4085 if (ret < 0)
4086 return ret;
4087
4088 ret = fs_path_add(ref->full_path, name, ref->name_len);
4089 if (ret < 0)
4090 return ret;
4091
4092 /* Update the reference's base name pointer. */
4093 set_ref_path(ref, ref->full_path);
4094
4095 return 0;
4096 }
4097
rbtree_check_dir_ref_comp(const void * k,const struct rb_node * node)4098 static int rbtree_check_dir_ref_comp(const void *k, const struct rb_node *node)
4099 {
4100 const struct recorded_ref *data = k;
4101 const struct recorded_ref *ref = rb_entry(node, struct recorded_ref, node);
4102
4103 if (data->dir > ref->dir)
4104 return 1;
4105 if (data->dir < ref->dir)
4106 return -1;
4107 if (data->dir_gen > ref->dir_gen)
4108 return 1;
4109 if (data->dir_gen < ref->dir_gen)
4110 return -1;
4111 return 0;
4112 }
4113
rbtree_check_dir_ref_less(struct rb_node * node,const struct rb_node * parent)4114 static bool rbtree_check_dir_ref_less(struct rb_node *node, const struct rb_node *parent)
4115 {
4116 const struct recorded_ref *entry = rb_entry(node, struct recorded_ref, node);
4117
4118 return rbtree_check_dir_ref_comp(entry, parent) < 0;
4119 }
4120
record_check_dir_ref_in_tree(struct rb_root * root,struct recorded_ref * ref,struct list_head * list)4121 static int record_check_dir_ref_in_tree(struct rb_root *root,
4122 struct recorded_ref *ref, struct list_head *list)
4123 {
4124 struct recorded_ref *tmp_ref;
4125 int ret;
4126
4127 if (rb_find(ref, root, rbtree_check_dir_ref_comp))
4128 return 0;
4129
4130 ret = dup_ref(ref, list);
4131 if (ret < 0)
4132 return ret;
4133
4134 tmp_ref = list_last_entry(list, struct recorded_ref, list);
4135 rb_add(&tmp_ref->node, root, rbtree_check_dir_ref_less);
4136 tmp_ref->root = root;
4137 return 0;
4138 }
4139
rename_current_inode(struct send_ctx * sctx,struct fs_path * current_path,struct fs_path * new_path)4140 static int rename_current_inode(struct send_ctx *sctx,
4141 struct fs_path *current_path,
4142 struct fs_path *new_path)
4143 {
4144 int ret;
4145
4146 ret = send_rename(sctx, current_path, new_path);
4147 if (ret < 0)
4148 return ret;
4149
4150 ret = fs_path_copy(&sctx->cur_inode_path, new_path);
4151 if (ret < 0)
4152 return ret;
4153
4154 return fs_path_copy(current_path, new_path);
4155 }
4156
4157 /*
4158 * This does all the move/link/unlink/rmdir magic.
4159 */
process_recorded_refs(struct send_ctx * sctx,int * pending_move)4160 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
4161 {
4162 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
4163 int ret = 0;
4164 struct recorded_ref *cur;
4165 struct recorded_ref *cur2;
4166 LIST_HEAD(check_dirs);
4167 struct rb_root rbtree_check_dirs = RB_ROOT;
4168 struct fs_path *valid_path = NULL;
4169 u64 ow_inode = 0;
4170 u64 ow_gen;
4171 u64 ow_mode;
4172 bool did_overwrite = false;
4173 bool is_orphan = false;
4174 bool can_rename = true;
4175 bool orphanized_dir = false;
4176 bool orphanized_ancestor = false;
4177
4178 /*
4179 * This should never happen as the root dir always has the same ref
4180 * which is always '..'
4181 */
4182 if (unlikely(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID)) {
4183 btrfs_err(fs_info,
4184 "send: unexpected inode %llu in process_recorded_refs()",
4185 sctx->cur_ino);
4186 ret = -EINVAL;
4187 goto out;
4188 }
4189
4190 valid_path = fs_path_alloc();
4191 if (!valid_path) {
4192 ret = -ENOMEM;
4193 goto out;
4194 }
4195
4196 /*
4197 * First, check if the first ref of the current inode was overwritten
4198 * before. If yes, we know that the current inode was already orphanized
4199 * and thus use the orphan name. If not, we can use get_cur_path to
4200 * get the path of the first ref as it would like while receiving at
4201 * this point in time.
4202 * New inodes are always orphan at the beginning, so force to use the
4203 * orphan name in this case.
4204 * The first ref is stored in valid_path and will be updated if it
4205 * gets moved around.
4206 */
4207 if (!sctx->cur_inode_new) {
4208 ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
4209 sctx->cur_inode_gen);
4210 if (ret < 0)
4211 goto out;
4212 if (ret)
4213 did_overwrite = true;
4214 }
4215 if (sctx->cur_inode_new || did_overwrite) {
4216 ret = gen_unique_name(sctx, sctx->cur_ino,
4217 sctx->cur_inode_gen, valid_path);
4218 if (ret < 0)
4219 goto out;
4220 is_orphan = true;
4221 } else {
4222 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4223 valid_path);
4224 if (ret < 0)
4225 goto out;
4226 }
4227
4228 /*
4229 * Before doing any rename and link operations, do a first pass on the
4230 * new references to orphanize any unprocessed inodes that may have a
4231 * reference that conflicts with one of the new references of the current
4232 * inode. This needs to happen first because a new reference may conflict
4233 * with the old reference of a parent directory, so we must make sure
4234 * that the path used for link and rename commands don't use an
4235 * orphanized name when an ancestor was not yet orphanized.
4236 *
4237 * Example:
4238 *
4239 * Parent snapshot:
4240 *
4241 * . (ino 256)
4242 * |----- testdir/ (ino 259)
4243 * | |----- a (ino 257)
4244 * |
4245 * |----- b (ino 258)
4246 *
4247 * Send snapshot:
4248 *
4249 * . (ino 256)
4250 * |----- testdir_2/ (ino 259)
4251 * | |----- a (ino 260)
4252 * |
4253 * |----- testdir (ino 257)
4254 * |----- b (ino 257)
4255 * |----- b2 (ino 258)
4256 *
4257 * Processing the new reference for inode 257 with name "b" may happen
4258 * before processing the new reference with name "testdir". If so, we
4259 * must make sure that by the time we send a link command to create the
4260 * hard link "b", inode 259 was already orphanized, since the generated
4261 * path in "valid_path" already contains the orphanized name for 259.
4262 * We are processing inode 257, so only later when processing 259 we do
4263 * the rename operation to change its temporary (orphanized) name to
4264 * "testdir_2".
4265 */
4266 list_for_each_entry(cur, &sctx->new_refs, list) {
4267 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4268 if (ret < 0)
4269 goto out;
4270 if (ret == inode_state_will_create)
4271 continue;
4272
4273 /*
4274 * Check if this new ref would overwrite the first ref of another
4275 * unprocessed inode. If yes, orphanize the overwritten inode.
4276 * If we find an overwritten ref that is not the first ref,
4277 * simply unlink it.
4278 */
4279 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4280 cur->name, cur->name_len,
4281 &ow_inode, &ow_gen, &ow_mode);
4282 if (ret < 0)
4283 goto out;
4284 if (ret) {
4285 ret = is_first_ref(sctx->parent_root,
4286 ow_inode, cur->dir, cur->name,
4287 cur->name_len);
4288 if (ret < 0)
4289 goto out;
4290 if (ret) {
4291 struct name_cache_entry *nce;
4292 struct waiting_dir_move *wdm;
4293
4294 if (orphanized_dir) {
4295 ret = refresh_ref_path(sctx, cur);
4296 if (ret < 0)
4297 goto out;
4298 }
4299
4300 ret = orphanize_inode(sctx, ow_inode, ow_gen,
4301 cur->full_path);
4302 if (ret < 0)
4303 goto out;
4304 if (S_ISDIR(ow_mode))
4305 orphanized_dir = true;
4306
4307 /*
4308 * If ow_inode has its rename operation delayed
4309 * make sure that its orphanized name is used in
4310 * the source path when performing its rename
4311 * operation.
4312 */
4313 wdm = get_waiting_dir_move(sctx, ow_inode);
4314 if (wdm)
4315 wdm->orphanized = true;
4316
4317 /*
4318 * Make sure we clear our orphanized inode's
4319 * name from the name cache. This is because the
4320 * inode ow_inode might be an ancestor of some
4321 * other inode that will be orphanized as well
4322 * later and has an inode number greater than
4323 * sctx->send_progress. We need to prevent
4324 * future name lookups from using the old name
4325 * and get instead the orphan name.
4326 */
4327 nce = name_cache_search(sctx, ow_inode, ow_gen);
4328 if (nce)
4329 btrfs_lru_cache_remove(&sctx->name_cache,
4330 &nce->entry);
4331
4332 /*
4333 * ow_inode might currently be an ancestor of
4334 * cur_ino, therefore compute valid_path (the
4335 * current path of cur_ino) again because it
4336 * might contain the pre-orphanization name of
4337 * ow_inode, which is no longer valid.
4338 */
4339 ret = is_ancestor(sctx->parent_root,
4340 ow_inode, ow_gen,
4341 sctx->cur_ino, NULL);
4342 if (ret > 0) {
4343 orphanized_ancestor = true;
4344 fs_path_reset(valid_path);
4345 fs_path_reset(&sctx->cur_inode_path);
4346 ret = get_cur_path(sctx, sctx->cur_ino,
4347 sctx->cur_inode_gen,
4348 valid_path);
4349 }
4350 if (ret < 0)
4351 goto out;
4352 } else {
4353 /*
4354 * If we previously orphanized a directory that
4355 * collided with a new reference that we already
4356 * processed, recompute the current path because
4357 * that directory may be part of the path.
4358 */
4359 if (orphanized_dir) {
4360 ret = refresh_ref_path(sctx, cur);
4361 if (ret < 0)
4362 goto out;
4363 }
4364 ret = send_unlink(sctx, cur->full_path);
4365 if (ret < 0)
4366 goto out;
4367 }
4368 }
4369
4370 }
4371
4372 list_for_each_entry(cur, &sctx->new_refs, list) {
4373 /*
4374 * We may have refs where the parent directory does not exist
4375 * yet. This happens if the parent directories inum is higher
4376 * than the current inum. To handle this case, we create the
4377 * parent directory out of order. But we need to check if this
4378 * did already happen before due to other refs in the same dir.
4379 */
4380 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4381 if (ret < 0)
4382 goto out;
4383 if (ret == inode_state_will_create) {
4384 ret = 0;
4385 /*
4386 * First check if any of the current inodes refs did
4387 * already create the dir.
4388 */
4389 list_for_each_entry(cur2, &sctx->new_refs, list) {
4390 if (cur == cur2)
4391 break;
4392 if (cur2->dir == cur->dir) {
4393 ret = 1;
4394 break;
4395 }
4396 }
4397
4398 /*
4399 * If that did not happen, check if a previous inode
4400 * did already create the dir.
4401 */
4402 if (!ret)
4403 ret = did_create_dir(sctx, cur->dir);
4404 if (ret < 0)
4405 goto out;
4406 if (!ret) {
4407 ret = send_create_inode(sctx, cur->dir);
4408 if (ret < 0)
4409 goto out;
4410 cache_dir_created(sctx, cur->dir);
4411 }
4412 }
4413
4414 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
4415 ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
4416 if (ret < 0)
4417 goto out;
4418 if (ret == 1) {
4419 can_rename = false;
4420 *pending_move = 1;
4421 }
4422 }
4423
4424 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
4425 can_rename) {
4426 ret = wait_for_parent_move(sctx, cur, is_orphan);
4427 if (ret < 0)
4428 goto out;
4429 if (ret == 1) {
4430 can_rename = false;
4431 *pending_move = 1;
4432 }
4433 }
4434
4435 /*
4436 * link/move the ref to the new place. If we have an orphan
4437 * inode, move it and update valid_path. If not, link or move
4438 * it depending on the inode mode.
4439 */
4440 if (is_orphan && can_rename) {
4441 ret = rename_current_inode(sctx, valid_path, cur->full_path);
4442 if (ret < 0)
4443 goto out;
4444 is_orphan = false;
4445 } else if (can_rename) {
4446 if (S_ISDIR(sctx->cur_inode_mode)) {
4447 /*
4448 * Dirs can't be linked, so move it. For moved
4449 * dirs, we always have one new and one deleted
4450 * ref. The deleted ref is ignored later.
4451 */
4452 ret = rename_current_inode(sctx, valid_path,
4453 cur->full_path);
4454 if (ret < 0)
4455 goto out;
4456 } else {
4457 /*
4458 * We might have previously orphanized an inode
4459 * which is an ancestor of our current inode,
4460 * so our reference's full path, which was
4461 * computed before any such orphanizations, must
4462 * be updated.
4463 */
4464 if (orphanized_dir) {
4465 ret = update_ref_path(sctx, cur);
4466 if (ret < 0)
4467 goto out;
4468 }
4469 ret = send_link(sctx, cur->full_path,
4470 valid_path);
4471 if (ret < 0)
4472 goto out;
4473 }
4474 }
4475 ret = record_check_dir_ref_in_tree(&rbtree_check_dirs, cur, &check_dirs);
4476 if (ret < 0)
4477 goto out;
4478 }
4479
4480 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
4481 /*
4482 * Check if we can already rmdir the directory. If not,
4483 * orphanize it. For every dir item inside that gets deleted
4484 * later, we do this check again and rmdir it then if possible.
4485 * See the use of check_dirs for more details.
4486 */
4487 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen);
4488 if (ret < 0)
4489 goto out;
4490 if (ret) {
4491 ret = send_rmdir(sctx, valid_path);
4492 if (ret < 0)
4493 goto out;
4494 } else if (!is_orphan) {
4495 ret = orphanize_inode(sctx, sctx->cur_ino,
4496 sctx->cur_inode_gen, valid_path);
4497 if (ret < 0)
4498 goto out;
4499 is_orphan = true;
4500 }
4501
4502 list_for_each_entry(cur, &sctx->deleted_refs, list) {
4503 ret = record_check_dir_ref_in_tree(&rbtree_check_dirs, cur, &check_dirs);
4504 if (ret < 0)
4505 goto out;
4506 }
4507 } else if (S_ISDIR(sctx->cur_inode_mode) &&
4508 !list_empty(&sctx->deleted_refs)) {
4509 /*
4510 * We have a moved dir. Add the old parent to check_dirs
4511 */
4512 cur = list_first_entry(&sctx->deleted_refs, struct recorded_ref, list);
4513 ret = record_check_dir_ref_in_tree(&rbtree_check_dirs, cur, &check_dirs);
4514 if (ret < 0)
4515 goto out;
4516 } else if (!S_ISDIR(sctx->cur_inode_mode)) {
4517 /*
4518 * We have a non dir inode. Go through all deleted refs and
4519 * unlink them if they were not already overwritten by other
4520 * inodes.
4521 */
4522 list_for_each_entry(cur, &sctx->deleted_refs, list) {
4523 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4524 sctx->cur_ino, sctx->cur_inode_gen,
4525 cur->name, cur->name_len);
4526 if (ret < 0)
4527 goto out;
4528 if (!ret) {
4529 /*
4530 * If we orphanized any ancestor before, we need
4531 * to recompute the full path for deleted names,
4532 * since any such path was computed before we
4533 * processed any references and orphanized any
4534 * ancestor inode.
4535 */
4536 if (orphanized_ancestor) {
4537 ret = update_ref_path(sctx, cur);
4538 if (ret < 0)
4539 goto out;
4540 }
4541 ret = send_unlink(sctx, cur->full_path);
4542 if (ret < 0)
4543 goto out;
4544 if (is_current_inode_path(sctx, cur->full_path))
4545 fs_path_reset(&sctx->cur_inode_path);
4546 }
4547 ret = record_check_dir_ref_in_tree(&rbtree_check_dirs, cur, &check_dirs);
4548 if (ret < 0)
4549 goto out;
4550 }
4551 /*
4552 * If the inode is still orphan, unlink the orphan. This may
4553 * happen when a previous inode did overwrite the first ref
4554 * of this inode and no new refs were added for the current
4555 * inode. Unlinking does not mean that the inode is deleted in
4556 * all cases. There may still be links to this inode in other
4557 * places.
4558 */
4559 if (is_orphan) {
4560 ret = send_unlink(sctx, valid_path);
4561 if (ret < 0)
4562 goto out;
4563 }
4564 }
4565
4566 /*
4567 * We did collect all parent dirs where cur_inode was once located. We
4568 * now go through all these dirs and check if they are pending for
4569 * deletion and if it's finally possible to perform the rmdir now.
4570 * We also update the inode stats of the parent dirs here.
4571 */
4572 list_for_each_entry(cur, &check_dirs, list) {
4573 /*
4574 * In case we had refs into dirs that were not processed yet,
4575 * we don't need to do the utime and rmdir logic for these dirs.
4576 * The dir will be processed later.
4577 */
4578 if (cur->dir > sctx->cur_ino)
4579 continue;
4580
4581 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4582 if (ret < 0)
4583 goto out;
4584
4585 if (ret == inode_state_did_create ||
4586 ret == inode_state_no_change) {
4587 ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen);
4588 if (ret < 0)
4589 goto out;
4590 } else if (ret == inode_state_did_delete) {
4591 ret = can_rmdir(sctx, cur->dir, cur->dir_gen);
4592 if (ret < 0)
4593 goto out;
4594 if (ret) {
4595 ret = get_cur_path(sctx, cur->dir,
4596 cur->dir_gen, valid_path);
4597 if (ret < 0)
4598 goto out;
4599 ret = send_rmdir(sctx, valid_path);
4600 if (ret < 0)
4601 goto out;
4602 }
4603 }
4604 }
4605
4606 ret = 0;
4607
4608 out:
4609 __free_recorded_refs(&check_dirs);
4610 free_recorded_refs(sctx);
4611 fs_path_free(valid_path);
4612 return ret;
4613 }
4614
rbtree_ref_comp(const void * k,const struct rb_node * node)4615 static int rbtree_ref_comp(const void *k, const struct rb_node *node)
4616 {
4617 const struct recorded_ref *data = k;
4618 const struct recorded_ref *ref = rb_entry(node, struct recorded_ref, node);
4619
4620 if (data->dir > ref->dir)
4621 return 1;
4622 if (data->dir < ref->dir)
4623 return -1;
4624 if (data->dir_gen > ref->dir_gen)
4625 return 1;
4626 if (data->dir_gen < ref->dir_gen)
4627 return -1;
4628 if (data->name_len > ref->name_len)
4629 return 1;
4630 if (data->name_len < ref->name_len)
4631 return -1;
4632 return strcmp(data->name, ref->name);
4633 }
4634
rbtree_ref_less(struct rb_node * node,const struct rb_node * parent)4635 static bool rbtree_ref_less(struct rb_node *node, const struct rb_node *parent)
4636 {
4637 const struct recorded_ref *entry = rb_entry(node, struct recorded_ref, node);
4638
4639 return rbtree_ref_comp(entry, parent) < 0;
4640 }
4641
record_ref_in_tree(struct rb_root * root,struct list_head * refs,struct fs_path * name,u64 dir,u64 dir_gen,struct send_ctx * sctx)4642 static int record_ref_in_tree(struct rb_root *root, struct list_head *refs,
4643 struct fs_path *name, u64 dir, u64 dir_gen,
4644 struct send_ctx *sctx)
4645 {
4646 int ret = 0;
4647 struct fs_path *path = NULL;
4648 struct recorded_ref *ref = NULL;
4649
4650 path = fs_path_alloc();
4651 if (!path) {
4652 ret = -ENOMEM;
4653 goto out;
4654 }
4655
4656 ref = recorded_ref_alloc();
4657 if (!ref) {
4658 ret = -ENOMEM;
4659 goto out;
4660 }
4661
4662 ret = get_cur_path(sctx, dir, dir_gen, path);
4663 if (ret < 0)
4664 goto out;
4665 ret = fs_path_add_path(path, name);
4666 if (ret < 0)
4667 goto out;
4668
4669 ref->dir = dir;
4670 ref->dir_gen = dir_gen;
4671 set_ref_path(ref, path);
4672 list_add_tail(&ref->list, refs);
4673 rb_add(&ref->node, root, rbtree_ref_less);
4674 ref->root = root;
4675 out:
4676 if (ret) {
4677 if (path && (!ref || !ref->full_path))
4678 fs_path_free(path);
4679 recorded_ref_free(ref);
4680 }
4681 return ret;
4682 }
4683
record_new_ref_if_needed(u64 dir,struct fs_path * name,void * ctx)4684 static int record_new_ref_if_needed(u64 dir, struct fs_path *name, void *ctx)
4685 {
4686 int ret;
4687 struct send_ctx *sctx = ctx;
4688 struct rb_node *node = NULL;
4689 struct recorded_ref data;
4690 struct recorded_ref *ref;
4691 u64 dir_gen;
4692
4693 ret = get_inode_gen(sctx->send_root, dir, &dir_gen);
4694 if (ret < 0)
4695 return ret;
4696
4697 data.dir = dir;
4698 data.dir_gen = dir_gen;
4699 set_ref_path(&data, name);
4700 node = rb_find(&data, &sctx->rbtree_deleted_refs, rbtree_ref_comp);
4701 if (node) {
4702 ref = rb_entry(node, struct recorded_ref, node);
4703 recorded_ref_free(ref);
4704 } else {
4705 ret = record_ref_in_tree(&sctx->rbtree_new_refs,
4706 &sctx->new_refs, name, dir, dir_gen,
4707 sctx);
4708 }
4709
4710 return ret;
4711 }
4712
record_deleted_ref_if_needed(u64 dir,struct fs_path * name,void * ctx)4713 static int record_deleted_ref_if_needed(u64 dir, struct fs_path *name, void *ctx)
4714 {
4715 int ret;
4716 struct send_ctx *sctx = ctx;
4717 struct rb_node *node = NULL;
4718 struct recorded_ref data;
4719 struct recorded_ref *ref;
4720 u64 dir_gen;
4721
4722 ret = get_inode_gen(sctx->parent_root, dir, &dir_gen);
4723 if (ret < 0)
4724 return ret;
4725
4726 data.dir = dir;
4727 data.dir_gen = dir_gen;
4728 set_ref_path(&data, name);
4729 node = rb_find(&data, &sctx->rbtree_new_refs, rbtree_ref_comp);
4730 if (node) {
4731 ref = rb_entry(node, struct recorded_ref, node);
4732 recorded_ref_free(ref);
4733 } else {
4734 ret = record_ref_in_tree(&sctx->rbtree_deleted_refs,
4735 &sctx->deleted_refs, name, dir,
4736 dir_gen, sctx);
4737 }
4738
4739 return ret;
4740 }
4741
record_new_ref(struct send_ctx * sctx)4742 static int record_new_ref(struct send_ctx *sctx)
4743 {
4744 int ret;
4745
4746 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, sctx->cmp_key,
4747 false, record_new_ref_if_needed, sctx);
4748 if (ret < 0)
4749 return ret;
4750
4751 return 0;
4752 }
4753
record_deleted_ref(struct send_ctx * sctx)4754 static int record_deleted_ref(struct send_ctx *sctx)
4755 {
4756 int ret;
4757
4758 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, sctx->cmp_key,
4759 false, record_deleted_ref_if_needed, sctx);
4760 if (ret < 0)
4761 return ret;
4762
4763 return 0;
4764 }
4765
record_changed_ref(struct send_ctx * sctx)4766 static int record_changed_ref(struct send_ctx *sctx)
4767 {
4768 int ret;
4769
4770 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, sctx->cmp_key,
4771 false, record_new_ref_if_needed, sctx);
4772 if (ret < 0)
4773 return ret;
4774 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, sctx->cmp_key,
4775 false, record_deleted_ref_if_needed, sctx);
4776 if (ret < 0)
4777 return ret;
4778
4779 return 0;
4780 }
4781
4782 /*
4783 * Record and process all refs at once. Needed when an inode changes the
4784 * generation number, which means that it was deleted and recreated.
4785 */
process_all_refs(struct send_ctx * sctx,enum btrfs_compare_tree_result cmd)4786 static int process_all_refs(struct send_ctx *sctx,
4787 enum btrfs_compare_tree_result cmd)
4788 {
4789 int ret = 0;
4790 int iter_ret = 0;
4791 struct btrfs_root *root;
4792 BTRFS_PATH_AUTO_FREE(path);
4793 struct btrfs_key key;
4794 struct btrfs_key found_key;
4795 iterate_inode_ref_t cb;
4796 int pending_move = 0;
4797
4798 path = alloc_path_for_send();
4799 if (!path)
4800 return -ENOMEM;
4801
4802 if (cmd == BTRFS_COMPARE_TREE_NEW) {
4803 root = sctx->send_root;
4804 cb = record_new_ref_if_needed;
4805 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4806 root = sctx->parent_root;
4807 cb = record_deleted_ref_if_needed;
4808 } else {
4809 btrfs_err(sctx->send_root->fs_info,
4810 "Wrong command %d in process_all_refs", cmd);
4811 return -EINVAL;
4812 }
4813
4814 key.objectid = sctx->cmp_key->objectid;
4815 key.type = BTRFS_INODE_REF_KEY;
4816 key.offset = 0;
4817 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
4818 if (found_key.objectid != key.objectid ||
4819 (found_key.type != BTRFS_INODE_REF_KEY &&
4820 found_key.type != BTRFS_INODE_EXTREF_KEY))
4821 break;
4822
4823 ret = iterate_inode_ref(root, path, &found_key, false, cb, sctx);
4824 if (ret < 0)
4825 return ret;
4826 }
4827 /* Catch error found during iteration */
4828 if (iter_ret < 0)
4829 return iter_ret;
4830
4831 btrfs_release_path(path);
4832
4833 /*
4834 * We don't actually care about pending_move as we are simply
4835 * re-creating this inode and will be rename'ing it into place once we
4836 * rename the parent directory.
4837 */
4838 return process_recorded_refs(sctx, &pending_move);
4839 }
4840
send_set_xattr(struct send_ctx * sctx,const char * name,int name_len,const char * data,int data_len)4841 static int send_set_xattr(struct send_ctx *sctx,
4842 const char *name, int name_len,
4843 const char *data, int data_len)
4844 {
4845 struct fs_path *path;
4846 int ret;
4847
4848 path = get_cur_inode_path(sctx);
4849 if (IS_ERR(path))
4850 return PTR_ERR(path);
4851
4852 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4853 if (ret < 0)
4854 return ret;
4855
4856 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4857 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4858 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4859
4860 ret = send_cmd(sctx);
4861
4862 tlv_put_failure:
4863 return ret;
4864 }
4865
send_remove_xattr(struct send_ctx * sctx,struct fs_path * path,const char * name,int name_len)4866 static int send_remove_xattr(struct send_ctx *sctx,
4867 struct fs_path *path,
4868 const char *name, int name_len)
4869 {
4870 int ret;
4871
4872 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4873 if (ret < 0)
4874 return ret;
4875
4876 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4877 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4878
4879 ret = send_cmd(sctx);
4880
4881 tlv_put_failure:
4882 return ret;
4883 }
4884
__process_new_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,void * ctx)4885 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4886 const char *name, int name_len, const char *data,
4887 int data_len, void *ctx)
4888 {
4889 struct send_ctx *sctx = ctx;
4890 struct posix_acl_xattr_header dummy_acl;
4891
4892 /* Capabilities are emitted by finish_inode_if_needed */
4893 if (!strncmp(name, XATTR_NAME_CAPS, name_len))
4894 return 0;
4895
4896 /*
4897 * This hack is needed because empty acls are stored as zero byte
4898 * data in xattrs. Problem with that is, that receiving these zero byte
4899 * acls will fail later. To fix this, we send a dummy acl list that
4900 * only contains the version number and no entries.
4901 */
4902 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4903 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4904 if (data_len == 0) {
4905 dummy_acl.a_version =
4906 cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4907 data = (char *)&dummy_acl;
4908 data_len = sizeof(dummy_acl);
4909 }
4910 }
4911
4912 return send_set_xattr(sctx, name, name_len, data, data_len);
4913 }
4914
__process_deleted_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,void * ctx)4915 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4916 const char *name, int name_len,
4917 const char *data, int data_len, void *ctx)
4918 {
4919 struct send_ctx *sctx = ctx;
4920 struct fs_path *p;
4921
4922 p = get_cur_inode_path(sctx);
4923 if (IS_ERR(p))
4924 return PTR_ERR(p);
4925
4926 return send_remove_xattr(sctx, p, name, name_len);
4927 }
4928
process_new_xattr(struct send_ctx * sctx)4929 static int process_new_xattr(struct send_ctx *sctx)
4930 {
4931 return iterate_dir_item(sctx->send_root, sctx->left_path,
4932 __process_new_xattr, sctx);
4933 }
4934
process_deleted_xattr(struct send_ctx * sctx)4935 static int process_deleted_xattr(struct send_ctx *sctx)
4936 {
4937 return iterate_dir_item(sctx->parent_root, sctx->right_path,
4938 __process_deleted_xattr, sctx);
4939 }
4940
4941 struct find_xattr_ctx {
4942 const char *name;
4943 int name_len;
4944 int found_idx;
4945 char *found_data;
4946 int found_data_len;
4947 bool copy_data;
4948 };
4949
__find_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,void * vctx)4950 static int __find_xattr(int num, struct btrfs_key *di_key, const char *name,
4951 int name_len, const char *data, int data_len, void *vctx)
4952 {
4953 struct find_xattr_ctx *ctx = vctx;
4954
4955 if (name_len == ctx->name_len &&
4956 strncmp(name, ctx->name, name_len) == 0) {
4957 ctx->found_idx = num;
4958 ctx->found_data_len = data_len;
4959 if (ctx->copy_data) {
4960 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
4961 if (!ctx->found_data)
4962 return -ENOMEM;
4963 }
4964 return 1;
4965 }
4966 return 0;
4967 }
4968
find_xattr(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * key,const char * name,int name_len,char ** data,int * data_len)4969 static int find_xattr(struct btrfs_root *root,
4970 struct btrfs_path *path,
4971 struct btrfs_key *key,
4972 const char *name, int name_len,
4973 char **data, int *data_len)
4974 {
4975 int ret;
4976 struct find_xattr_ctx ctx;
4977
4978 ctx.name = name;
4979 ctx.name_len = name_len;
4980 ctx.found_idx = -1;
4981 ctx.found_data = NULL;
4982 ctx.found_data_len = 0;
4983 ctx.copy_data = (data != NULL);
4984
4985 ret = iterate_dir_item(root, path, __find_xattr, &ctx);
4986 if (ret < 0)
4987 return ret;
4988
4989 if (ctx.found_idx == -1)
4990 return -ENOENT;
4991 if (data) {
4992 *data = ctx.found_data;
4993 *data_len = ctx.found_data_len;
4994 } else {
4995 ASSERT(ctx.found_data == NULL);
4996 }
4997 return ctx.found_idx;
4998 }
4999
5000
__process_changed_new_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,void * ctx)5001 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
5002 const char *name, int name_len,
5003 const char *data, int data_len,
5004 void *ctx)
5005 {
5006 int ret;
5007 struct send_ctx *sctx = ctx;
5008 char AUTO_KFREE(found_data);
5009 int found_data_len = 0;
5010
5011 ret = find_xattr(sctx->parent_root, sctx->right_path,
5012 sctx->cmp_key, name, name_len, &found_data,
5013 &found_data_len);
5014 if (ret == -ENOENT) {
5015 ret = __process_new_xattr(num, di_key, name, name_len, data,
5016 data_len, ctx);
5017 } else if (ret >= 0) {
5018 if (data_len != found_data_len ||
5019 memcmp(data, found_data, data_len)) {
5020 ret = __process_new_xattr(num, di_key, name, name_len,
5021 data, data_len, ctx);
5022 } else {
5023 ret = 0;
5024 }
5025 }
5026
5027 return ret;
5028 }
5029
__process_changed_deleted_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,void * ctx)5030 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
5031 const char *name, int name_len,
5032 const char *data, int data_len,
5033 void *ctx)
5034 {
5035 int ret;
5036 struct send_ctx *sctx = ctx;
5037
5038 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
5039 name, name_len, NULL, NULL);
5040 if (ret == -ENOENT)
5041 ret = __process_deleted_xattr(num, di_key, name, name_len, data,
5042 data_len, ctx);
5043 else if (ret >= 0)
5044 ret = 0;
5045
5046 return ret;
5047 }
5048
process_changed_xattr(struct send_ctx * sctx)5049 static int process_changed_xattr(struct send_ctx *sctx)
5050 {
5051 int ret;
5052
5053 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
5054 __process_changed_new_xattr, sctx);
5055 if (ret < 0)
5056 return ret;
5057
5058 return iterate_dir_item(sctx->parent_root, sctx->right_path,
5059 __process_changed_deleted_xattr, sctx);
5060 }
5061
process_all_new_xattrs(struct send_ctx * sctx)5062 static int process_all_new_xattrs(struct send_ctx *sctx)
5063 {
5064 int ret = 0;
5065 int iter_ret = 0;
5066 struct btrfs_root *root;
5067 BTRFS_PATH_AUTO_FREE(path);
5068 struct btrfs_key key;
5069 struct btrfs_key found_key;
5070
5071 path = alloc_path_for_send();
5072 if (!path)
5073 return -ENOMEM;
5074
5075 root = sctx->send_root;
5076
5077 key.objectid = sctx->cmp_key->objectid;
5078 key.type = BTRFS_XATTR_ITEM_KEY;
5079 key.offset = 0;
5080 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
5081 if (found_key.objectid != key.objectid ||
5082 found_key.type != key.type) {
5083 ret = 0;
5084 break;
5085 }
5086
5087 ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
5088 if (ret < 0)
5089 break;
5090 }
5091 /* Catch error found during iteration */
5092 if (iter_ret < 0)
5093 ret = iter_ret;
5094
5095 return ret;
5096 }
5097
send_verity(struct send_ctx * sctx,struct fs_path * path,struct fsverity_descriptor * desc)5098 static int send_verity(struct send_ctx *sctx, struct fs_path *path,
5099 struct fsverity_descriptor *desc)
5100 {
5101 int ret;
5102
5103 ret = begin_cmd(sctx, BTRFS_SEND_C_ENABLE_VERITY);
5104 if (ret < 0)
5105 return ret;
5106
5107 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
5108 TLV_PUT_U8(sctx, BTRFS_SEND_A_VERITY_ALGORITHM,
5109 le8_to_cpu(desc->hash_algorithm));
5110 TLV_PUT_U32(sctx, BTRFS_SEND_A_VERITY_BLOCK_SIZE,
5111 1U << le8_to_cpu(desc->log_blocksize));
5112 TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SALT_DATA, desc->salt,
5113 le8_to_cpu(desc->salt_size));
5114 TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SIG_DATA, desc->signature,
5115 le32_to_cpu(desc->sig_size));
5116
5117 ret = send_cmd(sctx);
5118
5119 tlv_put_failure:
5120 return ret;
5121 }
5122
process_verity(struct send_ctx * sctx)5123 static int process_verity(struct send_ctx *sctx)
5124 {
5125 int ret = 0;
5126 struct btrfs_inode *inode;
5127 struct fs_path *p;
5128
5129 inode = btrfs_iget(sctx->cur_ino, sctx->send_root);
5130 if (IS_ERR(inode))
5131 return PTR_ERR(inode);
5132
5133 ret = btrfs_get_verity_descriptor(&inode->vfs_inode, NULL, 0);
5134 if (ret < 0)
5135 goto iput;
5136
5137 if (unlikely(ret > FS_VERITY_MAX_DESCRIPTOR_SIZE)) {
5138 ret = -EMSGSIZE;
5139 goto iput;
5140 }
5141 if (!sctx->verity_descriptor) {
5142 sctx->verity_descriptor = kvmalloc(FS_VERITY_MAX_DESCRIPTOR_SIZE,
5143 GFP_KERNEL);
5144 if (!sctx->verity_descriptor) {
5145 ret = -ENOMEM;
5146 goto iput;
5147 }
5148 }
5149
5150 ret = btrfs_get_verity_descriptor(&inode->vfs_inode, sctx->verity_descriptor, ret);
5151 if (ret < 0)
5152 goto iput;
5153
5154 p = get_cur_inode_path(sctx);
5155 if (IS_ERR(p)) {
5156 ret = PTR_ERR(p);
5157 goto iput;
5158 }
5159
5160 ret = send_verity(sctx, p, sctx->verity_descriptor);
5161 iput:
5162 iput(&inode->vfs_inode);
5163 return ret;
5164 }
5165
max_send_read_size(const struct send_ctx * sctx)5166 static inline u64 max_send_read_size(const struct send_ctx *sctx)
5167 {
5168 return sctx->send_max_size - SZ_16K;
5169 }
5170
put_data_header(struct send_ctx * sctx,u32 len)5171 static int put_data_header(struct send_ctx *sctx, u32 len)
5172 {
5173 if (WARN_ON_ONCE(sctx->put_data))
5174 return -EINVAL;
5175 sctx->put_data = true;
5176 if (sctx->proto >= 2) {
5177 /*
5178 * Since v2, the data attribute header doesn't include a length,
5179 * it is implicitly to the end of the command.
5180 */
5181 if (unlikely(sctx->send_max_size - sctx->send_size < sizeof(__le16) + len))
5182 return -EOVERFLOW;
5183 put_unaligned_le16(BTRFS_SEND_A_DATA, sctx->send_buf + sctx->send_size);
5184 sctx->send_size += sizeof(__le16);
5185 } else {
5186 struct btrfs_tlv_header *hdr;
5187
5188 if (unlikely(sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len))
5189 return -EOVERFLOW;
5190 hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size);
5191 put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type);
5192 put_unaligned_le16(len, &hdr->tlv_len);
5193 sctx->send_size += sizeof(*hdr);
5194 }
5195 return 0;
5196 }
5197
put_file_data(struct send_ctx * sctx,u64 offset,u32 len)5198 static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len)
5199 {
5200 struct btrfs_root *root = sctx->send_root;
5201 struct btrfs_fs_info *fs_info = root->fs_info;
5202 u64 cur = offset;
5203 const u64 end = offset + len;
5204 const pgoff_t last_index = ((end - 1) >> PAGE_SHIFT);
5205 struct address_space *mapping = sctx->cur_inode->i_mapping;
5206 int ret;
5207
5208 ret = put_data_header(sctx, len);
5209 if (ret)
5210 return ret;
5211
5212 while (cur < end) {
5213 pgoff_t index = (cur >> PAGE_SHIFT);
5214 unsigned int cur_len;
5215 unsigned int pg_offset;
5216 struct folio *folio;
5217
5218 folio = filemap_lock_folio(mapping, index);
5219 if (IS_ERR(folio)) {
5220 page_cache_sync_readahead(mapping,
5221 &sctx->ra, NULL, index,
5222 last_index + 1 - index);
5223
5224 folio = filemap_grab_folio(mapping, index);
5225 if (IS_ERR(folio)) {
5226 ret = PTR_ERR(folio);
5227 break;
5228 }
5229 }
5230 pg_offset = offset_in_folio(folio, cur);
5231 cur_len = min_t(unsigned int, end - cur, folio_size(folio) - pg_offset);
5232
5233 if (folio_test_readahead(folio))
5234 page_cache_async_readahead(mapping, &sctx->ra, NULL, folio,
5235 last_index + 1 - index);
5236
5237 if (!folio_test_uptodate(folio)) {
5238 btrfs_read_folio(NULL, folio);
5239 folio_lock(folio);
5240 if (unlikely(!folio_test_uptodate(folio))) {
5241 folio_unlock(folio);
5242 btrfs_err(fs_info,
5243 "send: IO error at offset %llu for inode %llu root %llu",
5244 folio_pos(folio), sctx->cur_ino,
5245 btrfs_root_id(sctx->send_root));
5246 folio_put(folio);
5247 ret = -EIO;
5248 break;
5249 }
5250 if (folio->mapping != mapping) {
5251 folio_unlock(folio);
5252 folio_put(folio);
5253 continue;
5254 }
5255 }
5256
5257 memcpy_from_folio(sctx->send_buf + sctx->send_size, folio,
5258 pg_offset, cur_len);
5259 folio_unlock(folio);
5260 folio_put(folio);
5261 cur += cur_len;
5262 sctx->send_size += cur_len;
5263 }
5264
5265 return ret;
5266 }
5267
5268 /*
5269 * Read some bytes from the current inode/file and send a write command to
5270 * user space.
5271 */
send_write(struct send_ctx * sctx,u64 offset,u32 len)5272 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
5273 {
5274 int ret = 0;
5275 struct fs_path *p;
5276
5277 p = get_cur_inode_path(sctx);
5278 if (IS_ERR(p))
5279 return PTR_ERR(p);
5280
5281 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5282 if (ret < 0)
5283 return ret;
5284
5285 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5286 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5287 ret = put_file_data(sctx, offset, len);
5288 if (ret < 0)
5289 return ret;
5290
5291 ret = send_cmd(sctx);
5292
5293 tlv_put_failure:
5294 return ret;
5295 }
5296
5297 /*
5298 * Send a clone command to user space.
5299 */
send_clone(struct send_ctx * sctx,u64 offset,u32 len,struct clone_root * clone_root)5300 static int send_clone(struct send_ctx *sctx,
5301 u64 offset, u32 len,
5302 struct clone_root *clone_root)
5303 {
5304 int ret = 0;
5305 struct fs_path *p;
5306 struct fs_path *cur_inode_path;
5307 u64 gen;
5308
5309 cur_inode_path = get_cur_inode_path(sctx);
5310 if (IS_ERR(cur_inode_path))
5311 return PTR_ERR(cur_inode_path);
5312
5313 p = fs_path_alloc();
5314 if (!p)
5315 return -ENOMEM;
5316
5317 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
5318 if (ret < 0)
5319 goto out;
5320
5321 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5322 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
5323 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, cur_inode_path);
5324
5325 if (clone_root->root == sctx->send_root) {
5326 ret = get_inode_gen(sctx->send_root, clone_root->ino, &gen);
5327 if (ret < 0)
5328 goto out;
5329 ret = get_cur_path(sctx, clone_root->ino, gen, p);
5330 } else {
5331 ret = get_inode_path(clone_root->root, clone_root->ino, p);
5332 }
5333 if (ret < 0)
5334 goto out;
5335
5336 /*
5337 * If the parent we're using has a received_uuid set then use that as
5338 * our clone source as that is what we will look for when doing a
5339 * receive.
5340 *
5341 * This covers the case that we create a snapshot off of a received
5342 * subvolume and then use that as the parent and try to receive on a
5343 * different host.
5344 */
5345 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
5346 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5347 clone_root->root->root_item.received_uuid);
5348 else
5349 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5350 clone_root->root->root_item.uuid);
5351 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
5352 btrfs_root_ctransid(&clone_root->root->root_item));
5353 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
5354 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
5355 clone_root->offset);
5356
5357 ret = send_cmd(sctx);
5358
5359 tlv_put_failure:
5360 out:
5361 fs_path_free(p);
5362 return ret;
5363 }
5364
5365 /*
5366 * Send an update extent command to user space.
5367 */
send_update_extent(struct send_ctx * sctx,u64 offset,u32 len)5368 static int send_update_extent(struct send_ctx *sctx,
5369 u64 offset, u32 len)
5370 {
5371 int ret = 0;
5372 struct fs_path *p;
5373
5374 p = get_cur_inode_path(sctx);
5375 if (IS_ERR(p))
5376 return PTR_ERR(p);
5377
5378 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
5379 if (ret < 0)
5380 return ret;
5381
5382 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5383 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5384 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
5385
5386 ret = send_cmd(sctx);
5387
5388 tlv_put_failure:
5389 return ret;
5390 }
5391
send_fallocate(struct send_ctx * sctx,u32 mode,u64 offset,u64 len)5392 static int send_fallocate(struct send_ctx *sctx, u32 mode, u64 offset, u64 len)
5393 {
5394 struct fs_path *path;
5395 int ret;
5396
5397 path = get_cur_inode_path(sctx);
5398 if (IS_ERR(path))
5399 return PTR_ERR(path);
5400
5401 ret = begin_cmd(sctx, BTRFS_SEND_C_FALLOCATE);
5402 if (ret < 0)
5403 return ret;
5404
5405 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
5406 TLV_PUT_U32(sctx, BTRFS_SEND_A_FALLOCATE_MODE, mode);
5407 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5408 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
5409
5410 ret = send_cmd(sctx);
5411
5412 tlv_put_failure:
5413 return ret;
5414 }
5415
send_hole(struct send_ctx * sctx,u64 end)5416 static int send_hole(struct send_ctx *sctx, u64 end)
5417 {
5418 struct fs_path *p = NULL;
5419 u64 read_size = max_send_read_size(sctx);
5420 u64 offset = sctx->cur_inode_last_extent;
5421 int ret = 0;
5422
5423 /*
5424 * Starting with send stream v2 we have fallocate and can use it to
5425 * punch holes instead of sending writes full of zeroes.
5426 */
5427 if (proto_cmd_ok(sctx, BTRFS_SEND_C_FALLOCATE))
5428 return send_fallocate(sctx, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
5429 offset, end - offset);
5430
5431 /*
5432 * A hole that starts at EOF or beyond it. Since we do not yet support
5433 * fallocate (for extent preallocation and hole punching), sending a
5434 * write of zeroes starting at EOF or beyond would later require issuing
5435 * a truncate operation which would undo the write and achieve nothing.
5436 */
5437 if (offset >= sctx->cur_inode_size)
5438 return 0;
5439
5440 /*
5441 * Don't go beyond the inode's i_size due to prealloc extents that start
5442 * after the i_size.
5443 */
5444 end = min_t(u64, end, sctx->cur_inode_size);
5445
5446 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5447 return send_update_extent(sctx, offset, end - offset);
5448
5449 p = get_cur_inode_path(sctx);
5450 if (IS_ERR(p))
5451 return PTR_ERR(p);
5452
5453 while (offset < end) {
5454 u64 len = min(end - offset, read_size);
5455
5456 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5457 if (ret < 0)
5458 break;
5459 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5460 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5461 ret = put_data_header(sctx, len);
5462 if (ret < 0)
5463 break;
5464 memset(sctx->send_buf + sctx->send_size, 0, len);
5465 sctx->send_size += len;
5466 ret = send_cmd(sctx);
5467 if (ret < 0)
5468 break;
5469 offset += len;
5470 }
5471 sctx->cur_inode_next_write_offset = offset;
5472 tlv_put_failure:
5473 return ret;
5474 }
5475
send_encoded_inline_extent(struct send_ctx * sctx,struct btrfs_path * path,u64 offset,u64 len)5476 static int send_encoded_inline_extent(struct send_ctx *sctx,
5477 struct btrfs_path *path, u64 offset,
5478 u64 len)
5479 {
5480 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
5481 struct fs_path *fspath;
5482 struct extent_buffer *leaf = path->nodes[0];
5483 struct btrfs_key key;
5484 struct btrfs_file_extent_item *ei;
5485 u64 ram_bytes;
5486 size_t inline_size;
5487 int ret;
5488
5489 fspath = get_cur_inode_path(sctx);
5490 if (IS_ERR(fspath))
5491 return PTR_ERR(fspath);
5492
5493 ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE);
5494 if (ret < 0)
5495 return ret;
5496
5497 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5498 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
5499 ram_bytes = btrfs_file_extent_ram_bytes(leaf, ei);
5500 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
5501
5502 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath);
5503 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5504 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN,
5505 min(key.offset + ram_bytes - offset, len));
5506 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN, ram_bytes);
5507 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET, offset - key.offset);
5508 ret = btrfs_encoded_io_compression_from_extent(fs_info,
5509 btrfs_file_extent_compression(leaf, ei));
5510 if (ret < 0)
5511 return ret;
5512 TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret);
5513
5514 ret = put_data_header(sctx, inline_size);
5515 if (ret < 0)
5516 return ret;
5517 read_extent_buffer(leaf, sctx->send_buf + sctx->send_size,
5518 btrfs_file_extent_inline_start(ei), inline_size);
5519 sctx->send_size += inline_size;
5520
5521 ret = send_cmd(sctx);
5522
5523 tlv_put_failure:
5524 return ret;
5525 }
5526
send_encoded_extent(struct send_ctx * sctx,struct btrfs_path * path,u64 offset,u64 len)5527 static int send_encoded_extent(struct send_ctx *sctx, struct btrfs_path *path,
5528 u64 offset, u64 len)
5529 {
5530 struct btrfs_root *root = sctx->send_root;
5531 struct btrfs_fs_info *fs_info = root->fs_info;
5532 struct btrfs_inode *inode;
5533 struct fs_path *fspath;
5534 struct extent_buffer *leaf = path->nodes[0];
5535 struct btrfs_key key;
5536 struct btrfs_file_extent_item *ei;
5537 u64 disk_bytenr, disk_num_bytes;
5538 u32 data_offset;
5539 struct btrfs_cmd_header *hdr;
5540 u32 crc;
5541 int ret;
5542
5543 inode = btrfs_iget(sctx->cur_ino, root);
5544 if (IS_ERR(inode))
5545 return PTR_ERR(inode);
5546
5547 fspath = get_cur_inode_path(sctx);
5548 if (IS_ERR(fspath)) {
5549 ret = PTR_ERR(fspath);
5550 goto out;
5551 }
5552
5553 ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE);
5554 if (ret < 0)
5555 goto out;
5556
5557 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5558 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
5559 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
5560 disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, ei);
5561
5562 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath);
5563 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5564 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN,
5565 min(key.offset + btrfs_file_extent_num_bytes(leaf, ei) - offset,
5566 len));
5567 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN,
5568 btrfs_file_extent_ram_bytes(leaf, ei));
5569 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET,
5570 offset - key.offset + btrfs_file_extent_offset(leaf, ei));
5571 ret = btrfs_encoded_io_compression_from_extent(fs_info,
5572 btrfs_file_extent_compression(leaf, ei));
5573 if (ret < 0)
5574 goto out;
5575 TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret);
5576 TLV_PUT_U32(sctx, BTRFS_SEND_A_ENCRYPTION, 0);
5577
5578 ret = put_data_header(sctx, disk_num_bytes);
5579 if (ret < 0)
5580 goto out;
5581
5582 /*
5583 * We want to do I/O directly into the send buffer, so get the next page
5584 * boundary in the send buffer. This means that there may be a gap
5585 * between the beginning of the command and the file data.
5586 */
5587 data_offset = PAGE_ALIGN(sctx->send_size);
5588 if (unlikely(data_offset > sctx->send_max_size ||
5589 sctx->send_max_size - data_offset < disk_num_bytes)) {
5590 ret = -EOVERFLOW;
5591 goto out;
5592 }
5593
5594 /*
5595 * Note that send_buf is a mapping of send_buf_pages, so this is really
5596 * reading into send_buf.
5597 */
5598 ret = btrfs_encoded_read_regular_fill_pages(inode,
5599 disk_bytenr, disk_num_bytes,
5600 sctx->send_buf_pages +
5601 (data_offset >> PAGE_SHIFT),
5602 NULL);
5603 if (ret)
5604 goto out;
5605
5606 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
5607 hdr->len = cpu_to_le32(sctx->send_size + disk_num_bytes - sizeof(*hdr));
5608 hdr->crc = 0;
5609 crc = crc32c(0, sctx->send_buf, sctx->send_size);
5610 crc = crc32c(crc, sctx->send_buf + data_offset, disk_num_bytes);
5611 hdr->crc = cpu_to_le32(crc);
5612
5613 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
5614 &sctx->send_off);
5615 if (!ret) {
5616 ret = write_buf(sctx->send_filp, sctx->send_buf + data_offset,
5617 disk_num_bytes, &sctx->send_off);
5618 }
5619 sctx->send_size = 0;
5620 sctx->put_data = false;
5621
5622 tlv_put_failure:
5623 out:
5624 iput(&inode->vfs_inode);
5625 return ret;
5626 }
5627
send_extent_data(struct send_ctx * sctx,struct btrfs_path * path,const u64 offset,const u64 len)5628 static int send_extent_data(struct send_ctx *sctx, struct btrfs_path *path,
5629 const u64 offset, const u64 len)
5630 {
5631 const u64 end = offset + len;
5632 struct extent_buffer *leaf = path->nodes[0];
5633 struct btrfs_file_extent_item *ei;
5634 u64 read_size = max_send_read_size(sctx);
5635 u64 sent = 0;
5636
5637 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5638 return send_update_extent(sctx, offset, len);
5639
5640 ei = btrfs_item_ptr(leaf, path->slots[0],
5641 struct btrfs_file_extent_item);
5642 if ((sctx->flags & BTRFS_SEND_FLAG_COMPRESSED) &&
5643 btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) {
5644 bool is_inline = (btrfs_file_extent_type(leaf, ei) ==
5645 BTRFS_FILE_EXTENT_INLINE);
5646
5647 /*
5648 * Send the compressed extent unless the compressed data is
5649 * larger than the decompressed data. This can happen if we're
5650 * not sending the entire extent, either because it has been
5651 * partially overwritten/truncated or because this is a part of
5652 * the extent that we couldn't clone in clone_range().
5653 */
5654 if (is_inline &&
5655 btrfs_file_extent_inline_item_len(leaf,
5656 path->slots[0]) <= len) {
5657 return send_encoded_inline_extent(sctx, path, offset,
5658 len);
5659 } else if (!is_inline &&
5660 btrfs_file_extent_disk_num_bytes(leaf, ei) <= len) {
5661 return send_encoded_extent(sctx, path, offset, len);
5662 }
5663 }
5664
5665 if (sctx->cur_inode == NULL) {
5666 struct btrfs_inode *btrfs_inode;
5667 struct btrfs_root *root = sctx->send_root;
5668
5669 btrfs_inode = btrfs_iget(sctx->cur_ino, root);
5670 if (IS_ERR(btrfs_inode))
5671 return PTR_ERR(btrfs_inode);
5672
5673 sctx->cur_inode = &btrfs_inode->vfs_inode;
5674 memset(&sctx->ra, 0, sizeof(struct file_ra_state));
5675 file_ra_state_init(&sctx->ra, sctx->cur_inode->i_mapping);
5676
5677 /*
5678 * It's very likely there are no pages from this inode in the page
5679 * cache, so after reading extents and sending their data, we clean
5680 * the page cache to avoid trashing the page cache (adding pressure
5681 * to the page cache and forcing eviction of other data more useful
5682 * for applications).
5683 *
5684 * We decide if we should clean the page cache simply by checking
5685 * if the inode's mapping nrpages is 0 when we first open it, and
5686 * not by using something like filemap_range_has_page() before
5687 * reading an extent because when we ask the readahead code to
5688 * read a given file range, it may (and almost always does) read
5689 * pages from beyond that range (see the documentation for
5690 * page_cache_sync_readahead()), so it would not be reliable,
5691 * because after reading the first extent future calls to
5692 * filemap_range_has_page() would return true because the readahead
5693 * on the previous extent resulted in reading pages of the current
5694 * extent as well.
5695 */
5696 sctx->clean_page_cache = (sctx->cur_inode->i_mapping->nrpages == 0);
5697 sctx->page_cache_clear_start = round_down(offset, PAGE_SIZE);
5698 }
5699
5700 while (sent < len) {
5701 u64 size = min(len - sent, read_size);
5702 int ret;
5703
5704 ret = send_write(sctx, offset + sent, size);
5705 if (ret < 0)
5706 return ret;
5707 sent += size;
5708 }
5709
5710 if (sctx->clean_page_cache && PAGE_ALIGNED(end)) {
5711 /*
5712 * Always operate only on ranges that are a multiple of the page
5713 * size. This is not only to prevent zeroing parts of a page in
5714 * the case of subpage sector size, but also to guarantee we evict
5715 * pages, as passing a range that is smaller than page size does
5716 * not evict the respective page (only zeroes part of its content).
5717 *
5718 * Always start from the end offset of the last range cleared.
5719 * This is because the readahead code may (and very often does)
5720 * reads pages beyond the range we request for readahead. So if
5721 * we have an extent layout like this:
5722 *
5723 * [ extent A ] [ extent B ] [ extent C ]
5724 *
5725 * When we ask page_cache_sync_readahead() to read extent A, it
5726 * may also trigger reads for pages of extent B. If we are doing
5727 * an incremental send and extent B has not changed between the
5728 * parent and send snapshots, some or all of its pages may end
5729 * up being read and placed in the page cache. So when truncating
5730 * the page cache we always start from the end offset of the
5731 * previously processed extent up to the end of the current
5732 * extent.
5733 */
5734 truncate_inode_pages_range(&sctx->cur_inode->i_data,
5735 sctx->page_cache_clear_start,
5736 end - 1);
5737 sctx->page_cache_clear_start = end;
5738 }
5739
5740 return 0;
5741 }
5742
5743 /*
5744 * Search for a capability xattr related to sctx->cur_ino. If the capability is
5745 * found, call send_set_xattr function to emit it.
5746 *
5747 * Return 0 if there isn't a capability, or when the capability was emitted
5748 * successfully, or < 0 if an error occurred.
5749 */
send_capabilities(struct send_ctx * sctx)5750 static int send_capabilities(struct send_ctx *sctx)
5751 {
5752 BTRFS_PATH_AUTO_FREE(path);
5753 struct btrfs_dir_item *di;
5754 struct extent_buffer *leaf;
5755 unsigned long data_ptr;
5756 char AUTO_KFREE(buf);
5757 int buf_len;
5758 int ret = 0;
5759
5760 path = alloc_path_for_send();
5761 if (!path)
5762 return -ENOMEM;
5763
5764 di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino,
5765 XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0);
5766 if (!di) {
5767 /* There is no xattr for this inode */
5768 return 0;
5769 } else if (IS_ERR(di)) {
5770 return PTR_ERR(di);
5771 }
5772
5773 leaf = path->nodes[0];
5774 buf_len = btrfs_dir_data_len(leaf, di);
5775
5776 buf = kmalloc(buf_len, GFP_KERNEL);
5777 if (!buf)
5778 return -ENOMEM;
5779
5780 data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di);
5781 read_extent_buffer(leaf, buf, data_ptr, buf_len);
5782
5783 ret = send_set_xattr(sctx, XATTR_NAME_CAPS,
5784 strlen(XATTR_NAME_CAPS), buf, buf_len);
5785 return ret;
5786 }
5787
clone_range(struct send_ctx * sctx,struct btrfs_path * dst_path,struct clone_root * clone_root,const u64 disk_byte,u64 data_offset,u64 offset,u64 len)5788 static int clone_range(struct send_ctx *sctx, struct btrfs_path *dst_path,
5789 struct clone_root *clone_root, const u64 disk_byte,
5790 u64 data_offset, u64 offset, u64 len)
5791 {
5792 BTRFS_PATH_AUTO_FREE(path);
5793 struct btrfs_key key;
5794 int ret;
5795 struct btrfs_inode_info info;
5796 u64 clone_src_i_size = 0;
5797
5798 /*
5799 * Prevent cloning from a zero offset with a length matching the sector
5800 * size because in some scenarios this will make the receiver fail.
5801 *
5802 * For example, if in the source filesystem the extent at offset 0
5803 * has a length of sectorsize and it was written using direct IO, then
5804 * it can never be an inline extent (even if compression is enabled).
5805 * Then this extent can be cloned in the original filesystem to a non
5806 * zero file offset, but it may not be possible to clone in the
5807 * destination filesystem because it can be inlined due to compression
5808 * on the destination filesystem (as the receiver's write operations are
5809 * always done using buffered IO). The same happens when the original
5810 * filesystem does not have compression enabled but the destination
5811 * filesystem has.
5812 */
5813 if (clone_root->offset == 0 &&
5814 len == sctx->send_root->fs_info->sectorsize)
5815 return send_extent_data(sctx, dst_path, offset, len);
5816
5817 path = alloc_path_for_send();
5818 if (!path)
5819 return -ENOMEM;
5820
5821 /*
5822 * There are inodes that have extents that lie behind its i_size. Don't
5823 * accept clones from these extents.
5824 */
5825 ret = get_inode_info(clone_root->root, clone_root->ino, &info);
5826 btrfs_release_path(path);
5827 if (ret < 0)
5828 return ret;
5829 clone_src_i_size = info.size;
5830
5831 /*
5832 * We can't send a clone operation for the entire range if we find
5833 * extent items in the respective range in the source file that
5834 * refer to different extents or if we find holes.
5835 * So check for that and do a mix of clone and regular write/copy
5836 * operations if needed.
5837 *
5838 * Example:
5839 *
5840 * mkfs.btrfs -f /dev/sda
5841 * mount /dev/sda /mnt
5842 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5843 * cp --reflink=always /mnt/foo /mnt/bar
5844 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5845 * btrfs subvolume snapshot -r /mnt /mnt/snap
5846 *
5847 * If when we send the snapshot and we are processing file bar (which
5848 * has a higher inode number than foo) we blindly send a clone operation
5849 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5850 * a file bar that matches the content of file foo - iow, doesn't match
5851 * the content from bar in the original filesystem.
5852 */
5853 key.objectid = clone_root->ino;
5854 key.type = BTRFS_EXTENT_DATA_KEY;
5855 key.offset = clone_root->offset;
5856 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5857 if (ret < 0)
5858 return ret;
5859 if (ret > 0 && path->slots[0] > 0) {
5860 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5861 if (key.objectid == clone_root->ino &&
5862 key.type == BTRFS_EXTENT_DATA_KEY)
5863 path->slots[0]--;
5864 }
5865
5866 while (true) {
5867 struct extent_buffer *leaf = path->nodes[0];
5868 int slot = path->slots[0];
5869 struct btrfs_file_extent_item *ei;
5870 u8 type;
5871 u64 ext_len;
5872 u64 clone_len;
5873 u64 clone_data_offset;
5874 bool crossed_src_i_size = false;
5875
5876 if (slot >= btrfs_header_nritems(leaf)) {
5877 ret = btrfs_next_leaf(clone_root->root, path);
5878 if (ret < 0)
5879 return ret;
5880 else if (ret > 0)
5881 break;
5882 continue;
5883 }
5884
5885 btrfs_item_key_to_cpu(leaf, &key, slot);
5886
5887 /*
5888 * We might have an implicit trailing hole (NO_HOLES feature
5889 * enabled). We deal with it after leaving this loop.
5890 */
5891 if (key.objectid != clone_root->ino ||
5892 key.type != BTRFS_EXTENT_DATA_KEY)
5893 break;
5894
5895 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5896 type = btrfs_file_extent_type(leaf, ei);
5897 if (type == BTRFS_FILE_EXTENT_INLINE) {
5898 ext_len = btrfs_file_extent_ram_bytes(leaf, ei);
5899 ext_len = PAGE_ALIGN(ext_len);
5900 } else {
5901 ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5902 }
5903
5904 if (key.offset + ext_len <= clone_root->offset)
5905 goto next;
5906
5907 if (key.offset > clone_root->offset) {
5908 /* Implicit hole, NO_HOLES feature enabled. */
5909 u64 hole_len = key.offset - clone_root->offset;
5910
5911 if (hole_len > len)
5912 hole_len = len;
5913 ret = send_extent_data(sctx, dst_path, offset,
5914 hole_len);
5915 if (ret < 0)
5916 return ret;
5917
5918 len -= hole_len;
5919 if (len == 0)
5920 break;
5921 offset += hole_len;
5922 clone_root->offset += hole_len;
5923 data_offset += hole_len;
5924 }
5925
5926 if (key.offset >= clone_root->offset + len)
5927 break;
5928
5929 if (key.offset >= clone_src_i_size)
5930 break;
5931
5932 if (key.offset + ext_len > clone_src_i_size) {
5933 ext_len = clone_src_i_size - key.offset;
5934 crossed_src_i_size = true;
5935 }
5936
5937 clone_data_offset = btrfs_file_extent_offset(leaf, ei);
5938 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) {
5939 clone_root->offset = key.offset;
5940 if (clone_data_offset < data_offset &&
5941 clone_data_offset + ext_len > data_offset) {
5942 u64 extent_offset;
5943
5944 extent_offset = data_offset - clone_data_offset;
5945 ext_len -= extent_offset;
5946 clone_data_offset += extent_offset;
5947 clone_root->offset += extent_offset;
5948 }
5949 }
5950
5951 clone_len = min_t(u64, ext_len, len);
5952
5953 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
5954 clone_data_offset == data_offset) {
5955 const u64 src_end = clone_root->offset + clone_len;
5956 const u64 sectorsize = SZ_64K;
5957
5958 /*
5959 * We can't clone the last block, when its size is not
5960 * sector size aligned, into the middle of a file. If we
5961 * do so, the receiver will get a failure (-EINVAL) when
5962 * trying to clone or will silently corrupt the data in
5963 * the destination file if it's on a kernel without the
5964 * fix introduced by commit ac765f83f1397646
5965 * ("Btrfs: fix data corruption due to cloning of eof
5966 * block).
5967 *
5968 * So issue a clone of the aligned down range plus a
5969 * regular write for the eof block, if we hit that case.
5970 *
5971 * Also, we use the maximum possible sector size, 64K,
5972 * because we don't know what's the sector size of the
5973 * filesystem that receives the stream, so we have to
5974 * assume the largest possible sector size.
5975 */
5976 if (src_end == clone_src_i_size &&
5977 !IS_ALIGNED(src_end, sectorsize) &&
5978 offset + clone_len < sctx->cur_inode_size) {
5979 u64 slen;
5980
5981 slen = ALIGN_DOWN(src_end - clone_root->offset,
5982 sectorsize);
5983 if (slen > 0) {
5984 ret = send_clone(sctx, offset, slen,
5985 clone_root);
5986 if (ret < 0)
5987 return ret;
5988 }
5989 ret = send_extent_data(sctx, dst_path,
5990 offset + slen,
5991 clone_len - slen);
5992 } else {
5993 ret = send_clone(sctx, offset, clone_len,
5994 clone_root);
5995 }
5996 } else if (crossed_src_i_size && clone_len < len) {
5997 /*
5998 * If we are at i_size of the clone source inode and we
5999 * can not clone from it, terminate the loop. This is
6000 * to avoid sending two write operations, one with a
6001 * length matching clone_len and the final one after
6002 * this loop with a length of len - clone_len.
6003 *
6004 * When using encoded writes (BTRFS_SEND_FLAG_COMPRESSED
6005 * was passed to the send ioctl), this helps avoid
6006 * sending an encoded write for an offset that is not
6007 * sector size aligned, in case the i_size of the source
6008 * inode is not sector size aligned. That will make the
6009 * receiver fallback to decompression of the data and
6010 * writing it using regular buffered IO, therefore while
6011 * not incorrect, it's not optimal due decompression and
6012 * possible re-compression at the receiver.
6013 */
6014 break;
6015 } else {
6016 ret = send_extent_data(sctx, dst_path, offset,
6017 clone_len);
6018 }
6019
6020 if (ret < 0)
6021 return ret;
6022
6023 len -= clone_len;
6024 if (len == 0)
6025 break;
6026 offset += clone_len;
6027 clone_root->offset += clone_len;
6028
6029 /*
6030 * If we are cloning from the file we are currently processing,
6031 * and using the send root as the clone root, we must stop once
6032 * the current clone offset reaches the current eof of the file
6033 * at the receiver, otherwise we would issue an invalid clone
6034 * operation (source range going beyond eof) and cause the
6035 * receiver to fail. So if we reach the current eof, bail out
6036 * and fallback to a regular write.
6037 */
6038 if (clone_root->root == sctx->send_root &&
6039 clone_root->ino == sctx->cur_ino &&
6040 clone_root->offset >= sctx->cur_inode_next_write_offset)
6041 break;
6042
6043 data_offset += clone_len;
6044 next:
6045 path->slots[0]++;
6046 }
6047
6048 if (len > 0)
6049 ret = send_extent_data(sctx, dst_path, offset, len);
6050 else
6051 ret = 0;
6052 return ret;
6053 }
6054
send_write_or_clone(struct send_ctx * sctx,struct btrfs_path * path,struct btrfs_key * key,struct clone_root * clone_root)6055 static int send_write_or_clone(struct send_ctx *sctx,
6056 struct btrfs_path *path,
6057 struct btrfs_key *key,
6058 struct clone_root *clone_root)
6059 {
6060 int ret = 0;
6061 u64 offset = key->offset;
6062 u64 end;
6063 u64 bs = sctx->send_root->fs_info->sectorsize;
6064 struct btrfs_file_extent_item *ei;
6065 u64 disk_byte;
6066 u64 data_offset;
6067 u64 num_bytes;
6068 struct btrfs_inode_info info = { 0 };
6069
6070 end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size);
6071 if (offset >= end)
6072 return 0;
6073
6074 num_bytes = end - offset;
6075
6076 if (!clone_root)
6077 goto write_data;
6078
6079 if (IS_ALIGNED(end, bs))
6080 goto clone_data;
6081
6082 /*
6083 * If the extent end is not aligned, we can clone if the extent ends at
6084 * the i_size of the inode and the clone range ends at the i_size of the
6085 * source inode, otherwise the clone operation fails with -EINVAL.
6086 */
6087 if (end != sctx->cur_inode_size)
6088 goto write_data;
6089
6090 ret = get_inode_info(clone_root->root, clone_root->ino, &info);
6091 if (ret < 0)
6092 return ret;
6093
6094 if (clone_root->offset + num_bytes == info.size) {
6095 /*
6096 * The final size of our file matches the end offset, but it may
6097 * be that its current size is larger, so we have to truncate it
6098 * to any value between the start offset of the range and the
6099 * final i_size, otherwise the clone operation is invalid
6100 * because it's unaligned and it ends before the current EOF.
6101 * We do this truncate to the final i_size when we finish
6102 * processing the inode, but it's too late by then. And here we
6103 * truncate to the start offset of the range because it's always
6104 * sector size aligned while if it were the final i_size it
6105 * would result in dirtying part of a page, filling part of a
6106 * page with zeroes and then having the clone operation at the
6107 * receiver trigger IO and wait for it due to the dirty page.
6108 */
6109 if (sctx->parent_root != NULL) {
6110 ret = send_truncate(sctx, sctx->cur_ino,
6111 sctx->cur_inode_gen, offset);
6112 if (ret < 0)
6113 return ret;
6114 }
6115 goto clone_data;
6116 }
6117
6118 write_data:
6119 ret = send_extent_data(sctx, path, offset, num_bytes);
6120 sctx->cur_inode_next_write_offset = end;
6121 return ret;
6122
6123 clone_data:
6124 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
6125 struct btrfs_file_extent_item);
6126 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
6127 data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
6128 ret = clone_range(sctx, path, clone_root, disk_byte, data_offset, offset,
6129 num_bytes);
6130 sctx->cur_inode_next_write_offset = end;
6131 return ret;
6132 }
6133
is_extent_unchanged(struct send_ctx * sctx,struct btrfs_path * left_path,struct btrfs_key * ekey)6134 static int is_extent_unchanged(struct send_ctx *sctx,
6135 struct btrfs_path *left_path,
6136 struct btrfs_key *ekey)
6137 {
6138 int ret = 0;
6139 struct btrfs_key key;
6140 BTRFS_PATH_AUTO_FREE(path);
6141 struct extent_buffer *eb;
6142 int slot;
6143 struct btrfs_key found_key;
6144 struct btrfs_file_extent_item *ei;
6145 u64 left_disknr;
6146 u64 right_disknr;
6147 u64 left_offset;
6148 u64 right_offset;
6149 u64 left_offset_fixed;
6150 u64 left_len;
6151 u64 right_len;
6152 u64 left_gen;
6153 u64 right_gen;
6154 u8 left_type;
6155 u8 right_type;
6156
6157 path = alloc_path_for_send();
6158 if (!path)
6159 return -ENOMEM;
6160
6161 eb = left_path->nodes[0];
6162 slot = left_path->slots[0];
6163 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
6164 left_type = btrfs_file_extent_type(eb, ei);
6165
6166 if (left_type != BTRFS_FILE_EXTENT_REG)
6167 return 0;
6168
6169 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
6170 left_len = btrfs_file_extent_num_bytes(eb, ei);
6171 left_offset = btrfs_file_extent_offset(eb, ei);
6172 left_gen = btrfs_file_extent_generation(eb, ei);
6173
6174 /*
6175 * Following comments will refer to these graphics. L is the left
6176 * extents which we are checking at the moment. 1-8 are the right
6177 * extents that we iterate.
6178 *
6179 * |-----L-----|
6180 * |-1-|-2a-|-3-|-4-|-5-|-6-|
6181 *
6182 * |-----L-----|
6183 * |--1--|-2b-|...(same as above)
6184 *
6185 * Alternative situation. Happens on files where extents got split.
6186 * |-----L-----|
6187 * |-----------7-----------|-6-|
6188 *
6189 * Alternative situation. Happens on files which got larger.
6190 * |-----L-----|
6191 * |-8-|
6192 * Nothing follows after 8.
6193 */
6194
6195 key.objectid = ekey->objectid;
6196 key.type = BTRFS_EXTENT_DATA_KEY;
6197 key.offset = ekey->offset;
6198 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
6199 if (ret < 0)
6200 return ret;
6201 if (ret)
6202 return 0;
6203
6204 /*
6205 * Handle special case where the right side has no extents at all.
6206 */
6207 eb = path->nodes[0];
6208 slot = path->slots[0];
6209 btrfs_item_key_to_cpu(eb, &found_key, slot);
6210 if (found_key.objectid != key.objectid ||
6211 found_key.type != key.type)
6212 /* If we're a hole then just pretend nothing changed */
6213 return (left_disknr ? 0 : 1);
6214
6215 /*
6216 * We're now on 2a, 2b or 7.
6217 */
6218 key = found_key;
6219 while (key.offset < ekey->offset + left_len) {
6220 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
6221 right_type = btrfs_file_extent_type(eb, ei);
6222 if (right_type != BTRFS_FILE_EXTENT_REG &&
6223 right_type != BTRFS_FILE_EXTENT_INLINE)
6224 return 0;
6225
6226 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
6227 right_len = btrfs_file_extent_ram_bytes(eb, ei);
6228 right_len = PAGE_ALIGN(right_len);
6229 } else {
6230 right_len = btrfs_file_extent_num_bytes(eb, ei);
6231 }
6232
6233 /*
6234 * Are we at extent 8? If yes, we know the extent is changed.
6235 * This may only happen on the first iteration.
6236 */
6237 if (found_key.offset + right_len <= ekey->offset)
6238 /* If we're a hole just pretend nothing changed */
6239 return (left_disknr ? 0 : 1);
6240
6241 /*
6242 * We just wanted to see if when we have an inline extent, what
6243 * follows it is a regular extent (wanted to check the above
6244 * condition for inline extents too). This should normally not
6245 * happen but it's possible for example when we have an inline
6246 * compressed extent representing data with a size matching
6247 * the page size (currently the same as sector size).
6248 */
6249 if (right_type == BTRFS_FILE_EXTENT_INLINE)
6250 return 0;
6251
6252 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
6253 right_offset = btrfs_file_extent_offset(eb, ei);
6254 right_gen = btrfs_file_extent_generation(eb, ei);
6255
6256 left_offset_fixed = left_offset;
6257 if (key.offset < ekey->offset) {
6258 /* Fix the right offset for 2a and 7. */
6259 right_offset += ekey->offset - key.offset;
6260 } else {
6261 /* Fix the left offset for all behind 2a and 2b */
6262 left_offset_fixed += key.offset - ekey->offset;
6263 }
6264
6265 /*
6266 * Check if we have the same extent.
6267 */
6268 if (left_disknr != right_disknr ||
6269 left_offset_fixed != right_offset ||
6270 left_gen != right_gen)
6271 return 0;
6272
6273 /*
6274 * Go to the next extent.
6275 */
6276 ret = btrfs_next_item(sctx->parent_root, path);
6277 if (ret < 0)
6278 return ret;
6279 if (!ret) {
6280 eb = path->nodes[0];
6281 slot = path->slots[0];
6282 btrfs_item_key_to_cpu(eb, &found_key, slot);
6283 }
6284 if (ret || found_key.objectid != key.objectid ||
6285 found_key.type != key.type) {
6286 key.offset += right_len;
6287 break;
6288 }
6289 if (found_key.offset != key.offset + right_len)
6290 return 0;
6291
6292 key = found_key;
6293 }
6294
6295 /*
6296 * We're now behind the left extent (treat as unchanged) or at the end
6297 * of the right side (treat as changed).
6298 */
6299 if (key.offset >= ekey->offset + left_len)
6300 ret = 1;
6301 else
6302 ret = 0;
6303
6304 return ret;
6305 }
6306
get_last_extent(struct send_ctx * sctx,u64 offset)6307 static int get_last_extent(struct send_ctx *sctx, u64 offset)
6308 {
6309 BTRFS_PATH_AUTO_FREE(path);
6310 struct btrfs_root *root = sctx->send_root;
6311 struct btrfs_key key;
6312 int ret;
6313
6314 path = alloc_path_for_send();
6315 if (!path)
6316 return -ENOMEM;
6317
6318 sctx->cur_inode_last_extent = 0;
6319
6320 key.objectid = sctx->cur_ino;
6321 key.type = BTRFS_EXTENT_DATA_KEY;
6322 key.offset = offset;
6323 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
6324 if (ret < 0)
6325 return ret;
6326 ret = 0;
6327 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
6328 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
6329 return ret;
6330
6331 sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
6332 return ret;
6333 }
6334
range_is_hole_in_parent(struct send_ctx * sctx,const u64 start,const u64 end)6335 static int range_is_hole_in_parent(struct send_ctx *sctx,
6336 const u64 start,
6337 const u64 end)
6338 {
6339 BTRFS_PATH_AUTO_FREE(path);
6340 struct btrfs_key key;
6341 struct btrfs_root *root = sctx->parent_root;
6342 u64 search_start = start;
6343 int ret;
6344
6345 path = alloc_path_for_send();
6346 if (!path)
6347 return -ENOMEM;
6348
6349 key.objectid = sctx->cur_ino;
6350 key.type = BTRFS_EXTENT_DATA_KEY;
6351 key.offset = search_start;
6352 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6353 if (ret < 0)
6354 return ret;
6355 if (ret > 0 && path->slots[0] > 0)
6356 path->slots[0]--;
6357
6358 while (search_start < end) {
6359 struct extent_buffer *leaf = path->nodes[0];
6360 int slot = path->slots[0];
6361 struct btrfs_file_extent_item *fi;
6362 u64 extent_end;
6363
6364 if (slot >= btrfs_header_nritems(leaf)) {
6365 ret = btrfs_next_leaf(root, path);
6366 if (ret < 0)
6367 return ret;
6368 if (ret > 0)
6369 break;
6370 continue;
6371 }
6372
6373 btrfs_item_key_to_cpu(leaf, &key, slot);
6374 if (key.objectid < sctx->cur_ino ||
6375 key.type < BTRFS_EXTENT_DATA_KEY)
6376 goto next;
6377 if (key.objectid > sctx->cur_ino ||
6378 key.type > BTRFS_EXTENT_DATA_KEY ||
6379 key.offset >= end)
6380 break;
6381
6382 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6383 extent_end = btrfs_file_extent_end(path);
6384 if (extent_end <= start)
6385 goto next;
6386 if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE)
6387 return 0;
6388 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
6389 search_start = extent_end;
6390 goto next;
6391 }
6392 return 0;
6393 next:
6394 path->slots[0]++;
6395 }
6396 return 1;
6397 }
6398
maybe_send_hole(struct send_ctx * sctx,struct btrfs_path * path,struct btrfs_key * key)6399 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
6400 struct btrfs_key *key)
6401 {
6402 int ret = 0;
6403
6404 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
6405 return 0;
6406
6407 /*
6408 * Get last extent's end offset (exclusive) if we haven't determined it
6409 * yet (we're processing the first file extent item that is new), or if
6410 * we're at the first slot of a leaf and the last extent's end is less
6411 * than the current extent's offset, because we might have skipped
6412 * entire leaves that contained only file extent items for our current
6413 * inode. These leaves have a generation number smaller (older) than the
6414 * one in the current leaf and the leaf our last extent came from, and
6415 * are located between these 2 leaves.
6416 */
6417 if ((sctx->cur_inode_last_extent == (u64)-1) ||
6418 (path->slots[0] == 0 && sctx->cur_inode_last_extent < key->offset)) {
6419 ret = get_last_extent(sctx, key->offset - 1);
6420 if (ret)
6421 return ret;
6422 }
6423
6424 if (sctx->cur_inode_last_extent < key->offset) {
6425 ret = range_is_hole_in_parent(sctx,
6426 sctx->cur_inode_last_extent,
6427 key->offset);
6428 if (ret < 0)
6429 return ret;
6430 else if (ret == 0)
6431 ret = send_hole(sctx, key->offset);
6432 else
6433 ret = 0;
6434 }
6435 sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
6436 return ret;
6437 }
6438
process_extent(struct send_ctx * sctx,struct btrfs_path * path,struct btrfs_key * key)6439 static int process_extent(struct send_ctx *sctx,
6440 struct btrfs_path *path,
6441 struct btrfs_key *key)
6442 {
6443 struct clone_root *found_clone = NULL;
6444 int ret = 0;
6445
6446 if (S_ISLNK(sctx->cur_inode_mode))
6447 return 0;
6448
6449 if (sctx->parent_root && !sctx->cur_inode_new) {
6450 ret = is_extent_unchanged(sctx, path, key);
6451 if (ret < 0)
6452 goto out;
6453 if (ret) {
6454 ret = 0;
6455 goto out_hole;
6456 }
6457 } else {
6458 struct btrfs_file_extent_item *ei;
6459 u8 type;
6460
6461 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
6462 struct btrfs_file_extent_item);
6463 type = btrfs_file_extent_type(path->nodes[0], ei);
6464 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
6465 type == BTRFS_FILE_EXTENT_REG) {
6466 /*
6467 * The send spec does not have a prealloc command yet,
6468 * so just leave a hole for prealloc'ed extents until
6469 * we have enough commands queued up to justify rev'ing
6470 * the send spec.
6471 */
6472 if (type == BTRFS_FILE_EXTENT_PREALLOC) {
6473 ret = 0;
6474 goto out;
6475 }
6476
6477 /* Have a hole, just skip it. */
6478 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
6479 ret = 0;
6480 goto out;
6481 }
6482 }
6483 }
6484
6485 ret = find_extent_clone(sctx, path, key->objectid, key->offset,
6486 sctx->cur_inode_size, &found_clone);
6487 if (ret != -ENOENT && ret < 0)
6488 goto out;
6489
6490 ret = send_write_or_clone(sctx, path, key, found_clone);
6491 if (ret)
6492 goto out;
6493 out_hole:
6494 ret = maybe_send_hole(sctx, path, key);
6495 out:
6496 return ret;
6497 }
6498
process_all_extents(struct send_ctx * sctx)6499 static int process_all_extents(struct send_ctx *sctx)
6500 {
6501 int ret = 0;
6502 int iter_ret = 0;
6503 struct btrfs_root *root;
6504 BTRFS_PATH_AUTO_FREE(path);
6505 struct btrfs_key key;
6506 struct btrfs_key found_key;
6507
6508 root = sctx->send_root;
6509 path = alloc_path_for_send();
6510 if (!path)
6511 return -ENOMEM;
6512
6513 key.objectid = sctx->cmp_key->objectid;
6514 key.type = BTRFS_EXTENT_DATA_KEY;
6515 key.offset = 0;
6516 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
6517 if (found_key.objectid != key.objectid ||
6518 found_key.type != key.type) {
6519 ret = 0;
6520 break;
6521 }
6522
6523 ret = process_extent(sctx, path, &found_key);
6524 if (ret < 0)
6525 break;
6526 }
6527 /* Catch error found during iteration */
6528 if (iter_ret < 0)
6529 ret = iter_ret;
6530
6531 return ret;
6532 }
6533
process_recorded_refs_if_needed(struct send_ctx * sctx,bool at_end,int * pending_move,int * refs_processed)6534 static int process_recorded_refs_if_needed(struct send_ctx *sctx, bool at_end,
6535 int *pending_move,
6536 int *refs_processed)
6537 {
6538 int ret = 0;
6539
6540 if (sctx->cur_ino == 0)
6541 goto out;
6542 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
6543 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
6544 goto out;
6545 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
6546 goto out;
6547
6548 ret = process_recorded_refs(sctx, pending_move);
6549 if (ret < 0)
6550 goto out;
6551
6552 *refs_processed = 1;
6553 out:
6554 return ret;
6555 }
6556
finish_inode_if_needed(struct send_ctx * sctx,bool at_end)6557 static int finish_inode_if_needed(struct send_ctx *sctx, bool at_end)
6558 {
6559 int ret = 0;
6560 struct btrfs_inode_info info;
6561 u64 left_mode;
6562 u64 left_uid;
6563 u64 left_gid;
6564 u64 left_fileattr;
6565 u64 right_mode;
6566 u64 right_uid;
6567 u64 right_gid;
6568 u64 right_fileattr;
6569 int need_chmod = 0;
6570 int need_chown = 0;
6571 bool need_fileattr = false;
6572 int need_truncate = 1;
6573 int pending_move = 0;
6574 int refs_processed = 0;
6575
6576 if (sctx->ignore_cur_inode)
6577 return 0;
6578
6579 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
6580 &refs_processed);
6581 if (ret < 0)
6582 goto out;
6583
6584 /*
6585 * We have processed the refs and thus need to advance send_progress.
6586 * Now, calls to get_cur_xxx will take the updated refs of the current
6587 * inode into account.
6588 *
6589 * On the other hand, if our current inode is a directory and couldn't
6590 * be moved/renamed because its parent was renamed/moved too and it has
6591 * a higher inode number, we can only move/rename our current inode
6592 * after we moved/renamed its parent. Therefore in this case operate on
6593 * the old path (pre move/rename) of our current inode, and the
6594 * move/rename will be performed later.
6595 */
6596 if (refs_processed && !pending_move)
6597 sctx->send_progress = sctx->cur_ino + 1;
6598
6599 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
6600 goto out;
6601 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
6602 goto out;
6603 ret = get_inode_info(sctx->send_root, sctx->cur_ino, &info);
6604 if (ret < 0)
6605 goto out;
6606 left_mode = info.mode;
6607 left_uid = info.uid;
6608 left_gid = info.gid;
6609 left_fileattr = info.fileattr;
6610
6611 if (!sctx->parent_root || sctx->cur_inode_new) {
6612 need_chown = 1;
6613 if (!S_ISLNK(sctx->cur_inode_mode))
6614 need_chmod = 1;
6615 if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size)
6616 need_truncate = 0;
6617 } else {
6618 u64 old_size;
6619
6620 ret = get_inode_info(sctx->parent_root, sctx->cur_ino, &info);
6621 if (ret < 0)
6622 goto out;
6623 old_size = info.size;
6624 right_mode = info.mode;
6625 right_uid = info.uid;
6626 right_gid = info.gid;
6627 right_fileattr = info.fileattr;
6628
6629 if (left_uid != right_uid || left_gid != right_gid)
6630 need_chown = 1;
6631 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
6632 need_chmod = 1;
6633 if (!S_ISLNK(sctx->cur_inode_mode) && left_fileattr != right_fileattr)
6634 need_fileattr = true;
6635 if ((old_size == sctx->cur_inode_size) ||
6636 (sctx->cur_inode_size > old_size &&
6637 sctx->cur_inode_next_write_offset == sctx->cur_inode_size))
6638 need_truncate = 0;
6639 }
6640
6641 if (S_ISREG(sctx->cur_inode_mode)) {
6642 if (need_send_hole(sctx)) {
6643 if (sctx->cur_inode_last_extent == (u64)-1 ||
6644 sctx->cur_inode_last_extent <
6645 sctx->cur_inode_size) {
6646 ret = get_last_extent(sctx, (u64)-1);
6647 if (ret)
6648 goto out;
6649 }
6650 if (sctx->cur_inode_last_extent < sctx->cur_inode_size) {
6651 ret = range_is_hole_in_parent(sctx,
6652 sctx->cur_inode_last_extent,
6653 sctx->cur_inode_size);
6654 if (ret < 0) {
6655 goto out;
6656 } else if (ret == 0) {
6657 ret = send_hole(sctx, sctx->cur_inode_size);
6658 if (ret < 0)
6659 goto out;
6660 } else {
6661 /* Range is already a hole, skip. */
6662 ret = 0;
6663 }
6664 }
6665 }
6666 if (need_truncate) {
6667 ret = send_truncate(sctx, sctx->cur_ino,
6668 sctx->cur_inode_gen,
6669 sctx->cur_inode_size);
6670 if (ret < 0)
6671 goto out;
6672 }
6673 }
6674
6675 if (need_chown) {
6676 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6677 left_uid, left_gid);
6678 if (ret < 0)
6679 goto out;
6680 }
6681 if (need_chmod) {
6682 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6683 left_mode);
6684 if (ret < 0)
6685 goto out;
6686 }
6687 if (need_fileattr) {
6688 ret = send_fileattr(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6689 left_fileattr);
6690 if (ret < 0)
6691 goto out;
6692 }
6693
6694 if (proto_cmd_ok(sctx, BTRFS_SEND_C_ENABLE_VERITY)
6695 && sctx->cur_inode_needs_verity) {
6696 ret = process_verity(sctx);
6697 if (ret < 0)
6698 goto out;
6699 }
6700
6701 ret = send_capabilities(sctx);
6702 if (ret < 0)
6703 goto out;
6704
6705 /*
6706 * If other directory inodes depended on our current directory
6707 * inode's move/rename, now do their move/rename operations.
6708 */
6709 if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
6710 ret = apply_children_dir_moves(sctx);
6711 if (ret)
6712 goto out;
6713 /*
6714 * Need to send that every time, no matter if it actually
6715 * changed between the two trees as we have done changes to
6716 * the inode before. If our inode is a directory and it's
6717 * waiting to be moved/renamed, we will send its utimes when
6718 * it's moved/renamed, therefore we don't need to do it here.
6719 */
6720 sctx->send_progress = sctx->cur_ino + 1;
6721
6722 /*
6723 * If the current inode is a non-empty directory, delay issuing
6724 * the utimes command for it, as it's very likely we have inodes
6725 * with an higher number inside it. We want to issue the utimes
6726 * command only after adding all dentries to it.
6727 */
6728 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_size > 0)
6729 ret = cache_dir_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6730 else
6731 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6732
6733 if (ret < 0)
6734 goto out;
6735 }
6736
6737 out:
6738 if (!ret)
6739 ret = trim_dir_utimes_cache(sctx);
6740
6741 return ret;
6742 }
6743
close_current_inode(struct send_ctx * sctx)6744 static void close_current_inode(struct send_ctx *sctx)
6745 {
6746 u64 i_size;
6747
6748 if (sctx->cur_inode == NULL)
6749 return;
6750
6751 i_size = i_size_read(sctx->cur_inode);
6752
6753 /*
6754 * If we are doing an incremental send, we may have extents between the
6755 * last processed extent and the i_size that have not been processed
6756 * because they haven't changed but we may have read some of their pages
6757 * through readahead, see the comments at send_extent_data().
6758 */
6759 if (sctx->clean_page_cache && sctx->page_cache_clear_start < i_size)
6760 truncate_inode_pages_range(&sctx->cur_inode->i_data,
6761 sctx->page_cache_clear_start,
6762 round_up(i_size, PAGE_SIZE) - 1);
6763
6764 iput(sctx->cur_inode);
6765 sctx->cur_inode = NULL;
6766 }
6767
changed_inode(struct send_ctx * sctx,enum btrfs_compare_tree_result result)6768 static int changed_inode(struct send_ctx *sctx,
6769 enum btrfs_compare_tree_result result)
6770 {
6771 int ret = 0;
6772 struct btrfs_key *key = sctx->cmp_key;
6773 struct btrfs_inode_item *left_ii = NULL;
6774 struct btrfs_inode_item *right_ii = NULL;
6775 u64 left_gen = 0;
6776 u64 right_gen = 0;
6777
6778 close_current_inode(sctx);
6779
6780 sctx->cur_ino = key->objectid;
6781 sctx->cur_inode_new_gen = false;
6782 sctx->cur_inode_last_extent = (u64)-1;
6783 sctx->cur_inode_next_write_offset = 0;
6784 sctx->ignore_cur_inode = false;
6785 fs_path_reset(&sctx->cur_inode_path);
6786
6787 /*
6788 * Set send_progress to current inode. This will tell all get_cur_xxx
6789 * functions that the current inode's refs are not updated yet. Later,
6790 * when process_recorded_refs is finished, it is set to cur_ino + 1.
6791 */
6792 sctx->send_progress = sctx->cur_ino;
6793
6794 if (result == BTRFS_COMPARE_TREE_NEW ||
6795 result == BTRFS_COMPARE_TREE_CHANGED) {
6796 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
6797 sctx->left_path->slots[0],
6798 struct btrfs_inode_item);
6799 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
6800 left_ii);
6801 } else {
6802 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6803 sctx->right_path->slots[0],
6804 struct btrfs_inode_item);
6805 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6806 right_ii);
6807 }
6808 if (result == BTRFS_COMPARE_TREE_CHANGED) {
6809 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6810 sctx->right_path->slots[0],
6811 struct btrfs_inode_item);
6812
6813 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6814 right_ii);
6815
6816 /*
6817 * The cur_ino = root dir case is special here. We can't treat
6818 * the inode as deleted+reused because it would generate a
6819 * stream that tries to delete/mkdir the root dir.
6820 */
6821 if (left_gen != right_gen &&
6822 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6823 sctx->cur_inode_new_gen = true;
6824 }
6825
6826 /*
6827 * Normally we do not find inodes with a link count of zero (orphans)
6828 * because the most common case is to create a snapshot and use it
6829 * for a send operation. However other less common use cases involve
6830 * using a subvolume and send it after turning it to RO mode just
6831 * after deleting all hard links of a file while holding an open
6832 * file descriptor against it or turning a RO snapshot into RW mode,
6833 * keep an open file descriptor against a file, delete it and then
6834 * turn the snapshot back to RO mode before using it for a send
6835 * operation. The former is what the receiver operation does.
6836 * Therefore, if we want to send these snapshots soon after they're
6837 * received, we need to handle orphan inodes as well. Moreover, orphans
6838 * can appear not only in the send snapshot but also in the parent
6839 * snapshot. Here are several cases:
6840 *
6841 * Case 1: BTRFS_COMPARE_TREE_NEW
6842 * | send snapshot | action
6843 * --------------------------------
6844 * nlink | 0 | ignore
6845 *
6846 * Case 2: BTRFS_COMPARE_TREE_DELETED
6847 * | parent snapshot | action
6848 * ----------------------------------
6849 * nlink | 0 | as usual
6850 * Note: No unlinks will be sent because there're no paths for it.
6851 *
6852 * Case 3: BTRFS_COMPARE_TREE_CHANGED
6853 * | | parent snapshot | send snapshot | action
6854 * -----------------------------------------------------------------------
6855 * subcase 1 | nlink | 0 | 0 | ignore
6856 * subcase 2 | nlink | >0 | 0 | new_gen(deletion)
6857 * subcase 3 | nlink | 0 | >0 | new_gen(creation)
6858 *
6859 */
6860 if (result == BTRFS_COMPARE_TREE_NEW) {
6861 if (btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii) == 0) {
6862 sctx->ignore_cur_inode = true;
6863 goto out;
6864 }
6865 sctx->cur_inode_gen = left_gen;
6866 sctx->cur_inode_new = true;
6867 sctx->cur_inode_deleted = false;
6868 sctx->cur_inode_size = btrfs_inode_size(
6869 sctx->left_path->nodes[0], left_ii);
6870 sctx->cur_inode_mode = btrfs_inode_mode(
6871 sctx->left_path->nodes[0], left_ii);
6872 sctx->cur_inode_rdev = btrfs_inode_rdev(
6873 sctx->left_path->nodes[0], left_ii);
6874 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6875 ret = send_create_inode_if_needed(sctx);
6876 } else if (result == BTRFS_COMPARE_TREE_DELETED) {
6877 sctx->cur_inode_gen = right_gen;
6878 sctx->cur_inode_new = false;
6879 sctx->cur_inode_deleted = true;
6880 sctx->cur_inode_size = btrfs_inode_size(
6881 sctx->right_path->nodes[0], right_ii);
6882 sctx->cur_inode_mode = btrfs_inode_mode(
6883 sctx->right_path->nodes[0], right_ii);
6884 } else if (result == BTRFS_COMPARE_TREE_CHANGED) {
6885 u32 new_nlinks, old_nlinks;
6886
6887 new_nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii);
6888 old_nlinks = btrfs_inode_nlink(sctx->right_path->nodes[0], right_ii);
6889 if (new_nlinks == 0 && old_nlinks == 0) {
6890 sctx->ignore_cur_inode = true;
6891 goto out;
6892 } else if (new_nlinks == 0 || old_nlinks == 0) {
6893 sctx->cur_inode_new_gen = 1;
6894 }
6895 /*
6896 * We need to do some special handling in case the inode was
6897 * reported as changed with a changed generation number. This
6898 * means that the original inode was deleted and new inode
6899 * reused the same inum. So we have to treat the old inode as
6900 * deleted and the new one as new.
6901 */
6902 if (sctx->cur_inode_new_gen) {
6903 /*
6904 * First, process the inode as if it was deleted.
6905 */
6906 if (old_nlinks > 0) {
6907 sctx->cur_inode_gen = right_gen;
6908 sctx->cur_inode_new = false;
6909 sctx->cur_inode_deleted = true;
6910 sctx->cur_inode_size = btrfs_inode_size(
6911 sctx->right_path->nodes[0], right_ii);
6912 sctx->cur_inode_mode = btrfs_inode_mode(
6913 sctx->right_path->nodes[0], right_ii);
6914 ret = process_all_refs(sctx,
6915 BTRFS_COMPARE_TREE_DELETED);
6916 if (ret < 0)
6917 goto out;
6918 }
6919
6920 /*
6921 * Now process the inode as if it was new.
6922 */
6923 if (new_nlinks > 0) {
6924 sctx->cur_inode_gen = left_gen;
6925 sctx->cur_inode_new = true;
6926 sctx->cur_inode_deleted = false;
6927 sctx->cur_inode_size = btrfs_inode_size(
6928 sctx->left_path->nodes[0],
6929 left_ii);
6930 sctx->cur_inode_mode = btrfs_inode_mode(
6931 sctx->left_path->nodes[0],
6932 left_ii);
6933 sctx->cur_inode_rdev = btrfs_inode_rdev(
6934 sctx->left_path->nodes[0],
6935 left_ii);
6936 ret = send_create_inode_if_needed(sctx);
6937 if (ret < 0)
6938 goto out;
6939
6940 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
6941 if (ret < 0)
6942 goto out;
6943 /*
6944 * Advance send_progress now as we did not get
6945 * into process_recorded_refs_if_needed in the
6946 * new_gen case.
6947 */
6948 sctx->send_progress = sctx->cur_ino + 1;
6949
6950 /*
6951 * Now process all extents and xattrs of the
6952 * inode as if they were all new.
6953 */
6954 ret = process_all_extents(sctx);
6955 if (ret < 0)
6956 goto out;
6957 ret = process_all_new_xattrs(sctx);
6958 if (ret < 0)
6959 goto out;
6960 }
6961 } else {
6962 sctx->cur_inode_gen = left_gen;
6963 sctx->cur_inode_new = false;
6964 sctx->cur_inode_new_gen = false;
6965 sctx->cur_inode_deleted = false;
6966 sctx->cur_inode_size = btrfs_inode_size(
6967 sctx->left_path->nodes[0], left_ii);
6968 sctx->cur_inode_mode = btrfs_inode_mode(
6969 sctx->left_path->nodes[0], left_ii);
6970 }
6971 }
6972
6973 out:
6974 return ret;
6975 }
6976
6977 /*
6978 * We have to process new refs before deleted refs, but compare_trees gives us
6979 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
6980 * first and later process them in process_recorded_refs.
6981 * For the cur_inode_new_gen case, we skip recording completely because
6982 * changed_inode did already initiate processing of refs. The reason for this is
6983 * that in this case, compare_tree actually compares the refs of 2 different
6984 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
6985 * refs of the right tree as deleted and all refs of the left tree as new.
6986 */
changed_ref(struct send_ctx * sctx,enum btrfs_compare_tree_result result)6987 static int changed_ref(struct send_ctx *sctx,
6988 enum btrfs_compare_tree_result result)
6989 {
6990 int ret = 0;
6991
6992 if (unlikely(sctx->cur_ino != sctx->cmp_key->objectid)) {
6993 inconsistent_snapshot_error(sctx, result, "reference");
6994 return -EIO;
6995 }
6996
6997 if (!sctx->cur_inode_new_gen &&
6998 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
6999 if (result == BTRFS_COMPARE_TREE_NEW)
7000 ret = record_new_ref(sctx);
7001 else if (result == BTRFS_COMPARE_TREE_DELETED)
7002 ret = record_deleted_ref(sctx);
7003 else if (result == BTRFS_COMPARE_TREE_CHANGED)
7004 ret = record_changed_ref(sctx);
7005 }
7006
7007 return ret;
7008 }
7009
7010 /*
7011 * Process new/deleted/changed xattrs. We skip processing in the
7012 * cur_inode_new_gen case because changed_inode did already initiate processing
7013 * of xattrs. The reason is the same as in changed_ref
7014 */
changed_xattr(struct send_ctx * sctx,enum btrfs_compare_tree_result result)7015 static int changed_xattr(struct send_ctx *sctx,
7016 enum btrfs_compare_tree_result result)
7017 {
7018 int ret = 0;
7019
7020 if (unlikely(sctx->cur_ino != sctx->cmp_key->objectid)) {
7021 inconsistent_snapshot_error(sctx, result, "xattr");
7022 return -EIO;
7023 }
7024
7025 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7026 if (result == BTRFS_COMPARE_TREE_NEW)
7027 ret = process_new_xattr(sctx);
7028 else if (result == BTRFS_COMPARE_TREE_DELETED)
7029 ret = process_deleted_xattr(sctx);
7030 else if (result == BTRFS_COMPARE_TREE_CHANGED)
7031 ret = process_changed_xattr(sctx);
7032 }
7033
7034 return ret;
7035 }
7036
7037 /*
7038 * Process new/deleted/changed extents. We skip processing in the
7039 * cur_inode_new_gen case because changed_inode did already initiate processing
7040 * of extents. The reason is the same as in changed_ref
7041 */
changed_extent(struct send_ctx * sctx,enum btrfs_compare_tree_result result)7042 static int changed_extent(struct send_ctx *sctx,
7043 enum btrfs_compare_tree_result result)
7044 {
7045 int ret = 0;
7046
7047 /*
7048 * We have found an extent item that changed without the inode item
7049 * having changed. This can happen either after relocation (where the
7050 * disk_bytenr of an extent item is replaced at
7051 * relocation.c:replace_file_extents()) or after deduplication into a
7052 * file in both the parent and send snapshots (where an extent item can
7053 * get modified or replaced with a new one). Note that deduplication
7054 * updates the inode item, but it only changes the iversion (sequence
7055 * field in the inode item) of the inode, so if a file is deduplicated
7056 * the same amount of times in both the parent and send snapshots, its
7057 * iversion becomes the same in both snapshots, whence the inode item is
7058 * the same on both snapshots.
7059 */
7060 if (sctx->cur_ino != sctx->cmp_key->objectid)
7061 return 0;
7062
7063 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7064 if (result != BTRFS_COMPARE_TREE_DELETED)
7065 ret = process_extent(sctx, sctx->left_path,
7066 sctx->cmp_key);
7067 }
7068
7069 return ret;
7070 }
7071
changed_verity(struct send_ctx * sctx,enum btrfs_compare_tree_result result)7072 static int changed_verity(struct send_ctx *sctx, enum btrfs_compare_tree_result result)
7073 {
7074 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7075 if (result == BTRFS_COMPARE_TREE_NEW)
7076 sctx->cur_inode_needs_verity = true;
7077 }
7078 return 0;
7079 }
7080
dir_changed(struct send_ctx * sctx,u64 dir)7081 static int dir_changed(struct send_ctx *sctx, u64 dir)
7082 {
7083 u64 orig_gen, new_gen;
7084 int ret;
7085
7086 ret = get_inode_gen(sctx->send_root, dir, &new_gen);
7087 if (ret)
7088 return ret;
7089
7090 ret = get_inode_gen(sctx->parent_root, dir, &orig_gen);
7091 if (ret)
7092 return ret;
7093
7094 return (orig_gen != new_gen) ? 1 : 0;
7095 }
7096
compare_refs(struct send_ctx * sctx,struct btrfs_path * path,struct btrfs_key * key)7097 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
7098 struct btrfs_key *key)
7099 {
7100 struct btrfs_inode_extref *extref;
7101 struct extent_buffer *leaf;
7102 u64 dirid = 0, last_dirid = 0;
7103 unsigned long ptr;
7104 u32 item_size;
7105 u32 cur_offset = 0;
7106 int ref_name_len;
7107 int ret = 0;
7108
7109 /* Easy case, just check this one dirid */
7110 if (key->type == BTRFS_INODE_REF_KEY) {
7111 dirid = key->offset;
7112
7113 ret = dir_changed(sctx, dirid);
7114 goto out;
7115 }
7116
7117 leaf = path->nodes[0];
7118 item_size = btrfs_item_size(leaf, path->slots[0]);
7119 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
7120 while (cur_offset < item_size) {
7121 extref = (struct btrfs_inode_extref *)(ptr +
7122 cur_offset);
7123 dirid = btrfs_inode_extref_parent(leaf, extref);
7124 ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
7125 cur_offset += ref_name_len + sizeof(*extref);
7126 if (dirid == last_dirid)
7127 continue;
7128 ret = dir_changed(sctx, dirid);
7129 if (ret)
7130 break;
7131 last_dirid = dirid;
7132 }
7133 out:
7134 return ret;
7135 }
7136
7137 /*
7138 * Updates compare related fields in sctx and simply forwards to the actual
7139 * changed_xxx functions.
7140 */
changed_cb(struct btrfs_path * left_path,struct btrfs_path * right_path,struct btrfs_key * key,enum btrfs_compare_tree_result result,struct send_ctx * sctx)7141 static int changed_cb(struct btrfs_path *left_path,
7142 struct btrfs_path *right_path,
7143 struct btrfs_key *key,
7144 enum btrfs_compare_tree_result result,
7145 struct send_ctx *sctx)
7146 {
7147 int ret;
7148
7149 /*
7150 * We can not hold the commit root semaphore here. This is because in
7151 * the case of sending and receiving to the same filesystem, using a
7152 * pipe, could result in a deadlock:
7153 *
7154 * 1) The task running send blocks on the pipe because it's full;
7155 *
7156 * 2) The task running receive, which is the only consumer of the pipe,
7157 * is waiting for a transaction commit (for example due to a space
7158 * reservation when doing a write or triggering a transaction commit
7159 * when creating a subvolume);
7160 *
7161 * 3) The transaction is waiting to write lock the commit root semaphore,
7162 * but can not acquire it since it's being held at 1).
7163 *
7164 * Down this call chain we write to the pipe through kernel_write().
7165 * The same type of problem can also happen when sending to a file that
7166 * is stored in the same filesystem - when reserving space for a write
7167 * into the file, we can trigger a transaction commit.
7168 *
7169 * Our caller has supplied us with clones of leaves from the send and
7170 * parent roots, so we're safe here from a concurrent relocation and
7171 * further reallocation of metadata extents while we are here. Below we
7172 * also assert that the leaves are clones.
7173 */
7174 lockdep_assert_not_held(&sctx->send_root->fs_info->commit_root_sem);
7175
7176 /*
7177 * We always have a send root, so left_path is never NULL. We will not
7178 * have a leaf when we have reached the end of the send root but have
7179 * not yet reached the end of the parent root.
7180 */
7181 if (left_path->nodes[0])
7182 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED,
7183 &left_path->nodes[0]->bflags));
7184 /*
7185 * When doing a full send we don't have a parent root, so right_path is
7186 * NULL. When doing an incremental send, we may have reached the end of
7187 * the parent root already, so we don't have a leaf at right_path.
7188 */
7189 if (right_path && right_path->nodes[0])
7190 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED,
7191 &right_path->nodes[0]->bflags));
7192
7193 if (result == BTRFS_COMPARE_TREE_SAME) {
7194 if (key->type == BTRFS_INODE_REF_KEY ||
7195 key->type == BTRFS_INODE_EXTREF_KEY) {
7196 ret = compare_refs(sctx, left_path, key);
7197 if (!ret)
7198 return 0;
7199 if (ret < 0)
7200 return ret;
7201 } else if (key->type == BTRFS_EXTENT_DATA_KEY) {
7202 return maybe_send_hole(sctx, left_path, key);
7203 } else {
7204 return 0;
7205 }
7206 result = BTRFS_COMPARE_TREE_CHANGED;
7207 }
7208
7209 sctx->left_path = left_path;
7210 sctx->right_path = right_path;
7211 sctx->cmp_key = key;
7212
7213 ret = finish_inode_if_needed(sctx, 0);
7214 if (ret < 0)
7215 goto out;
7216
7217 /* Ignore non-FS objects */
7218 if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
7219 key->objectid == BTRFS_FREE_SPACE_OBJECTID)
7220 goto out;
7221
7222 if (key->type == BTRFS_INODE_ITEM_KEY) {
7223 ret = changed_inode(sctx, result);
7224 } else if (!sctx->ignore_cur_inode) {
7225 if (key->type == BTRFS_INODE_REF_KEY ||
7226 key->type == BTRFS_INODE_EXTREF_KEY)
7227 ret = changed_ref(sctx, result);
7228 else if (key->type == BTRFS_XATTR_ITEM_KEY)
7229 ret = changed_xattr(sctx, result);
7230 else if (key->type == BTRFS_EXTENT_DATA_KEY)
7231 ret = changed_extent(sctx, result);
7232 else if (key->type == BTRFS_VERITY_DESC_ITEM_KEY &&
7233 key->offset == 0)
7234 ret = changed_verity(sctx, result);
7235 }
7236
7237 out:
7238 return ret;
7239 }
7240
search_key_again(const struct send_ctx * sctx,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_key * key)7241 static int search_key_again(const struct send_ctx *sctx,
7242 struct btrfs_root *root,
7243 struct btrfs_path *path,
7244 const struct btrfs_key *key)
7245 {
7246 int ret;
7247
7248 if (!path->need_commit_sem)
7249 lockdep_assert_held_read(&root->fs_info->commit_root_sem);
7250
7251 /*
7252 * Roots used for send operations are readonly and no one can add,
7253 * update or remove keys from them, so we should be able to find our
7254 * key again. The only exception is deduplication, which can operate on
7255 * readonly roots and add, update or remove keys to/from them - but at
7256 * the moment we don't allow it to run in parallel with send.
7257 */
7258 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7259 ASSERT(ret <= 0);
7260 if (unlikely(ret > 0)) {
7261 btrfs_print_tree(path->nodes[path->lowest_level], false);
7262 btrfs_err(root->fs_info,
7263 "send: key " BTRFS_KEY_FMT" not found in %s root %llu, lowest_level %d, slot %d",
7264 BTRFS_KEY_FMT_VALUE(key),
7265 (root == sctx->parent_root ? "parent" : "send"),
7266 btrfs_root_id(root), path->lowest_level,
7267 path->slots[path->lowest_level]);
7268 return -EUCLEAN;
7269 }
7270
7271 return ret;
7272 }
7273
full_send_tree(struct send_ctx * sctx)7274 static int full_send_tree(struct send_ctx *sctx)
7275 {
7276 int ret;
7277 struct btrfs_root *send_root = sctx->send_root;
7278 struct btrfs_key key;
7279 struct btrfs_fs_info *fs_info = send_root->fs_info;
7280 BTRFS_PATH_AUTO_FREE(path);
7281
7282 path = alloc_path_for_send();
7283 if (!path)
7284 return -ENOMEM;
7285 path->reada = READA_FORWARD_ALWAYS;
7286
7287 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
7288 key.type = BTRFS_INODE_ITEM_KEY;
7289 key.offset = 0;
7290
7291 down_read(&fs_info->commit_root_sem);
7292 sctx->last_reloc_trans = fs_info->last_reloc_trans;
7293 up_read(&fs_info->commit_root_sem);
7294
7295 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
7296 if (ret < 0)
7297 return ret;
7298 if (ret)
7299 goto out_finish;
7300
7301 while (1) {
7302 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
7303
7304 ret = changed_cb(path, NULL, &key,
7305 BTRFS_COMPARE_TREE_NEW, sctx);
7306 if (ret < 0)
7307 return ret;
7308
7309 down_read(&fs_info->commit_root_sem);
7310 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
7311 sctx->last_reloc_trans = fs_info->last_reloc_trans;
7312 up_read(&fs_info->commit_root_sem);
7313 /*
7314 * A transaction used for relocating a block group was
7315 * committed or is about to finish its commit. Release
7316 * our path (leaf) and restart the search, so that we
7317 * avoid operating on any file extent items that are
7318 * stale, with a disk_bytenr that reflects a pre
7319 * relocation value. This way we avoid as much as
7320 * possible to fallback to regular writes when checking
7321 * if we can clone file ranges.
7322 */
7323 btrfs_release_path(path);
7324 ret = search_key_again(sctx, send_root, path, &key);
7325 if (ret < 0)
7326 return ret;
7327 } else {
7328 up_read(&fs_info->commit_root_sem);
7329 }
7330
7331 ret = btrfs_next_item(send_root, path);
7332 if (ret < 0)
7333 return ret;
7334 if (ret) {
7335 ret = 0;
7336 break;
7337 }
7338 }
7339
7340 out_finish:
7341 return finish_inode_if_needed(sctx, 1);
7342 }
7343
replace_node_with_clone(struct btrfs_path * path,int level)7344 static int replace_node_with_clone(struct btrfs_path *path, int level)
7345 {
7346 struct extent_buffer *clone;
7347
7348 clone = btrfs_clone_extent_buffer(path->nodes[level]);
7349 if (!clone)
7350 return -ENOMEM;
7351
7352 free_extent_buffer(path->nodes[level]);
7353 path->nodes[level] = clone;
7354
7355 return 0;
7356 }
7357
tree_move_down(struct btrfs_path * path,int * level,u64 reada_min_gen)7358 static int tree_move_down(struct btrfs_path *path, int *level, u64 reada_min_gen)
7359 {
7360 struct extent_buffer *eb;
7361 struct extent_buffer *parent = path->nodes[*level];
7362 int slot = path->slots[*level];
7363 const int nritems = btrfs_header_nritems(parent);
7364 u64 reada_max;
7365 u64 reada_done = 0;
7366
7367 lockdep_assert_held_read(&parent->fs_info->commit_root_sem);
7368 ASSERT(*level != 0);
7369
7370 eb = btrfs_read_node_slot(parent, slot);
7371 if (IS_ERR(eb))
7372 return PTR_ERR(eb);
7373
7374 /*
7375 * Trigger readahead for the next leaves we will process, so that it is
7376 * very likely that when we need them they are already in memory and we
7377 * will not block on disk IO. For nodes we only do readahead for one,
7378 * since the time window between processing nodes is typically larger.
7379 */
7380 reada_max = (*level == 1 ? SZ_128K : eb->fs_info->nodesize);
7381
7382 for (slot++; slot < nritems && reada_done < reada_max; slot++) {
7383 if (btrfs_node_ptr_generation(parent, slot) > reada_min_gen) {
7384 btrfs_readahead_node_child(parent, slot);
7385 reada_done += eb->fs_info->nodesize;
7386 }
7387 }
7388
7389 path->nodes[*level - 1] = eb;
7390 path->slots[*level - 1] = 0;
7391 (*level)--;
7392
7393 if (*level == 0)
7394 return replace_node_with_clone(path, 0);
7395
7396 return 0;
7397 }
7398
tree_move_next_or_upnext(struct btrfs_path * path,int * level,int root_level)7399 static int tree_move_next_or_upnext(struct btrfs_path *path,
7400 int *level, int root_level)
7401 {
7402 int ret = 0;
7403 int nritems;
7404 nritems = btrfs_header_nritems(path->nodes[*level]);
7405
7406 path->slots[*level]++;
7407
7408 while (path->slots[*level] >= nritems) {
7409 if (*level == root_level) {
7410 path->slots[*level] = nritems - 1;
7411 return -1;
7412 }
7413
7414 /* move upnext */
7415 path->slots[*level] = 0;
7416 free_extent_buffer(path->nodes[*level]);
7417 path->nodes[*level] = NULL;
7418 (*level)++;
7419 path->slots[*level]++;
7420
7421 nritems = btrfs_header_nritems(path->nodes[*level]);
7422 ret = 1;
7423 }
7424 return ret;
7425 }
7426
7427 /*
7428 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
7429 * or down.
7430 */
tree_advance(struct btrfs_path * path,int * level,int root_level,int allow_down,struct btrfs_key * key,u64 reada_min_gen)7431 static int tree_advance(struct btrfs_path *path,
7432 int *level, int root_level,
7433 int allow_down,
7434 struct btrfs_key *key,
7435 u64 reada_min_gen)
7436 {
7437 int ret;
7438
7439 if (*level == 0 || !allow_down) {
7440 ret = tree_move_next_or_upnext(path, level, root_level);
7441 } else {
7442 ret = tree_move_down(path, level, reada_min_gen);
7443 }
7444
7445 /*
7446 * Even if we have reached the end of a tree, ret is -1, update the key
7447 * anyway, so that in case we need to restart due to a block group
7448 * relocation, we can assert that the last key of the root node still
7449 * exists in the tree.
7450 */
7451 if (*level == 0)
7452 btrfs_item_key_to_cpu(path->nodes[*level], key,
7453 path->slots[*level]);
7454 else
7455 btrfs_node_key_to_cpu(path->nodes[*level], key,
7456 path->slots[*level]);
7457
7458 return ret;
7459 }
7460
tree_compare_item(struct btrfs_path * left_path,struct btrfs_path * right_path,char * tmp_buf)7461 static int tree_compare_item(struct btrfs_path *left_path,
7462 struct btrfs_path *right_path,
7463 char *tmp_buf)
7464 {
7465 int cmp;
7466 int len1, len2;
7467 unsigned long off1, off2;
7468
7469 len1 = btrfs_item_size(left_path->nodes[0], left_path->slots[0]);
7470 len2 = btrfs_item_size(right_path->nodes[0], right_path->slots[0]);
7471 if (len1 != len2)
7472 return 1;
7473
7474 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
7475 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
7476 right_path->slots[0]);
7477
7478 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
7479
7480 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
7481 if (cmp)
7482 return 1;
7483 return 0;
7484 }
7485
7486 /*
7487 * A transaction used for relocating a block group was committed or is about to
7488 * finish its commit. Release our paths and restart the search, so that we are
7489 * not using stale extent buffers:
7490 *
7491 * 1) For levels > 0, we are only holding references of extent buffers, without
7492 * any locks on them, which does not prevent them from having been relocated
7493 * and reallocated after the last time we released the commit root semaphore.
7494 * The exception are the root nodes, for which we always have a clone, see
7495 * the comment at btrfs_compare_trees();
7496 *
7497 * 2) For leaves, level 0, we are holding copies (clones) of extent buffers, so
7498 * we are safe from the concurrent relocation and reallocation. However they
7499 * can have file extent items with a pre relocation disk_bytenr value, so we
7500 * restart the start from the current commit roots and clone the new leaves so
7501 * that we get the post relocation disk_bytenr values. Not doing so, could
7502 * make us clone the wrong data in case there are new extents using the old
7503 * disk_bytenr that happen to be shared.
7504 */
restart_after_relocation(struct btrfs_path * left_path,struct btrfs_path * right_path,const struct btrfs_key * left_key,const struct btrfs_key * right_key,int left_level,int right_level,const struct send_ctx * sctx)7505 static int restart_after_relocation(struct btrfs_path *left_path,
7506 struct btrfs_path *right_path,
7507 const struct btrfs_key *left_key,
7508 const struct btrfs_key *right_key,
7509 int left_level,
7510 int right_level,
7511 const struct send_ctx *sctx)
7512 {
7513 int root_level;
7514 int ret;
7515
7516 lockdep_assert_held_read(&sctx->send_root->fs_info->commit_root_sem);
7517
7518 btrfs_release_path(left_path);
7519 btrfs_release_path(right_path);
7520
7521 /*
7522 * Since keys can not be added or removed to/from our roots because they
7523 * are readonly and we do not allow deduplication to run in parallel
7524 * (which can add, remove or change keys), the layout of the trees should
7525 * not change.
7526 */
7527 left_path->lowest_level = left_level;
7528 ret = search_key_again(sctx, sctx->send_root, left_path, left_key);
7529 if (ret < 0)
7530 return ret;
7531
7532 right_path->lowest_level = right_level;
7533 ret = search_key_again(sctx, sctx->parent_root, right_path, right_key);
7534 if (ret < 0)
7535 return ret;
7536
7537 /*
7538 * If the lowest level nodes are leaves, clone them so that they can be
7539 * safely used by changed_cb() while not under the protection of the
7540 * commit root semaphore, even if relocation and reallocation happens in
7541 * parallel.
7542 */
7543 if (left_level == 0) {
7544 ret = replace_node_with_clone(left_path, 0);
7545 if (ret < 0)
7546 return ret;
7547 }
7548
7549 if (right_level == 0) {
7550 ret = replace_node_with_clone(right_path, 0);
7551 if (ret < 0)
7552 return ret;
7553 }
7554
7555 /*
7556 * Now clone the root nodes (unless they happen to be the leaves we have
7557 * already cloned). This is to protect against concurrent snapshotting of
7558 * the send and parent roots (see the comment at btrfs_compare_trees()).
7559 */
7560 root_level = btrfs_header_level(sctx->send_root->commit_root);
7561 if (root_level > 0) {
7562 ret = replace_node_with_clone(left_path, root_level);
7563 if (ret < 0)
7564 return ret;
7565 }
7566
7567 root_level = btrfs_header_level(sctx->parent_root->commit_root);
7568 if (root_level > 0) {
7569 ret = replace_node_with_clone(right_path, root_level);
7570 if (ret < 0)
7571 return ret;
7572 }
7573
7574 return 0;
7575 }
7576
7577 /*
7578 * This function compares two trees and calls the provided callback for
7579 * every changed/new/deleted item it finds.
7580 * If shared tree blocks are encountered, whole subtrees are skipped, making
7581 * the compare pretty fast on snapshotted subvolumes.
7582 *
7583 * This currently works on commit roots only. As commit roots are read only,
7584 * we don't do any locking. The commit roots are protected with transactions.
7585 * Transactions are ended and rejoined when a commit is tried in between.
7586 *
7587 * This function checks for modifications done to the trees while comparing.
7588 * If it detects a change, it aborts immediately.
7589 */
btrfs_compare_trees(struct btrfs_root * left_root,struct btrfs_root * right_root,struct send_ctx * sctx)7590 static int btrfs_compare_trees(struct btrfs_root *left_root,
7591 struct btrfs_root *right_root, struct send_ctx *sctx)
7592 {
7593 struct btrfs_fs_info *fs_info = left_root->fs_info;
7594 int ret;
7595 int cmp;
7596 BTRFS_PATH_AUTO_FREE(left_path);
7597 BTRFS_PATH_AUTO_FREE(right_path);
7598 struct btrfs_key left_key;
7599 struct btrfs_key right_key;
7600 char *tmp_buf = NULL;
7601 int left_root_level;
7602 int right_root_level;
7603 int left_level;
7604 int right_level;
7605 int left_end_reached = 0;
7606 int right_end_reached = 0;
7607 int advance_left = 0;
7608 int advance_right = 0;
7609 u64 left_blockptr;
7610 u64 right_blockptr;
7611 u64 left_gen;
7612 u64 right_gen;
7613 u64 reada_min_gen;
7614
7615 left_path = btrfs_alloc_path();
7616 if (!left_path) {
7617 ret = -ENOMEM;
7618 goto out;
7619 }
7620 right_path = btrfs_alloc_path();
7621 if (!right_path) {
7622 ret = -ENOMEM;
7623 goto out;
7624 }
7625
7626 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
7627 if (!tmp_buf) {
7628 ret = -ENOMEM;
7629 goto out;
7630 }
7631
7632 left_path->search_commit_root = true;
7633 left_path->skip_locking = true;
7634 right_path->search_commit_root = true;
7635 right_path->skip_locking = true;
7636
7637 /*
7638 * Strategy: Go to the first items of both trees. Then do
7639 *
7640 * If both trees are at level 0
7641 * Compare keys of current items
7642 * If left < right treat left item as new, advance left tree
7643 * and repeat
7644 * If left > right treat right item as deleted, advance right tree
7645 * and repeat
7646 * If left == right do deep compare of items, treat as changed if
7647 * needed, advance both trees and repeat
7648 * If both trees are at the same level but not at level 0
7649 * Compare keys of current nodes/leafs
7650 * If left < right advance left tree and repeat
7651 * If left > right advance right tree and repeat
7652 * If left == right compare blockptrs of the next nodes/leafs
7653 * If they match advance both trees but stay at the same level
7654 * and repeat
7655 * If they don't match advance both trees while allowing to go
7656 * deeper and repeat
7657 * If tree levels are different
7658 * Advance the tree that needs it and repeat
7659 *
7660 * Advancing a tree means:
7661 * If we are at level 0, try to go to the next slot. If that's not
7662 * possible, go one level up and repeat. Stop when we found a level
7663 * where we could go to the next slot. We may at this point be on a
7664 * node or a leaf.
7665 *
7666 * If we are not at level 0 and not on shared tree blocks, go one
7667 * level deeper.
7668 *
7669 * If we are not at level 0 and on shared tree blocks, go one slot to
7670 * the right if possible or go up and right.
7671 */
7672
7673 down_read(&fs_info->commit_root_sem);
7674 left_level = btrfs_header_level(left_root->commit_root);
7675 left_root_level = left_level;
7676 /*
7677 * We clone the root node of the send and parent roots to prevent races
7678 * with snapshot creation of these roots. Snapshot creation COWs the
7679 * root node of a tree, so after the transaction is committed the old
7680 * extent can be reallocated while this send operation is still ongoing.
7681 * So we clone them, under the commit root semaphore, to be race free.
7682 */
7683 left_path->nodes[left_level] =
7684 btrfs_clone_extent_buffer(left_root->commit_root);
7685 if (!left_path->nodes[left_level]) {
7686 ret = -ENOMEM;
7687 goto out_unlock;
7688 }
7689
7690 right_level = btrfs_header_level(right_root->commit_root);
7691 right_root_level = right_level;
7692 right_path->nodes[right_level] =
7693 btrfs_clone_extent_buffer(right_root->commit_root);
7694 if (!right_path->nodes[right_level]) {
7695 ret = -ENOMEM;
7696 goto out_unlock;
7697 }
7698 /*
7699 * Our right root is the parent root, while the left root is the "send"
7700 * root. We know that all new nodes/leaves in the left root must have
7701 * a generation greater than the right root's generation, so we trigger
7702 * readahead for those nodes and leaves of the left root, as we know we
7703 * will need to read them at some point.
7704 */
7705 reada_min_gen = btrfs_header_generation(right_root->commit_root);
7706
7707 if (left_level == 0)
7708 btrfs_item_key_to_cpu(left_path->nodes[left_level],
7709 &left_key, left_path->slots[left_level]);
7710 else
7711 btrfs_node_key_to_cpu(left_path->nodes[left_level],
7712 &left_key, left_path->slots[left_level]);
7713 if (right_level == 0)
7714 btrfs_item_key_to_cpu(right_path->nodes[right_level],
7715 &right_key, right_path->slots[right_level]);
7716 else
7717 btrfs_node_key_to_cpu(right_path->nodes[right_level],
7718 &right_key, right_path->slots[right_level]);
7719
7720 sctx->last_reloc_trans = fs_info->last_reloc_trans;
7721
7722 while (1) {
7723 if (need_resched() ||
7724 rwsem_is_contended(&fs_info->commit_root_sem)) {
7725 up_read(&fs_info->commit_root_sem);
7726 cond_resched();
7727 down_read(&fs_info->commit_root_sem);
7728 }
7729
7730 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
7731 ret = restart_after_relocation(left_path, right_path,
7732 &left_key, &right_key,
7733 left_level, right_level,
7734 sctx);
7735 if (ret < 0)
7736 goto out_unlock;
7737 sctx->last_reloc_trans = fs_info->last_reloc_trans;
7738 }
7739
7740 if (advance_left && !left_end_reached) {
7741 ret = tree_advance(left_path, &left_level,
7742 left_root_level,
7743 advance_left != ADVANCE_ONLY_NEXT,
7744 &left_key, reada_min_gen);
7745 if (ret == -1)
7746 left_end_reached = ADVANCE;
7747 else if (ret < 0)
7748 goto out_unlock;
7749 advance_left = 0;
7750 }
7751 if (advance_right && !right_end_reached) {
7752 ret = tree_advance(right_path, &right_level,
7753 right_root_level,
7754 advance_right != ADVANCE_ONLY_NEXT,
7755 &right_key, reada_min_gen);
7756 if (ret == -1)
7757 right_end_reached = ADVANCE;
7758 else if (ret < 0)
7759 goto out_unlock;
7760 advance_right = 0;
7761 }
7762
7763 if (left_end_reached && right_end_reached) {
7764 ret = 0;
7765 goto out_unlock;
7766 } else if (left_end_reached) {
7767 if (right_level == 0) {
7768 up_read(&fs_info->commit_root_sem);
7769 ret = changed_cb(left_path, right_path,
7770 &right_key,
7771 BTRFS_COMPARE_TREE_DELETED,
7772 sctx);
7773 if (ret < 0)
7774 goto out;
7775 down_read(&fs_info->commit_root_sem);
7776 }
7777 advance_right = ADVANCE;
7778 continue;
7779 } else if (right_end_reached) {
7780 if (left_level == 0) {
7781 up_read(&fs_info->commit_root_sem);
7782 ret = changed_cb(left_path, right_path,
7783 &left_key,
7784 BTRFS_COMPARE_TREE_NEW,
7785 sctx);
7786 if (ret < 0)
7787 goto out;
7788 down_read(&fs_info->commit_root_sem);
7789 }
7790 advance_left = ADVANCE;
7791 continue;
7792 }
7793
7794 if (left_level == 0 && right_level == 0) {
7795 up_read(&fs_info->commit_root_sem);
7796 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7797 if (cmp < 0) {
7798 ret = changed_cb(left_path, right_path,
7799 &left_key,
7800 BTRFS_COMPARE_TREE_NEW,
7801 sctx);
7802 advance_left = ADVANCE;
7803 } else if (cmp > 0) {
7804 ret = changed_cb(left_path, right_path,
7805 &right_key,
7806 BTRFS_COMPARE_TREE_DELETED,
7807 sctx);
7808 advance_right = ADVANCE;
7809 } else {
7810 enum btrfs_compare_tree_result result;
7811
7812 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
7813 ret = tree_compare_item(left_path, right_path,
7814 tmp_buf);
7815 if (ret)
7816 result = BTRFS_COMPARE_TREE_CHANGED;
7817 else
7818 result = BTRFS_COMPARE_TREE_SAME;
7819 ret = changed_cb(left_path, right_path,
7820 &left_key, result, sctx);
7821 advance_left = ADVANCE;
7822 advance_right = ADVANCE;
7823 }
7824
7825 if (ret < 0)
7826 goto out;
7827 down_read(&fs_info->commit_root_sem);
7828 } else if (left_level == right_level) {
7829 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7830 if (cmp < 0) {
7831 advance_left = ADVANCE;
7832 } else if (cmp > 0) {
7833 advance_right = ADVANCE;
7834 } else {
7835 left_blockptr = btrfs_node_blockptr(
7836 left_path->nodes[left_level],
7837 left_path->slots[left_level]);
7838 right_blockptr = btrfs_node_blockptr(
7839 right_path->nodes[right_level],
7840 right_path->slots[right_level]);
7841 left_gen = btrfs_node_ptr_generation(
7842 left_path->nodes[left_level],
7843 left_path->slots[left_level]);
7844 right_gen = btrfs_node_ptr_generation(
7845 right_path->nodes[right_level],
7846 right_path->slots[right_level]);
7847 if (left_blockptr == right_blockptr &&
7848 left_gen == right_gen) {
7849 /*
7850 * As we're on a shared block, don't
7851 * allow to go deeper.
7852 */
7853 advance_left = ADVANCE_ONLY_NEXT;
7854 advance_right = ADVANCE_ONLY_NEXT;
7855 } else {
7856 advance_left = ADVANCE;
7857 advance_right = ADVANCE;
7858 }
7859 }
7860 } else if (left_level < right_level) {
7861 advance_right = ADVANCE;
7862 } else {
7863 advance_left = ADVANCE;
7864 }
7865 }
7866
7867 out_unlock:
7868 up_read(&fs_info->commit_root_sem);
7869 out:
7870 kvfree(tmp_buf);
7871 return ret;
7872 }
7873
send_subvol(struct send_ctx * sctx)7874 static int send_subvol(struct send_ctx *sctx)
7875 {
7876 int ret;
7877
7878 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
7879 ret = send_header(sctx);
7880 if (ret < 0)
7881 goto out;
7882 }
7883
7884 ret = send_subvol_begin(sctx);
7885 if (ret < 0)
7886 goto out;
7887
7888 if (sctx->parent_root) {
7889 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, sctx);
7890 if (ret < 0)
7891 goto out;
7892 ret = finish_inode_if_needed(sctx, 1);
7893 if (ret < 0)
7894 goto out;
7895 } else {
7896 ret = full_send_tree(sctx);
7897 if (ret < 0)
7898 goto out;
7899 }
7900
7901 out:
7902 free_recorded_refs(sctx);
7903 return ret;
7904 }
7905
7906 /*
7907 * If orphan cleanup did remove any orphans from a root, it means the tree
7908 * was modified and therefore the commit root is not the same as the current
7909 * root anymore. This is a problem, because send uses the commit root and
7910 * therefore can see inode items that don't exist in the current root anymore,
7911 * and for example make calls to btrfs_iget, which will do tree lookups based
7912 * on the current root and not on the commit root. Those lookups will fail,
7913 * returning a -ESTALE error, and making send fail with that error. So make
7914 * sure a send does not see any orphans we have just removed, and that it will
7915 * see the same inodes regardless of whether a transaction commit happened
7916 * before it started (meaning that the commit root will be the same as the
7917 * current root) or not.
7918 */
ensure_commit_roots_uptodate(struct send_ctx * sctx)7919 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
7920 {
7921 struct btrfs_root *root = sctx->parent_root;
7922
7923 if (root && root->node != root->commit_root)
7924 return btrfs_commit_current_transaction(root);
7925
7926 for (int i = 0; i < sctx->clone_roots_cnt; i++) {
7927 root = sctx->clone_roots[i].root;
7928 if (root->node != root->commit_root)
7929 return btrfs_commit_current_transaction(root);
7930 }
7931
7932 return 0;
7933 }
7934
7935 /*
7936 * Make sure any existing delalloc is flushed for any root used by a send
7937 * operation so that we do not miss any data and we do not race with writeback
7938 * finishing and changing a tree while send is using the tree. This could
7939 * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and
7940 * a send operation then uses the subvolume.
7941 * After flushing delalloc ensure_commit_roots_uptodate() must be called.
7942 */
flush_delalloc_roots(struct send_ctx * sctx)7943 static int flush_delalloc_roots(struct send_ctx *sctx)
7944 {
7945 struct btrfs_root *root = sctx->parent_root;
7946 int ret;
7947 int i;
7948
7949 if (root) {
7950 ret = btrfs_start_delalloc_snapshot(root, false);
7951 if (ret)
7952 return ret;
7953 btrfs_wait_ordered_extents(root, U64_MAX, NULL);
7954 }
7955
7956 for (i = 0; i < sctx->clone_roots_cnt; i++) {
7957 root = sctx->clone_roots[i].root;
7958 ret = btrfs_start_delalloc_snapshot(root, false);
7959 if (ret)
7960 return ret;
7961 btrfs_wait_ordered_extents(root, U64_MAX, NULL);
7962 }
7963
7964 return 0;
7965 }
7966
btrfs_root_dec_send_in_progress(struct btrfs_root * root)7967 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
7968 {
7969 spin_lock(&root->root_item_lock);
7970 root->send_in_progress--;
7971 /*
7972 * Not much left to do, we don't know why it's unbalanced and
7973 * can't blindly reset it to 0.
7974 */
7975 if (root->send_in_progress < 0)
7976 btrfs_err(root->fs_info,
7977 "send_in_progress unbalanced %d root %llu",
7978 root->send_in_progress, btrfs_root_id(root));
7979 spin_unlock(&root->root_item_lock);
7980 }
7981
dedupe_in_progress_warn(const struct btrfs_root * root)7982 static void dedupe_in_progress_warn(const struct btrfs_root *root)
7983 {
7984 btrfs_warn_rl(root->fs_info,
7985 "cannot use root %llu for send while deduplications on it are in progress (%d in progress)",
7986 btrfs_root_id(root), root->dedupe_in_progress);
7987 }
7988
btrfs_ioctl_send(struct btrfs_root * send_root,const struct btrfs_ioctl_send_args * arg)7989 long btrfs_ioctl_send(struct btrfs_root *send_root, const struct btrfs_ioctl_send_args *arg)
7990 {
7991 int ret = 0;
7992 struct btrfs_fs_info *fs_info = send_root->fs_info;
7993 struct btrfs_root *clone_root;
7994 struct send_ctx *sctx = NULL;
7995 u32 i;
7996 u64 *clone_sources_tmp = NULL;
7997 int clone_sources_to_rollback = 0;
7998 size_t alloc_size;
7999 int sort_clone_roots = 0;
8000 struct btrfs_lru_cache_entry *entry;
8001 struct btrfs_lru_cache_entry *tmp;
8002
8003 if (!capable(CAP_SYS_ADMIN))
8004 return -EPERM;
8005
8006 /*
8007 * The subvolume must remain read-only during send, protect against
8008 * making it RW. This also protects against deletion.
8009 */
8010 spin_lock(&send_root->root_item_lock);
8011 /*
8012 * Unlikely but possible, if the subvolume is marked for deletion but
8013 * is slow to remove the directory entry, send can still be started.
8014 */
8015 if (btrfs_root_dead(send_root)) {
8016 spin_unlock(&send_root->root_item_lock);
8017 return -EPERM;
8018 }
8019 /* Userspace tools do the checks and warn the user if it's not RO. */
8020 if (!btrfs_root_readonly(send_root)) {
8021 spin_unlock(&send_root->root_item_lock);
8022 return -EPERM;
8023 }
8024 if (send_root->dedupe_in_progress) {
8025 dedupe_in_progress_warn(send_root);
8026 spin_unlock(&send_root->root_item_lock);
8027 return -EAGAIN;
8028 }
8029 send_root->send_in_progress++;
8030 spin_unlock(&send_root->root_item_lock);
8031
8032 /*
8033 * Check that we don't overflow at later allocations, we request
8034 * clone_sources_count + 1 items, and compare to unsigned long inside
8035 * access_ok. Also set an upper limit for allocation size so this can't
8036 * easily exhaust memory. Max number of clone sources is about 200K.
8037 */
8038 if (arg->clone_sources_count > SZ_8M / sizeof(struct clone_root)) {
8039 ret = -EINVAL;
8040 goto out;
8041 }
8042
8043 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
8044 ret = -EOPNOTSUPP;
8045 goto out;
8046 }
8047
8048 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
8049 if (!sctx) {
8050 ret = -ENOMEM;
8051 goto out;
8052 }
8053
8054 init_path(&sctx->cur_inode_path);
8055 INIT_LIST_HEAD(&sctx->new_refs);
8056 INIT_LIST_HEAD(&sctx->deleted_refs);
8057
8058 btrfs_lru_cache_init(&sctx->name_cache, SEND_MAX_NAME_CACHE_SIZE);
8059 btrfs_lru_cache_init(&sctx->backref_cache, SEND_MAX_BACKREF_CACHE_SIZE);
8060 btrfs_lru_cache_init(&sctx->dir_created_cache,
8061 SEND_MAX_DIR_CREATED_CACHE_SIZE);
8062 /*
8063 * This cache is periodically trimmed to a fixed size elsewhere, see
8064 * cache_dir_utimes() and trim_dir_utimes_cache().
8065 */
8066 btrfs_lru_cache_init(&sctx->dir_utimes_cache, 0);
8067
8068 sctx->pending_dir_moves = RB_ROOT;
8069 sctx->waiting_dir_moves = RB_ROOT;
8070 sctx->orphan_dirs = RB_ROOT;
8071 sctx->rbtree_new_refs = RB_ROOT;
8072 sctx->rbtree_deleted_refs = RB_ROOT;
8073
8074 sctx->flags = arg->flags;
8075
8076 if (arg->flags & BTRFS_SEND_FLAG_VERSION) {
8077 if (arg->version > BTRFS_SEND_STREAM_VERSION) {
8078 ret = -EPROTO;
8079 goto out;
8080 }
8081 /* Zero means "use the highest version" */
8082 sctx->proto = arg->version ?: BTRFS_SEND_STREAM_VERSION;
8083 } else {
8084 sctx->proto = 1;
8085 }
8086 if ((arg->flags & BTRFS_SEND_FLAG_COMPRESSED) && sctx->proto < 2) {
8087 ret = -EINVAL;
8088 goto out;
8089 }
8090
8091 sctx->send_filp = fget(arg->send_fd);
8092 if (!sctx->send_filp || !(sctx->send_filp->f_mode & FMODE_WRITE)) {
8093 ret = -EBADF;
8094 goto out;
8095 }
8096
8097 sctx->send_root = send_root;
8098 sctx->clone_roots_cnt = arg->clone_sources_count;
8099
8100 if (sctx->proto >= 2) {
8101 u32 send_buf_num_pages;
8102
8103 sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V2;
8104 sctx->send_buf = vmalloc(sctx->send_max_size);
8105 if (!sctx->send_buf) {
8106 ret = -ENOMEM;
8107 goto out;
8108 }
8109 send_buf_num_pages = sctx->send_max_size >> PAGE_SHIFT;
8110 sctx->send_buf_pages = kcalloc(send_buf_num_pages,
8111 sizeof(*sctx->send_buf_pages),
8112 GFP_KERNEL);
8113 if (!sctx->send_buf_pages) {
8114 ret = -ENOMEM;
8115 goto out;
8116 }
8117 for (i = 0; i < send_buf_num_pages; i++) {
8118 sctx->send_buf_pages[i] =
8119 vmalloc_to_page(sctx->send_buf + (i << PAGE_SHIFT));
8120 }
8121 } else {
8122 sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V1;
8123 sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
8124 }
8125 if (!sctx->send_buf) {
8126 ret = -ENOMEM;
8127 goto out;
8128 }
8129
8130 sctx->clone_roots = kvcalloc(arg->clone_sources_count + 1,
8131 sizeof(*sctx->clone_roots),
8132 GFP_KERNEL);
8133 if (!sctx->clone_roots) {
8134 ret = -ENOMEM;
8135 goto out;
8136 }
8137
8138 alloc_size = array_size(sizeof(*arg->clone_sources),
8139 arg->clone_sources_count);
8140
8141 if (arg->clone_sources_count) {
8142 clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
8143 if (!clone_sources_tmp) {
8144 ret = -ENOMEM;
8145 goto out;
8146 }
8147
8148 ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
8149 alloc_size);
8150 if (ret) {
8151 ret = -EFAULT;
8152 goto out;
8153 }
8154
8155 for (i = 0; i < arg->clone_sources_count; i++) {
8156 clone_root = btrfs_get_fs_root(fs_info,
8157 clone_sources_tmp[i], true);
8158 if (IS_ERR(clone_root)) {
8159 ret = PTR_ERR(clone_root);
8160 goto out;
8161 }
8162 spin_lock(&clone_root->root_item_lock);
8163 if (!btrfs_root_readonly(clone_root) ||
8164 btrfs_root_dead(clone_root)) {
8165 spin_unlock(&clone_root->root_item_lock);
8166 btrfs_put_root(clone_root);
8167 ret = -EPERM;
8168 goto out;
8169 }
8170 if (clone_root->dedupe_in_progress) {
8171 dedupe_in_progress_warn(clone_root);
8172 spin_unlock(&clone_root->root_item_lock);
8173 btrfs_put_root(clone_root);
8174 ret = -EAGAIN;
8175 goto out;
8176 }
8177 clone_root->send_in_progress++;
8178 spin_unlock(&clone_root->root_item_lock);
8179
8180 sctx->clone_roots[i].root = clone_root;
8181 clone_sources_to_rollback = i + 1;
8182 }
8183 kvfree(clone_sources_tmp);
8184 clone_sources_tmp = NULL;
8185 }
8186
8187 if (arg->parent_root) {
8188 sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root,
8189 true);
8190 if (IS_ERR(sctx->parent_root)) {
8191 ret = PTR_ERR(sctx->parent_root);
8192 goto out;
8193 }
8194
8195 spin_lock(&sctx->parent_root->root_item_lock);
8196 sctx->parent_root->send_in_progress++;
8197 if (!btrfs_root_readonly(sctx->parent_root) ||
8198 btrfs_root_dead(sctx->parent_root)) {
8199 spin_unlock(&sctx->parent_root->root_item_lock);
8200 ret = -EPERM;
8201 goto out;
8202 }
8203 if (sctx->parent_root->dedupe_in_progress) {
8204 dedupe_in_progress_warn(sctx->parent_root);
8205 spin_unlock(&sctx->parent_root->root_item_lock);
8206 ret = -EAGAIN;
8207 goto out;
8208 }
8209 spin_unlock(&sctx->parent_root->root_item_lock);
8210 }
8211
8212 /*
8213 * Clones from send_root are allowed, but only if the clone source
8214 * is behind the current send position. This is checked while searching
8215 * for possible clone sources.
8216 */
8217 sctx->clone_roots[sctx->clone_roots_cnt++].root =
8218 btrfs_grab_root(sctx->send_root);
8219
8220 /* We do a bsearch later */
8221 sort(sctx->clone_roots, sctx->clone_roots_cnt,
8222 sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
8223 NULL);
8224 sort_clone_roots = 1;
8225
8226 ret = flush_delalloc_roots(sctx);
8227 if (ret)
8228 goto out;
8229
8230 ret = ensure_commit_roots_uptodate(sctx);
8231 if (ret)
8232 goto out;
8233
8234 ret = send_subvol(sctx);
8235 if (ret < 0)
8236 goto out;
8237
8238 btrfs_lru_cache_for_each_entry_safe(&sctx->dir_utimes_cache, entry, tmp) {
8239 ret = send_utimes(sctx, entry->key, entry->gen);
8240 if (ret < 0)
8241 goto out;
8242 btrfs_lru_cache_remove(&sctx->dir_utimes_cache, entry);
8243 }
8244
8245 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
8246 ret = begin_cmd(sctx, BTRFS_SEND_C_END);
8247 if (ret < 0)
8248 goto out;
8249 ret = send_cmd(sctx);
8250 if (ret < 0)
8251 goto out;
8252 }
8253
8254 out:
8255 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
8256 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
8257 struct rb_node *n;
8258 struct pending_dir_move *pm;
8259
8260 n = rb_first(&sctx->pending_dir_moves);
8261 pm = rb_entry(n, struct pending_dir_move, node);
8262 while (!list_empty(&pm->list)) {
8263 struct pending_dir_move *pm2;
8264
8265 pm2 = list_first_entry(&pm->list,
8266 struct pending_dir_move, list);
8267 free_pending_move(sctx, pm2);
8268 }
8269 free_pending_move(sctx, pm);
8270 }
8271
8272 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
8273 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
8274 struct rb_node *n;
8275 struct waiting_dir_move *dm;
8276
8277 n = rb_first(&sctx->waiting_dir_moves);
8278 dm = rb_entry(n, struct waiting_dir_move, node);
8279 rb_erase(&dm->node, &sctx->waiting_dir_moves);
8280 kfree(dm);
8281 }
8282
8283 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
8284 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
8285 struct rb_node *n;
8286 struct orphan_dir_info *odi;
8287
8288 n = rb_first(&sctx->orphan_dirs);
8289 odi = rb_entry(n, struct orphan_dir_info, node);
8290 free_orphan_dir_info(sctx, odi);
8291 }
8292
8293 if (sort_clone_roots) {
8294 for (i = 0; i < sctx->clone_roots_cnt; i++) {
8295 btrfs_root_dec_send_in_progress(
8296 sctx->clone_roots[i].root);
8297 btrfs_put_root(sctx->clone_roots[i].root);
8298 }
8299 } else {
8300 for (i = 0; sctx && i < clone_sources_to_rollback; i++) {
8301 btrfs_root_dec_send_in_progress(
8302 sctx->clone_roots[i].root);
8303 btrfs_put_root(sctx->clone_roots[i].root);
8304 }
8305
8306 btrfs_root_dec_send_in_progress(send_root);
8307 }
8308 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) {
8309 btrfs_root_dec_send_in_progress(sctx->parent_root);
8310 btrfs_put_root(sctx->parent_root);
8311 }
8312
8313 kvfree(clone_sources_tmp);
8314
8315 if (sctx) {
8316 if (sctx->send_filp)
8317 fput(sctx->send_filp);
8318
8319 kvfree(sctx->clone_roots);
8320 kfree(sctx->send_buf_pages);
8321 kvfree(sctx->send_buf);
8322 kvfree(sctx->verity_descriptor);
8323
8324 close_current_inode(sctx);
8325
8326 btrfs_lru_cache_clear(&sctx->name_cache);
8327 btrfs_lru_cache_clear(&sctx->backref_cache);
8328 btrfs_lru_cache_clear(&sctx->dir_created_cache);
8329 btrfs_lru_cache_clear(&sctx->dir_utimes_cache);
8330
8331 if (sctx->cur_inode_path.buf != sctx->cur_inode_path.inline_buf)
8332 kfree(sctx->cur_inode_path.buf);
8333
8334 kfree(sctx);
8335 }
8336
8337 return ret;
8338 }
8339