xref: /linux/net/tls/tls_main.c (revision 1a9239bb4253f9076b5b4b2a1a4e8d7defd77a95)
1  /*
2   * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3   * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4   *
5   * This software is available to you under a choice of one of two
6   * licenses.  You may choose to be licensed under the terms of the GNU
7   * General Public License (GPL) Version 2, available from the file
8   * COPYING in the main directory of this source tree, or the
9   * OpenIB.org BSD license below:
10   *
11   *     Redistribution and use in source and binary forms, with or
12   *     without modification, are permitted provided that the following
13   *     conditions are met:
14   *
15   *      - Redistributions of source code must retain the above
16   *        copyright notice, this list of conditions and the following
17   *        disclaimer.
18   *
19   *      - Redistributions in binary form must reproduce the above
20   *        copyright notice, this list of conditions and the following
21   *        disclaimer in the documentation and/or other materials
22   *        provided with the distribution.
23   *
24   * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25   * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26   * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27   * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28   * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29   * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30   * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31   * SOFTWARE.
32   */
33  
34  #include <linux/module.h>
35  
36  #include <net/tcp.h>
37  #include <net/inet_common.h>
38  #include <linux/highmem.h>
39  #include <linux/netdevice.h>
40  #include <linux/sched/signal.h>
41  #include <linux/inetdevice.h>
42  #include <linux/inet_diag.h>
43  
44  #include <net/snmp.h>
45  #include <net/tls.h>
46  #include <net/tls_toe.h>
47  
48  #include "tls.h"
49  
50  MODULE_AUTHOR("Mellanox Technologies");
51  MODULE_DESCRIPTION("Transport Layer Security Support");
52  MODULE_LICENSE("Dual BSD/GPL");
53  MODULE_ALIAS_TCP_ULP("tls");
54  
55  enum {
56  	TLSV4,
57  	TLSV6,
58  	TLS_NUM_PROTS,
59  };
60  
61  #define CHECK_CIPHER_DESC(cipher,ci)				\
62  	static_assert(cipher ## _IV_SIZE <= TLS_MAX_IV_SIZE);		\
63  	static_assert(cipher ## _SALT_SIZE <= TLS_MAX_SALT_SIZE);		\
64  	static_assert(cipher ## _REC_SEQ_SIZE <= TLS_MAX_REC_SEQ_SIZE);	\
65  	static_assert(cipher ## _TAG_SIZE == TLS_TAG_SIZE);		\
66  	static_assert(sizeof_field(struct ci, iv) == cipher ## _IV_SIZE);	\
67  	static_assert(sizeof_field(struct ci, key) == cipher ## _KEY_SIZE);	\
68  	static_assert(sizeof_field(struct ci, salt) == cipher ## _SALT_SIZE);	\
69  	static_assert(sizeof_field(struct ci, rec_seq) == cipher ## _REC_SEQ_SIZE);
70  
71  #define __CIPHER_DESC(ci) \
72  	.iv_offset = offsetof(struct ci, iv), \
73  	.key_offset = offsetof(struct ci, key), \
74  	.salt_offset = offsetof(struct ci, salt), \
75  	.rec_seq_offset = offsetof(struct ci, rec_seq), \
76  	.crypto_info = sizeof(struct ci)
77  
78  #define CIPHER_DESC(cipher,ci,algname,_offloadable) [cipher - TLS_CIPHER_MIN] = {	\
79  	.nonce = cipher ## _IV_SIZE, \
80  	.iv = cipher ## _IV_SIZE, \
81  	.key = cipher ## _KEY_SIZE, \
82  	.salt = cipher ## _SALT_SIZE, \
83  	.tag = cipher ## _TAG_SIZE, \
84  	.rec_seq = cipher ## _REC_SEQ_SIZE, \
85  	.cipher_name = algname,	\
86  	.offloadable = _offloadable, \
87  	__CIPHER_DESC(ci), \
88  }
89  
90  #define CIPHER_DESC_NONCE0(cipher,ci,algname,_offloadable) [cipher - TLS_CIPHER_MIN] = { \
91  	.nonce = 0, \
92  	.iv = cipher ## _IV_SIZE, \
93  	.key = cipher ## _KEY_SIZE, \
94  	.salt = cipher ## _SALT_SIZE, \
95  	.tag = cipher ## _TAG_SIZE, \
96  	.rec_seq = cipher ## _REC_SEQ_SIZE, \
97  	.cipher_name = algname,	\
98  	.offloadable = _offloadable, \
99  	__CIPHER_DESC(ci), \
100  }
101  
102  const struct tls_cipher_desc tls_cipher_desc[TLS_CIPHER_MAX + 1 - TLS_CIPHER_MIN] = {
103  	CIPHER_DESC(TLS_CIPHER_AES_GCM_128, tls12_crypto_info_aes_gcm_128, "gcm(aes)", true),
104  	CIPHER_DESC(TLS_CIPHER_AES_GCM_256, tls12_crypto_info_aes_gcm_256, "gcm(aes)", true),
105  	CIPHER_DESC(TLS_CIPHER_AES_CCM_128, tls12_crypto_info_aes_ccm_128, "ccm(aes)", false),
106  	CIPHER_DESC_NONCE0(TLS_CIPHER_CHACHA20_POLY1305, tls12_crypto_info_chacha20_poly1305, "rfc7539(chacha20,poly1305)", false),
107  	CIPHER_DESC(TLS_CIPHER_SM4_GCM, tls12_crypto_info_sm4_gcm, "gcm(sm4)", false),
108  	CIPHER_DESC(TLS_CIPHER_SM4_CCM, tls12_crypto_info_sm4_ccm, "ccm(sm4)", false),
109  	CIPHER_DESC(TLS_CIPHER_ARIA_GCM_128, tls12_crypto_info_aria_gcm_128, "gcm(aria)", false),
110  	CIPHER_DESC(TLS_CIPHER_ARIA_GCM_256, tls12_crypto_info_aria_gcm_256, "gcm(aria)", false),
111  };
112  
113  CHECK_CIPHER_DESC(TLS_CIPHER_AES_GCM_128, tls12_crypto_info_aes_gcm_128);
114  CHECK_CIPHER_DESC(TLS_CIPHER_AES_GCM_256, tls12_crypto_info_aes_gcm_256);
115  CHECK_CIPHER_DESC(TLS_CIPHER_AES_CCM_128, tls12_crypto_info_aes_ccm_128);
116  CHECK_CIPHER_DESC(TLS_CIPHER_CHACHA20_POLY1305, tls12_crypto_info_chacha20_poly1305);
117  CHECK_CIPHER_DESC(TLS_CIPHER_SM4_GCM, tls12_crypto_info_sm4_gcm);
118  CHECK_CIPHER_DESC(TLS_CIPHER_SM4_CCM, tls12_crypto_info_sm4_ccm);
119  CHECK_CIPHER_DESC(TLS_CIPHER_ARIA_GCM_128, tls12_crypto_info_aria_gcm_128);
120  CHECK_CIPHER_DESC(TLS_CIPHER_ARIA_GCM_256, tls12_crypto_info_aria_gcm_256);
121  
122  static const struct proto *saved_tcpv6_prot;
123  static DEFINE_MUTEX(tcpv6_prot_mutex);
124  static const struct proto *saved_tcpv4_prot;
125  static DEFINE_MUTEX(tcpv4_prot_mutex);
126  static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
127  static struct proto_ops tls_proto_ops[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
128  static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
129  			 const struct proto *base);
130  
update_sk_prot(struct sock * sk,struct tls_context * ctx)131  void update_sk_prot(struct sock *sk, struct tls_context *ctx)
132  {
133  	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
134  
135  	WRITE_ONCE(sk->sk_prot,
136  		   &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]);
137  	WRITE_ONCE(sk->sk_socket->ops,
138  		   &tls_proto_ops[ip_ver][ctx->tx_conf][ctx->rx_conf]);
139  }
140  
wait_on_pending_writer(struct sock * sk,long * timeo)141  int wait_on_pending_writer(struct sock *sk, long *timeo)
142  {
143  	DEFINE_WAIT_FUNC(wait, woken_wake_function);
144  	int ret, rc = 0;
145  
146  	add_wait_queue(sk_sleep(sk), &wait);
147  	while (1) {
148  		if (!*timeo) {
149  			rc = -EAGAIN;
150  			break;
151  		}
152  
153  		if (signal_pending(current)) {
154  			rc = sock_intr_errno(*timeo);
155  			break;
156  		}
157  
158  		ret = sk_wait_event(sk, timeo,
159  				    !READ_ONCE(sk->sk_write_pending), &wait);
160  		if (ret) {
161  			if (ret < 0)
162  				rc = ret;
163  			break;
164  		}
165  	}
166  	remove_wait_queue(sk_sleep(sk), &wait);
167  	return rc;
168  }
169  
tls_push_sg(struct sock * sk,struct tls_context * ctx,struct scatterlist * sg,u16 first_offset,int flags)170  int tls_push_sg(struct sock *sk,
171  		struct tls_context *ctx,
172  		struct scatterlist *sg,
173  		u16 first_offset,
174  		int flags)
175  {
176  	struct bio_vec bvec;
177  	struct msghdr msg = {
178  		.msg_flags = MSG_SPLICE_PAGES | flags,
179  	};
180  	int ret = 0;
181  	struct page *p;
182  	size_t size;
183  	int offset = first_offset;
184  
185  	size = sg->length - offset;
186  	offset += sg->offset;
187  
188  	ctx->splicing_pages = true;
189  	while (1) {
190  		/* is sending application-limited? */
191  		tcp_rate_check_app_limited(sk);
192  		p = sg_page(sg);
193  retry:
194  		bvec_set_page(&bvec, p, size, offset);
195  		iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, size);
196  
197  		ret = tcp_sendmsg_locked(sk, &msg, size);
198  
199  		if (ret != size) {
200  			if (ret > 0) {
201  				offset += ret;
202  				size -= ret;
203  				goto retry;
204  			}
205  
206  			offset -= sg->offset;
207  			ctx->partially_sent_offset = offset;
208  			ctx->partially_sent_record = (void *)sg;
209  			ctx->splicing_pages = false;
210  			return ret;
211  		}
212  
213  		put_page(p);
214  		sk_mem_uncharge(sk, sg->length);
215  		sg = sg_next(sg);
216  		if (!sg)
217  			break;
218  
219  		offset = sg->offset;
220  		size = sg->length;
221  	}
222  
223  	ctx->splicing_pages = false;
224  
225  	return 0;
226  }
227  
tls_handle_open_record(struct sock * sk,int flags)228  static int tls_handle_open_record(struct sock *sk, int flags)
229  {
230  	struct tls_context *ctx = tls_get_ctx(sk);
231  
232  	if (tls_is_pending_open_record(ctx))
233  		return ctx->push_pending_record(sk, flags);
234  
235  	return 0;
236  }
237  
tls_process_cmsg(struct sock * sk,struct msghdr * msg,unsigned char * record_type)238  int tls_process_cmsg(struct sock *sk, struct msghdr *msg,
239  		     unsigned char *record_type)
240  {
241  	struct cmsghdr *cmsg;
242  	int rc = -EINVAL;
243  
244  	for_each_cmsghdr(cmsg, msg) {
245  		if (!CMSG_OK(msg, cmsg))
246  			return -EINVAL;
247  		if (cmsg->cmsg_level != SOL_TLS)
248  			continue;
249  
250  		switch (cmsg->cmsg_type) {
251  		case TLS_SET_RECORD_TYPE:
252  			if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
253  				return -EINVAL;
254  
255  			if (msg->msg_flags & MSG_MORE)
256  				return -EINVAL;
257  
258  			rc = tls_handle_open_record(sk, msg->msg_flags);
259  			if (rc)
260  				return rc;
261  
262  			*record_type = *(unsigned char *)CMSG_DATA(cmsg);
263  			rc = 0;
264  			break;
265  		default:
266  			return -EINVAL;
267  		}
268  	}
269  
270  	return rc;
271  }
272  
tls_push_partial_record(struct sock * sk,struct tls_context * ctx,int flags)273  int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
274  			    int flags)
275  {
276  	struct scatterlist *sg;
277  	u16 offset;
278  
279  	sg = ctx->partially_sent_record;
280  	offset = ctx->partially_sent_offset;
281  
282  	ctx->partially_sent_record = NULL;
283  	return tls_push_sg(sk, ctx, sg, offset, flags);
284  }
285  
tls_free_partial_record(struct sock * sk,struct tls_context * ctx)286  void tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
287  {
288  	struct scatterlist *sg;
289  
290  	for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) {
291  		put_page(sg_page(sg));
292  		sk_mem_uncharge(sk, sg->length);
293  	}
294  	ctx->partially_sent_record = NULL;
295  }
296  
tls_write_space(struct sock * sk)297  static void tls_write_space(struct sock *sk)
298  {
299  	struct tls_context *ctx = tls_get_ctx(sk);
300  
301  	/* If splicing_pages call lower protocol write space handler
302  	 * to ensure we wake up any waiting operations there. For example
303  	 * if splicing pages where to call sk_wait_event.
304  	 */
305  	if (ctx->splicing_pages) {
306  		ctx->sk_write_space(sk);
307  		return;
308  	}
309  
310  #ifdef CONFIG_TLS_DEVICE
311  	if (ctx->tx_conf == TLS_HW)
312  		tls_device_write_space(sk, ctx);
313  	else
314  #endif
315  		tls_sw_write_space(sk, ctx);
316  
317  	ctx->sk_write_space(sk);
318  }
319  
320  /**
321   * tls_ctx_free() - free TLS ULP context
322   * @sk:  socket to with @ctx is attached
323   * @ctx: TLS context structure
324   *
325   * Free TLS context. If @sk is %NULL caller guarantees that the socket
326   * to which @ctx was attached has no outstanding references.
327   */
tls_ctx_free(struct sock * sk,struct tls_context * ctx)328  void tls_ctx_free(struct sock *sk, struct tls_context *ctx)
329  {
330  	if (!ctx)
331  		return;
332  
333  	memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
334  	memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
335  	mutex_destroy(&ctx->tx_lock);
336  
337  	if (sk)
338  		kfree_rcu(ctx, rcu);
339  	else
340  		kfree(ctx);
341  }
342  
tls_sk_proto_cleanup(struct sock * sk,struct tls_context * ctx,long timeo)343  static void tls_sk_proto_cleanup(struct sock *sk,
344  				 struct tls_context *ctx, long timeo)
345  {
346  	if (unlikely(sk->sk_write_pending) &&
347  	    !wait_on_pending_writer(sk, &timeo))
348  		tls_handle_open_record(sk, 0);
349  
350  	/* We need these for tls_sw_fallback handling of other packets */
351  	if (ctx->tx_conf == TLS_SW) {
352  		tls_sw_release_resources_tx(sk);
353  		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
354  	} else if (ctx->tx_conf == TLS_HW) {
355  		tls_device_free_resources_tx(sk);
356  		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
357  	}
358  
359  	if (ctx->rx_conf == TLS_SW) {
360  		tls_sw_release_resources_rx(sk);
361  		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
362  	} else if (ctx->rx_conf == TLS_HW) {
363  		tls_device_offload_cleanup_rx(sk);
364  		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
365  	}
366  }
367  
tls_sk_proto_close(struct sock * sk,long timeout)368  static void tls_sk_proto_close(struct sock *sk, long timeout)
369  {
370  	struct inet_connection_sock *icsk = inet_csk(sk);
371  	struct tls_context *ctx = tls_get_ctx(sk);
372  	long timeo = sock_sndtimeo(sk, 0);
373  	bool free_ctx;
374  
375  	if (ctx->tx_conf == TLS_SW)
376  		tls_sw_cancel_work_tx(ctx);
377  
378  	lock_sock(sk);
379  	free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
380  
381  	if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
382  		tls_sk_proto_cleanup(sk, ctx, timeo);
383  
384  	write_lock_bh(&sk->sk_callback_lock);
385  	if (free_ctx)
386  		rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
387  	WRITE_ONCE(sk->sk_prot, ctx->sk_proto);
388  	if (sk->sk_write_space == tls_write_space)
389  		sk->sk_write_space = ctx->sk_write_space;
390  	write_unlock_bh(&sk->sk_callback_lock);
391  	release_sock(sk);
392  	if (ctx->tx_conf == TLS_SW)
393  		tls_sw_free_ctx_tx(ctx);
394  	if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
395  		tls_sw_strparser_done(ctx);
396  	if (ctx->rx_conf == TLS_SW)
397  		tls_sw_free_ctx_rx(ctx);
398  	ctx->sk_proto->close(sk, timeout);
399  
400  	if (free_ctx)
401  		tls_ctx_free(sk, ctx);
402  }
403  
tls_sk_poll(struct file * file,struct socket * sock,struct poll_table_struct * wait)404  static __poll_t tls_sk_poll(struct file *file, struct socket *sock,
405  			    struct poll_table_struct *wait)
406  {
407  	struct tls_sw_context_rx *ctx;
408  	struct tls_context *tls_ctx;
409  	struct sock *sk = sock->sk;
410  	struct sk_psock *psock;
411  	__poll_t mask = 0;
412  	u8 shutdown;
413  	int state;
414  
415  	mask = tcp_poll(file, sock, wait);
416  
417  	state = inet_sk_state_load(sk);
418  	shutdown = READ_ONCE(sk->sk_shutdown);
419  	if (unlikely(state != TCP_ESTABLISHED || shutdown & RCV_SHUTDOWN))
420  		return mask;
421  
422  	tls_ctx = tls_get_ctx(sk);
423  	ctx = tls_sw_ctx_rx(tls_ctx);
424  	psock = sk_psock_get(sk);
425  
426  	if ((skb_queue_empty_lockless(&ctx->rx_list) &&
427  	     !tls_strp_msg_ready(ctx) &&
428  	     sk_psock_queue_empty(psock)) ||
429  	    READ_ONCE(ctx->key_update_pending))
430  		mask &= ~(EPOLLIN | EPOLLRDNORM);
431  
432  	if (psock)
433  		sk_psock_put(sk, psock);
434  
435  	return mask;
436  }
437  
do_tls_getsockopt_conf(struct sock * sk,char __user * optval,int __user * optlen,int tx)438  static int do_tls_getsockopt_conf(struct sock *sk, char __user *optval,
439  				  int __user *optlen, int tx)
440  {
441  	int rc = 0;
442  	const struct tls_cipher_desc *cipher_desc;
443  	struct tls_context *ctx = tls_get_ctx(sk);
444  	struct tls_crypto_info *crypto_info;
445  	struct cipher_context *cctx;
446  	int len;
447  
448  	if (get_user(len, optlen))
449  		return -EFAULT;
450  
451  	if (!optval || (len < sizeof(*crypto_info))) {
452  		rc = -EINVAL;
453  		goto out;
454  	}
455  
456  	if (!ctx) {
457  		rc = -EBUSY;
458  		goto out;
459  	}
460  
461  	/* get user crypto info */
462  	if (tx) {
463  		crypto_info = &ctx->crypto_send.info;
464  		cctx = &ctx->tx;
465  	} else {
466  		crypto_info = &ctx->crypto_recv.info;
467  		cctx = &ctx->rx;
468  	}
469  
470  	if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
471  		rc = -EBUSY;
472  		goto out;
473  	}
474  
475  	if (len == sizeof(*crypto_info)) {
476  		if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
477  			rc = -EFAULT;
478  		goto out;
479  	}
480  
481  	cipher_desc = get_cipher_desc(crypto_info->cipher_type);
482  	if (!cipher_desc || len != cipher_desc->crypto_info) {
483  		rc = -EINVAL;
484  		goto out;
485  	}
486  
487  	memcpy(crypto_info_iv(crypto_info, cipher_desc),
488  	       cctx->iv + cipher_desc->salt, cipher_desc->iv);
489  	memcpy(crypto_info_rec_seq(crypto_info, cipher_desc),
490  	       cctx->rec_seq, cipher_desc->rec_seq);
491  
492  	if (copy_to_user(optval, crypto_info, cipher_desc->crypto_info))
493  		rc = -EFAULT;
494  
495  out:
496  	return rc;
497  }
498  
do_tls_getsockopt_tx_zc(struct sock * sk,char __user * optval,int __user * optlen)499  static int do_tls_getsockopt_tx_zc(struct sock *sk, char __user *optval,
500  				   int __user *optlen)
501  {
502  	struct tls_context *ctx = tls_get_ctx(sk);
503  	unsigned int value;
504  	int len;
505  
506  	if (get_user(len, optlen))
507  		return -EFAULT;
508  
509  	if (len != sizeof(value))
510  		return -EINVAL;
511  
512  	value = ctx->zerocopy_sendfile;
513  	if (copy_to_user(optval, &value, sizeof(value)))
514  		return -EFAULT;
515  
516  	return 0;
517  }
518  
do_tls_getsockopt_no_pad(struct sock * sk,char __user * optval,int __user * optlen)519  static int do_tls_getsockopt_no_pad(struct sock *sk, char __user *optval,
520  				    int __user *optlen)
521  {
522  	struct tls_context *ctx = tls_get_ctx(sk);
523  	int value, len;
524  
525  	if (ctx->prot_info.version != TLS_1_3_VERSION)
526  		return -EINVAL;
527  
528  	if (get_user(len, optlen))
529  		return -EFAULT;
530  	if (len < sizeof(value))
531  		return -EINVAL;
532  
533  	value = -EINVAL;
534  	if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
535  		value = ctx->rx_no_pad;
536  	if (value < 0)
537  		return value;
538  
539  	if (put_user(sizeof(value), optlen))
540  		return -EFAULT;
541  	if (copy_to_user(optval, &value, sizeof(value)))
542  		return -EFAULT;
543  
544  	return 0;
545  }
546  
do_tls_getsockopt(struct sock * sk,int optname,char __user * optval,int __user * optlen)547  static int do_tls_getsockopt(struct sock *sk, int optname,
548  			     char __user *optval, int __user *optlen)
549  {
550  	int rc = 0;
551  
552  	lock_sock(sk);
553  
554  	switch (optname) {
555  	case TLS_TX:
556  	case TLS_RX:
557  		rc = do_tls_getsockopt_conf(sk, optval, optlen,
558  					    optname == TLS_TX);
559  		break;
560  	case TLS_TX_ZEROCOPY_RO:
561  		rc = do_tls_getsockopt_tx_zc(sk, optval, optlen);
562  		break;
563  	case TLS_RX_EXPECT_NO_PAD:
564  		rc = do_tls_getsockopt_no_pad(sk, optval, optlen);
565  		break;
566  	default:
567  		rc = -ENOPROTOOPT;
568  		break;
569  	}
570  
571  	release_sock(sk);
572  
573  	return rc;
574  }
575  
tls_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)576  static int tls_getsockopt(struct sock *sk, int level, int optname,
577  			  char __user *optval, int __user *optlen)
578  {
579  	struct tls_context *ctx = tls_get_ctx(sk);
580  
581  	if (level != SOL_TLS)
582  		return ctx->sk_proto->getsockopt(sk, level,
583  						 optname, optval, optlen);
584  
585  	return do_tls_getsockopt(sk, optname, optval, optlen);
586  }
587  
validate_crypto_info(const struct tls_crypto_info * crypto_info,const struct tls_crypto_info * alt_crypto_info)588  static int validate_crypto_info(const struct tls_crypto_info *crypto_info,
589  				const struct tls_crypto_info *alt_crypto_info)
590  {
591  	if (crypto_info->version != TLS_1_2_VERSION &&
592  	    crypto_info->version != TLS_1_3_VERSION)
593  		return -EINVAL;
594  
595  	switch (crypto_info->cipher_type) {
596  	case TLS_CIPHER_ARIA_GCM_128:
597  	case TLS_CIPHER_ARIA_GCM_256:
598  		if (crypto_info->version != TLS_1_2_VERSION)
599  			return -EINVAL;
600  		break;
601  	}
602  
603  	/* Ensure that TLS version and ciphers are same in both directions */
604  	if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
605  		if (alt_crypto_info->version != crypto_info->version ||
606  		    alt_crypto_info->cipher_type != crypto_info->cipher_type)
607  			return -EINVAL;
608  	}
609  
610  	return 0;
611  }
612  
do_tls_setsockopt_conf(struct sock * sk,sockptr_t optval,unsigned int optlen,int tx)613  static int do_tls_setsockopt_conf(struct sock *sk, sockptr_t optval,
614  				  unsigned int optlen, int tx)
615  {
616  	struct tls_crypto_info *crypto_info, *alt_crypto_info;
617  	struct tls_crypto_info *old_crypto_info = NULL;
618  	struct tls_context *ctx = tls_get_ctx(sk);
619  	const struct tls_cipher_desc *cipher_desc;
620  	union tls_crypto_context *crypto_ctx;
621  	union tls_crypto_context tmp = {};
622  	bool update = false;
623  	int rc = 0;
624  	int conf;
625  
626  	if (sockptr_is_null(optval) || (optlen < sizeof(*crypto_info)))
627  		return -EINVAL;
628  
629  	if (tx) {
630  		crypto_ctx = &ctx->crypto_send;
631  		alt_crypto_info = &ctx->crypto_recv.info;
632  	} else {
633  		crypto_ctx = &ctx->crypto_recv;
634  		alt_crypto_info = &ctx->crypto_send.info;
635  	}
636  
637  	crypto_info = &crypto_ctx->info;
638  
639  	if (TLS_CRYPTO_INFO_READY(crypto_info)) {
640  		/* Currently we only support setting crypto info more
641  		 * than one time for TLS 1.3
642  		 */
643  		if (crypto_info->version != TLS_1_3_VERSION) {
644  			TLS_INC_STATS(sock_net(sk), tx ? LINUX_MIB_TLSTXREKEYERROR
645  						       : LINUX_MIB_TLSRXREKEYERROR);
646  			return -EBUSY;
647  		}
648  
649  		update = true;
650  		old_crypto_info = crypto_info;
651  		crypto_info = &tmp.info;
652  		crypto_ctx = &tmp;
653  	}
654  
655  	rc = copy_from_sockptr(crypto_info, optval, sizeof(*crypto_info));
656  	if (rc) {
657  		rc = -EFAULT;
658  		goto err_crypto_info;
659  	}
660  
661  	if (update) {
662  		/* Ensure that TLS version and ciphers are not modified */
663  		if (crypto_info->version != old_crypto_info->version ||
664  		    crypto_info->cipher_type != old_crypto_info->cipher_type)
665  			rc = -EINVAL;
666  	} else {
667  		rc = validate_crypto_info(crypto_info, alt_crypto_info);
668  	}
669  	if (rc)
670  		goto err_crypto_info;
671  
672  	cipher_desc = get_cipher_desc(crypto_info->cipher_type);
673  	if (!cipher_desc) {
674  		rc = -EINVAL;
675  		goto err_crypto_info;
676  	}
677  
678  	if (optlen != cipher_desc->crypto_info) {
679  		rc = -EINVAL;
680  		goto err_crypto_info;
681  	}
682  
683  	rc = copy_from_sockptr_offset(crypto_info + 1, optval,
684  				      sizeof(*crypto_info),
685  				      optlen - sizeof(*crypto_info));
686  	if (rc) {
687  		rc = -EFAULT;
688  		goto err_crypto_info;
689  	}
690  
691  	if (tx) {
692  		rc = tls_set_device_offload(sk);
693  		conf = TLS_HW;
694  		if (!rc) {
695  			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE);
696  			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
697  		} else {
698  			rc = tls_set_sw_offload(sk, 1,
699  						update ? crypto_info : NULL);
700  			if (rc)
701  				goto err_crypto_info;
702  
703  			if (update) {
704  				TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXREKEYOK);
705  			} else {
706  				TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW);
707  				TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
708  			}
709  			conf = TLS_SW;
710  		}
711  	} else {
712  		rc = tls_set_device_offload_rx(sk, ctx);
713  		conf = TLS_HW;
714  		if (!rc) {
715  			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE);
716  			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
717  		} else {
718  			rc = tls_set_sw_offload(sk, 0,
719  						update ? crypto_info : NULL);
720  			if (rc)
721  				goto err_crypto_info;
722  
723  			if (update) {
724  				TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXREKEYOK);
725  			} else {
726  				TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW);
727  				TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
728  			}
729  			conf = TLS_SW;
730  		}
731  		if (!update)
732  			tls_sw_strparser_arm(sk, ctx);
733  	}
734  
735  	if (tx)
736  		ctx->tx_conf = conf;
737  	else
738  		ctx->rx_conf = conf;
739  	update_sk_prot(sk, ctx);
740  
741  	if (update)
742  		return 0;
743  
744  	if (tx) {
745  		ctx->sk_write_space = sk->sk_write_space;
746  		sk->sk_write_space = tls_write_space;
747  	} else {
748  		struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(ctx);
749  
750  		tls_strp_check_rcv(&rx_ctx->strp);
751  	}
752  	return 0;
753  
754  err_crypto_info:
755  	if (update) {
756  		TLS_INC_STATS(sock_net(sk), tx ? LINUX_MIB_TLSTXREKEYERROR
757  					       : LINUX_MIB_TLSRXREKEYERROR);
758  	}
759  	memzero_explicit(crypto_ctx, sizeof(*crypto_ctx));
760  	return rc;
761  }
762  
do_tls_setsockopt_tx_zc(struct sock * sk,sockptr_t optval,unsigned int optlen)763  static int do_tls_setsockopt_tx_zc(struct sock *sk, sockptr_t optval,
764  				   unsigned int optlen)
765  {
766  	struct tls_context *ctx = tls_get_ctx(sk);
767  	unsigned int value;
768  
769  	if (sockptr_is_null(optval) || optlen != sizeof(value))
770  		return -EINVAL;
771  
772  	if (copy_from_sockptr(&value, optval, sizeof(value)))
773  		return -EFAULT;
774  
775  	if (value > 1)
776  		return -EINVAL;
777  
778  	ctx->zerocopy_sendfile = value;
779  
780  	return 0;
781  }
782  
do_tls_setsockopt_no_pad(struct sock * sk,sockptr_t optval,unsigned int optlen)783  static int do_tls_setsockopt_no_pad(struct sock *sk, sockptr_t optval,
784  				    unsigned int optlen)
785  {
786  	struct tls_context *ctx = tls_get_ctx(sk);
787  	u32 val;
788  	int rc;
789  
790  	if (ctx->prot_info.version != TLS_1_3_VERSION ||
791  	    sockptr_is_null(optval) || optlen < sizeof(val))
792  		return -EINVAL;
793  
794  	rc = copy_from_sockptr(&val, optval, sizeof(val));
795  	if (rc)
796  		return -EFAULT;
797  	if (val > 1)
798  		return -EINVAL;
799  	rc = check_zeroed_sockptr(optval, sizeof(val), optlen - sizeof(val));
800  	if (rc < 1)
801  		return rc == 0 ? -EINVAL : rc;
802  
803  	lock_sock(sk);
804  	rc = -EINVAL;
805  	if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) {
806  		ctx->rx_no_pad = val;
807  		tls_update_rx_zc_capable(ctx);
808  		rc = 0;
809  	}
810  	release_sock(sk);
811  
812  	return rc;
813  }
814  
do_tls_setsockopt(struct sock * sk,int optname,sockptr_t optval,unsigned int optlen)815  static int do_tls_setsockopt(struct sock *sk, int optname, sockptr_t optval,
816  			     unsigned int optlen)
817  {
818  	int rc = 0;
819  
820  	switch (optname) {
821  	case TLS_TX:
822  	case TLS_RX:
823  		lock_sock(sk);
824  		rc = do_tls_setsockopt_conf(sk, optval, optlen,
825  					    optname == TLS_TX);
826  		release_sock(sk);
827  		break;
828  	case TLS_TX_ZEROCOPY_RO:
829  		lock_sock(sk);
830  		rc = do_tls_setsockopt_tx_zc(sk, optval, optlen);
831  		release_sock(sk);
832  		break;
833  	case TLS_RX_EXPECT_NO_PAD:
834  		rc = do_tls_setsockopt_no_pad(sk, optval, optlen);
835  		break;
836  	default:
837  		rc = -ENOPROTOOPT;
838  		break;
839  	}
840  	return rc;
841  }
842  
tls_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)843  static int tls_setsockopt(struct sock *sk, int level, int optname,
844  			  sockptr_t optval, unsigned int optlen)
845  {
846  	struct tls_context *ctx = tls_get_ctx(sk);
847  
848  	if (level != SOL_TLS)
849  		return ctx->sk_proto->setsockopt(sk, level, optname, optval,
850  						 optlen);
851  
852  	return do_tls_setsockopt(sk, optname, optval, optlen);
853  }
854  
tls_ctx_create(struct sock * sk)855  struct tls_context *tls_ctx_create(struct sock *sk)
856  {
857  	struct inet_connection_sock *icsk = inet_csk(sk);
858  	struct tls_context *ctx;
859  
860  	ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
861  	if (!ctx)
862  		return NULL;
863  
864  	mutex_init(&ctx->tx_lock);
865  	ctx->sk_proto = READ_ONCE(sk->sk_prot);
866  	ctx->sk = sk;
867  	/* Release semantic of rcu_assign_pointer() ensures that
868  	 * ctx->sk_proto is visible before changing sk->sk_prot in
869  	 * update_sk_prot(), and prevents reading uninitialized value in
870  	 * tls_{getsockopt, setsockopt}. Note that we do not need a
871  	 * read barrier in tls_{getsockopt,setsockopt} as there is an
872  	 * address dependency between sk->sk_proto->{getsockopt,setsockopt}
873  	 * and ctx->sk_proto.
874  	 */
875  	rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
876  	return ctx;
877  }
878  
build_proto_ops(struct proto_ops ops[TLS_NUM_CONFIG][TLS_NUM_CONFIG],const struct proto_ops * base)879  static void build_proto_ops(struct proto_ops ops[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
880  			    const struct proto_ops *base)
881  {
882  	ops[TLS_BASE][TLS_BASE] = *base;
883  
884  	ops[TLS_SW  ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
885  	ops[TLS_SW  ][TLS_BASE].splice_eof	= tls_sw_splice_eof;
886  
887  	ops[TLS_BASE][TLS_SW  ] = ops[TLS_BASE][TLS_BASE];
888  	ops[TLS_BASE][TLS_SW  ].splice_read	= tls_sw_splice_read;
889  	ops[TLS_BASE][TLS_SW  ].poll		= tls_sk_poll;
890  	ops[TLS_BASE][TLS_SW  ].read_sock	= tls_sw_read_sock;
891  
892  	ops[TLS_SW  ][TLS_SW  ] = ops[TLS_SW  ][TLS_BASE];
893  	ops[TLS_SW  ][TLS_SW  ].splice_read	= tls_sw_splice_read;
894  	ops[TLS_SW  ][TLS_SW  ].poll		= tls_sk_poll;
895  	ops[TLS_SW  ][TLS_SW  ].read_sock	= tls_sw_read_sock;
896  
897  #ifdef CONFIG_TLS_DEVICE
898  	ops[TLS_HW  ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
899  
900  	ops[TLS_HW  ][TLS_SW  ] = ops[TLS_BASE][TLS_SW  ];
901  
902  	ops[TLS_BASE][TLS_HW  ] = ops[TLS_BASE][TLS_SW  ];
903  
904  	ops[TLS_SW  ][TLS_HW  ] = ops[TLS_SW  ][TLS_SW  ];
905  
906  	ops[TLS_HW  ][TLS_HW  ] = ops[TLS_HW  ][TLS_SW  ];
907  #endif
908  #ifdef CONFIG_TLS_TOE
909  	ops[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
910  #endif
911  }
912  
tls_build_proto(struct sock * sk)913  static void tls_build_proto(struct sock *sk)
914  {
915  	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
916  	struct proto *prot = READ_ONCE(sk->sk_prot);
917  
918  	/* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
919  	if (ip_ver == TLSV6 &&
920  	    unlikely(prot != smp_load_acquire(&saved_tcpv6_prot))) {
921  		mutex_lock(&tcpv6_prot_mutex);
922  		if (likely(prot != saved_tcpv6_prot)) {
923  			build_protos(tls_prots[TLSV6], prot);
924  			build_proto_ops(tls_proto_ops[TLSV6],
925  					sk->sk_socket->ops);
926  			smp_store_release(&saved_tcpv6_prot, prot);
927  		}
928  		mutex_unlock(&tcpv6_prot_mutex);
929  	}
930  
931  	if (ip_ver == TLSV4 &&
932  	    unlikely(prot != smp_load_acquire(&saved_tcpv4_prot))) {
933  		mutex_lock(&tcpv4_prot_mutex);
934  		if (likely(prot != saved_tcpv4_prot)) {
935  			build_protos(tls_prots[TLSV4], prot);
936  			build_proto_ops(tls_proto_ops[TLSV4],
937  					sk->sk_socket->ops);
938  			smp_store_release(&saved_tcpv4_prot, prot);
939  		}
940  		mutex_unlock(&tcpv4_prot_mutex);
941  	}
942  }
943  
build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],const struct proto * base)944  static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
945  			 const struct proto *base)
946  {
947  	prot[TLS_BASE][TLS_BASE] = *base;
948  	prot[TLS_BASE][TLS_BASE].setsockopt	= tls_setsockopt;
949  	prot[TLS_BASE][TLS_BASE].getsockopt	= tls_getsockopt;
950  	prot[TLS_BASE][TLS_BASE].close		= tls_sk_proto_close;
951  
952  	prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
953  	prot[TLS_SW][TLS_BASE].sendmsg		= tls_sw_sendmsg;
954  	prot[TLS_SW][TLS_BASE].splice_eof	= tls_sw_splice_eof;
955  
956  	prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
957  	prot[TLS_BASE][TLS_SW].recvmsg		  = tls_sw_recvmsg;
958  	prot[TLS_BASE][TLS_SW].sock_is_readable   = tls_sw_sock_is_readable;
959  	prot[TLS_BASE][TLS_SW].close		  = tls_sk_proto_close;
960  
961  	prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
962  	prot[TLS_SW][TLS_SW].recvmsg		= tls_sw_recvmsg;
963  	prot[TLS_SW][TLS_SW].sock_is_readable   = tls_sw_sock_is_readable;
964  	prot[TLS_SW][TLS_SW].close		= tls_sk_proto_close;
965  
966  #ifdef CONFIG_TLS_DEVICE
967  	prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
968  	prot[TLS_HW][TLS_BASE].sendmsg		= tls_device_sendmsg;
969  	prot[TLS_HW][TLS_BASE].splice_eof	= tls_device_splice_eof;
970  
971  	prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
972  	prot[TLS_HW][TLS_SW].sendmsg		= tls_device_sendmsg;
973  	prot[TLS_HW][TLS_SW].splice_eof		= tls_device_splice_eof;
974  
975  	prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
976  
977  	prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
978  
979  	prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
980  #endif
981  #ifdef CONFIG_TLS_TOE
982  	prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
983  	prot[TLS_HW_RECORD][TLS_HW_RECORD].hash		= tls_toe_hash;
984  	prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash	= tls_toe_unhash;
985  #endif
986  }
987  
tls_init(struct sock * sk)988  static int tls_init(struct sock *sk)
989  {
990  	struct tls_context *ctx;
991  	int rc = 0;
992  
993  	tls_build_proto(sk);
994  
995  #ifdef CONFIG_TLS_TOE
996  	if (tls_toe_bypass(sk))
997  		return 0;
998  #endif
999  
1000  	/* The TLS ulp is currently supported only for TCP sockets
1001  	 * in ESTABLISHED state.
1002  	 * Supporting sockets in LISTEN state will require us
1003  	 * to modify the accept implementation to clone rather then
1004  	 * share the ulp context.
1005  	 */
1006  	if (sk->sk_state != TCP_ESTABLISHED)
1007  		return -ENOTCONN;
1008  
1009  	/* allocate tls context */
1010  	write_lock_bh(&sk->sk_callback_lock);
1011  	ctx = tls_ctx_create(sk);
1012  	if (!ctx) {
1013  		rc = -ENOMEM;
1014  		goto out;
1015  	}
1016  
1017  	ctx->tx_conf = TLS_BASE;
1018  	ctx->rx_conf = TLS_BASE;
1019  	update_sk_prot(sk, ctx);
1020  out:
1021  	write_unlock_bh(&sk->sk_callback_lock);
1022  	return rc;
1023  }
1024  
tls_update(struct sock * sk,struct proto * p,void (* write_space)(struct sock * sk))1025  static void tls_update(struct sock *sk, struct proto *p,
1026  		       void (*write_space)(struct sock *sk))
1027  {
1028  	struct tls_context *ctx;
1029  
1030  	WARN_ON_ONCE(sk->sk_prot == p);
1031  
1032  	ctx = tls_get_ctx(sk);
1033  	if (likely(ctx)) {
1034  		ctx->sk_write_space = write_space;
1035  		ctx->sk_proto = p;
1036  	} else {
1037  		/* Pairs with lockless read in sk_clone_lock(). */
1038  		WRITE_ONCE(sk->sk_prot, p);
1039  		sk->sk_write_space = write_space;
1040  	}
1041  }
1042  
tls_user_config(struct tls_context * ctx,bool tx)1043  static u16 tls_user_config(struct tls_context *ctx, bool tx)
1044  {
1045  	u16 config = tx ? ctx->tx_conf : ctx->rx_conf;
1046  
1047  	switch (config) {
1048  	case TLS_BASE:
1049  		return TLS_CONF_BASE;
1050  	case TLS_SW:
1051  		return TLS_CONF_SW;
1052  	case TLS_HW:
1053  		return TLS_CONF_HW;
1054  	case TLS_HW_RECORD:
1055  		return TLS_CONF_HW_RECORD;
1056  	}
1057  	return 0;
1058  }
1059  
tls_get_info(struct sock * sk,struct sk_buff * skb,bool net_admin)1060  static int tls_get_info(struct sock *sk, struct sk_buff *skb, bool net_admin)
1061  {
1062  	u16 version, cipher_type;
1063  	struct tls_context *ctx;
1064  	struct nlattr *start;
1065  	int err;
1066  
1067  	start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS);
1068  	if (!start)
1069  		return -EMSGSIZE;
1070  
1071  	rcu_read_lock();
1072  	ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data);
1073  	if (!ctx) {
1074  		err = 0;
1075  		goto nla_failure;
1076  	}
1077  	version = ctx->prot_info.version;
1078  	if (version) {
1079  		err = nla_put_u16(skb, TLS_INFO_VERSION, version);
1080  		if (err)
1081  			goto nla_failure;
1082  	}
1083  	cipher_type = ctx->prot_info.cipher_type;
1084  	if (cipher_type) {
1085  		err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type);
1086  		if (err)
1087  			goto nla_failure;
1088  	}
1089  	err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true));
1090  	if (err)
1091  		goto nla_failure;
1092  
1093  	err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false));
1094  	if (err)
1095  		goto nla_failure;
1096  
1097  	if (ctx->tx_conf == TLS_HW && ctx->zerocopy_sendfile) {
1098  		err = nla_put_flag(skb, TLS_INFO_ZC_RO_TX);
1099  		if (err)
1100  			goto nla_failure;
1101  	}
1102  	if (ctx->rx_no_pad) {
1103  		err = nla_put_flag(skb, TLS_INFO_RX_NO_PAD);
1104  		if (err)
1105  			goto nla_failure;
1106  	}
1107  
1108  	rcu_read_unlock();
1109  	nla_nest_end(skb, start);
1110  	return 0;
1111  
1112  nla_failure:
1113  	rcu_read_unlock();
1114  	nla_nest_cancel(skb, start);
1115  	return err;
1116  }
1117  
tls_get_info_size(const struct sock * sk,bool net_admin)1118  static size_t tls_get_info_size(const struct sock *sk, bool net_admin)
1119  {
1120  	size_t size = 0;
1121  
1122  	size += nla_total_size(0) +		/* INET_ULP_INFO_TLS */
1123  		nla_total_size(sizeof(u16)) +	/* TLS_INFO_VERSION */
1124  		nla_total_size(sizeof(u16)) +	/* TLS_INFO_CIPHER */
1125  		nla_total_size(sizeof(u16)) +	/* TLS_INFO_RXCONF */
1126  		nla_total_size(sizeof(u16)) +	/* TLS_INFO_TXCONF */
1127  		nla_total_size(0) +		/* TLS_INFO_ZC_RO_TX */
1128  		nla_total_size(0) +		/* TLS_INFO_RX_NO_PAD */
1129  		0;
1130  
1131  	return size;
1132  }
1133  
tls_init_net(struct net * net)1134  static int __net_init tls_init_net(struct net *net)
1135  {
1136  	int err;
1137  
1138  	net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib);
1139  	if (!net->mib.tls_statistics)
1140  		return -ENOMEM;
1141  
1142  	err = tls_proc_init(net);
1143  	if (err)
1144  		goto err_free_stats;
1145  
1146  	return 0;
1147  err_free_stats:
1148  	free_percpu(net->mib.tls_statistics);
1149  	return err;
1150  }
1151  
tls_exit_net(struct net * net)1152  static void __net_exit tls_exit_net(struct net *net)
1153  {
1154  	tls_proc_fini(net);
1155  	free_percpu(net->mib.tls_statistics);
1156  }
1157  
1158  static struct pernet_operations tls_proc_ops = {
1159  	.init = tls_init_net,
1160  	.exit = tls_exit_net,
1161  };
1162  
1163  static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
1164  	.name			= "tls",
1165  	.owner			= THIS_MODULE,
1166  	.init			= tls_init,
1167  	.update			= tls_update,
1168  	.get_info		= tls_get_info,
1169  	.get_info_size		= tls_get_info_size,
1170  };
1171  
tls_register(void)1172  static int __init tls_register(void)
1173  {
1174  	int err;
1175  
1176  	err = register_pernet_subsys(&tls_proc_ops);
1177  	if (err)
1178  		return err;
1179  
1180  	err = tls_strp_dev_init();
1181  	if (err)
1182  		goto err_pernet;
1183  
1184  	err = tls_device_init();
1185  	if (err)
1186  		goto err_strp;
1187  
1188  	tcp_register_ulp(&tcp_tls_ulp_ops);
1189  
1190  	return 0;
1191  err_strp:
1192  	tls_strp_dev_exit();
1193  err_pernet:
1194  	unregister_pernet_subsys(&tls_proc_ops);
1195  	return err;
1196  }
1197  
tls_unregister(void)1198  static void __exit tls_unregister(void)
1199  {
1200  	tcp_unregister_ulp(&tcp_tls_ulp_ops);
1201  	tls_strp_dev_exit();
1202  	tls_device_cleanup();
1203  	unregister_pernet_subsys(&tls_proc_ops);
1204  }
1205  
1206  module_init(tls_register);
1207  module_exit(tls_unregister);
1208