xref: /linux/net/tls/tls_device.c (revision 3f1c07fc21c68bd3bd2df9d2c9441f6485e934d9)
1 /* Copyright (c) 2018, Mellanox Technologies All rights reserved.
2  *
3  * This software is available to you under a choice of one of two
4  * licenses.  You may choose to be licensed under the terms of the GNU
5  * General Public License (GPL) Version 2, available from the file
6  * COPYING in the main directory of this source tree, or the
7  * OpenIB.org BSD license below:
8  *
9  *     Redistribution and use in source and binary forms, with or
10  *     without modification, are permitted provided that the following
11  *     conditions are met:
12  *
13  *      - Redistributions of source code must retain the above
14  *        copyright notice, this list of conditions and the following
15  *        disclaimer.
16  *
17  *      - Redistributions in binary form must reproduce the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer in the documentation and/or other materials
20  *        provided with the distribution.
21  *
22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29  * SOFTWARE.
30  */
31 
32 #include <crypto/aead.h>
33 #include <linux/highmem.h>
34 #include <linux/module.h>
35 #include <linux/netdevice.h>
36 #include <net/dst.h>
37 #include <net/inet_connection_sock.h>
38 #include <net/tcp.h>
39 #include <net/tls.h>
40 #include <linux/skbuff_ref.h>
41 
42 #include "tls.h"
43 #include "trace.h"
44 
45 /* device_offload_lock is used to synchronize tls_dev_add
46  * against NETDEV_DOWN notifications.
47  */
48 static DECLARE_RWSEM(device_offload_lock);
49 
50 static struct workqueue_struct *destruct_wq __read_mostly;
51 
52 static LIST_HEAD(tls_device_list);
53 static LIST_HEAD(tls_device_down_list);
54 static DEFINE_SPINLOCK(tls_device_lock);
55 
56 static struct page *dummy_page;
57 
tls_device_free_ctx(struct tls_context * ctx)58 static void tls_device_free_ctx(struct tls_context *ctx)
59 {
60 	if (ctx->tx_conf == TLS_HW)
61 		kfree(tls_offload_ctx_tx(ctx));
62 
63 	if (ctx->rx_conf == TLS_HW)
64 		kfree(tls_offload_ctx_rx(ctx));
65 
66 	tls_ctx_free(NULL, ctx);
67 }
68 
tls_device_tx_del_task(struct work_struct * work)69 static void tls_device_tx_del_task(struct work_struct *work)
70 {
71 	struct tls_offload_context_tx *offload_ctx =
72 		container_of(work, struct tls_offload_context_tx, destruct_work);
73 	struct tls_context *ctx = offload_ctx->ctx;
74 	struct net_device *netdev;
75 
76 	/* Safe, because this is the destroy flow, refcount is 0, so
77 	 * tls_device_down can't store this field in parallel.
78 	 */
79 	netdev = rcu_dereference_protected(ctx->netdev,
80 					   !refcount_read(&ctx->refcount));
81 
82 	netdev->tlsdev_ops->tls_dev_del(netdev, ctx, TLS_OFFLOAD_CTX_DIR_TX);
83 	dev_put(netdev);
84 	ctx->netdev = NULL;
85 	tls_device_free_ctx(ctx);
86 }
87 
tls_device_queue_ctx_destruction(struct tls_context * ctx)88 static void tls_device_queue_ctx_destruction(struct tls_context *ctx)
89 {
90 	struct net_device *netdev;
91 	unsigned long flags;
92 	bool async_cleanup;
93 
94 	spin_lock_irqsave(&tls_device_lock, flags);
95 	if (unlikely(!refcount_dec_and_test(&ctx->refcount))) {
96 		spin_unlock_irqrestore(&tls_device_lock, flags);
97 		return;
98 	}
99 
100 	list_del(&ctx->list); /* Remove from tls_device_list / tls_device_down_list */
101 
102 	/* Safe, because this is the destroy flow, refcount is 0, so
103 	 * tls_device_down can't store this field in parallel.
104 	 */
105 	netdev = rcu_dereference_protected(ctx->netdev,
106 					   !refcount_read(&ctx->refcount));
107 
108 	async_cleanup = netdev && ctx->tx_conf == TLS_HW;
109 	if (async_cleanup) {
110 		struct tls_offload_context_tx *offload_ctx = tls_offload_ctx_tx(ctx);
111 
112 		/* queue_work inside the spinlock
113 		 * to make sure tls_device_down waits for that work.
114 		 */
115 		queue_work(destruct_wq, &offload_ctx->destruct_work);
116 	}
117 	spin_unlock_irqrestore(&tls_device_lock, flags);
118 
119 	if (!async_cleanup)
120 		tls_device_free_ctx(ctx);
121 }
122 
123 /* We assume that the socket is already connected */
get_netdev_for_sock(struct sock * sk)124 static struct net_device *get_netdev_for_sock(struct sock *sk)
125 {
126 	struct net_device *dev, *lowest_dev = NULL;
127 	struct dst_entry *dst;
128 
129 	rcu_read_lock();
130 	dst = __sk_dst_get(sk);
131 	dev = dst ? dst_dev_rcu(dst) : NULL;
132 	if (likely(dev)) {
133 		lowest_dev = netdev_sk_get_lowest_dev(dev, sk);
134 		dev_hold(lowest_dev);
135 	}
136 	rcu_read_unlock();
137 
138 	return lowest_dev;
139 }
140 
destroy_record(struct tls_record_info * record)141 static void destroy_record(struct tls_record_info *record)
142 {
143 	int i;
144 
145 	for (i = 0; i < record->num_frags; i++)
146 		__skb_frag_unref(&record->frags[i], false);
147 	kfree(record);
148 }
149 
delete_all_records(struct tls_offload_context_tx * offload_ctx)150 static void delete_all_records(struct tls_offload_context_tx *offload_ctx)
151 {
152 	struct tls_record_info *info, *temp;
153 
154 	list_for_each_entry_safe(info, temp, &offload_ctx->records_list, list) {
155 		list_del(&info->list);
156 		destroy_record(info);
157 	}
158 
159 	offload_ctx->retransmit_hint = NULL;
160 }
161 
tls_tcp_clean_acked(struct sock * sk,u32 acked_seq)162 static void tls_tcp_clean_acked(struct sock *sk, u32 acked_seq)
163 {
164 	struct tls_context *tls_ctx = tls_get_ctx(sk);
165 	struct tls_record_info *info, *temp;
166 	struct tls_offload_context_tx *ctx;
167 	u64 deleted_records = 0;
168 	unsigned long flags;
169 
170 	if (!tls_ctx)
171 		return;
172 
173 	ctx = tls_offload_ctx_tx(tls_ctx);
174 
175 	spin_lock_irqsave(&ctx->lock, flags);
176 	info = ctx->retransmit_hint;
177 	if (info && !before(acked_seq, info->end_seq))
178 		ctx->retransmit_hint = NULL;
179 
180 	list_for_each_entry_safe(info, temp, &ctx->records_list, list) {
181 		if (before(acked_seq, info->end_seq))
182 			break;
183 		list_del(&info->list);
184 
185 		destroy_record(info);
186 		deleted_records++;
187 	}
188 
189 	ctx->unacked_record_sn += deleted_records;
190 	spin_unlock_irqrestore(&ctx->lock, flags);
191 }
192 
193 /* At this point, there should be no references on this
194  * socket and no in-flight SKBs associated with this
195  * socket, so it is safe to free all the resources.
196  */
tls_device_sk_destruct(struct sock * sk)197 void tls_device_sk_destruct(struct sock *sk)
198 {
199 	struct tls_context *tls_ctx = tls_get_ctx(sk);
200 	struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
201 
202 	tls_ctx->sk_destruct(sk);
203 
204 	if (tls_ctx->tx_conf == TLS_HW) {
205 		if (ctx->open_record)
206 			destroy_record(ctx->open_record);
207 		delete_all_records(ctx);
208 		crypto_free_aead(ctx->aead_send);
209 		clean_acked_data_disable(tcp_sk(sk));
210 	}
211 
212 	tls_device_queue_ctx_destruction(tls_ctx);
213 }
214 EXPORT_SYMBOL_GPL(tls_device_sk_destruct);
215 
tls_device_free_resources_tx(struct sock * sk)216 void tls_device_free_resources_tx(struct sock *sk)
217 {
218 	struct tls_context *tls_ctx = tls_get_ctx(sk);
219 
220 	tls_free_partial_record(sk, tls_ctx);
221 }
222 
tls_offload_tx_resync_request(struct sock * sk,u32 got_seq,u32 exp_seq)223 void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq)
224 {
225 	struct tls_context *tls_ctx = tls_get_ctx(sk);
226 
227 	trace_tls_device_tx_resync_req(sk, got_seq, exp_seq);
228 	WARN_ON(test_and_set_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags));
229 }
230 EXPORT_SYMBOL_GPL(tls_offload_tx_resync_request);
231 
tls_device_resync_tx(struct sock * sk,struct tls_context * tls_ctx,u32 seq)232 static void tls_device_resync_tx(struct sock *sk, struct tls_context *tls_ctx,
233 				 u32 seq)
234 {
235 	struct net_device *netdev;
236 	int err = 0;
237 	u8 *rcd_sn;
238 
239 	tcp_write_collapse_fence(sk);
240 	rcd_sn = tls_ctx->tx.rec_seq;
241 
242 	trace_tls_device_tx_resync_send(sk, seq, rcd_sn);
243 	down_read(&device_offload_lock);
244 	netdev = rcu_dereference_protected(tls_ctx->netdev,
245 					   lockdep_is_held(&device_offload_lock));
246 	if (netdev)
247 		err = netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq,
248 							 rcd_sn,
249 							 TLS_OFFLOAD_CTX_DIR_TX);
250 	up_read(&device_offload_lock);
251 	if (err)
252 		return;
253 
254 	clear_bit_unlock(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
255 }
256 
tls_append_frag(struct tls_record_info * record,struct page_frag * pfrag,int size)257 static void tls_append_frag(struct tls_record_info *record,
258 			    struct page_frag *pfrag,
259 			    int size)
260 {
261 	skb_frag_t *frag;
262 
263 	frag = &record->frags[record->num_frags - 1];
264 	if (skb_frag_page(frag) == pfrag->page &&
265 	    skb_frag_off(frag) + skb_frag_size(frag) == pfrag->offset) {
266 		skb_frag_size_add(frag, size);
267 	} else {
268 		++frag;
269 		skb_frag_fill_page_desc(frag, pfrag->page, pfrag->offset,
270 					size);
271 		++record->num_frags;
272 		get_page(pfrag->page);
273 	}
274 
275 	pfrag->offset += size;
276 	record->len += size;
277 }
278 
tls_push_record(struct sock * sk,struct tls_context * ctx,struct tls_offload_context_tx * offload_ctx,struct tls_record_info * record,int flags)279 static int tls_push_record(struct sock *sk,
280 			   struct tls_context *ctx,
281 			   struct tls_offload_context_tx *offload_ctx,
282 			   struct tls_record_info *record,
283 			   int flags)
284 {
285 	struct tls_prot_info *prot = &ctx->prot_info;
286 	struct tcp_sock *tp = tcp_sk(sk);
287 	skb_frag_t *frag;
288 	int i;
289 
290 	record->end_seq = tp->write_seq + record->len;
291 	list_add_tail_rcu(&record->list, &offload_ctx->records_list);
292 	offload_ctx->open_record = NULL;
293 
294 	if (test_bit(TLS_TX_SYNC_SCHED, &ctx->flags))
295 		tls_device_resync_tx(sk, ctx, tp->write_seq);
296 
297 	tls_advance_record_sn(sk, prot, &ctx->tx);
298 
299 	for (i = 0; i < record->num_frags; i++) {
300 		frag = &record->frags[i];
301 		sg_unmark_end(&offload_ctx->sg_tx_data[i]);
302 		sg_set_page(&offload_ctx->sg_tx_data[i], skb_frag_page(frag),
303 			    skb_frag_size(frag), skb_frag_off(frag));
304 		sk_mem_charge(sk, skb_frag_size(frag));
305 		get_page(skb_frag_page(frag));
306 	}
307 	sg_mark_end(&offload_ctx->sg_tx_data[record->num_frags - 1]);
308 
309 	/* all ready, send */
310 	return tls_push_sg(sk, ctx, offload_ctx->sg_tx_data, 0, flags);
311 }
312 
tls_device_record_close(struct sock * sk,struct tls_context * ctx,struct tls_record_info * record,struct page_frag * pfrag,unsigned char record_type)313 static void tls_device_record_close(struct sock *sk,
314 				    struct tls_context *ctx,
315 				    struct tls_record_info *record,
316 				    struct page_frag *pfrag,
317 				    unsigned char record_type)
318 {
319 	struct tls_prot_info *prot = &ctx->prot_info;
320 	struct page_frag dummy_tag_frag;
321 
322 	/* append tag
323 	 * device will fill in the tag, we just need to append a placeholder
324 	 * use socket memory to improve coalescing (re-using a single buffer
325 	 * increases frag count)
326 	 * if we can't allocate memory now use the dummy page
327 	 */
328 	if (unlikely(pfrag->size - pfrag->offset < prot->tag_size) &&
329 	    !skb_page_frag_refill(prot->tag_size, pfrag, sk->sk_allocation)) {
330 		dummy_tag_frag.page = dummy_page;
331 		dummy_tag_frag.offset = 0;
332 		pfrag = &dummy_tag_frag;
333 	}
334 	tls_append_frag(record, pfrag, prot->tag_size);
335 
336 	/* fill prepend */
337 	tls_fill_prepend(ctx, skb_frag_address(&record->frags[0]),
338 			 record->len - prot->overhead_size,
339 			 record_type);
340 }
341 
tls_create_new_record(struct tls_offload_context_tx * offload_ctx,struct page_frag * pfrag,size_t prepend_size)342 static int tls_create_new_record(struct tls_offload_context_tx *offload_ctx,
343 				 struct page_frag *pfrag,
344 				 size_t prepend_size)
345 {
346 	struct tls_record_info *record;
347 	skb_frag_t *frag;
348 
349 	record = kmalloc(sizeof(*record), GFP_KERNEL);
350 	if (!record)
351 		return -ENOMEM;
352 
353 	frag = &record->frags[0];
354 	skb_frag_fill_page_desc(frag, pfrag->page, pfrag->offset,
355 				prepend_size);
356 
357 	get_page(pfrag->page);
358 	pfrag->offset += prepend_size;
359 
360 	record->num_frags = 1;
361 	record->len = prepend_size;
362 	offload_ctx->open_record = record;
363 	return 0;
364 }
365 
tls_do_allocation(struct sock * sk,struct tls_offload_context_tx * offload_ctx,struct page_frag * pfrag,size_t prepend_size)366 static int tls_do_allocation(struct sock *sk,
367 			     struct tls_offload_context_tx *offload_ctx,
368 			     struct page_frag *pfrag,
369 			     size_t prepend_size)
370 {
371 	int ret;
372 
373 	if (!offload_ctx->open_record) {
374 		if (unlikely(!skb_page_frag_refill(prepend_size, pfrag,
375 						   sk->sk_allocation))) {
376 			if (!sk->sk_bypass_prot_mem)
377 				READ_ONCE(sk->sk_prot)->enter_memory_pressure(sk);
378 			sk_stream_moderate_sndbuf(sk);
379 			return -ENOMEM;
380 		}
381 
382 		ret = tls_create_new_record(offload_ctx, pfrag, prepend_size);
383 		if (ret)
384 			return ret;
385 
386 		if (pfrag->size > pfrag->offset)
387 			return 0;
388 	}
389 
390 	if (!sk_page_frag_refill(sk, pfrag))
391 		return -ENOMEM;
392 
393 	return 0;
394 }
395 
tls_device_copy_data(void * addr,size_t bytes,struct iov_iter * i)396 static int tls_device_copy_data(void *addr, size_t bytes, struct iov_iter *i)
397 {
398 	size_t pre_copy, nocache;
399 
400 	pre_copy = ~((unsigned long)addr - 1) & (SMP_CACHE_BYTES - 1);
401 	if (pre_copy) {
402 		pre_copy = min(pre_copy, bytes);
403 		if (copy_from_iter(addr, pre_copy, i) != pre_copy)
404 			return -EFAULT;
405 		bytes -= pre_copy;
406 		addr += pre_copy;
407 	}
408 
409 	nocache = round_down(bytes, SMP_CACHE_BYTES);
410 	if (copy_from_iter_nocache(addr, nocache, i) != nocache)
411 		return -EFAULT;
412 	bytes -= nocache;
413 	addr += nocache;
414 
415 	if (bytes && copy_from_iter(addr, bytes, i) != bytes)
416 		return -EFAULT;
417 
418 	return 0;
419 }
420 
tls_push_data(struct sock * sk,struct iov_iter * iter,size_t size,int flags,unsigned char record_type)421 static int tls_push_data(struct sock *sk,
422 			 struct iov_iter *iter,
423 			 size_t size, int flags,
424 			 unsigned char record_type)
425 {
426 	struct tls_context *tls_ctx = tls_get_ctx(sk);
427 	struct tls_prot_info *prot = &tls_ctx->prot_info;
428 	struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
429 	struct tls_record_info *record;
430 	int tls_push_record_flags;
431 	struct page_frag *pfrag;
432 	size_t orig_size = size;
433 	u32 max_open_record_len;
434 	bool more = false;
435 	bool done = false;
436 	int copy, rc = 0;
437 	long timeo;
438 
439 	if (flags &
440 	    ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
441 	      MSG_SPLICE_PAGES | MSG_EOR))
442 		return -EOPNOTSUPP;
443 
444 	if ((flags & (MSG_MORE | MSG_EOR)) == (MSG_MORE | MSG_EOR))
445 		return -EINVAL;
446 
447 	if (unlikely(sk->sk_err))
448 		return -sk->sk_err;
449 
450 	flags |= MSG_SENDPAGE_DECRYPTED;
451 	tls_push_record_flags = flags | MSG_MORE;
452 
453 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
454 	if (tls_is_partially_sent_record(tls_ctx)) {
455 		rc = tls_push_partial_record(sk, tls_ctx, flags);
456 		if (rc < 0)
457 			return rc;
458 	}
459 
460 	pfrag = sk_page_frag(sk);
461 
462 	/* TLS_HEADER_SIZE is not counted as part of the TLS record, and
463 	 * we need to leave room for an authentication tag.
464 	 */
465 	max_open_record_len = tls_ctx->tx_max_payload_len +
466 			      prot->prepend_size;
467 	do {
468 		rc = tls_do_allocation(sk, ctx, pfrag, prot->prepend_size);
469 		if (unlikely(rc)) {
470 			rc = sk_stream_wait_memory(sk, &timeo);
471 			if (!rc)
472 				continue;
473 
474 			record = ctx->open_record;
475 			if (!record)
476 				break;
477 handle_error:
478 			if (record_type != TLS_RECORD_TYPE_DATA) {
479 				/* avoid sending partial
480 				 * record with type !=
481 				 * application_data
482 				 */
483 				size = orig_size;
484 				destroy_record(record);
485 				ctx->open_record = NULL;
486 			} else if (record->len > prot->prepend_size) {
487 				goto last_record;
488 			}
489 
490 			break;
491 		}
492 
493 		record = ctx->open_record;
494 
495 		copy = min_t(size_t, size, max_open_record_len - record->len);
496 		if (copy && (flags & MSG_SPLICE_PAGES)) {
497 			struct page_frag zc_pfrag;
498 			struct page **pages = &zc_pfrag.page;
499 			size_t off;
500 
501 			rc = iov_iter_extract_pages(iter, &pages,
502 						    copy, 1, 0, &off);
503 			if (rc <= 0) {
504 				if (rc == 0)
505 					rc = -EIO;
506 				goto handle_error;
507 			}
508 			copy = rc;
509 
510 			if (WARN_ON_ONCE(!sendpage_ok(zc_pfrag.page))) {
511 				iov_iter_revert(iter, copy);
512 				rc = -EIO;
513 				goto handle_error;
514 			}
515 
516 			zc_pfrag.offset = off;
517 			zc_pfrag.size = copy;
518 			tls_append_frag(record, &zc_pfrag, copy);
519 		} else if (copy) {
520 			copy = min_t(size_t, copy, pfrag->size - pfrag->offset);
521 
522 			rc = tls_device_copy_data(page_address(pfrag->page) +
523 						  pfrag->offset, copy,
524 						  iter);
525 			if (rc)
526 				goto handle_error;
527 			tls_append_frag(record, pfrag, copy);
528 		}
529 
530 		size -= copy;
531 		if (!size) {
532 last_record:
533 			tls_push_record_flags = flags;
534 			if (flags & MSG_MORE) {
535 				more = true;
536 				break;
537 			}
538 
539 			done = true;
540 		}
541 
542 		if (done || record->len >= max_open_record_len ||
543 		    (record->num_frags >= MAX_SKB_FRAGS - 1)) {
544 			tls_device_record_close(sk, tls_ctx, record,
545 						pfrag, record_type);
546 
547 			rc = tls_push_record(sk,
548 					     tls_ctx,
549 					     ctx,
550 					     record,
551 					     tls_push_record_flags);
552 			if (rc < 0)
553 				break;
554 		}
555 	} while (!done);
556 
557 	tls_ctx->pending_open_record_frags = more;
558 
559 	if (orig_size - size > 0)
560 		rc = orig_size - size;
561 
562 	return rc;
563 }
564 
tls_device_sendmsg(struct sock * sk,struct msghdr * msg,size_t size)565 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
566 {
567 	unsigned char record_type = TLS_RECORD_TYPE_DATA;
568 	struct tls_context *tls_ctx = tls_get_ctx(sk);
569 	int rc;
570 
571 	if (!tls_ctx->zerocopy_sendfile)
572 		msg->msg_flags &= ~MSG_SPLICE_PAGES;
573 
574 	mutex_lock(&tls_ctx->tx_lock);
575 	lock_sock(sk);
576 
577 	if (unlikely(msg->msg_controllen)) {
578 		rc = tls_process_cmsg(sk, msg, &record_type);
579 		if (rc)
580 			goto out;
581 	}
582 
583 	rc = tls_push_data(sk, &msg->msg_iter, size, msg->msg_flags,
584 			   record_type);
585 
586 out:
587 	release_sock(sk);
588 	mutex_unlock(&tls_ctx->tx_lock);
589 	return rc;
590 }
591 
tls_device_splice_eof(struct socket * sock)592 void tls_device_splice_eof(struct socket *sock)
593 {
594 	struct sock *sk = sock->sk;
595 	struct tls_context *tls_ctx = tls_get_ctx(sk);
596 	struct iov_iter iter = {};
597 
598 	if (!tls_is_partially_sent_record(tls_ctx))
599 		return;
600 
601 	mutex_lock(&tls_ctx->tx_lock);
602 	lock_sock(sk);
603 
604 	if (tls_is_partially_sent_record(tls_ctx)) {
605 		iov_iter_bvec(&iter, ITER_SOURCE, NULL, 0, 0);
606 		tls_push_data(sk, &iter, 0, 0, TLS_RECORD_TYPE_DATA);
607 	}
608 
609 	release_sock(sk);
610 	mutex_unlock(&tls_ctx->tx_lock);
611 }
612 
tls_get_record(struct tls_offload_context_tx * context,u32 seq,u64 * p_record_sn)613 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
614 				       u32 seq, u64 *p_record_sn)
615 {
616 	u64 record_sn = context->hint_record_sn;
617 	struct tls_record_info *info, *last;
618 
619 	info = context->retransmit_hint;
620 	if (!info ||
621 	    before(seq, info->end_seq - info->len)) {
622 		/* if retransmit_hint is irrelevant start
623 		 * from the beginning of the list
624 		 */
625 		info = list_first_entry_or_null(&context->records_list,
626 						struct tls_record_info, list);
627 		if (!info)
628 			return NULL;
629 		/* send the start_marker record if seq number is before the
630 		 * tls offload start marker sequence number. This record is
631 		 * required to handle TCP packets which are before TLS offload
632 		 * started.
633 		 *  And if it's not start marker, look if this seq number
634 		 * belongs to the list.
635 		 */
636 		if (likely(!tls_record_is_start_marker(info))) {
637 			/* we have the first record, get the last record to see
638 			 * if this seq number belongs to the list.
639 			 */
640 			last = list_last_entry(&context->records_list,
641 					       struct tls_record_info, list);
642 
643 			if (!between(seq, tls_record_start_seq(info),
644 				     last->end_seq))
645 				return NULL;
646 		}
647 		record_sn = context->unacked_record_sn;
648 	}
649 
650 	/* We just need the _rcu for the READ_ONCE() */
651 	rcu_read_lock();
652 	list_for_each_entry_from_rcu(info, &context->records_list, list) {
653 		if (before(seq, info->end_seq)) {
654 			if (!context->retransmit_hint ||
655 			    after(info->end_seq,
656 				  context->retransmit_hint->end_seq)) {
657 				context->hint_record_sn = record_sn;
658 				context->retransmit_hint = info;
659 			}
660 			*p_record_sn = record_sn;
661 			goto exit_rcu_unlock;
662 		}
663 		record_sn++;
664 	}
665 	info = NULL;
666 
667 exit_rcu_unlock:
668 	rcu_read_unlock();
669 	return info;
670 }
671 EXPORT_SYMBOL(tls_get_record);
672 
tls_device_push_pending_record(struct sock * sk,int flags)673 static int tls_device_push_pending_record(struct sock *sk, int flags)
674 {
675 	struct iov_iter iter;
676 
677 	iov_iter_kvec(&iter, ITER_SOURCE, NULL, 0, 0);
678 	return tls_push_data(sk, &iter, 0, flags, TLS_RECORD_TYPE_DATA);
679 }
680 
tls_device_write_space(struct sock * sk,struct tls_context * ctx)681 void tls_device_write_space(struct sock *sk, struct tls_context *ctx)
682 {
683 	if (tls_is_partially_sent_record(ctx)) {
684 		gfp_t sk_allocation = sk->sk_allocation;
685 
686 		WARN_ON_ONCE(sk->sk_write_pending);
687 
688 		sk->sk_allocation = GFP_ATOMIC;
689 		tls_push_partial_record(sk, ctx,
690 					MSG_DONTWAIT | MSG_NOSIGNAL |
691 					MSG_SENDPAGE_DECRYPTED);
692 		sk->sk_allocation = sk_allocation;
693 	}
694 }
695 
tls_device_resync_rx(struct tls_context * tls_ctx,struct sock * sk,u32 seq,u8 * rcd_sn)696 static void tls_device_resync_rx(struct tls_context *tls_ctx,
697 				 struct sock *sk, u32 seq, u8 *rcd_sn)
698 {
699 	struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
700 	struct net_device *netdev;
701 
702 	trace_tls_device_rx_resync_send(sk, seq, rcd_sn, rx_ctx->resync_type);
703 	rcu_read_lock();
704 	netdev = rcu_dereference(tls_ctx->netdev);
705 	if (netdev)
706 		netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, rcd_sn,
707 						   TLS_OFFLOAD_CTX_DIR_RX);
708 	rcu_read_unlock();
709 	TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICERESYNC);
710 }
711 
712 static bool
tls_device_rx_resync_async(struct tls_offload_resync_async * resync_async,s64 resync_req,u32 * seq,u16 * rcd_delta)713 tls_device_rx_resync_async(struct tls_offload_resync_async *resync_async,
714 			   s64 resync_req, u32 *seq, u16 *rcd_delta)
715 {
716 	u32 is_async = resync_req & RESYNC_REQ_ASYNC;
717 	u32 req_seq = resync_req >> 32;
718 	u32 req_end = req_seq + ((resync_req >> 16) & 0xffff);
719 	u16 i;
720 
721 	*rcd_delta = 0;
722 
723 	if (is_async) {
724 		/* shouldn't get to wraparound:
725 		 * too long in async stage, something bad happened
726 		 */
727 		if (WARN_ON_ONCE(resync_async->rcd_delta == USHRT_MAX)) {
728 			tls_offload_rx_resync_async_request_cancel(resync_async);
729 			return false;
730 		}
731 
732 		/* asynchronous stage: log all headers seq such that
733 		 * req_seq <= seq <= end_seq, and wait for real resync request
734 		 */
735 		if (before(*seq, req_seq))
736 			return false;
737 		if (!after(*seq, req_end) &&
738 		    resync_async->loglen < TLS_DEVICE_RESYNC_ASYNC_LOGMAX)
739 			resync_async->log[resync_async->loglen++] = *seq;
740 
741 		resync_async->rcd_delta++;
742 
743 		return false;
744 	}
745 
746 	/* synchronous stage: check against the logged entries and
747 	 * proceed to check the next entries if no match was found
748 	 */
749 	for (i = 0; i < resync_async->loglen; i++)
750 		if (req_seq == resync_async->log[i] &&
751 		    atomic64_try_cmpxchg(&resync_async->req, &resync_req, 0)) {
752 			*rcd_delta = resync_async->rcd_delta - i;
753 			*seq = req_seq;
754 			resync_async->loglen = 0;
755 			resync_async->rcd_delta = 0;
756 			return true;
757 		}
758 
759 	resync_async->loglen = 0;
760 	resync_async->rcd_delta = 0;
761 
762 	if (req_seq == *seq &&
763 	    atomic64_try_cmpxchg(&resync_async->req,
764 				 &resync_req, 0))
765 		return true;
766 
767 	return false;
768 }
769 
tls_device_rx_resync_new_rec(struct sock * sk,u32 rcd_len,u32 seq)770 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq)
771 {
772 	struct tls_context *tls_ctx = tls_get_ctx(sk);
773 	struct tls_offload_context_rx *rx_ctx;
774 	u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
775 	u32 sock_data, is_req_pending;
776 	struct tls_prot_info *prot;
777 	s64 resync_req;
778 	u16 rcd_delta;
779 	u32 req_seq;
780 
781 	if (tls_ctx->rx_conf != TLS_HW)
782 		return;
783 	if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags)))
784 		return;
785 
786 	prot = &tls_ctx->prot_info;
787 	rx_ctx = tls_offload_ctx_rx(tls_ctx);
788 	memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
789 
790 	switch (rx_ctx->resync_type) {
791 	case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ:
792 		resync_req = atomic64_read(&rx_ctx->resync_req);
793 		req_seq = resync_req >> 32;
794 		seq += TLS_HEADER_SIZE - 1;
795 		is_req_pending = resync_req;
796 
797 		if (likely(!is_req_pending) || req_seq != seq ||
798 		    !atomic64_try_cmpxchg(&rx_ctx->resync_req, &resync_req, 0))
799 			return;
800 		break;
801 	case TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT:
802 		if (likely(!rx_ctx->resync_nh_do_now))
803 			return;
804 
805 		/* head of next rec is already in, note that the sock_inq will
806 		 * include the currently parsed message when called from parser
807 		 */
808 		sock_data = tcp_inq(sk);
809 		if (sock_data > rcd_len) {
810 			trace_tls_device_rx_resync_nh_delay(sk, sock_data,
811 							    rcd_len);
812 			return;
813 		}
814 
815 		rx_ctx->resync_nh_do_now = 0;
816 		seq += rcd_len;
817 		tls_bigint_increment(rcd_sn, prot->rec_seq_size);
818 		break;
819 	case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC:
820 		resync_req = atomic64_read(&rx_ctx->resync_async->req);
821 		is_req_pending = resync_req;
822 		if (likely(!is_req_pending))
823 			return;
824 
825 		if (!tls_device_rx_resync_async(rx_ctx->resync_async,
826 						resync_req, &seq, &rcd_delta))
827 			return;
828 		tls_bigint_subtract(rcd_sn, rcd_delta);
829 		break;
830 	}
831 
832 	tls_device_resync_rx(tls_ctx, sk, seq, rcd_sn);
833 }
834 
tls_device_core_ctrl_rx_resync(struct tls_context * tls_ctx,struct tls_offload_context_rx * ctx,struct sock * sk,struct sk_buff * skb)835 static void tls_device_core_ctrl_rx_resync(struct tls_context *tls_ctx,
836 					   struct tls_offload_context_rx *ctx,
837 					   struct sock *sk, struct sk_buff *skb)
838 {
839 	struct strp_msg *rxm;
840 
841 	/* device will request resyncs by itself based on stream scan */
842 	if (ctx->resync_type != TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT)
843 		return;
844 	/* already scheduled */
845 	if (ctx->resync_nh_do_now)
846 		return;
847 	/* seen decrypted fragments since last fully-failed record */
848 	if (ctx->resync_nh_reset) {
849 		ctx->resync_nh_reset = 0;
850 		ctx->resync_nh.decrypted_failed = 1;
851 		ctx->resync_nh.decrypted_tgt = TLS_DEVICE_RESYNC_NH_START_IVAL;
852 		return;
853 	}
854 
855 	if (++ctx->resync_nh.decrypted_failed <= ctx->resync_nh.decrypted_tgt)
856 		return;
857 
858 	/* doing resync, bump the next target in case it fails */
859 	if (ctx->resync_nh.decrypted_tgt < TLS_DEVICE_RESYNC_NH_MAX_IVAL)
860 		ctx->resync_nh.decrypted_tgt *= 2;
861 	else
862 		ctx->resync_nh.decrypted_tgt += TLS_DEVICE_RESYNC_NH_MAX_IVAL;
863 
864 	rxm = strp_msg(skb);
865 
866 	/* head of next rec is already in, parser will sync for us */
867 	if (tcp_inq(sk) > rxm->full_len) {
868 		trace_tls_device_rx_resync_nh_schedule(sk);
869 		ctx->resync_nh_do_now = 1;
870 	} else {
871 		struct tls_prot_info *prot = &tls_ctx->prot_info;
872 		u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
873 
874 		memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
875 		tls_bigint_increment(rcd_sn, prot->rec_seq_size);
876 
877 		tls_device_resync_rx(tls_ctx, sk, tcp_sk(sk)->copied_seq,
878 				     rcd_sn);
879 	}
880 }
881 
882 static int
tls_device_reencrypt(struct sock * sk,struct tls_context * tls_ctx)883 tls_device_reencrypt(struct sock *sk, struct tls_context *tls_ctx)
884 {
885 	struct tls_sw_context_rx *sw_ctx = tls_sw_ctx_rx(tls_ctx);
886 	const struct tls_cipher_desc *cipher_desc;
887 	int err, offset, copy, data_len, pos;
888 	struct sk_buff *skb, *skb_iter;
889 	struct scatterlist sg[1];
890 	struct strp_msg *rxm;
891 	char *orig_buf, *buf;
892 
893 	cipher_desc = get_cipher_desc(tls_ctx->crypto_recv.info.cipher_type);
894 	DEBUG_NET_WARN_ON_ONCE(!cipher_desc || !cipher_desc->offloadable);
895 
896 	rxm = strp_msg(tls_strp_msg(sw_ctx));
897 	orig_buf = kmalloc(rxm->full_len + TLS_HEADER_SIZE + cipher_desc->iv,
898 			   sk->sk_allocation);
899 	if (!orig_buf)
900 		return -ENOMEM;
901 	buf = orig_buf;
902 
903 	err = tls_strp_msg_cow(sw_ctx);
904 	if (unlikely(err))
905 		goto free_buf;
906 
907 	skb = tls_strp_msg(sw_ctx);
908 	rxm = strp_msg(skb);
909 	offset = rxm->offset;
910 
911 	sg_init_table(sg, 1);
912 	sg_set_buf(&sg[0], buf,
913 		   rxm->full_len + TLS_HEADER_SIZE + cipher_desc->iv);
914 	err = skb_copy_bits(skb, offset, buf, TLS_HEADER_SIZE + cipher_desc->iv);
915 	if (err)
916 		goto free_buf;
917 
918 	/* We are interested only in the decrypted data not the auth */
919 	err = decrypt_skb(sk, sg);
920 	if (err != -EBADMSG)
921 		goto free_buf;
922 	else
923 		err = 0;
924 
925 	data_len = rxm->full_len - cipher_desc->tag;
926 
927 	if (skb_pagelen(skb) > offset) {
928 		copy = min_t(int, skb_pagelen(skb) - offset, data_len);
929 
930 		if (skb->decrypted) {
931 			err = skb_store_bits(skb, offset, buf, copy);
932 			if (err)
933 				goto free_buf;
934 		}
935 
936 		offset += copy;
937 		buf += copy;
938 	}
939 
940 	pos = skb_pagelen(skb);
941 	skb_walk_frags(skb, skb_iter) {
942 		int frag_pos;
943 
944 		/* Practically all frags must belong to msg if reencrypt
945 		 * is needed with current strparser and coalescing logic,
946 		 * but strparser may "get optimized", so let's be safe.
947 		 */
948 		if (pos + skb_iter->len <= offset)
949 			goto done_with_frag;
950 		if (pos >= data_len + rxm->offset)
951 			break;
952 
953 		frag_pos = offset - pos;
954 		copy = min_t(int, skb_iter->len - frag_pos,
955 			     data_len + rxm->offset - offset);
956 
957 		if (skb_iter->decrypted) {
958 			err = skb_store_bits(skb_iter, frag_pos, buf, copy);
959 			if (err)
960 				goto free_buf;
961 		}
962 
963 		offset += copy;
964 		buf += copy;
965 done_with_frag:
966 		pos += skb_iter->len;
967 	}
968 
969 free_buf:
970 	kfree(orig_buf);
971 	return err;
972 }
973 
tls_device_decrypted(struct sock * sk,struct tls_context * tls_ctx)974 int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx)
975 {
976 	struct tls_offload_context_rx *ctx = tls_offload_ctx_rx(tls_ctx);
977 	struct tls_sw_context_rx *sw_ctx = tls_sw_ctx_rx(tls_ctx);
978 	struct sk_buff *skb = tls_strp_msg(sw_ctx);
979 	struct strp_msg *rxm = strp_msg(skb);
980 	int is_decrypted, is_encrypted;
981 
982 	if (!tls_strp_msg_mixed_decrypted(sw_ctx)) {
983 		is_decrypted = skb->decrypted;
984 		is_encrypted = !is_decrypted;
985 	} else {
986 		is_decrypted = 0;
987 		is_encrypted = 0;
988 	}
989 
990 	trace_tls_device_decrypted(sk, tcp_sk(sk)->copied_seq - rxm->full_len,
991 				   tls_ctx->rx.rec_seq, rxm->full_len,
992 				   is_encrypted, is_decrypted);
993 
994 	if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags))) {
995 		if (likely(is_encrypted || is_decrypted))
996 			return is_decrypted;
997 
998 		/* After tls_device_down disables the offload, the next SKB will
999 		 * likely have initial fragments decrypted, and final ones not
1000 		 * decrypted. We need to reencrypt that single SKB.
1001 		 */
1002 		return tls_device_reencrypt(sk, tls_ctx);
1003 	}
1004 
1005 	/* Return immediately if the record is either entirely plaintext or
1006 	 * entirely ciphertext. Otherwise handle reencrypt partially decrypted
1007 	 * record.
1008 	 */
1009 	if (is_decrypted) {
1010 		ctx->resync_nh_reset = 1;
1011 		return is_decrypted;
1012 	}
1013 	if (is_encrypted) {
1014 		tls_device_core_ctrl_rx_resync(tls_ctx, ctx, sk, skb);
1015 		return 0;
1016 	}
1017 
1018 	ctx->resync_nh_reset = 1;
1019 	return tls_device_reencrypt(sk, tls_ctx);
1020 }
1021 
tls_device_attach(struct tls_context * ctx,struct sock * sk,struct net_device * netdev)1022 static void tls_device_attach(struct tls_context *ctx, struct sock *sk,
1023 			      struct net_device *netdev)
1024 {
1025 	if (sk->sk_destruct != tls_device_sk_destruct) {
1026 		refcount_set(&ctx->refcount, 1);
1027 		dev_hold(netdev);
1028 		RCU_INIT_POINTER(ctx->netdev, netdev);
1029 		spin_lock_irq(&tls_device_lock);
1030 		list_add_tail(&ctx->list, &tls_device_list);
1031 		spin_unlock_irq(&tls_device_lock);
1032 
1033 		ctx->sk_destruct = sk->sk_destruct;
1034 		smp_store_release(&sk->sk_destruct, tls_device_sk_destruct);
1035 	}
1036 }
1037 
alloc_offload_ctx_tx(struct tls_context * ctx)1038 static struct tls_offload_context_tx *alloc_offload_ctx_tx(struct tls_context *ctx)
1039 {
1040 	struct tls_offload_context_tx *offload_ctx;
1041 	__be64 rcd_sn;
1042 
1043 	offload_ctx = kzalloc(sizeof(*offload_ctx), GFP_KERNEL);
1044 	if (!offload_ctx)
1045 		return NULL;
1046 
1047 	INIT_WORK(&offload_ctx->destruct_work, tls_device_tx_del_task);
1048 	INIT_LIST_HEAD(&offload_ctx->records_list);
1049 	spin_lock_init(&offload_ctx->lock);
1050 	sg_init_table(offload_ctx->sg_tx_data,
1051 		      ARRAY_SIZE(offload_ctx->sg_tx_data));
1052 
1053 	/* start at rec_seq - 1 to account for the start marker record */
1054 	memcpy(&rcd_sn, ctx->tx.rec_seq, sizeof(rcd_sn));
1055 	offload_ctx->unacked_record_sn = be64_to_cpu(rcd_sn) - 1;
1056 
1057 	offload_ctx->ctx = ctx;
1058 
1059 	return offload_ctx;
1060 }
1061 
tls_set_device_offload(struct sock * sk)1062 int tls_set_device_offload(struct sock *sk)
1063 {
1064 	struct tls_record_info *start_marker_record;
1065 	struct tls_offload_context_tx *offload_ctx;
1066 	const struct tls_cipher_desc *cipher_desc;
1067 	struct tls_crypto_info *crypto_info;
1068 	struct tls_prot_info *prot;
1069 	struct net_device *netdev;
1070 	struct tls_context *ctx;
1071 	char *iv, *rec_seq;
1072 	int rc;
1073 
1074 	ctx = tls_get_ctx(sk);
1075 	prot = &ctx->prot_info;
1076 
1077 	if (ctx->priv_ctx_tx)
1078 		return -EEXIST;
1079 
1080 	netdev = get_netdev_for_sock(sk);
1081 	if (!netdev) {
1082 		pr_err_ratelimited("%s: netdev not found\n", __func__);
1083 		return -EINVAL;
1084 	}
1085 
1086 	if (!(netdev->features & NETIF_F_HW_TLS_TX)) {
1087 		rc = -EOPNOTSUPP;
1088 		goto release_netdev;
1089 	}
1090 
1091 	crypto_info = &ctx->crypto_send.info;
1092 	if (crypto_info->version != TLS_1_2_VERSION) {
1093 		rc = -EOPNOTSUPP;
1094 		goto release_netdev;
1095 	}
1096 
1097 	cipher_desc = get_cipher_desc(crypto_info->cipher_type);
1098 	if (!cipher_desc || !cipher_desc->offloadable) {
1099 		rc = -EINVAL;
1100 		goto release_netdev;
1101 	}
1102 
1103 	rc = init_prot_info(prot, crypto_info, cipher_desc);
1104 	if (rc)
1105 		goto release_netdev;
1106 
1107 	iv = crypto_info_iv(crypto_info, cipher_desc);
1108 	rec_seq = crypto_info_rec_seq(crypto_info, cipher_desc);
1109 
1110 	memcpy(ctx->tx.iv + cipher_desc->salt, iv, cipher_desc->iv);
1111 	memcpy(ctx->tx.rec_seq, rec_seq, cipher_desc->rec_seq);
1112 
1113 	start_marker_record = kmalloc(sizeof(*start_marker_record), GFP_KERNEL);
1114 	if (!start_marker_record) {
1115 		rc = -ENOMEM;
1116 		goto release_netdev;
1117 	}
1118 
1119 	offload_ctx = alloc_offload_ctx_tx(ctx);
1120 	if (!offload_ctx) {
1121 		rc = -ENOMEM;
1122 		goto free_marker_record;
1123 	}
1124 
1125 	rc = tls_sw_fallback_init(sk, offload_ctx, crypto_info);
1126 	if (rc)
1127 		goto free_offload_ctx;
1128 
1129 	start_marker_record->end_seq = tcp_sk(sk)->write_seq;
1130 	start_marker_record->len = 0;
1131 	start_marker_record->num_frags = 0;
1132 	list_add_tail(&start_marker_record->list, &offload_ctx->records_list);
1133 
1134 	clean_acked_data_enable(tcp_sk(sk), &tls_tcp_clean_acked);
1135 	ctx->push_pending_record = tls_device_push_pending_record;
1136 
1137 	/* TLS offload is greatly simplified if we don't send
1138 	 * SKBs where only part of the payload needs to be encrypted.
1139 	 * So mark the last skb in the write queue as end of record.
1140 	 */
1141 	tcp_write_collapse_fence(sk);
1142 
1143 	/* Avoid offloading if the device is down
1144 	 * We don't want to offload new flows after
1145 	 * the NETDEV_DOWN event
1146 	 *
1147 	 * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1148 	 * handler thus protecting from the device going down before
1149 	 * ctx was added to tls_device_list.
1150 	 */
1151 	down_read(&device_offload_lock);
1152 	if (!(netdev->flags & IFF_UP)) {
1153 		rc = -EINVAL;
1154 		goto release_lock;
1155 	}
1156 
1157 	ctx->priv_ctx_tx = offload_ctx;
1158 	rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_TX,
1159 					     &ctx->crypto_send.info,
1160 					     tcp_sk(sk)->write_seq);
1161 	trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_TX,
1162 				     tcp_sk(sk)->write_seq, rec_seq, rc);
1163 	if (rc)
1164 		goto release_lock;
1165 
1166 	tls_device_attach(ctx, sk, netdev);
1167 	up_read(&device_offload_lock);
1168 
1169 	/* following this assignment tls_is_skb_tx_device_offloaded
1170 	 * will return true and the context might be accessed
1171 	 * by the netdev's xmit function.
1172 	 */
1173 	smp_store_release(&sk->sk_validate_xmit_skb, tls_validate_xmit_skb);
1174 	dev_put(netdev);
1175 
1176 	return 0;
1177 
1178 release_lock:
1179 	up_read(&device_offload_lock);
1180 	clean_acked_data_disable(tcp_sk(sk));
1181 	crypto_free_aead(offload_ctx->aead_send);
1182 free_offload_ctx:
1183 	kfree(offload_ctx);
1184 	ctx->priv_ctx_tx = NULL;
1185 free_marker_record:
1186 	kfree(start_marker_record);
1187 release_netdev:
1188 	dev_put(netdev);
1189 	return rc;
1190 }
1191 
tls_set_device_offload_rx(struct sock * sk,struct tls_context * ctx)1192 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
1193 {
1194 	struct tls12_crypto_info_aes_gcm_128 *info;
1195 	struct tls_offload_context_rx *context;
1196 	struct net_device *netdev;
1197 	int rc = 0;
1198 
1199 	if (ctx->crypto_recv.info.version != TLS_1_2_VERSION)
1200 		return -EOPNOTSUPP;
1201 
1202 	netdev = get_netdev_for_sock(sk);
1203 	if (!netdev) {
1204 		pr_err_ratelimited("%s: netdev not found\n", __func__);
1205 		return -EINVAL;
1206 	}
1207 
1208 	if (!(netdev->features & NETIF_F_HW_TLS_RX)) {
1209 		rc = -EOPNOTSUPP;
1210 		goto release_netdev;
1211 	}
1212 
1213 	/* Avoid offloading if the device is down
1214 	 * We don't want to offload new flows after
1215 	 * the NETDEV_DOWN event
1216 	 *
1217 	 * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1218 	 * handler thus protecting from the device going down before
1219 	 * ctx was added to tls_device_list.
1220 	 */
1221 	down_read(&device_offload_lock);
1222 	if (!(netdev->flags & IFF_UP)) {
1223 		rc = -EINVAL;
1224 		goto release_lock;
1225 	}
1226 
1227 	context = kzalloc(sizeof(*context), GFP_KERNEL);
1228 	if (!context) {
1229 		rc = -ENOMEM;
1230 		goto release_lock;
1231 	}
1232 	context->resync_nh_reset = 1;
1233 
1234 	ctx->priv_ctx_rx = context;
1235 	rc = tls_set_sw_offload(sk, 0, NULL);
1236 	if (rc)
1237 		goto release_ctx;
1238 
1239 	rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_RX,
1240 					     &ctx->crypto_recv.info,
1241 					     tcp_sk(sk)->copied_seq);
1242 	info = (void *)&ctx->crypto_recv.info;
1243 	trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_RX,
1244 				     tcp_sk(sk)->copied_seq, info->rec_seq, rc);
1245 	if (rc)
1246 		goto free_sw_resources;
1247 
1248 	tls_device_attach(ctx, sk, netdev);
1249 	up_read(&device_offload_lock);
1250 
1251 	dev_put(netdev);
1252 
1253 	return 0;
1254 
1255 free_sw_resources:
1256 	up_read(&device_offload_lock);
1257 	tls_sw_free_resources_rx(sk);
1258 	down_read(&device_offload_lock);
1259 release_ctx:
1260 	ctx->priv_ctx_rx = NULL;
1261 release_lock:
1262 	up_read(&device_offload_lock);
1263 release_netdev:
1264 	dev_put(netdev);
1265 	return rc;
1266 }
1267 
tls_device_offload_cleanup_rx(struct sock * sk)1268 void tls_device_offload_cleanup_rx(struct sock *sk)
1269 {
1270 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1271 	struct net_device *netdev;
1272 
1273 	down_read(&device_offload_lock);
1274 	netdev = rcu_dereference_protected(tls_ctx->netdev,
1275 					   lockdep_is_held(&device_offload_lock));
1276 	if (!netdev)
1277 		goto out;
1278 
1279 	netdev->tlsdev_ops->tls_dev_del(netdev, tls_ctx,
1280 					TLS_OFFLOAD_CTX_DIR_RX);
1281 
1282 	if (tls_ctx->tx_conf != TLS_HW) {
1283 		dev_put(netdev);
1284 		rcu_assign_pointer(tls_ctx->netdev, NULL);
1285 	} else {
1286 		set_bit(TLS_RX_DEV_CLOSED, &tls_ctx->flags);
1287 	}
1288 out:
1289 	up_read(&device_offload_lock);
1290 	tls_sw_release_resources_rx(sk);
1291 }
1292 
tls_device_down(struct net_device * netdev)1293 static int tls_device_down(struct net_device *netdev)
1294 {
1295 	struct tls_context *ctx, *tmp;
1296 	unsigned long flags;
1297 	LIST_HEAD(list);
1298 
1299 	/* Request a write lock to block new offload attempts */
1300 	down_write(&device_offload_lock);
1301 
1302 	spin_lock_irqsave(&tls_device_lock, flags);
1303 	list_for_each_entry_safe(ctx, tmp, &tls_device_list, list) {
1304 		struct net_device *ctx_netdev =
1305 			rcu_dereference_protected(ctx->netdev,
1306 						  lockdep_is_held(&device_offload_lock));
1307 
1308 		if (ctx_netdev != netdev ||
1309 		    !refcount_inc_not_zero(&ctx->refcount))
1310 			continue;
1311 
1312 		list_move(&ctx->list, &list);
1313 	}
1314 	spin_unlock_irqrestore(&tls_device_lock, flags);
1315 
1316 	list_for_each_entry_safe(ctx, tmp, &list, list)	{
1317 		/* Stop offloaded TX and switch to the fallback.
1318 		 * tls_is_skb_tx_device_offloaded will return false.
1319 		 */
1320 		WRITE_ONCE(ctx->sk->sk_validate_xmit_skb, tls_validate_xmit_skb_sw);
1321 
1322 		/* Stop the RX and TX resync.
1323 		 * tls_dev_resync must not be called after tls_dev_del.
1324 		 */
1325 		rcu_assign_pointer(ctx->netdev, NULL);
1326 
1327 		/* Start skipping the RX resync logic completely. */
1328 		set_bit(TLS_RX_DEV_DEGRADED, &ctx->flags);
1329 
1330 		/* Sync with inflight packets. After this point:
1331 		 * TX: no non-encrypted packets will be passed to the driver.
1332 		 * RX: resync requests from the driver will be ignored.
1333 		 */
1334 		synchronize_net();
1335 
1336 		/* Release the offload context on the driver side. */
1337 		if (ctx->tx_conf == TLS_HW)
1338 			netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1339 							TLS_OFFLOAD_CTX_DIR_TX);
1340 		if (ctx->rx_conf == TLS_HW &&
1341 		    !test_bit(TLS_RX_DEV_CLOSED, &ctx->flags))
1342 			netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1343 							TLS_OFFLOAD_CTX_DIR_RX);
1344 
1345 		dev_put(netdev);
1346 
1347 		/* Move the context to a separate list for two reasons:
1348 		 * 1. When the context is deallocated, list_del is called.
1349 		 * 2. It's no longer an offloaded context, so we don't want to
1350 		 *    run offload-specific code on this context.
1351 		 */
1352 		spin_lock_irqsave(&tls_device_lock, flags);
1353 		list_move_tail(&ctx->list, &tls_device_down_list);
1354 		spin_unlock_irqrestore(&tls_device_lock, flags);
1355 
1356 		/* Device contexts for RX and TX will be freed in on sk_destruct
1357 		 * by tls_device_free_ctx. rx_conf and tx_conf stay in TLS_HW.
1358 		 * Now release the ref taken above.
1359 		 */
1360 		if (refcount_dec_and_test(&ctx->refcount)) {
1361 			/* sk_destruct ran after tls_device_down took a ref, and
1362 			 * it returned early. Complete the destruction here.
1363 			 */
1364 			list_del(&ctx->list);
1365 			tls_device_free_ctx(ctx);
1366 		}
1367 	}
1368 
1369 	up_write(&device_offload_lock);
1370 
1371 	flush_workqueue(destruct_wq);
1372 
1373 	return NOTIFY_DONE;
1374 }
1375 
tls_dev_event(struct notifier_block * this,unsigned long event,void * ptr)1376 static int tls_dev_event(struct notifier_block *this, unsigned long event,
1377 			 void *ptr)
1378 {
1379 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1380 
1381 	if (!dev->tlsdev_ops &&
1382 	    !(dev->features & (NETIF_F_HW_TLS_RX | NETIF_F_HW_TLS_TX)))
1383 		return NOTIFY_DONE;
1384 
1385 	switch (event) {
1386 	case NETDEV_REGISTER:
1387 	case NETDEV_FEAT_CHANGE:
1388 		if (netif_is_bond_master(dev))
1389 			return NOTIFY_DONE;
1390 		if ((dev->features & NETIF_F_HW_TLS_RX) &&
1391 		    !dev->tlsdev_ops->tls_dev_resync)
1392 			return NOTIFY_BAD;
1393 
1394 		if  (dev->tlsdev_ops &&
1395 		     dev->tlsdev_ops->tls_dev_add &&
1396 		     dev->tlsdev_ops->tls_dev_del)
1397 			return NOTIFY_DONE;
1398 		else
1399 			return NOTIFY_BAD;
1400 	case NETDEV_DOWN:
1401 		return tls_device_down(dev);
1402 	}
1403 	return NOTIFY_DONE;
1404 }
1405 
1406 static struct notifier_block tls_dev_notifier = {
1407 	.notifier_call	= tls_dev_event,
1408 };
1409 
tls_device_init(void)1410 int __init tls_device_init(void)
1411 {
1412 	int err;
1413 
1414 	dummy_page = alloc_page(GFP_KERNEL);
1415 	if (!dummy_page)
1416 		return -ENOMEM;
1417 
1418 	destruct_wq = alloc_workqueue("ktls_device_destruct", WQ_PERCPU, 0);
1419 	if (!destruct_wq) {
1420 		err = -ENOMEM;
1421 		goto err_free_dummy;
1422 	}
1423 
1424 	err = register_netdevice_notifier(&tls_dev_notifier);
1425 	if (err)
1426 		goto err_destroy_wq;
1427 
1428 	return 0;
1429 
1430 err_destroy_wq:
1431 	destroy_workqueue(destruct_wq);
1432 err_free_dummy:
1433 	put_page(dummy_page);
1434 	return err;
1435 }
1436 
tls_device_cleanup(void)1437 void __exit tls_device_cleanup(void)
1438 {
1439 	unregister_netdevice_notifier(&tls_dev_notifier);
1440 	destroy_workqueue(destruct_wq);
1441 	clean_acked_data_flush();
1442 	put_page(dummy_page);
1443 }
1444