1 /*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34 #include <linux/module.h>
35
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42 #include <linux/inet_diag.h>
43
44 #include <net/snmp.h>
45 #include <net/tls.h>
46 #include <net/tls_toe.h>
47
48 #include "tls.h"
49
50 MODULE_AUTHOR("Mellanox Technologies");
51 MODULE_DESCRIPTION("Transport Layer Security Support");
52 MODULE_LICENSE("Dual BSD/GPL");
53 MODULE_ALIAS_TCP_ULP("tls");
54
55 enum {
56 TLSV4,
57 TLSV6,
58 TLS_NUM_PROTS,
59 };
60
61 #define CHECK_CIPHER_DESC(cipher,ci) \
62 static_assert(cipher ## _IV_SIZE <= TLS_MAX_IV_SIZE); \
63 static_assert(cipher ## _SALT_SIZE <= TLS_MAX_SALT_SIZE); \
64 static_assert(cipher ## _REC_SEQ_SIZE <= TLS_MAX_REC_SEQ_SIZE); \
65 static_assert(cipher ## _TAG_SIZE == TLS_TAG_SIZE); \
66 static_assert(sizeof_field(struct ci, iv) == cipher ## _IV_SIZE); \
67 static_assert(sizeof_field(struct ci, key) == cipher ## _KEY_SIZE); \
68 static_assert(sizeof_field(struct ci, salt) == cipher ## _SALT_SIZE); \
69 static_assert(sizeof_field(struct ci, rec_seq) == cipher ## _REC_SEQ_SIZE);
70
71 #define __CIPHER_DESC(ci) \
72 .iv_offset = offsetof(struct ci, iv), \
73 .key_offset = offsetof(struct ci, key), \
74 .salt_offset = offsetof(struct ci, salt), \
75 .rec_seq_offset = offsetof(struct ci, rec_seq), \
76 .crypto_info = sizeof(struct ci)
77
78 #define CIPHER_DESC(cipher,ci,algname,_offloadable) [cipher - TLS_CIPHER_MIN] = { \
79 .nonce = cipher ## _IV_SIZE, \
80 .iv = cipher ## _IV_SIZE, \
81 .key = cipher ## _KEY_SIZE, \
82 .salt = cipher ## _SALT_SIZE, \
83 .tag = cipher ## _TAG_SIZE, \
84 .rec_seq = cipher ## _REC_SEQ_SIZE, \
85 .cipher_name = algname, \
86 .offloadable = _offloadable, \
87 __CIPHER_DESC(ci), \
88 }
89
90 #define CIPHER_DESC_NONCE0(cipher,ci,algname,_offloadable) [cipher - TLS_CIPHER_MIN] = { \
91 .nonce = 0, \
92 .iv = cipher ## _IV_SIZE, \
93 .key = cipher ## _KEY_SIZE, \
94 .salt = cipher ## _SALT_SIZE, \
95 .tag = cipher ## _TAG_SIZE, \
96 .rec_seq = cipher ## _REC_SEQ_SIZE, \
97 .cipher_name = algname, \
98 .offloadable = _offloadable, \
99 __CIPHER_DESC(ci), \
100 }
101
102 const struct tls_cipher_desc tls_cipher_desc[TLS_CIPHER_MAX + 1 - TLS_CIPHER_MIN] = {
103 CIPHER_DESC(TLS_CIPHER_AES_GCM_128, tls12_crypto_info_aes_gcm_128, "gcm(aes)", true),
104 CIPHER_DESC(TLS_CIPHER_AES_GCM_256, tls12_crypto_info_aes_gcm_256, "gcm(aes)", true),
105 CIPHER_DESC(TLS_CIPHER_AES_CCM_128, tls12_crypto_info_aes_ccm_128, "ccm(aes)", false),
106 CIPHER_DESC_NONCE0(TLS_CIPHER_CHACHA20_POLY1305, tls12_crypto_info_chacha20_poly1305, "rfc7539(chacha20,poly1305)", false),
107 CIPHER_DESC(TLS_CIPHER_SM4_GCM, tls12_crypto_info_sm4_gcm, "gcm(sm4)", false),
108 CIPHER_DESC(TLS_CIPHER_SM4_CCM, tls12_crypto_info_sm4_ccm, "ccm(sm4)", false),
109 CIPHER_DESC(TLS_CIPHER_ARIA_GCM_128, tls12_crypto_info_aria_gcm_128, "gcm(aria)", false),
110 CIPHER_DESC(TLS_CIPHER_ARIA_GCM_256, tls12_crypto_info_aria_gcm_256, "gcm(aria)", false),
111 };
112
113 CHECK_CIPHER_DESC(TLS_CIPHER_AES_GCM_128, tls12_crypto_info_aes_gcm_128);
114 CHECK_CIPHER_DESC(TLS_CIPHER_AES_GCM_256, tls12_crypto_info_aes_gcm_256);
115 CHECK_CIPHER_DESC(TLS_CIPHER_AES_CCM_128, tls12_crypto_info_aes_ccm_128);
116 CHECK_CIPHER_DESC(TLS_CIPHER_CHACHA20_POLY1305, tls12_crypto_info_chacha20_poly1305);
117 CHECK_CIPHER_DESC(TLS_CIPHER_SM4_GCM, tls12_crypto_info_sm4_gcm);
118 CHECK_CIPHER_DESC(TLS_CIPHER_SM4_CCM, tls12_crypto_info_sm4_ccm);
119 CHECK_CIPHER_DESC(TLS_CIPHER_ARIA_GCM_128, tls12_crypto_info_aria_gcm_128);
120 CHECK_CIPHER_DESC(TLS_CIPHER_ARIA_GCM_256, tls12_crypto_info_aria_gcm_256);
121
122 static const struct proto *saved_tcpv6_prot;
123 static DEFINE_MUTEX(tcpv6_prot_mutex);
124 static const struct proto *saved_tcpv4_prot;
125 static DEFINE_MUTEX(tcpv4_prot_mutex);
126 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
127 static struct proto_ops tls_proto_ops[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
128 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
129 const struct proto *base);
130
update_sk_prot(struct sock * sk,struct tls_context * ctx)131 void update_sk_prot(struct sock *sk, struct tls_context *ctx)
132 {
133 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
134
135 WRITE_ONCE(sk->sk_prot,
136 &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]);
137 WRITE_ONCE(sk->sk_socket->ops,
138 &tls_proto_ops[ip_ver][ctx->tx_conf][ctx->rx_conf]);
139 }
140
wait_on_pending_writer(struct sock * sk,long * timeo)141 int wait_on_pending_writer(struct sock *sk, long *timeo)
142 {
143 DEFINE_WAIT_FUNC(wait, woken_wake_function);
144 int ret, rc = 0;
145
146 add_wait_queue(sk_sleep(sk), &wait);
147 while (1) {
148 if (!*timeo) {
149 rc = -EAGAIN;
150 break;
151 }
152
153 if (signal_pending(current)) {
154 rc = sock_intr_errno(*timeo);
155 break;
156 }
157
158 ret = sk_wait_event(sk, timeo,
159 !READ_ONCE(sk->sk_write_pending), &wait);
160 if (ret) {
161 if (ret < 0)
162 rc = ret;
163 break;
164 }
165 }
166 remove_wait_queue(sk_sleep(sk), &wait);
167 return rc;
168 }
169
tls_push_sg(struct sock * sk,struct tls_context * ctx,struct scatterlist * sg,u16 first_offset,int flags)170 int tls_push_sg(struct sock *sk,
171 struct tls_context *ctx,
172 struct scatterlist *sg,
173 u16 first_offset,
174 int flags)
175 {
176 struct bio_vec bvec;
177 struct msghdr msg = {
178 .msg_flags = MSG_SPLICE_PAGES | flags,
179 };
180 int ret = 0;
181 struct page *p;
182 size_t size;
183 int offset = first_offset;
184
185 size = sg->length - offset;
186 offset += sg->offset;
187
188 ctx->splicing_pages = true;
189 while (1) {
190 /* is sending application-limited? */
191 tcp_rate_check_app_limited(sk);
192 p = sg_page(sg);
193 retry:
194 bvec_set_page(&bvec, p, size, offset);
195 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, size);
196
197 ret = tcp_sendmsg_locked(sk, &msg, size);
198
199 if (ret != size) {
200 if (ret > 0) {
201 offset += ret;
202 size -= ret;
203 goto retry;
204 }
205
206 offset -= sg->offset;
207 ctx->partially_sent_offset = offset;
208 ctx->partially_sent_record = (void *)sg;
209 ctx->splicing_pages = false;
210 return ret;
211 }
212
213 put_page(p);
214 sk_mem_uncharge(sk, sg->length);
215 sg = sg_next(sg);
216 if (!sg)
217 break;
218
219 offset = sg->offset;
220 size = sg->length;
221 }
222
223 ctx->splicing_pages = false;
224
225 return 0;
226 }
227
tls_handle_open_record(struct sock * sk,int flags)228 static int tls_handle_open_record(struct sock *sk, int flags)
229 {
230 struct tls_context *ctx = tls_get_ctx(sk);
231
232 if (tls_is_pending_open_record(ctx))
233 return ctx->push_pending_record(sk, flags);
234
235 return 0;
236 }
237
tls_process_cmsg(struct sock * sk,struct msghdr * msg,unsigned char * record_type)238 int tls_process_cmsg(struct sock *sk, struct msghdr *msg,
239 unsigned char *record_type)
240 {
241 struct cmsghdr *cmsg;
242 int rc = -EINVAL;
243
244 for_each_cmsghdr(cmsg, msg) {
245 if (!CMSG_OK(msg, cmsg))
246 return -EINVAL;
247 if (cmsg->cmsg_level != SOL_TLS)
248 continue;
249
250 switch (cmsg->cmsg_type) {
251 case TLS_SET_RECORD_TYPE:
252 if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
253 return -EINVAL;
254
255 if (msg->msg_flags & MSG_MORE)
256 return -EINVAL;
257
258 *record_type = *(unsigned char *)CMSG_DATA(cmsg);
259
260 rc = tls_handle_open_record(sk, msg->msg_flags);
261 break;
262 default:
263 return -EINVAL;
264 }
265 }
266
267 return rc;
268 }
269
tls_push_partial_record(struct sock * sk,struct tls_context * ctx,int flags)270 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
271 int flags)
272 {
273 struct scatterlist *sg;
274 u16 offset;
275
276 sg = ctx->partially_sent_record;
277 offset = ctx->partially_sent_offset;
278
279 ctx->partially_sent_record = NULL;
280 return tls_push_sg(sk, ctx, sg, offset, flags);
281 }
282
tls_free_partial_record(struct sock * sk,struct tls_context * ctx)283 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
284 {
285 struct scatterlist *sg;
286
287 for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) {
288 put_page(sg_page(sg));
289 sk_mem_uncharge(sk, sg->length);
290 }
291 ctx->partially_sent_record = NULL;
292 }
293
tls_write_space(struct sock * sk)294 static void tls_write_space(struct sock *sk)
295 {
296 struct tls_context *ctx = tls_get_ctx(sk);
297
298 /* If splicing_pages call lower protocol write space handler
299 * to ensure we wake up any waiting operations there. For example
300 * if splicing pages where to call sk_wait_event.
301 */
302 if (ctx->splicing_pages) {
303 ctx->sk_write_space(sk);
304 return;
305 }
306
307 #ifdef CONFIG_TLS_DEVICE
308 if (ctx->tx_conf == TLS_HW)
309 tls_device_write_space(sk, ctx);
310 else
311 #endif
312 tls_sw_write_space(sk, ctx);
313
314 ctx->sk_write_space(sk);
315 }
316
317 /**
318 * tls_ctx_free() - free TLS ULP context
319 * @sk: socket to with @ctx is attached
320 * @ctx: TLS context structure
321 *
322 * Free TLS context. If @sk is %NULL caller guarantees that the socket
323 * to which @ctx was attached has no outstanding references.
324 */
tls_ctx_free(struct sock * sk,struct tls_context * ctx)325 void tls_ctx_free(struct sock *sk, struct tls_context *ctx)
326 {
327 if (!ctx)
328 return;
329
330 memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
331 memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
332 mutex_destroy(&ctx->tx_lock);
333
334 if (sk)
335 kfree_rcu(ctx, rcu);
336 else
337 kfree(ctx);
338 }
339
tls_sk_proto_cleanup(struct sock * sk,struct tls_context * ctx,long timeo)340 static void tls_sk_proto_cleanup(struct sock *sk,
341 struct tls_context *ctx, long timeo)
342 {
343 if (unlikely(sk->sk_write_pending) &&
344 !wait_on_pending_writer(sk, &timeo))
345 tls_handle_open_record(sk, 0);
346
347 /* We need these for tls_sw_fallback handling of other packets */
348 if (ctx->tx_conf == TLS_SW) {
349 tls_sw_release_resources_tx(sk);
350 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
351 } else if (ctx->tx_conf == TLS_HW) {
352 tls_device_free_resources_tx(sk);
353 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
354 }
355
356 if (ctx->rx_conf == TLS_SW) {
357 tls_sw_release_resources_rx(sk);
358 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
359 } else if (ctx->rx_conf == TLS_HW) {
360 tls_device_offload_cleanup_rx(sk);
361 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
362 }
363 }
364
tls_sk_proto_close(struct sock * sk,long timeout)365 static void tls_sk_proto_close(struct sock *sk, long timeout)
366 {
367 struct inet_connection_sock *icsk = inet_csk(sk);
368 struct tls_context *ctx = tls_get_ctx(sk);
369 long timeo = sock_sndtimeo(sk, 0);
370 bool free_ctx;
371
372 if (ctx->tx_conf == TLS_SW)
373 tls_sw_cancel_work_tx(ctx);
374
375 lock_sock(sk);
376 free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
377
378 if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
379 tls_sk_proto_cleanup(sk, ctx, timeo);
380
381 write_lock_bh(&sk->sk_callback_lock);
382 if (free_ctx)
383 rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
384 WRITE_ONCE(sk->sk_prot, ctx->sk_proto);
385 if (sk->sk_write_space == tls_write_space)
386 sk->sk_write_space = ctx->sk_write_space;
387 write_unlock_bh(&sk->sk_callback_lock);
388 release_sock(sk);
389 if (ctx->tx_conf == TLS_SW)
390 tls_sw_free_ctx_tx(ctx);
391 if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
392 tls_sw_strparser_done(ctx);
393 if (ctx->rx_conf == TLS_SW)
394 tls_sw_free_ctx_rx(ctx);
395 ctx->sk_proto->close(sk, timeout);
396
397 if (free_ctx)
398 tls_ctx_free(sk, ctx);
399 }
400
tls_sk_poll(struct file * file,struct socket * sock,struct poll_table_struct * wait)401 static __poll_t tls_sk_poll(struct file *file, struct socket *sock,
402 struct poll_table_struct *wait)
403 {
404 struct tls_sw_context_rx *ctx;
405 struct tls_context *tls_ctx;
406 struct sock *sk = sock->sk;
407 struct sk_psock *psock;
408 __poll_t mask = 0;
409 u8 shutdown;
410 int state;
411
412 mask = tcp_poll(file, sock, wait);
413
414 state = inet_sk_state_load(sk);
415 shutdown = READ_ONCE(sk->sk_shutdown);
416 if (unlikely(state != TCP_ESTABLISHED || shutdown & RCV_SHUTDOWN))
417 return mask;
418
419 tls_ctx = tls_get_ctx(sk);
420 ctx = tls_sw_ctx_rx(tls_ctx);
421 psock = sk_psock_get(sk);
422
423 if ((skb_queue_empty_lockless(&ctx->rx_list) &&
424 !tls_strp_msg_ready(ctx) &&
425 sk_psock_queue_empty(psock)) ||
426 READ_ONCE(ctx->key_update_pending))
427 mask &= ~(EPOLLIN | EPOLLRDNORM);
428
429 if (psock)
430 sk_psock_put(sk, psock);
431
432 return mask;
433 }
434
do_tls_getsockopt_conf(struct sock * sk,char __user * optval,int __user * optlen,int tx)435 static int do_tls_getsockopt_conf(struct sock *sk, char __user *optval,
436 int __user *optlen, int tx)
437 {
438 int rc = 0;
439 const struct tls_cipher_desc *cipher_desc;
440 struct tls_context *ctx = tls_get_ctx(sk);
441 struct tls_crypto_info *crypto_info;
442 struct cipher_context *cctx;
443 int len;
444
445 if (get_user(len, optlen))
446 return -EFAULT;
447
448 if (!optval || (len < sizeof(*crypto_info))) {
449 rc = -EINVAL;
450 goto out;
451 }
452
453 if (!ctx) {
454 rc = -EBUSY;
455 goto out;
456 }
457
458 /* get user crypto info */
459 if (tx) {
460 crypto_info = &ctx->crypto_send.info;
461 cctx = &ctx->tx;
462 } else {
463 crypto_info = &ctx->crypto_recv.info;
464 cctx = &ctx->rx;
465 }
466
467 if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
468 rc = -EBUSY;
469 goto out;
470 }
471
472 if (len == sizeof(*crypto_info)) {
473 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
474 rc = -EFAULT;
475 goto out;
476 }
477
478 cipher_desc = get_cipher_desc(crypto_info->cipher_type);
479 if (!cipher_desc || len != cipher_desc->crypto_info) {
480 rc = -EINVAL;
481 goto out;
482 }
483
484 memcpy(crypto_info_iv(crypto_info, cipher_desc),
485 cctx->iv + cipher_desc->salt, cipher_desc->iv);
486 memcpy(crypto_info_rec_seq(crypto_info, cipher_desc),
487 cctx->rec_seq, cipher_desc->rec_seq);
488
489 if (copy_to_user(optval, crypto_info, cipher_desc->crypto_info))
490 rc = -EFAULT;
491
492 out:
493 return rc;
494 }
495
do_tls_getsockopt_tx_zc(struct sock * sk,char __user * optval,int __user * optlen)496 static int do_tls_getsockopt_tx_zc(struct sock *sk, char __user *optval,
497 int __user *optlen)
498 {
499 struct tls_context *ctx = tls_get_ctx(sk);
500 unsigned int value;
501 int len;
502
503 if (get_user(len, optlen))
504 return -EFAULT;
505
506 if (len != sizeof(value))
507 return -EINVAL;
508
509 value = ctx->zerocopy_sendfile;
510 if (copy_to_user(optval, &value, sizeof(value)))
511 return -EFAULT;
512
513 return 0;
514 }
515
do_tls_getsockopt_no_pad(struct sock * sk,char __user * optval,int __user * optlen)516 static int do_tls_getsockopt_no_pad(struct sock *sk, char __user *optval,
517 int __user *optlen)
518 {
519 struct tls_context *ctx = tls_get_ctx(sk);
520 int value, len;
521
522 if (ctx->prot_info.version != TLS_1_3_VERSION)
523 return -EINVAL;
524
525 if (get_user(len, optlen))
526 return -EFAULT;
527 if (len < sizeof(value))
528 return -EINVAL;
529
530 value = -EINVAL;
531 if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
532 value = ctx->rx_no_pad;
533 if (value < 0)
534 return value;
535
536 if (put_user(sizeof(value), optlen))
537 return -EFAULT;
538 if (copy_to_user(optval, &value, sizeof(value)))
539 return -EFAULT;
540
541 return 0;
542 }
543
do_tls_getsockopt(struct sock * sk,int optname,char __user * optval,int __user * optlen)544 static int do_tls_getsockopt(struct sock *sk, int optname,
545 char __user *optval, int __user *optlen)
546 {
547 int rc = 0;
548
549 lock_sock(sk);
550
551 switch (optname) {
552 case TLS_TX:
553 case TLS_RX:
554 rc = do_tls_getsockopt_conf(sk, optval, optlen,
555 optname == TLS_TX);
556 break;
557 case TLS_TX_ZEROCOPY_RO:
558 rc = do_tls_getsockopt_tx_zc(sk, optval, optlen);
559 break;
560 case TLS_RX_EXPECT_NO_PAD:
561 rc = do_tls_getsockopt_no_pad(sk, optval, optlen);
562 break;
563 default:
564 rc = -ENOPROTOOPT;
565 break;
566 }
567
568 release_sock(sk);
569
570 return rc;
571 }
572
tls_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)573 static int tls_getsockopt(struct sock *sk, int level, int optname,
574 char __user *optval, int __user *optlen)
575 {
576 struct tls_context *ctx = tls_get_ctx(sk);
577
578 if (level != SOL_TLS)
579 return ctx->sk_proto->getsockopt(sk, level,
580 optname, optval, optlen);
581
582 return do_tls_getsockopt(sk, optname, optval, optlen);
583 }
584
validate_crypto_info(const struct tls_crypto_info * crypto_info,const struct tls_crypto_info * alt_crypto_info)585 static int validate_crypto_info(const struct tls_crypto_info *crypto_info,
586 const struct tls_crypto_info *alt_crypto_info)
587 {
588 if (crypto_info->version != TLS_1_2_VERSION &&
589 crypto_info->version != TLS_1_3_VERSION)
590 return -EINVAL;
591
592 switch (crypto_info->cipher_type) {
593 case TLS_CIPHER_ARIA_GCM_128:
594 case TLS_CIPHER_ARIA_GCM_256:
595 if (crypto_info->version != TLS_1_2_VERSION)
596 return -EINVAL;
597 break;
598 }
599
600 /* Ensure that TLS version and ciphers are same in both directions */
601 if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
602 if (alt_crypto_info->version != crypto_info->version ||
603 alt_crypto_info->cipher_type != crypto_info->cipher_type)
604 return -EINVAL;
605 }
606
607 return 0;
608 }
609
do_tls_setsockopt_conf(struct sock * sk,sockptr_t optval,unsigned int optlen,int tx)610 static int do_tls_setsockopt_conf(struct sock *sk, sockptr_t optval,
611 unsigned int optlen, int tx)
612 {
613 struct tls_crypto_info *crypto_info, *alt_crypto_info;
614 struct tls_crypto_info *old_crypto_info = NULL;
615 struct tls_context *ctx = tls_get_ctx(sk);
616 const struct tls_cipher_desc *cipher_desc;
617 union tls_crypto_context *crypto_ctx;
618 union tls_crypto_context tmp = {};
619 bool update = false;
620 int rc = 0;
621 int conf;
622
623 if (sockptr_is_null(optval) || (optlen < sizeof(*crypto_info)))
624 return -EINVAL;
625
626 if (tx) {
627 crypto_ctx = &ctx->crypto_send;
628 alt_crypto_info = &ctx->crypto_recv.info;
629 } else {
630 crypto_ctx = &ctx->crypto_recv;
631 alt_crypto_info = &ctx->crypto_send.info;
632 }
633
634 crypto_info = &crypto_ctx->info;
635
636 if (TLS_CRYPTO_INFO_READY(crypto_info)) {
637 /* Currently we only support setting crypto info more
638 * than one time for TLS 1.3
639 */
640 if (crypto_info->version != TLS_1_3_VERSION) {
641 TLS_INC_STATS(sock_net(sk), tx ? LINUX_MIB_TLSTXREKEYERROR
642 : LINUX_MIB_TLSRXREKEYERROR);
643 return -EBUSY;
644 }
645
646 update = true;
647 old_crypto_info = crypto_info;
648 crypto_info = &tmp.info;
649 crypto_ctx = &tmp;
650 }
651
652 rc = copy_from_sockptr(crypto_info, optval, sizeof(*crypto_info));
653 if (rc) {
654 rc = -EFAULT;
655 goto err_crypto_info;
656 }
657
658 if (update) {
659 /* Ensure that TLS version and ciphers are not modified */
660 if (crypto_info->version != old_crypto_info->version ||
661 crypto_info->cipher_type != old_crypto_info->cipher_type)
662 rc = -EINVAL;
663 } else {
664 rc = validate_crypto_info(crypto_info, alt_crypto_info);
665 }
666 if (rc)
667 goto err_crypto_info;
668
669 cipher_desc = get_cipher_desc(crypto_info->cipher_type);
670 if (!cipher_desc) {
671 rc = -EINVAL;
672 goto err_crypto_info;
673 }
674
675 if (optlen != cipher_desc->crypto_info) {
676 rc = -EINVAL;
677 goto err_crypto_info;
678 }
679
680 rc = copy_from_sockptr_offset(crypto_info + 1, optval,
681 sizeof(*crypto_info),
682 optlen - sizeof(*crypto_info));
683 if (rc) {
684 rc = -EFAULT;
685 goto err_crypto_info;
686 }
687
688 if (tx) {
689 rc = tls_set_device_offload(sk);
690 conf = TLS_HW;
691 if (!rc) {
692 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE);
693 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
694 } else {
695 rc = tls_set_sw_offload(sk, 1,
696 update ? crypto_info : NULL);
697 if (rc)
698 goto err_crypto_info;
699
700 if (update) {
701 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXREKEYOK);
702 } else {
703 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW);
704 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
705 }
706 conf = TLS_SW;
707 }
708 } else {
709 rc = tls_set_device_offload_rx(sk, ctx);
710 conf = TLS_HW;
711 if (!rc) {
712 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE);
713 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
714 } else {
715 rc = tls_set_sw_offload(sk, 0,
716 update ? crypto_info : NULL);
717 if (rc)
718 goto err_crypto_info;
719
720 if (update) {
721 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXREKEYOK);
722 } else {
723 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW);
724 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
725 }
726 conf = TLS_SW;
727 }
728 if (!update)
729 tls_sw_strparser_arm(sk, ctx);
730 }
731
732 if (tx)
733 ctx->tx_conf = conf;
734 else
735 ctx->rx_conf = conf;
736 update_sk_prot(sk, ctx);
737
738 if (update)
739 return 0;
740
741 if (tx) {
742 ctx->sk_write_space = sk->sk_write_space;
743 sk->sk_write_space = tls_write_space;
744 } else {
745 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(ctx);
746
747 tls_strp_check_rcv(&rx_ctx->strp);
748 }
749 return 0;
750
751 err_crypto_info:
752 if (update) {
753 TLS_INC_STATS(sock_net(sk), tx ? LINUX_MIB_TLSTXREKEYERROR
754 : LINUX_MIB_TLSRXREKEYERROR);
755 }
756 memzero_explicit(crypto_ctx, sizeof(*crypto_ctx));
757 return rc;
758 }
759
do_tls_setsockopt_tx_zc(struct sock * sk,sockptr_t optval,unsigned int optlen)760 static int do_tls_setsockopt_tx_zc(struct sock *sk, sockptr_t optval,
761 unsigned int optlen)
762 {
763 struct tls_context *ctx = tls_get_ctx(sk);
764 unsigned int value;
765
766 if (sockptr_is_null(optval) || optlen != sizeof(value))
767 return -EINVAL;
768
769 if (copy_from_sockptr(&value, optval, sizeof(value)))
770 return -EFAULT;
771
772 if (value > 1)
773 return -EINVAL;
774
775 ctx->zerocopy_sendfile = value;
776
777 return 0;
778 }
779
do_tls_setsockopt_no_pad(struct sock * sk,sockptr_t optval,unsigned int optlen)780 static int do_tls_setsockopt_no_pad(struct sock *sk, sockptr_t optval,
781 unsigned int optlen)
782 {
783 struct tls_context *ctx = tls_get_ctx(sk);
784 u32 val;
785 int rc;
786
787 if (ctx->prot_info.version != TLS_1_3_VERSION ||
788 sockptr_is_null(optval) || optlen < sizeof(val))
789 return -EINVAL;
790
791 rc = copy_from_sockptr(&val, optval, sizeof(val));
792 if (rc)
793 return -EFAULT;
794 if (val > 1)
795 return -EINVAL;
796 rc = check_zeroed_sockptr(optval, sizeof(val), optlen - sizeof(val));
797 if (rc < 1)
798 return rc == 0 ? -EINVAL : rc;
799
800 lock_sock(sk);
801 rc = -EINVAL;
802 if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) {
803 ctx->rx_no_pad = val;
804 tls_update_rx_zc_capable(ctx);
805 rc = 0;
806 }
807 release_sock(sk);
808
809 return rc;
810 }
811
do_tls_setsockopt(struct sock * sk,int optname,sockptr_t optval,unsigned int optlen)812 static int do_tls_setsockopt(struct sock *sk, int optname, sockptr_t optval,
813 unsigned int optlen)
814 {
815 int rc = 0;
816
817 switch (optname) {
818 case TLS_TX:
819 case TLS_RX:
820 lock_sock(sk);
821 rc = do_tls_setsockopt_conf(sk, optval, optlen,
822 optname == TLS_TX);
823 release_sock(sk);
824 break;
825 case TLS_TX_ZEROCOPY_RO:
826 lock_sock(sk);
827 rc = do_tls_setsockopt_tx_zc(sk, optval, optlen);
828 release_sock(sk);
829 break;
830 case TLS_RX_EXPECT_NO_PAD:
831 rc = do_tls_setsockopt_no_pad(sk, optval, optlen);
832 break;
833 default:
834 rc = -ENOPROTOOPT;
835 break;
836 }
837 return rc;
838 }
839
tls_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)840 static int tls_setsockopt(struct sock *sk, int level, int optname,
841 sockptr_t optval, unsigned int optlen)
842 {
843 struct tls_context *ctx = tls_get_ctx(sk);
844
845 if (level != SOL_TLS)
846 return ctx->sk_proto->setsockopt(sk, level, optname, optval,
847 optlen);
848
849 return do_tls_setsockopt(sk, optname, optval, optlen);
850 }
851
tls_disconnect(struct sock * sk,int flags)852 static int tls_disconnect(struct sock *sk, int flags)
853 {
854 return -EOPNOTSUPP;
855 }
856
tls_ctx_create(struct sock * sk)857 struct tls_context *tls_ctx_create(struct sock *sk)
858 {
859 struct inet_connection_sock *icsk = inet_csk(sk);
860 struct tls_context *ctx;
861
862 ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
863 if (!ctx)
864 return NULL;
865
866 mutex_init(&ctx->tx_lock);
867 ctx->sk_proto = READ_ONCE(sk->sk_prot);
868 ctx->sk = sk;
869 /* Release semantic of rcu_assign_pointer() ensures that
870 * ctx->sk_proto is visible before changing sk->sk_prot in
871 * update_sk_prot(), and prevents reading uninitialized value in
872 * tls_{getsockopt, setsockopt}. Note that we do not need a
873 * read barrier in tls_{getsockopt,setsockopt} as there is an
874 * address dependency between sk->sk_proto->{getsockopt,setsockopt}
875 * and ctx->sk_proto.
876 */
877 rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
878 return ctx;
879 }
880
build_proto_ops(struct proto_ops ops[TLS_NUM_CONFIG][TLS_NUM_CONFIG],const struct proto_ops * base)881 static void build_proto_ops(struct proto_ops ops[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
882 const struct proto_ops *base)
883 {
884 ops[TLS_BASE][TLS_BASE] = *base;
885
886 ops[TLS_SW ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
887 ops[TLS_SW ][TLS_BASE].splice_eof = tls_sw_splice_eof;
888
889 ops[TLS_BASE][TLS_SW ] = ops[TLS_BASE][TLS_BASE];
890 ops[TLS_BASE][TLS_SW ].splice_read = tls_sw_splice_read;
891 ops[TLS_BASE][TLS_SW ].poll = tls_sk_poll;
892 ops[TLS_BASE][TLS_SW ].read_sock = tls_sw_read_sock;
893
894 ops[TLS_SW ][TLS_SW ] = ops[TLS_SW ][TLS_BASE];
895 ops[TLS_SW ][TLS_SW ].splice_read = tls_sw_splice_read;
896 ops[TLS_SW ][TLS_SW ].poll = tls_sk_poll;
897 ops[TLS_SW ][TLS_SW ].read_sock = tls_sw_read_sock;
898
899 #ifdef CONFIG_TLS_DEVICE
900 ops[TLS_HW ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
901
902 ops[TLS_HW ][TLS_SW ] = ops[TLS_BASE][TLS_SW ];
903
904 ops[TLS_BASE][TLS_HW ] = ops[TLS_BASE][TLS_SW ];
905
906 ops[TLS_SW ][TLS_HW ] = ops[TLS_SW ][TLS_SW ];
907
908 ops[TLS_HW ][TLS_HW ] = ops[TLS_HW ][TLS_SW ];
909 #endif
910 #ifdef CONFIG_TLS_TOE
911 ops[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
912 #endif
913 }
914
tls_build_proto(struct sock * sk)915 static void tls_build_proto(struct sock *sk)
916 {
917 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
918 struct proto *prot = READ_ONCE(sk->sk_prot);
919
920 /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
921 if (ip_ver == TLSV6 &&
922 unlikely(prot != smp_load_acquire(&saved_tcpv6_prot))) {
923 mutex_lock(&tcpv6_prot_mutex);
924 if (likely(prot != saved_tcpv6_prot)) {
925 build_protos(tls_prots[TLSV6], prot);
926 build_proto_ops(tls_proto_ops[TLSV6],
927 sk->sk_socket->ops);
928 smp_store_release(&saved_tcpv6_prot, prot);
929 }
930 mutex_unlock(&tcpv6_prot_mutex);
931 }
932
933 if (ip_ver == TLSV4 &&
934 unlikely(prot != smp_load_acquire(&saved_tcpv4_prot))) {
935 mutex_lock(&tcpv4_prot_mutex);
936 if (likely(prot != saved_tcpv4_prot)) {
937 build_protos(tls_prots[TLSV4], prot);
938 build_proto_ops(tls_proto_ops[TLSV4],
939 sk->sk_socket->ops);
940 smp_store_release(&saved_tcpv4_prot, prot);
941 }
942 mutex_unlock(&tcpv4_prot_mutex);
943 }
944 }
945
build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],const struct proto * base)946 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
947 const struct proto *base)
948 {
949 prot[TLS_BASE][TLS_BASE] = *base;
950 prot[TLS_BASE][TLS_BASE].setsockopt = tls_setsockopt;
951 prot[TLS_BASE][TLS_BASE].getsockopt = tls_getsockopt;
952 prot[TLS_BASE][TLS_BASE].disconnect = tls_disconnect;
953 prot[TLS_BASE][TLS_BASE].close = tls_sk_proto_close;
954
955 prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
956 prot[TLS_SW][TLS_BASE].sendmsg = tls_sw_sendmsg;
957 prot[TLS_SW][TLS_BASE].splice_eof = tls_sw_splice_eof;
958
959 prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
960 prot[TLS_BASE][TLS_SW].recvmsg = tls_sw_recvmsg;
961 prot[TLS_BASE][TLS_SW].sock_is_readable = tls_sw_sock_is_readable;
962 prot[TLS_BASE][TLS_SW].close = tls_sk_proto_close;
963
964 prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
965 prot[TLS_SW][TLS_SW].recvmsg = tls_sw_recvmsg;
966 prot[TLS_SW][TLS_SW].sock_is_readable = tls_sw_sock_is_readable;
967 prot[TLS_SW][TLS_SW].close = tls_sk_proto_close;
968
969 #ifdef CONFIG_TLS_DEVICE
970 prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
971 prot[TLS_HW][TLS_BASE].sendmsg = tls_device_sendmsg;
972 prot[TLS_HW][TLS_BASE].splice_eof = tls_device_splice_eof;
973
974 prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
975 prot[TLS_HW][TLS_SW].sendmsg = tls_device_sendmsg;
976 prot[TLS_HW][TLS_SW].splice_eof = tls_device_splice_eof;
977
978 prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
979
980 prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
981
982 prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
983 #endif
984 #ifdef CONFIG_TLS_TOE
985 prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
986 prot[TLS_HW_RECORD][TLS_HW_RECORD].hash = tls_toe_hash;
987 prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash = tls_toe_unhash;
988 #endif
989 }
990
tls_init(struct sock * sk)991 static int tls_init(struct sock *sk)
992 {
993 struct tls_context *ctx;
994 int rc = 0;
995
996 tls_build_proto(sk);
997
998 #ifdef CONFIG_TLS_TOE
999 if (tls_toe_bypass(sk))
1000 return 0;
1001 #endif
1002
1003 /* The TLS ulp is currently supported only for TCP sockets
1004 * in ESTABLISHED state.
1005 * Supporting sockets in LISTEN state will require us
1006 * to modify the accept implementation to clone rather then
1007 * share the ulp context.
1008 */
1009 if (sk->sk_state != TCP_ESTABLISHED)
1010 return -ENOTCONN;
1011
1012 /* allocate tls context */
1013 write_lock_bh(&sk->sk_callback_lock);
1014 ctx = tls_ctx_create(sk);
1015 if (!ctx) {
1016 rc = -ENOMEM;
1017 goto out;
1018 }
1019
1020 ctx->tx_conf = TLS_BASE;
1021 ctx->rx_conf = TLS_BASE;
1022 update_sk_prot(sk, ctx);
1023 out:
1024 write_unlock_bh(&sk->sk_callback_lock);
1025 return rc;
1026 }
1027
tls_update(struct sock * sk,struct proto * p,void (* write_space)(struct sock * sk))1028 static void tls_update(struct sock *sk, struct proto *p,
1029 void (*write_space)(struct sock *sk))
1030 {
1031 struct tls_context *ctx;
1032
1033 WARN_ON_ONCE(sk->sk_prot == p);
1034
1035 ctx = tls_get_ctx(sk);
1036 if (likely(ctx)) {
1037 ctx->sk_write_space = write_space;
1038 ctx->sk_proto = p;
1039 } else {
1040 /* Pairs with lockless read in sk_clone_lock(). */
1041 WRITE_ONCE(sk->sk_prot, p);
1042 sk->sk_write_space = write_space;
1043 }
1044 }
1045
tls_user_config(struct tls_context * ctx,bool tx)1046 static u16 tls_user_config(struct tls_context *ctx, bool tx)
1047 {
1048 u16 config = tx ? ctx->tx_conf : ctx->rx_conf;
1049
1050 switch (config) {
1051 case TLS_BASE:
1052 return TLS_CONF_BASE;
1053 case TLS_SW:
1054 return TLS_CONF_SW;
1055 case TLS_HW:
1056 return TLS_CONF_HW;
1057 case TLS_HW_RECORD:
1058 return TLS_CONF_HW_RECORD;
1059 }
1060 return 0;
1061 }
1062
tls_get_info(struct sock * sk,struct sk_buff * skb,bool net_admin)1063 static int tls_get_info(struct sock *sk, struct sk_buff *skb, bool net_admin)
1064 {
1065 u16 version, cipher_type;
1066 struct tls_context *ctx;
1067 struct nlattr *start;
1068 int err;
1069
1070 start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS);
1071 if (!start)
1072 return -EMSGSIZE;
1073
1074 rcu_read_lock();
1075 ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data);
1076 if (!ctx) {
1077 err = 0;
1078 goto nla_failure;
1079 }
1080 version = ctx->prot_info.version;
1081 if (version) {
1082 err = nla_put_u16(skb, TLS_INFO_VERSION, version);
1083 if (err)
1084 goto nla_failure;
1085 }
1086 cipher_type = ctx->prot_info.cipher_type;
1087 if (cipher_type) {
1088 err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type);
1089 if (err)
1090 goto nla_failure;
1091 }
1092 err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true));
1093 if (err)
1094 goto nla_failure;
1095
1096 err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false));
1097 if (err)
1098 goto nla_failure;
1099
1100 if (ctx->tx_conf == TLS_HW && ctx->zerocopy_sendfile) {
1101 err = nla_put_flag(skb, TLS_INFO_ZC_RO_TX);
1102 if (err)
1103 goto nla_failure;
1104 }
1105 if (ctx->rx_no_pad) {
1106 err = nla_put_flag(skb, TLS_INFO_RX_NO_PAD);
1107 if (err)
1108 goto nla_failure;
1109 }
1110
1111 rcu_read_unlock();
1112 nla_nest_end(skb, start);
1113 return 0;
1114
1115 nla_failure:
1116 rcu_read_unlock();
1117 nla_nest_cancel(skb, start);
1118 return err;
1119 }
1120
tls_get_info_size(const struct sock * sk,bool net_admin)1121 static size_t tls_get_info_size(const struct sock *sk, bool net_admin)
1122 {
1123 size_t size = 0;
1124
1125 size += nla_total_size(0) + /* INET_ULP_INFO_TLS */
1126 nla_total_size(sizeof(u16)) + /* TLS_INFO_VERSION */
1127 nla_total_size(sizeof(u16)) + /* TLS_INFO_CIPHER */
1128 nla_total_size(sizeof(u16)) + /* TLS_INFO_RXCONF */
1129 nla_total_size(sizeof(u16)) + /* TLS_INFO_TXCONF */
1130 nla_total_size(0) + /* TLS_INFO_ZC_RO_TX */
1131 nla_total_size(0) + /* TLS_INFO_RX_NO_PAD */
1132 0;
1133
1134 return size;
1135 }
1136
tls_init_net(struct net * net)1137 static int __net_init tls_init_net(struct net *net)
1138 {
1139 int err;
1140
1141 net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib);
1142 if (!net->mib.tls_statistics)
1143 return -ENOMEM;
1144
1145 err = tls_proc_init(net);
1146 if (err)
1147 goto err_free_stats;
1148
1149 return 0;
1150 err_free_stats:
1151 free_percpu(net->mib.tls_statistics);
1152 return err;
1153 }
1154
tls_exit_net(struct net * net)1155 static void __net_exit tls_exit_net(struct net *net)
1156 {
1157 tls_proc_fini(net);
1158 free_percpu(net->mib.tls_statistics);
1159 }
1160
1161 static struct pernet_operations tls_proc_ops = {
1162 .init = tls_init_net,
1163 .exit = tls_exit_net,
1164 };
1165
1166 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
1167 .name = "tls",
1168 .owner = THIS_MODULE,
1169 .init = tls_init,
1170 .update = tls_update,
1171 .get_info = tls_get_info,
1172 .get_info_size = tls_get_info_size,
1173 };
1174
tls_register(void)1175 static int __init tls_register(void)
1176 {
1177 int err;
1178
1179 err = register_pernet_subsys(&tls_proc_ops);
1180 if (err)
1181 return err;
1182
1183 err = tls_strp_dev_init();
1184 if (err)
1185 goto err_pernet;
1186
1187 err = tls_device_init();
1188 if (err)
1189 goto err_strp;
1190
1191 tcp_register_ulp(&tcp_tls_ulp_ops);
1192
1193 return 0;
1194 err_strp:
1195 tls_strp_dev_exit();
1196 err_pernet:
1197 unregister_pernet_subsys(&tls_proc_ops);
1198 return err;
1199 }
1200
tls_unregister(void)1201 static void __exit tls_unregister(void)
1202 {
1203 tcp_unregister_ulp(&tcp_tls_ulp_ops);
1204 tls_strp_dev_exit();
1205 tls_device_cleanup();
1206 unregister_pernet_subsys(&tls_proc_ops);
1207 }
1208
1209 module_init(tls_register);
1210 module_exit(tls_unregister);
1211