1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3
4 #include "ice.h"
5 #include "ice_base.h"
6 #include "ice_flow.h"
7 #include "ice_lib.h"
8 #include "ice_fltr.h"
9 #include "ice_dcb_lib.h"
10 #include "ice_type.h"
11 #include "ice_vsi_vlan_ops.h"
12
13 /**
14 * ice_vsi_type_str - maps VSI type enum to string equivalents
15 * @vsi_type: VSI type enum
16 */
ice_vsi_type_str(enum ice_vsi_type vsi_type)17 const char *ice_vsi_type_str(enum ice_vsi_type vsi_type)
18 {
19 switch (vsi_type) {
20 case ICE_VSI_PF:
21 return "ICE_VSI_PF";
22 case ICE_VSI_VF:
23 return "ICE_VSI_VF";
24 case ICE_VSI_SF:
25 return "ICE_VSI_SF";
26 case ICE_VSI_CTRL:
27 return "ICE_VSI_CTRL";
28 case ICE_VSI_CHNL:
29 return "ICE_VSI_CHNL";
30 case ICE_VSI_LB:
31 return "ICE_VSI_LB";
32 default:
33 return "unknown";
34 }
35 }
36
37 /**
38 * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings
39 * @vsi: the VSI being configured
40 * @ena: start or stop the Rx rings
41 *
42 * First enable/disable all of the Rx rings, flush any remaining writes, and
43 * then verify that they have all been enabled/disabled successfully. This will
44 * let all of the register writes complete when enabling/disabling the Rx rings
45 * before waiting for the change in hardware to complete.
46 */
ice_vsi_ctrl_all_rx_rings(struct ice_vsi * vsi,bool ena)47 static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena)
48 {
49 int ret = 0;
50 u16 i;
51
52 ice_for_each_rxq(vsi, i)
53 ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false);
54
55 ice_flush(&vsi->back->hw);
56
57 ice_for_each_rxq(vsi, i) {
58 ret = ice_vsi_wait_one_rx_ring(vsi, ena, i);
59 if (ret)
60 break;
61 }
62
63 return ret;
64 }
65
66 /**
67 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI
68 * @vsi: VSI pointer
69 *
70 * On error: returns error code (negative)
71 * On success: returns 0
72 */
ice_vsi_alloc_arrays(struct ice_vsi * vsi)73 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi)
74 {
75 struct ice_pf *pf = vsi->back;
76 struct device *dev;
77
78 dev = ice_pf_to_dev(pf);
79 if (vsi->type == ICE_VSI_CHNL)
80 return 0;
81
82 /* allocate memory for both Tx and Rx ring pointers */
83 vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq,
84 sizeof(*vsi->tx_rings), GFP_KERNEL);
85 if (!vsi->tx_rings)
86 return -ENOMEM;
87
88 vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq,
89 sizeof(*vsi->rx_rings), GFP_KERNEL);
90 if (!vsi->rx_rings)
91 goto err_rings;
92
93 /* txq_map needs to have enough space to track both Tx (stack) rings
94 * and XDP rings; at this point vsi->num_xdp_txq might not be set,
95 * so use num_possible_cpus() as we want to always provide XDP ring
96 * per CPU, regardless of queue count settings from user that might
97 * have come from ethtool's set_channels() callback;
98 */
99 vsi->txq_map = devm_kcalloc(dev, (vsi->alloc_txq + num_possible_cpus()),
100 sizeof(*vsi->txq_map), GFP_KERNEL);
101
102 if (!vsi->txq_map)
103 goto err_txq_map;
104
105 vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq,
106 sizeof(*vsi->rxq_map), GFP_KERNEL);
107 if (!vsi->rxq_map)
108 goto err_rxq_map;
109
110 /* There is no need to allocate q_vectors for a loopback VSI. */
111 if (vsi->type == ICE_VSI_LB)
112 return 0;
113
114 /* allocate memory for q_vector pointers */
115 vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors,
116 sizeof(*vsi->q_vectors), GFP_KERNEL);
117 if (!vsi->q_vectors)
118 goto err_vectors;
119
120 return 0;
121
122 err_vectors:
123 devm_kfree(dev, vsi->rxq_map);
124 err_rxq_map:
125 devm_kfree(dev, vsi->txq_map);
126 err_txq_map:
127 devm_kfree(dev, vsi->rx_rings);
128 err_rings:
129 devm_kfree(dev, vsi->tx_rings);
130 return -ENOMEM;
131 }
132
133 /**
134 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI
135 * @vsi: the VSI being configured
136 */
ice_vsi_set_num_desc(struct ice_vsi * vsi)137 static void ice_vsi_set_num_desc(struct ice_vsi *vsi)
138 {
139 switch (vsi->type) {
140 case ICE_VSI_PF:
141 case ICE_VSI_SF:
142 case ICE_VSI_CTRL:
143 case ICE_VSI_LB:
144 /* a user could change the values of num_[tr]x_desc using
145 * ethtool -G so we should keep those values instead of
146 * overwriting them with the defaults.
147 */
148 if (!vsi->num_rx_desc)
149 vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC;
150 if (!vsi->num_tx_desc)
151 vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC;
152 break;
153 default:
154 dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n",
155 vsi->type);
156 break;
157 }
158 }
159
ice_get_rxq_count(struct ice_pf * pf)160 static u16 ice_get_rxq_count(struct ice_pf *pf)
161 {
162 return min(ice_get_avail_rxq_count(pf),
163 netif_get_num_default_rss_queues());
164 }
165
ice_get_txq_count(struct ice_pf * pf)166 static u16 ice_get_txq_count(struct ice_pf *pf)
167 {
168 return min(ice_get_avail_txq_count(pf),
169 netif_get_num_default_rss_queues());
170 }
171
172 /**
173 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI
174 * @vsi: the VSI being configured
175 *
176 * Return 0 on success and a negative value on error
177 */
ice_vsi_set_num_qs(struct ice_vsi * vsi)178 static void ice_vsi_set_num_qs(struct ice_vsi *vsi)
179 {
180 enum ice_vsi_type vsi_type = vsi->type;
181 struct ice_pf *pf = vsi->back;
182 struct ice_vf *vf = vsi->vf;
183
184 if (WARN_ON(vsi_type == ICE_VSI_VF && !vf))
185 return;
186
187 switch (vsi_type) {
188 case ICE_VSI_PF:
189 if (vsi->req_txq) {
190 vsi->alloc_txq = vsi->req_txq;
191 vsi->num_txq = vsi->req_txq;
192 } else {
193 vsi->alloc_txq = ice_get_txq_count(pf);
194 }
195
196 pf->num_lan_tx = vsi->alloc_txq;
197
198 /* only 1 Rx queue unless RSS is enabled */
199 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
200 vsi->alloc_rxq = 1;
201 } else {
202 if (vsi->req_rxq) {
203 vsi->alloc_rxq = vsi->req_rxq;
204 vsi->num_rxq = vsi->req_rxq;
205 } else {
206 vsi->alloc_rxq = ice_get_rxq_count(pf);
207 }
208 }
209
210 pf->num_lan_rx = vsi->alloc_rxq;
211
212 vsi->num_q_vectors = max(vsi->alloc_rxq, vsi->alloc_txq);
213 break;
214 case ICE_VSI_SF:
215 vsi->alloc_txq = 1;
216 vsi->alloc_rxq = 1;
217 vsi->num_q_vectors = 1;
218 vsi->irq_dyn_alloc = true;
219 break;
220 case ICE_VSI_VF:
221 if (vf->num_req_qs)
222 vf->num_vf_qs = vf->num_req_qs;
223 vsi->alloc_txq = vf->num_vf_qs;
224 vsi->alloc_rxq = vf->num_vf_qs;
225 /* pf->vfs.num_msix_per includes (VF miscellaneous vector +
226 * data queue interrupts). Since vsi->num_q_vectors is number
227 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the
228 * original vector count
229 */
230 vsi->num_q_vectors = vf->num_msix - ICE_NONQ_VECS_VF;
231 break;
232 case ICE_VSI_CTRL:
233 vsi->alloc_txq = 1;
234 vsi->alloc_rxq = 1;
235 vsi->num_q_vectors = 1;
236 break;
237 case ICE_VSI_CHNL:
238 vsi->alloc_txq = 0;
239 vsi->alloc_rxq = 0;
240 break;
241 case ICE_VSI_LB:
242 vsi->alloc_txq = 1;
243 vsi->alloc_rxq = 1;
244 break;
245 default:
246 dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi_type);
247 break;
248 }
249
250 ice_vsi_set_num_desc(vsi);
251 }
252
253 /**
254 * ice_get_free_slot - get the next non-NULL location index in array
255 * @array: array to search
256 * @size: size of the array
257 * @curr: last known occupied index to be used as a search hint
258 *
259 * void * is being used to keep the functionality generic. This lets us use this
260 * function on any array of pointers.
261 */
ice_get_free_slot(void * array,int size,int curr)262 static int ice_get_free_slot(void *array, int size, int curr)
263 {
264 int **tmp_array = (int **)array;
265 int next;
266
267 if (curr < (size - 1) && !tmp_array[curr + 1]) {
268 next = curr + 1;
269 } else {
270 int i = 0;
271
272 while ((i < size) && (tmp_array[i]))
273 i++;
274 if (i == size)
275 next = ICE_NO_VSI;
276 else
277 next = i;
278 }
279 return next;
280 }
281
282 /**
283 * ice_vsi_delete_from_hw - delete a VSI from the switch
284 * @vsi: pointer to VSI being removed
285 */
ice_vsi_delete_from_hw(struct ice_vsi * vsi)286 static void ice_vsi_delete_from_hw(struct ice_vsi *vsi)
287 {
288 struct ice_pf *pf = vsi->back;
289 struct ice_vsi_ctx *ctxt;
290 int status;
291
292 ice_fltr_remove_all(vsi);
293 ctxt = kzalloc_obj(*ctxt, GFP_KERNEL);
294 if (!ctxt)
295 return;
296
297 if (vsi->type == ICE_VSI_VF)
298 ctxt->vf_num = vsi->vf->vf_id;
299 ctxt->vsi_num = vsi->vsi_num;
300
301 memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info));
302
303 status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL);
304 if (status)
305 dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %d\n",
306 vsi->vsi_num, status);
307
308 kfree(ctxt);
309 }
310
311 /**
312 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI
313 * @vsi: pointer to VSI being cleared
314 */
ice_vsi_free_arrays(struct ice_vsi * vsi)315 static void ice_vsi_free_arrays(struct ice_vsi *vsi)
316 {
317 struct ice_pf *pf = vsi->back;
318 struct device *dev;
319
320 dev = ice_pf_to_dev(pf);
321
322 /* free the ring and vector containers */
323 devm_kfree(dev, vsi->q_vectors);
324 vsi->q_vectors = NULL;
325 devm_kfree(dev, vsi->tx_rings);
326 vsi->tx_rings = NULL;
327 devm_kfree(dev, vsi->rx_rings);
328 vsi->rx_rings = NULL;
329 devm_kfree(dev, vsi->txq_map);
330 vsi->txq_map = NULL;
331 devm_kfree(dev, vsi->rxq_map);
332 vsi->rxq_map = NULL;
333 }
334
335 /**
336 * ice_vsi_free_stats - Free the ring statistics structures
337 * @vsi: VSI pointer
338 */
ice_vsi_free_stats(struct ice_vsi * vsi)339 static void ice_vsi_free_stats(struct ice_vsi *vsi)
340 {
341 struct ice_vsi_stats *vsi_stat;
342 struct ice_pf *pf = vsi->back;
343 int i;
344
345 if (vsi->type == ICE_VSI_CHNL)
346 return;
347 if (!pf->vsi_stats)
348 return;
349
350 vsi_stat = pf->vsi_stats[vsi->idx];
351 if (!vsi_stat)
352 return;
353
354 ice_for_each_alloc_txq(vsi, i) {
355 if (vsi_stat->tx_ring_stats[i]) {
356 kfree_rcu(vsi_stat->tx_ring_stats[i], rcu);
357 WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL);
358 }
359 }
360
361 ice_for_each_alloc_rxq(vsi, i) {
362 if (vsi_stat->rx_ring_stats[i]) {
363 kfree_rcu(vsi_stat->rx_ring_stats[i], rcu);
364 WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL);
365 }
366 }
367
368 kfree(vsi_stat->tx_ring_stats);
369 kfree(vsi_stat->rx_ring_stats);
370 kfree(vsi_stat);
371 pf->vsi_stats[vsi->idx] = NULL;
372 }
373
374 /**
375 * ice_vsi_alloc_ring_stats - Allocates Tx and Rx ring stats for the VSI
376 * @vsi: VSI which is having stats allocated
377 */
ice_vsi_alloc_ring_stats(struct ice_vsi * vsi)378 static int ice_vsi_alloc_ring_stats(struct ice_vsi *vsi)
379 {
380 struct ice_ring_stats **tx_ring_stats;
381 struct ice_ring_stats **rx_ring_stats;
382 struct ice_vsi_stats *vsi_stats;
383 struct ice_pf *pf = vsi->back;
384 u16 i;
385
386 vsi_stats = pf->vsi_stats[vsi->idx];
387 tx_ring_stats = vsi_stats->tx_ring_stats;
388 rx_ring_stats = vsi_stats->rx_ring_stats;
389
390 /* Allocate Tx ring stats */
391 ice_for_each_alloc_txq(vsi, i) {
392 struct ice_ring_stats *ring_stats;
393 struct ice_tx_ring *ring;
394
395 ring = vsi->tx_rings[i];
396 ring_stats = tx_ring_stats[i];
397
398 if (!ring_stats) {
399 ring_stats = kzalloc_obj(*ring_stats, GFP_KERNEL);
400 if (!ring_stats)
401 goto err_out;
402
403 u64_stats_init(&ring_stats->syncp);
404
405 WRITE_ONCE(tx_ring_stats[i], ring_stats);
406 }
407
408 ring->ring_stats = ring_stats;
409 }
410
411 /* Allocate Rx ring stats */
412 ice_for_each_alloc_rxq(vsi, i) {
413 struct ice_ring_stats *ring_stats;
414 struct ice_rx_ring *ring;
415
416 ring = vsi->rx_rings[i];
417 ring_stats = rx_ring_stats[i];
418
419 if (!ring_stats) {
420 ring_stats = kzalloc_obj(*ring_stats, GFP_KERNEL);
421 if (!ring_stats)
422 goto err_out;
423
424 u64_stats_init(&ring_stats->syncp);
425
426 WRITE_ONCE(rx_ring_stats[i], ring_stats);
427 }
428
429 ring->ring_stats = ring_stats;
430 }
431
432 return 0;
433
434 err_out:
435 ice_vsi_free_stats(vsi);
436 return -ENOMEM;
437 }
438
439 /**
440 * ice_vsi_free - clean up and deallocate the provided VSI
441 * @vsi: pointer to VSI being cleared
442 *
443 * This deallocates the VSI's queue resources, removes it from the PF's
444 * VSI array if necessary, and deallocates the VSI
445 */
ice_vsi_free(struct ice_vsi * vsi)446 void ice_vsi_free(struct ice_vsi *vsi)
447 {
448 struct ice_pf *pf = NULL;
449 struct device *dev;
450
451 if (!vsi || !vsi->back)
452 return;
453
454 pf = vsi->back;
455 dev = ice_pf_to_dev(pf);
456
457 if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) {
458 dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx);
459 return;
460 }
461
462 mutex_lock(&pf->sw_mutex);
463 /* updates the PF for this cleared VSI */
464
465 pf->vsi[vsi->idx] = NULL;
466 pf->next_vsi = vsi->idx;
467
468 ice_vsi_free_stats(vsi);
469 ice_vsi_free_arrays(vsi);
470 mutex_destroy(&vsi->xdp_state_lock);
471 mutex_unlock(&pf->sw_mutex);
472 devm_kfree(dev, vsi);
473 }
474
ice_vsi_delete(struct ice_vsi * vsi)475 void ice_vsi_delete(struct ice_vsi *vsi)
476 {
477 ice_vsi_delete_from_hw(vsi);
478 ice_vsi_free(vsi);
479 }
480
481 /**
482 * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI
483 * @irq: interrupt number
484 * @data: pointer to a q_vector
485 */
ice_msix_clean_ctrl_vsi(int __always_unused irq,void * data)486 static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data)
487 {
488 struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
489
490 if (!q_vector->tx.tx_ring)
491 return IRQ_HANDLED;
492
493 ice_clean_ctrl_rx_irq(q_vector->rx.rx_ring);
494 ice_clean_ctrl_tx_irq(q_vector->tx.tx_ring);
495
496 return IRQ_HANDLED;
497 }
498
499 /**
500 * ice_msix_clean_rings - MSIX mode Interrupt Handler
501 * @irq: interrupt number
502 * @data: pointer to a q_vector
503 */
ice_msix_clean_rings(int __always_unused irq,void * data)504 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data)
505 {
506 struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
507
508 if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring)
509 return IRQ_HANDLED;
510
511 q_vector->total_events++;
512
513 napi_schedule(&q_vector->napi);
514
515 return IRQ_HANDLED;
516 }
517
518 /**
519 * ice_vsi_alloc_stat_arrays - Allocate statistics arrays
520 * @vsi: VSI pointer
521 */
ice_vsi_alloc_stat_arrays(struct ice_vsi * vsi)522 static int ice_vsi_alloc_stat_arrays(struct ice_vsi *vsi)
523 {
524 struct ice_vsi_stats *vsi_stat;
525 struct ice_pf *pf = vsi->back;
526
527 if (vsi->type == ICE_VSI_CHNL)
528 return 0;
529 if (!pf->vsi_stats)
530 return -ENOENT;
531
532 if (pf->vsi_stats[vsi->idx])
533 /* realloc will happen in rebuild path */
534 return 0;
535
536 vsi_stat = kzalloc_obj(*vsi_stat, GFP_KERNEL);
537 if (!vsi_stat)
538 return -ENOMEM;
539
540 vsi_stat->tx_ring_stats =
541 kzalloc_objs(*vsi_stat->tx_ring_stats, vsi->alloc_txq,
542 GFP_KERNEL);
543 if (!vsi_stat->tx_ring_stats)
544 goto err_alloc_tx;
545
546 vsi_stat->rx_ring_stats =
547 kzalloc_objs(*vsi_stat->rx_ring_stats, vsi->alloc_rxq,
548 GFP_KERNEL);
549 if (!vsi_stat->rx_ring_stats)
550 goto err_alloc_rx;
551
552 pf->vsi_stats[vsi->idx] = vsi_stat;
553
554 return 0;
555
556 err_alloc_rx:
557 kfree(vsi_stat->rx_ring_stats);
558 err_alloc_tx:
559 kfree(vsi_stat->tx_ring_stats);
560 kfree(vsi_stat);
561 pf->vsi_stats[vsi->idx] = NULL;
562 return -ENOMEM;
563 }
564
565 /**
566 * ice_vsi_alloc_def - set default values for already allocated VSI
567 * @vsi: ptr to VSI
568 * @ch: ptr to channel
569 */
570 static int
ice_vsi_alloc_def(struct ice_vsi * vsi,struct ice_channel * ch)571 ice_vsi_alloc_def(struct ice_vsi *vsi, struct ice_channel *ch)
572 {
573 if (vsi->type != ICE_VSI_CHNL) {
574 ice_vsi_set_num_qs(vsi);
575 if (ice_vsi_alloc_arrays(vsi))
576 return -ENOMEM;
577 }
578
579 vsi->irq_dyn_alloc = pci_msix_can_alloc_dyn(vsi->back->pdev);
580
581 switch (vsi->type) {
582 case ICE_VSI_PF:
583 case ICE_VSI_SF:
584 /* Setup default MSIX irq handler for VSI */
585 vsi->irq_handler = ice_msix_clean_rings;
586 break;
587 case ICE_VSI_CTRL:
588 /* Setup ctrl VSI MSIX irq handler */
589 vsi->irq_handler = ice_msix_clean_ctrl_vsi;
590 break;
591 case ICE_VSI_CHNL:
592 if (!ch)
593 return -EINVAL;
594
595 vsi->num_rxq = ch->num_rxq;
596 vsi->num_txq = ch->num_txq;
597 vsi->next_base_q = ch->base_q;
598 break;
599 case ICE_VSI_VF:
600 case ICE_VSI_LB:
601 break;
602 default:
603 ice_vsi_free_arrays(vsi);
604 return -EINVAL;
605 }
606
607 return 0;
608 }
609
610 /**
611 * ice_vsi_alloc - Allocates the next available struct VSI in the PF
612 * @pf: board private structure
613 *
614 * Reserves a VSI index from the PF and allocates an empty VSI structure
615 * without a type. The VSI structure must later be initialized by calling
616 * ice_vsi_cfg().
617 *
618 * returns a pointer to a VSI on success, NULL on failure.
619 */
ice_vsi_alloc(struct ice_pf * pf)620 struct ice_vsi *ice_vsi_alloc(struct ice_pf *pf)
621 {
622 struct device *dev = ice_pf_to_dev(pf);
623 struct ice_vsi *vsi = NULL;
624
625 /* Need to protect the allocation of the VSIs at the PF level */
626 mutex_lock(&pf->sw_mutex);
627
628 /* If we have already allocated our maximum number of VSIs,
629 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index
630 * is available to be populated
631 */
632 if (pf->next_vsi == ICE_NO_VSI) {
633 dev_dbg(dev, "out of VSI slots!\n");
634 goto unlock_pf;
635 }
636
637 vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL);
638 if (!vsi)
639 goto unlock_pf;
640
641 vsi->back = pf;
642 set_bit(ICE_VSI_DOWN, vsi->state);
643
644 /* fill slot and make note of the index */
645 vsi->idx = pf->next_vsi;
646 pf->vsi[pf->next_vsi] = vsi;
647
648 /* prepare pf->next_vsi for next use */
649 pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi,
650 pf->next_vsi);
651
652 mutex_init(&vsi->xdp_state_lock);
653
654 unlock_pf:
655 mutex_unlock(&pf->sw_mutex);
656 return vsi;
657 }
658
659 /**
660 * ice_alloc_fd_res - Allocate FD resource for a VSI
661 * @vsi: pointer to the ice_vsi
662 *
663 * This allocates the FD resources
664 *
665 * Returns 0 on success, -EPERM on no-op or -EIO on failure
666 */
ice_alloc_fd_res(struct ice_vsi * vsi)667 static int ice_alloc_fd_res(struct ice_vsi *vsi)
668 {
669 struct ice_pf *pf = vsi->back;
670 u32 g_val, b_val;
671
672 /* Flow Director filters are only allocated/assigned to the PF VSI or
673 * CHNL VSI which passes the traffic. The CTRL VSI is only used to
674 * add/delete filters so resources are not allocated to it
675 */
676 if (!test_bit(ICE_FLAG_FD_ENA, pf->flags))
677 return -EPERM;
678
679 if (!(vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF ||
680 vsi->type == ICE_VSI_CHNL))
681 return -EPERM;
682
683 /* FD filters from guaranteed pool per VSI */
684 g_val = pf->hw.func_caps.fd_fltr_guar;
685 if (!g_val)
686 return -EPERM;
687
688 /* FD filters from best effort pool */
689 b_val = pf->hw.func_caps.fd_fltr_best_effort;
690 if (!b_val)
691 return -EPERM;
692
693 /* PF main VSI gets only 64 FD resources from guaranteed pool
694 * when ADQ is configured.
695 */
696 #define ICE_PF_VSI_GFLTR 64
697
698 /* determine FD filter resources per VSI from shared(best effort) and
699 * dedicated pool
700 */
701 if (vsi->type == ICE_VSI_PF) {
702 vsi->num_gfltr = g_val;
703 /* if MQPRIO is configured, main VSI doesn't get all FD
704 * resources from guaranteed pool. PF VSI gets 64 FD resources
705 */
706 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
707 if (g_val < ICE_PF_VSI_GFLTR)
708 return -EPERM;
709 /* allow bare minimum entries for PF VSI */
710 vsi->num_gfltr = ICE_PF_VSI_GFLTR;
711 }
712
713 /* each VSI gets same "best_effort" quota */
714 vsi->num_bfltr = b_val;
715 } else if (vsi->type == ICE_VSI_VF) {
716 vsi->num_gfltr = 0;
717
718 /* each VSI gets same "best_effort" quota */
719 vsi->num_bfltr = b_val;
720 } else {
721 struct ice_vsi *main_vsi;
722 int numtc;
723
724 main_vsi = ice_get_main_vsi(pf);
725 if (!main_vsi)
726 return -EPERM;
727
728 if (!main_vsi->all_numtc)
729 return -EINVAL;
730
731 /* figure out ADQ numtc */
732 numtc = main_vsi->all_numtc - ICE_CHNL_START_TC;
733
734 /* only one TC but still asking resources for channels,
735 * invalid config
736 */
737 if (numtc < ICE_CHNL_START_TC)
738 return -EPERM;
739
740 g_val -= ICE_PF_VSI_GFLTR;
741 /* channel VSIs gets equal share from guaranteed pool */
742 vsi->num_gfltr = g_val / numtc;
743
744 /* each VSI gets same "best_effort" quota */
745 vsi->num_bfltr = b_val;
746 }
747
748 return 0;
749 }
750
751 /**
752 * ice_vsi_get_qs - Assign queues from PF to VSI
753 * @vsi: the VSI to assign queues to
754 *
755 * Returns 0 on success and a negative value on error
756 */
ice_vsi_get_qs(struct ice_vsi * vsi)757 static int ice_vsi_get_qs(struct ice_vsi *vsi)
758 {
759 struct ice_pf *pf = vsi->back;
760 struct ice_qs_cfg tx_qs_cfg = {
761 .qs_mutex = &pf->avail_q_mutex,
762 .pf_map = pf->avail_txqs,
763 .pf_map_size = pf->max_pf_txqs,
764 .q_count = vsi->alloc_txq,
765 .scatter_count = ICE_MAX_SCATTER_TXQS,
766 .vsi_map = vsi->txq_map,
767 .vsi_map_offset = 0,
768 .mapping_mode = ICE_VSI_MAP_CONTIG
769 };
770 struct ice_qs_cfg rx_qs_cfg = {
771 .qs_mutex = &pf->avail_q_mutex,
772 .pf_map = pf->avail_rxqs,
773 .pf_map_size = pf->max_pf_rxqs,
774 .q_count = vsi->alloc_rxq,
775 .scatter_count = ICE_MAX_SCATTER_RXQS,
776 .vsi_map = vsi->rxq_map,
777 .vsi_map_offset = 0,
778 .mapping_mode = ICE_VSI_MAP_CONTIG
779 };
780 int ret;
781
782 if (vsi->type == ICE_VSI_CHNL)
783 return 0;
784
785 ret = __ice_vsi_get_qs(&tx_qs_cfg);
786 if (ret)
787 return ret;
788 vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode;
789
790 ret = __ice_vsi_get_qs(&rx_qs_cfg);
791 if (ret)
792 return ret;
793 vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode;
794
795 return 0;
796 }
797
798 /**
799 * ice_vsi_put_qs - Release queues from VSI to PF
800 * @vsi: the VSI that is going to release queues
801 */
ice_vsi_put_qs(struct ice_vsi * vsi)802 static void ice_vsi_put_qs(struct ice_vsi *vsi)
803 {
804 struct ice_pf *pf = vsi->back;
805 int i;
806
807 mutex_lock(&pf->avail_q_mutex);
808
809 ice_for_each_alloc_txq(vsi, i) {
810 clear_bit(vsi->txq_map[i], pf->avail_txqs);
811 vsi->txq_map[i] = ICE_INVAL_Q_INDEX;
812 }
813
814 ice_for_each_alloc_rxq(vsi, i) {
815 clear_bit(vsi->rxq_map[i], pf->avail_rxqs);
816 vsi->rxq_map[i] = ICE_INVAL_Q_INDEX;
817 }
818
819 mutex_unlock(&pf->avail_q_mutex);
820 }
821
822 /**
823 * ice_is_safe_mode
824 * @pf: pointer to the PF struct
825 *
826 * returns true if driver is in safe mode, false otherwise
827 */
ice_is_safe_mode(struct ice_pf * pf)828 bool ice_is_safe_mode(struct ice_pf *pf)
829 {
830 return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
831 }
832
833 /**
834 * ice_is_rdma_ena
835 * @pf: pointer to the PF struct
836 *
837 * returns true if RDMA is currently supported, false otherwise
838 */
ice_is_rdma_ena(struct ice_pf * pf)839 bool ice_is_rdma_ena(struct ice_pf *pf)
840 {
841 union devlink_param_value value;
842 int err;
843
844 err = devl_param_driverinit_value_get(priv_to_devlink(pf),
845 DEVLINK_PARAM_GENERIC_ID_ENABLE_RDMA,
846 &value);
847 return err ? test_bit(ICE_FLAG_RDMA_ENA, pf->flags) : value.vbool;
848 }
849
850 /**
851 * ice_vsi_clean_rss_flow_fld - Delete RSS configuration
852 * @vsi: the VSI being cleaned up
853 *
854 * This function deletes RSS input set for all flows that were configured
855 * for this VSI
856 */
ice_vsi_clean_rss_flow_fld(struct ice_vsi * vsi)857 static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi)
858 {
859 struct ice_pf *pf = vsi->back;
860 int status;
861
862 if (ice_is_safe_mode(pf))
863 return;
864
865 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
866 if (status)
867 dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %d\n",
868 vsi->vsi_num, status);
869 }
870
871 /**
872 * ice_rss_clean - Delete RSS related VSI structures and configuration
873 * @vsi: the VSI being removed
874 */
ice_rss_clean(struct ice_vsi * vsi)875 static void ice_rss_clean(struct ice_vsi *vsi)
876 {
877 struct ice_pf *pf = vsi->back;
878 struct device *dev;
879
880 dev = ice_pf_to_dev(pf);
881
882 devm_kfree(dev, vsi->rss_hkey_user);
883 devm_kfree(dev, vsi->rss_lut_user);
884
885 ice_vsi_clean_rss_flow_fld(vsi);
886 /* remove RSS replay list */
887 if (!ice_is_safe_mode(pf))
888 ice_rem_vsi_rss_list(&pf->hw, vsi->idx);
889 }
890
891 /**
892 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type
893 * @vsi: the VSI being configured
894 */
ice_vsi_set_rss_params(struct ice_vsi * vsi)895 static void ice_vsi_set_rss_params(struct ice_vsi *vsi)
896 {
897 struct ice_hw_common_caps *cap;
898 struct ice_pf *pf = vsi->back;
899 u16 max_rss_size;
900
901 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
902 vsi->rss_size = 1;
903 return;
904 }
905
906 cap = &pf->hw.func_caps.common_cap;
907 max_rss_size = BIT(cap->rss_table_entry_width);
908 switch (vsi->type) {
909 case ICE_VSI_CHNL:
910 case ICE_VSI_PF:
911 /* PF VSI will inherit RSS instance of PF */
912 vsi->rss_table_size = (u16)cap->rss_table_size;
913 if (vsi->type == ICE_VSI_CHNL)
914 vsi->rss_size = min_t(u16, vsi->num_rxq, max_rss_size);
915 else
916 vsi->rss_size = min_t(u16,
917 netif_get_num_default_rss_queues(),
918 max_rss_size);
919 vsi->rss_lut_type = ICE_LUT_PF;
920 break;
921 case ICE_VSI_SF:
922 vsi->rss_table_size = ICE_LUT_VSI_SIZE;
923 vsi->rss_size = min_t(u16, netif_get_num_default_rss_queues(),
924 max_rss_size);
925 vsi->rss_lut_type = ICE_LUT_VSI;
926 break;
927 case ICE_VSI_VF:
928 /* VF VSI will get a small RSS table.
929 * For VSI_LUT, LUT size should be set to 64 bytes.
930 */
931 vsi->rss_table_size = ICE_LUT_VSI_SIZE;
932 vsi->rss_size = ICE_MAX_RSS_QS_PER_VF;
933 vsi->rss_lut_type = ICE_LUT_VSI;
934 break;
935 case ICE_VSI_LB:
936 break;
937 default:
938 dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n",
939 ice_vsi_type_str(vsi->type));
940 break;
941 }
942 }
943
944 /**
945 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI
946 * @hw: HW structure used to determine the VLAN mode of the device
947 * @ctxt: the VSI context being set
948 *
949 * This initializes a default VSI context for all sections except the Queues.
950 */
ice_set_dflt_vsi_ctx(struct ice_hw * hw,struct ice_vsi_ctx * ctxt)951 static void ice_set_dflt_vsi_ctx(struct ice_hw *hw, struct ice_vsi_ctx *ctxt)
952 {
953 u32 table = 0;
954
955 memset(&ctxt->info, 0, sizeof(ctxt->info));
956 /* VSI's should be allocated from shared pool */
957 ctxt->alloc_from_pool = true;
958 /* Src pruning enabled by default */
959 ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE;
960 /* Traffic from VSI can be sent to LAN */
961 ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA;
962 /* allow all untagged/tagged packets by default on Tx */
963 ctxt->info.inner_vlan_flags = FIELD_PREP(ICE_AQ_VSI_INNER_VLAN_TX_MODE_M,
964 ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL);
965 /* SVM - by default bits 3 and 4 in inner_vlan_flags are 0's which
966 * results in legacy behavior (show VLAN, DEI, and UP) in descriptor.
967 *
968 * DVM - leave inner VLAN in packet by default
969 */
970 if (ice_is_dvm_ena(hw)) {
971 ctxt->info.inner_vlan_flags |=
972 FIELD_PREP(ICE_AQ_VSI_INNER_VLAN_EMODE_M,
973 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING);
974 ctxt->info.outer_vlan_flags =
975 FIELD_PREP(ICE_AQ_VSI_OUTER_VLAN_TX_MODE_M,
976 ICE_AQ_VSI_OUTER_VLAN_TX_MODE_ALL);
977 ctxt->info.outer_vlan_flags |=
978 FIELD_PREP(ICE_AQ_VSI_OUTER_TAG_TYPE_M,
979 ICE_AQ_VSI_OUTER_TAG_VLAN_8100);
980 ctxt->info.outer_vlan_flags |=
981 FIELD_PREP(ICE_AQ_VSI_OUTER_VLAN_EMODE_M,
982 ICE_AQ_VSI_OUTER_VLAN_EMODE_NOTHING);
983 }
984 /* Have 1:1 UP mapping for both ingress/egress tables */
985 table |= ICE_UP_TABLE_TRANSLATE(0, 0);
986 table |= ICE_UP_TABLE_TRANSLATE(1, 1);
987 table |= ICE_UP_TABLE_TRANSLATE(2, 2);
988 table |= ICE_UP_TABLE_TRANSLATE(3, 3);
989 table |= ICE_UP_TABLE_TRANSLATE(4, 4);
990 table |= ICE_UP_TABLE_TRANSLATE(5, 5);
991 table |= ICE_UP_TABLE_TRANSLATE(6, 6);
992 table |= ICE_UP_TABLE_TRANSLATE(7, 7);
993 ctxt->info.ingress_table = cpu_to_le32(table);
994 ctxt->info.egress_table = cpu_to_le32(table);
995 /* Have 1:1 UP mapping for outer to inner UP table */
996 ctxt->info.outer_up_table = cpu_to_le32(table);
997 /* No Outer tag support outer_tag_flags remains to zero */
998 }
999
1000 /**
1001 * ice_vsi_setup_q_map - Setup a VSI queue map
1002 * @vsi: the VSI being configured
1003 * @ctxt: VSI context structure
1004 */
ice_vsi_setup_q_map(struct ice_vsi * vsi,struct ice_vsi_ctx * ctxt)1005 static int ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
1006 {
1007 u16 offset = 0, qmap = 0, tx_count = 0, rx_count = 0, pow = 0;
1008 u16 num_txq_per_tc, num_rxq_per_tc;
1009 u16 qcount_tx = vsi->alloc_txq;
1010 u16 qcount_rx = vsi->alloc_rxq;
1011 u8 netdev_tc = 0;
1012 int i;
1013
1014 if (!vsi->tc_cfg.numtc) {
1015 /* at least TC0 should be enabled by default */
1016 vsi->tc_cfg.numtc = 1;
1017 vsi->tc_cfg.ena_tc = 1;
1018 }
1019
1020 num_rxq_per_tc = min_t(u16, qcount_rx / vsi->tc_cfg.numtc, ICE_MAX_RXQS_PER_TC);
1021 if (!num_rxq_per_tc)
1022 num_rxq_per_tc = 1;
1023 num_txq_per_tc = qcount_tx / vsi->tc_cfg.numtc;
1024 if (!num_txq_per_tc)
1025 num_txq_per_tc = 1;
1026
1027 /* find the (rounded up) power-of-2 of qcount */
1028 pow = (u16)order_base_2(num_rxq_per_tc);
1029
1030 /* TC mapping is a function of the number of Rx queues assigned to the
1031 * VSI for each traffic class and the offset of these queues.
1032 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of
1033 * queues allocated to TC0. No:of queues is a power-of-2.
1034 *
1035 * If TC is not enabled, the queue offset is set to 0, and allocate one
1036 * queue, this way, traffic for the given TC will be sent to the default
1037 * queue.
1038 *
1039 * Setup number and offset of Rx queues for all TCs for the VSI
1040 */
1041 ice_for_each_traffic_class(i) {
1042 if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
1043 /* TC is not enabled */
1044 vsi->tc_cfg.tc_info[i].qoffset = 0;
1045 vsi->tc_cfg.tc_info[i].qcount_rx = 1;
1046 vsi->tc_cfg.tc_info[i].qcount_tx = 1;
1047 vsi->tc_cfg.tc_info[i].netdev_tc = 0;
1048 ctxt->info.tc_mapping[i] = 0;
1049 continue;
1050 }
1051
1052 /* TC is enabled */
1053 vsi->tc_cfg.tc_info[i].qoffset = offset;
1054 vsi->tc_cfg.tc_info[i].qcount_rx = num_rxq_per_tc;
1055 vsi->tc_cfg.tc_info[i].qcount_tx = num_txq_per_tc;
1056 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
1057
1058 qmap = FIELD_PREP(ICE_AQ_VSI_TC_Q_OFFSET_M, offset);
1059 qmap |= FIELD_PREP(ICE_AQ_VSI_TC_Q_NUM_M, pow);
1060 offset += num_rxq_per_tc;
1061 tx_count += num_txq_per_tc;
1062 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap);
1063 }
1064
1065 /* if offset is non-zero, means it is calculated correctly based on
1066 * enabled TCs for a given VSI otherwise qcount_rx will always
1067 * be correct and non-zero because it is based off - VSI's
1068 * allocated Rx queues which is at least 1 (hence qcount_tx will be
1069 * at least 1)
1070 */
1071 if (offset)
1072 rx_count = offset;
1073 else
1074 rx_count = num_rxq_per_tc;
1075
1076 if (rx_count > vsi->alloc_rxq) {
1077 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n",
1078 rx_count, vsi->alloc_rxq);
1079 return -EINVAL;
1080 }
1081
1082 if (tx_count > vsi->alloc_txq) {
1083 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n",
1084 tx_count, vsi->alloc_txq);
1085 return -EINVAL;
1086 }
1087
1088 vsi->num_txq = tx_count;
1089 vsi->num_rxq = rx_count;
1090
1091 if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) {
1092 dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n");
1093 /* since there is a chance that num_rxq could have been changed
1094 * in the above for loop, make num_txq equal to num_rxq.
1095 */
1096 vsi->num_txq = vsi->num_rxq;
1097 }
1098
1099 /* Rx queue mapping */
1100 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
1101 /* q_mapping buffer holds the info for the first queue allocated for
1102 * this VSI in the PF space and also the number of queues associated
1103 * with this VSI.
1104 */
1105 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
1106 ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq);
1107
1108 return 0;
1109 }
1110
1111 /**
1112 * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI
1113 * @ctxt: the VSI context being set
1114 * @vsi: the VSI being configured
1115 */
ice_set_fd_vsi_ctx(struct ice_vsi_ctx * ctxt,struct ice_vsi * vsi)1116 static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
1117 {
1118 u8 dflt_q_group, dflt_q_prio;
1119 u16 dflt_q, report_q, val;
1120
1121 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL &&
1122 vsi->type != ICE_VSI_VF && vsi->type != ICE_VSI_CHNL)
1123 return;
1124
1125 val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID;
1126 ctxt->info.valid_sections |= cpu_to_le16(val);
1127 dflt_q = 0;
1128 dflt_q_group = 0;
1129 report_q = 0;
1130 dflt_q_prio = 0;
1131
1132 /* enable flow director filtering/programming */
1133 val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE;
1134 ctxt->info.fd_options = cpu_to_le16(val);
1135 /* max of allocated flow director filters */
1136 ctxt->info.max_fd_fltr_dedicated =
1137 cpu_to_le16(vsi->num_gfltr);
1138 /* max of shared flow director filters any VSI may program */
1139 ctxt->info.max_fd_fltr_shared =
1140 cpu_to_le16(vsi->num_bfltr);
1141 /* default queue index within the VSI of the default FD */
1142 val = FIELD_PREP(ICE_AQ_VSI_FD_DEF_Q_M, dflt_q);
1143 /* target queue or queue group to the FD filter */
1144 val |= FIELD_PREP(ICE_AQ_VSI_FD_DEF_GRP_M, dflt_q_group);
1145 ctxt->info.fd_def_q = cpu_to_le16(val);
1146 /* queue index on which FD filter completion is reported */
1147 val = FIELD_PREP(ICE_AQ_VSI_FD_REPORT_Q_M, report_q);
1148 /* priority of the default qindex action */
1149 val |= FIELD_PREP(ICE_AQ_VSI_FD_DEF_PRIORITY_M, dflt_q_prio);
1150 ctxt->info.fd_report_opt = cpu_to_le16(val);
1151 }
1152
1153 /**
1154 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI
1155 * @ctxt: the VSI context being set
1156 * @vsi: the VSI being configured
1157 */
ice_set_rss_vsi_ctx(struct ice_vsi_ctx * ctxt,struct ice_vsi * vsi)1158 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
1159 {
1160 u8 lut_type, hash_type;
1161 struct device *dev;
1162 struct ice_pf *pf;
1163
1164 pf = vsi->back;
1165 dev = ice_pf_to_dev(pf);
1166
1167 switch (vsi->type) {
1168 case ICE_VSI_CHNL:
1169 case ICE_VSI_PF:
1170 /* PF VSI will inherit RSS instance of PF */
1171 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF;
1172 break;
1173 case ICE_VSI_VF:
1174 case ICE_VSI_SF:
1175 /* VF VSI will gets a small RSS table which is a VSI LUT type */
1176 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
1177 break;
1178 default:
1179 dev_dbg(dev, "Unsupported VSI type %s\n",
1180 ice_vsi_type_str(vsi->type));
1181 return;
1182 }
1183
1184 hash_type = ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ;
1185 vsi->rss_hfunc = hash_type;
1186
1187 ctxt->info.q_opt_rss =
1188 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_LUT_M, lut_type) |
1189 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hash_type);
1190 }
1191
1192 static void
ice_chnl_vsi_setup_q_map(struct ice_vsi * vsi,struct ice_vsi_ctx * ctxt)1193 ice_chnl_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
1194 {
1195 u16 qcount, qmap;
1196 u8 offset = 0;
1197 int pow;
1198
1199 qcount = vsi->num_rxq;
1200
1201 pow = order_base_2(qcount);
1202 qmap = FIELD_PREP(ICE_AQ_VSI_TC_Q_OFFSET_M, offset);
1203 qmap |= FIELD_PREP(ICE_AQ_VSI_TC_Q_NUM_M, pow);
1204
1205 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
1206 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
1207 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->next_base_q);
1208 ctxt->info.q_mapping[1] = cpu_to_le16(qcount);
1209 }
1210
1211 /**
1212 * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not
1213 * @vsi: VSI to check whether or not VLAN pruning is enabled.
1214 *
1215 * returns true if Rx VLAN pruning is enabled and false otherwise.
1216 */
ice_vsi_is_vlan_pruning_ena(struct ice_vsi * vsi)1217 static bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi)
1218 {
1219 return vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1220 }
1221
1222 /**
1223 * ice_vsi_init - Create and initialize a VSI
1224 * @vsi: the VSI being configured
1225 * @vsi_flags: VSI configuration flags
1226 *
1227 * Set ICE_FLAG_VSI_INIT to initialize a new VSI context, clear it to
1228 * reconfigure an existing context.
1229 *
1230 * This initializes a VSI context depending on the VSI type to be added and
1231 * passes it down to the add_vsi aq command to create a new VSI.
1232 */
ice_vsi_init(struct ice_vsi * vsi,u32 vsi_flags)1233 static int ice_vsi_init(struct ice_vsi *vsi, u32 vsi_flags)
1234 {
1235 struct ice_pf *pf = vsi->back;
1236 struct ice_hw *hw = &pf->hw;
1237 struct ice_vsi_ctx *ctxt;
1238 struct device *dev;
1239 int ret = 0;
1240
1241 dev = ice_pf_to_dev(pf);
1242 ctxt = kzalloc_obj(*ctxt, GFP_KERNEL);
1243 if (!ctxt)
1244 return -ENOMEM;
1245
1246 switch (vsi->type) {
1247 case ICE_VSI_CTRL:
1248 case ICE_VSI_LB:
1249 case ICE_VSI_PF:
1250 ctxt->flags = ICE_AQ_VSI_TYPE_PF;
1251 break;
1252 case ICE_VSI_SF:
1253 case ICE_VSI_CHNL:
1254 ctxt->flags = ICE_AQ_VSI_TYPE_VMDQ2;
1255 break;
1256 case ICE_VSI_VF:
1257 ctxt->flags = ICE_AQ_VSI_TYPE_VF;
1258 /* VF number here is the absolute VF number (0-255) */
1259 ctxt->vf_num = vsi->vf->vf_id + hw->func_caps.vf_base_id;
1260 break;
1261 default:
1262 ret = -ENODEV;
1263 goto out;
1264 }
1265
1266 /* Handle VLAN pruning for channel VSI if main VSI has VLAN
1267 * prune enabled
1268 */
1269 if (vsi->type == ICE_VSI_CHNL) {
1270 struct ice_vsi *main_vsi;
1271
1272 main_vsi = ice_get_main_vsi(pf);
1273 if (main_vsi && ice_vsi_is_vlan_pruning_ena(main_vsi))
1274 ctxt->info.sw_flags2 |=
1275 ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1276 else
1277 ctxt->info.sw_flags2 &=
1278 ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1279 }
1280
1281 ice_set_dflt_vsi_ctx(hw, ctxt);
1282 if (test_bit(ICE_FLAG_FD_ENA, pf->flags))
1283 ice_set_fd_vsi_ctx(ctxt, vsi);
1284 /* if the switch is in VEB mode, allow VSI loopback */
1285 if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB)
1286 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
1287
1288 /* Set LUT type and HASH type if RSS is enabled */
1289 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) &&
1290 vsi->type != ICE_VSI_CTRL) {
1291 ice_set_rss_vsi_ctx(ctxt, vsi);
1292 /* if updating VSI context, make sure to set valid_section:
1293 * to indicate which section of VSI context being updated
1294 */
1295 if (!(vsi_flags & ICE_VSI_FLAG_INIT))
1296 ctxt->info.valid_sections |=
1297 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
1298 }
1299
1300 ctxt->info.sw_id = vsi->port_info->sw_id;
1301 if (vsi->type == ICE_VSI_CHNL) {
1302 ice_chnl_vsi_setup_q_map(vsi, ctxt);
1303 } else {
1304 ret = ice_vsi_setup_q_map(vsi, ctxt);
1305 if (ret)
1306 goto out;
1307
1308 if (!(vsi_flags & ICE_VSI_FLAG_INIT))
1309 /* means VSI being updated */
1310 /* must to indicate which section of VSI context are
1311 * being modified
1312 */
1313 ctxt->info.valid_sections |=
1314 cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
1315 }
1316
1317 /* Allow control frames out of main VSI */
1318 if (vsi->type == ICE_VSI_PF) {
1319 ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
1320 ctxt->info.valid_sections |=
1321 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
1322 }
1323
1324 if (vsi_flags & ICE_VSI_FLAG_INIT) {
1325 ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL);
1326 if (ret) {
1327 dev_err(dev, "Add VSI failed, err %d\n", ret);
1328 ret = -EIO;
1329 goto out;
1330 }
1331 } else {
1332 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
1333 if (ret) {
1334 dev_err(dev, "Update VSI failed, err %d\n", ret);
1335 ret = -EIO;
1336 goto out;
1337 }
1338 }
1339
1340 /* keep context for update VSI operations */
1341 vsi->info = ctxt->info;
1342
1343 /* record VSI number returned */
1344 vsi->vsi_num = ctxt->vsi_num;
1345
1346 out:
1347 kfree(ctxt);
1348 return ret;
1349 }
1350
1351 /**
1352 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI
1353 * @vsi: the VSI having rings deallocated
1354 */
ice_vsi_clear_rings(struct ice_vsi * vsi)1355 static void ice_vsi_clear_rings(struct ice_vsi *vsi)
1356 {
1357 int i;
1358
1359 /* Avoid stale references by clearing map from vector to ring */
1360 if (vsi->q_vectors) {
1361 ice_for_each_q_vector(vsi, i) {
1362 struct ice_q_vector *q_vector = vsi->q_vectors[i];
1363
1364 if (q_vector) {
1365 q_vector->tx.tx_ring = NULL;
1366 q_vector->rx.rx_ring = NULL;
1367 }
1368 }
1369 }
1370
1371 if (vsi->tx_rings) {
1372 ice_for_each_alloc_txq(vsi, i) {
1373 if (vsi->tx_rings[i]) {
1374 kfree_rcu(vsi->tx_rings[i], rcu);
1375 WRITE_ONCE(vsi->tx_rings[i], NULL);
1376 }
1377 }
1378 }
1379 if (vsi->rx_rings) {
1380 ice_for_each_alloc_rxq(vsi, i) {
1381 if (vsi->rx_rings[i]) {
1382 kfree_rcu(vsi->rx_rings[i], rcu);
1383 WRITE_ONCE(vsi->rx_rings[i], NULL);
1384 }
1385 }
1386 }
1387 }
1388
1389 /**
1390 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI
1391 * @vsi: VSI which is having rings allocated
1392 */
ice_vsi_alloc_rings(struct ice_vsi * vsi)1393 static int ice_vsi_alloc_rings(struct ice_vsi *vsi)
1394 {
1395 bool dvm_ena = ice_is_dvm_ena(&vsi->back->hw);
1396 struct ice_pf *pf = vsi->back;
1397 struct device *dev;
1398 u16 i;
1399
1400 dev = ice_pf_to_dev(pf);
1401 /* Allocate Tx rings */
1402 ice_for_each_alloc_txq(vsi, i) {
1403 struct ice_tx_ring *ring;
1404
1405 /* allocate with kzalloc(), free with kfree_rcu() */
1406 ring = kzalloc_obj(*ring, GFP_KERNEL);
1407
1408 if (!ring)
1409 goto err_out;
1410
1411 ring->q_index = i;
1412 ring->reg_idx = vsi->txq_map[i];
1413 ring->vsi = vsi;
1414 ring->tx_tstamps = &pf->ptp.port.tx;
1415 ring->dev = dev;
1416 ring->count = vsi->num_tx_desc;
1417 ring->txq_teid = ICE_INVAL_TEID;
1418 if (dvm_ena)
1419 ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG2;
1420 else
1421 ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG1;
1422 WRITE_ONCE(vsi->tx_rings[i], ring);
1423 }
1424
1425 /* Allocate Rx rings */
1426 ice_for_each_alloc_rxq(vsi, i) {
1427 struct ice_rx_ring *ring;
1428
1429 /* allocate with kzalloc(), free with kfree_rcu() */
1430 ring = kzalloc_obj(*ring, GFP_KERNEL);
1431 if (!ring)
1432 goto err_out;
1433
1434 ring->q_index = i;
1435 ring->reg_idx = vsi->rxq_map[i];
1436 ring->vsi = vsi;
1437 ring->netdev = vsi->netdev;
1438 ring->count = vsi->num_rx_desc;
1439 ring->cached_phctime = pf->ptp.cached_phc_time;
1440
1441 if (ice_is_feature_supported(pf, ICE_F_GCS))
1442 ring->flags |= ICE_RX_FLAGS_RING_GCS;
1443
1444 WRITE_ONCE(vsi->rx_rings[i], ring);
1445 }
1446
1447 return 0;
1448
1449 err_out:
1450 ice_vsi_clear_rings(vsi);
1451 return -ENOMEM;
1452 }
1453
1454 /**
1455 * ice_vsi_manage_rss_lut - disable/enable RSS
1456 * @vsi: the VSI being changed
1457 * @ena: boolean value indicating if this is an enable or disable request
1458 *
1459 * In the event of disable request for RSS, this function will zero out RSS
1460 * LUT, while in the event of enable request for RSS, it will reconfigure RSS
1461 * LUT.
1462 */
ice_vsi_manage_rss_lut(struct ice_vsi * vsi,bool ena)1463 void ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena)
1464 {
1465 u8 *lut;
1466
1467 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1468 if (!lut)
1469 return;
1470
1471 if (ena) {
1472 if (vsi->rss_lut_user)
1473 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1474 else
1475 ice_fill_rss_lut(lut, vsi->rss_table_size,
1476 vsi->rss_size);
1477 }
1478
1479 ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
1480 kfree(lut);
1481 }
1482
1483 /**
1484 * ice_vsi_cfg_crc_strip - Configure CRC stripping for a VSI
1485 * @vsi: VSI to be configured
1486 * @disable: set to true to have FCS / CRC in the frame data
1487 */
ice_vsi_cfg_crc_strip(struct ice_vsi * vsi,bool disable)1488 void ice_vsi_cfg_crc_strip(struct ice_vsi *vsi, bool disable)
1489 {
1490 int i;
1491
1492 ice_for_each_rxq(vsi, i)
1493 if (disable)
1494 vsi->rx_rings[i]->flags |= ICE_RX_FLAGS_CRC_STRIP_DIS;
1495 else
1496 vsi->rx_rings[i]->flags &= ~ICE_RX_FLAGS_CRC_STRIP_DIS;
1497 }
1498
1499 /**
1500 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI
1501 * @vsi: VSI to be configured
1502 */
ice_vsi_cfg_rss_lut_key(struct ice_vsi * vsi)1503 int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi)
1504 {
1505 struct ice_pf *pf = vsi->back;
1506 struct device *dev;
1507 u8 *lut, *key;
1508 int err;
1509
1510 dev = ice_pf_to_dev(pf);
1511 if (vsi->type == ICE_VSI_PF && vsi->ch_rss_size &&
1512 (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))) {
1513 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->ch_rss_size);
1514 } else {
1515 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq);
1516
1517 /* If orig_rss_size is valid and it is less than determined
1518 * main VSI's rss_size, update main VSI's rss_size to be
1519 * orig_rss_size so that when tc-qdisc is deleted, main VSI
1520 * RSS table gets programmed to be correct (whatever it was
1521 * to begin with (prior to setup-tc for ADQ config)
1522 */
1523 if (vsi->orig_rss_size && vsi->rss_size < vsi->orig_rss_size &&
1524 vsi->orig_rss_size <= vsi->num_rxq) {
1525 vsi->rss_size = vsi->orig_rss_size;
1526 /* now orig_rss_size is used, reset it to zero */
1527 vsi->orig_rss_size = 0;
1528 }
1529 }
1530
1531 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1532 if (!lut)
1533 return -ENOMEM;
1534
1535 if (vsi->rss_lut_user)
1536 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1537 else
1538 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size);
1539
1540 err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
1541 if (err) {
1542 dev_err(dev, "set_rss_lut failed, error %d\n", err);
1543 goto ice_vsi_cfg_rss_exit;
1544 }
1545
1546 key = kzalloc(ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE, GFP_KERNEL);
1547 if (!key) {
1548 err = -ENOMEM;
1549 goto ice_vsi_cfg_rss_exit;
1550 }
1551
1552 if (vsi->rss_hkey_user)
1553 memcpy(key, vsi->rss_hkey_user, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1554 else
1555 netdev_rss_key_fill((void *)key, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1556
1557 err = ice_set_rss_key(vsi, key);
1558 if (err)
1559 dev_err(dev, "set_rss_key failed, error %d\n", err);
1560
1561 kfree(key);
1562 ice_vsi_cfg_rss_exit:
1563 kfree(lut);
1564 return err;
1565 }
1566
1567 /**
1568 * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows
1569 * @vsi: VSI to be configured
1570 *
1571 * This function will only be called during the VF VSI setup. Upon successful
1572 * completion of package download, this function will configure default RSS
1573 * input sets for VF VSI.
1574 */
ice_vsi_set_vf_rss_flow_fld(struct ice_vsi * vsi)1575 static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi)
1576 {
1577 struct ice_pf *pf = vsi->back;
1578 struct device *dev;
1579 int status;
1580
1581 dev = ice_pf_to_dev(pf);
1582 if (ice_is_safe_mode(pf)) {
1583 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1584 vsi->vsi_num);
1585 return;
1586 }
1587
1588 status = ice_add_avf_rss_cfg(&pf->hw, vsi, ICE_DEFAULT_RSS_HASHCFG);
1589 if (status)
1590 dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %d\n",
1591 vsi->vsi_num, status);
1592 }
1593
1594 static const struct ice_rss_hash_cfg default_rss_cfgs[] = {
1595 /* configure RSS for IPv4 with input set IP src/dst */
1596 {ICE_FLOW_SEG_HDR_IPV4, ICE_FLOW_HASH_IPV4, ICE_RSS_ANY_HEADERS, false},
1597 /* configure RSS for IPv6 with input set IPv6 src/dst */
1598 {ICE_FLOW_SEG_HDR_IPV6, ICE_FLOW_HASH_IPV6, ICE_RSS_ANY_HEADERS, false},
1599 /* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */
1600 {ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4,
1601 ICE_HASH_TCP_IPV4, ICE_RSS_ANY_HEADERS, false},
1602 /* configure RSS for udp4 with input set IP src/dst, UDP src/dst */
1603 {ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4,
1604 ICE_HASH_UDP_IPV4, ICE_RSS_ANY_HEADERS, false},
1605 /* configure RSS for sctp4 with input set IP src/dst - only support
1606 * RSS on SCTPv4 on outer headers (non-tunneled)
1607 */
1608 {ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4,
1609 ICE_HASH_SCTP_IPV4, ICE_RSS_OUTER_HEADERS, false},
1610 /* configure RSS for gtpc4 with input set IPv4 src/dst */
1611 {ICE_FLOW_SEG_HDR_GTPC | ICE_FLOW_SEG_HDR_IPV4,
1612 ICE_FLOW_HASH_IPV4, ICE_RSS_OUTER_HEADERS, false},
1613 /* configure RSS for gtpc4t with input set IPv4 src/dst */
1614 {ICE_FLOW_SEG_HDR_GTPC_TEID | ICE_FLOW_SEG_HDR_IPV4,
1615 ICE_FLOW_HASH_GTP_C_IPV4_TEID, ICE_RSS_OUTER_HEADERS, false},
1616 /* configure RSS for gtpu4 with input set IPv4 src/dst */
1617 {ICE_FLOW_SEG_HDR_GTPU_IP | ICE_FLOW_SEG_HDR_IPV4,
1618 ICE_FLOW_HASH_GTP_U_IPV4_TEID, ICE_RSS_OUTER_HEADERS, false},
1619 /* configure RSS for gtpu4e with input set IPv4 src/dst */
1620 {ICE_FLOW_SEG_HDR_GTPU_EH | ICE_FLOW_SEG_HDR_IPV4,
1621 ICE_FLOW_HASH_GTP_U_IPV4_EH, ICE_RSS_OUTER_HEADERS, false},
1622 /* configure RSS for gtpu4u with input set IPv4 src/dst */
1623 { ICE_FLOW_SEG_HDR_GTPU_UP | ICE_FLOW_SEG_HDR_IPV4,
1624 ICE_FLOW_HASH_GTP_U_IPV4_UP, ICE_RSS_OUTER_HEADERS, false},
1625 /* configure RSS for gtpu4d with input set IPv4 src/dst */
1626 {ICE_FLOW_SEG_HDR_GTPU_DWN | ICE_FLOW_SEG_HDR_IPV4,
1627 ICE_FLOW_HASH_GTP_U_IPV4_DWN, ICE_RSS_OUTER_HEADERS, false},
1628
1629 /* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */
1630 {ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6,
1631 ICE_HASH_TCP_IPV6, ICE_RSS_ANY_HEADERS, false},
1632 /* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */
1633 {ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6,
1634 ICE_HASH_UDP_IPV6, ICE_RSS_ANY_HEADERS, false},
1635 /* configure RSS for sctp6 with input set IPv6 src/dst - only support
1636 * RSS on SCTPv6 on outer headers (non-tunneled)
1637 */
1638 {ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6,
1639 ICE_HASH_SCTP_IPV6, ICE_RSS_OUTER_HEADERS, false},
1640 /* configure RSS for IPSEC ESP SPI with input set MAC_IPV4_SPI */
1641 {ICE_FLOW_SEG_HDR_ESP,
1642 ICE_FLOW_HASH_ESP_SPI, ICE_RSS_OUTER_HEADERS, false},
1643 /* configure RSS for gtpc6 with input set IPv6 src/dst */
1644 {ICE_FLOW_SEG_HDR_GTPC | ICE_FLOW_SEG_HDR_IPV6,
1645 ICE_FLOW_HASH_IPV6, ICE_RSS_OUTER_HEADERS, false},
1646 /* configure RSS for gtpc6t with input set IPv6 src/dst */
1647 {ICE_FLOW_SEG_HDR_GTPC_TEID | ICE_FLOW_SEG_HDR_IPV6,
1648 ICE_FLOW_HASH_GTP_C_IPV6_TEID, ICE_RSS_OUTER_HEADERS, false},
1649 /* configure RSS for gtpu6 with input set IPv6 src/dst */
1650 {ICE_FLOW_SEG_HDR_GTPU_IP | ICE_FLOW_SEG_HDR_IPV6,
1651 ICE_FLOW_HASH_GTP_U_IPV6_TEID, ICE_RSS_OUTER_HEADERS, false},
1652 /* configure RSS for gtpu6e with input set IPv6 src/dst */
1653 {ICE_FLOW_SEG_HDR_GTPU_EH | ICE_FLOW_SEG_HDR_IPV6,
1654 ICE_FLOW_HASH_GTP_U_IPV6_EH, ICE_RSS_OUTER_HEADERS, false},
1655 /* configure RSS for gtpu6u with input set IPv6 src/dst */
1656 { ICE_FLOW_SEG_HDR_GTPU_UP | ICE_FLOW_SEG_HDR_IPV6,
1657 ICE_FLOW_HASH_GTP_U_IPV6_UP, ICE_RSS_OUTER_HEADERS, false},
1658 /* configure RSS for gtpu6d with input set IPv6 src/dst */
1659 {ICE_FLOW_SEG_HDR_GTPU_DWN | ICE_FLOW_SEG_HDR_IPV6,
1660 ICE_FLOW_HASH_GTP_U_IPV6_DWN, ICE_RSS_OUTER_HEADERS, false},
1661 };
1662
1663 /**
1664 * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows
1665 * @vsi: VSI to be configured
1666 *
1667 * This function will only be called after successful download package call
1668 * during initialization of PF. Since the downloaded package will erase the
1669 * RSS section, this function will configure RSS input sets for different
1670 * flow types. The last profile added has the highest priority, therefore 2
1671 * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles
1672 * (i.e. IPv4 src/dst TCP src/dst port).
1673 */
ice_vsi_set_rss_flow_fld(struct ice_vsi * vsi)1674 static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi)
1675 {
1676 u16 vsi_num = vsi->vsi_num;
1677 struct ice_pf *pf = vsi->back;
1678 struct ice_hw *hw = &pf->hw;
1679 struct device *dev;
1680 int status;
1681 u32 i;
1682
1683 dev = ice_pf_to_dev(pf);
1684 if (ice_is_safe_mode(pf)) {
1685 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1686 vsi_num);
1687 return;
1688 }
1689 for (i = 0; i < ARRAY_SIZE(default_rss_cfgs); i++) {
1690 const struct ice_rss_hash_cfg *cfg = &default_rss_cfgs[i];
1691
1692 status = ice_add_rss_cfg(hw, vsi, cfg);
1693 if (status)
1694 dev_dbg(dev, "ice_add_rss_cfg failed, addl_hdrs = %x, hash_flds = %llx, hdr_type = %d, symm = %d\n",
1695 cfg->addl_hdrs, cfg->hash_flds,
1696 cfg->hdr_type, cfg->symm);
1697 }
1698 }
1699
1700 /**
1701 * ice_pf_state_is_nominal - checks the PF for nominal state
1702 * @pf: pointer to PF to check
1703 *
1704 * Check the PF's state for a collection of bits that would indicate
1705 * the PF is in a state that would inhibit normal operation for
1706 * driver functionality.
1707 *
1708 * Returns true if PF is in a nominal state, false otherwise
1709 */
ice_pf_state_is_nominal(struct ice_pf * pf)1710 bool ice_pf_state_is_nominal(struct ice_pf *pf)
1711 {
1712 DECLARE_BITMAP(check_bits, ICE_STATE_NBITS) = { 0 };
1713
1714 if (!pf)
1715 return false;
1716
1717 bitmap_set(check_bits, 0, ICE_STATE_NOMINAL_CHECK_BITS);
1718 if (bitmap_intersects(pf->state, check_bits, ICE_STATE_NBITS))
1719 return false;
1720
1721 return true;
1722 }
1723
1724 #define ICE_FW_MODE_REC_M BIT(1)
ice_is_recovery_mode(struct ice_hw * hw)1725 bool ice_is_recovery_mode(struct ice_hw *hw)
1726 {
1727 return rd32(hw, GL_MNG_FWSM) & ICE_FW_MODE_REC_M;
1728 }
1729
1730 /**
1731 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters
1732 * @vsi: the VSI to be updated
1733 */
ice_update_eth_stats(struct ice_vsi * vsi)1734 void ice_update_eth_stats(struct ice_vsi *vsi)
1735 {
1736 struct ice_eth_stats *prev_es, *cur_es;
1737 struct ice_hw *hw = &vsi->back->hw;
1738 struct ice_pf *pf = vsi->back;
1739 u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */
1740
1741 prev_es = &vsi->eth_stats_prev;
1742 cur_es = &vsi->eth_stats;
1743
1744 if (ice_is_reset_in_progress(pf->state))
1745 vsi->stat_offsets_loaded = false;
1746
1747 ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded,
1748 &prev_es->rx_bytes, &cur_es->rx_bytes);
1749
1750 ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded,
1751 &prev_es->rx_unicast, &cur_es->rx_unicast);
1752
1753 ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded,
1754 &prev_es->rx_multicast, &cur_es->rx_multicast);
1755
1756 ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded,
1757 &prev_es->rx_broadcast, &cur_es->rx_broadcast);
1758
1759 ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded,
1760 &prev_es->rx_discards, &cur_es->rx_discards);
1761
1762 ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded,
1763 &prev_es->tx_bytes, &cur_es->tx_bytes);
1764
1765 ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded,
1766 &prev_es->tx_unicast, &cur_es->tx_unicast);
1767
1768 ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded,
1769 &prev_es->tx_multicast, &cur_es->tx_multicast);
1770
1771 ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded,
1772 &prev_es->tx_broadcast, &cur_es->tx_broadcast);
1773
1774 ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded,
1775 &prev_es->tx_errors, &cur_es->tx_errors);
1776
1777 vsi->stat_offsets_loaded = true;
1778 }
1779
1780 /**
1781 * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register
1782 * @hw: HW pointer
1783 * @pf_q: index of the Rx queue in the PF's queue space
1784 * @rxdid: flexible descriptor RXDID
1785 * @prio: priority for the RXDID for this queue
1786 * @ena_ts: true to enable timestamp and false to disable timestamp
1787 */
ice_write_qrxflxp_cntxt(struct ice_hw * hw,u16 pf_q,u32 rxdid,u32 prio,bool ena_ts)1788 void ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio,
1789 bool ena_ts)
1790 {
1791 int regval = rd32(hw, QRXFLXP_CNTXT(pf_q));
1792
1793 /* clear any previous values */
1794 regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M |
1795 QRXFLXP_CNTXT_RXDID_PRIO_M |
1796 QRXFLXP_CNTXT_TS_M);
1797
1798 regval |= FIELD_PREP(QRXFLXP_CNTXT_RXDID_IDX_M, rxdid);
1799 regval |= FIELD_PREP(QRXFLXP_CNTXT_RXDID_PRIO_M, prio);
1800
1801 if (ena_ts)
1802 /* Enable TimeSync on this queue */
1803 regval |= QRXFLXP_CNTXT_TS_M;
1804
1805 wr32(hw, QRXFLXP_CNTXT(pf_q), regval);
1806 }
1807
1808 /**
1809 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value
1810 * @intrl: interrupt rate limit in usecs
1811 * @gran: interrupt rate limit granularity in usecs
1812 *
1813 * This function converts a decimal interrupt rate limit in usecs to the format
1814 * expected by firmware.
1815 */
ice_intrl_usec_to_reg(u8 intrl,u8 gran)1816 static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran)
1817 {
1818 u32 val = intrl / gran;
1819
1820 if (val)
1821 return val | GLINT_RATE_INTRL_ENA_M;
1822 return 0;
1823 }
1824
1825 /**
1826 * ice_write_intrl - write throttle rate limit to interrupt specific register
1827 * @q_vector: pointer to interrupt specific structure
1828 * @intrl: throttle rate limit in microseconds to write
1829 */
ice_write_intrl(struct ice_q_vector * q_vector,u8 intrl)1830 void ice_write_intrl(struct ice_q_vector *q_vector, u8 intrl)
1831 {
1832 struct ice_hw *hw = &q_vector->vsi->back->hw;
1833
1834 wr32(hw, GLINT_RATE(q_vector->reg_idx),
1835 ice_intrl_usec_to_reg(intrl, ICE_INTRL_GRAN_ABOVE_25));
1836 }
1837
ice_pull_qvec_from_rc(struct ice_ring_container * rc)1838 static struct ice_q_vector *ice_pull_qvec_from_rc(struct ice_ring_container *rc)
1839 {
1840 switch (rc->type) {
1841 case ICE_RX_CONTAINER:
1842 if (rc->rx_ring)
1843 return rc->rx_ring->q_vector;
1844 break;
1845 case ICE_TX_CONTAINER:
1846 if (rc->tx_ring)
1847 return rc->tx_ring->q_vector;
1848 break;
1849 default:
1850 break;
1851 }
1852
1853 return NULL;
1854 }
1855
1856 /**
1857 * __ice_write_itr - write throttle rate to register
1858 * @q_vector: pointer to interrupt data structure
1859 * @rc: pointer to ring container
1860 * @itr: throttle rate in microseconds to write
1861 */
__ice_write_itr(struct ice_q_vector * q_vector,struct ice_ring_container * rc,u16 itr)1862 static void __ice_write_itr(struct ice_q_vector *q_vector,
1863 struct ice_ring_container *rc, u16 itr)
1864 {
1865 struct ice_hw *hw = &q_vector->vsi->back->hw;
1866
1867 wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
1868 ITR_REG_ALIGN(itr) >> ICE_ITR_GRAN_S);
1869 }
1870
1871 /**
1872 * ice_write_itr - write throttle rate to queue specific register
1873 * @rc: pointer to ring container
1874 * @itr: throttle rate in microseconds to write
1875 */
ice_write_itr(struct ice_ring_container * rc,u16 itr)1876 void ice_write_itr(struct ice_ring_container *rc, u16 itr)
1877 {
1878 struct ice_q_vector *q_vector;
1879
1880 q_vector = ice_pull_qvec_from_rc(rc);
1881 if (!q_vector)
1882 return;
1883
1884 __ice_write_itr(q_vector, rc, itr);
1885 }
1886
1887 /**
1888 * ice_set_q_vector_intrl - set up interrupt rate limiting
1889 * @q_vector: the vector to be configured
1890 *
1891 * Interrupt rate limiting is local to the vector, not per-queue so we must
1892 * detect if either ring container has dynamic moderation enabled to decide
1893 * what to set the interrupt rate limit to via INTRL settings. In the case that
1894 * dynamic moderation is disabled on both, write the value with the cached
1895 * setting to make sure INTRL register matches the user visible value.
1896 */
ice_set_q_vector_intrl(struct ice_q_vector * q_vector)1897 void ice_set_q_vector_intrl(struct ice_q_vector *q_vector)
1898 {
1899 if (ITR_IS_DYNAMIC(&q_vector->tx) || ITR_IS_DYNAMIC(&q_vector->rx)) {
1900 /* in the case of dynamic enabled, cap each vector to no more
1901 * than (4 us) 250,000 ints/sec, which allows low latency
1902 * but still less than 500,000 interrupts per second, which
1903 * reduces CPU a bit in the case of the lowest latency
1904 * setting. The 4 here is a value in microseconds.
1905 */
1906 ice_write_intrl(q_vector, 4);
1907 } else {
1908 ice_write_intrl(q_vector, q_vector->intrl);
1909 }
1910 }
1911
1912 /**
1913 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW
1914 * @vsi: the VSI being configured
1915 *
1916 * This configures MSIX mode interrupts for the PF VSI, and should not be used
1917 * for the VF VSI.
1918 */
ice_vsi_cfg_msix(struct ice_vsi * vsi)1919 void ice_vsi_cfg_msix(struct ice_vsi *vsi)
1920 {
1921 struct ice_pf *pf = vsi->back;
1922 struct ice_hw *hw = &pf->hw;
1923 u16 txq = 0, rxq = 0;
1924 int i, q;
1925
1926 ice_for_each_q_vector(vsi, i) {
1927 struct ice_q_vector *q_vector = vsi->q_vectors[i];
1928 u16 reg_idx = q_vector->reg_idx;
1929
1930 ice_cfg_itr(hw, q_vector);
1931
1932 /* Both Transmit Queue Interrupt Cause Control register
1933 * and Receive Queue Interrupt Cause control register
1934 * expects MSIX_INDX field to be the vector index
1935 * within the function space and not the absolute
1936 * vector index across PF or across device.
1937 * For SR-IOV VF VSIs queue vector index always starts
1938 * with 1 since first vector index(0) is used for OICR
1939 * in VF space. Since VMDq and other PF VSIs are within
1940 * the PF function space, use the vector index that is
1941 * tracked for this PF.
1942 */
1943 for (q = 0; q < q_vector->num_ring_tx; q++) {
1944 ice_cfg_txq_interrupt(vsi, txq, reg_idx,
1945 q_vector->tx.itr_idx);
1946 txq++;
1947 }
1948
1949 for (q = 0; q < q_vector->num_ring_rx; q++) {
1950 ice_cfg_rxq_interrupt(vsi, rxq, reg_idx,
1951 q_vector->rx.itr_idx);
1952 rxq++;
1953 }
1954 }
1955 }
1956
1957 /**
1958 * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings
1959 * @vsi: the VSI whose rings are to be enabled
1960 *
1961 * Returns 0 on success and a negative value on error
1962 */
ice_vsi_start_all_rx_rings(struct ice_vsi * vsi)1963 int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi)
1964 {
1965 return ice_vsi_ctrl_all_rx_rings(vsi, true);
1966 }
1967
1968 /**
1969 * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings
1970 * @vsi: the VSI whose rings are to be disabled
1971 *
1972 * Returns 0 on success and a negative value on error
1973 */
ice_vsi_stop_all_rx_rings(struct ice_vsi * vsi)1974 int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi)
1975 {
1976 return ice_vsi_ctrl_all_rx_rings(vsi, false);
1977 }
1978
1979 /**
1980 * ice_vsi_stop_tx_rings - Disable Tx rings
1981 * @vsi: the VSI being configured
1982 * @rst_src: reset source
1983 * @rel_vmvf_num: Relative ID of VF/VM
1984 * @rings: Tx ring array to be stopped
1985 * @count: number of Tx ring array elements
1986 */
1987 static int
ice_vsi_stop_tx_rings(struct ice_vsi * vsi,enum ice_disq_rst_src rst_src,u16 rel_vmvf_num,struct ice_tx_ring ** rings,u16 count)1988 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
1989 u16 rel_vmvf_num, struct ice_tx_ring **rings, u16 count)
1990 {
1991 u16 q_idx;
1992
1993 if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS)
1994 return -EINVAL;
1995
1996 for (q_idx = 0; q_idx < count; q_idx++) {
1997 struct ice_txq_meta txq_meta = { };
1998 int status;
1999
2000 if (!rings || !rings[q_idx])
2001 return -EINVAL;
2002
2003 ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta);
2004 status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num,
2005 rings[q_idx], &txq_meta);
2006
2007 if (status)
2008 return status;
2009 }
2010
2011 return 0;
2012 }
2013
2014 /**
2015 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings
2016 * @vsi: the VSI being configured
2017 * @rst_src: reset source
2018 * @rel_vmvf_num: Relative ID of VF/VM
2019 */
2020 int
ice_vsi_stop_lan_tx_rings(struct ice_vsi * vsi,enum ice_disq_rst_src rst_src,u16 rel_vmvf_num)2021 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2022 u16 rel_vmvf_num)
2023 {
2024 return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings, vsi->num_txq);
2025 }
2026
2027 /**
2028 * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings
2029 * @vsi: the VSI being configured
2030 */
ice_vsi_stop_xdp_tx_rings(struct ice_vsi * vsi)2031 int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi)
2032 {
2033 return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings, vsi->num_xdp_txq);
2034 }
2035
2036 /**
2037 * ice_vsi_is_rx_queue_active
2038 * @vsi: the VSI being configured
2039 *
2040 * Return true if at least one queue is active.
2041 */
ice_vsi_is_rx_queue_active(struct ice_vsi * vsi)2042 bool ice_vsi_is_rx_queue_active(struct ice_vsi *vsi)
2043 {
2044 struct ice_pf *pf = vsi->back;
2045 struct ice_hw *hw = &pf->hw;
2046 int i;
2047
2048 ice_for_each_rxq(vsi, i) {
2049 u32 rx_reg;
2050 int pf_q;
2051
2052 pf_q = vsi->rxq_map[i];
2053 rx_reg = rd32(hw, QRX_CTRL(pf_q));
2054 if (rx_reg & QRX_CTRL_QENA_STAT_M)
2055 return true;
2056 }
2057
2058 return false;
2059 }
2060
ice_vsi_set_tc_cfg(struct ice_vsi * vsi)2061 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi)
2062 {
2063 if (!test_bit(ICE_FLAG_DCB_ENA, vsi->back->flags)) {
2064 vsi->tc_cfg.ena_tc = ICE_DFLT_TRAFFIC_CLASS;
2065 vsi->tc_cfg.numtc = 1;
2066 return;
2067 }
2068
2069 /* set VSI TC information based on DCB config */
2070 ice_vsi_set_dcb_tc_cfg(vsi);
2071 }
2072
2073 /**
2074 * ice_vsi_cfg_sw_lldp - Config switch rules for LLDP packet handling
2075 * @vsi: the VSI being configured
2076 * @tx: bool to determine Tx or Rx rule
2077 * @create: bool to determine create or remove Rule
2078 *
2079 * Adding an ethtype Tx rule to the uplink VSI results in it being applied
2080 * to the whole port, so LLDP transmission for VFs will be blocked too.
2081 */
ice_vsi_cfg_sw_lldp(struct ice_vsi * vsi,bool tx,bool create)2082 void ice_vsi_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create)
2083 {
2084 int (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag,
2085 enum ice_sw_fwd_act_type act);
2086 struct ice_pf *pf = vsi->back;
2087 struct device *dev;
2088 int status;
2089
2090 dev = ice_pf_to_dev(pf);
2091 eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth;
2092
2093 if (tx) {
2094 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX,
2095 ICE_DROP_PACKET);
2096 } else {
2097 if (!test_bit(ICE_FLAG_LLDP_AQ_FLTR, pf->flags)) {
2098 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX,
2099 ICE_FWD_TO_VSI);
2100 if (!status || !create)
2101 goto report;
2102
2103 dev_info(dev,
2104 "Failed to add generic LLDP Rx filter on VSI %i error: %d, falling back to specialized AQ control\n",
2105 vsi->vsi_num, status);
2106 }
2107
2108 status = ice_lldp_fltr_add_remove(&pf->hw, vsi, create);
2109 if (!status)
2110 set_bit(ICE_FLAG_LLDP_AQ_FLTR, pf->flags);
2111
2112 }
2113
2114 report:
2115 if (status)
2116 dev_warn(dev, "Failed to %s %s LLDP rule on VSI %i error: %d\n",
2117 create ? "add" : "remove", tx ? "Tx" : "Rx",
2118 vsi->vsi_num, status);
2119 }
2120
2121 /**
2122 * ice_cfg_sw_rx_lldp - Enable/disable software handling of LLDP
2123 * @pf: the PF being configured
2124 * @enable: enable or disable
2125 *
2126 * Configure switch rules to enable/disable LLDP handling by software
2127 * across PF.
2128 */
ice_cfg_sw_rx_lldp(struct ice_pf * pf,bool enable)2129 void ice_cfg_sw_rx_lldp(struct ice_pf *pf, bool enable)
2130 {
2131 struct ice_vsi *vsi;
2132 struct ice_vf *vf;
2133 unsigned int bkt;
2134
2135 vsi = ice_get_main_vsi(pf);
2136 ice_vsi_cfg_sw_lldp(vsi, false, enable);
2137
2138 if (!test_bit(ICE_FLAG_SRIOV_ENA, pf->flags))
2139 return;
2140
2141 ice_for_each_vf(pf, bkt, vf) {
2142 vsi = ice_get_vf_vsi(vf);
2143
2144 if (WARN_ON(!vsi))
2145 continue;
2146
2147 if (ice_vf_is_lldp_ena(vf))
2148 ice_vsi_cfg_sw_lldp(vsi, false, enable);
2149 }
2150 }
2151
2152 /**
2153 * ice_set_agg_vsi - sets up scheduler aggregator node and move VSI into it
2154 * @vsi: pointer to the VSI
2155 *
2156 * This function will allocate new scheduler aggregator now if needed and will
2157 * move specified VSI into it.
2158 */
ice_set_agg_vsi(struct ice_vsi * vsi)2159 static void ice_set_agg_vsi(struct ice_vsi *vsi)
2160 {
2161 struct device *dev = ice_pf_to_dev(vsi->back);
2162 struct ice_agg_node *agg_node_iter = NULL;
2163 u32 agg_id = ICE_INVALID_AGG_NODE_ID;
2164 struct ice_agg_node *agg_node = NULL;
2165 int node_offset, max_agg_nodes = 0;
2166 struct ice_port_info *port_info;
2167 struct ice_pf *pf = vsi->back;
2168 u32 agg_node_id_start = 0;
2169 int status;
2170
2171 /* create (as needed) scheduler aggregator node and move VSI into
2172 * corresponding aggregator node
2173 * - PF aggregator node to contains VSIs of type _PF and _CTRL
2174 * - VF aggregator nodes will contain VF VSI
2175 */
2176 port_info = pf->hw.port_info;
2177 if (!port_info)
2178 return;
2179
2180 switch (vsi->type) {
2181 case ICE_VSI_CTRL:
2182 case ICE_VSI_CHNL:
2183 case ICE_VSI_LB:
2184 case ICE_VSI_PF:
2185 case ICE_VSI_SF:
2186 max_agg_nodes = ICE_MAX_PF_AGG_NODES;
2187 agg_node_id_start = ICE_PF_AGG_NODE_ID_START;
2188 agg_node_iter = &pf->pf_agg_node[0];
2189 break;
2190 case ICE_VSI_VF:
2191 /* user can create 'n' VFs on a given PF, but since max children
2192 * per aggregator node can be only 64. Following code handles
2193 * aggregator(s) for VF VSIs, either selects a agg_node which
2194 * was already created provided num_vsis < 64, otherwise
2195 * select next available node, which will be created
2196 */
2197 max_agg_nodes = ICE_MAX_VF_AGG_NODES;
2198 agg_node_id_start = ICE_VF_AGG_NODE_ID_START;
2199 agg_node_iter = &pf->vf_agg_node[0];
2200 break;
2201 default:
2202 /* other VSI type, handle later if needed */
2203 dev_dbg(dev, "unexpected VSI type %s\n",
2204 ice_vsi_type_str(vsi->type));
2205 return;
2206 }
2207
2208 /* find the appropriate aggregator node */
2209 for (node_offset = 0; node_offset < max_agg_nodes; node_offset++) {
2210 /* see if we can find space in previously created
2211 * node if num_vsis < 64, otherwise skip
2212 */
2213 if (agg_node_iter->num_vsis &&
2214 agg_node_iter->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) {
2215 agg_node_iter++;
2216 continue;
2217 }
2218
2219 if (agg_node_iter->valid &&
2220 agg_node_iter->agg_id != ICE_INVALID_AGG_NODE_ID) {
2221 agg_id = agg_node_iter->agg_id;
2222 agg_node = agg_node_iter;
2223 break;
2224 }
2225
2226 /* find unclaimed agg_id */
2227 if (agg_node_iter->agg_id == ICE_INVALID_AGG_NODE_ID) {
2228 agg_id = node_offset + agg_node_id_start;
2229 agg_node = agg_node_iter;
2230 break;
2231 }
2232 /* move to next agg_node */
2233 agg_node_iter++;
2234 }
2235
2236 if (!agg_node)
2237 return;
2238
2239 /* if selected aggregator node was not created, create it */
2240 if (!agg_node->valid) {
2241 status = ice_cfg_agg(port_info, agg_id, ICE_AGG_TYPE_AGG,
2242 (u8)vsi->tc_cfg.ena_tc);
2243 if (status) {
2244 dev_err(dev, "unable to create aggregator node with agg_id %u\n",
2245 agg_id);
2246 return;
2247 }
2248 /* aggregator node is created, store the needed info */
2249 agg_node->valid = true;
2250 agg_node->agg_id = agg_id;
2251 }
2252
2253 /* move VSI to corresponding aggregator node */
2254 status = ice_move_vsi_to_agg(port_info, agg_id, vsi->idx,
2255 (u8)vsi->tc_cfg.ena_tc);
2256 if (status) {
2257 dev_err(dev, "unable to move VSI idx %u into aggregator %u node",
2258 vsi->idx, agg_id);
2259 return;
2260 }
2261
2262 /* keep active children count for aggregator node */
2263 agg_node->num_vsis++;
2264
2265 /* cache the 'agg_id' in VSI, so that after reset - VSI will be moved
2266 * to aggregator node
2267 */
2268 vsi->agg_node = agg_node;
2269 dev_dbg(dev, "successfully moved VSI idx %u tc_bitmap 0x%x) into aggregator node %d which has num_vsis %u\n",
2270 vsi->idx, vsi->tc_cfg.ena_tc, vsi->agg_node->agg_id,
2271 vsi->agg_node->num_vsis);
2272 }
2273
ice_vsi_cfg_tc_lan(struct ice_pf * pf,struct ice_vsi * vsi)2274 static int ice_vsi_cfg_tc_lan(struct ice_pf *pf, struct ice_vsi *vsi)
2275 {
2276 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2277 struct device *dev = ice_pf_to_dev(pf);
2278 int ret, i;
2279
2280 /* configure VSI nodes based on number of queues and TC's */
2281 ice_for_each_traffic_class(i) {
2282 if (!(vsi->tc_cfg.ena_tc & BIT(i)))
2283 continue;
2284
2285 if (vsi->type == ICE_VSI_CHNL) {
2286 if (!vsi->alloc_txq && vsi->num_txq)
2287 max_txqs[i] = vsi->num_txq;
2288 else
2289 max_txqs[i] = pf->num_lan_tx;
2290 } else {
2291 max_txqs[i] = vsi->alloc_txq;
2292 }
2293
2294 if (vsi->type == ICE_VSI_PF)
2295 max_txqs[i] += vsi->num_xdp_txq;
2296 }
2297
2298 dev_dbg(dev, "vsi->tc_cfg.ena_tc = %d\n", vsi->tc_cfg.ena_tc);
2299 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2300 max_txqs);
2301 if (ret) {
2302 dev_err(dev, "VSI %d failed lan queue config, error %d\n",
2303 vsi->vsi_num, ret);
2304 return ret;
2305 }
2306
2307 return 0;
2308 }
2309
2310 /**
2311 * ice_vsi_cfg_def - configure default VSI based on the type
2312 * @vsi: pointer to VSI
2313 */
ice_vsi_cfg_def(struct ice_vsi * vsi)2314 static int ice_vsi_cfg_def(struct ice_vsi *vsi)
2315 {
2316 struct device *dev = ice_pf_to_dev(vsi->back);
2317 struct ice_pf *pf = vsi->back;
2318 int ret;
2319
2320 vsi->vsw = pf->first_sw;
2321
2322 ret = ice_vsi_alloc_def(vsi, vsi->ch);
2323 if (ret)
2324 return ret;
2325
2326 /* allocate memory for Tx/Rx ring stat pointers */
2327 ret = ice_vsi_alloc_stat_arrays(vsi);
2328 if (ret)
2329 goto unroll_vsi_alloc;
2330
2331 ice_alloc_fd_res(vsi);
2332
2333 ret = ice_vsi_get_qs(vsi);
2334 if (ret) {
2335 dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n",
2336 vsi->idx);
2337 goto unroll_vsi_alloc_stat;
2338 }
2339
2340 /* set RSS capabilities */
2341 ice_vsi_set_rss_params(vsi);
2342
2343 /* set TC configuration */
2344 ice_vsi_set_tc_cfg(vsi);
2345
2346 /* create the VSI */
2347 ret = ice_vsi_init(vsi, vsi->flags);
2348 if (ret)
2349 goto unroll_get_qs;
2350
2351 ice_vsi_init_vlan_ops(vsi);
2352
2353 switch (vsi->type) {
2354 case ICE_VSI_CTRL:
2355 case ICE_VSI_SF:
2356 case ICE_VSI_PF:
2357 ret = ice_vsi_alloc_q_vectors(vsi);
2358 if (ret)
2359 goto unroll_vsi_init;
2360
2361 ret = ice_vsi_alloc_rings(vsi);
2362 if (ret)
2363 goto unroll_vector_base;
2364
2365 ret = ice_vsi_alloc_ring_stats(vsi);
2366 if (ret)
2367 goto unroll_vector_base;
2368
2369 if (ice_is_xdp_ena_vsi(vsi)) {
2370 ret = ice_vsi_determine_xdp_res(vsi);
2371 if (ret)
2372 goto unroll_vector_base;
2373 ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog,
2374 ICE_XDP_CFG_PART);
2375 if (ret)
2376 goto unroll_vector_base;
2377 }
2378
2379 ice_vsi_map_rings_to_vectors(vsi);
2380
2381 vsi->stat_offsets_loaded = false;
2382
2383 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */
2384 if (vsi->type != ICE_VSI_CTRL)
2385 /* Do not exit if configuring RSS had an issue, at
2386 * least receive traffic on first queue. Hence no
2387 * need to capture return value
2388 */
2389 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2390 ice_vsi_cfg_rss_lut_key(vsi);
2391 ice_vsi_set_rss_flow_fld(vsi);
2392 }
2393 ice_init_arfs(vsi);
2394 break;
2395 case ICE_VSI_CHNL:
2396 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2397 ice_vsi_cfg_rss_lut_key(vsi);
2398 ice_vsi_set_rss_flow_fld(vsi);
2399 }
2400 break;
2401 case ICE_VSI_VF:
2402 /* VF driver will take care of creating netdev for this type and
2403 * map queues to vectors through Virtchnl, PF driver only
2404 * creates a VSI and corresponding structures for bookkeeping
2405 * purpose
2406 */
2407 ret = ice_vsi_alloc_q_vectors(vsi);
2408 if (ret)
2409 goto unroll_vsi_init;
2410
2411 ret = ice_vsi_alloc_rings(vsi);
2412 if (ret)
2413 goto unroll_alloc_q_vector;
2414
2415 ret = ice_vsi_alloc_ring_stats(vsi);
2416 if (ret)
2417 goto unroll_vector_base;
2418
2419 vsi->stat_offsets_loaded = false;
2420
2421 /* Do not exit if configuring RSS had an issue, at least
2422 * receive traffic on first queue. Hence no need to capture
2423 * return value
2424 */
2425 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2426 ice_vsi_cfg_rss_lut_key(vsi);
2427 ice_vsi_set_vf_rss_flow_fld(vsi);
2428 }
2429 break;
2430 case ICE_VSI_LB:
2431 ret = ice_vsi_alloc_rings(vsi);
2432 if (ret)
2433 goto unroll_vsi_init;
2434
2435 ret = ice_vsi_alloc_ring_stats(vsi);
2436 if (ret)
2437 goto unroll_vector_base;
2438
2439 break;
2440 default:
2441 /* clean up the resources and exit */
2442 ret = -EINVAL;
2443 goto unroll_vsi_init;
2444 }
2445
2446 return 0;
2447
2448 unroll_vector_base:
2449 /* reclaim SW interrupts back to the common pool */
2450 unroll_alloc_q_vector:
2451 ice_vsi_free_q_vectors(vsi);
2452 unroll_vsi_init:
2453 ice_vsi_delete_from_hw(vsi);
2454 unroll_get_qs:
2455 ice_vsi_put_qs(vsi);
2456 unroll_vsi_alloc_stat:
2457 ice_vsi_free_stats(vsi);
2458 unroll_vsi_alloc:
2459 ice_vsi_free_arrays(vsi);
2460 return ret;
2461 }
2462
2463 /**
2464 * ice_vsi_cfg - configure a previously allocated VSI
2465 * @vsi: pointer to VSI
2466 */
ice_vsi_cfg(struct ice_vsi * vsi)2467 int ice_vsi_cfg(struct ice_vsi *vsi)
2468 {
2469 struct ice_pf *pf = vsi->back;
2470 int ret;
2471
2472 if (WARN_ON(vsi->type == ICE_VSI_VF && !vsi->vf))
2473 return -EINVAL;
2474
2475 ret = ice_vsi_cfg_def(vsi);
2476 if (ret)
2477 return ret;
2478
2479 ret = ice_vsi_cfg_tc_lan(vsi->back, vsi);
2480 if (ret)
2481 ice_vsi_decfg(vsi);
2482
2483 if (vsi->type == ICE_VSI_CTRL) {
2484 if (vsi->vf) {
2485 WARN_ON(vsi->vf->ctrl_vsi_idx != ICE_NO_VSI);
2486 vsi->vf->ctrl_vsi_idx = vsi->idx;
2487 } else {
2488 WARN_ON(pf->ctrl_vsi_idx != ICE_NO_VSI);
2489 pf->ctrl_vsi_idx = vsi->idx;
2490 }
2491 }
2492
2493 return ret;
2494 }
2495
2496 /**
2497 * ice_vsi_decfg - remove all VSI configuration
2498 * @vsi: pointer to VSI
2499 */
ice_vsi_decfg(struct ice_vsi * vsi)2500 void ice_vsi_decfg(struct ice_vsi *vsi)
2501 {
2502 struct ice_pf *pf = vsi->back;
2503 int err;
2504
2505 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
2506 err = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx);
2507 if (err)
2508 dev_err(ice_pf_to_dev(pf), "Failed to remove RDMA scheduler config for VSI %u, err %d\n",
2509 vsi->vsi_num, err);
2510
2511 if (vsi->xdp_rings)
2512 /* return value check can be skipped here, it always returns
2513 * 0 if reset is in progress
2514 */
2515 ice_destroy_xdp_rings(vsi, ICE_XDP_CFG_PART);
2516
2517 ice_vsi_clear_rings(vsi);
2518 ice_vsi_free_q_vectors(vsi);
2519 ice_vsi_put_qs(vsi);
2520 ice_vsi_free_arrays(vsi);
2521
2522 /* SR-IOV determines needed MSIX resources all at once instead of per
2523 * VSI since when VFs are spawned we know how many VFs there are and how
2524 * many interrupts each VF needs. SR-IOV MSIX resources are also
2525 * cleared in the same manner.
2526 */
2527
2528 if (vsi->type == ICE_VSI_VF &&
2529 vsi->agg_node && vsi->agg_node->valid)
2530 vsi->agg_node->num_vsis--;
2531 }
2532
2533 /**
2534 * ice_vsi_setup - Set up a VSI by a given type
2535 * @pf: board private structure
2536 * @params: parameters to use when creating the VSI
2537 *
2538 * This allocates the sw VSI structure and its queue resources.
2539 *
2540 * Returns pointer to the successfully allocated and configured VSI sw struct on
2541 * success, NULL on failure.
2542 */
2543 struct ice_vsi *
ice_vsi_setup(struct ice_pf * pf,struct ice_vsi_cfg_params * params)2544 ice_vsi_setup(struct ice_pf *pf, struct ice_vsi_cfg_params *params)
2545 {
2546 struct device *dev = ice_pf_to_dev(pf);
2547 struct ice_vsi *vsi;
2548 int ret;
2549
2550 /* ice_vsi_setup can only initialize a new VSI, and we must have
2551 * a port_info structure for it.
2552 */
2553 if (WARN_ON(!(params->flags & ICE_VSI_FLAG_INIT)) ||
2554 WARN_ON(!params->port_info))
2555 return NULL;
2556
2557 vsi = ice_vsi_alloc(pf);
2558 if (!vsi) {
2559 dev_err(dev, "could not allocate VSI\n");
2560 return NULL;
2561 }
2562
2563 vsi->params = *params;
2564 ret = ice_vsi_cfg(vsi);
2565 if (ret)
2566 goto err_vsi_cfg;
2567
2568 /* Add switch rule to drop all Tx Flow Control Frames, of look up
2569 * type ETHERTYPE from VSIs, and restrict malicious VF from sending
2570 * out PAUSE or PFC frames. If enabled, FW can still send FC frames.
2571 * The rule is added once for PF VSI in order to create appropriate
2572 * recipe, since VSI/VSI list is ignored with drop action...
2573 * Also add rules to handle LLDP Tx packets. Tx LLDP packets need to
2574 * be dropped so that VFs cannot send LLDP packets to reconfig DCB
2575 * settings in the HW.
2576 */
2577 if (!ice_is_safe_mode(pf) && vsi->type == ICE_VSI_PF) {
2578 ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX,
2579 ICE_DROP_PACKET);
2580 ice_vsi_cfg_sw_lldp(vsi, true, true);
2581 }
2582
2583 if (!vsi->agg_node)
2584 ice_set_agg_vsi(vsi);
2585
2586 return vsi;
2587
2588 err_vsi_cfg:
2589 ice_vsi_free(vsi);
2590
2591 return NULL;
2592 }
2593
2594 /**
2595 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW
2596 * @vsi: the VSI being cleaned up
2597 */
ice_vsi_release_msix(struct ice_vsi * vsi)2598 static void ice_vsi_release_msix(struct ice_vsi *vsi)
2599 {
2600 struct ice_pf *pf = vsi->back;
2601 struct ice_hw *hw = &pf->hw;
2602 u32 txq = 0;
2603 u32 rxq = 0;
2604 int i, q;
2605
2606 ice_for_each_q_vector(vsi, i) {
2607 struct ice_q_vector *q_vector = vsi->q_vectors[i];
2608
2609 ice_write_intrl(q_vector, 0);
2610 for (q = 0; q < q_vector->num_ring_tx; q++) {
2611 ice_write_itr(&q_vector->tx, 0);
2612 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0);
2613 if (vsi->xdp_rings) {
2614 u32 xdp_txq = txq + vsi->num_xdp_txq;
2615
2616 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0);
2617 }
2618 txq++;
2619 }
2620
2621 for (q = 0; q < q_vector->num_ring_rx; q++) {
2622 ice_write_itr(&q_vector->rx, 0);
2623 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0);
2624 rxq++;
2625 }
2626 }
2627
2628 ice_flush(hw);
2629 }
2630
2631 /**
2632 * ice_vsi_free_irq - Free the IRQ association with the OS
2633 * @vsi: the VSI being configured
2634 */
ice_vsi_free_irq(struct ice_vsi * vsi)2635 void ice_vsi_free_irq(struct ice_vsi *vsi)
2636 {
2637 struct ice_pf *pf = vsi->back;
2638 int i;
2639
2640 if (!vsi->q_vectors || !vsi->irqs_ready)
2641 return;
2642
2643 ice_vsi_release_msix(vsi);
2644 if (vsi->type == ICE_VSI_VF)
2645 return;
2646
2647 vsi->irqs_ready = false;
2648
2649 ice_for_each_q_vector(vsi, i) {
2650 int irq_num;
2651
2652 irq_num = vsi->q_vectors[i]->irq.virq;
2653
2654 /* free only the irqs that were actually requested */
2655 if (!vsi->q_vectors[i] ||
2656 !(vsi->q_vectors[i]->num_ring_tx ||
2657 vsi->q_vectors[i]->num_ring_rx))
2658 continue;
2659
2660 synchronize_irq(irq_num);
2661 devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]);
2662 }
2663 }
2664
2665 /**
2666 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues
2667 * @vsi: the VSI having resources freed
2668 */
ice_vsi_free_tx_rings(struct ice_vsi * vsi)2669 void ice_vsi_free_tx_rings(struct ice_vsi *vsi)
2670 {
2671 int i;
2672
2673 if (!vsi->tx_rings)
2674 return;
2675
2676 ice_for_each_txq(vsi, i)
2677 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
2678 ice_free_tx_ring(vsi->tx_rings[i]);
2679 }
2680
2681 /**
2682 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues
2683 * @vsi: the VSI having resources freed
2684 */
ice_vsi_free_rx_rings(struct ice_vsi * vsi)2685 void ice_vsi_free_rx_rings(struct ice_vsi *vsi)
2686 {
2687 int i;
2688
2689 if (!vsi->rx_rings)
2690 return;
2691
2692 ice_for_each_rxq(vsi, i)
2693 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc)
2694 ice_free_rx_ring(vsi->rx_rings[i]);
2695 }
2696
2697 /**
2698 * ice_vsi_close - Shut down a VSI
2699 * @vsi: the VSI being shut down
2700 */
ice_vsi_close(struct ice_vsi * vsi)2701 void ice_vsi_close(struct ice_vsi *vsi)
2702 {
2703 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state))
2704 ice_down(vsi);
2705
2706 ice_vsi_clear_napi_queues(vsi);
2707 ice_vsi_free_irq(vsi);
2708 ice_vsi_free_tx_rings(vsi);
2709 ice_vsi_free_rx_rings(vsi);
2710 }
2711
2712 /**
2713 * ice_ena_vsi - resume a VSI
2714 * @vsi: the VSI being resume
2715 * @locked: is the rtnl_lock already held
2716 */
ice_ena_vsi(struct ice_vsi * vsi,bool locked)2717 int ice_ena_vsi(struct ice_vsi *vsi, bool locked)
2718 {
2719 int err = 0;
2720
2721 if (!test_bit(ICE_VSI_NEEDS_RESTART, vsi->state))
2722 return 0;
2723
2724 clear_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
2725
2726 if (vsi->netdev && (vsi->type == ICE_VSI_PF ||
2727 vsi->type == ICE_VSI_SF)) {
2728 if (netif_running(vsi->netdev)) {
2729 if (!locked)
2730 rtnl_lock();
2731
2732 err = ice_open_internal(vsi->netdev);
2733
2734 if (!locked)
2735 rtnl_unlock();
2736 }
2737 } else if (vsi->type == ICE_VSI_CTRL) {
2738 err = ice_vsi_open_ctrl(vsi);
2739 }
2740
2741 return err;
2742 }
2743
2744 /**
2745 * ice_dis_vsi - pause a VSI
2746 * @vsi: the VSI being paused
2747 * @locked: is the rtnl_lock already held
2748 */
ice_dis_vsi(struct ice_vsi * vsi,bool locked)2749 void ice_dis_vsi(struct ice_vsi *vsi, bool locked)
2750 {
2751 bool already_down = test_bit(ICE_VSI_DOWN, vsi->state);
2752
2753 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
2754
2755 if (vsi->netdev && (vsi->type == ICE_VSI_PF ||
2756 vsi->type == ICE_VSI_SF)) {
2757 if (netif_running(vsi->netdev)) {
2758 if (!locked)
2759 rtnl_lock();
2760 already_down = test_bit(ICE_VSI_DOWN, vsi->state);
2761 if (!already_down)
2762 ice_vsi_close(vsi);
2763
2764 if (!locked)
2765 rtnl_unlock();
2766 } else if (!already_down) {
2767 ice_vsi_close(vsi);
2768 }
2769 } else if (vsi->type == ICE_VSI_CTRL && !already_down) {
2770 ice_vsi_close(vsi);
2771 }
2772 }
2773
2774 /**
2775 * ice_vsi_set_napi_queues - associate netdev queues with napi
2776 * @vsi: VSI pointer
2777 *
2778 * Associate queue[s] with napi for all vectors.
2779 */
ice_vsi_set_napi_queues(struct ice_vsi * vsi)2780 void ice_vsi_set_napi_queues(struct ice_vsi *vsi)
2781 {
2782 struct net_device *netdev = vsi->netdev;
2783 int q_idx, v_idx;
2784
2785 if (!netdev)
2786 return;
2787
2788 ASSERT_RTNL();
2789 ice_for_each_rxq(vsi, q_idx)
2790 if (vsi->rx_rings[q_idx] && vsi->rx_rings[q_idx]->q_vector)
2791 netif_queue_set_napi(netdev, q_idx, NETDEV_QUEUE_TYPE_RX,
2792 &vsi->rx_rings[q_idx]->q_vector->napi);
2793
2794 ice_for_each_txq(vsi, q_idx)
2795 if (vsi->tx_rings[q_idx] && vsi->tx_rings[q_idx]->q_vector)
2796 netif_queue_set_napi(netdev, q_idx, NETDEV_QUEUE_TYPE_TX,
2797 &vsi->tx_rings[q_idx]->q_vector->napi);
2798 /* Also set the interrupt number for the NAPI */
2799 ice_for_each_q_vector(vsi, v_idx) {
2800 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2801
2802 netif_napi_set_irq(&q_vector->napi, q_vector->irq.virq);
2803 }
2804 }
2805
2806 /**
2807 * ice_vsi_clear_napi_queues - dissociate netdev queues from napi
2808 * @vsi: VSI pointer
2809 *
2810 * Clear the association between all VSI queues queue[s] and napi.
2811 */
ice_vsi_clear_napi_queues(struct ice_vsi * vsi)2812 void ice_vsi_clear_napi_queues(struct ice_vsi *vsi)
2813 {
2814 struct net_device *netdev = vsi->netdev;
2815 int q_idx, v_idx;
2816
2817 if (!netdev)
2818 return;
2819
2820 ASSERT_RTNL();
2821 /* Clear the NAPI's interrupt number */
2822 ice_for_each_q_vector(vsi, v_idx) {
2823 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2824
2825 netif_napi_set_irq(&q_vector->napi, -1);
2826 }
2827
2828 ice_for_each_txq(vsi, q_idx)
2829 netif_queue_set_napi(netdev, q_idx, NETDEV_QUEUE_TYPE_TX, NULL);
2830
2831 ice_for_each_rxq(vsi, q_idx)
2832 netif_queue_set_napi(netdev, q_idx, NETDEV_QUEUE_TYPE_RX, NULL);
2833 }
2834
2835 /**
2836 * ice_napi_add - register NAPI handler for the VSI
2837 * @vsi: VSI for which NAPI handler is to be registered
2838 *
2839 * This function is only called in the driver's load path. Registering the NAPI
2840 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume,
2841 * reset/rebuild, etc.)
2842 */
ice_napi_add(struct ice_vsi * vsi)2843 void ice_napi_add(struct ice_vsi *vsi)
2844 {
2845 int v_idx;
2846
2847 if (!vsi->netdev)
2848 return;
2849
2850 ice_for_each_q_vector(vsi, v_idx)
2851 netif_napi_add_config(vsi->netdev,
2852 &vsi->q_vectors[v_idx]->napi,
2853 ice_napi_poll,
2854 v_idx);
2855 }
2856
2857 /**
2858 * ice_vsi_release - Delete a VSI and free its resources
2859 * @vsi: the VSI being removed
2860 *
2861 * Returns 0 on success or < 0 on error
2862 */
ice_vsi_release(struct ice_vsi * vsi)2863 int ice_vsi_release(struct ice_vsi *vsi)
2864 {
2865 struct ice_pf *pf;
2866
2867 if (!vsi->back)
2868 return -ENODEV;
2869 pf = vsi->back;
2870
2871 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2872 ice_rss_clean(vsi);
2873
2874 ice_vsi_close(vsi);
2875
2876 /* The Rx rule will only exist to remove if the LLDP FW
2877 * engine is currently stopped
2878 */
2879 if (!ice_is_safe_mode(pf) &&
2880 !test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags) &&
2881 (vsi->type == ICE_VSI_PF || (vsi->type == ICE_VSI_VF &&
2882 ice_vf_is_lldp_ena(vsi->vf))))
2883 ice_vsi_cfg_sw_lldp(vsi, false, false);
2884
2885 ice_vsi_decfg(vsi);
2886
2887 /* retain SW VSI data structure since it is needed to unregister and
2888 * free VSI netdev when PF is not in reset recovery pending state,\
2889 * for ex: during rmmod.
2890 */
2891 if (!ice_is_reset_in_progress(pf->state))
2892 ice_vsi_delete(vsi);
2893
2894 return 0;
2895 }
2896
2897 /**
2898 * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors
2899 * @vsi: VSI connected with q_vectors
2900 * @coalesce: array of struct with stored coalesce
2901 *
2902 * Returns array size.
2903 */
2904 static int
ice_vsi_rebuild_get_coalesce(struct ice_vsi * vsi,struct ice_coalesce_stored * coalesce)2905 ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi,
2906 struct ice_coalesce_stored *coalesce)
2907 {
2908 int i;
2909
2910 ice_for_each_q_vector(vsi, i) {
2911 struct ice_q_vector *q_vector = vsi->q_vectors[i];
2912
2913 coalesce[i].itr_tx = q_vector->tx.itr_settings;
2914 coalesce[i].itr_rx = q_vector->rx.itr_settings;
2915 coalesce[i].intrl = q_vector->intrl;
2916
2917 if (i < vsi->num_txq)
2918 coalesce[i].tx_valid = true;
2919 if (i < vsi->num_rxq)
2920 coalesce[i].rx_valid = true;
2921 }
2922
2923 return vsi->num_q_vectors;
2924 }
2925
2926 /**
2927 * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays
2928 * @vsi: VSI connected with q_vectors
2929 * @coalesce: pointer to array of struct with stored coalesce
2930 * @size: size of coalesce array
2931 *
2932 * Before this function, ice_vsi_rebuild_get_coalesce should be called to save
2933 * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce
2934 * to default value.
2935 */
2936 static void
ice_vsi_rebuild_set_coalesce(struct ice_vsi * vsi,struct ice_coalesce_stored * coalesce,int size)2937 ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi,
2938 struct ice_coalesce_stored *coalesce, int size)
2939 {
2940 struct ice_ring_container *rc;
2941 int i;
2942
2943 if ((size && !coalesce) || !vsi)
2944 return;
2945
2946 /* There are a couple of cases that have to be handled here:
2947 * 1. The case where the number of queue vectors stays the same, but
2948 * the number of Tx or Rx rings changes (the first for loop)
2949 * 2. The case where the number of queue vectors increased (the
2950 * second for loop)
2951 */
2952 for (i = 0; i < size && i < vsi->num_q_vectors; i++) {
2953 /* There are 2 cases to handle here and they are the same for
2954 * both Tx and Rx:
2955 * if the entry was valid previously (coalesce[i].[tr]x_valid
2956 * and the loop variable is less than the number of rings
2957 * allocated, then write the previous values
2958 *
2959 * if the entry was not valid previously, but the number of
2960 * rings is less than are allocated (this means the number of
2961 * rings increased from previously), then write out the
2962 * values in the first element
2963 *
2964 * Also, always write the ITR, even if in ITR_IS_DYNAMIC
2965 * as there is no harm because the dynamic algorithm
2966 * will just overwrite.
2967 */
2968 if (i < vsi->alloc_rxq && coalesce[i].rx_valid) {
2969 rc = &vsi->q_vectors[i]->rx;
2970 rc->itr_settings = coalesce[i].itr_rx;
2971 ice_write_itr(rc, rc->itr_setting);
2972 } else if (i < vsi->alloc_rxq) {
2973 rc = &vsi->q_vectors[i]->rx;
2974 rc->itr_settings = coalesce[0].itr_rx;
2975 ice_write_itr(rc, rc->itr_setting);
2976 }
2977
2978 if (i < vsi->alloc_txq && coalesce[i].tx_valid) {
2979 rc = &vsi->q_vectors[i]->tx;
2980 rc->itr_settings = coalesce[i].itr_tx;
2981 ice_write_itr(rc, rc->itr_setting);
2982 } else if (i < vsi->alloc_txq) {
2983 rc = &vsi->q_vectors[i]->tx;
2984 rc->itr_settings = coalesce[0].itr_tx;
2985 ice_write_itr(rc, rc->itr_setting);
2986 }
2987
2988 vsi->q_vectors[i]->intrl = coalesce[i].intrl;
2989 ice_set_q_vector_intrl(vsi->q_vectors[i]);
2990 }
2991
2992 /* the number of queue vectors increased so write whatever is in
2993 * the first element
2994 */
2995 for (; i < vsi->num_q_vectors; i++) {
2996 /* transmit */
2997 rc = &vsi->q_vectors[i]->tx;
2998 rc->itr_settings = coalesce[0].itr_tx;
2999 ice_write_itr(rc, rc->itr_setting);
3000
3001 /* receive */
3002 rc = &vsi->q_vectors[i]->rx;
3003 rc->itr_settings = coalesce[0].itr_rx;
3004 ice_write_itr(rc, rc->itr_setting);
3005
3006 vsi->q_vectors[i]->intrl = coalesce[0].intrl;
3007 ice_set_q_vector_intrl(vsi->q_vectors[i]);
3008 }
3009 }
3010
3011 /**
3012 * ice_vsi_realloc_stat_arrays - Frees unused stat structures or alloc new ones
3013 * @vsi: VSI pointer
3014 */
3015 static int
ice_vsi_realloc_stat_arrays(struct ice_vsi * vsi)3016 ice_vsi_realloc_stat_arrays(struct ice_vsi *vsi)
3017 {
3018 u16 req_txq = vsi->req_txq ? vsi->req_txq : vsi->alloc_txq;
3019 u16 req_rxq = vsi->req_rxq ? vsi->req_rxq : vsi->alloc_rxq;
3020 struct ice_ring_stats **tx_ring_stats;
3021 struct ice_ring_stats **rx_ring_stats;
3022 struct ice_vsi_stats *vsi_stat;
3023 struct ice_pf *pf = vsi->back;
3024 u16 prev_txq = vsi->alloc_txq;
3025 u16 prev_rxq = vsi->alloc_rxq;
3026 int i;
3027
3028 vsi_stat = pf->vsi_stats[vsi->idx];
3029
3030 if (req_txq < prev_txq) {
3031 for (i = req_txq; i < prev_txq; i++) {
3032 if (vsi_stat->tx_ring_stats[i]) {
3033 kfree_rcu(vsi_stat->tx_ring_stats[i], rcu);
3034 WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL);
3035 }
3036 }
3037 }
3038
3039 tx_ring_stats = vsi_stat->tx_ring_stats;
3040 vsi_stat->tx_ring_stats =
3041 krealloc_array(vsi_stat->tx_ring_stats, req_txq,
3042 sizeof(*vsi_stat->tx_ring_stats),
3043 GFP_KERNEL | __GFP_ZERO);
3044 if (!vsi_stat->tx_ring_stats) {
3045 vsi_stat->tx_ring_stats = tx_ring_stats;
3046 return -ENOMEM;
3047 }
3048
3049 if (req_rxq < prev_rxq) {
3050 for (i = req_rxq; i < prev_rxq; i++) {
3051 if (vsi_stat->rx_ring_stats[i]) {
3052 kfree_rcu(vsi_stat->rx_ring_stats[i], rcu);
3053 WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL);
3054 }
3055 }
3056 }
3057
3058 rx_ring_stats = vsi_stat->rx_ring_stats;
3059 vsi_stat->rx_ring_stats =
3060 krealloc_array(vsi_stat->rx_ring_stats, req_rxq,
3061 sizeof(*vsi_stat->rx_ring_stats),
3062 GFP_KERNEL | __GFP_ZERO);
3063 if (!vsi_stat->rx_ring_stats) {
3064 vsi_stat->rx_ring_stats = rx_ring_stats;
3065 return -ENOMEM;
3066 }
3067
3068 return 0;
3069 }
3070
3071 /**
3072 * ice_vsi_rebuild - Rebuild VSI after reset
3073 * @vsi: VSI to be rebuild
3074 * @vsi_flags: flags used for VSI rebuild flow
3075 *
3076 * Set vsi_flags to ICE_VSI_FLAG_INIT to initialize a new VSI, or
3077 * ICE_VSI_FLAG_NO_INIT to rebuild an existing VSI in hardware.
3078 *
3079 * Returns 0 on success and negative value on failure
3080 */
ice_vsi_rebuild(struct ice_vsi * vsi,u32 vsi_flags)3081 int ice_vsi_rebuild(struct ice_vsi *vsi, u32 vsi_flags)
3082 {
3083 struct ice_coalesce_stored *coalesce;
3084 int prev_num_q_vectors;
3085 struct ice_pf *pf;
3086 int ret;
3087
3088 if (!vsi)
3089 return -EINVAL;
3090
3091 vsi->flags = vsi_flags;
3092 pf = vsi->back;
3093 if (WARN_ON(vsi->type == ICE_VSI_VF && !vsi->vf))
3094 return -EINVAL;
3095
3096 mutex_lock(&vsi->xdp_state_lock);
3097
3098 ret = ice_vsi_realloc_stat_arrays(vsi);
3099 if (ret)
3100 goto unlock;
3101
3102 ice_vsi_decfg(vsi);
3103 ret = ice_vsi_cfg_def(vsi);
3104 if (ret)
3105 goto unlock;
3106
3107 coalesce = kzalloc_objs(struct ice_coalesce_stored, vsi->num_q_vectors,
3108 GFP_KERNEL);
3109 if (!coalesce) {
3110 ret = -ENOMEM;
3111 goto decfg;
3112 }
3113
3114 prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, coalesce);
3115
3116 ret = ice_vsi_cfg_tc_lan(pf, vsi);
3117 if (ret) {
3118 if (vsi_flags & ICE_VSI_FLAG_INIT) {
3119 ret = -EIO;
3120 goto free_coalesce;
3121 }
3122
3123 ret = ice_schedule_reset(pf, ICE_RESET_PFR);
3124 goto free_coalesce;
3125 }
3126
3127 ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors);
3128 clear_bit(ICE_VSI_REBUILD_PENDING, vsi->state);
3129
3130 free_coalesce:
3131 kfree(coalesce);
3132 decfg:
3133 if (ret)
3134 ice_vsi_decfg(vsi);
3135 unlock:
3136 mutex_unlock(&vsi->xdp_state_lock);
3137 return ret;
3138 }
3139
3140 /**
3141 * ice_is_reset_in_progress - check for a reset in progress
3142 * @state: PF state field
3143 */
ice_is_reset_in_progress(unsigned long * state)3144 bool ice_is_reset_in_progress(unsigned long *state)
3145 {
3146 return test_bit(ICE_RESET_OICR_RECV, state) ||
3147 test_bit(ICE_PFR_REQ, state) ||
3148 test_bit(ICE_CORER_REQ, state) ||
3149 test_bit(ICE_GLOBR_REQ, state);
3150 }
3151
3152 /**
3153 * ice_wait_for_reset - Wait for driver to finish reset and rebuild
3154 * @pf: pointer to the PF structure
3155 * @timeout: length of time to wait, in jiffies
3156 *
3157 * Wait (sleep) for a short time until the driver finishes cleaning up from
3158 * a device reset. The caller must be able to sleep. Use this to delay
3159 * operations that could fail while the driver is cleaning up after a device
3160 * reset.
3161 *
3162 * Returns 0 on success, -EBUSY if the reset is not finished within the
3163 * timeout, and -ERESTARTSYS if the thread was interrupted.
3164 */
ice_wait_for_reset(struct ice_pf * pf,unsigned long timeout)3165 int ice_wait_for_reset(struct ice_pf *pf, unsigned long timeout)
3166 {
3167 long ret;
3168
3169 ret = wait_event_interruptible_timeout(pf->reset_wait_queue,
3170 !ice_is_reset_in_progress(pf->state),
3171 timeout);
3172 if (ret < 0)
3173 return ret;
3174 else if (!ret)
3175 return -EBUSY;
3176 else
3177 return 0;
3178 }
3179
3180 /**
3181 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map
3182 * @vsi: VSI being configured
3183 * @ctx: the context buffer returned from AQ VSI update command
3184 */
ice_vsi_update_q_map(struct ice_vsi * vsi,struct ice_vsi_ctx * ctx)3185 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx)
3186 {
3187 vsi->info.mapping_flags = ctx->info.mapping_flags;
3188 memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping,
3189 sizeof(vsi->info.q_mapping));
3190 memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping,
3191 sizeof(vsi->info.tc_mapping));
3192 }
3193
3194 /**
3195 * ice_vsi_cfg_netdev_tc - Setup the netdev TC configuration
3196 * @vsi: the VSI being configured
3197 * @ena_tc: TC map to be enabled
3198 */
ice_vsi_cfg_netdev_tc(struct ice_vsi * vsi,u8 ena_tc)3199 void ice_vsi_cfg_netdev_tc(struct ice_vsi *vsi, u8 ena_tc)
3200 {
3201 struct net_device *netdev = vsi->netdev;
3202 struct ice_pf *pf = vsi->back;
3203 int numtc = vsi->tc_cfg.numtc;
3204 struct ice_dcbx_cfg *dcbcfg;
3205 u8 netdev_tc;
3206 int i;
3207
3208 if (!netdev)
3209 return;
3210
3211 /* CHNL VSI doesn't have its own netdev, hence, no netdev_tc */
3212 if (vsi->type == ICE_VSI_CHNL)
3213 return;
3214
3215 if (!ena_tc) {
3216 netdev_reset_tc(netdev);
3217 return;
3218 }
3219
3220 if (vsi->type == ICE_VSI_PF && ice_is_adq_active(pf))
3221 numtc = vsi->all_numtc;
3222
3223 if (netdev_set_num_tc(netdev, numtc))
3224 return;
3225
3226 dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg;
3227
3228 ice_for_each_traffic_class(i)
3229 if (vsi->tc_cfg.ena_tc & BIT(i))
3230 netdev_set_tc_queue(netdev,
3231 vsi->tc_cfg.tc_info[i].netdev_tc,
3232 vsi->tc_cfg.tc_info[i].qcount_tx,
3233 vsi->tc_cfg.tc_info[i].qoffset);
3234 /* setup TC queue map for CHNL TCs */
3235 ice_for_each_chnl_tc(i) {
3236 if (!(vsi->all_enatc & BIT(i)))
3237 break;
3238 if (!vsi->mqprio_qopt.qopt.count[i])
3239 break;
3240 netdev_set_tc_queue(netdev, i,
3241 vsi->mqprio_qopt.qopt.count[i],
3242 vsi->mqprio_qopt.qopt.offset[i]);
3243 }
3244
3245 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3246 return;
3247
3248 for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) {
3249 u8 ets_tc = dcbcfg->etscfg.prio_table[i];
3250
3251 /* Get the mapped netdev TC# for the UP */
3252 netdev_tc = vsi->tc_cfg.tc_info[ets_tc].netdev_tc;
3253 netdev_set_prio_tc_map(netdev, i, netdev_tc);
3254 }
3255 }
3256
3257 /**
3258 * ice_vsi_setup_q_map_mqprio - Prepares mqprio based tc_config
3259 * @vsi: the VSI being configured,
3260 * @ctxt: VSI context structure
3261 * @ena_tc: number of traffic classes to enable
3262 *
3263 * Prepares VSI tc_config to have queue configurations based on MQPRIO options.
3264 */
3265 static int
ice_vsi_setup_q_map_mqprio(struct ice_vsi * vsi,struct ice_vsi_ctx * ctxt,u8 ena_tc)3266 ice_vsi_setup_q_map_mqprio(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt,
3267 u8 ena_tc)
3268 {
3269 u16 pow, offset = 0, qcount_tx = 0, qcount_rx = 0, qmap;
3270 u16 tc0_offset = vsi->mqprio_qopt.qopt.offset[0];
3271 int tc0_qcount = vsi->mqprio_qopt.qopt.count[0];
3272 u16 new_txq, new_rxq;
3273 u8 netdev_tc = 0;
3274 int i;
3275
3276 vsi->tc_cfg.ena_tc = ena_tc ? ena_tc : 1;
3277
3278 pow = order_base_2(tc0_qcount);
3279 qmap = FIELD_PREP(ICE_AQ_VSI_TC_Q_OFFSET_M, tc0_offset);
3280 qmap |= FIELD_PREP(ICE_AQ_VSI_TC_Q_NUM_M, pow);
3281
3282 ice_for_each_traffic_class(i) {
3283 if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
3284 /* TC is not enabled */
3285 vsi->tc_cfg.tc_info[i].qoffset = 0;
3286 vsi->tc_cfg.tc_info[i].qcount_rx = 1;
3287 vsi->tc_cfg.tc_info[i].qcount_tx = 1;
3288 vsi->tc_cfg.tc_info[i].netdev_tc = 0;
3289 ctxt->info.tc_mapping[i] = 0;
3290 continue;
3291 }
3292
3293 offset = vsi->mqprio_qopt.qopt.offset[i];
3294 qcount_rx = vsi->mqprio_qopt.qopt.count[i];
3295 qcount_tx = vsi->mqprio_qopt.qopt.count[i];
3296 vsi->tc_cfg.tc_info[i].qoffset = offset;
3297 vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx;
3298 vsi->tc_cfg.tc_info[i].qcount_tx = qcount_tx;
3299 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
3300 }
3301
3302 if (vsi->all_numtc && vsi->all_numtc != vsi->tc_cfg.numtc) {
3303 ice_for_each_chnl_tc(i) {
3304 if (!(vsi->all_enatc & BIT(i)))
3305 continue;
3306 offset = vsi->mqprio_qopt.qopt.offset[i];
3307 qcount_rx = vsi->mqprio_qopt.qopt.count[i];
3308 qcount_tx = vsi->mqprio_qopt.qopt.count[i];
3309 }
3310 }
3311
3312 new_txq = offset + qcount_tx;
3313 if (new_txq > vsi->alloc_txq) {
3314 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n",
3315 new_txq, vsi->alloc_txq);
3316 return -EINVAL;
3317 }
3318
3319 new_rxq = offset + qcount_rx;
3320 if (new_rxq > vsi->alloc_rxq) {
3321 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n",
3322 new_rxq, vsi->alloc_rxq);
3323 return -EINVAL;
3324 }
3325
3326 /* Set actual Tx/Rx queue pairs */
3327 vsi->num_txq = new_txq;
3328 vsi->num_rxq = new_rxq;
3329
3330 /* Setup queue TC[0].qmap for given VSI context */
3331 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
3332 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
3333 ctxt->info.q_mapping[1] = cpu_to_le16(tc0_qcount);
3334
3335 /* Find queue count available for channel VSIs and starting offset
3336 * for channel VSIs
3337 */
3338 if (tc0_qcount && tc0_qcount < vsi->num_rxq) {
3339 vsi->cnt_q_avail = vsi->num_rxq - tc0_qcount;
3340 vsi->next_base_q = tc0_qcount;
3341 }
3342 dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_txq = %d\n", vsi->num_txq);
3343 dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_rxq = %d\n", vsi->num_rxq);
3344 dev_dbg(ice_pf_to_dev(vsi->back), "all_numtc %u, all_enatc: 0x%04x, tc_cfg.numtc %u\n",
3345 vsi->all_numtc, vsi->all_enatc, vsi->tc_cfg.numtc);
3346
3347 return 0;
3348 }
3349
3350 /**
3351 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map
3352 * @vsi: VSI to be configured
3353 * @ena_tc: TC bitmap
3354 *
3355 * VSI queues expected to be quiesced before calling this function
3356 */
ice_vsi_cfg_tc(struct ice_vsi * vsi,u8 ena_tc)3357 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc)
3358 {
3359 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
3360 struct ice_pf *pf = vsi->back;
3361 struct ice_tc_cfg old_tc_cfg;
3362 struct ice_vsi_ctx *ctx;
3363 struct device *dev;
3364 int i, ret = 0;
3365 u8 num_tc = 0;
3366
3367 dev = ice_pf_to_dev(pf);
3368 if (vsi->tc_cfg.ena_tc == ena_tc &&
3369 vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL)
3370 return 0;
3371
3372 ice_for_each_traffic_class(i) {
3373 /* build bitmap of enabled TCs */
3374 if (ena_tc & BIT(i))
3375 num_tc++;
3376 /* populate max_txqs per TC */
3377 max_txqs[i] = vsi->alloc_txq;
3378 /* Update max_txqs if it is CHNL VSI, because alloc_t[r]xq are
3379 * zero for CHNL VSI, hence use num_txq instead as max_txqs
3380 */
3381 if (vsi->type == ICE_VSI_CHNL &&
3382 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3383 max_txqs[i] = vsi->num_txq;
3384 }
3385
3386 memcpy(&old_tc_cfg, &vsi->tc_cfg, sizeof(old_tc_cfg));
3387 vsi->tc_cfg.ena_tc = ena_tc;
3388 vsi->tc_cfg.numtc = num_tc;
3389
3390 ctx = kzalloc_obj(*ctx, GFP_KERNEL);
3391 if (!ctx)
3392 return -ENOMEM;
3393
3394 ctx->vf_num = 0;
3395 ctx->info = vsi->info;
3396
3397 if (vsi->type == ICE_VSI_PF &&
3398 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3399 ret = ice_vsi_setup_q_map_mqprio(vsi, ctx, ena_tc);
3400 else
3401 ret = ice_vsi_setup_q_map(vsi, ctx);
3402
3403 if (ret) {
3404 memcpy(&vsi->tc_cfg, &old_tc_cfg, sizeof(vsi->tc_cfg));
3405 goto out;
3406 }
3407
3408 /* must to indicate which section of VSI context are being modified */
3409 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
3410 ret = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL);
3411 if (ret) {
3412 dev_info(dev, "Failed VSI Update\n");
3413 goto out;
3414 }
3415
3416 if (vsi->type == ICE_VSI_PF &&
3417 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3418 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs);
3419 else
3420 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx,
3421 vsi->tc_cfg.ena_tc, max_txqs);
3422
3423 if (ret) {
3424 dev_err(dev, "VSI %d failed TC config, error %d\n",
3425 vsi->vsi_num, ret);
3426 goto out;
3427 }
3428 ice_vsi_update_q_map(vsi, ctx);
3429 vsi->info.valid_sections = 0;
3430
3431 ice_vsi_cfg_netdev_tc(vsi, ena_tc);
3432 out:
3433 kfree(ctx);
3434 return ret;
3435 }
3436
3437 /**
3438 * ice_update_tx_ring_stats - Update Tx ring specific counters
3439 * @tx_ring: ring to update
3440 * @pkts: number of processed packets
3441 * @bytes: number of processed bytes
3442 */
ice_update_tx_ring_stats(struct ice_tx_ring * tx_ring,u64 pkts,u64 bytes)3443 void ice_update_tx_ring_stats(struct ice_tx_ring *tx_ring, u64 pkts, u64 bytes)
3444 {
3445 u64_stats_update_begin(&tx_ring->ring_stats->syncp);
3446 u64_stats_add(&tx_ring->ring_stats->pkts, pkts);
3447 u64_stats_add(&tx_ring->ring_stats->bytes, bytes);
3448 u64_stats_update_end(&tx_ring->ring_stats->syncp);
3449 }
3450
3451 /**
3452 * ice_update_rx_ring_stats - Update Rx ring specific counters
3453 * @rx_ring: ring to update
3454 * @pkts: number of processed packets
3455 * @bytes: number of processed bytes
3456 */
ice_update_rx_ring_stats(struct ice_rx_ring * rx_ring,u64 pkts,u64 bytes)3457 void ice_update_rx_ring_stats(struct ice_rx_ring *rx_ring, u64 pkts, u64 bytes)
3458 {
3459 u64_stats_update_begin(&rx_ring->ring_stats->syncp);
3460 u64_stats_add(&rx_ring->ring_stats->pkts, pkts);
3461 u64_stats_add(&rx_ring->ring_stats->bytes, bytes);
3462 u64_stats_update_end(&rx_ring->ring_stats->syncp);
3463 }
3464
3465 /**
3466 * ice_fetch_tx_ring_stats - Fetch Tx ring packet and byte counters
3467 * @ring: ring to update
3468 * @pkts: number of processed packets
3469 * @bytes: number of processed bytes
3470 */
ice_fetch_tx_ring_stats(const struct ice_tx_ring * ring,u64 * pkts,u64 * bytes)3471 void ice_fetch_tx_ring_stats(const struct ice_tx_ring *ring,
3472 u64 *pkts, u64 *bytes)
3473 {
3474 unsigned int start;
3475
3476 do {
3477 start = u64_stats_fetch_begin(&ring->ring_stats->syncp);
3478 *pkts = u64_stats_read(&ring->ring_stats->pkts);
3479 *bytes = u64_stats_read(&ring->ring_stats->bytes);
3480 } while (u64_stats_fetch_retry(&ring->ring_stats->syncp, start));
3481 }
3482
3483 /**
3484 * ice_fetch_rx_ring_stats - Fetch Rx ring packet and byte counters
3485 * @ring: ring to read
3486 * @pkts: number of processed packets
3487 * @bytes: number of processed bytes
3488 */
ice_fetch_rx_ring_stats(const struct ice_rx_ring * ring,u64 * pkts,u64 * bytes)3489 void ice_fetch_rx_ring_stats(const struct ice_rx_ring *ring,
3490 u64 *pkts, u64 *bytes)
3491 {
3492 unsigned int start;
3493
3494 do {
3495 start = u64_stats_fetch_begin(&ring->ring_stats->syncp);
3496 *pkts = u64_stats_read(&ring->ring_stats->pkts);
3497 *bytes = u64_stats_read(&ring->ring_stats->bytes);
3498 } while (u64_stats_fetch_retry(&ring->ring_stats->syncp, start));
3499 }
3500
3501 /**
3502 * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used
3503 * @pi: port info of the switch with default VSI
3504 *
3505 * Return true if the there is a single VSI in default forwarding VSI list
3506 */
ice_is_dflt_vsi_in_use(struct ice_port_info * pi)3507 bool ice_is_dflt_vsi_in_use(struct ice_port_info *pi)
3508 {
3509 bool exists = false;
3510
3511 ice_check_if_dflt_vsi(pi, 0, &exists);
3512 return exists;
3513 }
3514
3515 /**
3516 * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI
3517 * @vsi: VSI to compare against default forwarding VSI
3518 *
3519 * If this VSI passed in is the default forwarding VSI then return true, else
3520 * return false
3521 */
ice_is_vsi_dflt_vsi(struct ice_vsi * vsi)3522 bool ice_is_vsi_dflt_vsi(struct ice_vsi *vsi)
3523 {
3524 return ice_check_if_dflt_vsi(vsi->port_info, vsi->idx, NULL);
3525 }
3526
3527 /**
3528 * ice_set_dflt_vsi - set the default forwarding VSI
3529 * @vsi: VSI getting set as the default forwarding VSI on the switch
3530 *
3531 * If the VSI passed in is already the default VSI and it's enabled just return
3532 * success.
3533 *
3534 * Otherwise try to set the VSI passed in as the switch's default VSI and
3535 * return the result.
3536 */
ice_set_dflt_vsi(struct ice_vsi * vsi)3537 int ice_set_dflt_vsi(struct ice_vsi *vsi)
3538 {
3539 struct device *dev;
3540 int status;
3541
3542 if (!vsi)
3543 return -EINVAL;
3544
3545 dev = ice_pf_to_dev(vsi->back);
3546
3547 if (ice_lag_is_switchdev_running(vsi->back)) {
3548 dev_dbg(dev, "VSI %d passed is a part of LAG containing interfaces in switchdev mode, nothing to do\n",
3549 vsi->vsi_num);
3550 return 0;
3551 }
3552
3553 /* the VSI passed in is already the default VSI */
3554 if (ice_is_vsi_dflt_vsi(vsi)) {
3555 dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n",
3556 vsi->vsi_num);
3557 return 0;
3558 }
3559
3560 status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, true, ICE_FLTR_RX);
3561 if (status) {
3562 dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %d\n",
3563 vsi->vsi_num, status);
3564 return status;
3565 }
3566
3567 return 0;
3568 }
3569
3570 /**
3571 * ice_clear_dflt_vsi - clear the default forwarding VSI
3572 * @vsi: VSI to remove from filter list
3573 *
3574 * If the switch has no default VSI or it's not enabled then return error.
3575 *
3576 * Otherwise try to clear the default VSI and return the result.
3577 */
ice_clear_dflt_vsi(struct ice_vsi * vsi)3578 int ice_clear_dflt_vsi(struct ice_vsi *vsi)
3579 {
3580 struct device *dev;
3581 int status;
3582
3583 if (!vsi)
3584 return -EINVAL;
3585
3586 dev = ice_pf_to_dev(vsi->back);
3587
3588 /* there is no default VSI configured */
3589 if (!ice_is_dflt_vsi_in_use(vsi->port_info))
3590 return -ENODEV;
3591
3592 status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, false,
3593 ICE_FLTR_RX);
3594 if (status) {
3595 dev_err(dev, "Failed to clear the default forwarding VSI %d, error %d\n",
3596 vsi->vsi_num, status);
3597 return -EIO;
3598 }
3599
3600 return 0;
3601 }
3602
3603 /**
3604 * ice_get_link_speed_mbps - get link speed in Mbps
3605 * @vsi: the VSI whose link speed is being queried
3606 *
3607 * Return current VSI link speed and 0 if the speed is unknown.
3608 */
ice_get_link_speed_mbps(struct ice_vsi * vsi)3609 int ice_get_link_speed_mbps(struct ice_vsi *vsi)
3610 {
3611 unsigned int link_speed;
3612
3613 link_speed = vsi->port_info->phy.link_info.link_speed;
3614
3615 return (int)ice_get_link_speed(fls(link_speed) - 1);
3616 }
3617
3618 /**
3619 * ice_get_link_speed_kbps - get link speed in Kbps
3620 * @vsi: the VSI whose link speed is being queried
3621 *
3622 * Return current VSI link speed and 0 if the speed is unknown.
3623 */
ice_get_link_speed_kbps(struct ice_vsi * vsi)3624 int ice_get_link_speed_kbps(struct ice_vsi *vsi)
3625 {
3626 int speed_mbps;
3627
3628 speed_mbps = ice_get_link_speed_mbps(vsi);
3629
3630 return speed_mbps * 1000;
3631 }
3632
3633 /**
3634 * ice_set_min_bw_limit - setup minimum BW limit for Tx based on min_tx_rate
3635 * @vsi: VSI to be configured
3636 * @min_tx_rate: min Tx rate in Kbps to be configured as BW limit
3637 *
3638 * If the min_tx_rate is specified as 0 that means to clear the minimum BW limit
3639 * profile, otherwise a non-zero value will force a minimum BW limit for the VSI
3640 * on TC 0.
3641 */
ice_set_min_bw_limit(struct ice_vsi * vsi,u64 min_tx_rate)3642 int ice_set_min_bw_limit(struct ice_vsi *vsi, u64 min_tx_rate)
3643 {
3644 struct ice_pf *pf = vsi->back;
3645 struct device *dev;
3646 int status;
3647 int speed;
3648
3649 dev = ice_pf_to_dev(pf);
3650 if (!vsi->port_info) {
3651 dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n",
3652 vsi->idx, vsi->type);
3653 return -EINVAL;
3654 }
3655
3656 speed = ice_get_link_speed_kbps(vsi);
3657 if (min_tx_rate > (u64)speed) {
3658 dev_err(dev, "invalid min Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n",
3659 min_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx,
3660 speed);
3661 return -EINVAL;
3662 }
3663
3664 /* Configure min BW for VSI limit */
3665 if (min_tx_rate) {
3666 status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0,
3667 ICE_MIN_BW, min_tx_rate);
3668 if (status) {
3669 dev_err(dev, "failed to set min Tx rate(%llu Kbps) for %s %d\n",
3670 min_tx_rate, ice_vsi_type_str(vsi->type),
3671 vsi->idx);
3672 return status;
3673 }
3674
3675 dev_dbg(dev, "set min Tx rate(%llu Kbps) for %s\n",
3676 min_tx_rate, ice_vsi_type_str(vsi->type));
3677 } else {
3678 status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info,
3679 vsi->idx, 0,
3680 ICE_MIN_BW);
3681 if (status) {
3682 dev_err(dev, "failed to clear min Tx rate configuration for %s %d\n",
3683 ice_vsi_type_str(vsi->type), vsi->idx);
3684 return status;
3685 }
3686
3687 dev_dbg(dev, "cleared min Tx rate configuration for %s %d\n",
3688 ice_vsi_type_str(vsi->type), vsi->idx);
3689 }
3690
3691 return 0;
3692 }
3693
3694 /**
3695 * ice_set_max_bw_limit - setup maximum BW limit for Tx based on max_tx_rate
3696 * @vsi: VSI to be configured
3697 * @max_tx_rate: max Tx rate in Kbps to be configured as BW limit
3698 *
3699 * If the max_tx_rate is specified as 0 that means to clear the maximum BW limit
3700 * profile, otherwise a non-zero value will force a maximum BW limit for the VSI
3701 * on TC 0.
3702 */
ice_set_max_bw_limit(struct ice_vsi * vsi,u64 max_tx_rate)3703 int ice_set_max_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate)
3704 {
3705 struct ice_pf *pf = vsi->back;
3706 struct device *dev;
3707 int status;
3708 int speed;
3709
3710 dev = ice_pf_to_dev(pf);
3711 if (!vsi->port_info) {
3712 dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n",
3713 vsi->idx, vsi->type);
3714 return -EINVAL;
3715 }
3716
3717 speed = ice_get_link_speed_kbps(vsi);
3718 if (max_tx_rate > (u64)speed) {
3719 dev_err(dev, "invalid max Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n",
3720 max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx,
3721 speed);
3722 return -EINVAL;
3723 }
3724
3725 /* Configure max BW for VSI limit */
3726 if (max_tx_rate) {
3727 status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0,
3728 ICE_MAX_BW, max_tx_rate);
3729 if (status) {
3730 dev_err(dev, "failed setting max Tx rate(%llu Kbps) for %s %d\n",
3731 max_tx_rate, ice_vsi_type_str(vsi->type),
3732 vsi->idx);
3733 return status;
3734 }
3735
3736 dev_dbg(dev, "set max Tx rate(%llu Kbps) for %s %d\n",
3737 max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx);
3738 } else {
3739 status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info,
3740 vsi->idx, 0,
3741 ICE_MAX_BW);
3742 if (status) {
3743 dev_err(dev, "failed clearing max Tx rate configuration for %s %d\n",
3744 ice_vsi_type_str(vsi->type), vsi->idx);
3745 return status;
3746 }
3747
3748 dev_dbg(dev, "cleared max Tx rate configuration for %s %d\n",
3749 ice_vsi_type_str(vsi->type), vsi->idx);
3750 }
3751
3752 return 0;
3753 }
3754
3755 /**
3756 * ice_set_link - turn on/off physical link
3757 * @vsi: VSI to modify physical link on
3758 * @ena: turn on/off physical link
3759 */
ice_set_link(struct ice_vsi * vsi,bool ena)3760 int ice_set_link(struct ice_vsi *vsi, bool ena)
3761 {
3762 struct device *dev = ice_pf_to_dev(vsi->back);
3763 struct ice_port_info *pi = vsi->port_info;
3764 struct ice_hw *hw = pi->hw;
3765 int status;
3766
3767 if (vsi->type != ICE_VSI_PF)
3768 return -EINVAL;
3769
3770 status = ice_aq_set_link_restart_an(pi, ena, NULL);
3771
3772 /* if link is owned by manageability, FW will return LIBIE_AQ_RC_EMODE.
3773 * this is not a fatal error, so print a warning message and return
3774 * a success code. Return an error if FW returns an error code other
3775 * than LIBIE_AQ_RC_EMODE
3776 */
3777 if (status == -EIO) {
3778 if (hw->adminq.sq_last_status == LIBIE_AQ_RC_EMODE)
3779 dev_dbg(dev, "can't set link to %s, err %d aq_err %s. not fatal, continuing\n",
3780 (ena ? "ON" : "OFF"), status,
3781 libie_aq_str(hw->adminq.sq_last_status));
3782 } else if (status) {
3783 dev_err(dev, "can't set link to %s, err %d aq_err %s\n",
3784 (ena ? "ON" : "OFF"), status,
3785 libie_aq_str(hw->adminq.sq_last_status));
3786 return status;
3787 }
3788
3789 return 0;
3790 }
3791
3792 /**
3793 * ice_vsi_add_vlan_zero - add VLAN 0 filter(s) for this VSI
3794 * @vsi: VSI used to add VLAN filters
3795 *
3796 * In Single VLAN Mode (SVM), single VLAN filters via ICE_SW_LKUP_VLAN are based
3797 * on the inner VLAN ID, so the VLAN TPID (i.e. 0x8100 or 0x888a8) doesn't
3798 * matter. In Double VLAN Mode (DVM), outer/single VLAN filters via
3799 * ICE_SW_LKUP_VLAN are based on the outer/single VLAN ID + VLAN TPID.
3800 *
3801 * For both modes add a VLAN 0 + no VLAN TPID filter to handle untagged traffic
3802 * when VLAN pruning is enabled. Also, this handles VLAN 0 priority tagged
3803 * traffic in SVM, since the VLAN TPID isn't part of filtering.
3804 *
3805 * If DVM is enabled then an explicit VLAN 0 + VLAN TPID filter needs to be
3806 * added to allow VLAN 0 priority tagged traffic in DVM, since the VLAN TPID is
3807 * part of filtering.
3808 */
ice_vsi_add_vlan_zero(struct ice_vsi * vsi)3809 int ice_vsi_add_vlan_zero(struct ice_vsi *vsi)
3810 {
3811 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3812 struct ice_vlan vlan;
3813 int err;
3814
3815 vlan = ICE_VLAN(0, 0, 0);
3816 err = vlan_ops->add_vlan(vsi, &vlan);
3817 if (err && err != -EEXIST)
3818 return err;
3819
3820 /* in SVM both VLAN 0 filters are identical */
3821 if (!ice_is_dvm_ena(&vsi->back->hw))
3822 return 0;
3823
3824 vlan = ICE_VLAN(ETH_P_8021Q, 0, 0);
3825 err = vlan_ops->add_vlan(vsi, &vlan);
3826 if (err && err != -EEXIST)
3827 return err;
3828
3829 return 0;
3830 }
3831
3832 /**
3833 * ice_vsi_del_vlan_zero - delete VLAN 0 filter(s) for this VSI
3834 * @vsi: VSI used to add VLAN filters
3835 *
3836 * Delete the VLAN 0 filters in the same manner that they were added in
3837 * ice_vsi_add_vlan_zero.
3838 */
ice_vsi_del_vlan_zero(struct ice_vsi * vsi)3839 int ice_vsi_del_vlan_zero(struct ice_vsi *vsi)
3840 {
3841 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3842 struct ice_pf *pf = vsi->back;
3843 struct ice_vlan vlan;
3844 int err;
3845
3846 if (pf->lag && pf->lag->primary) {
3847 dev_dbg(ice_pf_to_dev(pf), "Interface is primary in aggregate - not deleting prune list\n");
3848 } else {
3849 vlan = ICE_VLAN(0, 0, 0);
3850 err = vlan_ops->del_vlan(vsi, &vlan);
3851 if (err && err != -EEXIST)
3852 return err;
3853 }
3854
3855 /* in SVM both VLAN 0 filters are identical */
3856 if (!ice_is_dvm_ena(&vsi->back->hw))
3857 return 0;
3858
3859 if (pf->lag && pf->lag->primary) {
3860 dev_dbg(ice_pf_to_dev(pf), "Interface is primary in aggregate - not deleting QinQ prune list\n");
3861 } else {
3862 vlan = ICE_VLAN(ETH_P_8021Q, 0, 0);
3863 err = vlan_ops->del_vlan(vsi, &vlan);
3864 if (err && err != -EEXIST)
3865 return err;
3866 }
3867
3868 /* when deleting the last VLAN filter, make sure to disable the VLAN
3869 * promisc mode so the filter isn't left by accident
3870 */
3871 return ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3872 ICE_MCAST_VLAN_PROMISC_BITS, 0);
3873 }
3874
3875 /**
3876 * ice_vsi_num_zero_vlans - get number of VLAN 0 filters based on VLAN mode
3877 * @vsi: VSI used to get the VLAN mode
3878 *
3879 * If DVM is enabled then 2 VLAN 0 filters are added, else if SVM is enabled
3880 * then 1 VLAN 0 filter is added. See ice_vsi_add_vlan_zero for more details.
3881 */
ice_vsi_num_zero_vlans(struct ice_vsi * vsi)3882 static u16 ice_vsi_num_zero_vlans(struct ice_vsi *vsi)
3883 {
3884 #define ICE_DVM_NUM_ZERO_VLAN_FLTRS 2
3885 #define ICE_SVM_NUM_ZERO_VLAN_FLTRS 1
3886 /* no VLAN 0 filter is created when a port VLAN is active */
3887 if (vsi->type == ICE_VSI_VF) {
3888 if (WARN_ON(!vsi->vf))
3889 return 0;
3890
3891 if (ice_vf_is_port_vlan_ena(vsi->vf))
3892 return 0;
3893 }
3894
3895 if (ice_is_dvm_ena(&vsi->back->hw))
3896 return ICE_DVM_NUM_ZERO_VLAN_FLTRS;
3897 else
3898 return ICE_SVM_NUM_ZERO_VLAN_FLTRS;
3899 }
3900
3901 /**
3902 * ice_vsi_has_non_zero_vlans - check if VSI has any non-zero VLANs
3903 * @vsi: VSI used to determine if any non-zero VLANs have been added
3904 */
ice_vsi_has_non_zero_vlans(struct ice_vsi * vsi)3905 bool ice_vsi_has_non_zero_vlans(struct ice_vsi *vsi)
3906 {
3907 return (vsi->num_vlan > ice_vsi_num_zero_vlans(vsi));
3908 }
3909
3910 /**
3911 * ice_vsi_num_non_zero_vlans - get the number of non-zero VLANs for this VSI
3912 * @vsi: VSI used to get the number of non-zero VLANs added
3913 */
ice_vsi_num_non_zero_vlans(struct ice_vsi * vsi)3914 u16 ice_vsi_num_non_zero_vlans(struct ice_vsi *vsi)
3915 {
3916 return (vsi->num_vlan - ice_vsi_num_zero_vlans(vsi));
3917 }
3918
3919 /**
3920 * ice_is_feature_supported
3921 * @pf: pointer to the struct ice_pf instance
3922 * @f: feature enum to be checked
3923 *
3924 * returns true if feature is supported, false otherwise
3925 */
ice_is_feature_supported(struct ice_pf * pf,enum ice_feature f)3926 bool ice_is_feature_supported(struct ice_pf *pf, enum ice_feature f)
3927 {
3928 if (f < 0 || f >= ICE_F_MAX)
3929 return false;
3930
3931 return test_bit(f, pf->features);
3932 }
3933
3934 /**
3935 * ice_set_feature_support
3936 * @pf: pointer to the struct ice_pf instance
3937 * @f: feature enum to set
3938 */
ice_set_feature_support(struct ice_pf * pf,enum ice_feature f)3939 void ice_set_feature_support(struct ice_pf *pf, enum ice_feature f)
3940 {
3941 if (f < 0 || f >= ICE_F_MAX)
3942 return;
3943
3944 set_bit(f, pf->features);
3945 }
3946
3947 /**
3948 * ice_clear_feature_support
3949 * @pf: pointer to the struct ice_pf instance
3950 * @f: feature enum to clear
3951 */
ice_clear_feature_support(struct ice_pf * pf,enum ice_feature f)3952 void ice_clear_feature_support(struct ice_pf *pf, enum ice_feature f)
3953 {
3954 if (f < 0 || f >= ICE_F_MAX)
3955 return;
3956
3957 clear_bit(f, pf->features);
3958 }
3959
3960 /**
3961 * ice_init_feature_support
3962 * @pf: pointer to the struct ice_pf instance
3963 *
3964 * called during init to setup supported feature
3965 */
ice_init_feature_support(struct ice_pf * pf)3966 void ice_init_feature_support(struct ice_pf *pf)
3967 {
3968 switch (pf->hw.device_id) {
3969 case ICE_DEV_ID_E810C_BACKPLANE:
3970 case ICE_DEV_ID_E810C_QSFP:
3971 case ICE_DEV_ID_E810C_SFP:
3972 case ICE_DEV_ID_E810_XXV_BACKPLANE:
3973 case ICE_DEV_ID_E810_XXV_QSFP:
3974 case ICE_DEV_ID_E810_XXV_SFP:
3975 ice_set_feature_support(pf, ICE_F_DSCP);
3976 if (ice_is_phy_rclk_in_netlist(&pf->hw))
3977 ice_set_feature_support(pf, ICE_F_PHY_RCLK);
3978 /* If we don't own the timer - don't enable other caps */
3979 if (!ice_pf_src_tmr_owned(pf))
3980 break;
3981 if (ice_is_cgu_in_netlist(&pf->hw))
3982 ice_set_feature_support(pf, ICE_F_CGU);
3983 if (ice_is_clock_mux_in_netlist(&pf->hw))
3984 ice_set_feature_support(pf, ICE_F_SMA_CTRL);
3985 if (ice_gnss_is_module_present(&pf->hw))
3986 ice_set_feature_support(pf, ICE_F_GNSS);
3987 break;
3988 default:
3989 break;
3990 }
3991
3992 if (pf->hw.mac_type == ICE_MAC_GENERIC_3K_E825)
3993 ice_set_feature_support(pf, ICE_F_PHY_RCLK);
3994
3995 if (pf->hw.mac_type == ICE_MAC_E830) {
3996 ice_set_feature_support(pf, ICE_F_MBX_LIMIT);
3997 ice_set_feature_support(pf, ICE_F_GCS);
3998 ice_set_feature_support(pf, ICE_F_TXTIME);
3999 }
4000 }
4001
4002 /**
4003 * ice_vsi_update_security - update security block in VSI
4004 * @vsi: pointer to VSI structure
4005 * @fill: function pointer to fill ctx
4006 */
4007 int
ice_vsi_update_security(struct ice_vsi * vsi,void (* fill)(struct ice_vsi_ctx *))4008 ice_vsi_update_security(struct ice_vsi *vsi, void (*fill)(struct ice_vsi_ctx *))
4009 {
4010 struct ice_vsi_ctx ctx = { 0 };
4011
4012 ctx.info = vsi->info;
4013 ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
4014 fill(&ctx);
4015
4016 if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL))
4017 return -ENODEV;
4018
4019 vsi->info = ctx.info;
4020 return 0;
4021 }
4022
4023 /**
4024 * ice_vsi_ctx_set_antispoof - set antispoof function in VSI ctx
4025 * @ctx: pointer to VSI ctx structure
4026 */
ice_vsi_ctx_set_antispoof(struct ice_vsi_ctx * ctx)4027 void ice_vsi_ctx_set_antispoof(struct ice_vsi_ctx *ctx)
4028 {
4029 ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF |
4030 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4031 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4032 }
4033
4034 /**
4035 * ice_vsi_ctx_clear_antispoof - clear antispoof function in VSI ctx
4036 * @ctx: pointer to VSI ctx structure
4037 */
ice_vsi_ctx_clear_antispoof(struct ice_vsi_ctx * ctx)4038 void ice_vsi_ctx_clear_antispoof(struct ice_vsi_ctx *ctx)
4039 {
4040 ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF &
4041 ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4042 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4043 }
4044
4045 /**
4046 * ice_vsi_update_local_lb - update sw block in VSI with local loopback bit
4047 * @vsi: pointer to VSI structure
4048 * @set: set or unset the bit
4049 */
4050 int
ice_vsi_update_local_lb(struct ice_vsi * vsi,bool set)4051 ice_vsi_update_local_lb(struct ice_vsi *vsi, bool set)
4052 {
4053 struct ice_vsi_ctx ctx = {
4054 .info = vsi->info,
4055 };
4056
4057 ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
4058 if (set)
4059 ctx.info.sw_flags |= ICE_AQ_VSI_SW_FLAG_LOCAL_LB;
4060 else
4061 ctx.info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_LOCAL_LB;
4062
4063 if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL))
4064 return -ENODEV;
4065
4066 vsi->info = ctx.info;
4067 return 0;
4068 }
4069
4070 /**
4071 * ice_vsi_update_l2tsel - update l2tsel field for all Rx rings on this VSI
4072 * @vsi: VSI used to update l2tsel on
4073 * @l2tsel: l2tsel setting requested
4074 *
4075 * Use the l2tsel setting to update all of the Rx queue context bits for l2tsel.
4076 * This will modify which descriptor field the first offloaded VLAN will be
4077 * stripped into.
4078 */
ice_vsi_update_l2tsel(struct ice_vsi * vsi,enum ice_l2tsel l2tsel)4079 void ice_vsi_update_l2tsel(struct ice_vsi *vsi, enum ice_l2tsel l2tsel)
4080 {
4081 struct ice_hw *hw = &vsi->back->hw;
4082 u32 l2tsel_bit;
4083 int i;
4084
4085 if (l2tsel == ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND)
4086 l2tsel_bit = 0;
4087 else
4088 l2tsel_bit = BIT(ICE_L2TSEL_BIT_OFFSET);
4089
4090 for (i = 0; i < vsi->alloc_rxq; i++) {
4091 u16 pfq = vsi->rxq_map[i];
4092 u32 qrx_context_offset;
4093 u32 regval;
4094
4095 qrx_context_offset =
4096 QRX_CONTEXT(ICE_L2TSEL_QRX_CONTEXT_REG_IDX, pfq);
4097
4098 regval = rd32(hw, qrx_context_offset);
4099 regval &= ~BIT(ICE_L2TSEL_BIT_OFFSET);
4100 regval |= l2tsel_bit;
4101 wr32(hw, qrx_context_offset, regval);
4102 }
4103 }
4104