1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * BPF extensible scheduler class: Documentation/scheduler/sched-ext.rst
4 *
5 * Copyright (c) 2022 Meta Platforms, Inc. and affiliates.
6 * Copyright (c) 2022 Tejun Heo <tj@kernel.org>
7 * Copyright (c) 2022 David Vernet <dvernet@meta.com>
8 */
9 #include <linux/btf_ids.h>
10 #include "ext_idle.h"
11
12 /*
13 * NOTE: sched_ext is in the process of growing multiple scheduler support and
14 * scx_root usage is in a transitional state. Naked dereferences are safe if the
15 * caller is one of the tasks attached to SCX and explicit RCU dereference is
16 * necessary otherwise. Naked scx_root dereferences trigger sparse warnings but
17 * are used as temporary markers to indicate that the dereferences need to be
18 * updated to point to the associated scheduler instances rather than scx_root.
19 */
20 static struct scx_sched __rcu *scx_root;
21
22 /*
23 * During exit, a task may schedule after losing its PIDs. When disabling the
24 * BPF scheduler, we need to be able to iterate tasks in every state to
25 * guarantee system safety. Maintain a dedicated task list which contains every
26 * task between its fork and eventual free.
27 */
28 static DEFINE_RAW_SPINLOCK(scx_tasks_lock);
29 static LIST_HEAD(scx_tasks);
30
31 /* ops enable/disable */
32 static DEFINE_MUTEX(scx_enable_mutex);
33 DEFINE_STATIC_KEY_FALSE(__scx_enabled);
34 DEFINE_STATIC_PERCPU_RWSEM(scx_fork_rwsem);
35 static atomic_t scx_enable_state_var = ATOMIC_INIT(SCX_DISABLED);
36 static int scx_bypass_depth;
37 static cpumask_var_t scx_bypass_lb_donee_cpumask;
38 static cpumask_var_t scx_bypass_lb_resched_cpumask;
39 static bool scx_aborting;
40 static bool scx_init_task_enabled;
41 static bool scx_switching_all;
42 DEFINE_STATIC_KEY_FALSE(__scx_switched_all);
43
44 /*
45 * Tracks whether scx_enable() called scx_bypass(true). Used to balance bypass
46 * depth on enable failure. Will be removed when bypass depth is moved into the
47 * sched instance.
48 */
49 static bool scx_bypassed_for_enable;
50
51 static atomic_long_t scx_nr_rejected = ATOMIC_LONG_INIT(0);
52 static atomic_long_t scx_hotplug_seq = ATOMIC_LONG_INIT(0);
53
54 /*
55 * A monotically increasing sequence number that is incremented every time a
56 * scheduler is enabled. This can be used by to check if any custom sched_ext
57 * scheduler has ever been used in the system.
58 */
59 static atomic_long_t scx_enable_seq = ATOMIC_LONG_INIT(0);
60
61 /*
62 * The maximum amount of time in jiffies that a task may be runnable without
63 * being scheduled on a CPU. If this timeout is exceeded, it will trigger
64 * scx_error().
65 */
66 static unsigned long scx_watchdog_timeout;
67
68 /*
69 * The last time the delayed work was run. This delayed work relies on
70 * ksoftirqd being able to run to service timer interrupts, so it's possible
71 * that this work itself could get wedged. To account for this, we check that
72 * it's not stalled in the timer tick, and trigger an error if it is.
73 */
74 static unsigned long scx_watchdog_timestamp = INITIAL_JIFFIES;
75
76 static struct delayed_work scx_watchdog_work;
77
78 /*
79 * For %SCX_KICK_WAIT: Each CPU has a pointer to an array of kick_sync sequence
80 * numbers. The arrays are allocated with kvzalloc() as size can exceed percpu
81 * allocator limits on large machines. O(nr_cpu_ids^2) allocation, allocated
82 * lazily when enabling and freed when disabling to avoid waste when sched_ext
83 * isn't active.
84 */
85 struct scx_kick_syncs {
86 struct rcu_head rcu;
87 unsigned long syncs[];
88 };
89
90 static DEFINE_PER_CPU(struct scx_kick_syncs __rcu *, scx_kick_syncs);
91
92 /*
93 * Direct dispatch marker.
94 *
95 * Non-NULL values are used for direct dispatch from enqueue path. A valid
96 * pointer points to the task currently being enqueued. An ERR_PTR value is used
97 * to indicate that direct dispatch has already happened.
98 */
99 static DEFINE_PER_CPU(struct task_struct *, direct_dispatch_task);
100
101 static const struct rhashtable_params dsq_hash_params = {
102 .key_len = sizeof_field(struct scx_dispatch_q, id),
103 .key_offset = offsetof(struct scx_dispatch_q, id),
104 .head_offset = offsetof(struct scx_dispatch_q, hash_node),
105 };
106
107 static LLIST_HEAD(dsqs_to_free);
108
109 /* dispatch buf */
110 struct scx_dsp_buf_ent {
111 struct task_struct *task;
112 unsigned long qseq;
113 u64 dsq_id;
114 u64 enq_flags;
115 };
116
117 static u32 scx_dsp_max_batch;
118
119 struct scx_dsp_ctx {
120 struct rq *rq;
121 u32 cursor;
122 u32 nr_tasks;
123 struct scx_dsp_buf_ent buf[];
124 };
125
126 static struct scx_dsp_ctx __percpu *scx_dsp_ctx;
127
128 /* string formatting from BPF */
129 struct scx_bstr_buf {
130 u64 data[MAX_BPRINTF_VARARGS];
131 char line[SCX_EXIT_MSG_LEN];
132 };
133
134 static DEFINE_RAW_SPINLOCK(scx_exit_bstr_buf_lock);
135 static struct scx_bstr_buf scx_exit_bstr_buf;
136
137 /* ops debug dump */
138 struct scx_dump_data {
139 s32 cpu;
140 bool first;
141 s32 cursor;
142 struct seq_buf *s;
143 const char *prefix;
144 struct scx_bstr_buf buf;
145 };
146
147 static struct scx_dump_data scx_dump_data = {
148 .cpu = -1,
149 };
150
151 /* /sys/kernel/sched_ext interface */
152 static struct kset *scx_kset;
153
154 /*
155 * Parameters that can be adjusted through /sys/module/sched_ext/parameters.
156 * There usually is no reason to modify these as normal scheduler operation
157 * shouldn't be affected by them. The knobs are primarily for debugging.
158 */
159 static u64 scx_slice_dfl = SCX_SLICE_DFL;
160 static unsigned int scx_slice_bypass_us = SCX_SLICE_BYPASS / NSEC_PER_USEC;
161 static unsigned int scx_bypass_lb_intv_us = SCX_BYPASS_LB_DFL_INTV_US;
162
set_slice_us(const char * val,const struct kernel_param * kp)163 static int set_slice_us(const char *val, const struct kernel_param *kp)
164 {
165 return param_set_uint_minmax(val, kp, 100, 100 * USEC_PER_MSEC);
166 }
167
168 static const struct kernel_param_ops slice_us_param_ops = {
169 .set = set_slice_us,
170 .get = param_get_uint,
171 };
172
set_bypass_lb_intv_us(const char * val,const struct kernel_param * kp)173 static int set_bypass_lb_intv_us(const char *val, const struct kernel_param *kp)
174 {
175 return param_set_uint_minmax(val, kp, 0, 10 * USEC_PER_SEC);
176 }
177
178 static const struct kernel_param_ops bypass_lb_intv_us_param_ops = {
179 .set = set_bypass_lb_intv_us,
180 .get = param_get_uint,
181 };
182
183 #undef MODULE_PARAM_PREFIX
184 #define MODULE_PARAM_PREFIX "sched_ext."
185
186 module_param_cb(slice_bypass_us, &slice_us_param_ops, &scx_slice_bypass_us, 0600);
187 MODULE_PARM_DESC(slice_bypass_us, "bypass slice in microseconds, applied on [un]load (100us to 100ms)");
188 module_param_cb(bypass_lb_intv_us, &bypass_lb_intv_us_param_ops, &scx_bypass_lb_intv_us, 0600);
189 MODULE_PARM_DESC(bypass_lb_intv_us, "bypass load balance interval in microseconds (0 (disable) to 10s)");
190
191 #undef MODULE_PARAM_PREFIX
192
193 #define CREATE_TRACE_POINTS
194 #include <trace/events/sched_ext.h>
195
196 static void process_ddsp_deferred_locals(struct rq *rq);
197 static u32 reenq_local(struct rq *rq);
198 static void scx_kick_cpu(struct scx_sched *sch, s32 cpu, u64 flags);
199 static bool scx_vexit(struct scx_sched *sch, enum scx_exit_kind kind,
200 s64 exit_code, const char *fmt, va_list args);
201
scx_exit(struct scx_sched * sch,enum scx_exit_kind kind,s64 exit_code,const char * fmt,...)202 static __printf(4, 5) bool scx_exit(struct scx_sched *sch,
203 enum scx_exit_kind kind, s64 exit_code,
204 const char *fmt, ...)
205 {
206 va_list args;
207 bool ret;
208
209 va_start(args, fmt);
210 ret = scx_vexit(sch, kind, exit_code, fmt, args);
211 va_end(args);
212
213 return ret;
214 }
215
216 #define scx_error(sch, fmt, args...) scx_exit((sch), SCX_EXIT_ERROR, 0, fmt, ##args)
217 #define scx_verror(sch, fmt, args) scx_vexit((sch), SCX_EXIT_ERROR, 0, fmt, args)
218
219 #define SCX_HAS_OP(sch, op) test_bit(SCX_OP_IDX(op), (sch)->has_op)
220
jiffies_delta_msecs(unsigned long at,unsigned long now)221 static long jiffies_delta_msecs(unsigned long at, unsigned long now)
222 {
223 if (time_after(at, now))
224 return jiffies_to_msecs(at - now);
225 else
226 return -(long)jiffies_to_msecs(now - at);
227 }
228
229 /* if the highest set bit is N, return a mask with bits [N+1, 31] set */
higher_bits(u32 flags)230 static u32 higher_bits(u32 flags)
231 {
232 return ~((1 << fls(flags)) - 1);
233 }
234
235 /* return the mask with only the highest bit set */
highest_bit(u32 flags)236 static u32 highest_bit(u32 flags)
237 {
238 int bit = fls(flags);
239 return ((u64)1 << bit) >> 1;
240 }
241
u32_before(u32 a,u32 b)242 static bool u32_before(u32 a, u32 b)
243 {
244 return (s32)(a - b) < 0;
245 }
246
find_global_dsq(struct scx_sched * sch,struct task_struct * p)247 static struct scx_dispatch_q *find_global_dsq(struct scx_sched *sch,
248 struct task_struct *p)
249 {
250 return sch->global_dsqs[cpu_to_node(task_cpu(p))];
251 }
252
find_user_dsq(struct scx_sched * sch,u64 dsq_id)253 static struct scx_dispatch_q *find_user_dsq(struct scx_sched *sch, u64 dsq_id)
254 {
255 return rhashtable_lookup(&sch->dsq_hash, &dsq_id, dsq_hash_params);
256 }
257
scx_setscheduler_class(struct task_struct * p)258 static const struct sched_class *scx_setscheduler_class(struct task_struct *p)
259 {
260 if (p->sched_class == &stop_sched_class)
261 return &stop_sched_class;
262
263 return __setscheduler_class(p->policy, p->prio);
264 }
265
266 /*
267 * scx_kf_mask enforcement. Some kfuncs can only be called from specific SCX
268 * ops. When invoking SCX ops, SCX_CALL_OP[_RET]() should be used to indicate
269 * the allowed kfuncs and those kfuncs should use scx_kf_allowed() to check
270 * whether it's running from an allowed context.
271 *
272 * @mask is constant, always inline to cull the mask calculations.
273 */
scx_kf_allow(u32 mask)274 static __always_inline void scx_kf_allow(u32 mask)
275 {
276 /* nesting is allowed only in increasing scx_kf_mask order */
277 WARN_ONCE((mask | higher_bits(mask)) & current->scx.kf_mask,
278 "invalid nesting current->scx.kf_mask=0x%x mask=0x%x\n",
279 current->scx.kf_mask, mask);
280 current->scx.kf_mask |= mask;
281 barrier();
282 }
283
scx_kf_disallow(u32 mask)284 static void scx_kf_disallow(u32 mask)
285 {
286 barrier();
287 current->scx.kf_mask &= ~mask;
288 }
289
290 /*
291 * Track the rq currently locked.
292 *
293 * This allows kfuncs to safely operate on rq from any scx ops callback,
294 * knowing which rq is already locked.
295 */
296 DEFINE_PER_CPU(struct rq *, scx_locked_rq_state);
297
update_locked_rq(struct rq * rq)298 static inline void update_locked_rq(struct rq *rq)
299 {
300 /*
301 * Check whether @rq is actually locked. This can help expose bugs
302 * or incorrect assumptions about the context in which a kfunc or
303 * callback is executed.
304 */
305 if (rq)
306 lockdep_assert_rq_held(rq);
307 __this_cpu_write(scx_locked_rq_state, rq);
308 }
309
310 #define SCX_CALL_OP(sch, mask, op, rq, args...) \
311 do { \
312 if (rq) \
313 update_locked_rq(rq); \
314 if (mask) { \
315 scx_kf_allow(mask); \
316 (sch)->ops.op(args); \
317 scx_kf_disallow(mask); \
318 } else { \
319 (sch)->ops.op(args); \
320 } \
321 if (rq) \
322 update_locked_rq(NULL); \
323 } while (0)
324
325 #define SCX_CALL_OP_RET(sch, mask, op, rq, args...) \
326 ({ \
327 __typeof__((sch)->ops.op(args)) __ret; \
328 \
329 if (rq) \
330 update_locked_rq(rq); \
331 if (mask) { \
332 scx_kf_allow(mask); \
333 __ret = (sch)->ops.op(args); \
334 scx_kf_disallow(mask); \
335 } else { \
336 __ret = (sch)->ops.op(args); \
337 } \
338 if (rq) \
339 update_locked_rq(NULL); \
340 __ret; \
341 })
342
343 /*
344 * Some kfuncs are allowed only on the tasks that are subjects of the
345 * in-progress scx_ops operation for, e.g., locking guarantees. To enforce such
346 * restrictions, the following SCX_CALL_OP_*() variants should be used when
347 * invoking scx_ops operations that take task arguments. These can only be used
348 * for non-nesting operations due to the way the tasks are tracked.
349 *
350 * kfuncs which can only operate on such tasks can in turn use
351 * scx_kf_allowed_on_arg_tasks() to test whether the invocation is allowed on
352 * the specific task.
353 */
354 #define SCX_CALL_OP_TASK(sch, mask, op, rq, task, args...) \
355 do { \
356 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \
357 current->scx.kf_tasks[0] = task; \
358 SCX_CALL_OP((sch), mask, op, rq, task, ##args); \
359 current->scx.kf_tasks[0] = NULL; \
360 } while (0)
361
362 #define SCX_CALL_OP_TASK_RET(sch, mask, op, rq, task, args...) \
363 ({ \
364 __typeof__((sch)->ops.op(task, ##args)) __ret; \
365 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \
366 current->scx.kf_tasks[0] = task; \
367 __ret = SCX_CALL_OP_RET((sch), mask, op, rq, task, ##args); \
368 current->scx.kf_tasks[0] = NULL; \
369 __ret; \
370 })
371
372 #define SCX_CALL_OP_2TASKS_RET(sch, mask, op, rq, task0, task1, args...) \
373 ({ \
374 __typeof__((sch)->ops.op(task0, task1, ##args)) __ret; \
375 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \
376 current->scx.kf_tasks[0] = task0; \
377 current->scx.kf_tasks[1] = task1; \
378 __ret = SCX_CALL_OP_RET((sch), mask, op, rq, task0, task1, ##args); \
379 current->scx.kf_tasks[0] = NULL; \
380 current->scx.kf_tasks[1] = NULL; \
381 __ret; \
382 })
383
384 /* @mask is constant, always inline to cull unnecessary branches */
scx_kf_allowed(struct scx_sched * sch,u32 mask)385 static __always_inline bool scx_kf_allowed(struct scx_sched *sch, u32 mask)
386 {
387 if (unlikely(!(current->scx.kf_mask & mask))) {
388 scx_error(sch, "kfunc with mask 0x%x called from an operation only allowing 0x%x",
389 mask, current->scx.kf_mask);
390 return false;
391 }
392
393 /*
394 * Enforce nesting boundaries. e.g. A kfunc which can be called from
395 * DISPATCH must not be called if we're running DEQUEUE which is nested
396 * inside ops.dispatch(). We don't need to check boundaries for any
397 * blocking kfuncs as the verifier ensures they're only called from
398 * sleepable progs.
399 */
400 if (unlikely(highest_bit(mask) == SCX_KF_CPU_RELEASE &&
401 (current->scx.kf_mask & higher_bits(SCX_KF_CPU_RELEASE)))) {
402 scx_error(sch, "cpu_release kfunc called from a nested operation");
403 return false;
404 }
405
406 if (unlikely(highest_bit(mask) == SCX_KF_DISPATCH &&
407 (current->scx.kf_mask & higher_bits(SCX_KF_DISPATCH)))) {
408 scx_error(sch, "dispatch kfunc called from a nested operation");
409 return false;
410 }
411
412 return true;
413 }
414
415 /* see SCX_CALL_OP_TASK() */
scx_kf_allowed_on_arg_tasks(struct scx_sched * sch,u32 mask,struct task_struct * p)416 static __always_inline bool scx_kf_allowed_on_arg_tasks(struct scx_sched *sch,
417 u32 mask,
418 struct task_struct *p)
419 {
420 if (!scx_kf_allowed(sch, mask))
421 return false;
422
423 if (unlikely((p != current->scx.kf_tasks[0] &&
424 p != current->scx.kf_tasks[1]))) {
425 scx_error(sch, "called on a task not being operated on");
426 return false;
427 }
428
429 return true;
430 }
431
432 /**
433 * nldsq_next_task - Iterate to the next task in a non-local DSQ
434 * @dsq: user dsq being iterated
435 * @cur: current position, %NULL to start iteration
436 * @rev: walk backwards
437 *
438 * Returns %NULL when iteration is finished.
439 */
nldsq_next_task(struct scx_dispatch_q * dsq,struct task_struct * cur,bool rev)440 static struct task_struct *nldsq_next_task(struct scx_dispatch_q *dsq,
441 struct task_struct *cur, bool rev)
442 {
443 struct list_head *list_node;
444 struct scx_dsq_list_node *dsq_lnode;
445
446 lockdep_assert_held(&dsq->lock);
447
448 if (cur)
449 list_node = &cur->scx.dsq_list.node;
450 else
451 list_node = &dsq->list;
452
453 /* find the next task, need to skip BPF iteration cursors */
454 do {
455 if (rev)
456 list_node = list_node->prev;
457 else
458 list_node = list_node->next;
459
460 if (list_node == &dsq->list)
461 return NULL;
462
463 dsq_lnode = container_of(list_node, struct scx_dsq_list_node,
464 node);
465 } while (dsq_lnode->flags & SCX_DSQ_LNODE_ITER_CURSOR);
466
467 return container_of(dsq_lnode, struct task_struct, scx.dsq_list);
468 }
469
470 #define nldsq_for_each_task(p, dsq) \
471 for ((p) = nldsq_next_task((dsq), NULL, false); (p); \
472 (p) = nldsq_next_task((dsq), (p), false))
473
474
475 /*
476 * BPF DSQ iterator. Tasks in a non-local DSQ can be iterated in [reverse]
477 * dispatch order. BPF-visible iterator is opaque and larger to allow future
478 * changes without breaking backward compatibility. Can be used with
479 * bpf_for_each(). See bpf_iter_scx_dsq_*().
480 */
481 enum scx_dsq_iter_flags {
482 /* iterate in the reverse dispatch order */
483 SCX_DSQ_ITER_REV = 1U << 16,
484
485 __SCX_DSQ_ITER_HAS_SLICE = 1U << 30,
486 __SCX_DSQ_ITER_HAS_VTIME = 1U << 31,
487
488 __SCX_DSQ_ITER_USER_FLAGS = SCX_DSQ_ITER_REV,
489 __SCX_DSQ_ITER_ALL_FLAGS = __SCX_DSQ_ITER_USER_FLAGS |
490 __SCX_DSQ_ITER_HAS_SLICE |
491 __SCX_DSQ_ITER_HAS_VTIME,
492 };
493
494 struct bpf_iter_scx_dsq_kern {
495 struct scx_dsq_list_node cursor;
496 struct scx_dispatch_q *dsq;
497 u64 slice;
498 u64 vtime;
499 } __attribute__((aligned(8)));
500
501 struct bpf_iter_scx_dsq {
502 u64 __opaque[6];
503 } __attribute__((aligned(8)));
504
505
506 /*
507 * SCX task iterator.
508 */
509 struct scx_task_iter {
510 struct sched_ext_entity cursor;
511 struct task_struct *locked_task;
512 struct rq *rq;
513 struct rq_flags rf;
514 u32 cnt;
515 bool list_locked;
516 };
517
518 /**
519 * scx_task_iter_start - Lock scx_tasks_lock and start a task iteration
520 * @iter: iterator to init
521 *
522 * Initialize @iter and return with scx_tasks_lock held. Once initialized, @iter
523 * must eventually be stopped with scx_task_iter_stop().
524 *
525 * scx_tasks_lock and the rq lock may be released using scx_task_iter_unlock()
526 * between this and the first next() call or between any two next() calls. If
527 * the locks are released between two next() calls, the caller is responsible
528 * for ensuring that the task being iterated remains accessible either through
529 * RCU read lock or obtaining a reference count.
530 *
531 * All tasks which existed when the iteration started are guaranteed to be
532 * visited as long as they are not dead.
533 */
scx_task_iter_start(struct scx_task_iter * iter)534 static void scx_task_iter_start(struct scx_task_iter *iter)
535 {
536 memset(iter, 0, sizeof(*iter));
537
538 raw_spin_lock_irq(&scx_tasks_lock);
539
540 iter->cursor = (struct sched_ext_entity){ .flags = SCX_TASK_CURSOR };
541 list_add(&iter->cursor.tasks_node, &scx_tasks);
542 iter->list_locked = true;
543 }
544
__scx_task_iter_rq_unlock(struct scx_task_iter * iter)545 static void __scx_task_iter_rq_unlock(struct scx_task_iter *iter)
546 {
547 if (iter->locked_task) {
548 __balance_callbacks(iter->rq, &iter->rf);
549 task_rq_unlock(iter->rq, iter->locked_task, &iter->rf);
550 iter->locked_task = NULL;
551 }
552 }
553
554 /**
555 * scx_task_iter_unlock - Unlock rq and scx_tasks_lock held by a task iterator
556 * @iter: iterator to unlock
557 *
558 * If @iter is in the middle of a locked iteration, it may be locking the rq of
559 * the task currently being visited in addition to scx_tasks_lock. Unlock both.
560 * This function can be safely called anytime during an iteration. The next
561 * iterator operation will automatically restore the necessary locking.
562 */
scx_task_iter_unlock(struct scx_task_iter * iter)563 static void scx_task_iter_unlock(struct scx_task_iter *iter)
564 {
565 __scx_task_iter_rq_unlock(iter);
566 if (iter->list_locked) {
567 iter->list_locked = false;
568 raw_spin_unlock_irq(&scx_tasks_lock);
569 }
570 }
571
__scx_task_iter_maybe_relock(struct scx_task_iter * iter)572 static void __scx_task_iter_maybe_relock(struct scx_task_iter *iter)
573 {
574 if (!iter->list_locked) {
575 raw_spin_lock_irq(&scx_tasks_lock);
576 iter->list_locked = true;
577 }
578 }
579
580 /**
581 * scx_task_iter_stop - Stop a task iteration and unlock scx_tasks_lock
582 * @iter: iterator to exit
583 *
584 * Exit a previously initialized @iter. Must be called with scx_tasks_lock held
585 * which is released on return. If the iterator holds a task's rq lock, that rq
586 * lock is also released. See scx_task_iter_start() for details.
587 */
scx_task_iter_stop(struct scx_task_iter * iter)588 static void scx_task_iter_stop(struct scx_task_iter *iter)
589 {
590 __scx_task_iter_maybe_relock(iter);
591 list_del_init(&iter->cursor.tasks_node);
592 scx_task_iter_unlock(iter);
593 }
594
595 /**
596 * scx_task_iter_next - Next task
597 * @iter: iterator to walk
598 *
599 * Visit the next task. See scx_task_iter_start() for details. Locks are dropped
600 * and re-acquired every %SCX_TASK_ITER_BATCH iterations to avoid causing stalls
601 * by holding scx_tasks_lock for too long.
602 */
scx_task_iter_next(struct scx_task_iter * iter)603 static struct task_struct *scx_task_iter_next(struct scx_task_iter *iter)
604 {
605 struct list_head *cursor = &iter->cursor.tasks_node;
606 struct sched_ext_entity *pos;
607
608 if (!(++iter->cnt % SCX_TASK_ITER_BATCH)) {
609 scx_task_iter_unlock(iter);
610 cond_resched();
611 }
612
613 __scx_task_iter_maybe_relock(iter);
614
615 list_for_each_entry(pos, cursor, tasks_node) {
616 if (&pos->tasks_node == &scx_tasks)
617 return NULL;
618 if (!(pos->flags & SCX_TASK_CURSOR)) {
619 list_move(cursor, &pos->tasks_node);
620 return container_of(pos, struct task_struct, scx);
621 }
622 }
623
624 /* can't happen, should always terminate at scx_tasks above */
625 BUG();
626 }
627
628 /**
629 * scx_task_iter_next_locked - Next non-idle task with its rq locked
630 * @iter: iterator to walk
631 *
632 * Visit the non-idle task with its rq lock held. Allows callers to specify
633 * whether they would like to filter out dead tasks. See scx_task_iter_start()
634 * for details.
635 */
scx_task_iter_next_locked(struct scx_task_iter * iter)636 static struct task_struct *scx_task_iter_next_locked(struct scx_task_iter *iter)
637 {
638 struct task_struct *p;
639
640 __scx_task_iter_rq_unlock(iter);
641
642 while ((p = scx_task_iter_next(iter))) {
643 /*
644 * scx_task_iter is used to prepare and move tasks into SCX
645 * while loading the BPF scheduler and vice-versa while
646 * unloading. The init_tasks ("swappers") should be excluded
647 * from the iteration because:
648 *
649 * - It's unsafe to use __setschduler_prio() on an init_task to
650 * determine the sched_class to use as it won't preserve its
651 * idle_sched_class.
652 *
653 * - ops.init/exit_task() can easily be confused if called with
654 * init_tasks as they, e.g., share PID 0.
655 *
656 * As init_tasks are never scheduled through SCX, they can be
657 * skipped safely. Note that is_idle_task() which tests %PF_IDLE
658 * doesn't work here:
659 *
660 * - %PF_IDLE may not be set for an init_task whose CPU hasn't
661 * yet been onlined.
662 *
663 * - %PF_IDLE can be set on tasks that are not init_tasks. See
664 * play_idle_precise() used by CONFIG_IDLE_INJECT.
665 *
666 * Test for idle_sched_class as only init_tasks are on it.
667 */
668 if (p->sched_class != &idle_sched_class)
669 break;
670 }
671 if (!p)
672 return NULL;
673
674 iter->rq = task_rq_lock(p, &iter->rf);
675 iter->locked_task = p;
676
677 return p;
678 }
679
680 /**
681 * scx_add_event - Increase an event counter for 'name' by 'cnt'
682 * @sch: scx_sched to account events for
683 * @name: an event name defined in struct scx_event_stats
684 * @cnt: the number of the event occurred
685 *
686 * This can be used when preemption is not disabled.
687 */
688 #define scx_add_event(sch, name, cnt) do { \
689 this_cpu_add((sch)->pcpu->event_stats.name, (cnt)); \
690 trace_sched_ext_event(#name, (cnt)); \
691 } while(0)
692
693 /**
694 * __scx_add_event - Increase an event counter for 'name' by 'cnt'
695 * @sch: scx_sched to account events for
696 * @name: an event name defined in struct scx_event_stats
697 * @cnt: the number of the event occurred
698 *
699 * This should be used only when preemption is disabled.
700 */
701 #define __scx_add_event(sch, name, cnt) do { \
702 __this_cpu_add((sch)->pcpu->event_stats.name, (cnt)); \
703 trace_sched_ext_event(#name, cnt); \
704 } while(0)
705
706 /**
707 * scx_agg_event - Aggregate an event counter 'kind' from 'src_e' to 'dst_e'
708 * @dst_e: destination event stats
709 * @src_e: source event stats
710 * @kind: a kind of event to be aggregated
711 */
712 #define scx_agg_event(dst_e, src_e, kind) do { \
713 (dst_e)->kind += READ_ONCE((src_e)->kind); \
714 } while(0)
715
716 /**
717 * scx_dump_event - Dump an event 'kind' in 'events' to 's'
718 * @s: output seq_buf
719 * @events: event stats
720 * @kind: a kind of event to dump
721 */
722 #define scx_dump_event(s, events, kind) do { \
723 dump_line(&(s), "%40s: %16lld", #kind, (events)->kind); \
724 } while (0)
725
726
727 static void scx_read_events(struct scx_sched *sch,
728 struct scx_event_stats *events);
729
scx_enable_state(void)730 static enum scx_enable_state scx_enable_state(void)
731 {
732 return atomic_read(&scx_enable_state_var);
733 }
734
scx_set_enable_state(enum scx_enable_state to)735 static enum scx_enable_state scx_set_enable_state(enum scx_enable_state to)
736 {
737 return atomic_xchg(&scx_enable_state_var, to);
738 }
739
scx_tryset_enable_state(enum scx_enable_state to,enum scx_enable_state from)740 static bool scx_tryset_enable_state(enum scx_enable_state to,
741 enum scx_enable_state from)
742 {
743 int from_v = from;
744
745 return atomic_try_cmpxchg(&scx_enable_state_var, &from_v, to);
746 }
747
748 /**
749 * wait_ops_state - Busy-wait the specified ops state to end
750 * @p: target task
751 * @opss: state to wait the end of
752 *
753 * Busy-wait for @p to transition out of @opss. This can only be used when the
754 * state part of @opss is %SCX_QUEUEING or %SCX_DISPATCHING. This function also
755 * has load_acquire semantics to ensure that the caller can see the updates made
756 * in the enqueueing and dispatching paths.
757 */
wait_ops_state(struct task_struct * p,unsigned long opss)758 static void wait_ops_state(struct task_struct *p, unsigned long opss)
759 {
760 do {
761 cpu_relax();
762 } while (atomic_long_read_acquire(&p->scx.ops_state) == opss);
763 }
764
__cpu_valid(s32 cpu)765 static inline bool __cpu_valid(s32 cpu)
766 {
767 return likely(cpu >= 0 && cpu < nr_cpu_ids && cpu_possible(cpu));
768 }
769
770 /**
771 * ops_cpu_valid - Verify a cpu number, to be used on ops input args
772 * @sch: scx_sched to abort on error
773 * @cpu: cpu number which came from a BPF ops
774 * @where: extra information reported on error
775 *
776 * @cpu is a cpu number which came from the BPF scheduler and can be any value.
777 * Verify that it is in range and one of the possible cpus. If invalid, trigger
778 * an ops error.
779 */
ops_cpu_valid(struct scx_sched * sch,s32 cpu,const char * where)780 static bool ops_cpu_valid(struct scx_sched *sch, s32 cpu, const char *where)
781 {
782 if (__cpu_valid(cpu)) {
783 return true;
784 } else {
785 scx_error(sch, "invalid CPU %d%s%s", cpu, where ? " " : "", where ?: "");
786 return false;
787 }
788 }
789
790 /**
791 * ops_sanitize_err - Sanitize a -errno value
792 * @sch: scx_sched to error out on error
793 * @ops_name: operation to blame on failure
794 * @err: -errno value to sanitize
795 *
796 * Verify @err is a valid -errno. If not, trigger scx_error() and return
797 * -%EPROTO. This is necessary because returning a rogue -errno up the chain can
798 * cause misbehaviors. For an example, a large negative return from
799 * ops.init_task() triggers an oops when passed up the call chain because the
800 * value fails IS_ERR() test after being encoded with ERR_PTR() and then is
801 * handled as a pointer.
802 */
ops_sanitize_err(struct scx_sched * sch,const char * ops_name,s32 err)803 static int ops_sanitize_err(struct scx_sched *sch, const char *ops_name, s32 err)
804 {
805 if (err < 0 && err >= -MAX_ERRNO)
806 return err;
807
808 scx_error(sch, "ops.%s() returned an invalid errno %d", ops_name, err);
809 return -EPROTO;
810 }
811
run_deferred(struct rq * rq)812 static void run_deferred(struct rq *rq)
813 {
814 process_ddsp_deferred_locals(rq);
815
816 if (local_read(&rq->scx.reenq_local_deferred)) {
817 local_set(&rq->scx.reenq_local_deferred, 0);
818 reenq_local(rq);
819 }
820 }
821
deferred_bal_cb_workfn(struct rq * rq)822 static void deferred_bal_cb_workfn(struct rq *rq)
823 {
824 run_deferred(rq);
825 }
826
deferred_irq_workfn(struct irq_work * irq_work)827 static void deferred_irq_workfn(struct irq_work *irq_work)
828 {
829 struct rq *rq = container_of(irq_work, struct rq, scx.deferred_irq_work);
830
831 raw_spin_rq_lock(rq);
832 run_deferred(rq);
833 raw_spin_rq_unlock(rq);
834 }
835
836 /**
837 * schedule_deferred - Schedule execution of deferred actions on an rq
838 * @rq: target rq
839 *
840 * Schedule execution of deferred actions on @rq. Deferred actions are executed
841 * with @rq locked but unpinned, and thus can unlock @rq to e.g. migrate tasks
842 * to other rqs.
843 */
schedule_deferred(struct rq * rq)844 static void schedule_deferred(struct rq *rq)
845 {
846 /*
847 * Queue an irq work. They are executed on IRQ re-enable which may take
848 * a bit longer than the scheduler hook in schedule_deferred_locked().
849 */
850 irq_work_queue(&rq->scx.deferred_irq_work);
851 }
852
853 /**
854 * schedule_deferred_locked - Schedule execution of deferred actions on an rq
855 * @rq: target rq
856 *
857 * Schedule execution of deferred actions on @rq. Equivalent to
858 * schedule_deferred() but requires @rq to be locked and can be more efficient.
859 */
schedule_deferred_locked(struct rq * rq)860 static void schedule_deferred_locked(struct rq *rq)
861 {
862 lockdep_assert_rq_held(rq);
863
864 /*
865 * If in the middle of waking up a task, task_woken_scx() will be called
866 * afterwards which will then run the deferred actions, no need to
867 * schedule anything.
868 */
869 if (rq->scx.flags & SCX_RQ_IN_WAKEUP)
870 return;
871
872 /* Don't do anything if there already is a deferred operation. */
873 if (rq->scx.flags & SCX_RQ_BAL_CB_PENDING)
874 return;
875
876 /*
877 * If in balance, the balance callbacks will be called before rq lock is
878 * released. Schedule one.
879 *
880 *
881 * We can't directly insert the callback into the
882 * rq's list: The call can drop its lock and make the pending balance
883 * callback visible to unrelated code paths that call rq_pin_lock().
884 *
885 * Just let balance_one() know that it must do it itself.
886 */
887 if (rq->scx.flags & SCX_RQ_IN_BALANCE) {
888 rq->scx.flags |= SCX_RQ_BAL_CB_PENDING;
889 return;
890 }
891
892 /*
893 * No scheduler hooks available. Use the generic irq_work path. The
894 * above WAKEUP and BALANCE paths should cover most of the cases and the
895 * time to IRQ re-enable shouldn't be long.
896 */
897 schedule_deferred(rq);
898 }
899
900 /**
901 * touch_core_sched - Update timestamp used for core-sched task ordering
902 * @rq: rq to read clock from, must be locked
903 * @p: task to update the timestamp for
904 *
905 * Update @p->scx.core_sched_at timestamp. This is used by scx_prio_less() to
906 * implement global or local-DSQ FIFO ordering for core-sched. Should be called
907 * when a task becomes runnable and its turn on the CPU ends (e.g. slice
908 * exhaustion).
909 */
touch_core_sched(struct rq * rq,struct task_struct * p)910 static void touch_core_sched(struct rq *rq, struct task_struct *p)
911 {
912 lockdep_assert_rq_held(rq);
913
914 #ifdef CONFIG_SCHED_CORE
915 /*
916 * It's okay to update the timestamp spuriously. Use
917 * sched_core_disabled() which is cheaper than enabled().
918 *
919 * As this is used to determine ordering between tasks of sibling CPUs,
920 * it may be better to use per-core dispatch sequence instead.
921 */
922 if (!sched_core_disabled())
923 p->scx.core_sched_at = sched_clock_cpu(cpu_of(rq));
924 #endif
925 }
926
927 /**
928 * touch_core_sched_dispatch - Update core-sched timestamp on dispatch
929 * @rq: rq to read clock from, must be locked
930 * @p: task being dispatched
931 *
932 * If the BPF scheduler implements custom core-sched ordering via
933 * ops.core_sched_before(), @p->scx.core_sched_at is used to implement FIFO
934 * ordering within each local DSQ. This function is called from dispatch paths
935 * and updates @p->scx.core_sched_at if custom core-sched ordering is in effect.
936 */
touch_core_sched_dispatch(struct rq * rq,struct task_struct * p)937 static void touch_core_sched_dispatch(struct rq *rq, struct task_struct *p)
938 {
939 lockdep_assert_rq_held(rq);
940
941 #ifdef CONFIG_SCHED_CORE
942 if (unlikely(SCX_HAS_OP(scx_root, core_sched_before)))
943 touch_core_sched(rq, p);
944 #endif
945 }
946
update_curr_scx(struct rq * rq)947 static void update_curr_scx(struct rq *rq)
948 {
949 struct task_struct *curr = rq->curr;
950 s64 delta_exec;
951
952 delta_exec = update_curr_common(rq);
953 if (unlikely(delta_exec <= 0))
954 return;
955
956 if (curr->scx.slice != SCX_SLICE_INF) {
957 curr->scx.slice -= min_t(u64, curr->scx.slice, delta_exec);
958 if (!curr->scx.slice)
959 touch_core_sched(rq, curr);
960 }
961 }
962
scx_dsq_priq_less(struct rb_node * node_a,const struct rb_node * node_b)963 static bool scx_dsq_priq_less(struct rb_node *node_a,
964 const struct rb_node *node_b)
965 {
966 const struct task_struct *a =
967 container_of(node_a, struct task_struct, scx.dsq_priq);
968 const struct task_struct *b =
969 container_of(node_b, struct task_struct, scx.dsq_priq);
970
971 return time_before64(a->scx.dsq_vtime, b->scx.dsq_vtime);
972 }
973
dsq_mod_nr(struct scx_dispatch_q * dsq,s32 delta)974 static void dsq_mod_nr(struct scx_dispatch_q *dsq, s32 delta)
975 {
976 /* scx_bpf_dsq_nr_queued() reads ->nr without locking, use WRITE_ONCE() */
977 WRITE_ONCE(dsq->nr, dsq->nr + delta);
978 }
979
refill_task_slice_dfl(struct scx_sched * sch,struct task_struct * p)980 static void refill_task_slice_dfl(struct scx_sched *sch, struct task_struct *p)
981 {
982 p->scx.slice = READ_ONCE(scx_slice_dfl);
983 __scx_add_event(sch, SCX_EV_REFILL_SLICE_DFL, 1);
984 }
985
local_dsq_post_enq(struct scx_dispatch_q * dsq,struct task_struct * p,u64 enq_flags)986 static void local_dsq_post_enq(struct scx_dispatch_q *dsq, struct task_struct *p,
987 u64 enq_flags)
988 {
989 struct rq *rq = container_of(dsq, struct rq, scx.local_dsq);
990 bool preempt = false;
991
992 /*
993 * If @rq is in balance, the CPU is already vacant and looking for the
994 * next task to run. No need to preempt or trigger resched after moving
995 * @p into its local DSQ.
996 */
997 if (rq->scx.flags & SCX_RQ_IN_BALANCE)
998 return;
999
1000 if ((enq_flags & SCX_ENQ_PREEMPT) && p != rq->curr &&
1001 rq->curr->sched_class == &ext_sched_class) {
1002 rq->curr->scx.slice = 0;
1003 preempt = true;
1004 }
1005
1006 if (preempt || sched_class_above(&ext_sched_class, rq->curr->sched_class))
1007 resched_curr(rq);
1008 }
1009
dispatch_enqueue(struct scx_sched * sch,struct scx_dispatch_q * dsq,struct task_struct * p,u64 enq_flags)1010 static void dispatch_enqueue(struct scx_sched *sch, struct scx_dispatch_q *dsq,
1011 struct task_struct *p, u64 enq_flags)
1012 {
1013 bool is_local = dsq->id == SCX_DSQ_LOCAL;
1014
1015 WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node));
1016 WARN_ON_ONCE((p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) ||
1017 !RB_EMPTY_NODE(&p->scx.dsq_priq));
1018
1019 if (!is_local) {
1020 raw_spin_lock_nested(&dsq->lock,
1021 (enq_flags & SCX_ENQ_NESTED) ? SINGLE_DEPTH_NESTING : 0);
1022
1023 if (unlikely(dsq->id == SCX_DSQ_INVALID)) {
1024 scx_error(sch, "attempting to dispatch to a destroyed dsq");
1025 /* fall back to the global dsq */
1026 raw_spin_unlock(&dsq->lock);
1027 dsq = find_global_dsq(sch, p);
1028 raw_spin_lock(&dsq->lock);
1029 }
1030 }
1031
1032 if (unlikely((dsq->id & SCX_DSQ_FLAG_BUILTIN) &&
1033 (enq_flags & SCX_ENQ_DSQ_PRIQ))) {
1034 /*
1035 * SCX_DSQ_LOCAL and SCX_DSQ_GLOBAL DSQs always consume from
1036 * their FIFO queues. To avoid confusion and accidentally
1037 * starving vtime-dispatched tasks by FIFO-dispatched tasks, we
1038 * disallow any internal DSQ from doing vtime ordering of
1039 * tasks.
1040 */
1041 scx_error(sch, "cannot use vtime ordering for built-in DSQs");
1042 enq_flags &= ~SCX_ENQ_DSQ_PRIQ;
1043 }
1044
1045 if (enq_flags & SCX_ENQ_DSQ_PRIQ) {
1046 struct rb_node *rbp;
1047
1048 /*
1049 * A PRIQ DSQ shouldn't be using FIFO enqueueing. As tasks are
1050 * linked to both the rbtree and list on PRIQs, this can only be
1051 * tested easily when adding the first task.
1052 */
1053 if (unlikely(RB_EMPTY_ROOT(&dsq->priq) &&
1054 nldsq_next_task(dsq, NULL, false)))
1055 scx_error(sch, "DSQ ID 0x%016llx already had FIFO-enqueued tasks",
1056 dsq->id);
1057
1058 p->scx.dsq_flags |= SCX_TASK_DSQ_ON_PRIQ;
1059 rb_add(&p->scx.dsq_priq, &dsq->priq, scx_dsq_priq_less);
1060
1061 /*
1062 * Find the previous task and insert after it on the list so
1063 * that @dsq->list is vtime ordered.
1064 */
1065 rbp = rb_prev(&p->scx.dsq_priq);
1066 if (rbp) {
1067 struct task_struct *prev =
1068 container_of(rbp, struct task_struct,
1069 scx.dsq_priq);
1070 list_add(&p->scx.dsq_list.node, &prev->scx.dsq_list.node);
1071 /* first task unchanged - no update needed */
1072 } else {
1073 list_add(&p->scx.dsq_list.node, &dsq->list);
1074 /* not builtin and new task is at head - use fastpath */
1075 rcu_assign_pointer(dsq->first_task, p);
1076 }
1077 } else {
1078 /* a FIFO DSQ shouldn't be using PRIQ enqueuing */
1079 if (unlikely(!RB_EMPTY_ROOT(&dsq->priq)))
1080 scx_error(sch, "DSQ ID 0x%016llx already had PRIQ-enqueued tasks",
1081 dsq->id);
1082
1083 if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT)) {
1084 list_add(&p->scx.dsq_list.node, &dsq->list);
1085 /* new task inserted at head - use fastpath */
1086 if (!(dsq->id & SCX_DSQ_FLAG_BUILTIN))
1087 rcu_assign_pointer(dsq->first_task, p);
1088 } else {
1089 bool was_empty;
1090
1091 was_empty = list_empty(&dsq->list);
1092 list_add_tail(&p->scx.dsq_list.node, &dsq->list);
1093 if (was_empty && !(dsq->id & SCX_DSQ_FLAG_BUILTIN))
1094 rcu_assign_pointer(dsq->first_task, p);
1095 }
1096 }
1097
1098 /* seq records the order tasks are queued, used by BPF DSQ iterator */
1099 dsq->seq++;
1100 p->scx.dsq_seq = dsq->seq;
1101
1102 dsq_mod_nr(dsq, 1);
1103 p->scx.dsq = dsq;
1104
1105 /*
1106 * scx.ddsp_dsq_id and scx.ddsp_enq_flags are only relevant on the
1107 * direct dispatch path, but we clear them here because the direct
1108 * dispatch verdict may be overridden on the enqueue path during e.g.
1109 * bypass.
1110 */
1111 p->scx.ddsp_dsq_id = SCX_DSQ_INVALID;
1112 p->scx.ddsp_enq_flags = 0;
1113
1114 /*
1115 * We're transitioning out of QUEUEING or DISPATCHING. store_release to
1116 * match waiters' load_acquire.
1117 */
1118 if (enq_flags & SCX_ENQ_CLEAR_OPSS)
1119 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
1120
1121 if (is_local)
1122 local_dsq_post_enq(dsq, p, enq_flags);
1123 else
1124 raw_spin_unlock(&dsq->lock);
1125 }
1126
task_unlink_from_dsq(struct task_struct * p,struct scx_dispatch_q * dsq)1127 static void task_unlink_from_dsq(struct task_struct *p,
1128 struct scx_dispatch_q *dsq)
1129 {
1130 WARN_ON_ONCE(list_empty(&p->scx.dsq_list.node));
1131
1132 if (p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) {
1133 rb_erase(&p->scx.dsq_priq, &dsq->priq);
1134 RB_CLEAR_NODE(&p->scx.dsq_priq);
1135 p->scx.dsq_flags &= ~SCX_TASK_DSQ_ON_PRIQ;
1136 }
1137
1138 list_del_init(&p->scx.dsq_list.node);
1139 dsq_mod_nr(dsq, -1);
1140
1141 if (!(dsq->id & SCX_DSQ_FLAG_BUILTIN) && dsq->first_task == p) {
1142 struct task_struct *first_task;
1143
1144 first_task = nldsq_next_task(dsq, NULL, false);
1145 rcu_assign_pointer(dsq->first_task, first_task);
1146 }
1147 }
1148
dispatch_dequeue(struct rq * rq,struct task_struct * p)1149 static void dispatch_dequeue(struct rq *rq, struct task_struct *p)
1150 {
1151 struct scx_dispatch_q *dsq = p->scx.dsq;
1152 bool is_local = dsq == &rq->scx.local_dsq;
1153
1154 lockdep_assert_rq_held(rq);
1155
1156 if (!dsq) {
1157 /*
1158 * If !dsq && on-list, @p is on @rq's ddsp_deferred_locals.
1159 * Unlinking is all that's needed to cancel.
1160 */
1161 if (unlikely(!list_empty(&p->scx.dsq_list.node)))
1162 list_del_init(&p->scx.dsq_list.node);
1163
1164 /*
1165 * When dispatching directly from the BPF scheduler to a local
1166 * DSQ, the task isn't associated with any DSQ but
1167 * @p->scx.holding_cpu may be set under the protection of
1168 * %SCX_OPSS_DISPATCHING.
1169 */
1170 if (p->scx.holding_cpu >= 0)
1171 p->scx.holding_cpu = -1;
1172
1173 return;
1174 }
1175
1176 if (!is_local)
1177 raw_spin_lock(&dsq->lock);
1178
1179 /*
1180 * Now that we hold @dsq->lock, @p->holding_cpu and @p->scx.dsq_* can't
1181 * change underneath us.
1182 */
1183 if (p->scx.holding_cpu < 0) {
1184 /* @p must still be on @dsq, dequeue */
1185 task_unlink_from_dsq(p, dsq);
1186 } else {
1187 /*
1188 * We're racing against dispatch_to_local_dsq() which already
1189 * removed @p from @dsq and set @p->scx.holding_cpu. Clear the
1190 * holding_cpu which tells dispatch_to_local_dsq() that it lost
1191 * the race.
1192 */
1193 WARN_ON_ONCE(!list_empty(&p->scx.dsq_list.node));
1194 p->scx.holding_cpu = -1;
1195 }
1196 p->scx.dsq = NULL;
1197
1198 if (!is_local)
1199 raw_spin_unlock(&dsq->lock);
1200 }
1201
1202 /*
1203 * Abbreviated version of dispatch_dequeue() that can be used when both @p's rq
1204 * and dsq are locked.
1205 */
dispatch_dequeue_locked(struct task_struct * p,struct scx_dispatch_q * dsq)1206 static void dispatch_dequeue_locked(struct task_struct *p,
1207 struct scx_dispatch_q *dsq)
1208 {
1209 lockdep_assert_rq_held(task_rq(p));
1210 lockdep_assert_held(&dsq->lock);
1211
1212 task_unlink_from_dsq(p, dsq);
1213 p->scx.dsq = NULL;
1214 }
1215
find_dsq_for_dispatch(struct scx_sched * sch,struct rq * rq,u64 dsq_id,struct task_struct * p)1216 static struct scx_dispatch_q *find_dsq_for_dispatch(struct scx_sched *sch,
1217 struct rq *rq, u64 dsq_id,
1218 struct task_struct *p)
1219 {
1220 struct scx_dispatch_q *dsq;
1221
1222 if (dsq_id == SCX_DSQ_LOCAL)
1223 return &rq->scx.local_dsq;
1224
1225 if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) {
1226 s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK;
1227
1228 if (!ops_cpu_valid(sch, cpu, "in SCX_DSQ_LOCAL_ON dispatch verdict"))
1229 return find_global_dsq(sch, p);
1230
1231 return &cpu_rq(cpu)->scx.local_dsq;
1232 }
1233
1234 if (dsq_id == SCX_DSQ_GLOBAL)
1235 dsq = find_global_dsq(sch, p);
1236 else
1237 dsq = find_user_dsq(sch, dsq_id);
1238
1239 if (unlikely(!dsq)) {
1240 scx_error(sch, "non-existent DSQ 0x%llx for %s[%d]",
1241 dsq_id, p->comm, p->pid);
1242 return find_global_dsq(sch, p);
1243 }
1244
1245 return dsq;
1246 }
1247
mark_direct_dispatch(struct scx_sched * sch,struct task_struct * ddsp_task,struct task_struct * p,u64 dsq_id,u64 enq_flags)1248 static void mark_direct_dispatch(struct scx_sched *sch,
1249 struct task_struct *ddsp_task,
1250 struct task_struct *p, u64 dsq_id,
1251 u64 enq_flags)
1252 {
1253 /*
1254 * Mark that dispatch already happened from ops.select_cpu() or
1255 * ops.enqueue() by spoiling direct_dispatch_task with a non-NULL value
1256 * which can never match a valid task pointer.
1257 */
1258 __this_cpu_write(direct_dispatch_task, ERR_PTR(-ESRCH));
1259
1260 /* @p must match the task on the enqueue path */
1261 if (unlikely(p != ddsp_task)) {
1262 if (IS_ERR(ddsp_task))
1263 scx_error(sch, "%s[%d] already direct-dispatched",
1264 p->comm, p->pid);
1265 else
1266 scx_error(sch, "scheduling for %s[%d] but trying to direct-dispatch %s[%d]",
1267 ddsp_task->comm, ddsp_task->pid,
1268 p->comm, p->pid);
1269 return;
1270 }
1271
1272 WARN_ON_ONCE(p->scx.ddsp_dsq_id != SCX_DSQ_INVALID);
1273 WARN_ON_ONCE(p->scx.ddsp_enq_flags);
1274
1275 p->scx.ddsp_dsq_id = dsq_id;
1276 p->scx.ddsp_enq_flags = enq_flags;
1277 }
1278
direct_dispatch(struct scx_sched * sch,struct task_struct * p,u64 enq_flags)1279 static void direct_dispatch(struct scx_sched *sch, struct task_struct *p,
1280 u64 enq_flags)
1281 {
1282 struct rq *rq = task_rq(p);
1283 struct scx_dispatch_q *dsq =
1284 find_dsq_for_dispatch(sch, rq, p->scx.ddsp_dsq_id, p);
1285
1286 touch_core_sched_dispatch(rq, p);
1287
1288 p->scx.ddsp_enq_flags |= enq_flags;
1289
1290 /*
1291 * We are in the enqueue path with @rq locked and pinned, and thus can't
1292 * double lock a remote rq and enqueue to its local DSQ. For
1293 * DSQ_LOCAL_ON verdicts targeting the local DSQ of a remote CPU, defer
1294 * the enqueue so that it's executed when @rq can be unlocked.
1295 */
1296 if (dsq->id == SCX_DSQ_LOCAL && dsq != &rq->scx.local_dsq) {
1297 unsigned long opss;
1298
1299 opss = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_STATE_MASK;
1300
1301 switch (opss & SCX_OPSS_STATE_MASK) {
1302 case SCX_OPSS_NONE:
1303 break;
1304 case SCX_OPSS_QUEUEING:
1305 /*
1306 * As @p was never passed to the BPF side, _release is
1307 * not strictly necessary. Still do it for consistency.
1308 */
1309 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
1310 break;
1311 default:
1312 WARN_ONCE(true, "sched_ext: %s[%d] has invalid ops state 0x%lx in direct_dispatch()",
1313 p->comm, p->pid, opss);
1314 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
1315 break;
1316 }
1317
1318 WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node));
1319 list_add_tail(&p->scx.dsq_list.node,
1320 &rq->scx.ddsp_deferred_locals);
1321 schedule_deferred_locked(rq);
1322 return;
1323 }
1324
1325 dispatch_enqueue(sch, dsq, p,
1326 p->scx.ddsp_enq_flags | SCX_ENQ_CLEAR_OPSS);
1327 }
1328
scx_rq_online(struct rq * rq)1329 static bool scx_rq_online(struct rq *rq)
1330 {
1331 /*
1332 * Test both cpu_active() and %SCX_RQ_ONLINE. %SCX_RQ_ONLINE indicates
1333 * the online state as seen from the BPF scheduler. cpu_active() test
1334 * guarantees that, if this function returns %true, %SCX_RQ_ONLINE will
1335 * stay set until the current scheduling operation is complete even if
1336 * we aren't locking @rq.
1337 */
1338 return likely((rq->scx.flags & SCX_RQ_ONLINE) && cpu_active(cpu_of(rq)));
1339 }
1340
do_enqueue_task(struct rq * rq,struct task_struct * p,u64 enq_flags,int sticky_cpu)1341 static void do_enqueue_task(struct rq *rq, struct task_struct *p, u64 enq_flags,
1342 int sticky_cpu)
1343 {
1344 struct scx_sched *sch = scx_root;
1345 struct task_struct **ddsp_taskp;
1346 struct scx_dispatch_q *dsq;
1347 unsigned long qseq;
1348
1349 WARN_ON_ONCE(!(p->scx.flags & SCX_TASK_QUEUED));
1350
1351 /* rq migration */
1352 if (sticky_cpu == cpu_of(rq))
1353 goto local_norefill;
1354
1355 /*
1356 * If !scx_rq_online(), we already told the BPF scheduler that the CPU
1357 * is offline and are just running the hotplug path. Don't bother the
1358 * BPF scheduler.
1359 */
1360 if (!scx_rq_online(rq))
1361 goto local;
1362
1363 if (scx_rq_bypassing(rq)) {
1364 __scx_add_event(sch, SCX_EV_BYPASS_DISPATCH, 1);
1365 goto bypass;
1366 }
1367
1368 if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID)
1369 goto direct;
1370
1371 /* see %SCX_OPS_ENQ_EXITING */
1372 if (!(sch->ops.flags & SCX_OPS_ENQ_EXITING) &&
1373 unlikely(p->flags & PF_EXITING)) {
1374 __scx_add_event(sch, SCX_EV_ENQ_SKIP_EXITING, 1);
1375 goto local;
1376 }
1377
1378 /* see %SCX_OPS_ENQ_MIGRATION_DISABLED */
1379 if (!(sch->ops.flags & SCX_OPS_ENQ_MIGRATION_DISABLED) &&
1380 is_migration_disabled(p)) {
1381 __scx_add_event(sch, SCX_EV_ENQ_SKIP_MIGRATION_DISABLED, 1);
1382 goto local;
1383 }
1384
1385 if (unlikely(!SCX_HAS_OP(sch, enqueue)))
1386 goto global;
1387
1388 /* DSQ bypass didn't trigger, enqueue on the BPF scheduler */
1389 qseq = rq->scx.ops_qseq++ << SCX_OPSS_QSEQ_SHIFT;
1390
1391 WARN_ON_ONCE(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE);
1392 atomic_long_set(&p->scx.ops_state, SCX_OPSS_QUEUEING | qseq);
1393
1394 ddsp_taskp = this_cpu_ptr(&direct_dispatch_task);
1395 WARN_ON_ONCE(*ddsp_taskp);
1396 *ddsp_taskp = p;
1397
1398 SCX_CALL_OP_TASK(sch, SCX_KF_ENQUEUE, enqueue, rq, p, enq_flags);
1399
1400 *ddsp_taskp = NULL;
1401 if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID)
1402 goto direct;
1403
1404 /*
1405 * If not directly dispatched, QUEUEING isn't clear yet and dispatch or
1406 * dequeue may be waiting. The store_release matches their load_acquire.
1407 */
1408 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_QUEUED | qseq);
1409 return;
1410
1411 direct:
1412 direct_dispatch(sch, p, enq_flags);
1413 return;
1414 local_norefill:
1415 dispatch_enqueue(sch, &rq->scx.local_dsq, p, enq_flags);
1416 return;
1417 local:
1418 dsq = &rq->scx.local_dsq;
1419 goto enqueue;
1420 global:
1421 dsq = find_global_dsq(sch, p);
1422 goto enqueue;
1423 bypass:
1424 dsq = &task_rq(p)->scx.bypass_dsq;
1425 goto enqueue;
1426
1427 enqueue:
1428 /*
1429 * For task-ordering, slice refill must be treated as implying the end
1430 * of the current slice. Otherwise, the longer @p stays on the CPU, the
1431 * higher priority it becomes from scx_prio_less()'s POV.
1432 */
1433 touch_core_sched(rq, p);
1434 refill_task_slice_dfl(sch, p);
1435 dispatch_enqueue(sch, dsq, p, enq_flags);
1436 }
1437
task_runnable(const struct task_struct * p)1438 static bool task_runnable(const struct task_struct *p)
1439 {
1440 return !list_empty(&p->scx.runnable_node);
1441 }
1442
set_task_runnable(struct rq * rq,struct task_struct * p)1443 static void set_task_runnable(struct rq *rq, struct task_struct *p)
1444 {
1445 lockdep_assert_rq_held(rq);
1446
1447 if (p->scx.flags & SCX_TASK_RESET_RUNNABLE_AT) {
1448 p->scx.runnable_at = jiffies;
1449 p->scx.flags &= ~SCX_TASK_RESET_RUNNABLE_AT;
1450 }
1451
1452 /*
1453 * list_add_tail() must be used. scx_bypass() depends on tasks being
1454 * appended to the runnable_list.
1455 */
1456 list_add_tail(&p->scx.runnable_node, &rq->scx.runnable_list);
1457 }
1458
clr_task_runnable(struct task_struct * p,bool reset_runnable_at)1459 static void clr_task_runnable(struct task_struct *p, bool reset_runnable_at)
1460 {
1461 list_del_init(&p->scx.runnable_node);
1462 if (reset_runnable_at)
1463 p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT;
1464 }
1465
enqueue_task_scx(struct rq * rq,struct task_struct * p,int enq_flags)1466 static void enqueue_task_scx(struct rq *rq, struct task_struct *p, int enq_flags)
1467 {
1468 struct scx_sched *sch = scx_root;
1469 int sticky_cpu = p->scx.sticky_cpu;
1470
1471 if (enq_flags & ENQUEUE_WAKEUP)
1472 rq->scx.flags |= SCX_RQ_IN_WAKEUP;
1473
1474 enq_flags |= rq->scx.extra_enq_flags;
1475
1476 if (sticky_cpu >= 0)
1477 p->scx.sticky_cpu = -1;
1478
1479 /*
1480 * Restoring a running task will be immediately followed by
1481 * set_next_task_scx() which expects the task to not be on the BPF
1482 * scheduler as tasks can only start running through local DSQs. Force
1483 * direct-dispatch into the local DSQ by setting the sticky_cpu.
1484 */
1485 if (unlikely(enq_flags & ENQUEUE_RESTORE) && task_current(rq, p))
1486 sticky_cpu = cpu_of(rq);
1487
1488 if (p->scx.flags & SCX_TASK_QUEUED) {
1489 WARN_ON_ONCE(!task_runnable(p));
1490 goto out;
1491 }
1492
1493 set_task_runnable(rq, p);
1494 p->scx.flags |= SCX_TASK_QUEUED;
1495 rq->scx.nr_running++;
1496 add_nr_running(rq, 1);
1497
1498 if (SCX_HAS_OP(sch, runnable) && !task_on_rq_migrating(p))
1499 SCX_CALL_OP_TASK(sch, SCX_KF_REST, runnable, rq, p, enq_flags);
1500
1501 if (enq_flags & SCX_ENQ_WAKEUP)
1502 touch_core_sched(rq, p);
1503
1504 do_enqueue_task(rq, p, enq_flags, sticky_cpu);
1505 out:
1506 rq->scx.flags &= ~SCX_RQ_IN_WAKEUP;
1507
1508 if ((enq_flags & SCX_ENQ_CPU_SELECTED) &&
1509 unlikely(cpu_of(rq) != p->scx.selected_cpu))
1510 __scx_add_event(sch, SCX_EV_SELECT_CPU_FALLBACK, 1);
1511 }
1512
ops_dequeue(struct rq * rq,struct task_struct * p,u64 deq_flags)1513 static void ops_dequeue(struct rq *rq, struct task_struct *p, u64 deq_flags)
1514 {
1515 struct scx_sched *sch = scx_root;
1516 unsigned long opss;
1517
1518 /* dequeue is always temporary, don't reset runnable_at */
1519 clr_task_runnable(p, false);
1520
1521 /* acquire ensures that we see the preceding updates on QUEUED */
1522 opss = atomic_long_read_acquire(&p->scx.ops_state);
1523
1524 switch (opss & SCX_OPSS_STATE_MASK) {
1525 case SCX_OPSS_NONE:
1526 break;
1527 case SCX_OPSS_QUEUEING:
1528 /*
1529 * QUEUEING is started and finished while holding @p's rq lock.
1530 * As we're holding the rq lock now, we shouldn't see QUEUEING.
1531 */
1532 BUG();
1533 case SCX_OPSS_QUEUED:
1534 if (SCX_HAS_OP(sch, dequeue))
1535 SCX_CALL_OP_TASK(sch, SCX_KF_REST, dequeue, rq,
1536 p, deq_flags);
1537
1538 if (atomic_long_try_cmpxchg(&p->scx.ops_state, &opss,
1539 SCX_OPSS_NONE))
1540 break;
1541 fallthrough;
1542 case SCX_OPSS_DISPATCHING:
1543 /*
1544 * If @p is being dispatched from the BPF scheduler to a DSQ,
1545 * wait for the transfer to complete so that @p doesn't get
1546 * added to its DSQ after dequeueing is complete.
1547 *
1548 * As we're waiting on DISPATCHING with the rq locked, the
1549 * dispatching side shouldn't try to lock the rq while
1550 * DISPATCHING is set. See dispatch_to_local_dsq().
1551 *
1552 * DISPATCHING shouldn't have qseq set and control can reach
1553 * here with NONE @opss from the above QUEUED case block.
1554 * Explicitly wait on %SCX_OPSS_DISPATCHING instead of @opss.
1555 */
1556 wait_ops_state(p, SCX_OPSS_DISPATCHING);
1557 BUG_ON(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE);
1558 break;
1559 }
1560 }
1561
dequeue_task_scx(struct rq * rq,struct task_struct * p,int deq_flags)1562 static bool dequeue_task_scx(struct rq *rq, struct task_struct *p, int deq_flags)
1563 {
1564 struct scx_sched *sch = scx_root;
1565
1566 if (!(p->scx.flags & SCX_TASK_QUEUED)) {
1567 WARN_ON_ONCE(task_runnable(p));
1568 return true;
1569 }
1570
1571 ops_dequeue(rq, p, deq_flags);
1572
1573 /*
1574 * A currently running task which is going off @rq first gets dequeued
1575 * and then stops running. As we want running <-> stopping transitions
1576 * to be contained within runnable <-> quiescent transitions, trigger
1577 * ->stopping() early here instead of in put_prev_task_scx().
1578 *
1579 * @p may go through multiple stopping <-> running transitions between
1580 * here and put_prev_task_scx() if task attribute changes occur while
1581 * balance_one() leaves @rq unlocked. However, they don't contain any
1582 * information meaningful to the BPF scheduler and can be suppressed by
1583 * skipping the callbacks if the task is !QUEUED.
1584 */
1585 if (SCX_HAS_OP(sch, stopping) && task_current(rq, p)) {
1586 update_curr_scx(rq);
1587 SCX_CALL_OP_TASK(sch, SCX_KF_REST, stopping, rq, p, false);
1588 }
1589
1590 if (SCX_HAS_OP(sch, quiescent) && !task_on_rq_migrating(p))
1591 SCX_CALL_OP_TASK(sch, SCX_KF_REST, quiescent, rq, p, deq_flags);
1592
1593 if (deq_flags & SCX_DEQ_SLEEP)
1594 p->scx.flags |= SCX_TASK_DEQD_FOR_SLEEP;
1595 else
1596 p->scx.flags &= ~SCX_TASK_DEQD_FOR_SLEEP;
1597
1598 p->scx.flags &= ~SCX_TASK_QUEUED;
1599 rq->scx.nr_running--;
1600 sub_nr_running(rq, 1);
1601
1602 dispatch_dequeue(rq, p);
1603 return true;
1604 }
1605
yield_task_scx(struct rq * rq)1606 static void yield_task_scx(struct rq *rq)
1607 {
1608 struct scx_sched *sch = scx_root;
1609 struct task_struct *p = rq->donor;
1610
1611 if (SCX_HAS_OP(sch, yield))
1612 SCX_CALL_OP_2TASKS_RET(sch, SCX_KF_REST, yield, rq, p, NULL);
1613 else
1614 p->scx.slice = 0;
1615 }
1616
yield_to_task_scx(struct rq * rq,struct task_struct * to)1617 static bool yield_to_task_scx(struct rq *rq, struct task_struct *to)
1618 {
1619 struct scx_sched *sch = scx_root;
1620 struct task_struct *from = rq->donor;
1621
1622 if (SCX_HAS_OP(sch, yield))
1623 return SCX_CALL_OP_2TASKS_RET(sch, SCX_KF_REST, yield, rq,
1624 from, to);
1625 else
1626 return false;
1627 }
1628
move_local_task_to_local_dsq(struct task_struct * p,u64 enq_flags,struct scx_dispatch_q * src_dsq,struct rq * dst_rq)1629 static void move_local_task_to_local_dsq(struct task_struct *p, u64 enq_flags,
1630 struct scx_dispatch_q *src_dsq,
1631 struct rq *dst_rq)
1632 {
1633 struct scx_dispatch_q *dst_dsq = &dst_rq->scx.local_dsq;
1634
1635 /* @dsq is locked and @p is on @dst_rq */
1636 lockdep_assert_held(&src_dsq->lock);
1637 lockdep_assert_rq_held(dst_rq);
1638
1639 WARN_ON_ONCE(p->scx.holding_cpu >= 0);
1640
1641 if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT))
1642 list_add(&p->scx.dsq_list.node, &dst_dsq->list);
1643 else
1644 list_add_tail(&p->scx.dsq_list.node, &dst_dsq->list);
1645
1646 dsq_mod_nr(dst_dsq, 1);
1647 p->scx.dsq = dst_dsq;
1648
1649 local_dsq_post_enq(dst_dsq, p, enq_flags);
1650 }
1651
1652 /**
1653 * move_remote_task_to_local_dsq - Move a task from a foreign rq to a local DSQ
1654 * @p: task to move
1655 * @enq_flags: %SCX_ENQ_*
1656 * @src_rq: rq to move the task from, locked on entry, released on return
1657 * @dst_rq: rq to move the task into, locked on return
1658 *
1659 * Move @p which is currently on @src_rq to @dst_rq's local DSQ.
1660 */
move_remote_task_to_local_dsq(struct task_struct * p,u64 enq_flags,struct rq * src_rq,struct rq * dst_rq)1661 static void move_remote_task_to_local_dsq(struct task_struct *p, u64 enq_flags,
1662 struct rq *src_rq, struct rq *dst_rq)
1663 {
1664 lockdep_assert_rq_held(src_rq);
1665
1666 /* the following marks @p MIGRATING which excludes dequeue */
1667 deactivate_task(src_rq, p, 0);
1668 set_task_cpu(p, cpu_of(dst_rq));
1669 p->scx.sticky_cpu = cpu_of(dst_rq);
1670
1671 raw_spin_rq_unlock(src_rq);
1672 raw_spin_rq_lock(dst_rq);
1673
1674 /*
1675 * We want to pass scx-specific enq_flags but activate_task() will
1676 * truncate the upper 32 bit. As we own @rq, we can pass them through
1677 * @rq->scx.extra_enq_flags instead.
1678 */
1679 WARN_ON_ONCE(!cpumask_test_cpu(cpu_of(dst_rq), p->cpus_ptr));
1680 WARN_ON_ONCE(dst_rq->scx.extra_enq_flags);
1681 dst_rq->scx.extra_enq_flags = enq_flags;
1682 activate_task(dst_rq, p, 0);
1683 dst_rq->scx.extra_enq_flags = 0;
1684 }
1685
1686 /*
1687 * Similar to kernel/sched/core.c::is_cpu_allowed(). However, there are two
1688 * differences:
1689 *
1690 * - is_cpu_allowed() asks "Can this task run on this CPU?" while
1691 * task_can_run_on_remote_rq() asks "Can the BPF scheduler migrate the task to
1692 * this CPU?".
1693 *
1694 * While migration is disabled, is_cpu_allowed() has to say "yes" as the task
1695 * must be allowed to finish on the CPU that it's currently on regardless of
1696 * the CPU state. However, task_can_run_on_remote_rq() must say "no" as the
1697 * BPF scheduler shouldn't attempt to migrate a task which has migration
1698 * disabled.
1699 *
1700 * - The BPF scheduler is bypassed while the rq is offline and we can always say
1701 * no to the BPF scheduler initiated migrations while offline.
1702 *
1703 * The caller must ensure that @p and @rq are on different CPUs.
1704 */
task_can_run_on_remote_rq(struct scx_sched * sch,struct task_struct * p,struct rq * rq,bool enforce)1705 static bool task_can_run_on_remote_rq(struct scx_sched *sch,
1706 struct task_struct *p, struct rq *rq,
1707 bool enforce)
1708 {
1709 int cpu = cpu_of(rq);
1710
1711 WARN_ON_ONCE(task_cpu(p) == cpu);
1712
1713 /*
1714 * If @p has migration disabled, @p->cpus_ptr is updated to contain only
1715 * the pinned CPU in migrate_disable_switch() while @p is being switched
1716 * out. However, put_prev_task_scx() is called before @p->cpus_ptr is
1717 * updated and thus another CPU may see @p on a DSQ inbetween leading to
1718 * @p passing the below task_allowed_on_cpu() check while migration is
1719 * disabled.
1720 *
1721 * Test the migration disabled state first as the race window is narrow
1722 * and the BPF scheduler failing to check migration disabled state can
1723 * easily be masked if task_allowed_on_cpu() is done first.
1724 */
1725 if (unlikely(is_migration_disabled(p))) {
1726 if (enforce)
1727 scx_error(sch, "SCX_DSQ_LOCAL[_ON] cannot move migration disabled %s[%d] from CPU %d to %d",
1728 p->comm, p->pid, task_cpu(p), cpu);
1729 return false;
1730 }
1731
1732 /*
1733 * We don't require the BPF scheduler to avoid dispatching to offline
1734 * CPUs mostly for convenience but also because CPUs can go offline
1735 * between scx_bpf_dsq_insert() calls and here. Trigger error iff the
1736 * picked CPU is outside the allowed mask.
1737 */
1738 if (!task_allowed_on_cpu(p, cpu)) {
1739 if (enforce)
1740 scx_error(sch, "SCX_DSQ_LOCAL[_ON] target CPU %d not allowed for %s[%d]",
1741 cpu, p->comm, p->pid);
1742 return false;
1743 }
1744
1745 if (!scx_rq_online(rq)) {
1746 if (enforce)
1747 __scx_add_event(sch, SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE, 1);
1748 return false;
1749 }
1750
1751 return true;
1752 }
1753
1754 /**
1755 * unlink_dsq_and_lock_src_rq() - Unlink task from its DSQ and lock its task_rq
1756 * @p: target task
1757 * @dsq: locked DSQ @p is currently on
1758 * @src_rq: rq @p is currently on, stable with @dsq locked
1759 *
1760 * Called with @dsq locked but no rq's locked. We want to move @p to a different
1761 * DSQ, including any local DSQ, but are not locking @src_rq. Locking @src_rq is
1762 * required when transferring into a local DSQ. Even when transferring into a
1763 * non-local DSQ, it's better to use the same mechanism to protect against
1764 * dequeues and maintain the invariant that @p->scx.dsq can only change while
1765 * @src_rq is locked, which e.g. scx_dump_task() depends on.
1766 *
1767 * We want to grab @src_rq but that can deadlock if we try while locking @dsq,
1768 * so we want to unlink @p from @dsq, drop its lock and then lock @src_rq. As
1769 * this may race with dequeue, which can't drop the rq lock or fail, do a little
1770 * dancing from our side.
1771 *
1772 * @p->scx.holding_cpu is set to this CPU before @dsq is unlocked. If @p gets
1773 * dequeued after we unlock @dsq but before locking @src_rq, the holding_cpu
1774 * would be cleared to -1. While other cpus may have updated it to different
1775 * values afterwards, as this operation can't be preempted or recurse, the
1776 * holding_cpu can never become this CPU again before we're done. Thus, we can
1777 * tell whether we lost to dequeue by testing whether the holding_cpu still
1778 * points to this CPU. See dispatch_dequeue() for the counterpart.
1779 *
1780 * On return, @dsq is unlocked and @src_rq is locked. Returns %true if @p is
1781 * still valid. %false if lost to dequeue.
1782 */
unlink_dsq_and_lock_src_rq(struct task_struct * p,struct scx_dispatch_q * dsq,struct rq * src_rq)1783 static bool unlink_dsq_and_lock_src_rq(struct task_struct *p,
1784 struct scx_dispatch_q *dsq,
1785 struct rq *src_rq)
1786 {
1787 s32 cpu = raw_smp_processor_id();
1788
1789 lockdep_assert_held(&dsq->lock);
1790
1791 WARN_ON_ONCE(p->scx.holding_cpu >= 0);
1792 task_unlink_from_dsq(p, dsq);
1793 p->scx.holding_cpu = cpu;
1794
1795 raw_spin_unlock(&dsq->lock);
1796 raw_spin_rq_lock(src_rq);
1797
1798 /* task_rq couldn't have changed if we're still the holding cpu */
1799 return likely(p->scx.holding_cpu == cpu) &&
1800 !WARN_ON_ONCE(src_rq != task_rq(p));
1801 }
1802
consume_remote_task(struct rq * this_rq,struct task_struct * p,struct scx_dispatch_q * dsq,struct rq * src_rq)1803 static bool consume_remote_task(struct rq *this_rq, struct task_struct *p,
1804 struct scx_dispatch_q *dsq, struct rq *src_rq)
1805 {
1806 raw_spin_rq_unlock(this_rq);
1807
1808 if (unlink_dsq_and_lock_src_rq(p, dsq, src_rq)) {
1809 move_remote_task_to_local_dsq(p, 0, src_rq, this_rq);
1810 return true;
1811 } else {
1812 raw_spin_rq_unlock(src_rq);
1813 raw_spin_rq_lock(this_rq);
1814 return false;
1815 }
1816 }
1817
1818 /**
1819 * move_task_between_dsqs() - Move a task from one DSQ to another
1820 * @sch: scx_sched being operated on
1821 * @p: target task
1822 * @enq_flags: %SCX_ENQ_*
1823 * @src_dsq: DSQ @p is currently on, must not be a local DSQ
1824 * @dst_dsq: DSQ @p is being moved to, can be any DSQ
1825 *
1826 * Must be called with @p's task_rq and @src_dsq locked. If @dst_dsq is a local
1827 * DSQ and @p is on a different CPU, @p will be migrated and thus its task_rq
1828 * will change. As @p's task_rq is locked, this function doesn't need to use the
1829 * holding_cpu mechanism.
1830 *
1831 * On return, @src_dsq is unlocked and only @p's new task_rq, which is the
1832 * return value, is locked.
1833 */
move_task_between_dsqs(struct scx_sched * sch,struct task_struct * p,u64 enq_flags,struct scx_dispatch_q * src_dsq,struct scx_dispatch_q * dst_dsq)1834 static struct rq *move_task_between_dsqs(struct scx_sched *sch,
1835 struct task_struct *p, u64 enq_flags,
1836 struct scx_dispatch_q *src_dsq,
1837 struct scx_dispatch_q *dst_dsq)
1838 {
1839 struct rq *src_rq = task_rq(p), *dst_rq;
1840
1841 BUG_ON(src_dsq->id == SCX_DSQ_LOCAL);
1842 lockdep_assert_held(&src_dsq->lock);
1843 lockdep_assert_rq_held(src_rq);
1844
1845 if (dst_dsq->id == SCX_DSQ_LOCAL) {
1846 dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq);
1847 if (src_rq != dst_rq &&
1848 unlikely(!task_can_run_on_remote_rq(sch, p, dst_rq, true))) {
1849 dst_dsq = find_global_dsq(sch, p);
1850 dst_rq = src_rq;
1851 }
1852 } else {
1853 /* no need to migrate if destination is a non-local DSQ */
1854 dst_rq = src_rq;
1855 }
1856
1857 /*
1858 * Move @p into $dst_dsq. If $dst_dsq is the local DSQ of a different
1859 * CPU, @p will be migrated.
1860 */
1861 if (dst_dsq->id == SCX_DSQ_LOCAL) {
1862 /* @p is going from a non-local DSQ to a local DSQ */
1863 if (src_rq == dst_rq) {
1864 task_unlink_from_dsq(p, src_dsq);
1865 move_local_task_to_local_dsq(p, enq_flags,
1866 src_dsq, dst_rq);
1867 raw_spin_unlock(&src_dsq->lock);
1868 } else {
1869 raw_spin_unlock(&src_dsq->lock);
1870 move_remote_task_to_local_dsq(p, enq_flags,
1871 src_rq, dst_rq);
1872 }
1873 } else {
1874 /*
1875 * @p is going from a non-local DSQ to a non-local DSQ. As
1876 * $src_dsq is already locked, do an abbreviated dequeue.
1877 */
1878 dispatch_dequeue_locked(p, src_dsq);
1879 raw_spin_unlock(&src_dsq->lock);
1880
1881 dispatch_enqueue(sch, dst_dsq, p, enq_flags);
1882 }
1883
1884 return dst_rq;
1885 }
1886
consume_dispatch_q(struct scx_sched * sch,struct rq * rq,struct scx_dispatch_q * dsq)1887 static bool consume_dispatch_q(struct scx_sched *sch, struct rq *rq,
1888 struct scx_dispatch_q *dsq)
1889 {
1890 struct task_struct *p;
1891 retry:
1892 /*
1893 * The caller can't expect to successfully consume a task if the task's
1894 * addition to @dsq isn't guaranteed to be visible somehow. Test
1895 * @dsq->list without locking and skip if it seems empty.
1896 */
1897 if (list_empty(&dsq->list))
1898 return false;
1899
1900 raw_spin_lock(&dsq->lock);
1901
1902 nldsq_for_each_task(p, dsq) {
1903 struct rq *task_rq = task_rq(p);
1904
1905 /*
1906 * This loop can lead to multiple lockup scenarios, e.g. the BPF
1907 * scheduler can put an enormous number of affinitized tasks into
1908 * a contended DSQ, or the outer retry loop can repeatedly race
1909 * against scx_bypass() dequeueing tasks from @dsq trying to put
1910 * the system into the bypass mode. This can easily live-lock the
1911 * machine. If aborting, exit from all non-bypass DSQs.
1912 */
1913 if (unlikely(READ_ONCE(scx_aborting)) && dsq->id != SCX_DSQ_BYPASS)
1914 break;
1915
1916 if (rq == task_rq) {
1917 task_unlink_from_dsq(p, dsq);
1918 move_local_task_to_local_dsq(p, 0, dsq, rq);
1919 raw_spin_unlock(&dsq->lock);
1920 return true;
1921 }
1922
1923 if (task_can_run_on_remote_rq(sch, p, rq, false)) {
1924 if (likely(consume_remote_task(rq, p, dsq, task_rq)))
1925 return true;
1926 goto retry;
1927 }
1928 }
1929
1930 raw_spin_unlock(&dsq->lock);
1931 return false;
1932 }
1933
consume_global_dsq(struct scx_sched * sch,struct rq * rq)1934 static bool consume_global_dsq(struct scx_sched *sch, struct rq *rq)
1935 {
1936 int node = cpu_to_node(cpu_of(rq));
1937
1938 return consume_dispatch_q(sch, rq, sch->global_dsqs[node]);
1939 }
1940
1941 /**
1942 * dispatch_to_local_dsq - Dispatch a task to a local dsq
1943 * @sch: scx_sched being operated on
1944 * @rq: current rq which is locked
1945 * @dst_dsq: destination DSQ
1946 * @p: task to dispatch
1947 * @enq_flags: %SCX_ENQ_*
1948 *
1949 * We're holding @rq lock and want to dispatch @p to @dst_dsq which is a local
1950 * DSQ. This function performs all the synchronization dancing needed because
1951 * local DSQs are protected with rq locks.
1952 *
1953 * The caller must have exclusive ownership of @p (e.g. through
1954 * %SCX_OPSS_DISPATCHING).
1955 */
dispatch_to_local_dsq(struct scx_sched * sch,struct rq * rq,struct scx_dispatch_q * dst_dsq,struct task_struct * p,u64 enq_flags)1956 static void dispatch_to_local_dsq(struct scx_sched *sch, struct rq *rq,
1957 struct scx_dispatch_q *dst_dsq,
1958 struct task_struct *p, u64 enq_flags)
1959 {
1960 struct rq *src_rq = task_rq(p);
1961 struct rq *dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq);
1962 struct rq *locked_rq = rq;
1963
1964 /*
1965 * We're synchronized against dequeue through DISPATCHING. As @p can't
1966 * be dequeued, its task_rq and cpus_allowed are stable too.
1967 *
1968 * If dispatching to @rq that @p is already on, no lock dancing needed.
1969 */
1970 if (rq == src_rq && rq == dst_rq) {
1971 dispatch_enqueue(sch, dst_dsq, p,
1972 enq_flags | SCX_ENQ_CLEAR_OPSS);
1973 return;
1974 }
1975
1976 if (src_rq != dst_rq &&
1977 unlikely(!task_can_run_on_remote_rq(sch, p, dst_rq, true))) {
1978 dispatch_enqueue(sch, find_global_dsq(sch, p), p,
1979 enq_flags | SCX_ENQ_CLEAR_OPSS);
1980 return;
1981 }
1982
1983 /*
1984 * @p is on a possibly remote @src_rq which we need to lock to move the
1985 * task. If dequeue is in progress, it'd be locking @src_rq and waiting
1986 * on DISPATCHING, so we can't grab @src_rq lock while holding
1987 * DISPATCHING.
1988 *
1989 * As DISPATCHING guarantees that @p is wholly ours, we can pretend that
1990 * we're moving from a DSQ and use the same mechanism - mark the task
1991 * under transfer with holding_cpu, release DISPATCHING and then follow
1992 * the same protocol. See unlink_dsq_and_lock_src_rq().
1993 */
1994 p->scx.holding_cpu = raw_smp_processor_id();
1995
1996 /* store_release ensures that dequeue sees the above */
1997 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
1998
1999 /* switch to @src_rq lock */
2000 if (locked_rq != src_rq) {
2001 raw_spin_rq_unlock(locked_rq);
2002 locked_rq = src_rq;
2003 raw_spin_rq_lock(src_rq);
2004 }
2005
2006 /* task_rq couldn't have changed if we're still the holding cpu */
2007 if (likely(p->scx.holding_cpu == raw_smp_processor_id()) &&
2008 !WARN_ON_ONCE(src_rq != task_rq(p))) {
2009 /*
2010 * If @p is staying on the same rq, there's no need to go
2011 * through the full deactivate/activate cycle. Optimize by
2012 * abbreviating move_remote_task_to_local_dsq().
2013 */
2014 if (src_rq == dst_rq) {
2015 p->scx.holding_cpu = -1;
2016 dispatch_enqueue(sch, &dst_rq->scx.local_dsq, p,
2017 enq_flags);
2018 } else {
2019 move_remote_task_to_local_dsq(p, enq_flags,
2020 src_rq, dst_rq);
2021 /* task has been moved to dst_rq, which is now locked */
2022 locked_rq = dst_rq;
2023 }
2024
2025 /* if the destination CPU is idle, wake it up */
2026 if (sched_class_above(p->sched_class, dst_rq->curr->sched_class))
2027 resched_curr(dst_rq);
2028 }
2029
2030 /* switch back to @rq lock */
2031 if (locked_rq != rq) {
2032 raw_spin_rq_unlock(locked_rq);
2033 raw_spin_rq_lock(rq);
2034 }
2035 }
2036
2037 /**
2038 * finish_dispatch - Asynchronously finish dispatching a task
2039 * @rq: current rq which is locked
2040 * @p: task to finish dispatching
2041 * @qseq_at_dispatch: qseq when @p started getting dispatched
2042 * @dsq_id: destination DSQ ID
2043 * @enq_flags: %SCX_ENQ_*
2044 *
2045 * Dispatching to local DSQs may need to wait for queueing to complete or
2046 * require rq lock dancing. As we don't wanna do either while inside
2047 * ops.dispatch() to avoid locking order inversion, we split dispatching into
2048 * two parts. scx_bpf_dsq_insert() which is called by ops.dispatch() records the
2049 * task and its qseq. Once ops.dispatch() returns, this function is called to
2050 * finish up.
2051 *
2052 * There is no guarantee that @p is still valid for dispatching or even that it
2053 * was valid in the first place. Make sure that the task is still owned by the
2054 * BPF scheduler and claim the ownership before dispatching.
2055 */
finish_dispatch(struct scx_sched * sch,struct rq * rq,struct task_struct * p,unsigned long qseq_at_dispatch,u64 dsq_id,u64 enq_flags)2056 static void finish_dispatch(struct scx_sched *sch, struct rq *rq,
2057 struct task_struct *p,
2058 unsigned long qseq_at_dispatch,
2059 u64 dsq_id, u64 enq_flags)
2060 {
2061 struct scx_dispatch_q *dsq;
2062 unsigned long opss;
2063
2064 touch_core_sched_dispatch(rq, p);
2065 retry:
2066 /*
2067 * No need for _acquire here. @p is accessed only after a successful
2068 * try_cmpxchg to DISPATCHING.
2069 */
2070 opss = atomic_long_read(&p->scx.ops_state);
2071
2072 switch (opss & SCX_OPSS_STATE_MASK) {
2073 case SCX_OPSS_DISPATCHING:
2074 case SCX_OPSS_NONE:
2075 /* someone else already got to it */
2076 return;
2077 case SCX_OPSS_QUEUED:
2078 /*
2079 * If qseq doesn't match, @p has gone through at least one
2080 * dispatch/dequeue and re-enqueue cycle between
2081 * scx_bpf_dsq_insert() and here and we have no claim on it.
2082 */
2083 if ((opss & SCX_OPSS_QSEQ_MASK) != qseq_at_dispatch)
2084 return;
2085
2086 /*
2087 * While we know @p is accessible, we don't yet have a claim on
2088 * it - the BPF scheduler is allowed to dispatch tasks
2089 * spuriously and there can be a racing dequeue attempt. Let's
2090 * claim @p by atomically transitioning it from QUEUED to
2091 * DISPATCHING.
2092 */
2093 if (likely(atomic_long_try_cmpxchg(&p->scx.ops_state, &opss,
2094 SCX_OPSS_DISPATCHING)))
2095 break;
2096 goto retry;
2097 case SCX_OPSS_QUEUEING:
2098 /*
2099 * do_enqueue_task() is in the process of transferring the task
2100 * to the BPF scheduler while holding @p's rq lock. As we aren't
2101 * holding any kernel or BPF resource that the enqueue path may
2102 * depend upon, it's safe to wait.
2103 */
2104 wait_ops_state(p, opss);
2105 goto retry;
2106 }
2107
2108 BUG_ON(!(p->scx.flags & SCX_TASK_QUEUED));
2109
2110 dsq = find_dsq_for_dispatch(sch, this_rq(), dsq_id, p);
2111
2112 if (dsq->id == SCX_DSQ_LOCAL)
2113 dispatch_to_local_dsq(sch, rq, dsq, p, enq_flags);
2114 else
2115 dispatch_enqueue(sch, dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS);
2116 }
2117
flush_dispatch_buf(struct scx_sched * sch,struct rq * rq)2118 static void flush_dispatch_buf(struct scx_sched *sch, struct rq *rq)
2119 {
2120 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
2121 u32 u;
2122
2123 for (u = 0; u < dspc->cursor; u++) {
2124 struct scx_dsp_buf_ent *ent = &dspc->buf[u];
2125
2126 finish_dispatch(sch, rq, ent->task, ent->qseq, ent->dsq_id,
2127 ent->enq_flags);
2128 }
2129
2130 dspc->nr_tasks += dspc->cursor;
2131 dspc->cursor = 0;
2132 }
2133
maybe_queue_balance_callback(struct rq * rq)2134 static inline void maybe_queue_balance_callback(struct rq *rq)
2135 {
2136 lockdep_assert_rq_held(rq);
2137
2138 if (!(rq->scx.flags & SCX_RQ_BAL_CB_PENDING))
2139 return;
2140
2141 queue_balance_callback(rq, &rq->scx.deferred_bal_cb,
2142 deferred_bal_cb_workfn);
2143
2144 rq->scx.flags &= ~SCX_RQ_BAL_CB_PENDING;
2145 }
2146
balance_one(struct rq * rq,struct task_struct * prev)2147 static int balance_one(struct rq *rq, struct task_struct *prev)
2148 {
2149 struct scx_sched *sch = scx_root;
2150 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
2151 bool prev_on_scx = prev->sched_class == &ext_sched_class;
2152 bool prev_on_rq = prev->scx.flags & SCX_TASK_QUEUED;
2153 int nr_loops = SCX_DSP_MAX_LOOPS;
2154
2155 lockdep_assert_rq_held(rq);
2156 rq->scx.flags |= SCX_RQ_IN_BALANCE;
2157 rq->scx.flags &= ~SCX_RQ_BAL_KEEP;
2158
2159 if ((sch->ops.flags & SCX_OPS_HAS_CPU_PREEMPT) &&
2160 unlikely(rq->scx.cpu_released)) {
2161 /*
2162 * If the previous sched_class for the current CPU was not SCX,
2163 * notify the BPF scheduler that it again has control of the
2164 * core. This callback complements ->cpu_release(), which is
2165 * emitted in switch_class().
2166 */
2167 if (SCX_HAS_OP(sch, cpu_acquire))
2168 SCX_CALL_OP(sch, SCX_KF_REST, cpu_acquire, rq,
2169 cpu_of(rq), NULL);
2170 rq->scx.cpu_released = false;
2171 }
2172
2173 if (prev_on_scx) {
2174 update_curr_scx(rq);
2175
2176 /*
2177 * If @prev is runnable & has slice left, it has priority and
2178 * fetching more just increases latency for the fetched tasks.
2179 * Tell pick_task_scx() to keep running @prev. If the BPF
2180 * scheduler wants to handle this explicitly, it should
2181 * implement ->cpu_release().
2182 *
2183 * See scx_disable_workfn() for the explanation on the bypassing
2184 * test.
2185 */
2186 if (prev_on_rq && prev->scx.slice && !scx_rq_bypassing(rq)) {
2187 rq->scx.flags |= SCX_RQ_BAL_KEEP;
2188 goto has_tasks;
2189 }
2190 }
2191
2192 /* if there already are tasks to run, nothing to do */
2193 if (rq->scx.local_dsq.nr)
2194 goto has_tasks;
2195
2196 if (consume_global_dsq(sch, rq))
2197 goto has_tasks;
2198
2199 if (scx_rq_bypassing(rq)) {
2200 if (consume_dispatch_q(sch, rq, &rq->scx.bypass_dsq))
2201 goto has_tasks;
2202 else
2203 goto no_tasks;
2204 }
2205
2206 if (unlikely(!SCX_HAS_OP(sch, dispatch)) || !scx_rq_online(rq))
2207 goto no_tasks;
2208
2209 dspc->rq = rq;
2210
2211 /*
2212 * The dispatch loop. Because flush_dispatch_buf() may drop the rq lock,
2213 * the local DSQ might still end up empty after a successful
2214 * ops.dispatch(). If the local DSQ is empty even after ops.dispatch()
2215 * produced some tasks, retry. The BPF scheduler may depend on this
2216 * looping behavior to simplify its implementation.
2217 */
2218 do {
2219 dspc->nr_tasks = 0;
2220
2221 SCX_CALL_OP(sch, SCX_KF_DISPATCH, dispatch, rq,
2222 cpu_of(rq), prev_on_scx ? prev : NULL);
2223
2224 flush_dispatch_buf(sch, rq);
2225
2226 if (prev_on_rq && prev->scx.slice) {
2227 rq->scx.flags |= SCX_RQ_BAL_KEEP;
2228 goto has_tasks;
2229 }
2230 if (rq->scx.local_dsq.nr)
2231 goto has_tasks;
2232 if (consume_global_dsq(sch, rq))
2233 goto has_tasks;
2234
2235 /*
2236 * ops.dispatch() can trap us in this loop by repeatedly
2237 * dispatching ineligible tasks. Break out once in a while to
2238 * allow the watchdog to run. As IRQ can't be enabled in
2239 * balance(), we want to complete this scheduling cycle and then
2240 * start a new one. IOW, we want to call resched_curr() on the
2241 * next, most likely idle, task, not the current one. Use
2242 * scx_kick_cpu() for deferred kicking.
2243 */
2244 if (unlikely(!--nr_loops)) {
2245 scx_kick_cpu(sch, cpu_of(rq), 0);
2246 break;
2247 }
2248 } while (dspc->nr_tasks);
2249
2250 no_tasks:
2251 /*
2252 * Didn't find another task to run. Keep running @prev unless
2253 * %SCX_OPS_ENQ_LAST is in effect.
2254 */
2255 if (prev_on_rq &&
2256 (!(sch->ops.flags & SCX_OPS_ENQ_LAST) || scx_rq_bypassing(rq))) {
2257 rq->scx.flags |= SCX_RQ_BAL_KEEP;
2258 __scx_add_event(sch, SCX_EV_DISPATCH_KEEP_LAST, 1);
2259 goto has_tasks;
2260 }
2261 rq->scx.flags &= ~SCX_RQ_IN_BALANCE;
2262 return false;
2263
2264 has_tasks:
2265 rq->scx.flags &= ~SCX_RQ_IN_BALANCE;
2266 return true;
2267 }
2268
process_ddsp_deferred_locals(struct rq * rq)2269 static void process_ddsp_deferred_locals(struct rq *rq)
2270 {
2271 struct task_struct *p;
2272
2273 lockdep_assert_rq_held(rq);
2274
2275 /*
2276 * Now that @rq can be unlocked, execute the deferred enqueueing of
2277 * tasks directly dispatched to the local DSQs of other CPUs. See
2278 * direct_dispatch(). Keep popping from the head instead of using
2279 * list_for_each_entry_safe() as dispatch_local_dsq() may unlock @rq
2280 * temporarily.
2281 */
2282 while ((p = list_first_entry_or_null(&rq->scx.ddsp_deferred_locals,
2283 struct task_struct, scx.dsq_list.node))) {
2284 struct scx_sched *sch = scx_root;
2285 struct scx_dispatch_q *dsq;
2286
2287 list_del_init(&p->scx.dsq_list.node);
2288
2289 dsq = find_dsq_for_dispatch(sch, rq, p->scx.ddsp_dsq_id, p);
2290 if (!WARN_ON_ONCE(dsq->id != SCX_DSQ_LOCAL))
2291 dispatch_to_local_dsq(sch, rq, dsq, p,
2292 p->scx.ddsp_enq_flags);
2293 }
2294 }
2295
set_next_task_scx(struct rq * rq,struct task_struct * p,bool first)2296 static void set_next_task_scx(struct rq *rq, struct task_struct *p, bool first)
2297 {
2298 struct scx_sched *sch = scx_root;
2299
2300 if (p->scx.flags & SCX_TASK_QUEUED) {
2301 /*
2302 * Core-sched might decide to execute @p before it is
2303 * dispatched. Call ops_dequeue() to notify the BPF scheduler.
2304 */
2305 ops_dequeue(rq, p, SCX_DEQ_CORE_SCHED_EXEC);
2306 dispatch_dequeue(rq, p);
2307 }
2308
2309 p->se.exec_start = rq_clock_task(rq);
2310
2311 /* see dequeue_task_scx() on why we skip when !QUEUED */
2312 if (SCX_HAS_OP(sch, running) && (p->scx.flags & SCX_TASK_QUEUED))
2313 SCX_CALL_OP_TASK(sch, SCX_KF_REST, running, rq, p);
2314
2315 clr_task_runnable(p, true);
2316
2317 /*
2318 * @p is getting newly scheduled or got kicked after someone updated its
2319 * slice. Refresh whether tick can be stopped. See scx_can_stop_tick().
2320 */
2321 if ((p->scx.slice == SCX_SLICE_INF) !=
2322 (bool)(rq->scx.flags & SCX_RQ_CAN_STOP_TICK)) {
2323 if (p->scx.slice == SCX_SLICE_INF)
2324 rq->scx.flags |= SCX_RQ_CAN_STOP_TICK;
2325 else
2326 rq->scx.flags &= ~SCX_RQ_CAN_STOP_TICK;
2327
2328 sched_update_tick_dependency(rq);
2329
2330 /*
2331 * For now, let's refresh the load_avgs just when transitioning
2332 * in and out of nohz. In the future, we might want to add a
2333 * mechanism which calls the following periodically on
2334 * tick-stopped CPUs.
2335 */
2336 update_other_load_avgs(rq);
2337 }
2338 }
2339
2340 static enum scx_cpu_preempt_reason
preempt_reason_from_class(const struct sched_class * class)2341 preempt_reason_from_class(const struct sched_class *class)
2342 {
2343 if (class == &stop_sched_class)
2344 return SCX_CPU_PREEMPT_STOP;
2345 if (class == &dl_sched_class)
2346 return SCX_CPU_PREEMPT_DL;
2347 if (class == &rt_sched_class)
2348 return SCX_CPU_PREEMPT_RT;
2349 return SCX_CPU_PREEMPT_UNKNOWN;
2350 }
2351
switch_class(struct rq * rq,struct task_struct * next)2352 static void switch_class(struct rq *rq, struct task_struct *next)
2353 {
2354 struct scx_sched *sch = scx_root;
2355 const struct sched_class *next_class = next->sched_class;
2356
2357 if (!(sch->ops.flags & SCX_OPS_HAS_CPU_PREEMPT))
2358 return;
2359
2360 /*
2361 * The callback is conceptually meant to convey that the CPU is no
2362 * longer under the control of SCX. Therefore, don't invoke the callback
2363 * if the next class is below SCX (in which case the BPF scheduler has
2364 * actively decided not to schedule any tasks on the CPU).
2365 */
2366 if (sched_class_above(&ext_sched_class, next_class))
2367 return;
2368
2369 /*
2370 * At this point we know that SCX was preempted by a higher priority
2371 * sched_class, so invoke the ->cpu_release() callback if we have not
2372 * done so already. We only send the callback once between SCX being
2373 * preempted, and it regaining control of the CPU.
2374 *
2375 * ->cpu_release() complements ->cpu_acquire(), which is emitted the
2376 * next time that balance_one() is invoked.
2377 */
2378 if (!rq->scx.cpu_released) {
2379 if (SCX_HAS_OP(sch, cpu_release)) {
2380 struct scx_cpu_release_args args = {
2381 .reason = preempt_reason_from_class(next_class),
2382 .task = next,
2383 };
2384
2385 SCX_CALL_OP(sch, SCX_KF_CPU_RELEASE, cpu_release, rq,
2386 cpu_of(rq), &args);
2387 }
2388 rq->scx.cpu_released = true;
2389 }
2390 }
2391
put_prev_task_scx(struct rq * rq,struct task_struct * p,struct task_struct * next)2392 static void put_prev_task_scx(struct rq *rq, struct task_struct *p,
2393 struct task_struct *next)
2394 {
2395 struct scx_sched *sch = scx_root;
2396
2397 /* see kick_cpus_irq_workfn() */
2398 smp_store_release(&rq->scx.kick_sync, rq->scx.kick_sync + 1);
2399
2400 update_curr_scx(rq);
2401
2402 /* see dequeue_task_scx() on why we skip when !QUEUED */
2403 if (SCX_HAS_OP(sch, stopping) && (p->scx.flags & SCX_TASK_QUEUED))
2404 SCX_CALL_OP_TASK(sch, SCX_KF_REST, stopping, rq, p, true);
2405
2406 if (p->scx.flags & SCX_TASK_QUEUED) {
2407 set_task_runnable(rq, p);
2408
2409 /*
2410 * If @p has slice left and is being put, @p is getting
2411 * preempted by a higher priority scheduler class or core-sched
2412 * forcing a different task. Leave it at the head of the local
2413 * DSQ.
2414 */
2415 if (p->scx.slice && !scx_rq_bypassing(rq)) {
2416 dispatch_enqueue(sch, &rq->scx.local_dsq, p,
2417 SCX_ENQ_HEAD);
2418 goto switch_class;
2419 }
2420
2421 /*
2422 * If @p is runnable but we're about to enter a lower
2423 * sched_class, %SCX_OPS_ENQ_LAST must be set. Tell
2424 * ops.enqueue() that @p is the only one available for this cpu,
2425 * which should trigger an explicit follow-up scheduling event.
2426 */
2427 if (next && sched_class_above(&ext_sched_class, next->sched_class)) {
2428 WARN_ON_ONCE(!(sch->ops.flags & SCX_OPS_ENQ_LAST));
2429 do_enqueue_task(rq, p, SCX_ENQ_LAST, -1);
2430 } else {
2431 do_enqueue_task(rq, p, 0, -1);
2432 }
2433 }
2434
2435 switch_class:
2436 if (next && next->sched_class != &ext_sched_class)
2437 switch_class(rq, next);
2438 }
2439
first_local_task(struct rq * rq)2440 static struct task_struct *first_local_task(struct rq *rq)
2441 {
2442 return list_first_entry_or_null(&rq->scx.local_dsq.list,
2443 struct task_struct, scx.dsq_list.node);
2444 }
2445
2446 static struct task_struct *
do_pick_task_scx(struct rq * rq,struct rq_flags * rf,bool force_scx)2447 do_pick_task_scx(struct rq *rq, struct rq_flags *rf, bool force_scx)
2448 {
2449 struct task_struct *prev = rq->curr;
2450 bool keep_prev;
2451 struct task_struct *p;
2452
2453 /* see kick_cpus_irq_workfn() */
2454 smp_store_release(&rq->scx.kick_sync, rq->scx.kick_sync + 1);
2455
2456 rq_modified_clear(rq);
2457
2458 rq_unpin_lock(rq, rf);
2459 balance_one(rq, prev);
2460 rq_repin_lock(rq, rf);
2461 maybe_queue_balance_callback(rq);
2462
2463 /*
2464 * If any higher-priority sched class enqueued a runnable task on
2465 * this rq during balance_one(), abort and return RETRY_TASK, so
2466 * that the scheduler loop can restart.
2467 *
2468 * If @force_scx is true, always try to pick a SCHED_EXT task,
2469 * regardless of any higher-priority sched classes activity.
2470 */
2471 if (!force_scx && rq_modified_above(rq, &ext_sched_class))
2472 return RETRY_TASK;
2473
2474 keep_prev = rq->scx.flags & SCX_RQ_BAL_KEEP;
2475 if (unlikely(keep_prev &&
2476 prev->sched_class != &ext_sched_class)) {
2477 WARN_ON_ONCE(scx_enable_state() == SCX_ENABLED);
2478 keep_prev = false;
2479 }
2480
2481 /*
2482 * If balance_one() is telling us to keep running @prev, replenish slice
2483 * if necessary and keep running @prev. Otherwise, pop the first one
2484 * from the local DSQ.
2485 */
2486 if (keep_prev) {
2487 p = prev;
2488 if (!p->scx.slice)
2489 refill_task_slice_dfl(rcu_dereference_sched(scx_root), p);
2490 } else {
2491 p = first_local_task(rq);
2492 if (!p)
2493 return NULL;
2494
2495 if (unlikely(!p->scx.slice)) {
2496 struct scx_sched *sch = rcu_dereference_sched(scx_root);
2497
2498 if (!scx_rq_bypassing(rq) && !sch->warned_zero_slice) {
2499 printk_deferred(KERN_WARNING "sched_ext: %s[%d] has zero slice in %s()\n",
2500 p->comm, p->pid, __func__);
2501 sch->warned_zero_slice = true;
2502 }
2503 refill_task_slice_dfl(sch, p);
2504 }
2505 }
2506
2507 return p;
2508 }
2509
pick_task_scx(struct rq * rq,struct rq_flags * rf)2510 static struct task_struct *pick_task_scx(struct rq *rq, struct rq_flags *rf)
2511 {
2512 return do_pick_task_scx(rq, rf, false);
2513 }
2514
2515 #ifdef CONFIG_SCHED_CORE
2516 /**
2517 * scx_prio_less - Task ordering for core-sched
2518 * @a: task A
2519 * @b: task B
2520 * @in_fi: in forced idle state
2521 *
2522 * Core-sched is implemented as an additional scheduling layer on top of the
2523 * usual sched_class'es and needs to find out the expected task ordering. For
2524 * SCX, core-sched calls this function to interrogate the task ordering.
2525 *
2526 * Unless overridden by ops.core_sched_before(), @p->scx.core_sched_at is used
2527 * to implement the default task ordering. The older the timestamp, the higher
2528 * priority the task - the global FIFO ordering matching the default scheduling
2529 * behavior.
2530 *
2531 * When ops.core_sched_before() is enabled, @p->scx.core_sched_at is used to
2532 * implement FIFO ordering within each local DSQ. See pick_task_scx().
2533 */
scx_prio_less(const struct task_struct * a,const struct task_struct * b,bool in_fi)2534 bool scx_prio_less(const struct task_struct *a, const struct task_struct *b,
2535 bool in_fi)
2536 {
2537 struct scx_sched *sch = scx_root;
2538
2539 /*
2540 * The const qualifiers are dropped from task_struct pointers when
2541 * calling ops.core_sched_before(). Accesses are controlled by the
2542 * verifier.
2543 */
2544 if (SCX_HAS_OP(sch, core_sched_before) &&
2545 !scx_rq_bypassing(task_rq(a)))
2546 return SCX_CALL_OP_2TASKS_RET(sch, SCX_KF_REST, core_sched_before,
2547 NULL,
2548 (struct task_struct *)a,
2549 (struct task_struct *)b);
2550 else
2551 return time_after64(a->scx.core_sched_at, b->scx.core_sched_at);
2552 }
2553 #endif /* CONFIG_SCHED_CORE */
2554
select_task_rq_scx(struct task_struct * p,int prev_cpu,int wake_flags)2555 static int select_task_rq_scx(struct task_struct *p, int prev_cpu, int wake_flags)
2556 {
2557 struct scx_sched *sch = scx_root;
2558 bool rq_bypass;
2559
2560 /*
2561 * sched_exec() calls with %WF_EXEC when @p is about to exec(2) as it
2562 * can be a good migration opportunity with low cache and memory
2563 * footprint. Returning a CPU different than @prev_cpu triggers
2564 * immediate rq migration. However, for SCX, as the current rq
2565 * association doesn't dictate where the task is going to run, this
2566 * doesn't fit well. If necessary, we can later add a dedicated method
2567 * which can decide to preempt self to force it through the regular
2568 * scheduling path.
2569 */
2570 if (unlikely(wake_flags & WF_EXEC))
2571 return prev_cpu;
2572
2573 rq_bypass = scx_rq_bypassing(task_rq(p));
2574 if (likely(SCX_HAS_OP(sch, select_cpu)) && !rq_bypass) {
2575 s32 cpu;
2576 struct task_struct **ddsp_taskp;
2577
2578 ddsp_taskp = this_cpu_ptr(&direct_dispatch_task);
2579 WARN_ON_ONCE(*ddsp_taskp);
2580 *ddsp_taskp = p;
2581
2582 cpu = SCX_CALL_OP_TASK_RET(sch,
2583 SCX_KF_ENQUEUE | SCX_KF_SELECT_CPU,
2584 select_cpu, NULL, p, prev_cpu,
2585 wake_flags);
2586 p->scx.selected_cpu = cpu;
2587 *ddsp_taskp = NULL;
2588 if (ops_cpu_valid(sch, cpu, "from ops.select_cpu()"))
2589 return cpu;
2590 else
2591 return prev_cpu;
2592 } else {
2593 s32 cpu;
2594
2595 cpu = scx_select_cpu_dfl(p, prev_cpu, wake_flags, NULL, 0);
2596 if (cpu >= 0) {
2597 refill_task_slice_dfl(sch, p);
2598 p->scx.ddsp_dsq_id = SCX_DSQ_LOCAL;
2599 } else {
2600 cpu = prev_cpu;
2601 }
2602 p->scx.selected_cpu = cpu;
2603
2604 if (rq_bypass)
2605 __scx_add_event(sch, SCX_EV_BYPASS_DISPATCH, 1);
2606 return cpu;
2607 }
2608 }
2609
task_woken_scx(struct rq * rq,struct task_struct * p)2610 static void task_woken_scx(struct rq *rq, struct task_struct *p)
2611 {
2612 run_deferred(rq);
2613 }
2614
set_cpus_allowed_scx(struct task_struct * p,struct affinity_context * ac)2615 static void set_cpus_allowed_scx(struct task_struct *p,
2616 struct affinity_context *ac)
2617 {
2618 struct scx_sched *sch = scx_root;
2619
2620 set_cpus_allowed_common(p, ac);
2621
2622 /*
2623 * The effective cpumask is stored in @p->cpus_ptr which may temporarily
2624 * differ from the configured one in @p->cpus_mask. Always tell the bpf
2625 * scheduler the effective one.
2626 *
2627 * Fine-grained memory write control is enforced by BPF making the const
2628 * designation pointless. Cast it away when calling the operation.
2629 */
2630 if (SCX_HAS_OP(sch, set_cpumask))
2631 SCX_CALL_OP_TASK(sch, SCX_KF_REST, set_cpumask, NULL,
2632 p, (struct cpumask *)p->cpus_ptr);
2633 }
2634
handle_hotplug(struct rq * rq,bool online)2635 static void handle_hotplug(struct rq *rq, bool online)
2636 {
2637 struct scx_sched *sch = scx_root;
2638 int cpu = cpu_of(rq);
2639
2640 atomic_long_inc(&scx_hotplug_seq);
2641
2642 /*
2643 * scx_root updates are protected by cpus_read_lock() and will stay
2644 * stable here. Note that we can't depend on scx_enabled() test as the
2645 * hotplug ops need to be enabled before __scx_enabled is set.
2646 */
2647 if (unlikely(!sch))
2648 return;
2649
2650 if (scx_enabled())
2651 scx_idle_update_selcpu_topology(&sch->ops);
2652
2653 if (online && SCX_HAS_OP(sch, cpu_online))
2654 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cpu_online, NULL, cpu);
2655 else if (!online && SCX_HAS_OP(sch, cpu_offline))
2656 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cpu_offline, NULL, cpu);
2657 else
2658 scx_exit(sch, SCX_EXIT_UNREG_KERN,
2659 SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG,
2660 "cpu %d going %s, exiting scheduler", cpu,
2661 online ? "online" : "offline");
2662 }
2663
scx_rq_activate(struct rq * rq)2664 void scx_rq_activate(struct rq *rq)
2665 {
2666 handle_hotplug(rq, true);
2667 }
2668
scx_rq_deactivate(struct rq * rq)2669 void scx_rq_deactivate(struct rq *rq)
2670 {
2671 handle_hotplug(rq, false);
2672 }
2673
rq_online_scx(struct rq * rq)2674 static void rq_online_scx(struct rq *rq)
2675 {
2676 rq->scx.flags |= SCX_RQ_ONLINE;
2677 }
2678
rq_offline_scx(struct rq * rq)2679 static void rq_offline_scx(struct rq *rq)
2680 {
2681 rq->scx.flags &= ~SCX_RQ_ONLINE;
2682 }
2683
2684
check_rq_for_timeouts(struct rq * rq)2685 static bool check_rq_for_timeouts(struct rq *rq)
2686 {
2687 struct scx_sched *sch;
2688 struct task_struct *p;
2689 struct rq_flags rf;
2690 bool timed_out = false;
2691
2692 rq_lock_irqsave(rq, &rf);
2693 sch = rcu_dereference_bh(scx_root);
2694 if (unlikely(!sch))
2695 goto out_unlock;
2696
2697 list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) {
2698 unsigned long last_runnable = p->scx.runnable_at;
2699
2700 if (unlikely(time_after(jiffies,
2701 last_runnable + scx_watchdog_timeout))) {
2702 u32 dur_ms = jiffies_to_msecs(jiffies - last_runnable);
2703
2704 scx_exit(sch, SCX_EXIT_ERROR_STALL, 0,
2705 "%s[%d] failed to run for %u.%03us",
2706 p->comm, p->pid, dur_ms / 1000, dur_ms % 1000);
2707 timed_out = true;
2708 break;
2709 }
2710 }
2711 out_unlock:
2712 rq_unlock_irqrestore(rq, &rf);
2713 return timed_out;
2714 }
2715
scx_watchdog_workfn(struct work_struct * work)2716 static void scx_watchdog_workfn(struct work_struct *work)
2717 {
2718 int cpu;
2719
2720 WRITE_ONCE(scx_watchdog_timestamp, jiffies);
2721
2722 for_each_online_cpu(cpu) {
2723 if (unlikely(check_rq_for_timeouts(cpu_rq(cpu))))
2724 break;
2725
2726 cond_resched();
2727 }
2728 queue_delayed_work(system_unbound_wq, to_delayed_work(work),
2729 scx_watchdog_timeout / 2);
2730 }
2731
scx_tick(struct rq * rq)2732 void scx_tick(struct rq *rq)
2733 {
2734 struct scx_sched *sch;
2735 unsigned long last_check;
2736
2737 if (!scx_enabled())
2738 return;
2739
2740 sch = rcu_dereference_bh(scx_root);
2741 if (unlikely(!sch))
2742 return;
2743
2744 last_check = READ_ONCE(scx_watchdog_timestamp);
2745 if (unlikely(time_after(jiffies,
2746 last_check + READ_ONCE(scx_watchdog_timeout)))) {
2747 u32 dur_ms = jiffies_to_msecs(jiffies - last_check);
2748
2749 scx_exit(sch, SCX_EXIT_ERROR_STALL, 0,
2750 "watchdog failed to check in for %u.%03us",
2751 dur_ms / 1000, dur_ms % 1000);
2752 }
2753
2754 update_other_load_avgs(rq);
2755 }
2756
task_tick_scx(struct rq * rq,struct task_struct * curr,int queued)2757 static void task_tick_scx(struct rq *rq, struct task_struct *curr, int queued)
2758 {
2759 struct scx_sched *sch = scx_root;
2760
2761 update_curr_scx(rq);
2762
2763 /*
2764 * While disabling, always resched and refresh core-sched timestamp as
2765 * we can't trust the slice management or ops.core_sched_before().
2766 */
2767 if (scx_rq_bypassing(rq)) {
2768 curr->scx.slice = 0;
2769 touch_core_sched(rq, curr);
2770 } else if (SCX_HAS_OP(sch, tick)) {
2771 SCX_CALL_OP_TASK(sch, SCX_KF_REST, tick, rq, curr);
2772 }
2773
2774 if (!curr->scx.slice)
2775 resched_curr(rq);
2776 }
2777
2778 #ifdef CONFIG_EXT_GROUP_SCHED
tg_cgrp(struct task_group * tg)2779 static struct cgroup *tg_cgrp(struct task_group *tg)
2780 {
2781 /*
2782 * If CGROUP_SCHED is disabled, @tg is NULL. If @tg is an autogroup,
2783 * @tg->css.cgroup is NULL. In both cases, @tg can be treated as the
2784 * root cgroup.
2785 */
2786 if (tg && tg->css.cgroup)
2787 return tg->css.cgroup;
2788 else
2789 return &cgrp_dfl_root.cgrp;
2790 }
2791
2792 #define SCX_INIT_TASK_ARGS_CGROUP(tg) .cgroup = tg_cgrp(tg),
2793
2794 #else /* CONFIG_EXT_GROUP_SCHED */
2795
2796 #define SCX_INIT_TASK_ARGS_CGROUP(tg)
2797
2798 #endif /* CONFIG_EXT_GROUP_SCHED */
2799
scx_get_task_state(const struct task_struct * p)2800 static enum scx_task_state scx_get_task_state(const struct task_struct *p)
2801 {
2802 return (p->scx.flags & SCX_TASK_STATE_MASK) >> SCX_TASK_STATE_SHIFT;
2803 }
2804
scx_set_task_state(struct task_struct * p,enum scx_task_state state)2805 static void scx_set_task_state(struct task_struct *p, enum scx_task_state state)
2806 {
2807 enum scx_task_state prev_state = scx_get_task_state(p);
2808 bool warn = false;
2809
2810 BUILD_BUG_ON(SCX_TASK_NR_STATES > (1 << SCX_TASK_STATE_BITS));
2811
2812 switch (state) {
2813 case SCX_TASK_NONE:
2814 break;
2815 case SCX_TASK_INIT:
2816 warn = prev_state != SCX_TASK_NONE;
2817 break;
2818 case SCX_TASK_READY:
2819 warn = prev_state == SCX_TASK_NONE;
2820 break;
2821 case SCX_TASK_ENABLED:
2822 warn = prev_state != SCX_TASK_READY;
2823 break;
2824 default:
2825 warn = true;
2826 return;
2827 }
2828
2829 WARN_ONCE(warn, "sched_ext: Invalid task state transition %d -> %d for %s[%d]",
2830 prev_state, state, p->comm, p->pid);
2831
2832 p->scx.flags &= ~SCX_TASK_STATE_MASK;
2833 p->scx.flags |= state << SCX_TASK_STATE_SHIFT;
2834 }
2835
scx_init_task(struct task_struct * p,struct task_group * tg,bool fork)2836 static int scx_init_task(struct task_struct *p, struct task_group *tg, bool fork)
2837 {
2838 struct scx_sched *sch = scx_root;
2839 int ret;
2840
2841 p->scx.disallow = false;
2842
2843 if (SCX_HAS_OP(sch, init_task)) {
2844 struct scx_init_task_args args = {
2845 SCX_INIT_TASK_ARGS_CGROUP(tg)
2846 .fork = fork,
2847 };
2848
2849 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, init_task, NULL,
2850 p, &args);
2851 if (unlikely(ret)) {
2852 ret = ops_sanitize_err(sch, "init_task", ret);
2853 return ret;
2854 }
2855 }
2856
2857 scx_set_task_state(p, SCX_TASK_INIT);
2858
2859 if (p->scx.disallow) {
2860 if (!fork) {
2861 struct rq *rq;
2862 struct rq_flags rf;
2863
2864 rq = task_rq_lock(p, &rf);
2865
2866 /*
2867 * We're in the load path and @p->policy will be applied
2868 * right after. Reverting @p->policy here and rejecting
2869 * %SCHED_EXT transitions from scx_check_setscheduler()
2870 * guarantees that if ops.init_task() sets @p->disallow,
2871 * @p can never be in SCX.
2872 */
2873 if (p->policy == SCHED_EXT) {
2874 p->policy = SCHED_NORMAL;
2875 atomic_long_inc(&scx_nr_rejected);
2876 }
2877
2878 task_rq_unlock(rq, p, &rf);
2879 } else if (p->policy == SCHED_EXT) {
2880 scx_error(sch, "ops.init_task() set task->scx.disallow for %s[%d] during fork",
2881 p->comm, p->pid);
2882 }
2883 }
2884
2885 p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT;
2886 return 0;
2887 }
2888
scx_enable_task(struct task_struct * p)2889 static void scx_enable_task(struct task_struct *p)
2890 {
2891 struct scx_sched *sch = scx_root;
2892 struct rq *rq = task_rq(p);
2893 u32 weight;
2894
2895 lockdep_assert_rq_held(rq);
2896
2897 /*
2898 * Set the weight before calling ops.enable() so that the scheduler
2899 * doesn't see a stale value if they inspect the task struct.
2900 */
2901 if (task_has_idle_policy(p))
2902 weight = WEIGHT_IDLEPRIO;
2903 else
2904 weight = sched_prio_to_weight[p->static_prio - MAX_RT_PRIO];
2905
2906 p->scx.weight = sched_weight_to_cgroup(weight);
2907
2908 if (SCX_HAS_OP(sch, enable))
2909 SCX_CALL_OP_TASK(sch, SCX_KF_REST, enable, rq, p);
2910 scx_set_task_state(p, SCX_TASK_ENABLED);
2911
2912 if (SCX_HAS_OP(sch, set_weight))
2913 SCX_CALL_OP_TASK(sch, SCX_KF_REST, set_weight, rq,
2914 p, p->scx.weight);
2915 }
2916
scx_disable_task(struct task_struct * p)2917 static void scx_disable_task(struct task_struct *p)
2918 {
2919 struct scx_sched *sch = scx_root;
2920 struct rq *rq = task_rq(p);
2921
2922 lockdep_assert_rq_held(rq);
2923 WARN_ON_ONCE(scx_get_task_state(p) != SCX_TASK_ENABLED);
2924
2925 if (SCX_HAS_OP(sch, disable))
2926 SCX_CALL_OP_TASK(sch, SCX_KF_REST, disable, rq, p);
2927 scx_set_task_state(p, SCX_TASK_READY);
2928 }
2929
scx_exit_task(struct task_struct * p)2930 static void scx_exit_task(struct task_struct *p)
2931 {
2932 struct scx_sched *sch = scx_root;
2933 struct scx_exit_task_args args = {
2934 .cancelled = false,
2935 };
2936
2937 lockdep_assert_rq_held(task_rq(p));
2938
2939 switch (scx_get_task_state(p)) {
2940 case SCX_TASK_NONE:
2941 return;
2942 case SCX_TASK_INIT:
2943 args.cancelled = true;
2944 break;
2945 case SCX_TASK_READY:
2946 break;
2947 case SCX_TASK_ENABLED:
2948 scx_disable_task(p);
2949 break;
2950 default:
2951 WARN_ON_ONCE(true);
2952 return;
2953 }
2954
2955 if (SCX_HAS_OP(sch, exit_task))
2956 SCX_CALL_OP_TASK(sch, SCX_KF_REST, exit_task, task_rq(p),
2957 p, &args);
2958 scx_set_task_state(p, SCX_TASK_NONE);
2959 }
2960
init_scx_entity(struct sched_ext_entity * scx)2961 void init_scx_entity(struct sched_ext_entity *scx)
2962 {
2963 memset(scx, 0, sizeof(*scx));
2964 INIT_LIST_HEAD(&scx->dsq_list.node);
2965 RB_CLEAR_NODE(&scx->dsq_priq);
2966 scx->sticky_cpu = -1;
2967 scx->holding_cpu = -1;
2968 INIT_LIST_HEAD(&scx->runnable_node);
2969 scx->runnable_at = jiffies;
2970 scx->ddsp_dsq_id = SCX_DSQ_INVALID;
2971 scx->slice = READ_ONCE(scx_slice_dfl);
2972 }
2973
scx_pre_fork(struct task_struct * p)2974 void scx_pre_fork(struct task_struct *p)
2975 {
2976 /*
2977 * BPF scheduler enable/disable paths want to be able to iterate and
2978 * update all tasks which can become complex when racing forks. As
2979 * enable/disable are very cold paths, let's use a percpu_rwsem to
2980 * exclude forks.
2981 */
2982 percpu_down_read(&scx_fork_rwsem);
2983 }
2984
scx_fork(struct task_struct * p)2985 int scx_fork(struct task_struct *p)
2986 {
2987 percpu_rwsem_assert_held(&scx_fork_rwsem);
2988
2989 if (scx_init_task_enabled)
2990 return scx_init_task(p, task_group(p), true);
2991 else
2992 return 0;
2993 }
2994
scx_post_fork(struct task_struct * p)2995 void scx_post_fork(struct task_struct *p)
2996 {
2997 if (scx_init_task_enabled) {
2998 scx_set_task_state(p, SCX_TASK_READY);
2999
3000 /*
3001 * Enable the task immediately if it's running on sched_ext.
3002 * Otherwise, it'll be enabled in switching_to_scx() if and
3003 * when it's ever configured to run with a SCHED_EXT policy.
3004 */
3005 if (p->sched_class == &ext_sched_class) {
3006 struct rq_flags rf;
3007 struct rq *rq;
3008
3009 rq = task_rq_lock(p, &rf);
3010 scx_enable_task(p);
3011 task_rq_unlock(rq, p, &rf);
3012 }
3013 }
3014
3015 raw_spin_lock_irq(&scx_tasks_lock);
3016 list_add_tail(&p->scx.tasks_node, &scx_tasks);
3017 raw_spin_unlock_irq(&scx_tasks_lock);
3018
3019 percpu_up_read(&scx_fork_rwsem);
3020 }
3021
scx_cancel_fork(struct task_struct * p)3022 void scx_cancel_fork(struct task_struct *p)
3023 {
3024 if (scx_enabled()) {
3025 struct rq *rq;
3026 struct rq_flags rf;
3027
3028 rq = task_rq_lock(p, &rf);
3029 WARN_ON_ONCE(scx_get_task_state(p) >= SCX_TASK_READY);
3030 scx_exit_task(p);
3031 task_rq_unlock(rq, p, &rf);
3032 }
3033
3034 percpu_up_read(&scx_fork_rwsem);
3035 }
3036
sched_ext_dead(struct task_struct * p)3037 void sched_ext_dead(struct task_struct *p)
3038 {
3039 unsigned long flags;
3040
3041 raw_spin_lock_irqsave(&scx_tasks_lock, flags);
3042 list_del_init(&p->scx.tasks_node);
3043 raw_spin_unlock_irqrestore(&scx_tasks_lock, flags);
3044
3045 /*
3046 * @p is off scx_tasks and wholly ours. scx_enable()'s READY -> ENABLED
3047 * transitions can't race us. Disable ops for @p.
3048 */
3049 if (scx_get_task_state(p) != SCX_TASK_NONE) {
3050 struct rq_flags rf;
3051 struct rq *rq;
3052
3053 rq = task_rq_lock(p, &rf);
3054 scx_exit_task(p);
3055 task_rq_unlock(rq, p, &rf);
3056 }
3057 }
3058
reweight_task_scx(struct rq * rq,struct task_struct * p,const struct load_weight * lw)3059 static void reweight_task_scx(struct rq *rq, struct task_struct *p,
3060 const struct load_weight *lw)
3061 {
3062 struct scx_sched *sch = scx_root;
3063
3064 lockdep_assert_rq_held(task_rq(p));
3065
3066 p->scx.weight = sched_weight_to_cgroup(scale_load_down(lw->weight));
3067 if (SCX_HAS_OP(sch, set_weight))
3068 SCX_CALL_OP_TASK(sch, SCX_KF_REST, set_weight, rq,
3069 p, p->scx.weight);
3070 }
3071
prio_changed_scx(struct rq * rq,struct task_struct * p,u64 oldprio)3072 static void prio_changed_scx(struct rq *rq, struct task_struct *p, u64 oldprio)
3073 {
3074 }
3075
switching_to_scx(struct rq * rq,struct task_struct * p)3076 static void switching_to_scx(struct rq *rq, struct task_struct *p)
3077 {
3078 struct scx_sched *sch = scx_root;
3079
3080 scx_enable_task(p);
3081
3082 /*
3083 * set_cpus_allowed_scx() is not called while @p is associated with a
3084 * different scheduler class. Keep the BPF scheduler up-to-date.
3085 */
3086 if (SCX_HAS_OP(sch, set_cpumask))
3087 SCX_CALL_OP_TASK(sch, SCX_KF_REST, set_cpumask, rq,
3088 p, (struct cpumask *)p->cpus_ptr);
3089 }
3090
switched_from_scx(struct rq * rq,struct task_struct * p)3091 static void switched_from_scx(struct rq *rq, struct task_struct *p)
3092 {
3093 scx_disable_task(p);
3094 }
3095
wakeup_preempt_scx(struct rq * rq,struct task_struct * p,int wake_flags)3096 static void wakeup_preempt_scx(struct rq *rq, struct task_struct *p,int wake_flags) {}
switched_to_scx(struct rq * rq,struct task_struct * p)3097 static void switched_to_scx(struct rq *rq, struct task_struct *p) {}
3098
scx_check_setscheduler(struct task_struct * p,int policy)3099 int scx_check_setscheduler(struct task_struct *p, int policy)
3100 {
3101 lockdep_assert_rq_held(task_rq(p));
3102
3103 /* if disallow, reject transitioning into SCX */
3104 if (scx_enabled() && READ_ONCE(p->scx.disallow) &&
3105 p->policy != policy && policy == SCHED_EXT)
3106 return -EACCES;
3107
3108 return 0;
3109 }
3110
3111 #ifdef CONFIG_NO_HZ_FULL
scx_can_stop_tick(struct rq * rq)3112 bool scx_can_stop_tick(struct rq *rq)
3113 {
3114 struct task_struct *p = rq->curr;
3115
3116 if (scx_rq_bypassing(rq))
3117 return false;
3118
3119 if (p->sched_class != &ext_sched_class)
3120 return true;
3121
3122 /*
3123 * @rq can dispatch from different DSQs, so we can't tell whether it
3124 * needs the tick or not by looking at nr_running. Allow stopping ticks
3125 * iff the BPF scheduler indicated so. See set_next_task_scx().
3126 */
3127 return rq->scx.flags & SCX_RQ_CAN_STOP_TICK;
3128 }
3129 #endif
3130
3131 #ifdef CONFIG_EXT_GROUP_SCHED
3132
3133 DEFINE_STATIC_PERCPU_RWSEM(scx_cgroup_ops_rwsem);
3134 static bool scx_cgroup_enabled;
3135
scx_tg_init(struct task_group * tg)3136 void scx_tg_init(struct task_group *tg)
3137 {
3138 tg->scx.weight = CGROUP_WEIGHT_DFL;
3139 tg->scx.bw_period_us = default_bw_period_us();
3140 tg->scx.bw_quota_us = RUNTIME_INF;
3141 tg->scx.idle = false;
3142 }
3143
scx_tg_online(struct task_group * tg)3144 int scx_tg_online(struct task_group *tg)
3145 {
3146 struct scx_sched *sch = scx_root;
3147 int ret = 0;
3148
3149 WARN_ON_ONCE(tg->scx.flags & (SCX_TG_ONLINE | SCX_TG_INITED));
3150
3151 if (scx_cgroup_enabled) {
3152 if (SCX_HAS_OP(sch, cgroup_init)) {
3153 struct scx_cgroup_init_args args =
3154 { .weight = tg->scx.weight,
3155 .bw_period_us = tg->scx.bw_period_us,
3156 .bw_quota_us = tg->scx.bw_quota_us,
3157 .bw_burst_us = tg->scx.bw_burst_us };
3158
3159 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, cgroup_init,
3160 NULL, tg->css.cgroup, &args);
3161 if (ret)
3162 ret = ops_sanitize_err(sch, "cgroup_init", ret);
3163 }
3164 if (ret == 0)
3165 tg->scx.flags |= SCX_TG_ONLINE | SCX_TG_INITED;
3166 } else {
3167 tg->scx.flags |= SCX_TG_ONLINE;
3168 }
3169
3170 return ret;
3171 }
3172
scx_tg_offline(struct task_group * tg)3173 void scx_tg_offline(struct task_group *tg)
3174 {
3175 struct scx_sched *sch = scx_root;
3176
3177 WARN_ON_ONCE(!(tg->scx.flags & SCX_TG_ONLINE));
3178
3179 if (scx_cgroup_enabled && SCX_HAS_OP(sch, cgroup_exit) &&
3180 (tg->scx.flags & SCX_TG_INITED))
3181 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_exit, NULL,
3182 tg->css.cgroup);
3183 tg->scx.flags &= ~(SCX_TG_ONLINE | SCX_TG_INITED);
3184 }
3185
scx_cgroup_can_attach(struct cgroup_taskset * tset)3186 int scx_cgroup_can_attach(struct cgroup_taskset *tset)
3187 {
3188 struct scx_sched *sch = scx_root;
3189 struct cgroup_subsys_state *css;
3190 struct task_struct *p;
3191 int ret;
3192
3193 if (!scx_cgroup_enabled)
3194 return 0;
3195
3196 cgroup_taskset_for_each(p, css, tset) {
3197 struct cgroup *from = tg_cgrp(task_group(p));
3198 struct cgroup *to = tg_cgrp(css_tg(css));
3199
3200 WARN_ON_ONCE(p->scx.cgrp_moving_from);
3201
3202 /*
3203 * sched_move_task() omits identity migrations. Let's match the
3204 * behavior so that ops.cgroup_prep_move() and ops.cgroup_move()
3205 * always match one-to-one.
3206 */
3207 if (from == to)
3208 continue;
3209
3210 if (SCX_HAS_OP(sch, cgroup_prep_move)) {
3211 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED,
3212 cgroup_prep_move, NULL,
3213 p, from, css->cgroup);
3214 if (ret)
3215 goto err;
3216 }
3217
3218 p->scx.cgrp_moving_from = from;
3219 }
3220
3221 return 0;
3222
3223 err:
3224 cgroup_taskset_for_each(p, css, tset) {
3225 if (SCX_HAS_OP(sch, cgroup_cancel_move) &&
3226 p->scx.cgrp_moving_from)
3227 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_cancel_move, NULL,
3228 p, p->scx.cgrp_moving_from, css->cgroup);
3229 p->scx.cgrp_moving_from = NULL;
3230 }
3231
3232 return ops_sanitize_err(sch, "cgroup_prep_move", ret);
3233 }
3234
scx_cgroup_move_task(struct task_struct * p)3235 void scx_cgroup_move_task(struct task_struct *p)
3236 {
3237 struct scx_sched *sch = scx_root;
3238
3239 if (!scx_cgroup_enabled)
3240 return;
3241
3242 /*
3243 * @p must have ops.cgroup_prep_move() called on it and thus
3244 * cgrp_moving_from set.
3245 */
3246 if (SCX_HAS_OP(sch, cgroup_move) &&
3247 !WARN_ON_ONCE(!p->scx.cgrp_moving_from))
3248 SCX_CALL_OP_TASK(sch, SCX_KF_UNLOCKED, cgroup_move, NULL,
3249 p, p->scx.cgrp_moving_from,
3250 tg_cgrp(task_group(p)));
3251 p->scx.cgrp_moving_from = NULL;
3252 }
3253
scx_cgroup_cancel_attach(struct cgroup_taskset * tset)3254 void scx_cgroup_cancel_attach(struct cgroup_taskset *tset)
3255 {
3256 struct scx_sched *sch = scx_root;
3257 struct cgroup_subsys_state *css;
3258 struct task_struct *p;
3259
3260 if (!scx_cgroup_enabled)
3261 return;
3262
3263 cgroup_taskset_for_each(p, css, tset) {
3264 if (SCX_HAS_OP(sch, cgroup_cancel_move) &&
3265 p->scx.cgrp_moving_from)
3266 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_cancel_move, NULL,
3267 p, p->scx.cgrp_moving_from, css->cgroup);
3268 p->scx.cgrp_moving_from = NULL;
3269 }
3270 }
3271
scx_group_set_weight(struct task_group * tg,unsigned long weight)3272 void scx_group_set_weight(struct task_group *tg, unsigned long weight)
3273 {
3274 struct scx_sched *sch = scx_root;
3275
3276 percpu_down_read(&scx_cgroup_ops_rwsem);
3277
3278 if (scx_cgroup_enabled && SCX_HAS_OP(sch, cgroup_set_weight) &&
3279 tg->scx.weight != weight)
3280 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_set_weight, NULL,
3281 tg_cgrp(tg), weight);
3282
3283 tg->scx.weight = weight;
3284
3285 percpu_up_read(&scx_cgroup_ops_rwsem);
3286 }
3287
scx_group_set_idle(struct task_group * tg,bool idle)3288 void scx_group_set_idle(struct task_group *tg, bool idle)
3289 {
3290 struct scx_sched *sch = scx_root;
3291
3292 percpu_down_read(&scx_cgroup_ops_rwsem);
3293
3294 if (scx_cgroup_enabled && SCX_HAS_OP(sch, cgroup_set_idle))
3295 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_set_idle, NULL,
3296 tg_cgrp(tg), idle);
3297
3298 /* Update the task group's idle state */
3299 tg->scx.idle = idle;
3300
3301 percpu_up_read(&scx_cgroup_ops_rwsem);
3302 }
3303
scx_group_set_bandwidth(struct task_group * tg,u64 period_us,u64 quota_us,u64 burst_us)3304 void scx_group_set_bandwidth(struct task_group *tg,
3305 u64 period_us, u64 quota_us, u64 burst_us)
3306 {
3307 struct scx_sched *sch = scx_root;
3308
3309 percpu_down_read(&scx_cgroup_ops_rwsem);
3310
3311 if (scx_cgroup_enabled && SCX_HAS_OP(sch, cgroup_set_bandwidth) &&
3312 (tg->scx.bw_period_us != period_us ||
3313 tg->scx.bw_quota_us != quota_us ||
3314 tg->scx.bw_burst_us != burst_us))
3315 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_set_bandwidth, NULL,
3316 tg_cgrp(tg), period_us, quota_us, burst_us);
3317
3318 tg->scx.bw_period_us = period_us;
3319 tg->scx.bw_quota_us = quota_us;
3320 tg->scx.bw_burst_us = burst_us;
3321
3322 percpu_up_read(&scx_cgroup_ops_rwsem);
3323 }
3324
scx_cgroup_lock(void)3325 static void scx_cgroup_lock(void)
3326 {
3327 percpu_down_write(&scx_cgroup_ops_rwsem);
3328 cgroup_lock();
3329 }
3330
scx_cgroup_unlock(void)3331 static void scx_cgroup_unlock(void)
3332 {
3333 cgroup_unlock();
3334 percpu_up_write(&scx_cgroup_ops_rwsem);
3335 }
3336
3337 #else /* CONFIG_EXT_GROUP_SCHED */
3338
scx_cgroup_lock(void)3339 static void scx_cgroup_lock(void) {}
scx_cgroup_unlock(void)3340 static void scx_cgroup_unlock(void) {}
3341
3342 #endif /* CONFIG_EXT_GROUP_SCHED */
3343
3344 /*
3345 * Omitted operations:
3346 *
3347 * - wakeup_preempt: NOOP as it isn't useful in the wakeup path because the task
3348 * isn't tied to the CPU at that point. Preemption is implemented by resetting
3349 * the victim task's slice to 0 and triggering reschedule on the target CPU.
3350 *
3351 * - migrate_task_rq: Unnecessary as task to cpu mapping is transient.
3352 *
3353 * - task_fork/dead: We need fork/dead notifications for all tasks regardless of
3354 * their current sched_class. Call them directly from sched core instead.
3355 */
3356 DEFINE_SCHED_CLASS(ext) = {
3357 .queue_mask = 1,
3358
3359 .enqueue_task = enqueue_task_scx,
3360 .dequeue_task = dequeue_task_scx,
3361 .yield_task = yield_task_scx,
3362 .yield_to_task = yield_to_task_scx,
3363
3364 .wakeup_preempt = wakeup_preempt_scx,
3365
3366 .pick_task = pick_task_scx,
3367
3368 .put_prev_task = put_prev_task_scx,
3369 .set_next_task = set_next_task_scx,
3370
3371 .select_task_rq = select_task_rq_scx,
3372 .task_woken = task_woken_scx,
3373 .set_cpus_allowed = set_cpus_allowed_scx,
3374
3375 .rq_online = rq_online_scx,
3376 .rq_offline = rq_offline_scx,
3377
3378 .task_tick = task_tick_scx,
3379
3380 .switching_to = switching_to_scx,
3381 .switched_from = switched_from_scx,
3382 .switched_to = switched_to_scx,
3383 .reweight_task = reweight_task_scx,
3384 .prio_changed = prio_changed_scx,
3385
3386 .update_curr = update_curr_scx,
3387
3388 #ifdef CONFIG_UCLAMP_TASK
3389 .uclamp_enabled = 1,
3390 #endif
3391 };
3392
init_dsq(struct scx_dispatch_q * dsq,u64 dsq_id)3393 static void init_dsq(struct scx_dispatch_q *dsq, u64 dsq_id)
3394 {
3395 memset(dsq, 0, sizeof(*dsq));
3396
3397 raw_spin_lock_init(&dsq->lock);
3398 INIT_LIST_HEAD(&dsq->list);
3399 dsq->id = dsq_id;
3400 }
3401
free_dsq_irq_workfn(struct irq_work * irq_work)3402 static void free_dsq_irq_workfn(struct irq_work *irq_work)
3403 {
3404 struct llist_node *to_free = llist_del_all(&dsqs_to_free);
3405 struct scx_dispatch_q *dsq, *tmp_dsq;
3406
3407 llist_for_each_entry_safe(dsq, tmp_dsq, to_free, free_node)
3408 kfree_rcu(dsq, rcu);
3409 }
3410
3411 static DEFINE_IRQ_WORK(free_dsq_irq_work, free_dsq_irq_workfn);
3412
destroy_dsq(struct scx_sched * sch,u64 dsq_id)3413 static void destroy_dsq(struct scx_sched *sch, u64 dsq_id)
3414 {
3415 struct scx_dispatch_q *dsq;
3416 unsigned long flags;
3417
3418 rcu_read_lock();
3419
3420 dsq = find_user_dsq(sch, dsq_id);
3421 if (!dsq)
3422 goto out_unlock_rcu;
3423
3424 raw_spin_lock_irqsave(&dsq->lock, flags);
3425
3426 if (dsq->nr) {
3427 scx_error(sch, "attempting to destroy in-use dsq 0x%016llx (nr=%u)",
3428 dsq->id, dsq->nr);
3429 goto out_unlock_dsq;
3430 }
3431
3432 if (rhashtable_remove_fast(&sch->dsq_hash, &dsq->hash_node,
3433 dsq_hash_params))
3434 goto out_unlock_dsq;
3435
3436 /*
3437 * Mark dead by invalidating ->id to prevent dispatch_enqueue() from
3438 * queueing more tasks. As this function can be called from anywhere,
3439 * freeing is bounced through an irq work to avoid nesting RCU
3440 * operations inside scheduler locks.
3441 */
3442 dsq->id = SCX_DSQ_INVALID;
3443 llist_add(&dsq->free_node, &dsqs_to_free);
3444 irq_work_queue(&free_dsq_irq_work);
3445
3446 out_unlock_dsq:
3447 raw_spin_unlock_irqrestore(&dsq->lock, flags);
3448 out_unlock_rcu:
3449 rcu_read_unlock();
3450 }
3451
3452 #ifdef CONFIG_EXT_GROUP_SCHED
scx_cgroup_exit(struct scx_sched * sch)3453 static void scx_cgroup_exit(struct scx_sched *sch)
3454 {
3455 struct cgroup_subsys_state *css;
3456
3457 scx_cgroup_enabled = false;
3458
3459 /*
3460 * scx_tg_on/offline() are excluded through cgroup_lock(). If we walk
3461 * cgroups and exit all the inited ones, all online cgroups are exited.
3462 */
3463 css_for_each_descendant_post(css, &root_task_group.css) {
3464 struct task_group *tg = css_tg(css);
3465
3466 if (!(tg->scx.flags & SCX_TG_INITED))
3467 continue;
3468 tg->scx.flags &= ~SCX_TG_INITED;
3469
3470 if (!sch->ops.cgroup_exit)
3471 continue;
3472
3473 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_exit, NULL,
3474 css->cgroup);
3475 }
3476 }
3477
scx_cgroup_init(struct scx_sched * sch)3478 static int scx_cgroup_init(struct scx_sched *sch)
3479 {
3480 struct cgroup_subsys_state *css;
3481 int ret;
3482
3483 /*
3484 * scx_tg_on/offline() are excluded through cgroup_lock(). If we walk
3485 * cgroups and init, all online cgroups are initialized.
3486 */
3487 css_for_each_descendant_pre(css, &root_task_group.css) {
3488 struct task_group *tg = css_tg(css);
3489 struct scx_cgroup_init_args args = {
3490 .weight = tg->scx.weight,
3491 .bw_period_us = tg->scx.bw_period_us,
3492 .bw_quota_us = tg->scx.bw_quota_us,
3493 .bw_burst_us = tg->scx.bw_burst_us,
3494 };
3495
3496 if ((tg->scx.flags &
3497 (SCX_TG_ONLINE | SCX_TG_INITED)) != SCX_TG_ONLINE)
3498 continue;
3499
3500 if (!sch->ops.cgroup_init) {
3501 tg->scx.flags |= SCX_TG_INITED;
3502 continue;
3503 }
3504
3505 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, cgroup_init, NULL,
3506 css->cgroup, &args);
3507 if (ret) {
3508 css_put(css);
3509 scx_error(sch, "ops.cgroup_init() failed (%d)", ret);
3510 return ret;
3511 }
3512 tg->scx.flags |= SCX_TG_INITED;
3513 }
3514
3515 WARN_ON_ONCE(scx_cgroup_enabled);
3516 scx_cgroup_enabled = true;
3517
3518 return 0;
3519 }
3520
3521 #else
scx_cgroup_exit(struct scx_sched * sch)3522 static void scx_cgroup_exit(struct scx_sched *sch) {}
scx_cgroup_init(struct scx_sched * sch)3523 static int scx_cgroup_init(struct scx_sched *sch) { return 0; }
3524 #endif
3525
3526
3527 /********************************************************************************
3528 * Sysfs interface and ops enable/disable.
3529 */
3530
3531 #define SCX_ATTR(_name) \
3532 static struct kobj_attribute scx_attr_##_name = { \
3533 .attr = { .name = __stringify(_name), .mode = 0444 }, \
3534 .show = scx_attr_##_name##_show, \
3535 }
3536
scx_attr_state_show(struct kobject * kobj,struct kobj_attribute * ka,char * buf)3537 static ssize_t scx_attr_state_show(struct kobject *kobj,
3538 struct kobj_attribute *ka, char *buf)
3539 {
3540 return sysfs_emit(buf, "%s\n", scx_enable_state_str[scx_enable_state()]);
3541 }
3542 SCX_ATTR(state);
3543
scx_attr_switch_all_show(struct kobject * kobj,struct kobj_attribute * ka,char * buf)3544 static ssize_t scx_attr_switch_all_show(struct kobject *kobj,
3545 struct kobj_attribute *ka, char *buf)
3546 {
3547 return sysfs_emit(buf, "%d\n", READ_ONCE(scx_switching_all));
3548 }
3549 SCX_ATTR(switch_all);
3550
scx_attr_nr_rejected_show(struct kobject * kobj,struct kobj_attribute * ka,char * buf)3551 static ssize_t scx_attr_nr_rejected_show(struct kobject *kobj,
3552 struct kobj_attribute *ka, char *buf)
3553 {
3554 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_nr_rejected));
3555 }
3556 SCX_ATTR(nr_rejected);
3557
scx_attr_hotplug_seq_show(struct kobject * kobj,struct kobj_attribute * ka,char * buf)3558 static ssize_t scx_attr_hotplug_seq_show(struct kobject *kobj,
3559 struct kobj_attribute *ka, char *buf)
3560 {
3561 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_hotplug_seq));
3562 }
3563 SCX_ATTR(hotplug_seq);
3564
scx_attr_enable_seq_show(struct kobject * kobj,struct kobj_attribute * ka,char * buf)3565 static ssize_t scx_attr_enable_seq_show(struct kobject *kobj,
3566 struct kobj_attribute *ka, char *buf)
3567 {
3568 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_enable_seq));
3569 }
3570 SCX_ATTR(enable_seq);
3571
3572 static struct attribute *scx_global_attrs[] = {
3573 &scx_attr_state.attr,
3574 &scx_attr_switch_all.attr,
3575 &scx_attr_nr_rejected.attr,
3576 &scx_attr_hotplug_seq.attr,
3577 &scx_attr_enable_seq.attr,
3578 NULL,
3579 };
3580
3581 static const struct attribute_group scx_global_attr_group = {
3582 .attrs = scx_global_attrs,
3583 };
3584
3585 static void free_exit_info(struct scx_exit_info *ei);
3586
scx_sched_free_rcu_work(struct work_struct * work)3587 static void scx_sched_free_rcu_work(struct work_struct *work)
3588 {
3589 struct rcu_work *rcu_work = to_rcu_work(work);
3590 struct scx_sched *sch = container_of(rcu_work, struct scx_sched, rcu_work);
3591 struct rhashtable_iter rht_iter;
3592 struct scx_dispatch_q *dsq;
3593 int node;
3594
3595 irq_work_sync(&sch->error_irq_work);
3596 kthread_destroy_worker(sch->helper);
3597
3598 free_percpu(sch->pcpu);
3599
3600 for_each_node_state(node, N_POSSIBLE)
3601 kfree(sch->global_dsqs[node]);
3602 kfree(sch->global_dsqs);
3603
3604 rhashtable_walk_enter(&sch->dsq_hash, &rht_iter);
3605 do {
3606 rhashtable_walk_start(&rht_iter);
3607
3608 while ((dsq = rhashtable_walk_next(&rht_iter)) && !IS_ERR(dsq))
3609 destroy_dsq(sch, dsq->id);
3610
3611 rhashtable_walk_stop(&rht_iter);
3612 } while (dsq == ERR_PTR(-EAGAIN));
3613 rhashtable_walk_exit(&rht_iter);
3614
3615 rhashtable_free_and_destroy(&sch->dsq_hash, NULL, NULL);
3616 free_exit_info(sch->exit_info);
3617 kfree(sch);
3618 }
3619
scx_kobj_release(struct kobject * kobj)3620 static void scx_kobj_release(struct kobject *kobj)
3621 {
3622 struct scx_sched *sch = container_of(kobj, struct scx_sched, kobj);
3623
3624 INIT_RCU_WORK(&sch->rcu_work, scx_sched_free_rcu_work);
3625 queue_rcu_work(system_unbound_wq, &sch->rcu_work);
3626 }
3627
scx_attr_ops_show(struct kobject * kobj,struct kobj_attribute * ka,char * buf)3628 static ssize_t scx_attr_ops_show(struct kobject *kobj,
3629 struct kobj_attribute *ka, char *buf)
3630 {
3631 return sysfs_emit(buf, "%s\n", scx_root->ops.name);
3632 }
3633 SCX_ATTR(ops);
3634
3635 #define scx_attr_event_show(buf, at, events, kind) ({ \
3636 sysfs_emit_at(buf, at, "%s %llu\n", #kind, (events)->kind); \
3637 })
3638
scx_attr_events_show(struct kobject * kobj,struct kobj_attribute * ka,char * buf)3639 static ssize_t scx_attr_events_show(struct kobject *kobj,
3640 struct kobj_attribute *ka, char *buf)
3641 {
3642 struct scx_sched *sch = container_of(kobj, struct scx_sched, kobj);
3643 struct scx_event_stats events;
3644 int at = 0;
3645
3646 scx_read_events(sch, &events);
3647 at += scx_attr_event_show(buf, at, &events, SCX_EV_SELECT_CPU_FALLBACK);
3648 at += scx_attr_event_show(buf, at, &events, SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE);
3649 at += scx_attr_event_show(buf, at, &events, SCX_EV_DISPATCH_KEEP_LAST);
3650 at += scx_attr_event_show(buf, at, &events, SCX_EV_ENQ_SKIP_EXITING);
3651 at += scx_attr_event_show(buf, at, &events, SCX_EV_ENQ_SKIP_MIGRATION_DISABLED);
3652 at += scx_attr_event_show(buf, at, &events, SCX_EV_REFILL_SLICE_DFL);
3653 at += scx_attr_event_show(buf, at, &events, SCX_EV_BYPASS_DURATION);
3654 at += scx_attr_event_show(buf, at, &events, SCX_EV_BYPASS_DISPATCH);
3655 at += scx_attr_event_show(buf, at, &events, SCX_EV_BYPASS_ACTIVATE);
3656 return at;
3657 }
3658 SCX_ATTR(events);
3659
3660 static struct attribute *scx_sched_attrs[] = {
3661 &scx_attr_ops.attr,
3662 &scx_attr_events.attr,
3663 NULL,
3664 };
3665 ATTRIBUTE_GROUPS(scx_sched);
3666
3667 static const struct kobj_type scx_ktype = {
3668 .release = scx_kobj_release,
3669 .sysfs_ops = &kobj_sysfs_ops,
3670 .default_groups = scx_sched_groups,
3671 };
3672
scx_uevent(const struct kobject * kobj,struct kobj_uevent_env * env)3673 static int scx_uevent(const struct kobject *kobj, struct kobj_uevent_env *env)
3674 {
3675 return add_uevent_var(env, "SCXOPS=%s", scx_root->ops.name);
3676 }
3677
3678 static const struct kset_uevent_ops scx_uevent_ops = {
3679 .uevent = scx_uevent,
3680 };
3681
3682 /*
3683 * Used by sched_fork() and __setscheduler_prio() to pick the matching
3684 * sched_class. dl/rt are already handled.
3685 */
task_should_scx(int policy)3686 bool task_should_scx(int policy)
3687 {
3688 if (!scx_enabled() || unlikely(scx_enable_state() == SCX_DISABLING))
3689 return false;
3690 if (READ_ONCE(scx_switching_all))
3691 return true;
3692 return policy == SCHED_EXT;
3693 }
3694
scx_allow_ttwu_queue(const struct task_struct * p)3695 bool scx_allow_ttwu_queue(const struct task_struct *p)
3696 {
3697 struct scx_sched *sch;
3698
3699 if (!scx_enabled())
3700 return true;
3701
3702 sch = rcu_dereference_sched(scx_root);
3703 if (unlikely(!sch))
3704 return true;
3705
3706 if (sch->ops.flags & SCX_OPS_ALLOW_QUEUED_WAKEUP)
3707 return true;
3708
3709 if (unlikely(p->sched_class != &ext_sched_class))
3710 return true;
3711
3712 return false;
3713 }
3714
3715 /**
3716 * handle_lockup - sched_ext common lockup handler
3717 * @fmt: format string
3718 *
3719 * Called on system stall or lockup condition and initiates abort of sched_ext
3720 * if enabled, which may resolve the reported lockup.
3721 *
3722 * Returns %true if sched_ext is enabled and abort was initiated, which may
3723 * resolve the lockup. %false if sched_ext is not enabled or abort was already
3724 * initiated by someone else.
3725 */
handle_lockup(const char * fmt,...)3726 static __printf(1, 2) bool handle_lockup(const char *fmt, ...)
3727 {
3728 struct scx_sched *sch;
3729 va_list args;
3730 bool ret;
3731
3732 guard(rcu)();
3733
3734 sch = rcu_dereference(scx_root);
3735 if (unlikely(!sch))
3736 return false;
3737
3738 switch (scx_enable_state()) {
3739 case SCX_ENABLING:
3740 case SCX_ENABLED:
3741 va_start(args, fmt);
3742 ret = scx_verror(sch, fmt, args);
3743 va_end(args);
3744 return ret;
3745 default:
3746 return false;
3747 }
3748 }
3749
3750 /**
3751 * scx_rcu_cpu_stall - sched_ext RCU CPU stall handler
3752 *
3753 * While there are various reasons why RCU CPU stalls can occur on a system
3754 * that may not be caused by the current BPF scheduler, try kicking out the
3755 * current scheduler in an attempt to recover the system to a good state before
3756 * issuing panics.
3757 *
3758 * Returns %true if sched_ext is enabled and abort was initiated, which may
3759 * resolve the reported RCU stall. %false if sched_ext is not enabled or someone
3760 * else already initiated abort.
3761 */
scx_rcu_cpu_stall(void)3762 bool scx_rcu_cpu_stall(void)
3763 {
3764 return handle_lockup("RCU CPU stall detected!");
3765 }
3766
3767 /**
3768 * scx_softlockup - sched_ext softlockup handler
3769 * @dur_s: number of seconds of CPU stuck due to soft lockup
3770 *
3771 * On some multi-socket setups (e.g. 2x Intel 8480c), the BPF scheduler can
3772 * live-lock the system by making many CPUs target the same DSQ to the point
3773 * where soft-lockup detection triggers. This function is called from
3774 * soft-lockup watchdog when the triggering point is close and tries to unjam
3775 * the system and aborting the BPF scheduler.
3776 */
scx_softlockup(u32 dur_s)3777 void scx_softlockup(u32 dur_s)
3778 {
3779 if (!handle_lockup("soft lockup - CPU %d stuck for %us", smp_processor_id(), dur_s))
3780 return;
3781
3782 printk_deferred(KERN_ERR "sched_ext: Soft lockup - CPU %d stuck for %us, disabling BPF scheduler\n",
3783 smp_processor_id(), dur_s);
3784 }
3785
3786 /**
3787 * scx_hardlockup - sched_ext hardlockup handler
3788 *
3789 * A poorly behaving BPF scheduler can trigger hard lockup by e.g. putting
3790 * numerous affinitized tasks in a single queue and directing all CPUs at it.
3791 * Try kicking out the current scheduler in an attempt to recover the system to
3792 * a good state before taking more drastic actions.
3793 *
3794 * Returns %true if sched_ext is enabled and abort was initiated, which may
3795 * resolve the reported hardlockdup. %false if sched_ext is not enabled or
3796 * someone else already initiated abort.
3797 */
scx_hardlockup(int cpu)3798 bool scx_hardlockup(int cpu)
3799 {
3800 if (!handle_lockup("hard lockup - CPU %d", cpu))
3801 return false;
3802
3803 printk_deferred(KERN_ERR "sched_ext: Hard lockup - CPU %d, disabling BPF scheduler\n",
3804 cpu);
3805 return true;
3806 }
3807
bypass_lb_cpu(struct scx_sched * sch,struct rq * rq,struct cpumask * donee_mask,struct cpumask * resched_mask,u32 nr_donor_target,u32 nr_donee_target)3808 static u32 bypass_lb_cpu(struct scx_sched *sch, struct rq *rq,
3809 struct cpumask *donee_mask, struct cpumask *resched_mask,
3810 u32 nr_donor_target, u32 nr_donee_target)
3811 {
3812 struct scx_dispatch_q *donor_dsq = &rq->scx.bypass_dsq;
3813 struct task_struct *p, *n;
3814 struct scx_dsq_list_node cursor = INIT_DSQ_LIST_CURSOR(cursor, 0, 0);
3815 s32 delta = READ_ONCE(donor_dsq->nr) - nr_donor_target;
3816 u32 nr_balanced = 0, min_delta_us;
3817
3818 /*
3819 * All we want to guarantee is reasonable forward progress. No reason to
3820 * fine tune. Assuming every task on @donor_dsq runs their full slice,
3821 * consider offloading iff the total queued duration is over the
3822 * threshold.
3823 */
3824 min_delta_us = scx_bypass_lb_intv_us / SCX_BYPASS_LB_MIN_DELTA_DIV;
3825 if (delta < DIV_ROUND_UP(min_delta_us, scx_slice_bypass_us))
3826 return 0;
3827
3828 raw_spin_rq_lock_irq(rq);
3829 raw_spin_lock(&donor_dsq->lock);
3830 list_add(&cursor.node, &donor_dsq->list);
3831 resume:
3832 n = container_of(&cursor, struct task_struct, scx.dsq_list);
3833 n = nldsq_next_task(donor_dsq, n, false);
3834
3835 while ((p = n)) {
3836 struct rq *donee_rq;
3837 struct scx_dispatch_q *donee_dsq;
3838 int donee;
3839
3840 n = nldsq_next_task(donor_dsq, n, false);
3841
3842 if (donor_dsq->nr <= nr_donor_target)
3843 break;
3844
3845 if (cpumask_empty(donee_mask))
3846 break;
3847
3848 donee = cpumask_any_and_distribute(donee_mask, p->cpus_ptr);
3849 if (donee >= nr_cpu_ids)
3850 continue;
3851
3852 donee_rq = cpu_rq(donee);
3853 donee_dsq = &donee_rq->scx.bypass_dsq;
3854
3855 /*
3856 * $p's rq is not locked but $p's DSQ lock protects its
3857 * scheduling properties making this test safe.
3858 */
3859 if (!task_can_run_on_remote_rq(sch, p, donee_rq, false))
3860 continue;
3861
3862 /*
3863 * Moving $p from one non-local DSQ to another. The source rq
3864 * and DSQ are already locked. Do an abbreviated dequeue and
3865 * then perform enqueue without unlocking $donor_dsq.
3866 *
3867 * We don't want to drop and reacquire the lock on each
3868 * iteration as @donor_dsq can be very long and potentially
3869 * highly contended. Donee DSQs are less likely to be contended.
3870 * The nested locking is safe as only this LB moves tasks
3871 * between bypass DSQs.
3872 */
3873 dispatch_dequeue_locked(p, donor_dsq);
3874 dispatch_enqueue(sch, donee_dsq, p, SCX_ENQ_NESTED);
3875
3876 /*
3877 * $donee might have been idle and need to be woken up. No need
3878 * to be clever. Kick every CPU that receives tasks.
3879 */
3880 cpumask_set_cpu(donee, resched_mask);
3881
3882 if (READ_ONCE(donee_dsq->nr) >= nr_donee_target)
3883 cpumask_clear_cpu(donee, donee_mask);
3884
3885 nr_balanced++;
3886 if (!(nr_balanced % SCX_BYPASS_LB_BATCH) && n) {
3887 list_move_tail(&cursor.node, &n->scx.dsq_list.node);
3888 raw_spin_unlock(&donor_dsq->lock);
3889 raw_spin_rq_unlock_irq(rq);
3890 cpu_relax();
3891 raw_spin_rq_lock_irq(rq);
3892 raw_spin_lock(&donor_dsq->lock);
3893 goto resume;
3894 }
3895 }
3896
3897 list_del_init(&cursor.node);
3898 raw_spin_unlock(&donor_dsq->lock);
3899 raw_spin_rq_unlock_irq(rq);
3900
3901 return nr_balanced;
3902 }
3903
bypass_lb_node(struct scx_sched * sch,int node)3904 static void bypass_lb_node(struct scx_sched *sch, int node)
3905 {
3906 const struct cpumask *node_mask = cpumask_of_node(node);
3907 struct cpumask *donee_mask = scx_bypass_lb_donee_cpumask;
3908 struct cpumask *resched_mask = scx_bypass_lb_resched_cpumask;
3909 u32 nr_tasks = 0, nr_cpus = 0, nr_balanced = 0;
3910 u32 nr_target, nr_donor_target;
3911 u32 before_min = U32_MAX, before_max = 0;
3912 u32 after_min = U32_MAX, after_max = 0;
3913 int cpu;
3914
3915 /* count the target tasks and CPUs */
3916 for_each_cpu_and(cpu, cpu_online_mask, node_mask) {
3917 u32 nr = READ_ONCE(cpu_rq(cpu)->scx.bypass_dsq.nr);
3918
3919 nr_tasks += nr;
3920 nr_cpus++;
3921
3922 before_min = min(nr, before_min);
3923 before_max = max(nr, before_max);
3924 }
3925
3926 if (!nr_cpus)
3927 return;
3928
3929 /*
3930 * We don't want CPUs to have more than $nr_donor_target tasks and
3931 * balancing to fill donee CPUs upto $nr_target. Once targets are
3932 * calculated, find the donee CPUs.
3933 */
3934 nr_target = DIV_ROUND_UP(nr_tasks, nr_cpus);
3935 nr_donor_target = DIV_ROUND_UP(nr_target * SCX_BYPASS_LB_DONOR_PCT, 100);
3936
3937 cpumask_clear(donee_mask);
3938 for_each_cpu_and(cpu, cpu_online_mask, node_mask) {
3939 if (READ_ONCE(cpu_rq(cpu)->scx.bypass_dsq.nr) < nr_target)
3940 cpumask_set_cpu(cpu, donee_mask);
3941 }
3942
3943 /* iterate !donee CPUs and see if they should be offloaded */
3944 cpumask_clear(resched_mask);
3945 for_each_cpu_and(cpu, cpu_online_mask, node_mask) {
3946 struct rq *rq = cpu_rq(cpu);
3947 struct scx_dispatch_q *donor_dsq = &rq->scx.bypass_dsq;
3948
3949 if (cpumask_empty(donee_mask))
3950 break;
3951 if (cpumask_test_cpu(cpu, donee_mask))
3952 continue;
3953 if (READ_ONCE(donor_dsq->nr) <= nr_donor_target)
3954 continue;
3955
3956 nr_balanced += bypass_lb_cpu(sch, rq, donee_mask, resched_mask,
3957 nr_donor_target, nr_target);
3958 }
3959
3960 for_each_cpu(cpu, resched_mask)
3961 resched_cpu(cpu);
3962
3963 for_each_cpu_and(cpu, cpu_online_mask, node_mask) {
3964 u32 nr = READ_ONCE(cpu_rq(cpu)->scx.bypass_dsq.nr);
3965
3966 after_min = min(nr, after_min);
3967 after_max = max(nr, after_max);
3968
3969 }
3970
3971 trace_sched_ext_bypass_lb(node, nr_cpus, nr_tasks, nr_balanced,
3972 before_min, before_max, after_min, after_max);
3973 }
3974
3975 /*
3976 * In bypass mode, all tasks are put on the per-CPU bypass DSQs. If the machine
3977 * is over-saturated and the BPF scheduler skewed tasks into few CPUs, some
3978 * bypass DSQs can be overloaded. If there are enough tasks to saturate other
3979 * lightly loaded CPUs, such imbalance can lead to very high execution latency
3980 * on the overloaded CPUs and thus to hung tasks and RCU stalls. To avoid such
3981 * outcomes, a simple load balancing mechanism is implemented by the following
3982 * timer which runs periodically while bypass mode is in effect.
3983 */
scx_bypass_lb_timerfn(struct timer_list * timer)3984 static void scx_bypass_lb_timerfn(struct timer_list *timer)
3985 {
3986 struct scx_sched *sch;
3987 int node;
3988 u32 intv_us;
3989
3990 sch = rcu_dereference_all(scx_root);
3991 if (unlikely(!sch) || !READ_ONCE(scx_bypass_depth))
3992 return;
3993
3994 for_each_node_with_cpus(node)
3995 bypass_lb_node(sch, node);
3996
3997 intv_us = READ_ONCE(scx_bypass_lb_intv_us);
3998 if (intv_us)
3999 mod_timer(timer, jiffies + usecs_to_jiffies(intv_us));
4000 }
4001
4002 static DEFINE_TIMER(scx_bypass_lb_timer, scx_bypass_lb_timerfn);
4003
4004 /**
4005 * scx_bypass - [Un]bypass scx_ops and guarantee forward progress
4006 * @bypass: true for bypass, false for unbypass
4007 *
4008 * Bypassing guarantees that all runnable tasks make forward progress without
4009 * trusting the BPF scheduler. We can't grab any mutexes or rwsems as they might
4010 * be held by tasks that the BPF scheduler is forgetting to run, which
4011 * unfortunately also excludes toggling the static branches.
4012 *
4013 * Let's work around by overriding a couple ops and modifying behaviors based on
4014 * the DISABLING state and then cycling the queued tasks through dequeue/enqueue
4015 * to force global FIFO scheduling.
4016 *
4017 * - ops.select_cpu() is ignored and the default select_cpu() is used.
4018 *
4019 * - ops.enqueue() is ignored and tasks are queued in simple global FIFO order.
4020 * %SCX_OPS_ENQ_LAST is also ignored.
4021 *
4022 * - ops.dispatch() is ignored.
4023 *
4024 * - balance_one() does not set %SCX_RQ_BAL_KEEP on non-zero slice as slice
4025 * can't be trusted. Whenever a tick triggers, the running task is rotated to
4026 * the tail of the queue with core_sched_at touched.
4027 *
4028 * - pick_next_task() suppresses zero slice warning.
4029 *
4030 * - scx_kick_cpu() is disabled to avoid irq_work malfunction during PM
4031 * operations.
4032 *
4033 * - scx_prio_less() reverts to the default core_sched_at order.
4034 */
scx_bypass(bool bypass)4035 static void scx_bypass(bool bypass)
4036 {
4037 static DEFINE_RAW_SPINLOCK(bypass_lock);
4038 static unsigned long bypass_timestamp;
4039 struct scx_sched *sch;
4040 unsigned long flags;
4041 int cpu;
4042
4043 raw_spin_lock_irqsave(&bypass_lock, flags);
4044 sch = rcu_dereference_bh(scx_root);
4045
4046 if (bypass) {
4047 u32 intv_us;
4048
4049 WRITE_ONCE(scx_bypass_depth, scx_bypass_depth + 1);
4050 WARN_ON_ONCE(scx_bypass_depth <= 0);
4051 if (scx_bypass_depth != 1)
4052 goto unlock;
4053 WRITE_ONCE(scx_slice_dfl, scx_slice_bypass_us * NSEC_PER_USEC);
4054 bypass_timestamp = ktime_get_ns();
4055 if (sch)
4056 scx_add_event(sch, SCX_EV_BYPASS_ACTIVATE, 1);
4057
4058 intv_us = READ_ONCE(scx_bypass_lb_intv_us);
4059 if (intv_us && !timer_pending(&scx_bypass_lb_timer)) {
4060 scx_bypass_lb_timer.expires =
4061 jiffies + usecs_to_jiffies(intv_us);
4062 add_timer_global(&scx_bypass_lb_timer);
4063 }
4064 } else {
4065 WRITE_ONCE(scx_bypass_depth, scx_bypass_depth - 1);
4066 WARN_ON_ONCE(scx_bypass_depth < 0);
4067 if (scx_bypass_depth != 0)
4068 goto unlock;
4069 WRITE_ONCE(scx_slice_dfl, SCX_SLICE_DFL);
4070 if (sch)
4071 scx_add_event(sch, SCX_EV_BYPASS_DURATION,
4072 ktime_get_ns() - bypass_timestamp);
4073 }
4074
4075 /*
4076 * No task property is changing. We just need to make sure all currently
4077 * queued tasks are re-queued according to the new scx_rq_bypassing()
4078 * state. As an optimization, walk each rq's runnable_list instead of
4079 * the scx_tasks list.
4080 *
4081 * This function can't trust the scheduler and thus can't use
4082 * cpus_read_lock(). Walk all possible CPUs instead of online.
4083 */
4084 for_each_possible_cpu(cpu) {
4085 struct rq *rq = cpu_rq(cpu);
4086 struct task_struct *p, *n;
4087
4088 raw_spin_rq_lock(rq);
4089
4090 if (bypass) {
4091 WARN_ON_ONCE(rq->scx.flags & SCX_RQ_BYPASSING);
4092 rq->scx.flags |= SCX_RQ_BYPASSING;
4093 } else {
4094 WARN_ON_ONCE(!(rq->scx.flags & SCX_RQ_BYPASSING));
4095 rq->scx.flags &= ~SCX_RQ_BYPASSING;
4096 }
4097
4098 /*
4099 * We need to guarantee that no tasks are on the BPF scheduler
4100 * while bypassing. Either we see enabled or the enable path
4101 * sees scx_rq_bypassing() before moving tasks to SCX.
4102 */
4103 if (!scx_enabled()) {
4104 raw_spin_rq_unlock(rq);
4105 continue;
4106 }
4107
4108 /*
4109 * The use of list_for_each_entry_safe_reverse() is required
4110 * because each task is going to be removed from and added back
4111 * to the runnable_list during iteration. Because they're added
4112 * to the tail of the list, safe reverse iteration can still
4113 * visit all nodes.
4114 */
4115 list_for_each_entry_safe_reverse(p, n, &rq->scx.runnable_list,
4116 scx.runnable_node) {
4117 /* cycling deq/enq is enough, see the function comment */
4118 scoped_guard (sched_change, p, DEQUEUE_SAVE | DEQUEUE_MOVE) {
4119 /* nothing */ ;
4120 }
4121 }
4122
4123 /* resched to restore ticks and idle state */
4124 if (cpu_online(cpu) || cpu == smp_processor_id())
4125 resched_curr(rq);
4126
4127 raw_spin_rq_unlock(rq);
4128 }
4129
4130 unlock:
4131 raw_spin_unlock_irqrestore(&bypass_lock, flags);
4132 }
4133
free_exit_info(struct scx_exit_info * ei)4134 static void free_exit_info(struct scx_exit_info *ei)
4135 {
4136 kvfree(ei->dump);
4137 kfree(ei->msg);
4138 kfree(ei->bt);
4139 kfree(ei);
4140 }
4141
alloc_exit_info(size_t exit_dump_len)4142 static struct scx_exit_info *alloc_exit_info(size_t exit_dump_len)
4143 {
4144 struct scx_exit_info *ei;
4145
4146 ei = kzalloc(sizeof(*ei), GFP_KERNEL);
4147 if (!ei)
4148 return NULL;
4149
4150 ei->bt = kcalloc(SCX_EXIT_BT_LEN, sizeof(ei->bt[0]), GFP_KERNEL);
4151 ei->msg = kzalloc(SCX_EXIT_MSG_LEN, GFP_KERNEL);
4152 ei->dump = kvzalloc(exit_dump_len, GFP_KERNEL);
4153
4154 if (!ei->bt || !ei->msg || !ei->dump) {
4155 free_exit_info(ei);
4156 return NULL;
4157 }
4158
4159 return ei;
4160 }
4161
scx_exit_reason(enum scx_exit_kind kind)4162 static const char *scx_exit_reason(enum scx_exit_kind kind)
4163 {
4164 switch (kind) {
4165 case SCX_EXIT_UNREG:
4166 return "unregistered from user space";
4167 case SCX_EXIT_UNREG_BPF:
4168 return "unregistered from BPF";
4169 case SCX_EXIT_UNREG_KERN:
4170 return "unregistered from the main kernel";
4171 case SCX_EXIT_SYSRQ:
4172 return "disabled by sysrq-S";
4173 case SCX_EXIT_ERROR:
4174 return "runtime error";
4175 case SCX_EXIT_ERROR_BPF:
4176 return "scx_bpf_error";
4177 case SCX_EXIT_ERROR_STALL:
4178 return "runnable task stall";
4179 default:
4180 return "<UNKNOWN>";
4181 }
4182 }
4183
free_kick_syncs(void)4184 static void free_kick_syncs(void)
4185 {
4186 int cpu;
4187
4188 for_each_possible_cpu(cpu) {
4189 struct scx_kick_syncs **ksyncs = per_cpu_ptr(&scx_kick_syncs, cpu);
4190 struct scx_kick_syncs *to_free;
4191
4192 to_free = rcu_replace_pointer(*ksyncs, NULL, true);
4193 if (to_free)
4194 kvfree_rcu(to_free, rcu);
4195 }
4196 }
4197
scx_disable_workfn(struct kthread_work * work)4198 static void scx_disable_workfn(struct kthread_work *work)
4199 {
4200 struct scx_sched *sch = container_of(work, struct scx_sched, disable_work);
4201 struct scx_exit_info *ei = sch->exit_info;
4202 struct scx_task_iter sti;
4203 struct task_struct *p;
4204 int kind, cpu;
4205
4206 kind = atomic_read(&sch->exit_kind);
4207 while (true) {
4208 if (kind == SCX_EXIT_DONE) /* already disabled? */
4209 return;
4210 WARN_ON_ONCE(kind == SCX_EXIT_NONE);
4211 if (atomic_try_cmpxchg(&sch->exit_kind, &kind, SCX_EXIT_DONE))
4212 break;
4213 }
4214 ei->kind = kind;
4215 ei->reason = scx_exit_reason(ei->kind);
4216
4217 /* guarantee forward progress by bypassing scx_ops */
4218 scx_bypass(true);
4219 WRITE_ONCE(scx_aborting, false);
4220
4221 switch (scx_set_enable_state(SCX_DISABLING)) {
4222 case SCX_DISABLING:
4223 WARN_ONCE(true, "sched_ext: duplicate disabling instance?");
4224 break;
4225 case SCX_DISABLED:
4226 pr_warn("sched_ext: ops error detected without ops (%s)\n",
4227 sch->exit_info->msg);
4228 WARN_ON_ONCE(scx_set_enable_state(SCX_DISABLED) != SCX_DISABLING);
4229 goto done;
4230 default:
4231 break;
4232 }
4233
4234 /*
4235 * Here, every runnable task is guaranteed to make forward progress and
4236 * we can safely use blocking synchronization constructs. Actually
4237 * disable ops.
4238 */
4239 mutex_lock(&scx_enable_mutex);
4240
4241 static_branch_disable(&__scx_switched_all);
4242 WRITE_ONCE(scx_switching_all, false);
4243
4244 /*
4245 * Shut down cgroup support before tasks so that the cgroup attach path
4246 * doesn't race against scx_exit_task().
4247 */
4248 scx_cgroup_lock();
4249 scx_cgroup_exit(sch);
4250 scx_cgroup_unlock();
4251
4252 /*
4253 * The BPF scheduler is going away. All tasks including %TASK_DEAD ones
4254 * must be switched out and exited synchronously.
4255 */
4256 percpu_down_write(&scx_fork_rwsem);
4257
4258 scx_init_task_enabled = false;
4259
4260 scx_task_iter_start(&sti);
4261 while ((p = scx_task_iter_next_locked(&sti))) {
4262 unsigned int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4263 const struct sched_class *old_class = p->sched_class;
4264 const struct sched_class *new_class = scx_setscheduler_class(p);
4265
4266 update_rq_clock(task_rq(p));
4267
4268 if (old_class != new_class)
4269 queue_flags |= DEQUEUE_CLASS;
4270
4271 scoped_guard (sched_change, p, queue_flags) {
4272 p->sched_class = new_class;
4273 }
4274
4275 scx_exit_task(p);
4276 }
4277 scx_task_iter_stop(&sti);
4278 percpu_up_write(&scx_fork_rwsem);
4279
4280 /*
4281 * Invalidate all the rq clocks to prevent getting outdated
4282 * rq clocks from a previous scx scheduler.
4283 */
4284 for_each_possible_cpu(cpu) {
4285 struct rq *rq = cpu_rq(cpu);
4286 scx_rq_clock_invalidate(rq);
4287 }
4288
4289 /* no task is on scx, turn off all the switches and flush in-progress calls */
4290 static_branch_disable(&__scx_enabled);
4291 bitmap_zero(sch->has_op, SCX_OPI_END);
4292 scx_idle_disable();
4293 synchronize_rcu();
4294
4295 if (ei->kind >= SCX_EXIT_ERROR) {
4296 pr_err("sched_ext: BPF scheduler \"%s\" disabled (%s)\n",
4297 sch->ops.name, ei->reason);
4298
4299 if (ei->msg[0] != '\0')
4300 pr_err("sched_ext: %s: %s\n", sch->ops.name, ei->msg);
4301 #ifdef CONFIG_STACKTRACE
4302 stack_trace_print(ei->bt, ei->bt_len, 2);
4303 #endif
4304 } else {
4305 pr_info("sched_ext: BPF scheduler \"%s\" disabled (%s)\n",
4306 sch->ops.name, ei->reason);
4307 }
4308
4309 if (sch->ops.exit)
4310 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, exit, NULL, ei);
4311
4312 cancel_delayed_work_sync(&scx_watchdog_work);
4313
4314 /*
4315 * scx_root clearing must be inside cpus_read_lock(). See
4316 * handle_hotplug().
4317 */
4318 cpus_read_lock();
4319 RCU_INIT_POINTER(scx_root, NULL);
4320 cpus_read_unlock();
4321
4322 /*
4323 * Delete the kobject from the hierarchy synchronously. Otherwise, sysfs
4324 * could observe an object of the same name still in the hierarchy when
4325 * the next scheduler is loaded.
4326 */
4327 kobject_del(&sch->kobj);
4328
4329 free_percpu(scx_dsp_ctx);
4330 scx_dsp_ctx = NULL;
4331 scx_dsp_max_batch = 0;
4332 free_kick_syncs();
4333
4334 if (scx_bypassed_for_enable) {
4335 scx_bypassed_for_enable = false;
4336 scx_bypass(false);
4337 }
4338
4339 mutex_unlock(&scx_enable_mutex);
4340
4341 WARN_ON_ONCE(scx_set_enable_state(SCX_DISABLED) != SCX_DISABLING);
4342 done:
4343 scx_bypass(false);
4344 }
4345
scx_claim_exit(struct scx_sched * sch,enum scx_exit_kind kind)4346 static bool scx_claim_exit(struct scx_sched *sch, enum scx_exit_kind kind)
4347 {
4348 int none = SCX_EXIT_NONE;
4349
4350 if (!atomic_try_cmpxchg(&sch->exit_kind, &none, kind))
4351 return false;
4352
4353 /*
4354 * Some CPUs may be trapped in the dispatch paths. Set the aborting
4355 * flag to break potential live-lock scenarios, ensuring we can
4356 * successfully reach scx_bypass().
4357 */
4358 WRITE_ONCE(scx_aborting, true);
4359 return true;
4360 }
4361
scx_disable(enum scx_exit_kind kind)4362 static void scx_disable(enum scx_exit_kind kind)
4363 {
4364 struct scx_sched *sch;
4365
4366 if (WARN_ON_ONCE(kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE))
4367 kind = SCX_EXIT_ERROR;
4368
4369 rcu_read_lock();
4370 sch = rcu_dereference(scx_root);
4371 if (sch) {
4372 scx_claim_exit(sch, kind);
4373 kthread_queue_work(sch->helper, &sch->disable_work);
4374 }
4375 rcu_read_unlock();
4376 }
4377
dump_newline(struct seq_buf * s)4378 static void dump_newline(struct seq_buf *s)
4379 {
4380 trace_sched_ext_dump("");
4381
4382 /* @s may be zero sized and seq_buf triggers WARN if so */
4383 if (s->size)
4384 seq_buf_putc(s, '\n');
4385 }
4386
dump_line(struct seq_buf * s,const char * fmt,...)4387 static __printf(2, 3) void dump_line(struct seq_buf *s, const char *fmt, ...)
4388 {
4389 va_list args;
4390
4391 #ifdef CONFIG_TRACEPOINTS
4392 if (trace_sched_ext_dump_enabled()) {
4393 /* protected by scx_dump_state()::dump_lock */
4394 static char line_buf[SCX_EXIT_MSG_LEN];
4395
4396 va_start(args, fmt);
4397 vscnprintf(line_buf, sizeof(line_buf), fmt, args);
4398 va_end(args);
4399
4400 trace_sched_ext_dump(line_buf);
4401 }
4402 #endif
4403 /* @s may be zero sized and seq_buf triggers WARN if so */
4404 if (s->size) {
4405 va_start(args, fmt);
4406 seq_buf_vprintf(s, fmt, args);
4407 va_end(args);
4408
4409 seq_buf_putc(s, '\n');
4410 }
4411 }
4412
dump_stack_trace(struct seq_buf * s,const char * prefix,const unsigned long * bt,unsigned int len)4413 static void dump_stack_trace(struct seq_buf *s, const char *prefix,
4414 const unsigned long *bt, unsigned int len)
4415 {
4416 unsigned int i;
4417
4418 for (i = 0; i < len; i++)
4419 dump_line(s, "%s%pS", prefix, (void *)bt[i]);
4420 }
4421
ops_dump_init(struct seq_buf * s,const char * prefix)4422 static void ops_dump_init(struct seq_buf *s, const char *prefix)
4423 {
4424 struct scx_dump_data *dd = &scx_dump_data;
4425
4426 lockdep_assert_irqs_disabled();
4427
4428 dd->cpu = smp_processor_id(); /* allow scx_bpf_dump() */
4429 dd->first = true;
4430 dd->cursor = 0;
4431 dd->s = s;
4432 dd->prefix = prefix;
4433 }
4434
ops_dump_flush(void)4435 static void ops_dump_flush(void)
4436 {
4437 struct scx_dump_data *dd = &scx_dump_data;
4438 char *line = dd->buf.line;
4439
4440 if (!dd->cursor)
4441 return;
4442
4443 /*
4444 * There's something to flush and this is the first line. Insert a blank
4445 * line to distinguish ops dump.
4446 */
4447 if (dd->first) {
4448 dump_newline(dd->s);
4449 dd->first = false;
4450 }
4451
4452 /*
4453 * There may be multiple lines in $line. Scan and emit each line
4454 * separately.
4455 */
4456 while (true) {
4457 char *end = line;
4458 char c;
4459
4460 while (*end != '\n' && *end != '\0')
4461 end++;
4462
4463 /*
4464 * If $line overflowed, it may not have newline at the end.
4465 * Always emit with a newline.
4466 */
4467 c = *end;
4468 *end = '\0';
4469 dump_line(dd->s, "%s%s", dd->prefix, line);
4470 if (c == '\0')
4471 break;
4472
4473 /* move to the next line */
4474 end++;
4475 if (*end == '\0')
4476 break;
4477 line = end;
4478 }
4479
4480 dd->cursor = 0;
4481 }
4482
ops_dump_exit(void)4483 static void ops_dump_exit(void)
4484 {
4485 ops_dump_flush();
4486 scx_dump_data.cpu = -1;
4487 }
4488
scx_dump_task(struct seq_buf * s,struct scx_dump_ctx * dctx,struct task_struct * p,char marker)4489 static void scx_dump_task(struct seq_buf *s, struct scx_dump_ctx *dctx,
4490 struct task_struct *p, char marker)
4491 {
4492 static unsigned long bt[SCX_EXIT_BT_LEN];
4493 struct scx_sched *sch = scx_root;
4494 char dsq_id_buf[19] = "(n/a)";
4495 unsigned long ops_state = atomic_long_read(&p->scx.ops_state);
4496 unsigned int bt_len = 0;
4497
4498 if (p->scx.dsq)
4499 scnprintf(dsq_id_buf, sizeof(dsq_id_buf), "0x%llx",
4500 (unsigned long long)p->scx.dsq->id);
4501
4502 dump_newline(s);
4503 dump_line(s, " %c%c %s[%d] %+ldms",
4504 marker, task_state_to_char(p), p->comm, p->pid,
4505 jiffies_delta_msecs(p->scx.runnable_at, dctx->at_jiffies));
4506 dump_line(s, " scx_state/flags=%u/0x%x dsq_flags=0x%x ops_state/qseq=%lu/%lu",
4507 scx_get_task_state(p), p->scx.flags & ~SCX_TASK_STATE_MASK,
4508 p->scx.dsq_flags, ops_state & SCX_OPSS_STATE_MASK,
4509 ops_state >> SCX_OPSS_QSEQ_SHIFT);
4510 dump_line(s, " sticky/holding_cpu=%d/%d dsq_id=%s",
4511 p->scx.sticky_cpu, p->scx.holding_cpu, dsq_id_buf);
4512 dump_line(s, " dsq_vtime=%llu slice=%llu weight=%u",
4513 p->scx.dsq_vtime, p->scx.slice, p->scx.weight);
4514 dump_line(s, " cpus=%*pb no_mig=%u", cpumask_pr_args(p->cpus_ptr),
4515 p->migration_disabled);
4516
4517 if (SCX_HAS_OP(sch, dump_task)) {
4518 ops_dump_init(s, " ");
4519 SCX_CALL_OP(sch, SCX_KF_REST, dump_task, NULL, dctx, p);
4520 ops_dump_exit();
4521 }
4522
4523 #ifdef CONFIG_STACKTRACE
4524 bt_len = stack_trace_save_tsk(p, bt, SCX_EXIT_BT_LEN, 1);
4525 #endif
4526 if (bt_len) {
4527 dump_newline(s);
4528 dump_stack_trace(s, " ", bt, bt_len);
4529 }
4530 }
4531
scx_dump_state(struct scx_exit_info * ei,size_t dump_len)4532 static void scx_dump_state(struct scx_exit_info *ei, size_t dump_len)
4533 {
4534 static DEFINE_SPINLOCK(dump_lock);
4535 static const char trunc_marker[] = "\n\n~~~~ TRUNCATED ~~~~\n";
4536 struct scx_sched *sch = scx_root;
4537 struct scx_dump_ctx dctx = {
4538 .kind = ei->kind,
4539 .exit_code = ei->exit_code,
4540 .reason = ei->reason,
4541 .at_ns = ktime_get_ns(),
4542 .at_jiffies = jiffies,
4543 };
4544 struct seq_buf s;
4545 struct scx_event_stats events;
4546 unsigned long flags;
4547 char *buf;
4548 int cpu;
4549
4550 spin_lock_irqsave(&dump_lock, flags);
4551
4552 seq_buf_init(&s, ei->dump, dump_len);
4553
4554 if (ei->kind == SCX_EXIT_NONE) {
4555 dump_line(&s, "Debug dump triggered by %s", ei->reason);
4556 } else {
4557 dump_line(&s, "%s[%d] triggered exit kind %d:",
4558 current->comm, current->pid, ei->kind);
4559 dump_line(&s, " %s (%s)", ei->reason, ei->msg);
4560 dump_newline(&s);
4561 dump_line(&s, "Backtrace:");
4562 dump_stack_trace(&s, " ", ei->bt, ei->bt_len);
4563 }
4564
4565 if (SCX_HAS_OP(sch, dump)) {
4566 ops_dump_init(&s, "");
4567 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, dump, NULL, &dctx);
4568 ops_dump_exit();
4569 }
4570
4571 dump_newline(&s);
4572 dump_line(&s, "CPU states");
4573 dump_line(&s, "----------");
4574
4575 for_each_possible_cpu(cpu) {
4576 struct rq *rq = cpu_rq(cpu);
4577 struct rq_flags rf;
4578 struct task_struct *p;
4579 struct seq_buf ns;
4580 size_t avail, used;
4581 bool idle;
4582
4583 rq_lock_irqsave(rq, &rf);
4584
4585 idle = list_empty(&rq->scx.runnable_list) &&
4586 rq->curr->sched_class == &idle_sched_class;
4587
4588 if (idle && !SCX_HAS_OP(sch, dump_cpu))
4589 goto next;
4590
4591 /*
4592 * We don't yet know whether ops.dump_cpu() will produce output
4593 * and we may want to skip the default CPU dump if it doesn't.
4594 * Use a nested seq_buf to generate the standard dump so that we
4595 * can decide whether to commit later.
4596 */
4597 avail = seq_buf_get_buf(&s, &buf);
4598 seq_buf_init(&ns, buf, avail);
4599
4600 dump_newline(&ns);
4601 dump_line(&ns, "CPU %-4d: nr_run=%u flags=0x%x cpu_rel=%d ops_qseq=%lu ksync=%lu",
4602 cpu, rq->scx.nr_running, rq->scx.flags,
4603 rq->scx.cpu_released, rq->scx.ops_qseq,
4604 rq->scx.kick_sync);
4605 dump_line(&ns, " curr=%s[%d] class=%ps",
4606 rq->curr->comm, rq->curr->pid,
4607 rq->curr->sched_class);
4608 if (!cpumask_empty(rq->scx.cpus_to_kick))
4609 dump_line(&ns, " cpus_to_kick : %*pb",
4610 cpumask_pr_args(rq->scx.cpus_to_kick));
4611 if (!cpumask_empty(rq->scx.cpus_to_kick_if_idle))
4612 dump_line(&ns, " idle_to_kick : %*pb",
4613 cpumask_pr_args(rq->scx.cpus_to_kick_if_idle));
4614 if (!cpumask_empty(rq->scx.cpus_to_preempt))
4615 dump_line(&ns, " cpus_to_preempt: %*pb",
4616 cpumask_pr_args(rq->scx.cpus_to_preempt));
4617 if (!cpumask_empty(rq->scx.cpus_to_wait))
4618 dump_line(&ns, " cpus_to_wait : %*pb",
4619 cpumask_pr_args(rq->scx.cpus_to_wait));
4620
4621 used = seq_buf_used(&ns);
4622 if (SCX_HAS_OP(sch, dump_cpu)) {
4623 ops_dump_init(&ns, " ");
4624 SCX_CALL_OP(sch, SCX_KF_REST, dump_cpu, NULL,
4625 &dctx, cpu, idle);
4626 ops_dump_exit();
4627 }
4628
4629 /*
4630 * If idle && nothing generated by ops.dump_cpu(), there's
4631 * nothing interesting. Skip.
4632 */
4633 if (idle && used == seq_buf_used(&ns))
4634 goto next;
4635
4636 /*
4637 * $s may already have overflowed when $ns was created. If so,
4638 * calling commit on it will trigger BUG.
4639 */
4640 if (avail) {
4641 seq_buf_commit(&s, seq_buf_used(&ns));
4642 if (seq_buf_has_overflowed(&ns))
4643 seq_buf_set_overflow(&s);
4644 }
4645
4646 if (rq->curr->sched_class == &ext_sched_class)
4647 scx_dump_task(&s, &dctx, rq->curr, '*');
4648
4649 list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node)
4650 scx_dump_task(&s, &dctx, p, ' ');
4651 next:
4652 rq_unlock_irqrestore(rq, &rf);
4653 }
4654
4655 dump_newline(&s);
4656 dump_line(&s, "Event counters");
4657 dump_line(&s, "--------------");
4658
4659 scx_read_events(sch, &events);
4660 scx_dump_event(s, &events, SCX_EV_SELECT_CPU_FALLBACK);
4661 scx_dump_event(s, &events, SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE);
4662 scx_dump_event(s, &events, SCX_EV_DISPATCH_KEEP_LAST);
4663 scx_dump_event(s, &events, SCX_EV_ENQ_SKIP_EXITING);
4664 scx_dump_event(s, &events, SCX_EV_ENQ_SKIP_MIGRATION_DISABLED);
4665 scx_dump_event(s, &events, SCX_EV_REFILL_SLICE_DFL);
4666 scx_dump_event(s, &events, SCX_EV_BYPASS_DURATION);
4667 scx_dump_event(s, &events, SCX_EV_BYPASS_DISPATCH);
4668 scx_dump_event(s, &events, SCX_EV_BYPASS_ACTIVATE);
4669
4670 if (seq_buf_has_overflowed(&s) && dump_len >= sizeof(trunc_marker))
4671 memcpy(ei->dump + dump_len - sizeof(trunc_marker),
4672 trunc_marker, sizeof(trunc_marker));
4673
4674 spin_unlock_irqrestore(&dump_lock, flags);
4675 }
4676
scx_error_irq_workfn(struct irq_work * irq_work)4677 static void scx_error_irq_workfn(struct irq_work *irq_work)
4678 {
4679 struct scx_sched *sch = container_of(irq_work, struct scx_sched, error_irq_work);
4680 struct scx_exit_info *ei = sch->exit_info;
4681
4682 if (ei->kind >= SCX_EXIT_ERROR)
4683 scx_dump_state(ei, sch->ops.exit_dump_len);
4684
4685 kthread_queue_work(sch->helper, &sch->disable_work);
4686 }
4687
scx_vexit(struct scx_sched * sch,enum scx_exit_kind kind,s64 exit_code,const char * fmt,va_list args)4688 static bool scx_vexit(struct scx_sched *sch,
4689 enum scx_exit_kind kind, s64 exit_code,
4690 const char *fmt, va_list args)
4691 {
4692 struct scx_exit_info *ei = sch->exit_info;
4693
4694 if (!scx_claim_exit(sch, kind))
4695 return false;
4696
4697 ei->exit_code = exit_code;
4698 #ifdef CONFIG_STACKTRACE
4699 if (kind >= SCX_EXIT_ERROR)
4700 ei->bt_len = stack_trace_save(ei->bt, SCX_EXIT_BT_LEN, 1);
4701 #endif
4702 vscnprintf(ei->msg, SCX_EXIT_MSG_LEN, fmt, args);
4703
4704 /*
4705 * Set ei->kind and ->reason for scx_dump_state(). They'll be set again
4706 * in scx_disable_workfn().
4707 */
4708 ei->kind = kind;
4709 ei->reason = scx_exit_reason(ei->kind);
4710
4711 irq_work_queue(&sch->error_irq_work);
4712 return true;
4713 }
4714
alloc_kick_syncs(void)4715 static int alloc_kick_syncs(void)
4716 {
4717 int cpu;
4718
4719 /*
4720 * Allocate per-CPU arrays sized by nr_cpu_ids. Use kvzalloc as size
4721 * can exceed percpu allocator limits on large machines.
4722 */
4723 for_each_possible_cpu(cpu) {
4724 struct scx_kick_syncs **ksyncs = per_cpu_ptr(&scx_kick_syncs, cpu);
4725 struct scx_kick_syncs *new_ksyncs;
4726
4727 WARN_ON_ONCE(rcu_access_pointer(*ksyncs));
4728
4729 new_ksyncs = kvzalloc_node(struct_size(new_ksyncs, syncs, nr_cpu_ids),
4730 GFP_KERNEL, cpu_to_node(cpu));
4731 if (!new_ksyncs) {
4732 free_kick_syncs();
4733 return -ENOMEM;
4734 }
4735
4736 rcu_assign_pointer(*ksyncs, new_ksyncs);
4737 }
4738
4739 return 0;
4740 }
4741
scx_alloc_and_add_sched(struct sched_ext_ops * ops)4742 static struct scx_sched *scx_alloc_and_add_sched(struct sched_ext_ops *ops)
4743 {
4744 struct scx_sched *sch;
4745 int node, ret;
4746
4747 sch = kzalloc(sizeof(*sch), GFP_KERNEL);
4748 if (!sch)
4749 return ERR_PTR(-ENOMEM);
4750
4751 sch->exit_info = alloc_exit_info(ops->exit_dump_len);
4752 if (!sch->exit_info) {
4753 ret = -ENOMEM;
4754 goto err_free_sch;
4755 }
4756
4757 ret = rhashtable_init(&sch->dsq_hash, &dsq_hash_params);
4758 if (ret < 0)
4759 goto err_free_ei;
4760
4761 sch->global_dsqs = kcalloc(nr_node_ids, sizeof(sch->global_dsqs[0]),
4762 GFP_KERNEL);
4763 if (!sch->global_dsqs) {
4764 ret = -ENOMEM;
4765 goto err_free_hash;
4766 }
4767
4768 for_each_node_state(node, N_POSSIBLE) {
4769 struct scx_dispatch_q *dsq;
4770
4771 dsq = kzalloc_node(sizeof(*dsq), GFP_KERNEL, node);
4772 if (!dsq) {
4773 ret = -ENOMEM;
4774 goto err_free_gdsqs;
4775 }
4776
4777 init_dsq(dsq, SCX_DSQ_GLOBAL);
4778 sch->global_dsqs[node] = dsq;
4779 }
4780
4781 sch->pcpu = alloc_percpu(struct scx_sched_pcpu);
4782 if (!sch->pcpu) {
4783 ret = -ENOMEM;
4784 goto err_free_gdsqs;
4785 }
4786
4787 sch->helper = kthread_run_worker(0, "sched_ext_helper");
4788 if (IS_ERR(sch->helper)) {
4789 ret = PTR_ERR(sch->helper);
4790 goto err_free_pcpu;
4791 }
4792
4793 sched_set_fifo(sch->helper->task);
4794
4795 atomic_set(&sch->exit_kind, SCX_EXIT_NONE);
4796 init_irq_work(&sch->error_irq_work, scx_error_irq_workfn);
4797 kthread_init_work(&sch->disable_work, scx_disable_workfn);
4798 sch->ops = *ops;
4799 ops->priv = sch;
4800
4801 sch->kobj.kset = scx_kset;
4802 ret = kobject_init_and_add(&sch->kobj, &scx_ktype, NULL, "root");
4803 if (ret < 0)
4804 goto err_stop_helper;
4805
4806 return sch;
4807
4808 err_stop_helper:
4809 kthread_destroy_worker(sch->helper);
4810 err_free_pcpu:
4811 free_percpu(sch->pcpu);
4812 err_free_gdsqs:
4813 for_each_node_state(node, N_POSSIBLE)
4814 kfree(sch->global_dsqs[node]);
4815 kfree(sch->global_dsqs);
4816 err_free_hash:
4817 rhashtable_free_and_destroy(&sch->dsq_hash, NULL, NULL);
4818 err_free_ei:
4819 free_exit_info(sch->exit_info);
4820 err_free_sch:
4821 kfree(sch);
4822 return ERR_PTR(ret);
4823 }
4824
check_hotplug_seq(struct scx_sched * sch,const struct sched_ext_ops * ops)4825 static int check_hotplug_seq(struct scx_sched *sch,
4826 const struct sched_ext_ops *ops)
4827 {
4828 unsigned long long global_hotplug_seq;
4829
4830 /*
4831 * If a hotplug event has occurred between when a scheduler was
4832 * initialized, and when we were able to attach, exit and notify user
4833 * space about it.
4834 */
4835 if (ops->hotplug_seq) {
4836 global_hotplug_seq = atomic_long_read(&scx_hotplug_seq);
4837 if (ops->hotplug_seq != global_hotplug_seq) {
4838 scx_exit(sch, SCX_EXIT_UNREG_KERN,
4839 SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG,
4840 "expected hotplug seq %llu did not match actual %llu",
4841 ops->hotplug_seq, global_hotplug_seq);
4842 return -EBUSY;
4843 }
4844 }
4845
4846 return 0;
4847 }
4848
validate_ops(struct scx_sched * sch,const struct sched_ext_ops * ops)4849 static int validate_ops(struct scx_sched *sch, const struct sched_ext_ops *ops)
4850 {
4851 /*
4852 * It doesn't make sense to specify the SCX_OPS_ENQ_LAST flag if the
4853 * ops.enqueue() callback isn't implemented.
4854 */
4855 if ((ops->flags & SCX_OPS_ENQ_LAST) && !ops->enqueue) {
4856 scx_error(sch, "SCX_OPS_ENQ_LAST requires ops.enqueue() to be implemented");
4857 return -EINVAL;
4858 }
4859
4860 /*
4861 * SCX_OPS_BUILTIN_IDLE_PER_NODE requires built-in CPU idle
4862 * selection policy to be enabled.
4863 */
4864 if ((ops->flags & SCX_OPS_BUILTIN_IDLE_PER_NODE) &&
4865 (ops->update_idle && !(ops->flags & SCX_OPS_KEEP_BUILTIN_IDLE))) {
4866 scx_error(sch, "SCX_OPS_BUILTIN_IDLE_PER_NODE requires CPU idle selection enabled");
4867 return -EINVAL;
4868 }
4869
4870 if (ops->flags & SCX_OPS_HAS_CGROUP_WEIGHT)
4871 pr_warn("SCX_OPS_HAS_CGROUP_WEIGHT is deprecated and a noop\n");
4872
4873 if (ops->cpu_acquire || ops->cpu_release)
4874 pr_warn("ops->cpu_acquire/release() are deprecated, use sched_switch TP instead\n");
4875
4876 return 0;
4877 }
4878
scx_enable(struct sched_ext_ops * ops,struct bpf_link * link)4879 static int scx_enable(struct sched_ext_ops *ops, struct bpf_link *link)
4880 {
4881 struct scx_sched *sch;
4882 struct scx_task_iter sti;
4883 struct task_struct *p;
4884 unsigned long timeout;
4885 int i, cpu, ret;
4886
4887 if (!cpumask_equal(housekeeping_cpumask(HK_TYPE_DOMAIN),
4888 cpu_possible_mask)) {
4889 pr_err("sched_ext: Not compatible with \"isolcpus=\" domain isolation\n");
4890 return -EINVAL;
4891 }
4892
4893 mutex_lock(&scx_enable_mutex);
4894
4895 if (scx_enable_state() != SCX_DISABLED) {
4896 ret = -EBUSY;
4897 goto err_unlock;
4898 }
4899
4900 ret = alloc_kick_syncs();
4901 if (ret)
4902 goto err_unlock;
4903
4904 sch = scx_alloc_and_add_sched(ops);
4905 if (IS_ERR(sch)) {
4906 ret = PTR_ERR(sch);
4907 goto err_free_ksyncs;
4908 }
4909
4910 /*
4911 * Transition to ENABLING and clear exit info to arm the disable path.
4912 * Failure triggers full disabling from here on.
4913 */
4914 WARN_ON_ONCE(scx_set_enable_state(SCX_ENABLING) != SCX_DISABLED);
4915 WARN_ON_ONCE(scx_root);
4916 if (WARN_ON_ONCE(READ_ONCE(scx_aborting)))
4917 WRITE_ONCE(scx_aborting, false);
4918
4919 atomic_long_set(&scx_nr_rejected, 0);
4920
4921 for_each_possible_cpu(cpu)
4922 cpu_rq(cpu)->scx.cpuperf_target = SCX_CPUPERF_ONE;
4923
4924 /*
4925 * Keep CPUs stable during enable so that the BPF scheduler can track
4926 * online CPUs by watching ->on/offline_cpu() after ->init().
4927 */
4928 cpus_read_lock();
4929
4930 /*
4931 * Make the scheduler instance visible. Must be inside cpus_read_lock().
4932 * See handle_hotplug().
4933 */
4934 rcu_assign_pointer(scx_root, sch);
4935
4936 scx_idle_enable(ops);
4937
4938 if (sch->ops.init) {
4939 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, init, NULL);
4940 if (ret) {
4941 ret = ops_sanitize_err(sch, "init", ret);
4942 cpus_read_unlock();
4943 scx_error(sch, "ops.init() failed (%d)", ret);
4944 goto err_disable;
4945 }
4946 sch->exit_info->flags |= SCX_EFLAG_INITIALIZED;
4947 }
4948
4949 for (i = SCX_OPI_CPU_HOTPLUG_BEGIN; i < SCX_OPI_CPU_HOTPLUG_END; i++)
4950 if (((void (**)(void))ops)[i])
4951 set_bit(i, sch->has_op);
4952
4953 ret = check_hotplug_seq(sch, ops);
4954 if (ret) {
4955 cpus_read_unlock();
4956 goto err_disable;
4957 }
4958 scx_idle_update_selcpu_topology(ops);
4959
4960 cpus_read_unlock();
4961
4962 ret = validate_ops(sch, ops);
4963 if (ret)
4964 goto err_disable;
4965
4966 WARN_ON_ONCE(scx_dsp_ctx);
4967 scx_dsp_max_batch = ops->dispatch_max_batch ?: SCX_DSP_DFL_MAX_BATCH;
4968 scx_dsp_ctx = __alloc_percpu(struct_size_t(struct scx_dsp_ctx, buf,
4969 scx_dsp_max_batch),
4970 __alignof__(struct scx_dsp_ctx));
4971 if (!scx_dsp_ctx) {
4972 ret = -ENOMEM;
4973 goto err_disable;
4974 }
4975
4976 if (ops->timeout_ms)
4977 timeout = msecs_to_jiffies(ops->timeout_ms);
4978 else
4979 timeout = SCX_WATCHDOG_MAX_TIMEOUT;
4980
4981 WRITE_ONCE(scx_watchdog_timeout, timeout);
4982 WRITE_ONCE(scx_watchdog_timestamp, jiffies);
4983 queue_delayed_work(system_unbound_wq, &scx_watchdog_work,
4984 scx_watchdog_timeout / 2);
4985
4986 /*
4987 * Once __scx_enabled is set, %current can be switched to SCX anytime.
4988 * This can lead to stalls as some BPF schedulers (e.g. userspace
4989 * scheduling) may not function correctly before all tasks are switched.
4990 * Init in bypass mode to guarantee forward progress.
4991 */
4992 scx_bypass(true);
4993 scx_bypassed_for_enable = true;
4994
4995 for (i = SCX_OPI_NORMAL_BEGIN; i < SCX_OPI_NORMAL_END; i++)
4996 if (((void (**)(void))ops)[i])
4997 set_bit(i, sch->has_op);
4998
4999 if (sch->ops.cpu_acquire || sch->ops.cpu_release)
5000 sch->ops.flags |= SCX_OPS_HAS_CPU_PREEMPT;
5001
5002 /*
5003 * Lock out forks, cgroup on/offlining and moves before opening the
5004 * floodgate so that they don't wander into the operations prematurely.
5005 */
5006 percpu_down_write(&scx_fork_rwsem);
5007
5008 WARN_ON_ONCE(scx_init_task_enabled);
5009 scx_init_task_enabled = true;
5010
5011 /*
5012 * Enable ops for every task. Fork is excluded by scx_fork_rwsem
5013 * preventing new tasks from being added. No need to exclude tasks
5014 * leaving as sched_ext_free() can handle both prepped and enabled
5015 * tasks. Prep all tasks first and then enable them with preemption
5016 * disabled.
5017 *
5018 * All cgroups should be initialized before scx_init_task() so that the
5019 * BPF scheduler can reliably track each task's cgroup membership from
5020 * scx_init_task(). Lock out cgroup on/offlining and task migrations
5021 * while tasks are being initialized so that scx_cgroup_can_attach()
5022 * never sees uninitialized tasks.
5023 */
5024 scx_cgroup_lock();
5025 ret = scx_cgroup_init(sch);
5026 if (ret)
5027 goto err_disable_unlock_all;
5028
5029 scx_task_iter_start(&sti);
5030 while ((p = scx_task_iter_next_locked(&sti))) {
5031 /*
5032 * @p may already be dead, have lost all its usages counts and
5033 * be waiting for RCU grace period before being freed. @p can't
5034 * be initialized for SCX in such cases and should be ignored.
5035 */
5036 if (!tryget_task_struct(p))
5037 continue;
5038
5039 scx_task_iter_unlock(&sti);
5040
5041 ret = scx_init_task(p, task_group(p), false);
5042 if (ret) {
5043 put_task_struct(p);
5044 scx_task_iter_stop(&sti);
5045 scx_error(sch, "ops.init_task() failed (%d) for %s[%d]",
5046 ret, p->comm, p->pid);
5047 goto err_disable_unlock_all;
5048 }
5049
5050 scx_set_task_state(p, SCX_TASK_READY);
5051
5052 put_task_struct(p);
5053 }
5054 scx_task_iter_stop(&sti);
5055 scx_cgroup_unlock();
5056 percpu_up_write(&scx_fork_rwsem);
5057
5058 /*
5059 * All tasks are READY. It's safe to turn on scx_enabled() and switch
5060 * all eligible tasks.
5061 */
5062 WRITE_ONCE(scx_switching_all, !(ops->flags & SCX_OPS_SWITCH_PARTIAL));
5063 static_branch_enable(&__scx_enabled);
5064
5065 /*
5066 * We're fully committed and can't fail. The task READY -> ENABLED
5067 * transitions here are synchronized against sched_ext_free() through
5068 * scx_tasks_lock.
5069 */
5070 percpu_down_write(&scx_fork_rwsem);
5071 scx_task_iter_start(&sti);
5072 while ((p = scx_task_iter_next_locked(&sti))) {
5073 unsigned int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
5074 const struct sched_class *old_class = p->sched_class;
5075 const struct sched_class *new_class = scx_setscheduler_class(p);
5076
5077 if (scx_get_task_state(p) != SCX_TASK_READY)
5078 continue;
5079
5080 if (old_class != new_class)
5081 queue_flags |= DEQUEUE_CLASS;
5082
5083 scoped_guard (sched_change, p, queue_flags) {
5084 p->scx.slice = READ_ONCE(scx_slice_dfl);
5085 p->sched_class = new_class;
5086 }
5087 }
5088 scx_task_iter_stop(&sti);
5089 percpu_up_write(&scx_fork_rwsem);
5090
5091 scx_bypassed_for_enable = false;
5092 scx_bypass(false);
5093
5094 if (!scx_tryset_enable_state(SCX_ENABLED, SCX_ENABLING)) {
5095 WARN_ON_ONCE(atomic_read(&sch->exit_kind) == SCX_EXIT_NONE);
5096 goto err_disable;
5097 }
5098
5099 if (!(ops->flags & SCX_OPS_SWITCH_PARTIAL))
5100 static_branch_enable(&__scx_switched_all);
5101
5102 pr_info("sched_ext: BPF scheduler \"%s\" enabled%s\n",
5103 sch->ops.name, scx_switched_all() ? "" : " (partial)");
5104 kobject_uevent(&sch->kobj, KOBJ_ADD);
5105 mutex_unlock(&scx_enable_mutex);
5106
5107 atomic_long_inc(&scx_enable_seq);
5108
5109 return 0;
5110
5111 err_free_ksyncs:
5112 free_kick_syncs();
5113 err_unlock:
5114 mutex_unlock(&scx_enable_mutex);
5115 return ret;
5116
5117 err_disable_unlock_all:
5118 scx_cgroup_unlock();
5119 percpu_up_write(&scx_fork_rwsem);
5120 /* we'll soon enter disable path, keep bypass on */
5121 err_disable:
5122 mutex_unlock(&scx_enable_mutex);
5123 /*
5124 * Returning an error code here would not pass all the error information
5125 * to userspace. Record errno using scx_error() for cases scx_error()
5126 * wasn't already invoked and exit indicating success so that the error
5127 * is notified through ops.exit() with all the details.
5128 *
5129 * Flush scx_disable_work to ensure that error is reported before init
5130 * completion. sch's base reference will be put by bpf_scx_unreg().
5131 */
5132 scx_error(sch, "scx_enable() failed (%d)", ret);
5133 kthread_flush_work(&sch->disable_work);
5134 return 0;
5135 }
5136
5137
5138 /********************************************************************************
5139 * bpf_struct_ops plumbing.
5140 */
5141 #include <linux/bpf_verifier.h>
5142 #include <linux/bpf.h>
5143 #include <linux/btf.h>
5144
5145 static const struct btf_type *task_struct_type;
5146
bpf_scx_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)5147 static bool bpf_scx_is_valid_access(int off, int size,
5148 enum bpf_access_type type,
5149 const struct bpf_prog *prog,
5150 struct bpf_insn_access_aux *info)
5151 {
5152 if (type != BPF_READ)
5153 return false;
5154 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
5155 return false;
5156 if (off % size != 0)
5157 return false;
5158
5159 return btf_ctx_access(off, size, type, prog, info);
5160 }
5161
bpf_scx_btf_struct_access(struct bpf_verifier_log * log,const struct bpf_reg_state * reg,int off,int size)5162 static int bpf_scx_btf_struct_access(struct bpf_verifier_log *log,
5163 const struct bpf_reg_state *reg, int off,
5164 int size)
5165 {
5166 const struct btf_type *t;
5167
5168 t = btf_type_by_id(reg->btf, reg->btf_id);
5169 if (t == task_struct_type) {
5170 if (off >= offsetof(struct task_struct, scx.slice) &&
5171 off + size <= offsetofend(struct task_struct, scx.slice))
5172 return SCALAR_VALUE;
5173 if (off >= offsetof(struct task_struct, scx.dsq_vtime) &&
5174 off + size <= offsetofend(struct task_struct, scx.dsq_vtime))
5175 return SCALAR_VALUE;
5176 if (off >= offsetof(struct task_struct, scx.disallow) &&
5177 off + size <= offsetofend(struct task_struct, scx.disallow))
5178 return SCALAR_VALUE;
5179 }
5180
5181 return -EACCES;
5182 }
5183
5184 static const struct bpf_verifier_ops bpf_scx_verifier_ops = {
5185 .get_func_proto = bpf_base_func_proto,
5186 .is_valid_access = bpf_scx_is_valid_access,
5187 .btf_struct_access = bpf_scx_btf_struct_access,
5188 };
5189
bpf_scx_init_member(const struct btf_type * t,const struct btf_member * member,void * kdata,const void * udata)5190 static int bpf_scx_init_member(const struct btf_type *t,
5191 const struct btf_member *member,
5192 void *kdata, const void *udata)
5193 {
5194 const struct sched_ext_ops *uops = udata;
5195 struct sched_ext_ops *ops = kdata;
5196 u32 moff = __btf_member_bit_offset(t, member) / 8;
5197 int ret;
5198
5199 switch (moff) {
5200 case offsetof(struct sched_ext_ops, dispatch_max_batch):
5201 if (*(u32 *)(udata + moff) > INT_MAX)
5202 return -E2BIG;
5203 ops->dispatch_max_batch = *(u32 *)(udata + moff);
5204 return 1;
5205 case offsetof(struct sched_ext_ops, flags):
5206 if (*(u64 *)(udata + moff) & ~SCX_OPS_ALL_FLAGS)
5207 return -EINVAL;
5208 ops->flags = *(u64 *)(udata + moff);
5209 return 1;
5210 case offsetof(struct sched_ext_ops, name):
5211 ret = bpf_obj_name_cpy(ops->name, uops->name,
5212 sizeof(ops->name));
5213 if (ret < 0)
5214 return ret;
5215 if (ret == 0)
5216 return -EINVAL;
5217 return 1;
5218 case offsetof(struct sched_ext_ops, timeout_ms):
5219 if (msecs_to_jiffies(*(u32 *)(udata + moff)) >
5220 SCX_WATCHDOG_MAX_TIMEOUT)
5221 return -E2BIG;
5222 ops->timeout_ms = *(u32 *)(udata + moff);
5223 return 1;
5224 case offsetof(struct sched_ext_ops, exit_dump_len):
5225 ops->exit_dump_len =
5226 *(u32 *)(udata + moff) ?: SCX_EXIT_DUMP_DFL_LEN;
5227 return 1;
5228 case offsetof(struct sched_ext_ops, hotplug_seq):
5229 ops->hotplug_seq = *(u64 *)(udata + moff);
5230 return 1;
5231 }
5232
5233 return 0;
5234 }
5235
bpf_scx_check_member(const struct btf_type * t,const struct btf_member * member,const struct bpf_prog * prog)5236 static int bpf_scx_check_member(const struct btf_type *t,
5237 const struct btf_member *member,
5238 const struct bpf_prog *prog)
5239 {
5240 u32 moff = __btf_member_bit_offset(t, member) / 8;
5241
5242 switch (moff) {
5243 case offsetof(struct sched_ext_ops, init_task):
5244 #ifdef CONFIG_EXT_GROUP_SCHED
5245 case offsetof(struct sched_ext_ops, cgroup_init):
5246 case offsetof(struct sched_ext_ops, cgroup_exit):
5247 case offsetof(struct sched_ext_ops, cgroup_prep_move):
5248 #endif
5249 case offsetof(struct sched_ext_ops, cpu_online):
5250 case offsetof(struct sched_ext_ops, cpu_offline):
5251 case offsetof(struct sched_ext_ops, init):
5252 case offsetof(struct sched_ext_ops, exit):
5253 break;
5254 default:
5255 if (prog->sleepable)
5256 return -EINVAL;
5257 }
5258
5259 return 0;
5260 }
5261
bpf_scx_reg(void * kdata,struct bpf_link * link)5262 static int bpf_scx_reg(void *kdata, struct bpf_link *link)
5263 {
5264 return scx_enable(kdata, link);
5265 }
5266
bpf_scx_unreg(void * kdata,struct bpf_link * link)5267 static void bpf_scx_unreg(void *kdata, struct bpf_link *link)
5268 {
5269 struct sched_ext_ops *ops = kdata;
5270 struct scx_sched *sch = ops->priv;
5271
5272 scx_disable(SCX_EXIT_UNREG);
5273 kthread_flush_work(&sch->disable_work);
5274 kobject_put(&sch->kobj);
5275 }
5276
bpf_scx_init(struct btf * btf)5277 static int bpf_scx_init(struct btf *btf)
5278 {
5279 task_struct_type = btf_type_by_id(btf, btf_tracing_ids[BTF_TRACING_TYPE_TASK]);
5280
5281 return 0;
5282 }
5283
bpf_scx_update(void * kdata,void * old_kdata,struct bpf_link * link)5284 static int bpf_scx_update(void *kdata, void *old_kdata, struct bpf_link *link)
5285 {
5286 /*
5287 * sched_ext does not support updating the actively-loaded BPF
5288 * scheduler, as registering a BPF scheduler can always fail if the
5289 * scheduler returns an error code for e.g. ops.init(), ops.init_task(),
5290 * etc. Similarly, we can always race with unregistration happening
5291 * elsewhere, such as with sysrq.
5292 */
5293 return -EOPNOTSUPP;
5294 }
5295
bpf_scx_validate(void * kdata)5296 static int bpf_scx_validate(void *kdata)
5297 {
5298 return 0;
5299 }
5300
sched_ext_ops__select_cpu(struct task_struct * p,s32 prev_cpu,u64 wake_flags)5301 static s32 sched_ext_ops__select_cpu(struct task_struct *p, s32 prev_cpu, u64 wake_flags) { return -EINVAL; }
sched_ext_ops__enqueue(struct task_struct * p,u64 enq_flags)5302 static void sched_ext_ops__enqueue(struct task_struct *p, u64 enq_flags) {}
sched_ext_ops__dequeue(struct task_struct * p,u64 enq_flags)5303 static void sched_ext_ops__dequeue(struct task_struct *p, u64 enq_flags) {}
sched_ext_ops__dispatch(s32 prev_cpu,struct task_struct * prev__nullable)5304 static void sched_ext_ops__dispatch(s32 prev_cpu, struct task_struct *prev__nullable) {}
sched_ext_ops__tick(struct task_struct * p)5305 static void sched_ext_ops__tick(struct task_struct *p) {}
sched_ext_ops__runnable(struct task_struct * p,u64 enq_flags)5306 static void sched_ext_ops__runnable(struct task_struct *p, u64 enq_flags) {}
sched_ext_ops__running(struct task_struct * p)5307 static void sched_ext_ops__running(struct task_struct *p) {}
sched_ext_ops__stopping(struct task_struct * p,bool runnable)5308 static void sched_ext_ops__stopping(struct task_struct *p, bool runnable) {}
sched_ext_ops__quiescent(struct task_struct * p,u64 deq_flags)5309 static void sched_ext_ops__quiescent(struct task_struct *p, u64 deq_flags) {}
sched_ext_ops__yield(struct task_struct * from,struct task_struct * to__nullable)5310 static bool sched_ext_ops__yield(struct task_struct *from, struct task_struct *to__nullable) { return false; }
sched_ext_ops__core_sched_before(struct task_struct * a,struct task_struct * b)5311 static bool sched_ext_ops__core_sched_before(struct task_struct *a, struct task_struct *b) { return false; }
sched_ext_ops__set_weight(struct task_struct * p,u32 weight)5312 static void sched_ext_ops__set_weight(struct task_struct *p, u32 weight) {}
sched_ext_ops__set_cpumask(struct task_struct * p,const struct cpumask * mask)5313 static void sched_ext_ops__set_cpumask(struct task_struct *p, const struct cpumask *mask) {}
sched_ext_ops__update_idle(s32 cpu,bool idle)5314 static void sched_ext_ops__update_idle(s32 cpu, bool idle) {}
sched_ext_ops__cpu_acquire(s32 cpu,struct scx_cpu_acquire_args * args)5315 static void sched_ext_ops__cpu_acquire(s32 cpu, struct scx_cpu_acquire_args *args) {}
sched_ext_ops__cpu_release(s32 cpu,struct scx_cpu_release_args * args)5316 static void sched_ext_ops__cpu_release(s32 cpu, struct scx_cpu_release_args *args) {}
sched_ext_ops__init_task(struct task_struct * p,struct scx_init_task_args * args)5317 static s32 sched_ext_ops__init_task(struct task_struct *p, struct scx_init_task_args *args) { return -EINVAL; }
sched_ext_ops__exit_task(struct task_struct * p,struct scx_exit_task_args * args)5318 static void sched_ext_ops__exit_task(struct task_struct *p, struct scx_exit_task_args *args) {}
sched_ext_ops__enable(struct task_struct * p)5319 static void sched_ext_ops__enable(struct task_struct *p) {}
sched_ext_ops__disable(struct task_struct * p)5320 static void sched_ext_ops__disable(struct task_struct *p) {}
5321 #ifdef CONFIG_EXT_GROUP_SCHED
sched_ext_ops__cgroup_init(struct cgroup * cgrp,struct scx_cgroup_init_args * args)5322 static s32 sched_ext_ops__cgroup_init(struct cgroup *cgrp, struct scx_cgroup_init_args *args) { return -EINVAL; }
sched_ext_ops__cgroup_exit(struct cgroup * cgrp)5323 static void sched_ext_ops__cgroup_exit(struct cgroup *cgrp) {}
sched_ext_ops__cgroup_prep_move(struct task_struct * p,struct cgroup * from,struct cgroup * to)5324 static s32 sched_ext_ops__cgroup_prep_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) { return -EINVAL; }
sched_ext_ops__cgroup_move(struct task_struct * p,struct cgroup * from,struct cgroup * to)5325 static void sched_ext_ops__cgroup_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) {}
sched_ext_ops__cgroup_cancel_move(struct task_struct * p,struct cgroup * from,struct cgroup * to)5326 static void sched_ext_ops__cgroup_cancel_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) {}
sched_ext_ops__cgroup_set_weight(struct cgroup * cgrp,u32 weight)5327 static void sched_ext_ops__cgroup_set_weight(struct cgroup *cgrp, u32 weight) {}
sched_ext_ops__cgroup_set_bandwidth(struct cgroup * cgrp,u64 period_us,u64 quota_us,u64 burst_us)5328 static void sched_ext_ops__cgroup_set_bandwidth(struct cgroup *cgrp, u64 period_us, u64 quota_us, u64 burst_us) {}
sched_ext_ops__cgroup_set_idle(struct cgroup * cgrp,bool idle)5329 static void sched_ext_ops__cgroup_set_idle(struct cgroup *cgrp, bool idle) {}
5330 #endif
sched_ext_ops__cpu_online(s32 cpu)5331 static void sched_ext_ops__cpu_online(s32 cpu) {}
sched_ext_ops__cpu_offline(s32 cpu)5332 static void sched_ext_ops__cpu_offline(s32 cpu) {}
sched_ext_ops__init(void)5333 static s32 sched_ext_ops__init(void) { return -EINVAL; }
sched_ext_ops__exit(struct scx_exit_info * info)5334 static void sched_ext_ops__exit(struct scx_exit_info *info) {}
sched_ext_ops__dump(struct scx_dump_ctx * ctx)5335 static void sched_ext_ops__dump(struct scx_dump_ctx *ctx) {}
sched_ext_ops__dump_cpu(struct scx_dump_ctx * ctx,s32 cpu,bool idle)5336 static void sched_ext_ops__dump_cpu(struct scx_dump_ctx *ctx, s32 cpu, bool idle) {}
sched_ext_ops__dump_task(struct scx_dump_ctx * ctx,struct task_struct * p)5337 static void sched_ext_ops__dump_task(struct scx_dump_ctx *ctx, struct task_struct *p) {}
5338
5339 static struct sched_ext_ops __bpf_ops_sched_ext_ops = {
5340 .select_cpu = sched_ext_ops__select_cpu,
5341 .enqueue = sched_ext_ops__enqueue,
5342 .dequeue = sched_ext_ops__dequeue,
5343 .dispatch = sched_ext_ops__dispatch,
5344 .tick = sched_ext_ops__tick,
5345 .runnable = sched_ext_ops__runnable,
5346 .running = sched_ext_ops__running,
5347 .stopping = sched_ext_ops__stopping,
5348 .quiescent = sched_ext_ops__quiescent,
5349 .yield = sched_ext_ops__yield,
5350 .core_sched_before = sched_ext_ops__core_sched_before,
5351 .set_weight = sched_ext_ops__set_weight,
5352 .set_cpumask = sched_ext_ops__set_cpumask,
5353 .update_idle = sched_ext_ops__update_idle,
5354 .cpu_acquire = sched_ext_ops__cpu_acquire,
5355 .cpu_release = sched_ext_ops__cpu_release,
5356 .init_task = sched_ext_ops__init_task,
5357 .exit_task = sched_ext_ops__exit_task,
5358 .enable = sched_ext_ops__enable,
5359 .disable = sched_ext_ops__disable,
5360 #ifdef CONFIG_EXT_GROUP_SCHED
5361 .cgroup_init = sched_ext_ops__cgroup_init,
5362 .cgroup_exit = sched_ext_ops__cgroup_exit,
5363 .cgroup_prep_move = sched_ext_ops__cgroup_prep_move,
5364 .cgroup_move = sched_ext_ops__cgroup_move,
5365 .cgroup_cancel_move = sched_ext_ops__cgroup_cancel_move,
5366 .cgroup_set_weight = sched_ext_ops__cgroup_set_weight,
5367 .cgroup_set_bandwidth = sched_ext_ops__cgroup_set_bandwidth,
5368 .cgroup_set_idle = sched_ext_ops__cgroup_set_idle,
5369 #endif
5370 .cpu_online = sched_ext_ops__cpu_online,
5371 .cpu_offline = sched_ext_ops__cpu_offline,
5372 .init = sched_ext_ops__init,
5373 .exit = sched_ext_ops__exit,
5374 .dump = sched_ext_ops__dump,
5375 .dump_cpu = sched_ext_ops__dump_cpu,
5376 .dump_task = sched_ext_ops__dump_task,
5377 };
5378
5379 static struct bpf_struct_ops bpf_sched_ext_ops = {
5380 .verifier_ops = &bpf_scx_verifier_ops,
5381 .reg = bpf_scx_reg,
5382 .unreg = bpf_scx_unreg,
5383 .check_member = bpf_scx_check_member,
5384 .init_member = bpf_scx_init_member,
5385 .init = bpf_scx_init,
5386 .update = bpf_scx_update,
5387 .validate = bpf_scx_validate,
5388 .name = "sched_ext_ops",
5389 .owner = THIS_MODULE,
5390 .cfi_stubs = &__bpf_ops_sched_ext_ops
5391 };
5392
5393
5394 /********************************************************************************
5395 * System integration and init.
5396 */
5397
sysrq_handle_sched_ext_reset(u8 key)5398 static void sysrq_handle_sched_ext_reset(u8 key)
5399 {
5400 scx_disable(SCX_EXIT_SYSRQ);
5401 }
5402
5403 static const struct sysrq_key_op sysrq_sched_ext_reset_op = {
5404 .handler = sysrq_handle_sched_ext_reset,
5405 .help_msg = "reset-sched-ext(S)",
5406 .action_msg = "Disable sched_ext and revert all tasks to CFS",
5407 .enable_mask = SYSRQ_ENABLE_RTNICE,
5408 };
5409
sysrq_handle_sched_ext_dump(u8 key)5410 static void sysrq_handle_sched_ext_dump(u8 key)
5411 {
5412 struct scx_exit_info ei = { .kind = SCX_EXIT_NONE, .reason = "SysRq-D" };
5413
5414 if (scx_enabled())
5415 scx_dump_state(&ei, 0);
5416 }
5417
5418 static const struct sysrq_key_op sysrq_sched_ext_dump_op = {
5419 .handler = sysrq_handle_sched_ext_dump,
5420 .help_msg = "dump-sched-ext(D)",
5421 .action_msg = "Trigger sched_ext debug dump",
5422 .enable_mask = SYSRQ_ENABLE_RTNICE,
5423 };
5424
can_skip_idle_kick(struct rq * rq)5425 static bool can_skip_idle_kick(struct rq *rq)
5426 {
5427 lockdep_assert_rq_held(rq);
5428
5429 /*
5430 * We can skip idle kicking if @rq is going to go through at least one
5431 * full SCX scheduling cycle before going idle. Just checking whether
5432 * curr is not idle is insufficient because we could be racing
5433 * balance_one() trying to pull the next task from a remote rq, which
5434 * may fail, and @rq may become idle afterwards.
5435 *
5436 * The race window is small and we don't and can't guarantee that @rq is
5437 * only kicked while idle anyway. Skip only when sure.
5438 */
5439 return !is_idle_task(rq->curr) && !(rq->scx.flags & SCX_RQ_IN_BALANCE);
5440 }
5441
kick_one_cpu(s32 cpu,struct rq * this_rq,unsigned long * ksyncs)5442 static bool kick_one_cpu(s32 cpu, struct rq *this_rq, unsigned long *ksyncs)
5443 {
5444 struct rq *rq = cpu_rq(cpu);
5445 struct scx_rq *this_scx = &this_rq->scx;
5446 const struct sched_class *cur_class;
5447 bool should_wait = false;
5448 unsigned long flags;
5449
5450 raw_spin_rq_lock_irqsave(rq, flags);
5451 cur_class = rq->curr->sched_class;
5452
5453 /*
5454 * During CPU hotplug, a CPU may depend on kicking itself to make
5455 * forward progress. Allow kicking self regardless of online state. If
5456 * @cpu is running a higher class task, we have no control over @cpu.
5457 * Skip kicking.
5458 */
5459 if ((cpu_online(cpu) || cpu == cpu_of(this_rq)) &&
5460 !sched_class_above(cur_class, &ext_sched_class)) {
5461 if (cpumask_test_cpu(cpu, this_scx->cpus_to_preempt)) {
5462 if (cur_class == &ext_sched_class)
5463 rq->curr->scx.slice = 0;
5464 cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt);
5465 }
5466
5467 if (cpumask_test_cpu(cpu, this_scx->cpus_to_wait)) {
5468 if (cur_class == &ext_sched_class) {
5469 ksyncs[cpu] = rq->scx.kick_sync;
5470 should_wait = true;
5471 } else {
5472 cpumask_clear_cpu(cpu, this_scx->cpus_to_wait);
5473 }
5474 }
5475
5476 resched_curr(rq);
5477 } else {
5478 cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt);
5479 cpumask_clear_cpu(cpu, this_scx->cpus_to_wait);
5480 }
5481
5482 raw_spin_rq_unlock_irqrestore(rq, flags);
5483
5484 return should_wait;
5485 }
5486
kick_one_cpu_if_idle(s32 cpu,struct rq * this_rq)5487 static void kick_one_cpu_if_idle(s32 cpu, struct rq *this_rq)
5488 {
5489 struct rq *rq = cpu_rq(cpu);
5490 unsigned long flags;
5491
5492 raw_spin_rq_lock_irqsave(rq, flags);
5493
5494 if (!can_skip_idle_kick(rq) &&
5495 (cpu_online(cpu) || cpu == cpu_of(this_rq)))
5496 resched_curr(rq);
5497
5498 raw_spin_rq_unlock_irqrestore(rq, flags);
5499 }
5500
kick_cpus_irq_workfn(struct irq_work * irq_work)5501 static void kick_cpus_irq_workfn(struct irq_work *irq_work)
5502 {
5503 struct rq *this_rq = this_rq();
5504 struct scx_rq *this_scx = &this_rq->scx;
5505 struct scx_kick_syncs __rcu *ksyncs_pcpu = __this_cpu_read(scx_kick_syncs);
5506 bool should_wait = false;
5507 unsigned long *ksyncs;
5508 s32 cpu;
5509
5510 if (unlikely(!ksyncs_pcpu)) {
5511 pr_warn_once("kick_cpus_irq_workfn() called with NULL scx_kick_syncs");
5512 return;
5513 }
5514
5515 ksyncs = rcu_dereference_bh(ksyncs_pcpu)->syncs;
5516
5517 for_each_cpu(cpu, this_scx->cpus_to_kick) {
5518 should_wait |= kick_one_cpu(cpu, this_rq, ksyncs);
5519 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick);
5520 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle);
5521 }
5522
5523 for_each_cpu(cpu, this_scx->cpus_to_kick_if_idle) {
5524 kick_one_cpu_if_idle(cpu, this_rq);
5525 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle);
5526 }
5527
5528 if (!should_wait)
5529 return;
5530
5531 for_each_cpu(cpu, this_scx->cpus_to_wait) {
5532 unsigned long *wait_kick_sync = &cpu_rq(cpu)->scx.kick_sync;
5533
5534 /*
5535 * Busy-wait until the task running at the time of kicking is no
5536 * longer running. This can be used to implement e.g. core
5537 * scheduling.
5538 *
5539 * smp_cond_load_acquire() pairs with store_releases in
5540 * pick_task_scx() and put_prev_task_scx(). The former breaks
5541 * the wait if SCX's scheduling path is entered even if the same
5542 * task is picked subsequently. The latter is necessary to break
5543 * the wait when $cpu is taken by a higher sched class.
5544 */
5545 if (cpu != cpu_of(this_rq))
5546 smp_cond_load_acquire(wait_kick_sync, VAL != ksyncs[cpu]);
5547
5548 cpumask_clear_cpu(cpu, this_scx->cpus_to_wait);
5549 }
5550 }
5551
5552 /**
5553 * print_scx_info - print out sched_ext scheduler state
5554 * @log_lvl: the log level to use when printing
5555 * @p: target task
5556 *
5557 * If a sched_ext scheduler is enabled, print the name and state of the
5558 * scheduler. If @p is on sched_ext, print further information about the task.
5559 *
5560 * This function can be safely called on any task as long as the task_struct
5561 * itself is accessible. While safe, this function isn't synchronized and may
5562 * print out mixups or garbages of limited length.
5563 */
print_scx_info(const char * log_lvl,struct task_struct * p)5564 void print_scx_info(const char *log_lvl, struct task_struct *p)
5565 {
5566 struct scx_sched *sch = scx_root;
5567 enum scx_enable_state state = scx_enable_state();
5568 const char *all = READ_ONCE(scx_switching_all) ? "+all" : "";
5569 char runnable_at_buf[22] = "?";
5570 struct sched_class *class;
5571 unsigned long runnable_at;
5572
5573 if (state == SCX_DISABLED)
5574 return;
5575
5576 /*
5577 * Carefully check if the task was running on sched_ext, and then
5578 * carefully copy the time it's been runnable, and its state.
5579 */
5580 if (copy_from_kernel_nofault(&class, &p->sched_class, sizeof(class)) ||
5581 class != &ext_sched_class) {
5582 printk("%sSched_ext: %s (%s%s)", log_lvl, sch->ops.name,
5583 scx_enable_state_str[state], all);
5584 return;
5585 }
5586
5587 if (!copy_from_kernel_nofault(&runnable_at, &p->scx.runnable_at,
5588 sizeof(runnable_at)))
5589 scnprintf(runnable_at_buf, sizeof(runnable_at_buf), "%+ldms",
5590 jiffies_delta_msecs(runnable_at, jiffies));
5591
5592 /* print everything onto one line to conserve console space */
5593 printk("%sSched_ext: %s (%s%s), task: runnable_at=%s",
5594 log_lvl, sch->ops.name, scx_enable_state_str[state], all,
5595 runnable_at_buf);
5596 }
5597
scx_pm_handler(struct notifier_block * nb,unsigned long event,void * ptr)5598 static int scx_pm_handler(struct notifier_block *nb, unsigned long event, void *ptr)
5599 {
5600 /*
5601 * SCX schedulers often have userspace components which are sometimes
5602 * involved in critial scheduling paths. PM operations involve freezing
5603 * userspace which can lead to scheduling misbehaviors including stalls.
5604 * Let's bypass while PM operations are in progress.
5605 */
5606 switch (event) {
5607 case PM_HIBERNATION_PREPARE:
5608 case PM_SUSPEND_PREPARE:
5609 case PM_RESTORE_PREPARE:
5610 scx_bypass(true);
5611 break;
5612 case PM_POST_HIBERNATION:
5613 case PM_POST_SUSPEND:
5614 case PM_POST_RESTORE:
5615 scx_bypass(false);
5616 break;
5617 }
5618
5619 return NOTIFY_OK;
5620 }
5621
5622 static struct notifier_block scx_pm_notifier = {
5623 .notifier_call = scx_pm_handler,
5624 };
5625
init_sched_ext_class(void)5626 void __init init_sched_ext_class(void)
5627 {
5628 s32 cpu, v;
5629
5630 /*
5631 * The following is to prevent the compiler from optimizing out the enum
5632 * definitions so that BPF scheduler implementations can use them
5633 * through the generated vmlinux.h.
5634 */
5635 WRITE_ONCE(v, SCX_ENQ_WAKEUP | SCX_DEQ_SLEEP | SCX_KICK_PREEMPT |
5636 SCX_TG_ONLINE);
5637
5638 scx_idle_init_masks();
5639
5640 for_each_possible_cpu(cpu) {
5641 struct rq *rq = cpu_rq(cpu);
5642 int n = cpu_to_node(cpu);
5643
5644 init_dsq(&rq->scx.local_dsq, SCX_DSQ_LOCAL);
5645 init_dsq(&rq->scx.bypass_dsq, SCX_DSQ_BYPASS);
5646 INIT_LIST_HEAD(&rq->scx.runnable_list);
5647 INIT_LIST_HEAD(&rq->scx.ddsp_deferred_locals);
5648
5649 BUG_ON(!zalloc_cpumask_var_node(&rq->scx.cpus_to_kick, GFP_KERNEL, n));
5650 BUG_ON(!zalloc_cpumask_var_node(&rq->scx.cpus_to_kick_if_idle, GFP_KERNEL, n));
5651 BUG_ON(!zalloc_cpumask_var_node(&rq->scx.cpus_to_preempt, GFP_KERNEL, n));
5652 BUG_ON(!zalloc_cpumask_var_node(&rq->scx.cpus_to_wait, GFP_KERNEL, n));
5653 rq->scx.deferred_irq_work = IRQ_WORK_INIT_HARD(deferred_irq_workfn);
5654 rq->scx.kick_cpus_irq_work = IRQ_WORK_INIT_HARD(kick_cpus_irq_workfn);
5655
5656 if (cpu_online(cpu))
5657 cpu_rq(cpu)->scx.flags |= SCX_RQ_ONLINE;
5658 }
5659
5660 register_sysrq_key('S', &sysrq_sched_ext_reset_op);
5661 register_sysrq_key('D', &sysrq_sched_ext_dump_op);
5662 INIT_DELAYED_WORK(&scx_watchdog_work, scx_watchdog_workfn);
5663 }
5664
5665
5666 /********************************************************************************
5667 * Helpers that can be called from the BPF scheduler.
5668 */
scx_dsq_insert_preamble(struct scx_sched * sch,struct task_struct * p,u64 enq_flags)5669 static bool scx_dsq_insert_preamble(struct scx_sched *sch, struct task_struct *p,
5670 u64 enq_flags)
5671 {
5672 if (!scx_kf_allowed(sch, SCX_KF_ENQUEUE | SCX_KF_DISPATCH))
5673 return false;
5674
5675 lockdep_assert_irqs_disabled();
5676
5677 if (unlikely(!p)) {
5678 scx_error(sch, "called with NULL task");
5679 return false;
5680 }
5681
5682 if (unlikely(enq_flags & __SCX_ENQ_INTERNAL_MASK)) {
5683 scx_error(sch, "invalid enq_flags 0x%llx", enq_flags);
5684 return false;
5685 }
5686
5687 return true;
5688 }
5689
scx_dsq_insert_commit(struct scx_sched * sch,struct task_struct * p,u64 dsq_id,u64 enq_flags)5690 static void scx_dsq_insert_commit(struct scx_sched *sch, struct task_struct *p,
5691 u64 dsq_id, u64 enq_flags)
5692 {
5693 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
5694 struct task_struct *ddsp_task;
5695
5696 ddsp_task = __this_cpu_read(direct_dispatch_task);
5697 if (ddsp_task) {
5698 mark_direct_dispatch(sch, ddsp_task, p, dsq_id, enq_flags);
5699 return;
5700 }
5701
5702 if (unlikely(dspc->cursor >= scx_dsp_max_batch)) {
5703 scx_error(sch, "dispatch buffer overflow");
5704 return;
5705 }
5706
5707 dspc->buf[dspc->cursor++] = (struct scx_dsp_buf_ent){
5708 .task = p,
5709 .qseq = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_QSEQ_MASK,
5710 .dsq_id = dsq_id,
5711 .enq_flags = enq_flags,
5712 };
5713 }
5714
5715 __bpf_kfunc_start_defs();
5716
5717 /**
5718 * scx_bpf_dsq_insert - Insert a task into the FIFO queue of a DSQ
5719 * @p: task_struct to insert
5720 * @dsq_id: DSQ to insert into
5721 * @slice: duration @p can run for in nsecs, 0 to keep the current value
5722 * @enq_flags: SCX_ENQ_*
5723 *
5724 * Insert @p into the FIFO queue of the DSQ identified by @dsq_id. It is safe to
5725 * call this function spuriously. Can be called from ops.enqueue(),
5726 * ops.select_cpu(), and ops.dispatch().
5727 *
5728 * When called from ops.select_cpu() or ops.enqueue(), it's for direct dispatch
5729 * and @p must match the task being enqueued.
5730 *
5731 * When called from ops.select_cpu(), @enq_flags and @dsp_id are stored, and @p
5732 * will be directly inserted into the corresponding dispatch queue after
5733 * ops.select_cpu() returns. If @p is inserted into SCX_DSQ_LOCAL, it will be
5734 * inserted into the local DSQ of the CPU returned by ops.select_cpu().
5735 * @enq_flags are OR'd with the enqueue flags on the enqueue path before the
5736 * task is inserted.
5737 *
5738 * When called from ops.dispatch(), there are no restrictions on @p or @dsq_id
5739 * and this function can be called upto ops.dispatch_max_batch times to insert
5740 * multiple tasks. scx_bpf_dispatch_nr_slots() returns the number of the
5741 * remaining slots. scx_bpf_dsq_move_to_local() flushes the batch and resets the
5742 * counter.
5743 *
5744 * This function doesn't have any locking restrictions and may be called under
5745 * BPF locks (in the future when BPF introduces more flexible locking).
5746 *
5747 * @p is allowed to run for @slice. The scheduling path is triggered on slice
5748 * exhaustion. If zero, the current residual slice is maintained. If
5749 * %SCX_SLICE_INF, @p never expires and the BPF scheduler must kick the CPU with
5750 * scx_bpf_kick_cpu() to trigger scheduling.
5751 *
5752 * Returns %true on successful insertion, %false on failure. On the root
5753 * scheduler, %false return triggers scheduler abort and the caller doesn't need
5754 * to check the return value.
5755 */
scx_bpf_dsq_insert___v2(struct task_struct * p,u64 dsq_id,u64 slice,u64 enq_flags)5756 __bpf_kfunc bool scx_bpf_dsq_insert___v2(struct task_struct *p, u64 dsq_id,
5757 u64 slice, u64 enq_flags)
5758 {
5759 struct scx_sched *sch;
5760
5761 guard(rcu)();
5762 sch = rcu_dereference(scx_root);
5763 if (unlikely(!sch))
5764 return false;
5765
5766 if (!scx_dsq_insert_preamble(sch, p, enq_flags))
5767 return false;
5768
5769 if (slice)
5770 p->scx.slice = slice;
5771 else
5772 p->scx.slice = p->scx.slice ?: 1;
5773
5774 scx_dsq_insert_commit(sch, p, dsq_id, enq_flags);
5775
5776 return true;
5777 }
5778
5779 /*
5780 * COMPAT: Will be removed in v6.23 along with the ___v2 suffix.
5781 */
scx_bpf_dsq_insert(struct task_struct * p,u64 dsq_id,u64 slice,u64 enq_flags)5782 __bpf_kfunc void scx_bpf_dsq_insert(struct task_struct *p, u64 dsq_id,
5783 u64 slice, u64 enq_flags)
5784 {
5785 scx_bpf_dsq_insert___v2(p, dsq_id, slice, enq_flags);
5786 }
5787
scx_dsq_insert_vtime(struct scx_sched * sch,struct task_struct * p,u64 dsq_id,u64 slice,u64 vtime,u64 enq_flags)5788 static bool scx_dsq_insert_vtime(struct scx_sched *sch, struct task_struct *p,
5789 u64 dsq_id, u64 slice, u64 vtime, u64 enq_flags)
5790 {
5791 if (!scx_dsq_insert_preamble(sch, p, enq_flags))
5792 return false;
5793
5794 if (slice)
5795 p->scx.slice = slice;
5796 else
5797 p->scx.slice = p->scx.slice ?: 1;
5798
5799 p->scx.dsq_vtime = vtime;
5800
5801 scx_dsq_insert_commit(sch, p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ);
5802
5803 return true;
5804 }
5805
5806 struct scx_bpf_dsq_insert_vtime_args {
5807 /* @p can't be packed together as KF_RCU is not transitive */
5808 u64 dsq_id;
5809 u64 slice;
5810 u64 vtime;
5811 u64 enq_flags;
5812 };
5813
5814 /**
5815 * __scx_bpf_dsq_insert_vtime - Arg-wrapped vtime DSQ insertion
5816 * @p: task_struct to insert
5817 * @args: struct containing the rest of the arguments
5818 * @args->dsq_id: DSQ to insert into
5819 * @args->slice: duration @p can run for in nsecs, 0 to keep the current value
5820 * @args->vtime: @p's ordering inside the vtime-sorted queue of the target DSQ
5821 * @args->enq_flags: SCX_ENQ_*
5822 *
5823 * Wrapper kfunc that takes arguments via struct to work around BPF's 5 argument
5824 * limit. BPF programs should use scx_bpf_dsq_insert_vtime() which is provided
5825 * as an inline wrapper in common.bpf.h.
5826 *
5827 * Insert @p into the vtime priority queue of the DSQ identified by
5828 * @args->dsq_id. Tasks queued into the priority queue are ordered by
5829 * @args->vtime. All other aspects are identical to scx_bpf_dsq_insert().
5830 *
5831 * @args->vtime ordering is according to time_before64() which considers
5832 * wrapping. A numerically larger vtime may indicate an earlier position in the
5833 * ordering and vice-versa.
5834 *
5835 * A DSQ can only be used as a FIFO or priority queue at any given time and this
5836 * function must not be called on a DSQ which already has one or more FIFO tasks
5837 * queued and vice-versa. Also, the built-in DSQs (SCX_DSQ_LOCAL and
5838 * SCX_DSQ_GLOBAL) cannot be used as priority queues.
5839 *
5840 * Returns %true on successful insertion, %false on failure. On the root
5841 * scheduler, %false return triggers scheduler abort and the caller doesn't need
5842 * to check the return value.
5843 */
5844 __bpf_kfunc bool
__scx_bpf_dsq_insert_vtime(struct task_struct * p,struct scx_bpf_dsq_insert_vtime_args * args)5845 __scx_bpf_dsq_insert_vtime(struct task_struct *p,
5846 struct scx_bpf_dsq_insert_vtime_args *args)
5847 {
5848 struct scx_sched *sch;
5849
5850 guard(rcu)();
5851
5852 sch = rcu_dereference(scx_root);
5853 if (unlikely(!sch))
5854 return false;
5855
5856 return scx_dsq_insert_vtime(sch, p, args->dsq_id, args->slice,
5857 args->vtime, args->enq_flags);
5858 }
5859
5860 /*
5861 * COMPAT: Will be removed in v6.23.
5862 */
scx_bpf_dsq_insert_vtime(struct task_struct * p,u64 dsq_id,u64 slice,u64 vtime,u64 enq_flags)5863 __bpf_kfunc void scx_bpf_dsq_insert_vtime(struct task_struct *p, u64 dsq_id,
5864 u64 slice, u64 vtime, u64 enq_flags)
5865 {
5866 struct scx_sched *sch;
5867
5868 guard(rcu)();
5869
5870 sch = rcu_dereference(scx_root);
5871 if (unlikely(!sch))
5872 return;
5873
5874 scx_dsq_insert_vtime(sch, p, dsq_id, slice, vtime, enq_flags);
5875 }
5876
5877 __bpf_kfunc_end_defs();
5878
5879 BTF_KFUNCS_START(scx_kfunc_ids_enqueue_dispatch)
5880 BTF_ID_FLAGS(func, scx_bpf_dsq_insert, KF_RCU)
5881 BTF_ID_FLAGS(func, scx_bpf_dsq_insert___v2, KF_RCU)
5882 BTF_ID_FLAGS(func, __scx_bpf_dsq_insert_vtime, KF_RCU)
5883 BTF_ID_FLAGS(func, scx_bpf_dsq_insert_vtime, KF_RCU)
5884 BTF_KFUNCS_END(scx_kfunc_ids_enqueue_dispatch)
5885
5886 static const struct btf_kfunc_id_set scx_kfunc_set_enqueue_dispatch = {
5887 .owner = THIS_MODULE,
5888 .set = &scx_kfunc_ids_enqueue_dispatch,
5889 };
5890
scx_dsq_move(struct bpf_iter_scx_dsq_kern * kit,struct task_struct * p,u64 dsq_id,u64 enq_flags)5891 static bool scx_dsq_move(struct bpf_iter_scx_dsq_kern *kit,
5892 struct task_struct *p, u64 dsq_id, u64 enq_flags)
5893 {
5894 struct scx_sched *sch = scx_root;
5895 struct scx_dispatch_q *src_dsq = kit->dsq, *dst_dsq;
5896 struct rq *this_rq, *src_rq, *locked_rq;
5897 bool dispatched = false;
5898 bool in_balance;
5899 unsigned long flags;
5900
5901 if (!scx_kf_allowed_if_unlocked() &&
5902 !scx_kf_allowed(sch, SCX_KF_DISPATCH))
5903 return false;
5904
5905 /*
5906 * If the BPF scheduler keeps calling this function repeatedly, it can
5907 * cause similar live-lock conditions as consume_dispatch_q().
5908 */
5909 if (unlikely(READ_ONCE(scx_aborting)))
5910 return false;
5911
5912 /*
5913 * Can be called from either ops.dispatch() locking this_rq() or any
5914 * context where no rq lock is held. If latter, lock @p's task_rq which
5915 * we'll likely need anyway.
5916 */
5917 src_rq = task_rq(p);
5918
5919 local_irq_save(flags);
5920 this_rq = this_rq();
5921 in_balance = this_rq->scx.flags & SCX_RQ_IN_BALANCE;
5922
5923 if (in_balance) {
5924 if (this_rq != src_rq) {
5925 raw_spin_rq_unlock(this_rq);
5926 raw_spin_rq_lock(src_rq);
5927 }
5928 } else {
5929 raw_spin_rq_lock(src_rq);
5930 }
5931
5932 locked_rq = src_rq;
5933 raw_spin_lock(&src_dsq->lock);
5934
5935 /*
5936 * Did someone else get to it? @p could have already left $src_dsq, got
5937 * re-enqueud, or be in the process of being consumed by someone else.
5938 */
5939 if (unlikely(p->scx.dsq != src_dsq ||
5940 u32_before(kit->cursor.priv, p->scx.dsq_seq) ||
5941 p->scx.holding_cpu >= 0) ||
5942 WARN_ON_ONCE(src_rq != task_rq(p))) {
5943 raw_spin_unlock(&src_dsq->lock);
5944 goto out;
5945 }
5946
5947 /* @p is still on $src_dsq and stable, determine the destination */
5948 dst_dsq = find_dsq_for_dispatch(sch, this_rq, dsq_id, p);
5949
5950 /*
5951 * Apply vtime and slice updates before moving so that the new time is
5952 * visible before inserting into $dst_dsq. @p is still on $src_dsq but
5953 * this is safe as we're locking it.
5954 */
5955 if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_VTIME)
5956 p->scx.dsq_vtime = kit->vtime;
5957 if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_SLICE)
5958 p->scx.slice = kit->slice;
5959
5960 /* execute move */
5961 locked_rq = move_task_between_dsqs(sch, p, enq_flags, src_dsq, dst_dsq);
5962 dispatched = true;
5963 out:
5964 if (in_balance) {
5965 if (this_rq != locked_rq) {
5966 raw_spin_rq_unlock(locked_rq);
5967 raw_spin_rq_lock(this_rq);
5968 }
5969 } else {
5970 raw_spin_rq_unlock_irqrestore(locked_rq, flags);
5971 }
5972
5973 kit->cursor.flags &= ~(__SCX_DSQ_ITER_HAS_SLICE |
5974 __SCX_DSQ_ITER_HAS_VTIME);
5975 return dispatched;
5976 }
5977
5978 __bpf_kfunc_start_defs();
5979
5980 /**
5981 * scx_bpf_dispatch_nr_slots - Return the number of remaining dispatch slots
5982 *
5983 * Can only be called from ops.dispatch().
5984 */
scx_bpf_dispatch_nr_slots(void)5985 __bpf_kfunc u32 scx_bpf_dispatch_nr_slots(void)
5986 {
5987 struct scx_sched *sch;
5988
5989 guard(rcu)();
5990
5991 sch = rcu_dereference(scx_root);
5992 if (unlikely(!sch))
5993 return 0;
5994
5995 if (!scx_kf_allowed(sch, SCX_KF_DISPATCH))
5996 return 0;
5997
5998 return scx_dsp_max_batch - __this_cpu_read(scx_dsp_ctx->cursor);
5999 }
6000
6001 /**
6002 * scx_bpf_dispatch_cancel - Cancel the latest dispatch
6003 *
6004 * Cancel the latest dispatch. Can be called multiple times to cancel further
6005 * dispatches. Can only be called from ops.dispatch().
6006 */
scx_bpf_dispatch_cancel(void)6007 __bpf_kfunc void scx_bpf_dispatch_cancel(void)
6008 {
6009 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
6010 struct scx_sched *sch;
6011
6012 guard(rcu)();
6013
6014 sch = rcu_dereference(scx_root);
6015 if (unlikely(!sch))
6016 return;
6017
6018 if (!scx_kf_allowed(sch, SCX_KF_DISPATCH))
6019 return;
6020
6021 if (dspc->cursor > 0)
6022 dspc->cursor--;
6023 else
6024 scx_error(sch, "dispatch buffer underflow");
6025 }
6026
6027 /**
6028 * scx_bpf_dsq_move_to_local - move a task from a DSQ to the current CPU's local DSQ
6029 * @dsq_id: DSQ to move task from
6030 *
6031 * Move a task from the non-local DSQ identified by @dsq_id to the current CPU's
6032 * local DSQ for execution. Can only be called from ops.dispatch().
6033 *
6034 * This function flushes the in-flight dispatches from scx_bpf_dsq_insert()
6035 * before trying to move from the specified DSQ. It may also grab rq locks and
6036 * thus can't be called under any BPF locks.
6037 *
6038 * Returns %true if a task has been moved, %false if there isn't any task to
6039 * move.
6040 */
scx_bpf_dsq_move_to_local(u64 dsq_id)6041 __bpf_kfunc bool scx_bpf_dsq_move_to_local(u64 dsq_id)
6042 {
6043 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
6044 struct scx_dispatch_q *dsq;
6045 struct scx_sched *sch;
6046
6047 guard(rcu)();
6048
6049 sch = rcu_dereference(scx_root);
6050 if (unlikely(!sch))
6051 return false;
6052
6053 if (!scx_kf_allowed(sch, SCX_KF_DISPATCH))
6054 return false;
6055
6056 flush_dispatch_buf(sch, dspc->rq);
6057
6058 dsq = find_user_dsq(sch, dsq_id);
6059 if (unlikely(!dsq)) {
6060 scx_error(sch, "invalid DSQ ID 0x%016llx", dsq_id);
6061 return false;
6062 }
6063
6064 if (consume_dispatch_q(sch, dspc->rq, dsq)) {
6065 /*
6066 * A successfully consumed task can be dequeued before it starts
6067 * running while the CPU is trying to migrate other dispatched
6068 * tasks. Bump nr_tasks to tell balance_one() to retry on empty
6069 * local DSQ.
6070 */
6071 dspc->nr_tasks++;
6072 return true;
6073 } else {
6074 return false;
6075 }
6076 }
6077
6078 /**
6079 * scx_bpf_dsq_move_set_slice - Override slice when moving between DSQs
6080 * @it__iter: DSQ iterator in progress
6081 * @slice: duration the moved task can run for in nsecs
6082 *
6083 * Override the slice of the next task that will be moved from @it__iter using
6084 * scx_bpf_dsq_move[_vtime](). If this function is not called, the previous
6085 * slice duration is kept.
6086 */
scx_bpf_dsq_move_set_slice(struct bpf_iter_scx_dsq * it__iter,u64 slice)6087 __bpf_kfunc void scx_bpf_dsq_move_set_slice(struct bpf_iter_scx_dsq *it__iter,
6088 u64 slice)
6089 {
6090 struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter;
6091
6092 kit->slice = slice;
6093 kit->cursor.flags |= __SCX_DSQ_ITER_HAS_SLICE;
6094 }
6095
6096 /**
6097 * scx_bpf_dsq_move_set_vtime - Override vtime when moving between DSQs
6098 * @it__iter: DSQ iterator in progress
6099 * @vtime: task's ordering inside the vtime-sorted queue of the target DSQ
6100 *
6101 * Override the vtime of the next task that will be moved from @it__iter using
6102 * scx_bpf_dsq_move_vtime(). If this function is not called, the previous slice
6103 * vtime is kept. If scx_bpf_dsq_move() is used to dispatch the next task, the
6104 * override is ignored and cleared.
6105 */
scx_bpf_dsq_move_set_vtime(struct bpf_iter_scx_dsq * it__iter,u64 vtime)6106 __bpf_kfunc void scx_bpf_dsq_move_set_vtime(struct bpf_iter_scx_dsq *it__iter,
6107 u64 vtime)
6108 {
6109 struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter;
6110
6111 kit->vtime = vtime;
6112 kit->cursor.flags |= __SCX_DSQ_ITER_HAS_VTIME;
6113 }
6114
6115 /**
6116 * scx_bpf_dsq_move - Move a task from DSQ iteration to a DSQ
6117 * @it__iter: DSQ iterator in progress
6118 * @p: task to transfer
6119 * @dsq_id: DSQ to move @p to
6120 * @enq_flags: SCX_ENQ_*
6121 *
6122 * Transfer @p which is on the DSQ currently iterated by @it__iter to the DSQ
6123 * specified by @dsq_id. All DSQs - local DSQs, global DSQ and user DSQs - can
6124 * be the destination.
6125 *
6126 * For the transfer to be successful, @p must still be on the DSQ and have been
6127 * queued before the DSQ iteration started. This function doesn't care whether
6128 * @p was obtained from the DSQ iteration. @p just has to be on the DSQ and have
6129 * been queued before the iteration started.
6130 *
6131 * @p's slice is kept by default. Use scx_bpf_dsq_move_set_slice() to update.
6132 *
6133 * Can be called from ops.dispatch() or any BPF context which doesn't hold a rq
6134 * lock (e.g. BPF timers or SYSCALL programs).
6135 *
6136 * Returns %true if @p has been consumed, %false if @p had already been
6137 * consumed, dequeued, or, for sub-scheds, @dsq_id points to a disallowed local
6138 * DSQ.
6139 */
scx_bpf_dsq_move(struct bpf_iter_scx_dsq * it__iter,struct task_struct * p,u64 dsq_id,u64 enq_flags)6140 __bpf_kfunc bool scx_bpf_dsq_move(struct bpf_iter_scx_dsq *it__iter,
6141 struct task_struct *p, u64 dsq_id,
6142 u64 enq_flags)
6143 {
6144 return scx_dsq_move((struct bpf_iter_scx_dsq_kern *)it__iter,
6145 p, dsq_id, enq_flags);
6146 }
6147
6148 /**
6149 * scx_bpf_dsq_move_vtime - Move a task from DSQ iteration to a PRIQ DSQ
6150 * @it__iter: DSQ iterator in progress
6151 * @p: task to transfer
6152 * @dsq_id: DSQ to move @p to
6153 * @enq_flags: SCX_ENQ_*
6154 *
6155 * Transfer @p which is on the DSQ currently iterated by @it__iter to the
6156 * priority queue of the DSQ specified by @dsq_id. The destination must be a
6157 * user DSQ as only user DSQs support priority queue.
6158 *
6159 * @p's slice and vtime are kept by default. Use scx_bpf_dsq_move_set_slice()
6160 * and scx_bpf_dsq_move_set_vtime() to update.
6161 *
6162 * All other aspects are identical to scx_bpf_dsq_move(). See
6163 * scx_bpf_dsq_insert_vtime() for more information on @vtime.
6164 */
scx_bpf_dsq_move_vtime(struct bpf_iter_scx_dsq * it__iter,struct task_struct * p,u64 dsq_id,u64 enq_flags)6165 __bpf_kfunc bool scx_bpf_dsq_move_vtime(struct bpf_iter_scx_dsq *it__iter,
6166 struct task_struct *p, u64 dsq_id,
6167 u64 enq_flags)
6168 {
6169 return scx_dsq_move((struct bpf_iter_scx_dsq_kern *)it__iter,
6170 p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ);
6171 }
6172
6173 __bpf_kfunc_end_defs();
6174
6175 BTF_KFUNCS_START(scx_kfunc_ids_dispatch)
6176 BTF_ID_FLAGS(func, scx_bpf_dispatch_nr_slots)
6177 BTF_ID_FLAGS(func, scx_bpf_dispatch_cancel)
6178 BTF_ID_FLAGS(func, scx_bpf_dsq_move_to_local)
6179 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_slice, KF_RCU)
6180 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_vtime, KF_RCU)
6181 BTF_ID_FLAGS(func, scx_bpf_dsq_move, KF_RCU)
6182 BTF_ID_FLAGS(func, scx_bpf_dsq_move_vtime, KF_RCU)
6183 BTF_KFUNCS_END(scx_kfunc_ids_dispatch)
6184
6185 static const struct btf_kfunc_id_set scx_kfunc_set_dispatch = {
6186 .owner = THIS_MODULE,
6187 .set = &scx_kfunc_ids_dispatch,
6188 };
6189
reenq_local(struct rq * rq)6190 static u32 reenq_local(struct rq *rq)
6191 {
6192 LIST_HEAD(tasks);
6193 u32 nr_enqueued = 0;
6194 struct task_struct *p, *n;
6195
6196 lockdep_assert_rq_held(rq);
6197
6198 /*
6199 * The BPF scheduler may choose to dispatch tasks back to
6200 * @rq->scx.local_dsq. Move all candidate tasks off to a private list
6201 * first to avoid processing the same tasks repeatedly.
6202 */
6203 list_for_each_entry_safe(p, n, &rq->scx.local_dsq.list,
6204 scx.dsq_list.node) {
6205 /*
6206 * If @p is being migrated, @p's current CPU may not agree with
6207 * its allowed CPUs and the migration_cpu_stop is about to
6208 * deactivate and re-activate @p anyway. Skip re-enqueueing.
6209 *
6210 * While racing sched property changes may also dequeue and
6211 * re-enqueue a migrating task while its current CPU and allowed
6212 * CPUs disagree, they use %ENQUEUE_RESTORE which is bypassed to
6213 * the current local DSQ for running tasks and thus are not
6214 * visible to the BPF scheduler.
6215 */
6216 if (p->migration_pending)
6217 continue;
6218
6219 dispatch_dequeue(rq, p);
6220 list_add_tail(&p->scx.dsq_list.node, &tasks);
6221 }
6222
6223 list_for_each_entry_safe(p, n, &tasks, scx.dsq_list.node) {
6224 list_del_init(&p->scx.dsq_list.node);
6225 do_enqueue_task(rq, p, SCX_ENQ_REENQ, -1);
6226 nr_enqueued++;
6227 }
6228
6229 return nr_enqueued;
6230 }
6231
6232 __bpf_kfunc_start_defs();
6233
6234 /**
6235 * scx_bpf_reenqueue_local - Re-enqueue tasks on a local DSQ
6236 *
6237 * Iterate over all of the tasks currently enqueued on the local DSQ of the
6238 * caller's CPU, and re-enqueue them in the BPF scheduler. Returns the number of
6239 * processed tasks. Can only be called from ops.cpu_release().
6240 *
6241 * COMPAT: Will be removed in v6.23 along with the ___v2 suffix on the void
6242 * returning variant that can be called from anywhere.
6243 */
scx_bpf_reenqueue_local(void)6244 __bpf_kfunc u32 scx_bpf_reenqueue_local(void)
6245 {
6246 struct scx_sched *sch;
6247 struct rq *rq;
6248
6249 guard(rcu)();
6250 sch = rcu_dereference(scx_root);
6251 if (unlikely(!sch))
6252 return 0;
6253
6254 if (!scx_kf_allowed(sch, SCX_KF_CPU_RELEASE))
6255 return 0;
6256
6257 rq = cpu_rq(smp_processor_id());
6258 lockdep_assert_rq_held(rq);
6259
6260 return reenq_local(rq);
6261 }
6262
6263 __bpf_kfunc_end_defs();
6264
6265 BTF_KFUNCS_START(scx_kfunc_ids_cpu_release)
6266 BTF_ID_FLAGS(func, scx_bpf_reenqueue_local)
6267 BTF_KFUNCS_END(scx_kfunc_ids_cpu_release)
6268
6269 static const struct btf_kfunc_id_set scx_kfunc_set_cpu_release = {
6270 .owner = THIS_MODULE,
6271 .set = &scx_kfunc_ids_cpu_release,
6272 };
6273
6274 __bpf_kfunc_start_defs();
6275
6276 /**
6277 * scx_bpf_create_dsq - Create a custom DSQ
6278 * @dsq_id: DSQ to create
6279 * @node: NUMA node to allocate from
6280 *
6281 * Create a custom DSQ identified by @dsq_id. Can be called from any sleepable
6282 * scx callback, and any BPF_PROG_TYPE_SYSCALL prog.
6283 */
scx_bpf_create_dsq(u64 dsq_id,s32 node)6284 __bpf_kfunc s32 scx_bpf_create_dsq(u64 dsq_id, s32 node)
6285 {
6286 struct scx_dispatch_q *dsq;
6287 struct scx_sched *sch;
6288 s32 ret;
6289
6290 if (unlikely(node >= (int)nr_node_ids ||
6291 (node < 0 && node != NUMA_NO_NODE)))
6292 return -EINVAL;
6293
6294 if (unlikely(dsq_id & SCX_DSQ_FLAG_BUILTIN))
6295 return -EINVAL;
6296
6297 dsq = kmalloc_node(sizeof(*dsq), GFP_KERNEL, node);
6298 if (!dsq)
6299 return -ENOMEM;
6300
6301 init_dsq(dsq, dsq_id);
6302
6303 rcu_read_lock();
6304
6305 sch = rcu_dereference(scx_root);
6306 if (sch)
6307 ret = rhashtable_lookup_insert_fast(&sch->dsq_hash, &dsq->hash_node,
6308 dsq_hash_params);
6309 else
6310 ret = -ENODEV;
6311
6312 rcu_read_unlock();
6313 if (ret)
6314 kfree(dsq);
6315 return ret;
6316 }
6317
6318 __bpf_kfunc_end_defs();
6319
6320 BTF_KFUNCS_START(scx_kfunc_ids_unlocked)
6321 BTF_ID_FLAGS(func, scx_bpf_create_dsq, KF_SLEEPABLE)
6322 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_slice, KF_RCU)
6323 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_vtime, KF_RCU)
6324 BTF_ID_FLAGS(func, scx_bpf_dsq_move, KF_RCU)
6325 BTF_ID_FLAGS(func, scx_bpf_dsq_move_vtime, KF_RCU)
6326 BTF_KFUNCS_END(scx_kfunc_ids_unlocked)
6327
6328 static const struct btf_kfunc_id_set scx_kfunc_set_unlocked = {
6329 .owner = THIS_MODULE,
6330 .set = &scx_kfunc_ids_unlocked,
6331 };
6332
6333 __bpf_kfunc_start_defs();
6334
6335 /**
6336 * scx_bpf_task_set_slice - Set task's time slice
6337 * @p: task of interest
6338 * @slice: time slice to set in nsecs
6339 *
6340 * Set @p's time slice to @slice. Returns %true on success, %false if the
6341 * calling scheduler doesn't have authority over @p.
6342 */
scx_bpf_task_set_slice(struct task_struct * p,u64 slice)6343 __bpf_kfunc bool scx_bpf_task_set_slice(struct task_struct *p, u64 slice)
6344 {
6345 p->scx.slice = slice;
6346 return true;
6347 }
6348
6349 /**
6350 * scx_bpf_task_set_dsq_vtime - Set task's virtual time for DSQ ordering
6351 * @p: task of interest
6352 * @vtime: virtual time to set
6353 *
6354 * Set @p's virtual time to @vtime. Returns %true on success, %false if the
6355 * calling scheduler doesn't have authority over @p.
6356 */
scx_bpf_task_set_dsq_vtime(struct task_struct * p,u64 vtime)6357 __bpf_kfunc bool scx_bpf_task_set_dsq_vtime(struct task_struct *p, u64 vtime)
6358 {
6359 p->scx.dsq_vtime = vtime;
6360 return true;
6361 }
6362
scx_kick_cpu(struct scx_sched * sch,s32 cpu,u64 flags)6363 static void scx_kick_cpu(struct scx_sched *sch, s32 cpu, u64 flags)
6364 {
6365 struct rq *this_rq;
6366 unsigned long irq_flags;
6367
6368 if (!ops_cpu_valid(sch, cpu, NULL))
6369 return;
6370
6371 local_irq_save(irq_flags);
6372
6373 this_rq = this_rq();
6374
6375 /*
6376 * While bypassing for PM ops, IRQ handling may not be online which can
6377 * lead to irq_work_queue() malfunction such as infinite busy wait for
6378 * IRQ status update. Suppress kicking.
6379 */
6380 if (scx_rq_bypassing(this_rq))
6381 goto out;
6382
6383 /*
6384 * Actual kicking is bounced to kick_cpus_irq_workfn() to avoid nesting
6385 * rq locks. We can probably be smarter and avoid bouncing if called
6386 * from ops which don't hold a rq lock.
6387 */
6388 if (flags & SCX_KICK_IDLE) {
6389 struct rq *target_rq = cpu_rq(cpu);
6390
6391 if (unlikely(flags & (SCX_KICK_PREEMPT | SCX_KICK_WAIT)))
6392 scx_error(sch, "PREEMPT/WAIT cannot be used with SCX_KICK_IDLE");
6393
6394 if (raw_spin_rq_trylock(target_rq)) {
6395 if (can_skip_idle_kick(target_rq)) {
6396 raw_spin_rq_unlock(target_rq);
6397 goto out;
6398 }
6399 raw_spin_rq_unlock(target_rq);
6400 }
6401 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick_if_idle);
6402 } else {
6403 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick);
6404
6405 if (flags & SCX_KICK_PREEMPT)
6406 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_preempt);
6407 if (flags & SCX_KICK_WAIT)
6408 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_wait);
6409 }
6410
6411 irq_work_queue(&this_rq->scx.kick_cpus_irq_work);
6412 out:
6413 local_irq_restore(irq_flags);
6414 }
6415
6416 /**
6417 * scx_bpf_kick_cpu - Trigger reschedule on a CPU
6418 * @cpu: cpu to kick
6419 * @flags: %SCX_KICK_* flags
6420 *
6421 * Kick @cpu into rescheduling. This can be used to wake up an idle CPU or
6422 * trigger rescheduling on a busy CPU. This can be called from any online
6423 * scx_ops operation and the actual kicking is performed asynchronously through
6424 * an irq work.
6425 */
scx_bpf_kick_cpu(s32 cpu,u64 flags)6426 __bpf_kfunc void scx_bpf_kick_cpu(s32 cpu, u64 flags)
6427 {
6428 struct scx_sched *sch;
6429
6430 guard(rcu)();
6431 sch = rcu_dereference(scx_root);
6432 if (likely(sch))
6433 scx_kick_cpu(sch, cpu, flags);
6434 }
6435
6436 /**
6437 * scx_bpf_dsq_nr_queued - Return the number of queued tasks
6438 * @dsq_id: id of the DSQ
6439 *
6440 * Return the number of tasks in the DSQ matching @dsq_id. If not found,
6441 * -%ENOENT is returned.
6442 */
scx_bpf_dsq_nr_queued(u64 dsq_id)6443 __bpf_kfunc s32 scx_bpf_dsq_nr_queued(u64 dsq_id)
6444 {
6445 struct scx_sched *sch;
6446 struct scx_dispatch_q *dsq;
6447 s32 ret;
6448
6449 preempt_disable();
6450
6451 sch = rcu_dereference_sched(scx_root);
6452 if (unlikely(!sch)) {
6453 ret = -ENODEV;
6454 goto out;
6455 }
6456
6457 if (dsq_id == SCX_DSQ_LOCAL) {
6458 ret = READ_ONCE(this_rq()->scx.local_dsq.nr);
6459 goto out;
6460 } else if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) {
6461 s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK;
6462
6463 if (ops_cpu_valid(sch, cpu, NULL)) {
6464 ret = READ_ONCE(cpu_rq(cpu)->scx.local_dsq.nr);
6465 goto out;
6466 }
6467 } else {
6468 dsq = find_user_dsq(sch, dsq_id);
6469 if (dsq) {
6470 ret = READ_ONCE(dsq->nr);
6471 goto out;
6472 }
6473 }
6474 ret = -ENOENT;
6475 out:
6476 preempt_enable();
6477 return ret;
6478 }
6479
6480 /**
6481 * scx_bpf_destroy_dsq - Destroy a custom DSQ
6482 * @dsq_id: DSQ to destroy
6483 *
6484 * Destroy the custom DSQ identified by @dsq_id. Only DSQs created with
6485 * scx_bpf_create_dsq() can be destroyed. The caller must ensure that the DSQ is
6486 * empty and no further tasks are dispatched to it. Ignored if called on a DSQ
6487 * which doesn't exist. Can be called from any online scx_ops operations.
6488 */
scx_bpf_destroy_dsq(u64 dsq_id)6489 __bpf_kfunc void scx_bpf_destroy_dsq(u64 dsq_id)
6490 {
6491 struct scx_sched *sch;
6492
6493 rcu_read_lock();
6494 sch = rcu_dereference(scx_root);
6495 if (sch)
6496 destroy_dsq(sch, dsq_id);
6497 rcu_read_unlock();
6498 }
6499
6500 /**
6501 * bpf_iter_scx_dsq_new - Create a DSQ iterator
6502 * @it: iterator to initialize
6503 * @dsq_id: DSQ to iterate
6504 * @flags: %SCX_DSQ_ITER_*
6505 *
6506 * Initialize BPF iterator @it which can be used with bpf_for_each() to walk
6507 * tasks in the DSQ specified by @dsq_id. Iteration using @it only includes
6508 * tasks which are already queued when this function is invoked.
6509 */
bpf_iter_scx_dsq_new(struct bpf_iter_scx_dsq * it,u64 dsq_id,u64 flags)6510 __bpf_kfunc int bpf_iter_scx_dsq_new(struct bpf_iter_scx_dsq *it, u64 dsq_id,
6511 u64 flags)
6512 {
6513 struct bpf_iter_scx_dsq_kern *kit = (void *)it;
6514 struct scx_sched *sch;
6515
6516 BUILD_BUG_ON(sizeof(struct bpf_iter_scx_dsq_kern) >
6517 sizeof(struct bpf_iter_scx_dsq));
6518 BUILD_BUG_ON(__alignof__(struct bpf_iter_scx_dsq_kern) !=
6519 __alignof__(struct bpf_iter_scx_dsq));
6520 BUILD_BUG_ON(__SCX_DSQ_ITER_ALL_FLAGS &
6521 ((1U << __SCX_DSQ_LNODE_PRIV_SHIFT) - 1));
6522
6523 /*
6524 * next() and destroy() will be called regardless of the return value.
6525 * Always clear $kit->dsq.
6526 */
6527 kit->dsq = NULL;
6528
6529 sch = rcu_dereference_check(scx_root, rcu_read_lock_bh_held());
6530 if (unlikely(!sch))
6531 return -ENODEV;
6532
6533 if (flags & ~__SCX_DSQ_ITER_USER_FLAGS)
6534 return -EINVAL;
6535
6536 kit->dsq = find_user_dsq(sch, dsq_id);
6537 if (!kit->dsq)
6538 return -ENOENT;
6539
6540 kit->cursor = INIT_DSQ_LIST_CURSOR(kit->cursor, flags,
6541 READ_ONCE(kit->dsq->seq));
6542
6543 return 0;
6544 }
6545
6546 /**
6547 * bpf_iter_scx_dsq_next - Progress a DSQ iterator
6548 * @it: iterator to progress
6549 *
6550 * Return the next task. See bpf_iter_scx_dsq_new().
6551 */
bpf_iter_scx_dsq_next(struct bpf_iter_scx_dsq * it)6552 __bpf_kfunc struct task_struct *bpf_iter_scx_dsq_next(struct bpf_iter_scx_dsq *it)
6553 {
6554 struct bpf_iter_scx_dsq_kern *kit = (void *)it;
6555 bool rev = kit->cursor.flags & SCX_DSQ_ITER_REV;
6556 struct task_struct *p;
6557 unsigned long flags;
6558
6559 if (!kit->dsq)
6560 return NULL;
6561
6562 raw_spin_lock_irqsave(&kit->dsq->lock, flags);
6563
6564 if (list_empty(&kit->cursor.node))
6565 p = NULL;
6566 else
6567 p = container_of(&kit->cursor, struct task_struct, scx.dsq_list);
6568
6569 /*
6570 * Only tasks which were queued before the iteration started are
6571 * visible. This bounds BPF iterations and guarantees that vtime never
6572 * jumps in the other direction while iterating.
6573 */
6574 do {
6575 p = nldsq_next_task(kit->dsq, p, rev);
6576 } while (p && unlikely(u32_before(kit->cursor.priv, p->scx.dsq_seq)));
6577
6578 if (p) {
6579 if (rev)
6580 list_move_tail(&kit->cursor.node, &p->scx.dsq_list.node);
6581 else
6582 list_move(&kit->cursor.node, &p->scx.dsq_list.node);
6583 } else {
6584 list_del_init(&kit->cursor.node);
6585 }
6586
6587 raw_spin_unlock_irqrestore(&kit->dsq->lock, flags);
6588
6589 return p;
6590 }
6591
6592 /**
6593 * bpf_iter_scx_dsq_destroy - Destroy a DSQ iterator
6594 * @it: iterator to destroy
6595 *
6596 * Undo scx_iter_scx_dsq_new().
6597 */
bpf_iter_scx_dsq_destroy(struct bpf_iter_scx_dsq * it)6598 __bpf_kfunc void bpf_iter_scx_dsq_destroy(struct bpf_iter_scx_dsq *it)
6599 {
6600 struct bpf_iter_scx_dsq_kern *kit = (void *)it;
6601
6602 if (!kit->dsq)
6603 return;
6604
6605 if (!list_empty(&kit->cursor.node)) {
6606 unsigned long flags;
6607
6608 raw_spin_lock_irqsave(&kit->dsq->lock, flags);
6609 list_del_init(&kit->cursor.node);
6610 raw_spin_unlock_irqrestore(&kit->dsq->lock, flags);
6611 }
6612 kit->dsq = NULL;
6613 }
6614
6615 /**
6616 * scx_bpf_dsq_peek - Lockless peek at the first element.
6617 * @dsq_id: DSQ to examine.
6618 *
6619 * Read the first element in the DSQ. This is semantically equivalent to using
6620 * the DSQ iterator, but is lockfree. Of course, like any lockless operation,
6621 * this provides only a point-in-time snapshot, and the contents may change
6622 * by the time any subsequent locking operation reads the queue.
6623 *
6624 * Returns the pointer, or NULL indicates an empty queue OR internal error.
6625 */
scx_bpf_dsq_peek(u64 dsq_id)6626 __bpf_kfunc struct task_struct *scx_bpf_dsq_peek(u64 dsq_id)
6627 {
6628 struct scx_sched *sch;
6629 struct scx_dispatch_q *dsq;
6630
6631 sch = rcu_dereference(scx_root);
6632 if (unlikely(!sch))
6633 return NULL;
6634
6635 if (unlikely(dsq_id & SCX_DSQ_FLAG_BUILTIN)) {
6636 scx_error(sch, "peek disallowed on builtin DSQ 0x%llx", dsq_id);
6637 return NULL;
6638 }
6639
6640 dsq = find_user_dsq(sch, dsq_id);
6641 if (unlikely(!dsq)) {
6642 scx_error(sch, "peek on non-existent DSQ 0x%llx", dsq_id);
6643 return NULL;
6644 }
6645
6646 return rcu_dereference(dsq->first_task);
6647 }
6648
6649 __bpf_kfunc_end_defs();
6650
__bstr_format(struct scx_sched * sch,u64 * data_buf,char * line_buf,size_t line_size,char * fmt,unsigned long long * data,u32 data__sz)6651 static s32 __bstr_format(struct scx_sched *sch, u64 *data_buf, char *line_buf,
6652 size_t line_size, char *fmt, unsigned long long *data,
6653 u32 data__sz)
6654 {
6655 struct bpf_bprintf_data bprintf_data = { .get_bin_args = true };
6656 s32 ret;
6657
6658 if (data__sz % 8 || data__sz > MAX_BPRINTF_VARARGS * 8 ||
6659 (data__sz && !data)) {
6660 scx_error(sch, "invalid data=%p and data__sz=%u", (void *)data, data__sz);
6661 return -EINVAL;
6662 }
6663
6664 ret = copy_from_kernel_nofault(data_buf, data, data__sz);
6665 if (ret < 0) {
6666 scx_error(sch, "failed to read data fields (%d)", ret);
6667 return ret;
6668 }
6669
6670 ret = bpf_bprintf_prepare(fmt, UINT_MAX, data_buf, data__sz / 8,
6671 &bprintf_data);
6672 if (ret < 0) {
6673 scx_error(sch, "format preparation failed (%d)", ret);
6674 return ret;
6675 }
6676
6677 ret = bstr_printf(line_buf, line_size, fmt,
6678 bprintf_data.bin_args);
6679 bpf_bprintf_cleanup(&bprintf_data);
6680 if (ret < 0) {
6681 scx_error(sch, "(\"%s\", %p, %u) failed to format", fmt, data, data__sz);
6682 return ret;
6683 }
6684
6685 return ret;
6686 }
6687
bstr_format(struct scx_sched * sch,struct scx_bstr_buf * buf,char * fmt,unsigned long long * data,u32 data__sz)6688 static s32 bstr_format(struct scx_sched *sch, struct scx_bstr_buf *buf,
6689 char *fmt, unsigned long long *data, u32 data__sz)
6690 {
6691 return __bstr_format(sch, buf->data, buf->line, sizeof(buf->line),
6692 fmt, data, data__sz);
6693 }
6694
6695 __bpf_kfunc_start_defs();
6696
6697 /**
6698 * scx_bpf_exit_bstr - Gracefully exit the BPF scheduler.
6699 * @exit_code: Exit value to pass to user space via struct scx_exit_info.
6700 * @fmt: error message format string
6701 * @data: format string parameters packaged using ___bpf_fill() macro
6702 * @data__sz: @data len, must end in '__sz' for the verifier
6703 *
6704 * Indicate that the BPF scheduler wants to exit gracefully, and initiate ops
6705 * disabling.
6706 */
scx_bpf_exit_bstr(s64 exit_code,char * fmt,unsigned long long * data,u32 data__sz)6707 __bpf_kfunc void scx_bpf_exit_bstr(s64 exit_code, char *fmt,
6708 unsigned long long *data, u32 data__sz)
6709 {
6710 struct scx_sched *sch;
6711 unsigned long flags;
6712
6713 raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags);
6714 sch = rcu_dereference_bh(scx_root);
6715 if (likely(sch) &&
6716 bstr_format(sch, &scx_exit_bstr_buf, fmt, data, data__sz) >= 0)
6717 scx_exit(sch, SCX_EXIT_UNREG_BPF, exit_code, "%s", scx_exit_bstr_buf.line);
6718 raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags);
6719 }
6720
6721 /**
6722 * scx_bpf_error_bstr - Indicate fatal error
6723 * @fmt: error message format string
6724 * @data: format string parameters packaged using ___bpf_fill() macro
6725 * @data__sz: @data len, must end in '__sz' for the verifier
6726 *
6727 * Indicate that the BPF scheduler encountered a fatal error and initiate ops
6728 * disabling.
6729 */
scx_bpf_error_bstr(char * fmt,unsigned long long * data,u32 data__sz)6730 __bpf_kfunc void scx_bpf_error_bstr(char *fmt, unsigned long long *data,
6731 u32 data__sz)
6732 {
6733 struct scx_sched *sch;
6734 unsigned long flags;
6735
6736 raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags);
6737 sch = rcu_dereference_bh(scx_root);
6738 if (likely(sch) &&
6739 bstr_format(sch, &scx_exit_bstr_buf, fmt, data, data__sz) >= 0)
6740 scx_exit(sch, SCX_EXIT_ERROR_BPF, 0, "%s", scx_exit_bstr_buf.line);
6741 raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags);
6742 }
6743
6744 /**
6745 * scx_bpf_dump_bstr - Generate extra debug dump specific to the BPF scheduler
6746 * @fmt: format string
6747 * @data: format string parameters packaged using ___bpf_fill() macro
6748 * @data__sz: @data len, must end in '__sz' for the verifier
6749 *
6750 * To be called through scx_bpf_dump() helper from ops.dump(), dump_cpu() and
6751 * dump_task() to generate extra debug dump specific to the BPF scheduler.
6752 *
6753 * The extra dump may be multiple lines. A single line may be split over
6754 * multiple calls. The last line is automatically terminated.
6755 */
scx_bpf_dump_bstr(char * fmt,unsigned long long * data,u32 data__sz)6756 __bpf_kfunc void scx_bpf_dump_bstr(char *fmt, unsigned long long *data,
6757 u32 data__sz)
6758 {
6759 struct scx_sched *sch;
6760 struct scx_dump_data *dd = &scx_dump_data;
6761 struct scx_bstr_buf *buf = &dd->buf;
6762 s32 ret;
6763
6764 guard(rcu)();
6765
6766 sch = rcu_dereference(scx_root);
6767 if (unlikely(!sch))
6768 return;
6769
6770 if (raw_smp_processor_id() != dd->cpu) {
6771 scx_error(sch, "scx_bpf_dump() must only be called from ops.dump() and friends");
6772 return;
6773 }
6774
6775 /* append the formatted string to the line buf */
6776 ret = __bstr_format(sch, buf->data, buf->line + dd->cursor,
6777 sizeof(buf->line) - dd->cursor, fmt, data, data__sz);
6778 if (ret < 0) {
6779 dump_line(dd->s, "%s[!] (\"%s\", %p, %u) failed to format (%d)",
6780 dd->prefix, fmt, data, data__sz, ret);
6781 return;
6782 }
6783
6784 dd->cursor += ret;
6785 dd->cursor = min_t(s32, dd->cursor, sizeof(buf->line));
6786
6787 if (!dd->cursor)
6788 return;
6789
6790 /*
6791 * If the line buf overflowed or ends in a newline, flush it into the
6792 * dump. This is to allow the caller to generate a single line over
6793 * multiple calls. As ops_dump_flush() can also handle multiple lines in
6794 * the line buf, the only case which can lead to an unexpected
6795 * truncation is when the caller keeps generating newlines in the middle
6796 * instead of the end consecutively. Don't do that.
6797 */
6798 if (dd->cursor >= sizeof(buf->line) || buf->line[dd->cursor - 1] == '\n')
6799 ops_dump_flush();
6800 }
6801
6802 /**
6803 * scx_bpf_reenqueue_local - Re-enqueue tasks on a local DSQ
6804 *
6805 * Iterate over all of the tasks currently enqueued on the local DSQ of the
6806 * caller's CPU, and re-enqueue them in the BPF scheduler. Can be called from
6807 * anywhere.
6808 */
scx_bpf_reenqueue_local___v2(void)6809 __bpf_kfunc void scx_bpf_reenqueue_local___v2(void)
6810 {
6811 struct rq *rq;
6812
6813 guard(preempt)();
6814
6815 rq = this_rq();
6816 local_set(&rq->scx.reenq_local_deferred, 1);
6817 schedule_deferred(rq);
6818 }
6819
6820 /**
6821 * scx_bpf_cpuperf_cap - Query the maximum relative capacity of a CPU
6822 * @cpu: CPU of interest
6823 *
6824 * Return the maximum relative capacity of @cpu in relation to the most
6825 * performant CPU in the system. The return value is in the range [1,
6826 * %SCX_CPUPERF_ONE]. See scx_bpf_cpuperf_cur().
6827 */
scx_bpf_cpuperf_cap(s32 cpu)6828 __bpf_kfunc u32 scx_bpf_cpuperf_cap(s32 cpu)
6829 {
6830 struct scx_sched *sch;
6831
6832 guard(rcu)();
6833
6834 sch = rcu_dereference(scx_root);
6835 if (likely(sch) && ops_cpu_valid(sch, cpu, NULL))
6836 return arch_scale_cpu_capacity(cpu);
6837 else
6838 return SCX_CPUPERF_ONE;
6839 }
6840
6841 /**
6842 * scx_bpf_cpuperf_cur - Query the current relative performance of a CPU
6843 * @cpu: CPU of interest
6844 *
6845 * Return the current relative performance of @cpu in relation to its maximum.
6846 * The return value is in the range [1, %SCX_CPUPERF_ONE].
6847 *
6848 * The current performance level of a CPU in relation to the maximum performance
6849 * available in the system can be calculated as follows:
6850 *
6851 * scx_bpf_cpuperf_cap() * scx_bpf_cpuperf_cur() / %SCX_CPUPERF_ONE
6852 *
6853 * The result is in the range [1, %SCX_CPUPERF_ONE].
6854 */
scx_bpf_cpuperf_cur(s32 cpu)6855 __bpf_kfunc u32 scx_bpf_cpuperf_cur(s32 cpu)
6856 {
6857 struct scx_sched *sch;
6858
6859 guard(rcu)();
6860
6861 sch = rcu_dereference(scx_root);
6862 if (likely(sch) && ops_cpu_valid(sch, cpu, NULL))
6863 return arch_scale_freq_capacity(cpu);
6864 else
6865 return SCX_CPUPERF_ONE;
6866 }
6867
6868 /**
6869 * scx_bpf_cpuperf_set - Set the relative performance target of a CPU
6870 * @cpu: CPU of interest
6871 * @perf: target performance level [0, %SCX_CPUPERF_ONE]
6872 *
6873 * Set the target performance level of @cpu to @perf. @perf is in linear
6874 * relative scale between 0 and %SCX_CPUPERF_ONE. This determines how the
6875 * schedutil cpufreq governor chooses the target frequency.
6876 *
6877 * The actual performance level chosen, CPU grouping, and the overhead and
6878 * latency of the operations are dependent on the hardware and cpufreq driver in
6879 * use. Consult hardware and cpufreq documentation for more information. The
6880 * current performance level can be monitored using scx_bpf_cpuperf_cur().
6881 */
scx_bpf_cpuperf_set(s32 cpu,u32 perf)6882 __bpf_kfunc void scx_bpf_cpuperf_set(s32 cpu, u32 perf)
6883 {
6884 struct scx_sched *sch;
6885
6886 guard(rcu)();
6887
6888 sch = rcu_dereference(scx_root);
6889 if (unlikely(!sch))
6890 return;
6891
6892 if (unlikely(perf > SCX_CPUPERF_ONE)) {
6893 scx_error(sch, "Invalid cpuperf target %u for CPU %d", perf, cpu);
6894 return;
6895 }
6896
6897 if (ops_cpu_valid(sch, cpu, NULL)) {
6898 struct rq *rq = cpu_rq(cpu), *locked_rq = scx_locked_rq();
6899 struct rq_flags rf;
6900
6901 /*
6902 * When called with an rq lock held, restrict the operation
6903 * to the corresponding CPU to prevent ABBA deadlocks.
6904 */
6905 if (locked_rq && rq != locked_rq) {
6906 scx_error(sch, "Invalid target CPU %d", cpu);
6907 return;
6908 }
6909
6910 /*
6911 * If no rq lock is held, allow to operate on any CPU by
6912 * acquiring the corresponding rq lock.
6913 */
6914 if (!locked_rq) {
6915 rq_lock_irqsave(rq, &rf);
6916 update_rq_clock(rq);
6917 }
6918
6919 rq->scx.cpuperf_target = perf;
6920 cpufreq_update_util(rq, 0);
6921
6922 if (!locked_rq)
6923 rq_unlock_irqrestore(rq, &rf);
6924 }
6925 }
6926
6927 /**
6928 * scx_bpf_nr_node_ids - Return the number of possible node IDs
6929 *
6930 * All valid node IDs in the system are smaller than the returned value.
6931 */
scx_bpf_nr_node_ids(void)6932 __bpf_kfunc u32 scx_bpf_nr_node_ids(void)
6933 {
6934 return nr_node_ids;
6935 }
6936
6937 /**
6938 * scx_bpf_nr_cpu_ids - Return the number of possible CPU IDs
6939 *
6940 * All valid CPU IDs in the system are smaller than the returned value.
6941 */
scx_bpf_nr_cpu_ids(void)6942 __bpf_kfunc u32 scx_bpf_nr_cpu_ids(void)
6943 {
6944 return nr_cpu_ids;
6945 }
6946
6947 /**
6948 * scx_bpf_get_possible_cpumask - Get a referenced kptr to cpu_possible_mask
6949 */
scx_bpf_get_possible_cpumask(void)6950 __bpf_kfunc const struct cpumask *scx_bpf_get_possible_cpumask(void)
6951 {
6952 return cpu_possible_mask;
6953 }
6954
6955 /**
6956 * scx_bpf_get_online_cpumask - Get a referenced kptr to cpu_online_mask
6957 */
scx_bpf_get_online_cpumask(void)6958 __bpf_kfunc const struct cpumask *scx_bpf_get_online_cpumask(void)
6959 {
6960 return cpu_online_mask;
6961 }
6962
6963 /**
6964 * scx_bpf_put_cpumask - Release a possible/online cpumask
6965 * @cpumask: cpumask to release
6966 */
scx_bpf_put_cpumask(const struct cpumask * cpumask)6967 __bpf_kfunc void scx_bpf_put_cpumask(const struct cpumask *cpumask)
6968 {
6969 /*
6970 * Empty function body because we aren't actually acquiring or releasing
6971 * a reference to a global cpumask, which is read-only in the caller and
6972 * is never released. The acquire / release semantics here are just used
6973 * to make the cpumask is a trusted pointer in the caller.
6974 */
6975 }
6976
6977 /**
6978 * scx_bpf_task_running - Is task currently running?
6979 * @p: task of interest
6980 */
scx_bpf_task_running(const struct task_struct * p)6981 __bpf_kfunc bool scx_bpf_task_running(const struct task_struct *p)
6982 {
6983 return task_rq(p)->curr == p;
6984 }
6985
6986 /**
6987 * scx_bpf_task_cpu - CPU a task is currently associated with
6988 * @p: task of interest
6989 */
scx_bpf_task_cpu(const struct task_struct * p)6990 __bpf_kfunc s32 scx_bpf_task_cpu(const struct task_struct *p)
6991 {
6992 return task_cpu(p);
6993 }
6994
6995 /**
6996 * scx_bpf_cpu_rq - Fetch the rq of a CPU
6997 * @cpu: CPU of the rq
6998 */
scx_bpf_cpu_rq(s32 cpu)6999 __bpf_kfunc struct rq *scx_bpf_cpu_rq(s32 cpu)
7000 {
7001 struct scx_sched *sch;
7002
7003 guard(rcu)();
7004
7005 sch = rcu_dereference(scx_root);
7006 if (unlikely(!sch))
7007 return NULL;
7008
7009 if (!ops_cpu_valid(sch, cpu, NULL))
7010 return NULL;
7011
7012 if (!sch->warned_deprecated_rq) {
7013 printk_deferred(KERN_WARNING "sched_ext: %s() is deprecated; "
7014 "use scx_bpf_locked_rq() when holding rq lock "
7015 "or scx_bpf_cpu_curr() to read remote curr safely.\n", __func__);
7016 sch->warned_deprecated_rq = true;
7017 }
7018
7019 return cpu_rq(cpu);
7020 }
7021
7022 /**
7023 * scx_bpf_locked_rq - Return the rq currently locked by SCX
7024 *
7025 * Returns the rq if a rq lock is currently held by SCX.
7026 * Otherwise emits an error and returns NULL.
7027 */
scx_bpf_locked_rq(void)7028 __bpf_kfunc struct rq *scx_bpf_locked_rq(void)
7029 {
7030 struct scx_sched *sch;
7031 struct rq *rq;
7032
7033 guard(preempt)();
7034
7035 sch = rcu_dereference_sched(scx_root);
7036 if (unlikely(!sch))
7037 return NULL;
7038
7039 rq = scx_locked_rq();
7040 if (!rq) {
7041 scx_error(sch, "accessing rq without holding rq lock");
7042 return NULL;
7043 }
7044
7045 return rq;
7046 }
7047
7048 /**
7049 * scx_bpf_cpu_curr - Return remote CPU's curr task
7050 * @cpu: CPU of interest
7051 *
7052 * Callers must hold RCU read lock (KF_RCU).
7053 */
scx_bpf_cpu_curr(s32 cpu)7054 __bpf_kfunc struct task_struct *scx_bpf_cpu_curr(s32 cpu)
7055 {
7056 struct scx_sched *sch;
7057
7058 guard(rcu)();
7059
7060 sch = rcu_dereference(scx_root);
7061 if (unlikely(!sch))
7062 return NULL;
7063
7064 if (!ops_cpu_valid(sch, cpu, NULL))
7065 return NULL;
7066
7067 return rcu_dereference(cpu_rq(cpu)->curr);
7068 }
7069
7070 /**
7071 * scx_bpf_task_cgroup - Return the sched cgroup of a task
7072 * @p: task of interest
7073 *
7074 * @p->sched_task_group->css.cgroup represents the cgroup @p is associated with
7075 * from the scheduler's POV. SCX operations should use this function to
7076 * determine @p's current cgroup as, unlike following @p->cgroups,
7077 * @p->sched_task_group is protected by @p's rq lock and thus atomic w.r.t. all
7078 * rq-locked operations. Can be called on the parameter tasks of rq-locked
7079 * operations. The restriction guarantees that @p's rq is locked by the caller.
7080 */
7081 #ifdef CONFIG_CGROUP_SCHED
scx_bpf_task_cgroup(struct task_struct * p)7082 __bpf_kfunc struct cgroup *scx_bpf_task_cgroup(struct task_struct *p)
7083 {
7084 struct task_group *tg = p->sched_task_group;
7085 struct cgroup *cgrp = &cgrp_dfl_root.cgrp;
7086 struct scx_sched *sch;
7087
7088 guard(rcu)();
7089
7090 sch = rcu_dereference(scx_root);
7091 if (unlikely(!sch))
7092 goto out;
7093
7094 if (!scx_kf_allowed_on_arg_tasks(sch, __SCX_KF_RQ_LOCKED, p))
7095 goto out;
7096
7097 cgrp = tg_cgrp(tg);
7098
7099 out:
7100 cgroup_get(cgrp);
7101 return cgrp;
7102 }
7103 #endif
7104
7105 /**
7106 * scx_bpf_now - Returns a high-performance monotonically non-decreasing
7107 * clock for the current CPU. The clock returned is in nanoseconds.
7108 *
7109 * It provides the following properties:
7110 *
7111 * 1) High performance: Many BPF schedulers call bpf_ktime_get_ns() frequently
7112 * to account for execution time and track tasks' runtime properties.
7113 * Unfortunately, in some hardware platforms, bpf_ktime_get_ns() -- which
7114 * eventually reads a hardware timestamp counter -- is neither performant nor
7115 * scalable. scx_bpf_now() aims to provide a high-performance clock by
7116 * using the rq clock in the scheduler core whenever possible.
7117 *
7118 * 2) High enough resolution for the BPF scheduler use cases: In most BPF
7119 * scheduler use cases, the required clock resolution is lower than the most
7120 * accurate hardware clock (e.g., rdtsc in x86). scx_bpf_now() basically
7121 * uses the rq clock in the scheduler core whenever it is valid. It considers
7122 * that the rq clock is valid from the time the rq clock is updated
7123 * (update_rq_clock) until the rq is unlocked (rq_unpin_lock).
7124 *
7125 * 3) Monotonically non-decreasing clock for the same CPU: scx_bpf_now()
7126 * guarantees the clock never goes backward when comparing them in the same
7127 * CPU. On the other hand, when comparing clocks in different CPUs, there
7128 * is no such guarantee -- the clock can go backward. It provides a
7129 * monotonically *non-decreasing* clock so that it would provide the same
7130 * clock values in two different scx_bpf_now() calls in the same CPU
7131 * during the same period of when the rq clock is valid.
7132 */
scx_bpf_now(void)7133 __bpf_kfunc u64 scx_bpf_now(void)
7134 {
7135 struct rq *rq;
7136 u64 clock;
7137
7138 preempt_disable();
7139
7140 rq = this_rq();
7141 if (smp_load_acquire(&rq->scx.flags) & SCX_RQ_CLK_VALID) {
7142 /*
7143 * If the rq clock is valid, use the cached rq clock.
7144 *
7145 * Note that scx_bpf_now() is re-entrant between a process
7146 * context and an interrupt context (e.g., timer interrupt).
7147 * However, we don't need to consider the race between them
7148 * because such race is not observable from a caller.
7149 */
7150 clock = READ_ONCE(rq->scx.clock);
7151 } else {
7152 /*
7153 * Otherwise, return a fresh rq clock.
7154 *
7155 * The rq clock is updated outside of the rq lock.
7156 * In this case, keep the updated rq clock invalid so the next
7157 * kfunc call outside the rq lock gets a fresh rq clock.
7158 */
7159 clock = sched_clock_cpu(cpu_of(rq));
7160 }
7161
7162 preempt_enable();
7163
7164 return clock;
7165 }
7166
scx_read_events(struct scx_sched * sch,struct scx_event_stats * events)7167 static void scx_read_events(struct scx_sched *sch, struct scx_event_stats *events)
7168 {
7169 struct scx_event_stats *e_cpu;
7170 int cpu;
7171
7172 /* Aggregate per-CPU event counters into @events. */
7173 memset(events, 0, sizeof(*events));
7174 for_each_possible_cpu(cpu) {
7175 e_cpu = &per_cpu_ptr(sch->pcpu, cpu)->event_stats;
7176 scx_agg_event(events, e_cpu, SCX_EV_SELECT_CPU_FALLBACK);
7177 scx_agg_event(events, e_cpu, SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE);
7178 scx_agg_event(events, e_cpu, SCX_EV_DISPATCH_KEEP_LAST);
7179 scx_agg_event(events, e_cpu, SCX_EV_ENQ_SKIP_EXITING);
7180 scx_agg_event(events, e_cpu, SCX_EV_ENQ_SKIP_MIGRATION_DISABLED);
7181 scx_agg_event(events, e_cpu, SCX_EV_REFILL_SLICE_DFL);
7182 scx_agg_event(events, e_cpu, SCX_EV_BYPASS_DURATION);
7183 scx_agg_event(events, e_cpu, SCX_EV_BYPASS_DISPATCH);
7184 scx_agg_event(events, e_cpu, SCX_EV_BYPASS_ACTIVATE);
7185 }
7186 }
7187
7188 /*
7189 * scx_bpf_events - Get a system-wide event counter to
7190 * @events: output buffer from a BPF program
7191 * @events__sz: @events len, must end in '__sz'' for the verifier
7192 */
scx_bpf_events(struct scx_event_stats * events,size_t events__sz)7193 __bpf_kfunc void scx_bpf_events(struct scx_event_stats *events,
7194 size_t events__sz)
7195 {
7196 struct scx_sched *sch;
7197 struct scx_event_stats e_sys;
7198
7199 rcu_read_lock();
7200 sch = rcu_dereference(scx_root);
7201 if (sch)
7202 scx_read_events(sch, &e_sys);
7203 else
7204 memset(&e_sys, 0, sizeof(e_sys));
7205 rcu_read_unlock();
7206
7207 /*
7208 * We cannot entirely trust a BPF-provided size since a BPF program
7209 * might be compiled against a different vmlinux.h, of which
7210 * scx_event_stats would be larger (a newer vmlinux.h) or smaller
7211 * (an older vmlinux.h). Hence, we use the smaller size to avoid
7212 * memory corruption.
7213 */
7214 events__sz = min(events__sz, sizeof(*events));
7215 memcpy(events, &e_sys, events__sz);
7216 }
7217
7218 __bpf_kfunc_end_defs();
7219
7220 BTF_KFUNCS_START(scx_kfunc_ids_any)
7221 BTF_ID_FLAGS(func, scx_bpf_task_set_slice, KF_RCU);
7222 BTF_ID_FLAGS(func, scx_bpf_task_set_dsq_vtime, KF_RCU);
7223 BTF_ID_FLAGS(func, scx_bpf_kick_cpu)
7224 BTF_ID_FLAGS(func, scx_bpf_dsq_nr_queued)
7225 BTF_ID_FLAGS(func, scx_bpf_destroy_dsq)
7226 BTF_ID_FLAGS(func, scx_bpf_dsq_peek, KF_RCU_PROTECTED | KF_RET_NULL)
7227 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_new, KF_ITER_NEW | KF_RCU_PROTECTED)
7228 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_next, KF_ITER_NEXT | KF_RET_NULL)
7229 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_destroy, KF_ITER_DESTROY)
7230 BTF_ID_FLAGS(func, scx_bpf_exit_bstr, KF_TRUSTED_ARGS)
7231 BTF_ID_FLAGS(func, scx_bpf_error_bstr, KF_TRUSTED_ARGS)
7232 BTF_ID_FLAGS(func, scx_bpf_dump_bstr, KF_TRUSTED_ARGS)
7233 BTF_ID_FLAGS(func, scx_bpf_reenqueue_local___v2)
7234 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cap)
7235 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cur)
7236 BTF_ID_FLAGS(func, scx_bpf_cpuperf_set)
7237 BTF_ID_FLAGS(func, scx_bpf_nr_node_ids)
7238 BTF_ID_FLAGS(func, scx_bpf_nr_cpu_ids)
7239 BTF_ID_FLAGS(func, scx_bpf_get_possible_cpumask, KF_ACQUIRE)
7240 BTF_ID_FLAGS(func, scx_bpf_get_online_cpumask, KF_ACQUIRE)
7241 BTF_ID_FLAGS(func, scx_bpf_put_cpumask, KF_RELEASE)
7242 BTF_ID_FLAGS(func, scx_bpf_task_running, KF_RCU)
7243 BTF_ID_FLAGS(func, scx_bpf_task_cpu, KF_RCU)
7244 BTF_ID_FLAGS(func, scx_bpf_cpu_rq)
7245 BTF_ID_FLAGS(func, scx_bpf_locked_rq, KF_RET_NULL)
7246 BTF_ID_FLAGS(func, scx_bpf_cpu_curr, KF_RET_NULL | KF_RCU_PROTECTED)
7247 #ifdef CONFIG_CGROUP_SCHED
7248 BTF_ID_FLAGS(func, scx_bpf_task_cgroup, KF_RCU | KF_ACQUIRE)
7249 #endif
7250 BTF_ID_FLAGS(func, scx_bpf_now)
7251 BTF_ID_FLAGS(func, scx_bpf_events, KF_TRUSTED_ARGS)
7252 BTF_KFUNCS_END(scx_kfunc_ids_any)
7253
7254 static const struct btf_kfunc_id_set scx_kfunc_set_any = {
7255 .owner = THIS_MODULE,
7256 .set = &scx_kfunc_ids_any,
7257 };
7258
scx_init(void)7259 static int __init scx_init(void)
7260 {
7261 int ret;
7262
7263 /*
7264 * kfunc registration can't be done from init_sched_ext_class() as
7265 * register_btf_kfunc_id_set() needs most of the system to be up.
7266 *
7267 * Some kfuncs are context-sensitive and can only be called from
7268 * specific SCX ops. They are grouped into BTF sets accordingly.
7269 * Unfortunately, BPF currently doesn't have a way of enforcing such
7270 * restrictions. Eventually, the verifier should be able to enforce
7271 * them. For now, register them the same and make each kfunc explicitly
7272 * check using scx_kf_allowed().
7273 */
7274 if ((ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7275 &scx_kfunc_set_enqueue_dispatch)) ||
7276 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7277 &scx_kfunc_set_dispatch)) ||
7278 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7279 &scx_kfunc_set_cpu_release)) ||
7280 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7281 &scx_kfunc_set_unlocked)) ||
7282 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL,
7283 &scx_kfunc_set_unlocked)) ||
7284 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7285 &scx_kfunc_set_any)) ||
7286 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING,
7287 &scx_kfunc_set_any)) ||
7288 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL,
7289 &scx_kfunc_set_any))) {
7290 pr_err("sched_ext: Failed to register kfunc sets (%d)\n", ret);
7291 return ret;
7292 }
7293
7294 ret = scx_idle_init();
7295 if (ret) {
7296 pr_err("sched_ext: Failed to initialize idle tracking (%d)\n", ret);
7297 return ret;
7298 }
7299
7300 ret = register_bpf_struct_ops(&bpf_sched_ext_ops, sched_ext_ops);
7301 if (ret) {
7302 pr_err("sched_ext: Failed to register struct_ops (%d)\n", ret);
7303 return ret;
7304 }
7305
7306 ret = register_pm_notifier(&scx_pm_notifier);
7307 if (ret) {
7308 pr_err("sched_ext: Failed to register PM notifier (%d)\n", ret);
7309 return ret;
7310 }
7311
7312 scx_kset = kset_create_and_add("sched_ext", &scx_uevent_ops, kernel_kobj);
7313 if (!scx_kset) {
7314 pr_err("sched_ext: Failed to create /sys/kernel/sched_ext\n");
7315 return -ENOMEM;
7316 }
7317
7318 ret = sysfs_create_group(&scx_kset->kobj, &scx_global_attr_group);
7319 if (ret < 0) {
7320 pr_err("sched_ext: Failed to add global attributes\n");
7321 return ret;
7322 }
7323
7324 if (!alloc_cpumask_var(&scx_bypass_lb_donee_cpumask, GFP_KERNEL) ||
7325 !alloc_cpumask_var(&scx_bypass_lb_resched_cpumask, GFP_KERNEL)) {
7326 pr_err("sched_ext: Failed to allocate cpumasks\n");
7327 return -ENOMEM;
7328 }
7329
7330 return 0;
7331 }
7332 __initcall(scx_init);
7333