xref: /linux/include/net/tls.h (revision 3f1c07fc21c68bd3bd2df9d2c9441f6485e934d9)
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #ifndef _TLS_OFFLOAD_H
35 #define _TLS_OFFLOAD_H
36 
37 #include <linux/types.h>
38 #include <asm/byteorder.h>
39 #include <linux/crypto.h>
40 #include <linux/socket.h>
41 #include <linux/tcp.h>
42 #include <linux/mutex.h>
43 #include <linux/netdevice.h>
44 #include <linux/rcupdate.h>
45 
46 #include <net/net_namespace.h>
47 #include <net/tcp.h>
48 #include <net/strparser.h>
49 #include <crypto/aead.h>
50 #include <uapi/linux/tls.h>
51 
52 struct tls_rec;
53 
54 /* Maximum data size carried in a TLS record */
55 #define TLS_MAX_PAYLOAD_SIZE		((size_t)1 << 14)
56 /* Minimum record size limit as per RFC8449 */
57 #define TLS_MIN_RECORD_SIZE_LIM		((size_t)1 << 6)
58 
59 #define TLS_HEADER_SIZE			5
60 #define TLS_NONCE_OFFSET		TLS_HEADER_SIZE
61 
62 #define TLS_CRYPTO_INFO_READY(info)	((info)->cipher_type)
63 
64 #define TLS_HANDSHAKE_KEYUPDATE		24	/* rfc8446 B.3: Key update */
65 
66 #define TLS_AAD_SPACE_SIZE		13
67 
68 #define TLS_MAX_IV_SIZE			16
69 #define TLS_MAX_SALT_SIZE		4
70 #define TLS_TAG_SIZE			16
71 #define TLS_MAX_REC_SEQ_SIZE		8
72 #define TLS_MAX_AAD_SIZE		TLS_AAD_SPACE_SIZE
73 
74 /* For CCM mode, the full 16-bytes of IV is made of '4' fields of given sizes.
75  *
76  * IV[16] = b0[1] || implicit nonce[4] || explicit nonce[8] || length[3]
77  *
78  * The field 'length' is encoded in field 'b0' as '(length width - 1)'.
79  * Hence b0 contains (3 - 1) = 2.
80  */
81 #define TLS_AES_CCM_IV_B0_BYTE		2
82 #define TLS_SM4_CCM_IV_B0_BYTE		2
83 
84 enum {
85 	TLS_BASE,
86 	TLS_SW,
87 	TLS_HW,
88 	TLS_HW_RECORD,
89 	TLS_NUM_CONFIG,
90 };
91 
92 struct tx_work {
93 	struct delayed_work work;
94 	struct sock *sk;
95 };
96 
97 struct tls_sw_context_tx {
98 	struct crypto_aead *aead_send;
99 	struct crypto_wait async_wait;
100 	struct tx_work tx_work;
101 	struct tls_rec *open_rec;
102 	struct list_head tx_list;
103 	atomic_t encrypt_pending;
104 	u8 async_capable:1;
105 
106 #define BIT_TX_SCHEDULED	0
107 #define BIT_TX_CLOSING		1
108 	unsigned long tx_bitmask;
109 };
110 
111 struct tls_strparser {
112 	struct sock *sk;
113 
114 	u32 mark : 8;
115 	u32 stopped : 1;
116 	u32 copy_mode : 1;
117 	u32 mixed_decrypted : 1;
118 
119 	bool msg_ready;
120 
121 	struct strp_msg stm;
122 
123 	struct sk_buff *anchor;
124 	struct work_struct work;
125 };
126 
127 struct tls_sw_context_rx {
128 	struct crypto_aead *aead_recv;
129 	struct crypto_wait async_wait;
130 	struct sk_buff_head rx_list;	/* list of decrypted 'data' records */
131 	void (*saved_data_ready)(struct sock *sk);
132 
133 	u8 reader_present;
134 	u8 async_capable:1;
135 	u8 zc_capable:1;
136 	u8 reader_contended:1;
137 	bool key_update_pending;
138 
139 	struct tls_strparser strp;
140 
141 	atomic_t decrypt_pending;
142 	struct sk_buff_head async_hold;
143 	struct wait_queue_head wq;
144 };
145 
146 struct tls_record_info {
147 	struct list_head list;
148 	u32 end_seq;
149 	int len;
150 	int num_frags;
151 	skb_frag_t frags[MAX_SKB_FRAGS];
152 };
153 
154 #define TLS_DRIVER_STATE_SIZE_TX	16
155 struct tls_offload_context_tx {
156 	struct crypto_aead *aead_send;
157 	spinlock_t lock;	/* protects records list */
158 	struct list_head records_list;
159 	struct tls_record_info *open_record;
160 	struct tls_record_info *retransmit_hint;
161 	u64 hint_record_sn;
162 	u64 unacked_record_sn;
163 
164 	struct scatterlist sg_tx_data[MAX_SKB_FRAGS];
165 	void (*sk_destruct)(struct sock *sk);
166 	struct work_struct destruct_work;
167 	struct tls_context *ctx;
168 	/* The TLS layer reserves room for driver specific state
169 	 * Currently the belief is that there is not enough
170 	 * driver specific state to justify another layer of indirection
171 	 */
172 	u8 driver_state[TLS_DRIVER_STATE_SIZE_TX] __aligned(8);
173 };
174 
175 enum tls_context_flags {
176 	/* tls_device_down was called after the netdev went down, device state
177 	 * was released, and kTLS works in software, even though rx_conf is
178 	 * still TLS_HW (needed for transition).
179 	 */
180 	TLS_RX_DEV_DEGRADED = 0,
181 	/* Unlike RX where resync is driven entirely by the core in TX only
182 	 * the driver knows when things went out of sync, so we need the flag
183 	 * to be atomic.
184 	 */
185 	TLS_TX_SYNC_SCHED = 1,
186 	/* tls_dev_del was called for the RX side, device state was released,
187 	 * but tls_ctx->netdev might still be kept, because TX-side driver
188 	 * resources might not be released yet. Used to prevent the second
189 	 * tls_dev_del call in tls_device_down if it happens simultaneously.
190 	 */
191 	TLS_RX_DEV_CLOSED = 2,
192 };
193 
194 struct cipher_context {
195 	char iv[TLS_MAX_IV_SIZE + TLS_MAX_SALT_SIZE];
196 	char rec_seq[TLS_MAX_REC_SEQ_SIZE];
197 };
198 
199 union tls_crypto_context {
200 	struct tls_crypto_info info;
201 	union {
202 		struct tls12_crypto_info_aes_gcm_128 aes_gcm_128;
203 		struct tls12_crypto_info_aes_gcm_256 aes_gcm_256;
204 		struct tls12_crypto_info_chacha20_poly1305 chacha20_poly1305;
205 		struct tls12_crypto_info_sm4_gcm sm4_gcm;
206 		struct tls12_crypto_info_sm4_ccm sm4_ccm;
207 	};
208 };
209 
210 struct tls_prot_info {
211 	u16 version;
212 	u16 cipher_type;
213 	u16 prepend_size;
214 	u16 tag_size;
215 	u16 overhead_size;
216 	u16 iv_size;
217 	u16 salt_size;
218 	u16 rec_seq_size;
219 	u16 aad_size;
220 	u16 tail_size;
221 };
222 
223 struct tls_context {
224 	/* read-only cache line */
225 	struct tls_prot_info prot_info;
226 
227 	u8 tx_conf:3;
228 	u8 rx_conf:3;
229 	u8 zerocopy_sendfile:1;
230 	u8 rx_no_pad:1;
231 	u16 tx_max_payload_len;
232 
233 	int (*push_pending_record)(struct sock *sk, int flags);
234 	void (*sk_write_space)(struct sock *sk);
235 
236 	void *priv_ctx_tx;
237 	void *priv_ctx_rx;
238 
239 	struct net_device __rcu *netdev;
240 
241 	/* rw cache line */
242 	struct cipher_context tx;
243 	struct cipher_context rx;
244 
245 	struct scatterlist *partially_sent_record;
246 	u16 partially_sent_offset;
247 
248 	bool splicing_pages;
249 	bool pending_open_record_frags;
250 
251 	struct mutex tx_lock; /* protects partially_sent_* fields and
252 			       * per-type TX fields
253 			       */
254 	unsigned long flags;
255 
256 	/* cache cold stuff */
257 	struct proto *sk_proto;
258 	struct sock *sk;
259 
260 	void (*sk_destruct)(struct sock *sk);
261 
262 	union tls_crypto_context crypto_send;
263 	union tls_crypto_context crypto_recv;
264 
265 	struct list_head list;
266 	refcount_t refcount;
267 	struct rcu_head rcu;
268 };
269 
270 enum tls_offload_ctx_dir {
271 	TLS_OFFLOAD_CTX_DIR_RX,
272 	TLS_OFFLOAD_CTX_DIR_TX,
273 };
274 
275 struct tlsdev_ops {
276 	int (*tls_dev_add)(struct net_device *netdev, struct sock *sk,
277 			   enum tls_offload_ctx_dir direction,
278 			   struct tls_crypto_info *crypto_info,
279 			   u32 start_offload_tcp_sn);
280 	void (*tls_dev_del)(struct net_device *netdev,
281 			    struct tls_context *ctx,
282 			    enum tls_offload_ctx_dir direction);
283 	int (*tls_dev_resync)(struct net_device *netdev,
284 			      struct sock *sk, u32 seq, u8 *rcd_sn,
285 			      enum tls_offload_ctx_dir direction);
286 };
287 
288 enum tls_offload_sync_type {
289 	TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ = 0,
290 	TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT = 1,
291 	TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC = 2,
292 };
293 
294 #define TLS_DEVICE_RESYNC_NH_START_IVAL		2
295 #define TLS_DEVICE_RESYNC_NH_MAX_IVAL		128
296 
297 #define TLS_DEVICE_RESYNC_ASYNC_LOGMAX		13
298 struct tls_offload_resync_async {
299 	atomic64_t req;
300 	u16 loglen;
301 	u16 rcd_delta;
302 	u32 log[TLS_DEVICE_RESYNC_ASYNC_LOGMAX];
303 };
304 
305 #define TLS_DRIVER_STATE_SIZE_RX	8
306 struct tls_offload_context_rx {
307 	/* sw must be the first member of tls_offload_context_rx */
308 	struct tls_sw_context_rx sw;
309 	enum tls_offload_sync_type resync_type;
310 	/* this member is set regardless of resync_type, to avoid branches */
311 	u8 resync_nh_reset:1;
312 	/* CORE_NEXT_HINT-only member, but use the hole here */
313 	u8 resync_nh_do_now:1;
314 	union {
315 		/* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ */
316 		struct {
317 			atomic64_t resync_req;
318 		};
319 		/* TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT */
320 		struct {
321 			u32 decrypted_failed;
322 			u32 decrypted_tgt;
323 		} resync_nh;
324 		/* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC */
325 		struct {
326 			struct tls_offload_resync_async *resync_async;
327 		};
328 	};
329 	/* The TLS layer reserves room for driver specific state
330 	 * Currently the belief is that there is not enough
331 	 * driver specific state to justify another layer of indirection
332 	 */
333 	u8 driver_state[TLS_DRIVER_STATE_SIZE_RX] __aligned(8);
334 };
335 
336 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
337 				       u32 seq, u64 *p_record_sn);
338 
tls_record_is_start_marker(struct tls_record_info * rec)339 static inline bool tls_record_is_start_marker(struct tls_record_info *rec)
340 {
341 	return rec->len == 0;
342 }
343 
tls_record_start_seq(struct tls_record_info * rec)344 static inline u32 tls_record_start_seq(struct tls_record_info *rec)
345 {
346 	return rec->end_seq - rec->len;
347 }
348 
349 struct sk_buff *
350 tls_validate_xmit_skb(struct sock *sk, struct net_device *dev,
351 		      struct sk_buff *skb);
352 struct sk_buff *
353 tls_validate_xmit_skb_sw(struct sock *sk, struct net_device *dev,
354 			 struct sk_buff *skb);
355 
tls_is_skb_tx_device_offloaded(const struct sk_buff * skb)356 static inline bool tls_is_skb_tx_device_offloaded(const struct sk_buff *skb)
357 {
358 #ifdef CONFIG_TLS_DEVICE
359 	struct sock *sk = skb->sk;
360 
361 	return sk && sk_fullsock(sk) &&
362 	       (smp_load_acquire(&sk->sk_validate_xmit_skb) ==
363 	       &tls_validate_xmit_skb);
364 #else
365 	return false;
366 #endif
367 }
368 
tls_get_ctx(const struct sock * sk)369 static inline struct tls_context *tls_get_ctx(const struct sock *sk)
370 {
371 	const struct inet_connection_sock *icsk = inet_csk(sk);
372 
373 	/* Use RCU on icsk_ulp_data only for sock diag code,
374 	 * TLS data path doesn't need rcu_dereference().
375 	 */
376 	return (__force void *)icsk->icsk_ulp_data;
377 }
378 
tls_sw_ctx_rx(const struct tls_context * tls_ctx)379 static inline struct tls_sw_context_rx *tls_sw_ctx_rx(
380 		const struct tls_context *tls_ctx)
381 {
382 	return (struct tls_sw_context_rx *)tls_ctx->priv_ctx_rx;
383 }
384 
tls_sw_ctx_tx(const struct tls_context * tls_ctx)385 static inline struct tls_sw_context_tx *tls_sw_ctx_tx(
386 		const struct tls_context *tls_ctx)
387 {
388 	return (struct tls_sw_context_tx *)tls_ctx->priv_ctx_tx;
389 }
390 
391 static inline struct tls_offload_context_tx *
tls_offload_ctx_tx(const struct tls_context * tls_ctx)392 tls_offload_ctx_tx(const struct tls_context *tls_ctx)
393 {
394 	return (struct tls_offload_context_tx *)tls_ctx->priv_ctx_tx;
395 }
396 
tls_sw_has_ctx_tx(const struct sock * sk)397 static inline bool tls_sw_has_ctx_tx(const struct sock *sk)
398 {
399 	struct tls_context *ctx;
400 
401 	if (!sk_is_inet(sk) || !inet_test_bit(IS_ICSK, sk))
402 		return false;
403 
404 	ctx = tls_get_ctx(sk);
405 	if (!ctx)
406 		return false;
407 	return !!tls_sw_ctx_tx(ctx);
408 }
409 
tls_sw_has_ctx_rx(const struct sock * sk)410 static inline bool tls_sw_has_ctx_rx(const struct sock *sk)
411 {
412 	struct tls_context *ctx;
413 
414 	if (!sk_is_inet(sk) || !inet_test_bit(IS_ICSK, sk))
415 		return false;
416 
417 	ctx = tls_get_ctx(sk);
418 	if (!ctx)
419 		return false;
420 	return !!tls_sw_ctx_rx(ctx);
421 }
422 
423 static inline struct tls_offload_context_rx *
tls_offload_ctx_rx(const struct tls_context * tls_ctx)424 tls_offload_ctx_rx(const struct tls_context *tls_ctx)
425 {
426 	return (struct tls_offload_context_rx *)tls_ctx->priv_ctx_rx;
427 }
428 
__tls_driver_ctx(struct tls_context * tls_ctx,enum tls_offload_ctx_dir direction)429 static inline void *__tls_driver_ctx(struct tls_context *tls_ctx,
430 				     enum tls_offload_ctx_dir direction)
431 {
432 	if (direction == TLS_OFFLOAD_CTX_DIR_TX)
433 		return tls_offload_ctx_tx(tls_ctx)->driver_state;
434 	else
435 		return tls_offload_ctx_rx(tls_ctx)->driver_state;
436 }
437 
438 static inline void *
tls_driver_ctx(const struct sock * sk,enum tls_offload_ctx_dir direction)439 tls_driver_ctx(const struct sock *sk, enum tls_offload_ctx_dir direction)
440 {
441 	return __tls_driver_ctx(tls_get_ctx(sk), direction);
442 }
443 
444 #define RESYNC_REQ BIT(0)
445 #define RESYNC_REQ_ASYNC BIT(1)
446 /* The TLS context is valid until sk_destruct is called */
tls_offload_rx_resync_request(struct sock * sk,__be32 seq)447 static inline void tls_offload_rx_resync_request(struct sock *sk, __be32 seq)
448 {
449 	struct tls_context *tls_ctx = tls_get_ctx(sk);
450 	struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
451 
452 	atomic64_set(&rx_ctx->resync_req, ((u64)ntohl(seq) << 32) | RESYNC_REQ);
453 }
454 
455 /* Log all TLS record header TCP sequences in [seq, seq+len] */
456 static inline void
tls_offload_rx_resync_async_request_start(struct tls_offload_resync_async * resync_async,__be32 seq,u16 len)457 tls_offload_rx_resync_async_request_start(struct tls_offload_resync_async *resync_async,
458 					  __be32 seq, u16 len)
459 {
460 	atomic64_set(&resync_async->req, ((u64)ntohl(seq) << 32) |
461 		     ((u64)len << 16) | RESYNC_REQ | RESYNC_REQ_ASYNC);
462 	resync_async->loglen = 0;
463 	resync_async->rcd_delta = 0;
464 }
465 
466 static inline void
tls_offload_rx_resync_async_request_end(struct tls_offload_resync_async * resync_async,__be32 seq)467 tls_offload_rx_resync_async_request_end(struct tls_offload_resync_async *resync_async,
468 					__be32 seq)
469 {
470 	atomic64_set(&resync_async->req, ((u64)ntohl(seq) << 32) | RESYNC_REQ);
471 }
472 
473 static inline void
tls_offload_rx_resync_async_request_cancel(struct tls_offload_resync_async * resync_async)474 tls_offload_rx_resync_async_request_cancel(struct tls_offload_resync_async *resync_async)
475 {
476 	atomic64_set(&resync_async->req, 0);
477 }
478 
479 static inline void
tls_offload_rx_resync_set_type(struct sock * sk,enum tls_offload_sync_type type)480 tls_offload_rx_resync_set_type(struct sock *sk, enum tls_offload_sync_type type)
481 {
482 	struct tls_context *tls_ctx = tls_get_ctx(sk);
483 
484 	tls_offload_ctx_rx(tls_ctx)->resync_type = type;
485 }
486 
487 /* Driver's seq tracking has to be disabled until resync succeeded */
tls_offload_tx_resync_pending(struct sock * sk)488 static inline bool tls_offload_tx_resync_pending(struct sock *sk)
489 {
490 	struct tls_context *tls_ctx = tls_get_ctx(sk);
491 	bool ret;
492 
493 	ret = test_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
494 	smp_mb__after_atomic();
495 	return ret;
496 }
497 
498 struct sk_buff *tls_encrypt_skb(struct sk_buff *skb);
499 
500 #ifdef CONFIG_TLS_DEVICE
501 void tls_device_sk_destruct(struct sock *sk);
502 void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq);
503 
tls_is_sk_rx_device_offloaded(struct sock * sk)504 static inline bool tls_is_sk_rx_device_offloaded(struct sock *sk)
505 {
506 	if (!sk_fullsock(sk) ||
507 	    smp_load_acquire(&sk->sk_destruct) != tls_device_sk_destruct)
508 		return false;
509 	return tls_get_ctx(sk)->rx_conf == TLS_HW;
510 }
511 #endif
512 #endif /* _TLS_OFFLOAD_H */
513