1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * This file contains the routines for flushing entries from the
4 * TLB and MMU hash table.
5 *
6 * Derived from arch/ppc64/mm/init.c:
7 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
8 *
9 * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
10 * and Cort Dougan (PReP) (cort@cs.nmt.edu)
11 * Copyright (C) 1996 Paul Mackerras
12 *
13 * Derived from "arch/i386/mm/init.c"
14 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
15 *
16 * Dave Engebretsen <engebret@us.ibm.com>
17 * Rework for PPC64 port.
18 */
19
20 #include <linux/kernel.h>
21 #include <linux/mm.h>
22 #include <linux/percpu.h>
23 #include <linux/hardirq.h>
24 #include <asm/tlbflush.h>
25 #include <asm/tlb.h>
26 #include <asm/bug.h>
27 #include <asm/pte-walk.h>
28
29
30 #include <trace/events/thp.h>
31
32 DEFINE_PER_CPU(struct ppc64_tlb_batch, ppc64_tlb_batch);
33
34 /*
35 * A linux PTE was changed and the corresponding hash table entry
36 * neesd to be flushed. This function will either perform the flush
37 * immediately or will batch it up if the current CPU has an active
38 * batch on it.
39 */
hpte_need_flush(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned long pte,int huge)40 void hpte_need_flush(struct mm_struct *mm, unsigned long addr,
41 pte_t *ptep, unsigned long pte, int huge)
42 {
43 unsigned long vpn;
44 struct ppc64_tlb_batch *batch = &get_cpu_var(ppc64_tlb_batch);
45 unsigned long vsid;
46 unsigned int psize;
47 int ssize;
48 real_pte_t rpte;
49 int i, offset;
50
51 i = batch->index;
52
53 /*
54 * Get page size (maybe move back to caller).
55 *
56 * NOTE: when using special 64K mappings in 4K environment like
57 * for SPEs, we obtain the page size from the slice, which thus
58 * must still exist (and thus the VMA not reused) at the time
59 * of this call
60 */
61 if (huge) {
62 #ifdef CONFIG_HUGETLB_PAGE
63 psize = get_slice_psize(mm, addr);
64 /* Mask the address for the correct page size */
65 addr &= ~((1UL << mmu_psize_defs[psize].shift) - 1);
66 if (unlikely(psize == MMU_PAGE_16G))
67 offset = PTRS_PER_PUD;
68 else
69 offset = PTRS_PER_PMD;
70 #else
71 BUG();
72 psize = pte_pagesize_index(mm, addr, pte); /* shutup gcc */
73 #endif
74 } else {
75 psize = pte_pagesize_index(mm, addr, pte);
76 /*
77 * Mask the address for the standard page size. If we
78 * have a 64k page kernel, but the hardware does not
79 * support 64k pages, this might be different from the
80 * hardware page size encoded in the slice table.
81 */
82 addr &= PAGE_MASK;
83 offset = PTRS_PER_PTE;
84 }
85
86
87 /* Build full vaddr */
88 if (!is_kernel_addr(addr)) {
89 ssize = user_segment_size(addr);
90 vsid = get_user_vsid(&mm->context, addr, ssize);
91 } else {
92 vsid = get_kernel_vsid(addr, mmu_kernel_ssize);
93 ssize = mmu_kernel_ssize;
94 }
95 WARN_ON(vsid == 0);
96 vpn = hpt_vpn(addr, vsid, ssize);
97 rpte = __real_pte(__pte(pte), ptep, offset);
98
99 /*
100 * Check if we have an active batch on this CPU. If not, just
101 * flush now and return.
102 */
103 if (!batch->active) {
104 flush_hash_page(vpn, rpte, psize, ssize, mm_is_thread_local(mm));
105 put_cpu_var(ppc64_tlb_batch);
106 return;
107 }
108
109 /*
110 * This can happen when we are in the middle of a TLB batch and
111 * we encounter memory pressure (eg copy_page_range when it tries
112 * to allocate a new pte). If we have to reclaim memory and end
113 * up scanning and resetting referenced bits then our batch context
114 * will change mid stream.
115 *
116 * We also need to ensure only one page size is present in a given
117 * batch
118 */
119 if (i != 0 && (mm != batch->mm || batch->psize != psize ||
120 batch->ssize != ssize)) {
121 __flush_tlb_pending(batch);
122 i = 0;
123 }
124 if (i == 0) {
125 batch->mm = mm;
126 batch->psize = psize;
127 batch->ssize = ssize;
128 }
129 batch->pte[i] = rpte;
130 batch->vpn[i] = vpn;
131 batch->index = ++i;
132 if (i >= PPC64_TLB_BATCH_NR)
133 __flush_tlb_pending(batch);
134 put_cpu_var(ppc64_tlb_batch);
135 }
136
137 /*
138 * This function is called when terminating an mmu batch or when a batch
139 * is full. It will perform the flush of all the entries currently stored
140 * in a batch.
141 *
142 * Must be called from within some kind of spinlock/non-preempt region...
143 */
__flush_tlb_pending(struct ppc64_tlb_batch * batch)144 void __flush_tlb_pending(struct ppc64_tlb_batch *batch)
145 {
146 int i, local;
147
148 i = batch->index;
149 local = mm_is_thread_local(batch->mm);
150 if (i == 1)
151 flush_hash_page(batch->vpn[0], batch->pte[0],
152 batch->psize, batch->ssize, local);
153 else
154 flush_hash_range(i, local);
155 batch->index = 0;
156 }
157
hash__tlb_flush(struct mmu_gather * tlb)158 void hash__tlb_flush(struct mmu_gather *tlb)
159 {
160 struct ppc64_tlb_batch *tlbbatch = &get_cpu_var(ppc64_tlb_batch);
161
162 /*
163 * If there's a TLB batch pending, then we must flush it because the
164 * pages are going to be freed and we really don't want to have a CPU
165 * access a freed page because it has a stale TLB
166 */
167 if (tlbbatch->index)
168 __flush_tlb_pending(tlbbatch);
169
170 put_cpu_var(ppc64_tlb_batch);
171 }
172
173 /**
174 * __flush_hash_table_range - Flush all HPTEs for a given address range
175 * from the hash table (and the TLB). But keeps
176 * the linux PTEs intact.
177 *
178 * @start : starting address
179 * @end : ending address (not included in the flush)
180 *
181 * This function is mostly to be used by some IO hotplug code in order
182 * to remove all hash entries from a given address range used to map IO
183 * space on a removed PCI-PCI bidge without tearing down the full mapping
184 * since 64K pages may overlap with other bridges when using 64K pages
185 * with 4K HW pages on IO space.
186 *
187 * Because of that usage pattern, it is implemented for small size rather
188 * than speed.
189 */
__flush_hash_table_range(unsigned long start,unsigned long end)190 void __flush_hash_table_range(unsigned long start, unsigned long end)
191 {
192 int hugepage_shift;
193 unsigned long flags;
194
195 start = ALIGN_DOWN(start, PAGE_SIZE);
196 end = ALIGN(end, PAGE_SIZE);
197
198
199 /*
200 * Note: Normally, we should only ever use a batch within a
201 * PTE locked section. This violates the rule, but will work
202 * since we don't actually modify the PTEs, we just flush the
203 * hash while leaving the PTEs intact (including their reference
204 * to being hashed). This is not the most performance oriented
205 * way to do things but is fine for our needs here.
206 */
207 local_irq_save(flags);
208 arch_enter_lazy_mmu_mode();
209 for (; start < end; start += PAGE_SIZE) {
210 pte_t *ptep = find_init_mm_pte(start, &hugepage_shift);
211 unsigned long pte;
212
213 if (ptep == NULL)
214 continue;
215 pte = pte_val(*ptep);
216 if (!(pte & H_PAGE_HASHPTE))
217 continue;
218 hpte_need_flush(&init_mm, start, ptep, pte, hugepage_shift);
219 }
220 arch_leave_lazy_mmu_mode();
221 local_irq_restore(flags);
222 }
223
flush_hash_table_pmd_range(struct mm_struct * mm,pmd_t * pmd,unsigned long addr)224 void flush_hash_table_pmd_range(struct mm_struct *mm, pmd_t *pmd, unsigned long addr)
225 {
226 pte_t *pte;
227 pte_t *start_pte;
228 unsigned long flags;
229
230 addr = ALIGN_DOWN(addr, PMD_SIZE);
231 /*
232 * Note: Normally, we should only ever use a batch within a
233 * PTE locked section. This violates the rule, but will work
234 * since we don't actually modify the PTEs, we just flush the
235 * hash while leaving the PTEs intact (including their reference
236 * to being hashed). This is not the most performance oriented
237 * way to do things but is fine for our needs here.
238 */
239 local_irq_save(flags);
240 arch_enter_lazy_mmu_mode();
241 start_pte = pte_offset_map(pmd, addr);
242 if (!start_pte)
243 goto out;
244 for (pte = start_pte; pte < start_pte + PTRS_PER_PTE; pte++) {
245 unsigned long pteval = pte_val(*pte);
246 if (pteval & H_PAGE_HASHPTE)
247 hpte_need_flush(mm, addr, pte, pteval, 0);
248 addr += PAGE_SIZE;
249 }
250 pte_unmap(start_pte);
251 out:
252 arch_leave_lazy_mmu_mode();
253 local_irq_restore(flags);
254 }
255