1 // SPDX-License-Identifier: GPL-2.0
2
3 /*
4 * Copyright 2016-2022 HabanaLabs, Ltd.
5 * All Rights Reserved.
6 */
7
8 #include <linux/slab.h>
9 #include <linux/pci.h>
10
11 #include "../habanalabs.h"
12
13 #include <trace/events/habanalabs.h>
14
15 /**
16 * hl_mmu_get_funcs() - get MMU functions structure
17 * @hdev: habanalabs device structure.
18 * @pgt_residency: page table residency.
19 * @is_dram_addr: true if we need HMMU functions
20 *
21 * @return appropriate MMU functions structure
22 */
hl_mmu_get_funcs(struct hl_device * hdev,int pgt_residency,bool is_dram_addr)23 static struct hl_mmu_funcs *hl_mmu_get_funcs(struct hl_device *hdev, int pgt_residency,
24 bool is_dram_addr)
25 {
26 return &hdev->mmu_func[pgt_residency];
27 }
28
hl_is_dram_va(struct hl_device * hdev,u64 virt_addr)29 bool hl_is_dram_va(struct hl_device *hdev, u64 virt_addr)
30 {
31 struct asic_fixed_properties *prop = &hdev->asic_prop;
32
33 return hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size,
34 prop->dmmu.start_addr,
35 prop->dmmu.end_addr);
36 }
37
38 /**
39 * hl_mmu_init() - initialize the MMU module.
40 * @hdev: habanalabs device structure.
41 *
42 * Return: 0 for success, non-zero for failure.
43 */
hl_mmu_init(struct hl_device * hdev)44 int hl_mmu_init(struct hl_device *hdev)
45 {
46 int rc = -EOPNOTSUPP;
47
48 if (hdev->mmu_disable)
49 return 0;
50
51 mutex_init(&hdev->mmu_lock);
52
53 if (hdev->mmu_func[MMU_DR_PGT].init != NULL) {
54 rc = hdev->mmu_func[MMU_DR_PGT].init(hdev);
55 if (rc)
56 return rc;
57 }
58
59 if (hdev->mmu_func[MMU_HR_PGT].init != NULL) {
60 rc = hdev->mmu_func[MMU_HR_PGT].init(hdev);
61 if (rc)
62 goto fini_dr_mmu;
63 }
64
65 return 0;
66
67 fini_dr_mmu:
68 if (hdev->mmu_func[MMU_DR_PGT].fini != NULL)
69 hdev->mmu_func[MMU_DR_PGT].fini(hdev);
70
71 return rc;
72 }
73
74 /**
75 * hl_mmu_fini() - release the MMU module.
76 * @hdev: habanalabs device structure.
77 *
78 * This function does the following:
79 * - Disable MMU in H/W.
80 * - Free the pgt_infos pool.
81 *
82 * All contexts should be freed before calling this function.
83 */
hl_mmu_fini(struct hl_device * hdev)84 void hl_mmu_fini(struct hl_device *hdev)
85 {
86 if (hdev->mmu_disable)
87 return;
88
89 if (hdev->mmu_func[MMU_DR_PGT].fini != NULL)
90 hdev->mmu_func[MMU_DR_PGT].fini(hdev);
91
92 if (hdev->mmu_func[MMU_HR_PGT].fini != NULL)
93 hdev->mmu_func[MMU_HR_PGT].fini(hdev);
94
95 mutex_destroy(&hdev->mmu_lock);
96 }
97
98 /**
99 * hl_mmu_ctx_init() - initialize a context for using the MMU module.
100 * @ctx: pointer to the context structure to initialize.
101 *
102 * Initialize a mutex to protect the concurrent mapping flow, a hash to hold all
103 * page tables hops related to this context.
104 * Return: 0 on success, non-zero otherwise.
105 */
hl_mmu_ctx_init(struct hl_ctx * ctx)106 int hl_mmu_ctx_init(struct hl_ctx *ctx)
107 {
108 struct hl_device *hdev = ctx->hdev;
109 int rc = -EOPNOTSUPP;
110
111 if (hdev->mmu_disable)
112 return 0;
113
114 if (hdev->mmu_func[MMU_DR_PGT].ctx_init != NULL) {
115 rc = hdev->mmu_func[MMU_DR_PGT].ctx_init(ctx);
116 if (rc)
117 return rc;
118 }
119
120 if (hdev->mmu_func[MMU_HR_PGT].ctx_init != NULL) {
121 rc = hdev->mmu_func[MMU_HR_PGT].ctx_init(ctx);
122 if (rc)
123 goto fini_dr_ctx;
124 }
125
126 return 0;
127
128 fini_dr_ctx:
129 if (hdev->mmu_func[MMU_DR_PGT].fini != NULL)
130 hdev->mmu_func[MMU_DR_PGT].fini(hdev);
131
132 return rc;
133 }
134
135 /*
136 * hl_mmu_ctx_fini - disable a ctx from using the mmu module
137 *
138 * @ctx: pointer to the context structure
139 *
140 * This function does the following:
141 * - Free any pgts which were not freed yet
142 * - Free the mutex
143 * - Free DRAM default page mapping hops
144 */
hl_mmu_ctx_fini(struct hl_ctx * ctx)145 void hl_mmu_ctx_fini(struct hl_ctx *ctx)
146 {
147 struct hl_device *hdev = ctx->hdev;
148
149 if (hdev->mmu_disable)
150 return;
151
152 if (hdev->mmu_func[MMU_DR_PGT].ctx_fini != NULL)
153 hdev->mmu_func[MMU_DR_PGT].ctx_fini(ctx);
154
155 if (hdev->mmu_func[MMU_HR_PGT].ctx_fini != NULL)
156 hdev->mmu_func[MMU_HR_PGT].ctx_fini(ctx);
157 }
158
159 /*
160 * hl_mmu_get_real_page_size - get real page size to use in map/unmap operation
161 *
162 * @hdev: pointer to device data.
163 * @mmu_prop: MMU properties.
164 * @page_size: page size
165 * @real_page_size: set here the actual page size to use for the operation
166 * @is_dram_addr: true if DRAM address, otherwise false.
167 *
168 * @return 0 on success, otherwise non 0 error code
169 *
170 * note that this is general implementation that can fit most MMU arch. but as this is used as an
171 * MMU function:
172 * 1. it shall not be called directly- only from mmu_func structure instance
173 * 2. each MMU may modify the implementation internally
174 */
hl_mmu_get_real_page_size(struct hl_device * hdev,struct hl_mmu_properties * mmu_prop,u32 page_size,u32 * real_page_size,bool is_dram_addr)175 int hl_mmu_get_real_page_size(struct hl_device *hdev, struct hl_mmu_properties *mmu_prop,
176 u32 page_size, u32 *real_page_size, bool is_dram_addr)
177 {
178 /*
179 * The H/W handles mapping of specific page sizes. Hence if the page
180 * size is bigger, we break it to sub-pages and map them separately.
181 */
182 if ((page_size % mmu_prop->page_size) == 0) {
183 *real_page_size = mmu_prop->page_size;
184 return 0;
185 }
186
187 dev_err(hdev->dev, "page size of %u is not %uKB aligned, can't map\n",
188 page_size, mmu_prop->page_size >> 10);
189
190 return -EFAULT;
191 }
192
hl_mmu_get_prop(struct hl_device * hdev,u32 page_size,bool is_dram_addr)193 static struct hl_mmu_properties *hl_mmu_get_prop(struct hl_device *hdev, u32 page_size,
194 bool is_dram_addr)
195 {
196 struct asic_fixed_properties *prop = &hdev->asic_prop;
197
198 if (is_dram_addr)
199 return &prop->dmmu;
200 else if ((page_size % prop->pmmu_huge.page_size) == 0)
201 return &prop->pmmu_huge;
202
203 return &prop->pmmu;
204 }
205
206 /*
207 * hl_mmu_unmap_page - unmaps a virtual addr
208 *
209 * @ctx: pointer to the context structure
210 * @virt_addr: virt addr to map from
211 * @page_size: size of the page to unmap
212 * @flush_pte: whether to do a PCI flush
213 *
214 * This function does the following:
215 * - Check that the virt addr is mapped
216 * - Unmap the virt addr and frees pgts if possible
217 * - Returns 0 on success, -EINVAL if the given addr is not mapped
218 *
219 * Because this function changes the page tables in the device and because it
220 * changes the MMU hash, it must be protected by a lock.
221 * However, because it maps only a single page, the lock should be implemented
222 * in a higher level in order to protect the entire mapping of the memory area
223 *
224 * For optimization reasons PCI flush may be requested once after unmapping of
225 * large area.
226 */
hl_mmu_unmap_page(struct hl_ctx * ctx,u64 virt_addr,u32 page_size,bool flush_pte)227 int hl_mmu_unmap_page(struct hl_ctx *ctx, u64 virt_addr, u32 page_size, bool flush_pte)
228 {
229 struct hl_device *hdev = ctx->hdev;
230 struct hl_mmu_properties *mmu_prop;
231 struct hl_mmu_funcs *mmu_funcs;
232 int i, pgt_residency, rc = 0;
233 u32 real_page_size, npages;
234 u64 real_virt_addr;
235 bool is_dram_addr;
236
237 if (hdev->mmu_disable)
238 return 0;
239
240 is_dram_addr = hl_is_dram_va(hdev, virt_addr);
241 mmu_prop = hl_mmu_get_prop(hdev, page_size, is_dram_addr);
242
243 pgt_residency = mmu_prop->host_resident ? MMU_HR_PGT : MMU_DR_PGT;
244 mmu_funcs = hl_mmu_get_funcs(hdev, pgt_residency, is_dram_addr);
245
246 rc = hdev->asic_funcs->mmu_get_real_page_size(hdev, mmu_prop, page_size, &real_page_size,
247 is_dram_addr);
248 if (rc)
249 return rc;
250
251 npages = page_size / real_page_size;
252 real_virt_addr = virt_addr;
253
254 for (i = 0 ; i < npages ; i++) {
255 rc = mmu_funcs->unmap(ctx, real_virt_addr, is_dram_addr);
256 if (rc)
257 break;
258
259 real_virt_addr += real_page_size;
260 }
261
262 if (flush_pte)
263 mmu_funcs->flush(ctx);
264
265 if (trace_habanalabs_mmu_unmap_enabled() && !rc)
266 trace_habanalabs_mmu_unmap(&hdev->pdev->dev, virt_addr, 0, page_size, flush_pte);
267
268 return rc;
269 }
270
271 /*
272 * hl_mmu_map_page - maps a virtual addr to physical addr
273 *
274 * @ctx: pointer to the context structure
275 * @virt_addr: virt addr to map from
276 * @phys_addr: phys addr to map to
277 * @page_size: physical page size
278 * @flush_pte: whether to do a PCI flush
279 *
280 * This function does the following:
281 * - Check that the virt addr is not mapped
282 * - Allocate pgts as necessary in order to map the virt addr to the phys
283 * - Returns 0 on success, -EINVAL if addr is already mapped, or -ENOMEM.
284 *
285 * Because this function changes the page tables in the device and because it
286 * changes the MMU hash, it must be protected by a lock.
287 * However, because it maps only a single page, the lock should be implemented
288 * in a higher level in order to protect the entire mapping of the memory area
289 *
290 * For optimization reasons PCI flush may be requested once after mapping of
291 * large area.
292 */
hl_mmu_map_page(struct hl_ctx * ctx,u64 virt_addr,u64 phys_addr,u32 page_size,bool flush_pte)293 int hl_mmu_map_page(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 page_size,
294 bool flush_pte)
295 {
296 int i, rc, pgt_residency, mapped_cnt = 0;
297 struct hl_device *hdev = ctx->hdev;
298 struct hl_mmu_properties *mmu_prop;
299 u64 real_virt_addr, real_phys_addr;
300 struct hl_mmu_funcs *mmu_funcs;
301 u32 real_page_size, npages;
302 bool is_dram_addr;
303
304
305 if (hdev->mmu_disable)
306 return 0;
307
308 is_dram_addr = hl_is_dram_va(hdev, virt_addr);
309 mmu_prop = hl_mmu_get_prop(hdev, page_size, is_dram_addr);
310
311 pgt_residency = mmu_prop->host_resident ? MMU_HR_PGT : MMU_DR_PGT;
312 mmu_funcs = hl_mmu_get_funcs(hdev, pgt_residency, is_dram_addr);
313
314 rc = hdev->asic_funcs->mmu_get_real_page_size(hdev, mmu_prop, page_size, &real_page_size,
315 is_dram_addr);
316 if (rc)
317 return rc;
318
319 /*
320 * Verify that the phys and virt addresses are aligned with the
321 * MMU page size (in dram this means checking the address and MMU
322 * after scrambling)
323 */
324 if ((is_dram_addr &&
325 ((hdev->asic_funcs->scramble_addr(hdev, phys_addr) &
326 (mmu_prop->page_size - 1)) ||
327 (hdev->asic_funcs->scramble_addr(hdev, virt_addr) &
328 (mmu_prop->page_size - 1)))) ||
329 (!is_dram_addr && ((phys_addr & (real_page_size - 1)) ||
330 (virt_addr & (real_page_size - 1)))))
331 dev_crit(hdev->dev,
332 "Mapping address 0x%llx with virtual address 0x%llx and page size of 0x%x is erroneous! Addresses must be divisible by page size",
333 phys_addr, virt_addr, real_page_size);
334
335 npages = page_size / real_page_size;
336 real_virt_addr = virt_addr;
337 real_phys_addr = phys_addr;
338
339 for (i = 0 ; i < npages ; i++) {
340 rc = mmu_funcs->map(ctx, real_virt_addr, real_phys_addr, real_page_size,
341 is_dram_addr);
342 if (rc)
343 goto err;
344
345 real_virt_addr += real_page_size;
346 real_phys_addr += real_page_size;
347 mapped_cnt++;
348 }
349
350 if (flush_pte)
351 mmu_funcs->flush(ctx);
352
353 trace_habanalabs_mmu_map(&hdev->pdev->dev, virt_addr, phys_addr, page_size, flush_pte);
354
355 return 0;
356
357 err:
358 real_virt_addr = virt_addr;
359 for (i = 0 ; i < mapped_cnt ; i++) {
360 if (mmu_funcs->unmap(ctx, real_virt_addr, is_dram_addr))
361 dev_warn_ratelimited(hdev->dev,
362 "failed to unmap va: 0x%llx\n", real_virt_addr);
363
364 real_virt_addr += real_page_size;
365 }
366
367 mmu_funcs->flush(ctx);
368
369 return rc;
370 }
371
372 /*
373 * hl_mmu_map_contiguous - implements a wrapper for hl_mmu_map_page
374 * for mapping contiguous physical memory
375 *
376 * @ctx: pointer to the context structure
377 * @virt_addr: virt addr to map from
378 * @phys_addr: phys addr to map to
379 * @size: size to map
380 *
381 */
hl_mmu_map_contiguous(struct hl_ctx * ctx,u64 virt_addr,u64 phys_addr,u32 size)382 int hl_mmu_map_contiguous(struct hl_ctx *ctx, u64 virt_addr,
383 u64 phys_addr, u32 size)
384 {
385 struct hl_device *hdev = ctx->hdev;
386 struct asic_fixed_properties *prop = &hdev->asic_prop;
387 u64 curr_va, curr_pa;
388 u32 page_size;
389 bool flush_pte;
390 int rc = 0, off;
391
392 if (hl_mem_area_inside_range(virt_addr, size,
393 prop->dmmu.start_addr, prop->dmmu.end_addr))
394 page_size = prop->dmmu.page_size;
395 else if (hl_mem_area_inside_range(virt_addr, size,
396 prop->pmmu.start_addr, prop->pmmu.end_addr))
397 page_size = prop->pmmu.page_size;
398 else if (hl_mem_area_inside_range(virt_addr, size,
399 prop->pmmu_huge.start_addr, prop->pmmu_huge.end_addr))
400 page_size = prop->pmmu_huge.page_size;
401 else
402 return -EINVAL;
403
404 for (off = 0 ; off < size ; off += page_size) {
405 curr_va = virt_addr + off;
406 curr_pa = phys_addr + off;
407 flush_pte = (off + page_size) >= size;
408 rc = hl_mmu_map_page(ctx, curr_va, curr_pa, page_size,
409 flush_pte);
410 if (rc) {
411 dev_err(hdev->dev,
412 "Map failed for va 0x%llx to pa 0x%llx\n",
413 curr_va, curr_pa);
414 /* last mapping failed so don't try to unmap it - reduce off by page_size */
415 off -= page_size;
416 goto unmap;
417 }
418 }
419
420 return rc;
421
422 unmap:
423 for (; off >= 0 ; off -= page_size) {
424 curr_va = virt_addr + off;
425 flush_pte = (off - (s32) page_size) < 0;
426 if (hl_mmu_unmap_page(ctx, curr_va, page_size, flush_pte))
427 dev_warn_ratelimited(hdev->dev,
428 "failed to unmap va 0x%llx\n", curr_va);
429 }
430
431 return rc;
432 }
433
434 /*
435 * hl_mmu_unmap_contiguous - implements a wrapper for hl_mmu_unmap_page
436 * for unmapping contiguous physical memory
437 *
438 * @ctx: pointer to the context structure
439 * @virt_addr: virt addr to unmap
440 * @size: size to unmap
441 *
442 */
hl_mmu_unmap_contiguous(struct hl_ctx * ctx,u64 virt_addr,u32 size)443 int hl_mmu_unmap_contiguous(struct hl_ctx *ctx, u64 virt_addr, u32 size)
444 {
445 struct hl_device *hdev = ctx->hdev;
446 struct asic_fixed_properties *prop = &hdev->asic_prop;
447 u64 curr_va;
448 u32 page_size;
449 bool flush_pte;
450 int rc = 0, off;
451
452 if (hl_mem_area_inside_range(virt_addr, size,
453 prop->dmmu.start_addr, prop->dmmu.end_addr))
454 page_size = prop->dmmu.page_size;
455 else if (hl_mem_area_inside_range(virt_addr, size,
456 prop->pmmu.start_addr, prop->pmmu.end_addr))
457 page_size = prop->pmmu.page_size;
458 else if (hl_mem_area_inside_range(virt_addr, size,
459 prop->pmmu_huge.start_addr, prop->pmmu_huge.end_addr))
460 page_size = prop->pmmu_huge.page_size;
461 else
462 return -EINVAL;
463
464 for (off = 0 ; off < size ; off += page_size) {
465 curr_va = virt_addr + off;
466 flush_pte = (off + page_size) >= size;
467 rc = hl_mmu_unmap_page(ctx, curr_va, page_size, flush_pte);
468 if (rc)
469 dev_warn_ratelimited(hdev->dev,
470 "Unmap failed for va 0x%llx\n", curr_va);
471 }
472
473 return rc;
474 }
475
hl_mmu_pa_page_with_offset(struct hl_ctx * ctx,u64 virt_addr,struct hl_mmu_hop_info * hops,u64 * phys_addr)476 static void hl_mmu_pa_page_with_offset(struct hl_ctx *ctx, u64 virt_addr,
477 struct hl_mmu_hop_info *hops,
478 u64 *phys_addr)
479 {
480 struct asic_fixed_properties *prop = &ctx->hdev->asic_prop;
481 u64 offset_mask, addr_mask, hop_shift, tmp_phys_addr;
482 struct hl_mmu_properties *mmu_prop;
483
484 /* last hop holds the phys address and flags */
485 if (hops->unscrambled_paddr)
486 tmp_phys_addr = hops->unscrambled_paddr;
487 else
488 tmp_phys_addr = hops->hop_info[hops->used_hops - 1].hop_pte_val;
489
490 if (hops->range_type == HL_VA_RANGE_TYPE_HOST_HUGE)
491 mmu_prop = &prop->pmmu_huge;
492 else if (hops->range_type == HL_VA_RANGE_TYPE_HOST)
493 mmu_prop = &prop->pmmu;
494 else /* HL_VA_RANGE_TYPE_DRAM */
495 mmu_prop = &prop->dmmu;
496
497 if ((hops->range_type == HL_VA_RANGE_TYPE_DRAM) &&
498 !is_power_of_2(prop->dram_page_size)) {
499 u64 dram_page_size, dram_base, abs_phys_addr, abs_virt_addr,
500 page_id, page_start;
501 u32 page_off;
502
503 /*
504 * Bit arithmetic cannot be used for non power of two page
505 * sizes. In addition, since bit arithmetic is not used,
506 * we cannot ignore dram base. All that shall be considered.
507 */
508
509 dram_page_size = prop->dram_page_size;
510 dram_base = prop->dram_base_address;
511 abs_phys_addr = tmp_phys_addr - dram_base;
512 abs_virt_addr = virt_addr - dram_base;
513 page_id = DIV_ROUND_DOWN_ULL(abs_phys_addr, dram_page_size);
514 page_start = page_id * dram_page_size;
515 div_u64_rem(abs_virt_addr, dram_page_size, &page_off);
516
517 *phys_addr = page_start + page_off + dram_base;
518 } else {
519 /*
520 * find the correct hop shift field in hl_mmu_properties
521 * structure in order to determine the right masks
522 * for the page offset.
523 */
524 hop_shift = mmu_prop->hop_shifts[hops->used_hops - 1];
525 offset_mask = (1ull << hop_shift) - 1;
526 addr_mask = ~(offset_mask);
527 *phys_addr = (tmp_phys_addr & addr_mask) |
528 (virt_addr & offset_mask);
529 }
530 }
531
hl_mmu_va_to_pa(struct hl_ctx * ctx,u64 virt_addr,u64 * phys_addr)532 int hl_mmu_va_to_pa(struct hl_ctx *ctx, u64 virt_addr, u64 *phys_addr)
533 {
534 struct hl_mmu_hop_info hops;
535 int rc;
536
537 memset(&hops, 0, sizeof(hops));
538
539 rc = hl_mmu_get_tlb_info(ctx, virt_addr, &hops);
540 if (rc)
541 return rc;
542
543 hl_mmu_pa_page_with_offset(ctx, virt_addr, &hops, phys_addr);
544
545 return 0;
546 }
547
hl_mmu_get_tlb_info(struct hl_ctx * ctx,u64 virt_addr,struct hl_mmu_hop_info * hops)548 int hl_mmu_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr,
549 struct hl_mmu_hop_info *hops)
550 {
551 struct hl_device *hdev = ctx->hdev;
552 struct asic_fixed_properties *prop;
553 struct hl_mmu_properties *mmu_prop;
554 struct hl_mmu_funcs *mmu_funcs;
555 int pgt_residency, rc;
556 bool is_dram_addr;
557
558 if (hdev->mmu_disable)
559 return -EOPNOTSUPP;
560
561 prop = &hdev->asic_prop;
562 hops->scrambled_vaddr = virt_addr; /* assume no scrambling */
563
564 is_dram_addr = hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size,
565 prop->dmmu.start_addr,
566 prop->dmmu.end_addr);
567
568 /* host-residency is the same in PMMU and PMMU huge, no need to distinguish here */
569 mmu_prop = is_dram_addr ? &prop->dmmu : &prop->pmmu;
570 pgt_residency = mmu_prop->host_resident ? MMU_HR_PGT : MMU_DR_PGT;
571 mmu_funcs = hl_mmu_get_funcs(hdev, pgt_residency, is_dram_addr);
572
573 mutex_lock(&hdev->mmu_lock);
574 rc = mmu_funcs->get_tlb_info(ctx, virt_addr, hops);
575 mutex_unlock(&hdev->mmu_lock);
576
577 if (rc)
578 return rc;
579
580 /* add page offset to physical address */
581 if (hops->unscrambled_paddr)
582 hl_mmu_pa_page_with_offset(ctx, virt_addr, hops, &hops->unscrambled_paddr);
583
584 return 0;
585 }
586
hl_mmu_if_set_funcs(struct hl_device * hdev)587 int hl_mmu_if_set_funcs(struct hl_device *hdev)
588 {
589 struct asic_fixed_properties *prop = &hdev->asic_prop;
590
591 if (hdev->mmu_disable)
592 return 0;
593
594 switch (hdev->asic_type) {
595 case ASIC_GOYA:
596 case ASIC_GAUDI:
597 case ASIC_GAUDI_SEC:
598 hl_mmu_v1_set_funcs(hdev, &hdev->mmu_func[MMU_DR_PGT]);
599 break;
600 case ASIC_GAUDI2:
601 case ASIC_GAUDI2B:
602 case ASIC_GAUDI2C:
603 case ASIC_GAUDI2D:
604 hl_mmu_v2_set_funcs(hdev, &hdev->mmu_func[MMU_DR_PGT]);
605 if (prop->pmmu.host_resident)
606 hl_mmu_v2_hr_set_funcs(hdev, &hdev->mmu_func[MMU_HR_PGT]);
607 break;
608 default:
609 dev_err(hdev->dev, "Unrecognized ASIC type %d\n",
610 hdev->asic_type);
611 return -EOPNOTSUPP;
612 }
613
614 return 0;
615 }
616
617 /**
618 * hl_mmu_scramble_addr() - The generic mmu address scrambling routine.
619 * @hdev: pointer to device data.
620 * @addr: The address to scramble.
621 *
622 * Return: The scrambled address.
623 */
hl_mmu_scramble_addr(struct hl_device * hdev,u64 addr)624 u64 hl_mmu_scramble_addr(struct hl_device *hdev, u64 addr)
625 {
626 return addr;
627 }
628
629 /**
630 * hl_mmu_descramble_addr() - The generic mmu address descrambling
631 * routine.
632 * @hdev: pointer to device data.
633 * @addr: The address to descramble.
634 *
635 * Return: The un-scrambled address.
636 */
hl_mmu_descramble_addr(struct hl_device * hdev,u64 addr)637 u64 hl_mmu_descramble_addr(struct hl_device *hdev, u64 addr)
638 {
639 return addr;
640 }
641
hl_mmu_invalidate_cache(struct hl_device * hdev,bool is_hard,u32 flags)642 int hl_mmu_invalidate_cache(struct hl_device *hdev, bool is_hard, u32 flags)
643 {
644 int rc;
645
646 rc = hdev->asic_funcs->mmu_invalidate_cache(hdev, is_hard, flags);
647 if (rc)
648 dev_err_ratelimited(hdev->dev,
649 "%s: %s cache invalidation failed, rc=%d\n",
650 dev_name(&hdev->pdev->dev),
651 flags == VM_TYPE_USERPTR ? "PMMU" : "HMMU", rc);
652
653 return rc;
654 }
655
hl_mmu_invalidate_cache_range(struct hl_device * hdev,bool is_hard,u32 flags,u32 asid,u64 va,u64 size)656 int hl_mmu_invalidate_cache_range(struct hl_device *hdev, bool is_hard,
657 u32 flags, u32 asid, u64 va, u64 size)
658 {
659 int rc;
660
661 rc = hdev->asic_funcs->mmu_invalidate_cache_range(hdev, is_hard, flags,
662 asid, va, size);
663 if (rc)
664 dev_err_ratelimited(hdev->dev,
665 "%s: %s cache range invalidation failed: va=%#llx, size=%llu, rc=%d",
666 dev_name(&hdev->pdev->dev), flags == VM_TYPE_USERPTR ? "PMMU" : "HMMU",
667 va, size, rc);
668
669 return rc;
670 }
671
hl_mmu_prefetch_work_function(struct work_struct * work)672 static void hl_mmu_prefetch_work_function(struct work_struct *work)
673 {
674 struct hl_prefetch_work *pfw = container_of(work, struct hl_prefetch_work, prefetch_work);
675 struct hl_ctx *ctx = pfw->ctx;
676 struct hl_device *hdev = ctx->hdev;
677
678 if (!hl_device_operational(hdev, NULL))
679 goto put_ctx;
680
681 mutex_lock(&hdev->mmu_lock);
682
683 hdev->asic_funcs->mmu_prefetch_cache_range(ctx, pfw->flags, pfw->asid, pfw->va, pfw->size);
684
685 mutex_unlock(&hdev->mmu_lock);
686
687 put_ctx:
688 /*
689 * context was taken in the common mmu prefetch function- see comment there about
690 * context handling.
691 */
692 hl_ctx_put(ctx);
693 kfree(pfw);
694 }
695
hl_mmu_prefetch_cache_range(struct hl_ctx * ctx,u32 flags,u32 asid,u64 va,u64 size)696 int hl_mmu_prefetch_cache_range(struct hl_ctx *ctx, u32 flags, u32 asid, u64 va, u64 size)
697 {
698 struct hl_prefetch_work *handle_prefetch_work;
699
700 handle_prefetch_work = kmalloc(sizeof(*handle_prefetch_work), GFP_KERNEL);
701 if (!handle_prefetch_work)
702 return -ENOMEM;
703
704 INIT_WORK(&handle_prefetch_work->prefetch_work, hl_mmu_prefetch_work_function);
705 handle_prefetch_work->ctx = ctx;
706 handle_prefetch_work->va = va;
707 handle_prefetch_work->size = size;
708 handle_prefetch_work->flags = flags;
709 handle_prefetch_work->asid = asid;
710
711 /*
712 * as actual prefetch is done in a WQ we must get the context (and put it
713 * at the end of the work function)
714 */
715 hl_ctx_get(ctx);
716 queue_work(ctx->hdev->prefetch_wq, &handle_prefetch_work->prefetch_work);
717
718 return 0;
719 }
720
hl_mmu_get_next_hop_addr(struct hl_ctx * ctx,u64 curr_pte)721 u64 hl_mmu_get_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte)
722 {
723 return (curr_pte & PAGE_PRESENT_MASK) ? (curr_pte & HOP_PHYS_ADDR_MASK) : ULLONG_MAX;
724 }
725
726 /**
727 * hl_mmu_get_hop_pte_phys_addr() - extract PTE address from HOP
728 * @ctx: pointer to the context structure to initialize.
729 * @mmu_prop: MMU properties.
730 * @hop_idx: HOP index.
731 * @hop_addr: HOP address.
732 * @virt_addr: virtual address for the translation.
733 *
734 * @return the matching PTE value on success, otherwise U64_MAX.
735 */
hl_mmu_get_hop_pte_phys_addr(struct hl_ctx * ctx,struct hl_mmu_properties * mmu_prop,u8 hop_idx,u64 hop_addr,u64 virt_addr)736 u64 hl_mmu_get_hop_pte_phys_addr(struct hl_ctx *ctx, struct hl_mmu_properties *mmu_prop,
737 u8 hop_idx, u64 hop_addr, u64 virt_addr)
738 {
739 u64 mask, shift;
740
741 if (hop_idx >= mmu_prop->num_hops) {
742 dev_err_ratelimited(ctx->hdev->dev, "Invalid hop index %d\n", hop_idx);
743 return U64_MAX;
744 }
745
746 shift = mmu_prop->hop_shifts[hop_idx];
747 mask = mmu_prop->hop_masks[hop_idx];
748
749 return hop_addr + ctx->hdev->asic_prop.mmu_pte_size * ((virt_addr & mask) >> shift);
750 }
751
mmu_dma_mem_free_from_chunk(struct gen_pool * pool,struct gen_pool_chunk * chunk,void * data)752 static void mmu_dma_mem_free_from_chunk(struct gen_pool *pool,
753 struct gen_pool_chunk *chunk,
754 void *data)
755 {
756 struct hl_device *hdev = data;
757
758 hl_asic_dma_free_coherent(hdev, (chunk->end_addr - chunk->start_addr) + 1,
759 (void *)chunk->start_addr, chunk->phys_addr);
760 }
761
hl_mmu_hr_flush(struct hl_ctx * ctx)762 void hl_mmu_hr_flush(struct hl_ctx *ctx)
763 {
764 /* a flush operation requires memory barrier */
765 mb();
766 }
767
768 /**
769 * hl_mmu_hr_pool_destroy() - destroy genpool
770 * @hdev: habanalabs device structure.
771 * @hr_priv: MMU HR private data.
772 * @hop_table_size: HOP table size.
773 *
774 * This function does the following:
775 * - free entries allocated for shadow HOP0
776 * - free pool chunks
777 * - free pool
778 */
hl_mmu_hr_pool_destroy(struct hl_device * hdev,struct hl_mmu_hr_priv * hr_priv,u32 hop_table_size)779 static void hl_mmu_hr_pool_destroy(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv,
780 u32 hop_table_size)
781 {
782 struct asic_fixed_properties *prop = &hdev->asic_prop;
783 struct gen_pool **pool = &hr_priv->mmu_pgt_pool;
784 struct pgt_info *hop0_pgt;
785 int asid;
786
787 if (ZERO_OR_NULL_PTR(*pool))
788 return;
789
790 /* Free the Fixed allocation of HOPs0 */
791 if (hr_priv->mmu_asid_hop0) {
792 for (asid = 0 ; asid < prop->max_asid ; asid++) {
793 hop0_pgt = &hr_priv->mmu_asid_hop0[asid];
794 if (ZERO_OR_NULL_PTR(hop0_pgt->virt_addr))
795 continue;
796
797 gen_pool_free(*pool, (uintptr_t) hop0_pgt->virt_addr, hop_table_size);
798 }
799 }
800
801 gen_pool_for_each_chunk(*pool, mmu_dma_mem_free_from_chunk, hdev);
802 gen_pool_destroy(*pool);
803
804 /* Make sure that if we arrive here again without init was called we
805 * won't cause kernel panic. This can happen for example if we fail
806 * during hard reset code at certain points
807 */
808 *pool = NULL;
809 }
810
811 /**
812 * hl_mmu_hr_init() - initialize the MMU module.
813 * @hdev: habanalabs device structure.
814 * @hr_priv: MMU HR private data.
815 * @hop_table_size: HOP table size.
816 * @pgt_size: memory size allocated for the page table
817 *
818 * @return 0 on success otherwise non-zero error code
819 *
820 * This function does the following:
821 * - Create a pool of pages for pgt_infos.
822 * - Create a shadow table for pgt
823 */
hl_mmu_hr_init(struct hl_device * hdev,struct hl_mmu_hr_priv * hr_priv,u32 hop_table_size,u64 pgt_size)824 int hl_mmu_hr_init(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size,
825 u64 pgt_size)
826 {
827 struct asic_fixed_properties *prop = &hdev->asic_prop;
828 size_t pool_chunk_size = SZ_4M;
829 struct pgt_info *hop0_pgt;
830 dma_addr_t dma_addr;
831 u64 virt_addr;
832 int i, rc;
833
834 /*
835 * we set alloc size as PAGE_SIZE (sine dma_alloc_coherent allocation order/size is
836 * PAGE_SHIFT/PAGE_SIZE) in order to be able to control the allocations alignment.
837 * This way we can call "DMA alloc align" according to dma_alloc granularity and supply
838 * allocations with higher-order alignment restrictions
839 */
840 hr_priv->mmu_pgt_pool = gen_pool_create(PAGE_SHIFT, -1);
841 if (ZERO_OR_NULL_PTR(hr_priv->mmu_pgt_pool)) {
842 dev_err(hdev->dev, "Failed to create hr page pool\n");
843 return -ENOMEM;
844 }
845
846 hr_priv->mmu_asid_hop0 = kvcalloc(prop->max_asid, sizeof(struct pgt_info), GFP_KERNEL);
847 if (ZERO_OR_NULL_PTR(hr_priv->mmu_asid_hop0)) {
848 dev_err(hdev->dev, "Failed to allocate hr-mmu hop0 table\n");
849 rc = -ENOMEM;
850 goto destroy_mmu_pgt_pool;
851 }
852
853 for (i = 0 ; i < pgt_size ; i += pool_chunk_size) {
854 virt_addr = (uintptr_t) hl_asic_dma_alloc_coherent(hdev, pool_chunk_size,
855 &dma_addr,
856 GFP_KERNEL | __GFP_ZERO);
857 if (ZERO_OR_NULL_PTR(virt_addr)) {
858 dev_err(hdev->dev,
859 "Failed to allocate memory for host-resident page pool\n");
860 rc = -ENOMEM;
861 goto destroy_mmu_pgt_pool;
862 }
863
864 rc = gen_pool_add_virt(hr_priv->mmu_pgt_pool, virt_addr, (phys_addr_t) dma_addr,
865 pool_chunk_size, -1);
866 if (rc) {
867 dev_err(hdev->dev, "Failed to fill host-resident page pool\n");
868 goto destroy_mmu_pgt_pool;
869 }
870 }
871
872 for (i = 0 ; i < prop->max_asid ; i++) {
873 hop0_pgt = &hr_priv->mmu_asid_hop0[i];
874 hop0_pgt->virt_addr = (uintptr_t)
875 gen_pool_dma_zalloc_align(hr_priv->mmu_pgt_pool,
876 hop_table_size,
877 (dma_addr_t *) &hop0_pgt->phys_addr,
878 hop_table_size);
879 if (!hop0_pgt->virt_addr) {
880 dev_err(hdev->dev, "Failed to allocate HOP from pgt pool\n");
881 rc = -ENOMEM;
882 goto destroy_mmu_pgt_pool;
883 }
884 }
885
886 /* MMU H/W init will be done in device hw_init() */
887
888 return 0;
889
890 destroy_mmu_pgt_pool:
891 hl_mmu_hr_pool_destroy(hdev, hr_priv, hop_table_size);
892 if (!ZERO_OR_NULL_PTR(hr_priv->mmu_asid_hop0))
893 kvfree(hr_priv->mmu_asid_hop0);
894
895 return rc;
896 }
897
898 /**
899 * hl_mmu_hr_fini() - release the MMU module.
900 * @hdev: habanalabs device structure.
901 * @hr_priv: MMU host resident private info.
902 * @hop_table_size: HOP table size
903 *
904 * This function does the following:
905 * - Disable MMU in H/W.
906 * - Free the pgt_infos pool.
907 *
908 * All contexts should be freed before calling this function.
909 */
hl_mmu_hr_fini(struct hl_device * hdev,struct hl_mmu_hr_priv * hr_priv,u32 hop_table_size)910 void hl_mmu_hr_fini(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size)
911 {
912 /* MMU H/W fini was already done in device hw_fini() */
913
914 hl_mmu_hr_pool_destroy(hdev, hr_priv, hop_table_size);
915
916 if (!ZERO_OR_NULL_PTR(hr_priv->mmu_asid_hop0)) {
917 kvfree(hr_priv->mmu_asid_hop0);
918
919 /* Make sure that if we arrive here again without init was
920 * called we won't cause kernel panic. This can happen for
921 * example if we fail during hard reset code at certain points
922 */
923 hr_priv->mmu_asid_hop0 = NULL;
924 }
925 }
926
927 /**
928 * hl_mmu_hr_free_hop_remove_pgt() - free HOP and remove PGT from hash
929 * @pgt_info: page table info structure.
930 * @hr_priv: MMU HR private data.
931 * @hop_table_size: HOP table size.
932 */
hl_mmu_hr_free_hop_remove_pgt(struct pgt_info * pgt_info,struct hl_mmu_hr_priv * hr_priv,u32 hop_table_size)933 void hl_mmu_hr_free_hop_remove_pgt(struct pgt_info *pgt_info, struct hl_mmu_hr_priv *hr_priv,
934 u32 hop_table_size)
935 {
936 gen_pool_free(hr_priv->mmu_pgt_pool, pgt_info->virt_addr, hop_table_size);
937 hash_del(&pgt_info->node);
938 kfree(pgt_info);
939 }
940
941 /**
942 * hl_mmu_hr_pte_phys_to_virt() - translate PTE phys addr to virt addr
943 * @ctx: pointer to the context structure
944 * @pgt: pgt_info for the HOP hosting the PTE
945 * @phys_pte_addr: phys address of the PTE
946 * @hop_table_size: HOP table size
947 *
948 * @return PTE virtual address
949 *
950 * The function use the pgt_info to get HOP base virt addr and obtain the PTE's virt addr
951 * by adding the PTE offset.
952 */
hl_mmu_hr_pte_phys_to_virt(struct hl_ctx * ctx,struct pgt_info * pgt,u64 phys_pte_addr,u32 hop_table_size)953 u64 hl_mmu_hr_pte_phys_to_virt(struct hl_ctx *ctx, struct pgt_info *pgt,
954 u64 phys_pte_addr, u32 hop_table_size)
955 {
956 u64 page_mask = (hop_table_size - 1);
957 u64 pte_offset = phys_pte_addr & page_mask;
958
959 return pgt->virt_addr + pte_offset;
960 }
961
962 /**
963 * hl_mmu_hr_write_pte() - write HR PTE
964 * @ctx: pointer to the context structure
965 * @pgt_info: HOP's page table info structure
966 * @phys_pte_addr: phys PTE address
967 * @val: raw PTE data
968 * @hop_table_size: HOP table size
969 */
hl_mmu_hr_write_pte(struct hl_ctx * ctx,struct pgt_info * pgt_info,u64 phys_pte_addr,u64 val,u32 hop_table_size)970 void hl_mmu_hr_write_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr,
971 u64 val, u32 hop_table_size)
972 {
973 /*
974 * The value to write is the phys address of the next hop +
975 * flags at the 12 LSBs.
976 */
977 u64 virt_addr = hl_mmu_hr_pte_phys_to_virt(ctx, pgt_info, phys_pte_addr, hop_table_size);
978
979 *((u64 *) (uintptr_t) virt_addr) = val;
980 }
981
982 /**
983 * hl_mmu_hr_clear_pte() - clear HR PTE
984 * @ctx: pointer to the context structure
985 * @pgt_info: HOP's page table info structure
986 * @phys_pte_addr: phys PTE address
987 * @hop_table_size: HOP table size
988 */
hl_mmu_hr_clear_pte(struct hl_ctx * ctx,struct pgt_info * pgt_info,u64 phys_pte_addr,u32 hop_table_size)989 void hl_mmu_hr_clear_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr,
990 u32 hop_table_size)
991 {
992 /* no need to transform the value to physical address */
993 hl_mmu_hr_write_pte(ctx, pgt_info, phys_pte_addr, 0, hop_table_size);
994 }
995
996 /**
997 * hl_mmu_hr_put_pte() - put HR PTE and remove it if necessary (no more PTEs)
998 * @ctx: pointer to the context structure
999 * @pgt_info: HOP's page table info structure
1000 * @hr_priv: HR MMU private info
1001 * @hop_table_size: HOP table size
1002 *
1003 * @return number of PTEs still in the HOP
1004 */
hl_mmu_hr_put_pte(struct hl_ctx * ctx,struct pgt_info * pgt_info,struct hl_mmu_hr_priv * hr_priv,u32 hop_table_size)1005 int hl_mmu_hr_put_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info,
1006 struct hl_mmu_hr_priv *hr_priv,
1007 u32 hop_table_size)
1008 {
1009 int num_of_ptes_left;
1010
1011 pgt_info->num_of_ptes--;
1012
1013 /*
1014 * Need to save the number of ptes left because free_hop might free
1015 * the pgt_info
1016 */
1017 num_of_ptes_left = pgt_info->num_of_ptes;
1018 if (!num_of_ptes_left)
1019 hl_mmu_hr_free_hop_remove_pgt(pgt_info, hr_priv, hop_table_size);
1020
1021 return num_of_ptes_left;
1022 }
1023
1024 /**
1025 * hl_mmu_hr_get_pte() - increase PGT PTE count
1026 * @ctx: pointer to the context structure
1027 * @hr_func: host resident functions
1028 * @phys_hop_addr: HOP phys address
1029 */
hl_mmu_hr_get_pte(struct hl_ctx * ctx,struct hl_hr_mmu_funcs * hr_func,u64 phys_hop_addr)1030 void hl_mmu_hr_get_pte(struct hl_ctx *ctx, struct hl_hr_mmu_funcs *hr_func, u64 phys_hop_addr)
1031 {
1032 hr_func->get_pgt_info(ctx, phys_hop_addr)->num_of_ptes++;
1033 }
1034
1035 /**
1036 * hl_mmu_hr_get_next_hop_pgt_info() - get pgt_info structure for the next HOP
1037 * @ctx: pointer to the context structure.
1038 * @hr_func: host resident functions.
1039 * @curr_pte: current PTE value.
1040 *
1041 * @return pgt_info structure on success, otherwise NULL.
1042 */
hl_mmu_hr_get_next_hop_pgt_info(struct hl_ctx * ctx,struct hl_hr_mmu_funcs * hr_func,u64 curr_pte)1043 struct pgt_info *hl_mmu_hr_get_next_hop_pgt_info(struct hl_ctx *ctx,
1044 struct hl_hr_mmu_funcs *hr_func,
1045 u64 curr_pte)
1046 {
1047 u64 next_hop_phys_addr = hl_mmu_get_next_hop_addr(ctx, curr_pte);
1048
1049 if (next_hop_phys_addr == ULLONG_MAX)
1050 return NULL;
1051
1052 return hr_func->get_pgt_info(ctx, next_hop_phys_addr);
1053 }
1054
1055 /**
1056 * hl_mmu_hr_alloc_hop() - allocate HOP
1057 * @ctx: pointer to the context structure.
1058 * @hr_priv: host resident private info structure.
1059 * @hr_func: host resident functions.
1060 * @mmu_prop: MMU properties.
1061 *
1062 * @return pgt_info structure associated with the allocated HOP on success, otherwise NULL.
1063 */
hl_mmu_hr_alloc_hop(struct hl_ctx * ctx,struct hl_mmu_hr_priv * hr_priv,struct hl_hr_mmu_funcs * hr_func,struct hl_mmu_properties * mmu_prop)1064 struct pgt_info *hl_mmu_hr_alloc_hop(struct hl_ctx *ctx, struct hl_mmu_hr_priv *hr_priv,
1065 struct hl_hr_mmu_funcs *hr_func,
1066 struct hl_mmu_properties *mmu_prop)
1067 {
1068 struct hl_device *hdev = ctx->hdev;
1069 struct pgt_info *pgt_info;
1070 dma_addr_t phys_addr;
1071 void *virt_addr;
1072 int i, retry = 1;
1073
1074 pgt_info = kmalloc(sizeof(*pgt_info), GFP_KERNEL);
1075 if (!pgt_info)
1076 return NULL;
1077
1078 for (i = 0; i <= retry; i++) {
1079 virt_addr = gen_pool_dma_zalloc_align(hr_priv->mmu_pgt_pool,
1080 mmu_prop->hop_table_size,
1081 &phys_addr,
1082 mmu_prop->hop_table_size);
1083 if (virt_addr)
1084 break;
1085
1086 /* No memory in pool - get some and try again */
1087 virt_addr = hl_asic_dma_alloc_coherent(hdev, SZ_2M, &phys_addr,
1088 GFP_KERNEL | __GFP_ZERO);
1089 if (ZERO_OR_NULL_PTR(virt_addr))
1090 break;
1091
1092 if (gen_pool_add_virt(hr_priv->mmu_pgt_pool, (unsigned long)virt_addr,
1093 phys_addr, SZ_2M, -1)) {
1094 hl_asic_dma_free_coherent(hdev, SZ_2M, virt_addr, phys_addr);
1095 virt_addr = NULL;
1096 break;
1097 }
1098 }
1099
1100 if (ZERO_OR_NULL_PTR(virt_addr)) {
1101 dev_err(hdev->dev, "failed to allocate page\n");
1102 goto pool_alloc_err;
1103 }
1104
1105 pgt_info->phys_addr = phys_addr;
1106 pgt_info->shadow_addr = (unsigned long) NULL;
1107 pgt_info->virt_addr = (unsigned long)virt_addr;
1108 pgt_info->ctx = ctx;
1109 pgt_info->num_of_ptes = 0;
1110 hr_func->add_pgt_info(ctx, pgt_info, phys_addr);
1111
1112 return pgt_info;
1113
1114 pool_alloc_err:
1115 kfree(pgt_info);
1116
1117 return NULL;
1118 }
1119
1120 /**
1121 * hl_mmu_hr_get_alloc_next_hop() - get the next HOP, allocate it if it does not exist
1122 * @ctx: pointer to the context structure.
1123 * @hr_priv: host resident private info structure.
1124 * @hr_func: host resident functions.
1125 * @mmu_prop: MMU properties.
1126 * @curr_pte: current PTE value.
1127 * @is_new_hop: set to true if HOP is new (caller responsibility to set it to false).
1128 *
1129 * @return pgt_info structure associated with the allocated HOP on success, otherwise NULL.
1130 */
hl_mmu_hr_get_alloc_next_hop(struct hl_ctx * ctx,struct hl_mmu_hr_priv * hr_priv,struct hl_hr_mmu_funcs * hr_func,struct hl_mmu_properties * mmu_prop,u64 curr_pte,bool * is_new_hop)1131 struct pgt_info *hl_mmu_hr_get_alloc_next_hop(struct hl_ctx *ctx,
1132 struct hl_mmu_hr_priv *hr_priv,
1133 struct hl_hr_mmu_funcs *hr_func,
1134 struct hl_mmu_properties *mmu_prop,
1135 u64 curr_pte, bool *is_new_hop)
1136 {
1137 u64 hop_addr = hl_mmu_get_next_hop_addr(ctx, curr_pte);
1138
1139 if (hop_addr != ULLONG_MAX)
1140 return hr_func->get_pgt_info(ctx, hop_addr);
1141
1142 *is_new_hop = true;
1143 return hl_mmu_hr_alloc_hop(ctx, hr_priv, hr_func, mmu_prop);
1144 }
1145
1146 /**
1147 * hl_mmu_hr_get_tlb_info() - get the TLB info (info for a specific mapping)
1148 * @ctx: pointer to the context structure.
1149 * @virt_addr: the virt address for which to get info.
1150 * @hops: HOPs info structure.
1151 * @hr_func: host resident functions.
1152 *
1153 * @return 0 on success, otherwise non 0 error code..
1154 */
hl_mmu_hr_get_tlb_info(struct hl_ctx * ctx,u64 virt_addr,struct hl_mmu_hop_info * hops,struct hl_hr_mmu_funcs * hr_func)1155 int hl_mmu_hr_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops,
1156 struct hl_hr_mmu_funcs *hr_func)
1157 {
1158 /* using 6 HOPs as this is the maximum number of HOPs */
1159 struct pgt_info *hops_pgt_info[MMU_ARCH_6_HOPS] = { NULL };
1160 struct hl_device *hdev = ctx->hdev;
1161 struct hl_mmu_properties *mmu_prop;
1162 int rc, i, used_hops;
1163 bool is_huge;
1164
1165 rc = hr_func->get_tlb_mapping_params(hdev, &mmu_prop, hops, virt_addr, &is_huge);
1166 if (rc)
1167 return rc;
1168
1169 used_hops = mmu_prop->num_hops;
1170
1171 /* huge pages use one less hop */
1172 if (is_huge)
1173 used_hops--;
1174
1175 hops->scrambled_vaddr = hdev->asic_funcs->scramble_addr(hdev, virt_addr);
1176
1177 for (i = 0 ; i < used_hops ; i++) {
1178 if (i == 0)
1179 hops_pgt_info[i] = hr_func->get_hop0_pgt_info(ctx);
1180 else
1181 hops_pgt_info[i] = hl_mmu_hr_get_next_hop_pgt_info(ctx, hr_func,
1182 hops->hop_info[i - 1].hop_pte_val);
1183
1184 if (!hops_pgt_info[i])
1185 return -EFAULT;
1186
1187 hops->hop_info[i].hop_addr = hops_pgt_info[i]->phys_addr;
1188 hops->hop_info[i].hop_pte_addr =
1189 hl_mmu_get_hop_pte_phys_addr(ctx, mmu_prop, i,
1190 hops->hop_info[i].hop_addr,
1191 hops->scrambled_vaddr);
1192 hops->hop_info[i].hop_pte_val = *(u64 *) (uintptr_t)
1193 hl_mmu_hr_pte_phys_to_virt(ctx, hops_pgt_info[i],
1194 hops->hop_info[i].hop_pte_addr,
1195 mmu_prop->hop_table_size);
1196
1197 if (!(hops->hop_info[i].hop_pte_val & PAGE_PRESENT_MASK))
1198 return -EFAULT;
1199
1200 if (hops->hop_info[i].hop_pte_val & mmu_prop->last_mask)
1201 break;
1202 }
1203
1204 /* if passed over all hops then no last hop was found */
1205 if (i == mmu_prop->num_hops)
1206 return -EFAULT;
1207
1208 if (hops->scrambled_vaddr != virt_addr)
1209 hops->unscrambled_paddr = hdev->asic_funcs->descramble_addr
1210 (hdev, hops->hop_info[i].hop_pte_val);
1211 else
1212 hops->unscrambled_paddr = hops->hop_info[i].hop_pte_val;
1213
1214 hops->used_hops = i + 1;
1215
1216 return 0;
1217 }
1218
hl_mmu_dr_get_pgt_info(struct hl_ctx * ctx,u64 hop_addr)1219 struct pgt_info *hl_mmu_dr_get_pgt_info(struct hl_ctx *ctx, u64 hop_addr)
1220 {
1221 struct pgt_info *pgt_info = NULL;
1222
1223 hash_for_each_possible(ctx->mmu_shadow_hash, pgt_info, node,
1224 (unsigned long) hop_addr)
1225 if (hop_addr == pgt_info->shadow_addr)
1226 break;
1227
1228 return pgt_info;
1229 }
1230
hl_mmu_dr_free_hop(struct hl_ctx * ctx,u64 hop_addr)1231 void hl_mmu_dr_free_hop(struct hl_ctx *ctx, u64 hop_addr)
1232 {
1233 struct pgt_info *pgt_info = hl_mmu_dr_get_pgt_info(ctx, hop_addr);
1234
1235 hl_mmu_dr_free_pgt_node(ctx, pgt_info);
1236 }
1237
hl_mmu_dr_free_pgt_node(struct hl_ctx * ctx,struct pgt_info * pgt_info)1238 void hl_mmu_dr_free_pgt_node(struct hl_ctx *ctx, struct pgt_info *pgt_info)
1239 {
1240 struct hl_device *hdev = ctx->hdev;
1241
1242 gen_pool_free(hdev->mmu_priv.dr.mmu_pgt_pool, pgt_info->phys_addr,
1243 hdev->asic_prop.dmmu.hop_table_size);
1244 hash_del(&pgt_info->node);
1245 kfree((u64 *) (uintptr_t) pgt_info->shadow_addr);
1246 kfree(pgt_info);
1247 }
1248
hl_mmu_dr_get_phys_hop0_addr(struct hl_ctx * ctx)1249 u64 hl_mmu_dr_get_phys_hop0_addr(struct hl_ctx *ctx)
1250 {
1251 return ctx->hdev->asic_prop.mmu_pgt_addr +
1252 (ctx->asid * ctx->hdev->asic_prop.dmmu.hop_table_size);
1253 }
1254
hl_mmu_dr_get_hop0_addr(struct hl_ctx * ctx)1255 u64 hl_mmu_dr_get_hop0_addr(struct hl_ctx *ctx)
1256 {
1257 return (u64) (uintptr_t) ctx->hdev->mmu_priv.dr.mmu_shadow_hop0 +
1258 (ctx->asid * ctx->hdev->asic_prop.dmmu.hop_table_size);
1259 }
1260
hl_mmu_dr_get_phys_addr(struct hl_ctx * ctx,u64 shadow_addr)1261 u64 hl_mmu_dr_get_phys_addr(struct hl_ctx *ctx, u64 shadow_addr)
1262 {
1263 u64 page_mask = ctx->hdev->asic_prop.dmmu.hop_table_size - 1;
1264 u64 shadow_hop_addr = shadow_addr & (~page_mask);
1265 u64 pte_offset = shadow_addr & page_mask;
1266 u64 phys_hop_addr;
1267
1268 if (shadow_hop_addr != hl_mmu_dr_get_hop0_addr(ctx))
1269 phys_hop_addr = hl_mmu_dr_get_pgt_info(ctx, shadow_hop_addr)->phys_addr;
1270 else
1271 phys_hop_addr = hl_mmu_dr_get_phys_hop0_addr(ctx);
1272
1273 return phys_hop_addr + pte_offset;
1274 }
1275
hl_mmu_dr_write_pte(struct hl_ctx * ctx,u64 shadow_pte_addr,u64 val)1276 void hl_mmu_dr_write_pte(struct hl_ctx *ctx, u64 shadow_pte_addr, u64 val)
1277 {
1278 u64 phys_val = hl_mmu_dr_get_phys_addr(ctx, val);
1279
1280 ctx->hdev->asic_funcs->write_pte(ctx->hdev, hl_mmu_dr_get_phys_addr(ctx, shadow_pte_addr),
1281 phys_val);
1282
1283 *(u64 *) (uintptr_t) shadow_pte_addr = val;
1284 }
1285
hl_mmu_dr_write_final_pte(struct hl_ctx * ctx,u64 shadow_pte_addr,u64 val)1286 void hl_mmu_dr_write_final_pte(struct hl_ctx *ctx, u64 shadow_pte_addr, u64 val)
1287 {
1288 ctx->hdev->asic_funcs->write_pte(ctx->hdev,
1289 hl_mmu_dr_get_phys_addr(ctx, shadow_pte_addr), val);
1290 *(u64 *) (uintptr_t) shadow_pte_addr = val;
1291 }
1292
hl_mmu_dr_clear_pte(struct hl_ctx * ctx,u64 pte_addr)1293 void hl_mmu_dr_clear_pte(struct hl_ctx *ctx, u64 pte_addr)
1294 {
1295 hl_mmu_dr_write_final_pte(ctx, pte_addr, 0);
1296 }
1297
hl_mmu_dr_get_pte(struct hl_ctx * ctx,u64 hop_addr)1298 void hl_mmu_dr_get_pte(struct hl_ctx *ctx, u64 hop_addr)
1299 {
1300 hl_mmu_dr_get_pgt_info(ctx, hop_addr)->num_of_ptes++;
1301 }
1302
hl_mmu_dr_put_pte(struct hl_ctx * ctx,u64 hop_addr)1303 int hl_mmu_dr_put_pte(struct hl_ctx *ctx, u64 hop_addr)
1304 {
1305 struct pgt_info *pgt_info = hl_mmu_dr_get_pgt_info(ctx, hop_addr);
1306 int num_of_ptes_left;
1307
1308 pgt_info->num_of_ptes--;
1309
1310 /*
1311 * Need to save the number of ptes left because hl_mmu_free_hop might free
1312 * the pgt_info
1313 */
1314 num_of_ptes_left = pgt_info->num_of_ptes;
1315 if (!num_of_ptes_left)
1316 hl_mmu_dr_free_pgt_node(ctx, pgt_info);
1317
1318 return num_of_ptes_left;
1319 }
1320
hl_mmu_dr_alloc_hop(struct hl_ctx * ctx)1321 u64 hl_mmu_dr_alloc_hop(struct hl_ctx *ctx)
1322 {
1323 struct hl_device *hdev = ctx->hdev;
1324 struct asic_fixed_properties *prop = &hdev->asic_prop;
1325 struct pgt_info *pgt_info;
1326 u64 phys_addr, shadow_addr;
1327
1328 pgt_info = kmalloc(sizeof(*pgt_info), GFP_KERNEL);
1329 if (!pgt_info)
1330 return ULLONG_MAX;
1331
1332 phys_addr = (u64) gen_pool_alloc(hdev->mmu_priv.dr.mmu_pgt_pool,
1333 prop->dmmu.hop_table_size);
1334 if (!phys_addr) {
1335 dev_err(hdev->dev, "failed to allocate page\n");
1336 goto pool_add_err;
1337 }
1338
1339 shadow_addr = (u64) (uintptr_t) kzalloc(prop->dmmu.hop_table_size,
1340 GFP_KERNEL);
1341 if (!shadow_addr)
1342 goto shadow_err;
1343
1344 pgt_info->phys_addr = phys_addr;
1345 pgt_info->shadow_addr = shadow_addr;
1346 pgt_info->ctx = ctx;
1347 pgt_info->num_of_ptes = 0;
1348 hash_add(ctx->mmu_shadow_hash, &pgt_info->node, shadow_addr);
1349
1350 return shadow_addr;
1351
1352 shadow_err:
1353 gen_pool_free(hdev->mmu_priv.dr.mmu_pgt_pool,
1354 phys_addr, prop->dmmu.hop_table_size);
1355 pool_add_err:
1356 kfree(pgt_info);
1357
1358 return ULLONG_MAX;
1359 }
1360
hl_mmu_dr_get_alloc_next_hop_addr(struct hl_ctx * ctx,u64 curr_pte,bool * is_new_hop)1361 u64 hl_mmu_dr_get_alloc_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte, bool *is_new_hop)
1362 {
1363 u64 hop_addr = hl_mmu_get_next_hop_addr(ctx, curr_pte);
1364
1365 if (hop_addr == ULLONG_MAX) {
1366 hop_addr = hl_mmu_dr_alloc_hop(ctx);
1367 *is_new_hop = (hop_addr != ULLONG_MAX);
1368 }
1369
1370 return hop_addr;
1371 }
1372
hl_mmu_dr_flush(struct hl_ctx * ctx)1373 void hl_mmu_dr_flush(struct hl_ctx *ctx)
1374 {
1375 /* flush all writes from all cores to reach PCI */
1376 mb();
1377 ctx->hdev->asic_funcs->read_pte(ctx->hdev, hl_mmu_dr_get_phys_hop0_addr(ctx));
1378 }
1379
hl_mmu_dr_init(struct hl_device * hdev)1380 int hl_mmu_dr_init(struct hl_device *hdev)
1381 {
1382 struct asic_fixed_properties *prop = &hdev->asic_prop;
1383 int rc;
1384
1385 hdev->mmu_priv.dr.mmu_pgt_pool =
1386 gen_pool_create(__ffs(prop->dmmu.hop_table_size), -1);
1387
1388 if (!hdev->mmu_priv.dr.mmu_pgt_pool) {
1389 dev_err(hdev->dev, "Failed to create page gen pool\n");
1390 return -ENOMEM;
1391 }
1392
1393 rc = gen_pool_add(hdev->mmu_priv.dr.mmu_pgt_pool, prop->mmu_pgt_addr +
1394 prop->dmmu.hop0_tables_total_size,
1395 prop->dmmu.pgt_size - prop->dmmu.hop0_tables_total_size,
1396 -1);
1397 if (rc) {
1398 dev_err(hdev->dev, "Failed to add memory to page gen pool\n");
1399 goto err_pool_add;
1400 }
1401
1402 hdev->mmu_priv.dr.mmu_shadow_hop0 = kvcalloc(prop->max_asid,
1403 prop->dmmu.hop_table_size, GFP_KERNEL);
1404 if (ZERO_OR_NULL_PTR(hdev->mmu_priv.dr.mmu_shadow_hop0)) {
1405 rc = -ENOMEM;
1406 goto err_pool_add;
1407 }
1408
1409 /* MMU H/W init will be done in device hw_init() */
1410
1411 return 0;
1412
1413 err_pool_add:
1414 gen_pool_destroy(hdev->mmu_priv.dr.mmu_pgt_pool);
1415
1416 return rc;
1417 }
1418
hl_mmu_dr_fini(struct hl_device * hdev)1419 void hl_mmu_dr_fini(struct hl_device *hdev)
1420 {
1421 /* MMU H/W fini was already done in device hw_fini() */
1422
1423 if (ZERO_OR_NULL_PTR(hdev->mmu_priv.dr.mmu_shadow_hop0))
1424 return;
1425
1426 kvfree(hdev->mmu_priv.dr.mmu_shadow_hop0);
1427 gen_pool_destroy(hdev->mmu_priv.dr.mmu_pgt_pool);
1428
1429 /* Make sure that if we arrive here again without init was
1430 * called we won't cause kernel panic. This can happen for
1431 * example if we fail during hard reset code at certain points
1432 */
1433 hdev->mmu_priv.dr.mmu_shadow_hop0 = NULL;
1434 }
1435