1 /* Copyright (c) 2018, Mellanox Technologies All rights reserved.
2 *
3 * This software is available to you under a choice of one of two
4 * licenses. You may choose to be licensed under the terms of the GNU
5 * General Public License (GPL) Version 2, available from the file
6 * COPYING in the main directory of this source tree, or the
7 * OpenIB.org BSD license below:
8 *
9 * Redistribution and use in source and binary forms, with or
10 * without modification, are permitted provided that the following
11 * conditions are met:
12 *
13 * - Redistributions of source code must retain the above
14 * copyright notice, this list of conditions and the following
15 * disclaimer.
16 *
17 * - Redistributions in binary form must reproduce the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer in the documentation and/or other materials
20 * provided with the distribution.
21 *
22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29 * SOFTWARE.
30 */
31
32 #include <crypto/aead.h>
33 #include <linux/highmem.h>
34 #include <linux/module.h>
35 #include <linux/netdevice.h>
36 #include <net/dst.h>
37 #include <net/inet_connection_sock.h>
38 #include <net/tcp.h>
39 #include <net/tls.h>
40 #include <linux/skbuff_ref.h>
41
42 #include "tls.h"
43 #include "trace.h"
44
45 /* device_offload_lock is used to synchronize tls_dev_add
46 * against NETDEV_DOWN notifications.
47 */
48 static DECLARE_RWSEM(device_offload_lock);
49
50 static struct workqueue_struct *destruct_wq __read_mostly;
51
52 static LIST_HEAD(tls_device_list);
53 static LIST_HEAD(tls_device_down_list);
54 static DEFINE_SPINLOCK(tls_device_lock);
55
56 static struct page *dummy_page;
57
tls_device_free_ctx(struct tls_context * ctx)58 static void tls_device_free_ctx(struct tls_context *ctx)
59 {
60 if (ctx->tx_conf == TLS_HW)
61 kfree(tls_offload_ctx_tx(ctx));
62
63 if (ctx->rx_conf == TLS_HW)
64 kfree(tls_offload_ctx_rx(ctx));
65
66 tls_ctx_free(NULL, ctx);
67 }
68
tls_device_tx_del_task(struct work_struct * work)69 static void tls_device_tx_del_task(struct work_struct *work)
70 {
71 struct tls_offload_context_tx *offload_ctx =
72 container_of(work, struct tls_offload_context_tx, destruct_work);
73 struct tls_context *ctx = offload_ctx->ctx;
74 struct net_device *netdev;
75
76 /* Safe, because this is the destroy flow, refcount is 0, so
77 * tls_device_down can't store this field in parallel.
78 */
79 netdev = rcu_dereference_protected(ctx->netdev,
80 !refcount_read(&ctx->refcount));
81
82 netdev->tlsdev_ops->tls_dev_del(netdev, ctx, TLS_OFFLOAD_CTX_DIR_TX);
83 dev_put(netdev);
84 ctx->netdev = NULL;
85 tls_device_free_ctx(ctx);
86 }
87
tls_device_queue_ctx_destruction(struct tls_context * ctx)88 static void tls_device_queue_ctx_destruction(struct tls_context *ctx)
89 {
90 struct net_device *netdev;
91 unsigned long flags;
92 bool async_cleanup;
93
94 spin_lock_irqsave(&tls_device_lock, flags);
95 if (unlikely(!refcount_dec_and_test(&ctx->refcount))) {
96 spin_unlock_irqrestore(&tls_device_lock, flags);
97 return;
98 }
99
100 list_del(&ctx->list); /* Remove from tls_device_list / tls_device_down_list */
101
102 /* Safe, because this is the destroy flow, refcount is 0, so
103 * tls_device_down can't store this field in parallel.
104 */
105 netdev = rcu_dereference_protected(ctx->netdev,
106 !refcount_read(&ctx->refcount));
107
108 async_cleanup = netdev && ctx->tx_conf == TLS_HW;
109 if (async_cleanup) {
110 struct tls_offload_context_tx *offload_ctx = tls_offload_ctx_tx(ctx);
111
112 /* queue_work inside the spinlock
113 * to make sure tls_device_down waits for that work.
114 */
115 queue_work(destruct_wq, &offload_ctx->destruct_work);
116 }
117 spin_unlock_irqrestore(&tls_device_lock, flags);
118
119 if (!async_cleanup)
120 tls_device_free_ctx(ctx);
121 }
122
123 /* We assume that the socket is already connected */
get_netdev_for_sock(struct sock * sk)124 static struct net_device *get_netdev_for_sock(struct sock *sk)
125 {
126 struct net_device *dev, *lowest_dev = NULL;
127 struct dst_entry *dst;
128
129 rcu_read_lock();
130 dst = __sk_dst_get(sk);
131 dev = dst ? dst_dev_rcu(dst) : NULL;
132 if (likely(dev)) {
133 lowest_dev = netdev_sk_get_lowest_dev(dev, sk);
134 dev_hold(lowest_dev);
135 }
136 rcu_read_unlock();
137
138 return lowest_dev;
139 }
140
destroy_record(struct tls_record_info * record)141 static void destroy_record(struct tls_record_info *record)
142 {
143 int i;
144
145 for (i = 0; i < record->num_frags; i++)
146 __skb_frag_unref(&record->frags[i], false);
147 kfree(record);
148 }
149
delete_all_records(struct tls_offload_context_tx * offload_ctx)150 static void delete_all_records(struct tls_offload_context_tx *offload_ctx)
151 {
152 struct tls_record_info *info, *temp;
153
154 list_for_each_entry_safe(info, temp, &offload_ctx->records_list, list) {
155 list_del(&info->list);
156 destroy_record(info);
157 }
158
159 offload_ctx->retransmit_hint = NULL;
160 }
161
tls_tcp_clean_acked(struct sock * sk,u32 acked_seq)162 static void tls_tcp_clean_acked(struct sock *sk, u32 acked_seq)
163 {
164 struct tls_context *tls_ctx = tls_get_ctx(sk);
165 struct tls_record_info *info, *temp;
166 struct tls_offload_context_tx *ctx;
167 u64 deleted_records = 0;
168 unsigned long flags;
169
170 if (!tls_ctx)
171 return;
172
173 ctx = tls_offload_ctx_tx(tls_ctx);
174
175 spin_lock_irqsave(&ctx->lock, flags);
176 info = ctx->retransmit_hint;
177 if (info && !before(acked_seq, info->end_seq))
178 ctx->retransmit_hint = NULL;
179
180 list_for_each_entry_safe(info, temp, &ctx->records_list, list) {
181 if (before(acked_seq, info->end_seq))
182 break;
183 list_del(&info->list);
184
185 destroy_record(info);
186 deleted_records++;
187 }
188
189 ctx->unacked_record_sn += deleted_records;
190 spin_unlock_irqrestore(&ctx->lock, flags);
191 }
192
193 /* At this point, there should be no references on this
194 * socket and no in-flight SKBs associated with this
195 * socket, so it is safe to free all the resources.
196 */
tls_device_sk_destruct(struct sock * sk)197 void tls_device_sk_destruct(struct sock *sk)
198 {
199 struct tls_context *tls_ctx = tls_get_ctx(sk);
200 struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
201
202 tls_ctx->sk_destruct(sk);
203
204 if (tls_ctx->tx_conf == TLS_HW) {
205 if (ctx->open_record)
206 destroy_record(ctx->open_record);
207 delete_all_records(ctx);
208 crypto_free_aead(ctx->aead_send);
209 clean_acked_data_disable(tcp_sk(sk));
210 }
211
212 tls_device_queue_ctx_destruction(tls_ctx);
213 }
214 EXPORT_SYMBOL_GPL(tls_device_sk_destruct);
215
tls_device_free_resources_tx(struct sock * sk)216 void tls_device_free_resources_tx(struct sock *sk)
217 {
218 struct tls_context *tls_ctx = tls_get_ctx(sk);
219
220 tls_free_partial_record(sk, tls_ctx);
221 }
222
tls_offload_tx_resync_request(struct sock * sk,u32 got_seq,u32 exp_seq)223 void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq)
224 {
225 struct tls_context *tls_ctx = tls_get_ctx(sk);
226
227 trace_tls_device_tx_resync_req(sk, got_seq, exp_seq);
228 WARN_ON(test_and_set_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags));
229 }
230 EXPORT_SYMBOL_GPL(tls_offload_tx_resync_request);
231
tls_device_resync_tx(struct sock * sk,struct tls_context * tls_ctx,u32 seq)232 static void tls_device_resync_tx(struct sock *sk, struct tls_context *tls_ctx,
233 u32 seq)
234 {
235 struct net_device *netdev;
236 int err = 0;
237 u8 *rcd_sn;
238
239 tcp_write_collapse_fence(sk);
240 rcd_sn = tls_ctx->tx.rec_seq;
241
242 trace_tls_device_tx_resync_send(sk, seq, rcd_sn);
243 down_read(&device_offload_lock);
244 netdev = rcu_dereference_protected(tls_ctx->netdev,
245 lockdep_is_held(&device_offload_lock));
246 if (netdev)
247 err = netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq,
248 rcd_sn,
249 TLS_OFFLOAD_CTX_DIR_TX);
250 up_read(&device_offload_lock);
251 if (err)
252 return;
253
254 clear_bit_unlock(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
255 }
256
tls_append_frag(struct tls_record_info * record,struct page_frag * pfrag,int size)257 static void tls_append_frag(struct tls_record_info *record,
258 struct page_frag *pfrag,
259 int size)
260 {
261 skb_frag_t *frag;
262
263 frag = &record->frags[record->num_frags - 1];
264 if (skb_frag_page(frag) == pfrag->page &&
265 skb_frag_off(frag) + skb_frag_size(frag) == pfrag->offset) {
266 skb_frag_size_add(frag, size);
267 } else {
268 ++frag;
269 skb_frag_fill_page_desc(frag, pfrag->page, pfrag->offset,
270 size);
271 ++record->num_frags;
272 get_page(pfrag->page);
273 }
274
275 pfrag->offset += size;
276 record->len += size;
277 }
278
tls_push_record(struct sock * sk,struct tls_context * ctx,struct tls_offload_context_tx * offload_ctx,struct tls_record_info * record,int flags)279 static int tls_push_record(struct sock *sk,
280 struct tls_context *ctx,
281 struct tls_offload_context_tx *offload_ctx,
282 struct tls_record_info *record,
283 int flags)
284 {
285 struct tls_prot_info *prot = &ctx->prot_info;
286 struct tcp_sock *tp = tcp_sk(sk);
287 skb_frag_t *frag;
288 int i;
289
290 record->end_seq = tp->write_seq + record->len;
291 list_add_tail_rcu(&record->list, &offload_ctx->records_list);
292 offload_ctx->open_record = NULL;
293
294 if (test_bit(TLS_TX_SYNC_SCHED, &ctx->flags))
295 tls_device_resync_tx(sk, ctx, tp->write_seq);
296
297 tls_advance_record_sn(sk, prot, &ctx->tx);
298
299 for (i = 0; i < record->num_frags; i++) {
300 frag = &record->frags[i];
301 sg_unmark_end(&offload_ctx->sg_tx_data[i]);
302 sg_set_page(&offload_ctx->sg_tx_data[i], skb_frag_page(frag),
303 skb_frag_size(frag), skb_frag_off(frag));
304 sk_mem_charge(sk, skb_frag_size(frag));
305 get_page(skb_frag_page(frag));
306 }
307 sg_mark_end(&offload_ctx->sg_tx_data[record->num_frags - 1]);
308
309 /* all ready, send */
310 return tls_push_sg(sk, ctx, offload_ctx->sg_tx_data, 0, flags);
311 }
312
tls_device_record_close(struct sock * sk,struct tls_context * ctx,struct tls_record_info * record,struct page_frag * pfrag,unsigned char record_type)313 static void tls_device_record_close(struct sock *sk,
314 struct tls_context *ctx,
315 struct tls_record_info *record,
316 struct page_frag *pfrag,
317 unsigned char record_type)
318 {
319 struct tls_prot_info *prot = &ctx->prot_info;
320 struct page_frag dummy_tag_frag;
321
322 /* append tag
323 * device will fill in the tag, we just need to append a placeholder
324 * use socket memory to improve coalescing (re-using a single buffer
325 * increases frag count)
326 * if we can't allocate memory now use the dummy page
327 */
328 if (unlikely(pfrag->size - pfrag->offset < prot->tag_size) &&
329 !skb_page_frag_refill(prot->tag_size, pfrag, sk->sk_allocation)) {
330 dummy_tag_frag.page = dummy_page;
331 dummy_tag_frag.offset = 0;
332 pfrag = &dummy_tag_frag;
333 }
334 tls_append_frag(record, pfrag, prot->tag_size);
335
336 /* fill prepend */
337 tls_fill_prepend(ctx, skb_frag_address(&record->frags[0]),
338 record->len - prot->overhead_size,
339 record_type);
340 }
341
tls_create_new_record(struct tls_offload_context_tx * offload_ctx,struct page_frag * pfrag,size_t prepend_size)342 static int tls_create_new_record(struct tls_offload_context_tx *offload_ctx,
343 struct page_frag *pfrag,
344 size_t prepend_size)
345 {
346 struct tls_record_info *record;
347 skb_frag_t *frag;
348
349 record = kmalloc(sizeof(*record), GFP_KERNEL);
350 if (!record)
351 return -ENOMEM;
352
353 frag = &record->frags[0];
354 skb_frag_fill_page_desc(frag, pfrag->page, pfrag->offset,
355 prepend_size);
356
357 get_page(pfrag->page);
358 pfrag->offset += prepend_size;
359
360 record->num_frags = 1;
361 record->len = prepend_size;
362 offload_ctx->open_record = record;
363 return 0;
364 }
365
tls_do_allocation(struct sock * sk,struct tls_offload_context_tx * offload_ctx,struct page_frag * pfrag,size_t prepend_size)366 static int tls_do_allocation(struct sock *sk,
367 struct tls_offload_context_tx *offload_ctx,
368 struct page_frag *pfrag,
369 size_t prepend_size)
370 {
371 int ret;
372
373 if (!offload_ctx->open_record) {
374 if (unlikely(!skb_page_frag_refill(prepend_size, pfrag,
375 sk->sk_allocation))) {
376 if (!sk->sk_bypass_prot_mem)
377 READ_ONCE(sk->sk_prot)->enter_memory_pressure(sk);
378 sk_stream_moderate_sndbuf(sk);
379 return -ENOMEM;
380 }
381
382 ret = tls_create_new_record(offload_ctx, pfrag, prepend_size);
383 if (ret)
384 return ret;
385
386 if (pfrag->size > pfrag->offset)
387 return 0;
388 }
389
390 if (!sk_page_frag_refill(sk, pfrag))
391 return -ENOMEM;
392
393 return 0;
394 }
395
tls_device_copy_data(void * addr,size_t bytes,struct iov_iter * i)396 static int tls_device_copy_data(void *addr, size_t bytes, struct iov_iter *i)
397 {
398 size_t pre_copy, nocache;
399
400 pre_copy = ~((unsigned long)addr - 1) & (SMP_CACHE_BYTES - 1);
401 if (pre_copy) {
402 pre_copy = min(pre_copy, bytes);
403 if (copy_from_iter(addr, pre_copy, i) != pre_copy)
404 return -EFAULT;
405 bytes -= pre_copy;
406 addr += pre_copy;
407 }
408
409 nocache = round_down(bytes, SMP_CACHE_BYTES);
410 if (copy_from_iter_nocache(addr, nocache, i) != nocache)
411 return -EFAULT;
412 bytes -= nocache;
413 addr += nocache;
414
415 if (bytes && copy_from_iter(addr, bytes, i) != bytes)
416 return -EFAULT;
417
418 return 0;
419 }
420
tls_push_data(struct sock * sk,struct iov_iter * iter,size_t size,int flags,unsigned char record_type)421 static int tls_push_data(struct sock *sk,
422 struct iov_iter *iter,
423 size_t size, int flags,
424 unsigned char record_type)
425 {
426 struct tls_context *tls_ctx = tls_get_ctx(sk);
427 struct tls_prot_info *prot = &tls_ctx->prot_info;
428 struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
429 struct tls_record_info *record;
430 int tls_push_record_flags;
431 struct page_frag *pfrag;
432 size_t orig_size = size;
433 u32 max_open_record_len;
434 bool more = false;
435 bool done = false;
436 int copy, rc = 0;
437 long timeo;
438
439 if (flags &
440 ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
441 MSG_SPLICE_PAGES | MSG_EOR))
442 return -EOPNOTSUPP;
443
444 if ((flags & (MSG_MORE | MSG_EOR)) == (MSG_MORE | MSG_EOR))
445 return -EINVAL;
446
447 if (unlikely(sk->sk_err))
448 return -sk->sk_err;
449
450 flags |= MSG_SENDPAGE_DECRYPTED;
451 tls_push_record_flags = flags | MSG_MORE;
452
453 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
454 if (tls_is_partially_sent_record(tls_ctx)) {
455 rc = tls_push_partial_record(sk, tls_ctx, flags);
456 if (rc < 0)
457 return rc;
458 }
459
460 pfrag = sk_page_frag(sk);
461
462 /* TLS_HEADER_SIZE is not counted as part of the TLS record, and
463 * we need to leave room for an authentication tag.
464 */
465 max_open_record_len = tls_ctx->tx_max_payload_len +
466 prot->prepend_size;
467 do {
468 rc = tls_do_allocation(sk, ctx, pfrag, prot->prepend_size);
469 if (unlikely(rc)) {
470 rc = sk_stream_wait_memory(sk, &timeo);
471 if (!rc)
472 continue;
473
474 record = ctx->open_record;
475 if (!record)
476 break;
477 handle_error:
478 if (record_type != TLS_RECORD_TYPE_DATA) {
479 /* avoid sending partial
480 * record with type !=
481 * application_data
482 */
483 size = orig_size;
484 destroy_record(record);
485 ctx->open_record = NULL;
486 } else if (record->len > prot->prepend_size) {
487 goto last_record;
488 }
489
490 break;
491 }
492
493 record = ctx->open_record;
494
495 copy = min_t(size_t, size, max_open_record_len - record->len);
496 if (copy && (flags & MSG_SPLICE_PAGES)) {
497 struct page_frag zc_pfrag;
498 struct page **pages = &zc_pfrag.page;
499 size_t off;
500
501 rc = iov_iter_extract_pages(iter, &pages,
502 copy, 1, 0, &off);
503 if (rc <= 0) {
504 if (rc == 0)
505 rc = -EIO;
506 goto handle_error;
507 }
508 copy = rc;
509
510 if (WARN_ON_ONCE(!sendpage_ok(zc_pfrag.page))) {
511 iov_iter_revert(iter, copy);
512 rc = -EIO;
513 goto handle_error;
514 }
515
516 zc_pfrag.offset = off;
517 zc_pfrag.size = copy;
518 tls_append_frag(record, &zc_pfrag, copy);
519 } else if (copy) {
520 copy = min_t(size_t, copy, pfrag->size - pfrag->offset);
521
522 rc = tls_device_copy_data(page_address(pfrag->page) +
523 pfrag->offset, copy,
524 iter);
525 if (rc)
526 goto handle_error;
527 tls_append_frag(record, pfrag, copy);
528 }
529
530 size -= copy;
531 if (!size) {
532 last_record:
533 tls_push_record_flags = flags;
534 if (flags & MSG_MORE) {
535 more = true;
536 break;
537 }
538
539 done = true;
540 }
541
542 if (done || record->len >= max_open_record_len ||
543 (record->num_frags >= MAX_SKB_FRAGS - 1)) {
544 tls_device_record_close(sk, tls_ctx, record,
545 pfrag, record_type);
546
547 rc = tls_push_record(sk,
548 tls_ctx,
549 ctx,
550 record,
551 tls_push_record_flags);
552 if (rc < 0)
553 break;
554 }
555 } while (!done);
556
557 tls_ctx->pending_open_record_frags = more;
558
559 if (orig_size - size > 0)
560 rc = orig_size - size;
561
562 return rc;
563 }
564
tls_device_sendmsg(struct sock * sk,struct msghdr * msg,size_t size)565 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
566 {
567 unsigned char record_type = TLS_RECORD_TYPE_DATA;
568 struct tls_context *tls_ctx = tls_get_ctx(sk);
569 int rc;
570
571 if (!tls_ctx->zerocopy_sendfile)
572 msg->msg_flags &= ~MSG_SPLICE_PAGES;
573
574 mutex_lock(&tls_ctx->tx_lock);
575 lock_sock(sk);
576
577 if (unlikely(msg->msg_controllen)) {
578 rc = tls_process_cmsg(sk, msg, &record_type);
579 if (rc)
580 goto out;
581 }
582
583 rc = tls_push_data(sk, &msg->msg_iter, size, msg->msg_flags,
584 record_type);
585
586 out:
587 release_sock(sk);
588 mutex_unlock(&tls_ctx->tx_lock);
589 return rc;
590 }
591
tls_device_splice_eof(struct socket * sock)592 void tls_device_splice_eof(struct socket *sock)
593 {
594 struct sock *sk = sock->sk;
595 struct tls_context *tls_ctx = tls_get_ctx(sk);
596 struct iov_iter iter = {};
597
598 if (!tls_is_partially_sent_record(tls_ctx))
599 return;
600
601 mutex_lock(&tls_ctx->tx_lock);
602 lock_sock(sk);
603
604 if (tls_is_partially_sent_record(tls_ctx)) {
605 iov_iter_bvec(&iter, ITER_SOURCE, NULL, 0, 0);
606 tls_push_data(sk, &iter, 0, 0, TLS_RECORD_TYPE_DATA);
607 }
608
609 release_sock(sk);
610 mutex_unlock(&tls_ctx->tx_lock);
611 }
612
tls_get_record(struct tls_offload_context_tx * context,u32 seq,u64 * p_record_sn)613 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
614 u32 seq, u64 *p_record_sn)
615 {
616 u64 record_sn = context->hint_record_sn;
617 struct tls_record_info *info, *last;
618
619 info = context->retransmit_hint;
620 if (!info ||
621 before(seq, info->end_seq - info->len)) {
622 /* if retransmit_hint is irrelevant start
623 * from the beginning of the list
624 */
625 info = list_first_entry_or_null(&context->records_list,
626 struct tls_record_info, list);
627 if (!info)
628 return NULL;
629 /* send the start_marker record if seq number is before the
630 * tls offload start marker sequence number. This record is
631 * required to handle TCP packets which are before TLS offload
632 * started.
633 * And if it's not start marker, look if this seq number
634 * belongs to the list.
635 */
636 if (likely(!tls_record_is_start_marker(info))) {
637 /* we have the first record, get the last record to see
638 * if this seq number belongs to the list.
639 */
640 last = list_last_entry(&context->records_list,
641 struct tls_record_info, list);
642
643 if (!between(seq, tls_record_start_seq(info),
644 last->end_seq))
645 return NULL;
646 }
647 record_sn = context->unacked_record_sn;
648 }
649
650 /* We just need the _rcu for the READ_ONCE() */
651 rcu_read_lock();
652 list_for_each_entry_from_rcu(info, &context->records_list, list) {
653 if (before(seq, info->end_seq)) {
654 if (!context->retransmit_hint ||
655 after(info->end_seq,
656 context->retransmit_hint->end_seq)) {
657 context->hint_record_sn = record_sn;
658 context->retransmit_hint = info;
659 }
660 *p_record_sn = record_sn;
661 goto exit_rcu_unlock;
662 }
663 record_sn++;
664 }
665 info = NULL;
666
667 exit_rcu_unlock:
668 rcu_read_unlock();
669 return info;
670 }
671 EXPORT_SYMBOL(tls_get_record);
672
tls_device_push_pending_record(struct sock * sk,int flags)673 static int tls_device_push_pending_record(struct sock *sk, int flags)
674 {
675 struct iov_iter iter;
676
677 iov_iter_kvec(&iter, ITER_SOURCE, NULL, 0, 0);
678 return tls_push_data(sk, &iter, 0, flags, TLS_RECORD_TYPE_DATA);
679 }
680
tls_device_write_space(struct sock * sk,struct tls_context * ctx)681 void tls_device_write_space(struct sock *sk, struct tls_context *ctx)
682 {
683 if (tls_is_partially_sent_record(ctx)) {
684 gfp_t sk_allocation = sk->sk_allocation;
685
686 WARN_ON_ONCE(sk->sk_write_pending);
687
688 sk->sk_allocation = GFP_ATOMIC;
689 tls_push_partial_record(sk, ctx,
690 MSG_DONTWAIT | MSG_NOSIGNAL |
691 MSG_SENDPAGE_DECRYPTED);
692 sk->sk_allocation = sk_allocation;
693 }
694 }
695
tls_device_resync_rx(struct tls_context * tls_ctx,struct sock * sk,u32 seq,u8 * rcd_sn)696 static void tls_device_resync_rx(struct tls_context *tls_ctx,
697 struct sock *sk, u32 seq, u8 *rcd_sn)
698 {
699 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
700 struct net_device *netdev;
701
702 trace_tls_device_rx_resync_send(sk, seq, rcd_sn, rx_ctx->resync_type);
703 rcu_read_lock();
704 netdev = rcu_dereference(tls_ctx->netdev);
705 if (netdev)
706 netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, rcd_sn,
707 TLS_OFFLOAD_CTX_DIR_RX);
708 rcu_read_unlock();
709 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICERESYNC);
710 }
711
712 static bool
tls_device_rx_resync_async(struct tls_offload_resync_async * resync_async,s64 resync_req,u32 * seq,u16 * rcd_delta)713 tls_device_rx_resync_async(struct tls_offload_resync_async *resync_async,
714 s64 resync_req, u32 *seq, u16 *rcd_delta)
715 {
716 u32 is_async = resync_req & RESYNC_REQ_ASYNC;
717 u32 req_seq = resync_req >> 32;
718 u32 req_end = req_seq + ((resync_req >> 16) & 0xffff);
719 u16 i;
720
721 *rcd_delta = 0;
722
723 if (is_async) {
724 /* shouldn't get to wraparound:
725 * too long in async stage, something bad happened
726 */
727 if (WARN_ON_ONCE(resync_async->rcd_delta == USHRT_MAX)) {
728 tls_offload_rx_resync_async_request_cancel(resync_async);
729 return false;
730 }
731
732 /* asynchronous stage: log all headers seq such that
733 * req_seq <= seq <= end_seq, and wait for real resync request
734 */
735 if (before(*seq, req_seq))
736 return false;
737 if (!after(*seq, req_end) &&
738 resync_async->loglen < TLS_DEVICE_RESYNC_ASYNC_LOGMAX)
739 resync_async->log[resync_async->loglen++] = *seq;
740
741 resync_async->rcd_delta++;
742
743 return false;
744 }
745
746 /* synchronous stage: check against the logged entries and
747 * proceed to check the next entries if no match was found
748 */
749 for (i = 0; i < resync_async->loglen; i++)
750 if (req_seq == resync_async->log[i] &&
751 atomic64_try_cmpxchg(&resync_async->req, &resync_req, 0)) {
752 *rcd_delta = resync_async->rcd_delta - i;
753 *seq = req_seq;
754 resync_async->loglen = 0;
755 resync_async->rcd_delta = 0;
756 return true;
757 }
758
759 resync_async->loglen = 0;
760 resync_async->rcd_delta = 0;
761
762 if (req_seq == *seq &&
763 atomic64_try_cmpxchg(&resync_async->req,
764 &resync_req, 0))
765 return true;
766
767 return false;
768 }
769
tls_device_rx_resync_new_rec(struct sock * sk,u32 rcd_len,u32 seq)770 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq)
771 {
772 struct tls_context *tls_ctx = tls_get_ctx(sk);
773 struct tls_offload_context_rx *rx_ctx;
774 u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
775 u32 sock_data, is_req_pending;
776 struct tls_prot_info *prot;
777 s64 resync_req;
778 u16 rcd_delta;
779 u32 req_seq;
780
781 if (tls_ctx->rx_conf != TLS_HW)
782 return;
783 if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags)))
784 return;
785
786 prot = &tls_ctx->prot_info;
787 rx_ctx = tls_offload_ctx_rx(tls_ctx);
788 memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
789
790 switch (rx_ctx->resync_type) {
791 case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ:
792 resync_req = atomic64_read(&rx_ctx->resync_req);
793 req_seq = resync_req >> 32;
794 seq += TLS_HEADER_SIZE - 1;
795 is_req_pending = resync_req;
796
797 if (likely(!is_req_pending) || req_seq != seq ||
798 !atomic64_try_cmpxchg(&rx_ctx->resync_req, &resync_req, 0))
799 return;
800 break;
801 case TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT:
802 if (likely(!rx_ctx->resync_nh_do_now))
803 return;
804
805 /* head of next rec is already in, note that the sock_inq will
806 * include the currently parsed message when called from parser
807 */
808 sock_data = tcp_inq(sk);
809 if (sock_data > rcd_len) {
810 trace_tls_device_rx_resync_nh_delay(sk, sock_data,
811 rcd_len);
812 return;
813 }
814
815 rx_ctx->resync_nh_do_now = 0;
816 seq += rcd_len;
817 tls_bigint_increment(rcd_sn, prot->rec_seq_size);
818 break;
819 case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC:
820 resync_req = atomic64_read(&rx_ctx->resync_async->req);
821 is_req_pending = resync_req;
822 if (likely(!is_req_pending))
823 return;
824
825 if (!tls_device_rx_resync_async(rx_ctx->resync_async,
826 resync_req, &seq, &rcd_delta))
827 return;
828 tls_bigint_subtract(rcd_sn, rcd_delta);
829 break;
830 }
831
832 tls_device_resync_rx(tls_ctx, sk, seq, rcd_sn);
833 }
834
tls_device_core_ctrl_rx_resync(struct tls_context * tls_ctx,struct tls_offload_context_rx * ctx,struct sock * sk,struct sk_buff * skb)835 static void tls_device_core_ctrl_rx_resync(struct tls_context *tls_ctx,
836 struct tls_offload_context_rx *ctx,
837 struct sock *sk, struct sk_buff *skb)
838 {
839 struct strp_msg *rxm;
840
841 /* device will request resyncs by itself based on stream scan */
842 if (ctx->resync_type != TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT)
843 return;
844 /* already scheduled */
845 if (ctx->resync_nh_do_now)
846 return;
847 /* seen decrypted fragments since last fully-failed record */
848 if (ctx->resync_nh_reset) {
849 ctx->resync_nh_reset = 0;
850 ctx->resync_nh.decrypted_failed = 1;
851 ctx->resync_nh.decrypted_tgt = TLS_DEVICE_RESYNC_NH_START_IVAL;
852 return;
853 }
854
855 if (++ctx->resync_nh.decrypted_failed <= ctx->resync_nh.decrypted_tgt)
856 return;
857
858 /* doing resync, bump the next target in case it fails */
859 if (ctx->resync_nh.decrypted_tgt < TLS_DEVICE_RESYNC_NH_MAX_IVAL)
860 ctx->resync_nh.decrypted_tgt *= 2;
861 else
862 ctx->resync_nh.decrypted_tgt += TLS_DEVICE_RESYNC_NH_MAX_IVAL;
863
864 rxm = strp_msg(skb);
865
866 /* head of next rec is already in, parser will sync for us */
867 if (tcp_inq(sk) > rxm->full_len) {
868 trace_tls_device_rx_resync_nh_schedule(sk);
869 ctx->resync_nh_do_now = 1;
870 } else {
871 struct tls_prot_info *prot = &tls_ctx->prot_info;
872 u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
873
874 memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
875 tls_bigint_increment(rcd_sn, prot->rec_seq_size);
876
877 tls_device_resync_rx(tls_ctx, sk, tcp_sk(sk)->copied_seq,
878 rcd_sn);
879 }
880 }
881
882 static int
tls_device_reencrypt(struct sock * sk,struct tls_context * tls_ctx)883 tls_device_reencrypt(struct sock *sk, struct tls_context *tls_ctx)
884 {
885 struct tls_sw_context_rx *sw_ctx = tls_sw_ctx_rx(tls_ctx);
886 const struct tls_cipher_desc *cipher_desc;
887 int err, offset, copy, data_len, pos;
888 struct sk_buff *skb, *skb_iter;
889 struct scatterlist sg[1];
890 struct strp_msg *rxm;
891 char *orig_buf, *buf;
892
893 cipher_desc = get_cipher_desc(tls_ctx->crypto_recv.info.cipher_type);
894 DEBUG_NET_WARN_ON_ONCE(!cipher_desc || !cipher_desc->offloadable);
895
896 rxm = strp_msg(tls_strp_msg(sw_ctx));
897 orig_buf = kmalloc(rxm->full_len + TLS_HEADER_SIZE + cipher_desc->iv,
898 sk->sk_allocation);
899 if (!orig_buf)
900 return -ENOMEM;
901 buf = orig_buf;
902
903 err = tls_strp_msg_cow(sw_ctx);
904 if (unlikely(err))
905 goto free_buf;
906
907 skb = tls_strp_msg(sw_ctx);
908 rxm = strp_msg(skb);
909 offset = rxm->offset;
910
911 sg_init_table(sg, 1);
912 sg_set_buf(&sg[0], buf,
913 rxm->full_len + TLS_HEADER_SIZE + cipher_desc->iv);
914 err = skb_copy_bits(skb, offset, buf, TLS_HEADER_SIZE + cipher_desc->iv);
915 if (err)
916 goto free_buf;
917
918 /* We are interested only in the decrypted data not the auth */
919 err = decrypt_skb(sk, sg);
920 if (err != -EBADMSG)
921 goto free_buf;
922 else
923 err = 0;
924
925 data_len = rxm->full_len - cipher_desc->tag;
926
927 if (skb_pagelen(skb) > offset) {
928 copy = min_t(int, skb_pagelen(skb) - offset, data_len);
929
930 if (skb->decrypted) {
931 err = skb_store_bits(skb, offset, buf, copy);
932 if (err)
933 goto free_buf;
934 }
935
936 offset += copy;
937 buf += copy;
938 }
939
940 pos = skb_pagelen(skb);
941 skb_walk_frags(skb, skb_iter) {
942 int frag_pos;
943
944 /* Practically all frags must belong to msg if reencrypt
945 * is needed with current strparser and coalescing logic,
946 * but strparser may "get optimized", so let's be safe.
947 */
948 if (pos + skb_iter->len <= offset)
949 goto done_with_frag;
950 if (pos >= data_len + rxm->offset)
951 break;
952
953 frag_pos = offset - pos;
954 copy = min_t(int, skb_iter->len - frag_pos,
955 data_len + rxm->offset - offset);
956
957 if (skb_iter->decrypted) {
958 err = skb_store_bits(skb_iter, frag_pos, buf, copy);
959 if (err)
960 goto free_buf;
961 }
962
963 offset += copy;
964 buf += copy;
965 done_with_frag:
966 pos += skb_iter->len;
967 }
968
969 free_buf:
970 kfree(orig_buf);
971 return err;
972 }
973
tls_device_decrypted(struct sock * sk,struct tls_context * tls_ctx)974 int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx)
975 {
976 struct tls_offload_context_rx *ctx = tls_offload_ctx_rx(tls_ctx);
977 struct tls_sw_context_rx *sw_ctx = tls_sw_ctx_rx(tls_ctx);
978 struct sk_buff *skb = tls_strp_msg(sw_ctx);
979 struct strp_msg *rxm = strp_msg(skb);
980 int is_decrypted, is_encrypted;
981
982 if (!tls_strp_msg_mixed_decrypted(sw_ctx)) {
983 is_decrypted = skb->decrypted;
984 is_encrypted = !is_decrypted;
985 } else {
986 is_decrypted = 0;
987 is_encrypted = 0;
988 }
989
990 trace_tls_device_decrypted(sk, tcp_sk(sk)->copied_seq - rxm->full_len,
991 tls_ctx->rx.rec_seq, rxm->full_len,
992 is_encrypted, is_decrypted);
993
994 if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags))) {
995 if (likely(is_encrypted || is_decrypted))
996 return is_decrypted;
997
998 /* After tls_device_down disables the offload, the next SKB will
999 * likely have initial fragments decrypted, and final ones not
1000 * decrypted. We need to reencrypt that single SKB.
1001 */
1002 return tls_device_reencrypt(sk, tls_ctx);
1003 }
1004
1005 /* Return immediately if the record is either entirely plaintext or
1006 * entirely ciphertext. Otherwise handle reencrypt partially decrypted
1007 * record.
1008 */
1009 if (is_decrypted) {
1010 ctx->resync_nh_reset = 1;
1011 return is_decrypted;
1012 }
1013 if (is_encrypted) {
1014 tls_device_core_ctrl_rx_resync(tls_ctx, ctx, sk, skb);
1015 return 0;
1016 }
1017
1018 ctx->resync_nh_reset = 1;
1019 return tls_device_reencrypt(sk, tls_ctx);
1020 }
1021
tls_device_attach(struct tls_context * ctx,struct sock * sk,struct net_device * netdev)1022 static void tls_device_attach(struct tls_context *ctx, struct sock *sk,
1023 struct net_device *netdev)
1024 {
1025 if (sk->sk_destruct != tls_device_sk_destruct) {
1026 refcount_set(&ctx->refcount, 1);
1027 dev_hold(netdev);
1028 RCU_INIT_POINTER(ctx->netdev, netdev);
1029 spin_lock_irq(&tls_device_lock);
1030 list_add_tail(&ctx->list, &tls_device_list);
1031 spin_unlock_irq(&tls_device_lock);
1032
1033 ctx->sk_destruct = sk->sk_destruct;
1034 smp_store_release(&sk->sk_destruct, tls_device_sk_destruct);
1035 }
1036 }
1037
alloc_offload_ctx_tx(struct tls_context * ctx)1038 static struct tls_offload_context_tx *alloc_offload_ctx_tx(struct tls_context *ctx)
1039 {
1040 struct tls_offload_context_tx *offload_ctx;
1041 __be64 rcd_sn;
1042
1043 offload_ctx = kzalloc(sizeof(*offload_ctx), GFP_KERNEL);
1044 if (!offload_ctx)
1045 return NULL;
1046
1047 INIT_WORK(&offload_ctx->destruct_work, tls_device_tx_del_task);
1048 INIT_LIST_HEAD(&offload_ctx->records_list);
1049 spin_lock_init(&offload_ctx->lock);
1050 sg_init_table(offload_ctx->sg_tx_data,
1051 ARRAY_SIZE(offload_ctx->sg_tx_data));
1052
1053 /* start at rec_seq - 1 to account for the start marker record */
1054 memcpy(&rcd_sn, ctx->tx.rec_seq, sizeof(rcd_sn));
1055 offload_ctx->unacked_record_sn = be64_to_cpu(rcd_sn) - 1;
1056
1057 offload_ctx->ctx = ctx;
1058
1059 return offload_ctx;
1060 }
1061
tls_set_device_offload(struct sock * sk)1062 int tls_set_device_offload(struct sock *sk)
1063 {
1064 struct tls_record_info *start_marker_record;
1065 struct tls_offload_context_tx *offload_ctx;
1066 const struct tls_cipher_desc *cipher_desc;
1067 struct tls_crypto_info *crypto_info;
1068 struct tls_prot_info *prot;
1069 struct net_device *netdev;
1070 struct tls_context *ctx;
1071 char *iv, *rec_seq;
1072 int rc;
1073
1074 ctx = tls_get_ctx(sk);
1075 prot = &ctx->prot_info;
1076
1077 if (ctx->priv_ctx_tx)
1078 return -EEXIST;
1079
1080 netdev = get_netdev_for_sock(sk);
1081 if (!netdev) {
1082 pr_err_ratelimited("%s: netdev not found\n", __func__);
1083 return -EINVAL;
1084 }
1085
1086 if (!(netdev->features & NETIF_F_HW_TLS_TX)) {
1087 rc = -EOPNOTSUPP;
1088 goto release_netdev;
1089 }
1090
1091 crypto_info = &ctx->crypto_send.info;
1092 if (crypto_info->version != TLS_1_2_VERSION) {
1093 rc = -EOPNOTSUPP;
1094 goto release_netdev;
1095 }
1096
1097 cipher_desc = get_cipher_desc(crypto_info->cipher_type);
1098 if (!cipher_desc || !cipher_desc->offloadable) {
1099 rc = -EINVAL;
1100 goto release_netdev;
1101 }
1102
1103 rc = init_prot_info(prot, crypto_info, cipher_desc);
1104 if (rc)
1105 goto release_netdev;
1106
1107 iv = crypto_info_iv(crypto_info, cipher_desc);
1108 rec_seq = crypto_info_rec_seq(crypto_info, cipher_desc);
1109
1110 memcpy(ctx->tx.iv + cipher_desc->salt, iv, cipher_desc->iv);
1111 memcpy(ctx->tx.rec_seq, rec_seq, cipher_desc->rec_seq);
1112
1113 start_marker_record = kmalloc(sizeof(*start_marker_record), GFP_KERNEL);
1114 if (!start_marker_record) {
1115 rc = -ENOMEM;
1116 goto release_netdev;
1117 }
1118
1119 offload_ctx = alloc_offload_ctx_tx(ctx);
1120 if (!offload_ctx) {
1121 rc = -ENOMEM;
1122 goto free_marker_record;
1123 }
1124
1125 rc = tls_sw_fallback_init(sk, offload_ctx, crypto_info);
1126 if (rc)
1127 goto free_offload_ctx;
1128
1129 start_marker_record->end_seq = tcp_sk(sk)->write_seq;
1130 start_marker_record->len = 0;
1131 start_marker_record->num_frags = 0;
1132 list_add_tail(&start_marker_record->list, &offload_ctx->records_list);
1133
1134 clean_acked_data_enable(tcp_sk(sk), &tls_tcp_clean_acked);
1135 ctx->push_pending_record = tls_device_push_pending_record;
1136
1137 /* TLS offload is greatly simplified if we don't send
1138 * SKBs where only part of the payload needs to be encrypted.
1139 * So mark the last skb in the write queue as end of record.
1140 */
1141 tcp_write_collapse_fence(sk);
1142
1143 /* Avoid offloading if the device is down
1144 * We don't want to offload new flows after
1145 * the NETDEV_DOWN event
1146 *
1147 * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1148 * handler thus protecting from the device going down before
1149 * ctx was added to tls_device_list.
1150 */
1151 down_read(&device_offload_lock);
1152 if (!(netdev->flags & IFF_UP)) {
1153 rc = -EINVAL;
1154 goto release_lock;
1155 }
1156
1157 ctx->priv_ctx_tx = offload_ctx;
1158 rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_TX,
1159 &ctx->crypto_send.info,
1160 tcp_sk(sk)->write_seq);
1161 trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_TX,
1162 tcp_sk(sk)->write_seq, rec_seq, rc);
1163 if (rc)
1164 goto release_lock;
1165
1166 tls_device_attach(ctx, sk, netdev);
1167 up_read(&device_offload_lock);
1168
1169 /* following this assignment tls_is_skb_tx_device_offloaded
1170 * will return true and the context might be accessed
1171 * by the netdev's xmit function.
1172 */
1173 smp_store_release(&sk->sk_validate_xmit_skb, tls_validate_xmit_skb);
1174 dev_put(netdev);
1175
1176 return 0;
1177
1178 release_lock:
1179 up_read(&device_offload_lock);
1180 clean_acked_data_disable(tcp_sk(sk));
1181 crypto_free_aead(offload_ctx->aead_send);
1182 free_offload_ctx:
1183 kfree(offload_ctx);
1184 ctx->priv_ctx_tx = NULL;
1185 free_marker_record:
1186 kfree(start_marker_record);
1187 release_netdev:
1188 dev_put(netdev);
1189 return rc;
1190 }
1191
tls_set_device_offload_rx(struct sock * sk,struct tls_context * ctx)1192 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
1193 {
1194 struct tls12_crypto_info_aes_gcm_128 *info;
1195 struct tls_offload_context_rx *context;
1196 struct net_device *netdev;
1197 int rc = 0;
1198
1199 if (ctx->crypto_recv.info.version != TLS_1_2_VERSION)
1200 return -EOPNOTSUPP;
1201
1202 netdev = get_netdev_for_sock(sk);
1203 if (!netdev) {
1204 pr_err_ratelimited("%s: netdev not found\n", __func__);
1205 return -EINVAL;
1206 }
1207
1208 if (!(netdev->features & NETIF_F_HW_TLS_RX)) {
1209 rc = -EOPNOTSUPP;
1210 goto release_netdev;
1211 }
1212
1213 /* Avoid offloading if the device is down
1214 * We don't want to offload new flows after
1215 * the NETDEV_DOWN event
1216 *
1217 * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1218 * handler thus protecting from the device going down before
1219 * ctx was added to tls_device_list.
1220 */
1221 down_read(&device_offload_lock);
1222 if (!(netdev->flags & IFF_UP)) {
1223 rc = -EINVAL;
1224 goto release_lock;
1225 }
1226
1227 context = kzalloc(sizeof(*context), GFP_KERNEL);
1228 if (!context) {
1229 rc = -ENOMEM;
1230 goto release_lock;
1231 }
1232 context->resync_nh_reset = 1;
1233
1234 ctx->priv_ctx_rx = context;
1235 rc = tls_set_sw_offload(sk, 0, NULL);
1236 if (rc)
1237 goto release_ctx;
1238
1239 rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_RX,
1240 &ctx->crypto_recv.info,
1241 tcp_sk(sk)->copied_seq);
1242 info = (void *)&ctx->crypto_recv.info;
1243 trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_RX,
1244 tcp_sk(sk)->copied_seq, info->rec_seq, rc);
1245 if (rc)
1246 goto free_sw_resources;
1247
1248 tls_device_attach(ctx, sk, netdev);
1249 up_read(&device_offload_lock);
1250
1251 dev_put(netdev);
1252
1253 return 0;
1254
1255 free_sw_resources:
1256 up_read(&device_offload_lock);
1257 tls_sw_free_resources_rx(sk);
1258 down_read(&device_offload_lock);
1259 release_ctx:
1260 ctx->priv_ctx_rx = NULL;
1261 release_lock:
1262 up_read(&device_offload_lock);
1263 release_netdev:
1264 dev_put(netdev);
1265 return rc;
1266 }
1267
tls_device_offload_cleanup_rx(struct sock * sk)1268 void tls_device_offload_cleanup_rx(struct sock *sk)
1269 {
1270 struct tls_context *tls_ctx = tls_get_ctx(sk);
1271 struct net_device *netdev;
1272
1273 down_read(&device_offload_lock);
1274 netdev = rcu_dereference_protected(tls_ctx->netdev,
1275 lockdep_is_held(&device_offload_lock));
1276 if (!netdev)
1277 goto out;
1278
1279 netdev->tlsdev_ops->tls_dev_del(netdev, tls_ctx,
1280 TLS_OFFLOAD_CTX_DIR_RX);
1281
1282 if (tls_ctx->tx_conf != TLS_HW) {
1283 dev_put(netdev);
1284 rcu_assign_pointer(tls_ctx->netdev, NULL);
1285 } else {
1286 set_bit(TLS_RX_DEV_CLOSED, &tls_ctx->flags);
1287 }
1288 out:
1289 up_read(&device_offload_lock);
1290 tls_sw_release_resources_rx(sk);
1291 }
1292
tls_device_down(struct net_device * netdev)1293 static int tls_device_down(struct net_device *netdev)
1294 {
1295 struct tls_context *ctx, *tmp;
1296 unsigned long flags;
1297 LIST_HEAD(list);
1298
1299 /* Request a write lock to block new offload attempts */
1300 down_write(&device_offload_lock);
1301
1302 spin_lock_irqsave(&tls_device_lock, flags);
1303 list_for_each_entry_safe(ctx, tmp, &tls_device_list, list) {
1304 struct net_device *ctx_netdev =
1305 rcu_dereference_protected(ctx->netdev,
1306 lockdep_is_held(&device_offload_lock));
1307
1308 if (ctx_netdev != netdev ||
1309 !refcount_inc_not_zero(&ctx->refcount))
1310 continue;
1311
1312 list_move(&ctx->list, &list);
1313 }
1314 spin_unlock_irqrestore(&tls_device_lock, flags);
1315
1316 list_for_each_entry_safe(ctx, tmp, &list, list) {
1317 /* Stop offloaded TX and switch to the fallback.
1318 * tls_is_skb_tx_device_offloaded will return false.
1319 */
1320 WRITE_ONCE(ctx->sk->sk_validate_xmit_skb, tls_validate_xmit_skb_sw);
1321
1322 /* Stop the RX and TX resync.
1323 * tls_dev_resync must not be called after tls_dev_del.
1324 */
1325 rcu_assign_pointer(ctx->netdev, NULL);
1326
1327 /* Start skipping the RX resync logic completely. */
1328 set_bit(TLS_RX_DEV_DEGRADED, &ctx->flags);
1329
1330 /* Sync with inflight packets. After this point:
1331 * TX: no non-encrypted packets will be passed to the driver.
1332 * RX: resync requests from the driver will be ignored.
1333 */
1334 synchronize_net();
1335
1336 /* Release the offload context on the driver side. */
1337 if (ctx->tx_conf == TLS_HW)
1338 netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1339 TLS_OFFLOAD_CTX_DIR_TX);
1340 if (ctx->rx_conf == TLS_HW &&
1341 !test_bit(TLS_RX_DEV_CLOSED, &ctx->flags))
1342 netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1343 TLS_OFFLOAD_CTX_DIR_RX);
1344
1345 dev_put(netdev);
1346
1347 /* Move the context to a separate list for two reasons:
1348 * 1. When the context is deallocated, list_del is called.
1349 * 2. It's no longer an offloaded context, so we don't want to
1350 * run offload-specific code on this context.
1351 */
1352 spin_lock_irqsave(&tls_device_lock, flags);
1353 list_move_tail(&ctx->list, &tls_device_down_list);
1354 spin_unlock_irqrestore(&tls_device_lock, flags);
1355
1356 /* Device contexts for RX and TX will be freed in on sk_destruct
1357 * by tls_device_free_ctx. rx_conf and tx_conf stay in TLS_HW.
1358 * Now release the ref taken above.
1359 */
1360 if (refcount_dec_and_test(&ctx->refcount)) {
1361 /* sk_destruct ran after tls_device_down took a ref, and
1362 * it returned early. Complete the destruction here.
1363 */
1364 list_del(&ctx->list);
1365 tls_device_free_ctx(ctx);
1366 }
1367 }
1368
1369 up_write(&device_offload_lock);
1370
1371 flush_workqueue(destruct_wq);
1372
1373 return NOTIFY_DONE;
1374 }
1375
tls_dev_event(struct notifier_block * this,unsigned long event,void * ptr)1376 static int tls_dev_event(struct notifier_block *this, unsigned long event,
1377 void *ptr)
1378 {
1379 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1380
1381 if (!dev->tlsdev_ops &&
1382 !(dev->features & (NETIF_F_HW_TLS_RX | NETIF_F_HW_TLS_TX)))
1383 return NOTIFY_DONE;
1384
1385 switch (event) {
1386 case NETDEV_REGISTER:
1387 case NETDEV_FEAT_CHANGE:
1388 if (netif_is_bond_master(dev))
1389 return NOTIFY_DONE;
1390 if ((dev->features & NETIF_F_HW_TLS_RX) &&
1391 !dev->tlsdev_ops->tls_dev_resync)
1392 return NOTIFY_BAD;
1393
1394 if (dev->tlsdev_ops &&
1395 dev->tlsdev_ops->tls_dev_add &&
1396 dev->tlsdev_ops->tls_dev_del)
1397 return NOTIFY_DONE;
1398 else
1399 return NOTIFY_BAD;
1400 case NETDEV_DOWN:
1401 return tls_device_down(dev);
1402 }
1403 return NOTIFY_DONE;
1404 }
1405
1406 static struct notifier_block tls_dev_notifier = {
1407 .notifier_call = tls_dev_event,
1408 };
1409
tls_device_init(void)1410 int __init tls_device_init(void)
1411 {
1412 int err;
1413
1414 dummy_page = alloc_page(GFP_KERNEL);
1415 if (!dummy_page)
1416 return -ENOMEM;
1417
1418 destruct_wq = alloc_workqueue("ktls_device_destruct", WQ_PERCPU, 0);
1419 if (!destruct_wq) {
1420 err = -ENOMEM;
1421 goto err_free_dummy;
1422 }
1423
1424 err = register_netdevice_notifier(&tls_dev_notifier);
1425 if (err)
1426 goto err_destroy_wq;
1427
1428 return 0;
1429
1430 err_destroy_wq:
1431 destroy_workqueue(destruct_wq);
1432 err_free_dummy:
1433 put_page(dummy_page);
1434 return err;
1435 }
1436
tls_device_cleanup(void)1437 void __exit tls_device_cleanup(void)
1438 {
1439 unregister_netdevice_notifier(&tls_dev_notifier);
1440 destroy_workqueue(destruct_wq);
1441 clean_acked_data_flush();
1442 put_page(dummy_page);
1443 }
1444