1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/timerfd.c
4 *
5 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
6 *
7 *
8 * Thanks to Thomas Gleixner for code reviews and useful comments.
9 *
10 */
11
12 #include <linux/alarmtimer.h>
13 #include <linux/file.h>
14 #include <linux/poll.h>
15 #include <linux/init.h>
16 #include <linux/fs.h>
17 #include <linux/sched.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/list.h>
21 #include <linux/spinlock.h>
22 #include <linux/time.h>
23 #include <linux/hrtimer.h>
24 #include <linux/anon_inodes.h>
25 #include <linux/timerfd.h>
26 #include <linux/syscalls.h>
27 #include <linux/compat.h>
28 #include <linux/rcupdate.h>
29 #include <linux/time_namespace.h>
30
31 struct timerfd_ctx {
32 union {
33 struct hrtimer tmr;
34 struct alarm alarm;
35 } t;
36 ktime_t tintv;
37 ktime_t moffs;
38 wait_queue_head_t wqh;
39 u64 ticks;
40 int clockid;
41 short unsigned expired;
42 short unsigned settime_flags; /* to show in fdinfo */
43 struct rcu_head rcu;
44 struct list_head clist;
45 spinlock_t cancel_lock;
46 bool might_cancel;
47 };
48
49 static LIST_HEAD(cancel_list);
50 static DEFINE_SPINLOCK(cancel_lock);
51
isalarm(struct timerfd_ctx * ctx)52 static inline bool isalarm(struct timerfd_ctx *ctx)
53 {
54 return ctx->clockid == CLOCK_REALTIME_ALARM ||
55 ctx->clockid == CLOCK_BOOTTIME_ALARM;
56 }
57
58 /*
59 * This gets called when the timer event triggers. We set the "expired"
60 * flag, but we do not re-arm the timer (in case it's necessary,
61 * tintv != 0) until the timer is accessed.
62 */
timerfd_triggered(struct timerfd_ctx * ctx)63 static void timerfd_triggered(struct timerfd_ctx *ctx)
64 {
65 unsigned long flags;
66
67 spin_lock_irqsave(&ctx->wqh.lock, flags);
68 ctx->expired = 1;
69 ctx->ticks++;
70 wake_up_locked_poll(&ctx->wqh, EPOLLIN);
71 spin_unlock_irqrestore(&ctx->wqh.lock, flags);
72 }
73
timerfd_tmrproc(struct hrtimer * htmr)74 static enum hrtimer_restart timerfd_tmrproc(struct hrtimer *htmr)
75 {
76 struct timerfd_ctx *ctx = container_of(htmr, struct timerfd_ctx,
77 t.tmr);
78 timerfd_triggered(ctx);
79 return HRTIMER_NORESTART;
80 }
81
timerfd_alarmproc(struct alarm * alarm,ktime_t now)82 static void timerfd_alarmproc(struct alarm *alarm, ktime_t now)
83 {
84 struct timerfd_ctx *ctx = container_of(alarm, struct timerfd_ctx,
85 t.alarm);
86 timerfd_triggered(ctx);
87 }
88
89 /*
90 * Called when the clock was set to cancel the timers in the cancel
91 * list. This will wake up processes waiting on these timers. The
92 * wake-up requires ctx->ticks to be non zero, therefore we increment
93 * it before calling wake_up_locked().
94 */
timerfd_clock_was_set(void)95 void timerfd_clock_was_set(void)
96 {
97 ktime_t moffs = ktime_mono_to_real(0);
98 struct timerfd_ctx *ctx;
99 unsigned long flags;
100
101 rcu_read_lock();
102 list_for_each_entry_rcu(ctx, &cancel_list, clist) {
103 if (!ctx->might_cancel)
104 continue;
105 spin_lock_irqsave(&ctx->wqh.lock, flags);
106 if (ctx->moffs != moffs) {
107 ctx->moffs = KTIME_MAX;
108 ctx->ticks++;
109 wake_up_locked_poll(&ctx->wqh, EPOLLIN);
110 }
111 spin_unlock_irqrestore(&ctx->wqh.lock, flags);
112 }
113 rcu_read_unlock();
114 }
115
timerfd_resume_work(struct work_struct * work)116 static void timerfd_resume_work(struct work_struct *work)
117 {
118 timerfd_clock_was_set();
119 }
120
121 static DECLARE_WORK(timerfd_work, timerfd_resume_work);
122
123 /*
124 * Invoked from timekeeping_resume(). Defer the actual update to work so
125 * timerfd_clock_was_set() runs in task context.
126 */
timerfd_resume(void)127 void timerfd_resume(void)
128 {
129 schedule_work(&timerfd_work);
130 }
131
__timerfd_remove_cancel(struct timerfd_ctx * ctx)132 static void __timerfd_remove_cancel(struct timerfd_ctx *ctx)
133 {
134 if (ctx->might_cancel) {
135 ctx->might_cancel = false;
136 spin_lock(&cancel_lock);
137 list_del_rcu(&ctx->clist);
138 spin_unlock(&cancel_lock);
139 }
140 }
141
timerfd_remove_cancel(struct timerfd_ctx * ctx)142 static void timerfd_remove_cancel(struct timerfd_ctx *ctx)
143 {
144 spin_lock(&ctx->cancel_lock);
145 __timerfd_remove_cancel(ctx);
146 spin_unlock(&ctx->cancel_lock);
147 }
148
timerfd_canceled(struct timerfd_ctx * ctx)149 static bool timerfd_canceled(struct timerfd_ctx *ctx)
150 {
151 if (!ctx->might_cancel || ctx->moffs != KTIME_MAX)
152 return false;
153 ctx->moffs = ktime_mono_to_real(0);
154 return true;
155 }
156
timerfd_setup_cancel(struct timerfd_ctx * ctx,int flags)157 static void timerfd_setup_cancel(struct timerfd_ctx *ctx, int flags)
158 {
159 spin_lock(&ctx->cancel_lock);
160 if ((ctx->clockid == CLOCK_REALTIME ||
161 ctx->clockid == CLOCK_REALTIME_ALARM) &&
162 (flags & TFD_TIMER_ABSTIME) && (flags & TFD_TIMER_CANCEL_ON_SET)) {
163 if (!ctx->might_cancel) {
164 ctx->might_cancel = true;
165 spin_lock(&cancel_lock);
166 list_add_rcu(&ctx->clist, &cancel_list);
167 spin_unlock(&cancel_lock);
168 }
169 } else {
170 __timerfd_remove_cancel(ctx);
171 }
172 spin_unlock(&ctx->cancel_lock);
173 }
174
timerfd_get_remaining(struct timerfd_ctx * ctx)175 static ktime_t timerfd_get_remaining(struct timerfd_ctx *ctx)
176 {
177 ktime_t remaining;
178
179 if (isalarm(ctx))
180 remaining = alarm_expires_remaining(&ctx->t.alarm);
181 else
182 remaining = hrtimer_expires_remaining_adjusted(&ctx->t.tmr);
183
184 return remaining < 0 ? 0: remaining;
185 }
186
timerfd_setup(struct timerfd_ctx * ctx,int flags,const struct itimerspec64 * ktmr)187 static int timerfd_setup(struct timerfd_ctx *ctx, int flags,
188 const struct itimerspec64 *ktmr)
189 {
190 enum hrtimer_mode htmode;
191 ktime_t texp;
192 int clockid = ctx->clockid;
193
194 htmode = (flags & TFD_TIMER_ABSTIME) ?
195 HRTIMER_MODE_ABS: HRTIMER_MODE_REL;
196
197 texp = timespec64_to_ktime(ktmr->it_value);
198 ctx->expired = 0;
199 ctx->ticks = 0;
200 ctx->tintv = timespec64_to_ktime(ktmr->it_interval);
201
202 if (isalarm(ctx)) {
203 alarm_init(&ctx->t.alarm,
204 ctx->clockid == CLOCK_REALTIME_ALARM ?
205 ALARM_REALTIME : ALARM_BOOTTIME,
206 timerfd_alarmproc);
207 } else {
208 hrtimer_init(&ctx->t.tmr, clockid, htmode);
209 hrtimer_set_expires(&ctx->t.tmr, texp);
210 ctx->t.tmr.function = timerfd_tmrproc;
211 }
212
213 if (texp != 0) {
214 if (flags & TFD_TIMER_ABSTIME)
215 texp = timens_ktime_to_host(clockid, texp);
216 if (isalarm(ctx)) {
217 if (flags & TFD_TIMER_ABSTIME)
218 alarm_start(&ctx->t.alarm, texp);
219 else
220 alarm_start_relative(&ctx->t.alarm, texp);
221 } else {
222 hrtimer_start(&ctx->t.tmr, texp, htmode);
223 }
224
225 if (timerfd_canceled(ctx))
226 return -ECANCELED;
227 }
228
229 ctx->settime_flags = flags & TFD_SETTIME_FLAGS;
230 return 0;
231 }
232
timerfd_release(struct inode * inode,struct file * file)233 static int timerfd_release(struct inode *inode, struct file *file)
234 {
235 struct timerfd_ctx *ctx = file->private_data;
236
237 timerfd_remove_cancel(ctx);
238
239 if (isalarm(ctx))
240 alarm_cancel(&ctx->t.alarm);
241 else
242 hrtimer_cancel(&ctx->t.tmr);
243 kfree_rcu(ctx, rcu);
244 return 0;
245 }
246
timerfd_poll(struct file * file,poll_table * wait)247 static __poll_t timerfd_poll(struct file *file, poll_table *wait)
248 {
249 struct timerfd_ctx *ctx = file->private_data;
250 __poll_t events = 0;
251 unsigned long flags;
252
253 poll_wait(file, &ctx->wqh, wait);
254
255 spin_lock_irqsave(&ctx->wqh.lock, flags);
256 if (ctx->ticks)
257 events |= EPOLLIN;
258 spin_unlock_irqrestore(&ctx->wqh.lock, flags);
259
260 return events;
261 }
262
timerfd_read_iter(struct kiocb * iocb,struct iov_iter * to)263 static ssize_t timerfd_read_iter(struct kiocb *iocb, struct iov_iter *to)
264 {
265 struct file *file = iocb->ki_filp;
266 struct timerfd_ctx *ctx = file->private_data;
267 ssize_t res;
268 u64 ticks = 0;
269
270 if (iov_iter_count(to) < sizeof(ticks))
271 return -EINVAL;
272
273 spin_lock_irq(&ctx->wqh.lock);
274 if (file->f_flags & O_NONBLOCK || iocb->ki_flags & IOCB_NOWAIT)
275 res = -EAGAIN;
276 else
277 res = wait_event_interruptible_locked_irq(ctx->wqh, ctx->ticks);
278
279 /*
280 * If clock has changed, we do not care about the
281 * ticks and we do not rearm the timer. Userspace must
282 * reevaluate anyway.
283 */
284 if (timerfd_canceled(ctx)) {
285 ctx->ticks = 0;
286 ctx->expired = 0;
287 res = -ECANCELED;
288 }
289
290 if (ctx->ticks) {
291 ticks = ctx->ticks;
292
293 if (ctx->expired && ctx->tintv) {
294 /*
295 * If tintv != 0, this is a periodic timer that
296 * needs to be re-armed. We avoid doing it in the timer
297 * callback to avoid DoS attacks specifying a very
298 * short timer period.
299 */
300 if (isalarm(ctx)) {
301 ticks += alarm_forward_now(
302 &ctx->t.alarm, ctx->tintv) - 1;
303 alarm_restart(&ctx->t.alarm);
304 } else {
305 ticks += hrtimer_forward_now(&ctx->t.tmr,
306 ctx->tintv) - 1;
307 hrtimer_restart(&ctx->t.tmr);
308 }
309 }
310 ctx->expired = 0;
311 ctx->ticks = 0;
312 }
313 spin_unlock_irq(&ctx->wqh.lock);
314 if (ticks) {
315 res = copy_to_iter(&ticks, sizeof(ticks), to);
316 if (!res)
317 res = -EFAULT;
318 }
319 return res;
320 }
321
322 #ifdef CONFIG_PROC_FS
timerfd_show(struct seq_file * m,struct file * file)323 static void timerfd_show(struct seq_file *m, struct file *file)
324 {
325 struct timerfd_ctx *ctx = file->private_data;
326 struct timespec64 value, interval;
327
328 spin_lock_irq(&ctx->wqh.lock);
329 value = ktime_to_timespec64(timerfd_get_remaining(ctx));
330 interval = ktime_to_timespec64(ctx->tintv);
331 spin_unlock_irq(&ctx->wqh.lock);
332
333 seq_printf(m,
334 "clockid: %d\n"
335 "ticks: %llu\n"
336 "settime flags: 0%o\n"
337 "it_value: (%llu, %llu)\n"
338 "it_interval: (%llu, %llu)\n",
339 ctx->clockid,
340 (unsigned long long)ctx->ticks,
341 ctx->settime_flags,
342 (unsigned long long)value.tv_sec,
343 (unsigned long long)value.tv_nsec,
344 (unsigned long long)interval.tv_sec,
345 (unsigned long long)interval.tv_nsec);
346 }
347 #else
348 #define timerfd_show NULL
349 #endif
350
351 #ifdef CONFIG_CHECKPOINT_RESTORE
timerfd_ioctl(struct file * file,unsigned int cmd,unsigned long arg)352 static long timerfd_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
353 {
354 struct timerfd_ctx *ctx = file->private_data;
355 int ret = 0;
356
357 switch (cmd) {
358 case TFD_IOC_SET_TICKS: {
359 u64 ticks;
360
361 if (copy_from_user(&ticks, (u64 __user *)arg, sizeof(ticks)))
362 return -EFAULT;
363 if (!ticks)
364 return -EINVAL;
365
366 spin_lock_irq(&ctx->wqh.lock);
367 if (!timerfd_canceled(ctx)) {
368 ctx->ticks = ticks;
369 wake_up_locked_poll(&ctx->wqh, EPOLLIN);
370 } else
371 ret = -ECANCELED;
372 spin_unlock_irq(&ctx->wqh.lock);
373 break;
374 }
375 default:
376 ret = -ENOTTY;
377 break;
378 }
379
380 return ret;
381 }
382 #else
383 #define timerfd_ioctl NULL
384 #endif
385
386 static const struct file_operations timerfd_fops = {
387 .release = timerfd_release,
388 .poll = timerfd_poll,
389 .read_iter = timerfd_read_iter,
390 .llseek = noop_llseek,
391 .show_fdinfo = timerfd_show,
392 .unlocked_ioctl = timerfd_ioctl,
393 };
394
SYSCALL_DEFINE2(timerfd_create,int,clockid,int,flags)395 SYSCALL_DEFINE2(timerfd_create, int, clockid, int, flags)
396 {
397 int ufd;
398 struct timerfd_ctx *ctx;
399 struct file *file;
400
401 /* Check the TFD_* constants for consistency. */
402 BUILD_BUG_ON(TFD_CLOEXEC != O_CLOEXEC);
403 BUILD_BUG_ON(TFD_NONBLOCK != O_NONBLOCK);
404
405 if ((flags & ~TFD_CREATE_FLAGS) ||
406 (clockid != CLOCK_MONOTONIC &&
407 clockid != CLOCK_REALTIME &&
408 clockid != CLOCK_REALTIME_ALARM &&
409 clockid != CLOCK_BOOTTIME &&
410 clockid != CLOCK_BOOTTIME_ALARM))
411 return -EINVAL;
412
413 if ((clockid == CLOCK_REALTIME_ALARM ||
414 clockid == CLOCK_BOOTTIME_ALARM) &&
415 !capable(CAP_WAKE_ALARM))
416 return -EPERM;
417
418 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
419 if (!ctx)
420 return -ENOMEM;
421
422 init_waitqueue_head(&ctx->wqh);
423 spin_lock_init(&ctx->cancel_lock);
424 ctx->clockid = clockid;
425
426 if (isalarm(ctx))
427 alarm_init(&ctx->t.alarm,
428 ctx->clockid == CLOCK_REALTIME_ALARM ?
429 ALARM_REALTIME : ALARM_BOOTTIME,
430 timerfd_alarmproc);
431 else
432 hrtimer_init(&ctx->t.tmr, clockid, HRTIMER_MODE_ABS);
433
434 ctx->moffs = ktime_mono_to_real(0);
435
436 ufd = get_unused_fd_flags(flags & TFD_SHARED_FCNTL_FLAGS);
437 if (ufd < 0) {
438 kfree(ctx);
439 return ufd;
440 }
441
442 file = anon_inode_getfile("[timerfd]", &timerfd_fops, ctx,
443 O_RDWR | (flags & TFD_SHARED_FCNTL_FLAGS));
444 if (IS_ERR(file)) {
445 put_unused_fd(ufd);
446 kfree(ctx);
447 return PTR_ERR(file);
448 }
449
450 file->f_mode |= FMODE_NOWAIT;
451 fd_install(ufd, file);
452 return ufd;
453 }
454
do_timerfd_settime(int ufd,int flags,const struct itimerspec64 * new,struct itimerspec64 * old)455 static int do_timerfd_settime(int ufd, int flags,
456 const struct itimerspec64 *new,
457 struct itimerspec64 *old)
458 {
459 struct timerfd_ctx *ctx;
460 int ret;
461
462 if ((flags & ~TFD_SETTIME_FLAGS) ||
463 !itimerspec64_valid(new))
464 return -EINVAL;
465
466 CLASS(fd, f)(ufd);
467 if (fd_empty(f))
468 return -EBADF;
469
470 if (fd_file(f)->f_op != &timerfd_fops)
471 return -EINVAL;
472
473 ctx = fd_file(f)->private_data;
474
475 if (isalarm(ctx) && !capable(CAP_WAKE_ALARM))
476 return -EPERM;
477
478 timerfd_setup_cancel(ctx, flags);
479
480 /*
481 * We need to stop the existing timer before reprogramming
482 * it to the new values.
483 */
484 for (;;) {
485 spin_lock_irq(&ctx->wqh.lock);
486
487 if (isalarm(ctx)) {
488 if (alarm_try_to_cancel(&ctx->t.alarm) >= 0)
489 break;
490 } else {
491 if (hrtimer_try_to_cancel(&ctx->t.tmr) >= 0)
492 break;
493 }
494 spin_unlock_irq(&ctx->wqh.lock);
495
496 if (isalarm(ctx))
497 hrtimer_cancel_wait_running(&ctx->t.alarm.timer);
498 else
499 hrtimer_cancel_wait_running(&ctx->t.tmr);
500 }
501
502 /*
503 * If the timer is expired and it's periodic, we need to advance it
504 * because the caller may want to know the previous expiration time.
505 * We do not update "ticks" and "expired" since the timer will be
506 * re-programmed again in the following timerfd_setup() call.
507 */
508 if (ctx->expired && ctx->tintv) {
509 if (isalarm(ctx))
510 alarm_forward_now(&ctx->t.alarm, ctx->tintv);
511 else
512 hrtimer_forward_now(&ctx->t.tmr, ctx->tintv);
513 }
514
515 old->it_value = ktime_to_timespec64(timerfd_get_remaining(ctx));
516 old->it_interval = ktime_to_timespec64(ctx->tintv);
517
518 /*
519 * Re-program the timer to the new value ...
520 */
521 ret = timerfd_setup(ctx, flags, new);
522
523 spin_unlock_irq(&ctx->wqh.lock);
524 return ret;
525 }
526
do_timerfd_gettime(int ufd,struct itimerspec64 * t)527 static int do_timerfd_gettime(int ufd, struct itimerspec64 *t)
528 {
529 struct timerfd_ctx *ctx;
530 CLASS(fd, f)(ufd);
531
532 if (fd_empty(f))
533 return -EBADF;
534 if (fd_file(f)->f_op != &timerfd_fops)
535 return -EINVAL;
536 ctx = fd_file(f)->private_data;
537
538 spin_lock_irq(&ctx->wqh.lock);
539 if (ctx->expired && ctx->tintv) {
540 ctx->expired = 0;
541
542 if (isalarm(ctx)) {
543 ctx->ticks +=
544 alarm_forward_now(
545 &ctx->t.alarm, ctx->tintv) - 1;
546 alarm_restart(&ctx->t.alarm);
547 } else {
548 ctx->ticks +=
549 hrtimer_forward_now(&ctx->t.tmr, ctx->tintv)
550 - 1;
551 hrtimer_restart(&ctx->t.tmr);
552 }
553 }
554 t->it_value = ktime_to_timespec64(timerfd_get_remaining(ctx));
555 t->it_interval = ktime_to_timespec64(ctx->tintv);
556 spin_unlock_irq(&ctx->wqh.lock);
557 return 0;
558 }
559
SYSCALL_DEFINE4(timerfd_settime,int,ufd,int,flags,const struct __kernel_itimerspec __user *,utmr,struct __kernel_itimerspec __user *,otmr)560 SYSCALL_DEFINE4(timerfd_settime, int, ufd, int, flags,
561 const struct __kernel_itimerspec __user *, utmr,
562 struct __kernel_itimerspec __user *, otmr)
563 {
564 struct itimerspec64 new, old;
565 int ret;
566
567 if (get_itimerspec64(&new, utmr))
568 return -EFAULT;
569 ret = do_timerfd_settime(ufd, flags, &new, &old);
570 if (ret)
571 return ret;
572 if (otmr && put_itimerspec64(&old, otmr))
573 return -EFAULT;
574
575 return ret;
576 }
577
SYSCALL_DEFINE2(timerfd_gettime,int,ufd,struct __kernel_itimerspec __user *,otmr)578 SYSCALL_DEFINE2(timerfd_gettime, int, ufd, struct __kernel_itimerspec __user *, otmr)
579 {
580 struct itimerspec64 kotmr;
581 int ret = do_timerfd_gettime(ufd, &kotmr);
582 if (ret)
583 return ret;
584 return put_itimerspec64(&kotmr, otmr) ? -EFAULT : 0;
585 }
586
587 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE4(timerfd_settime32,int,ufd,int,flags,const struct old_itimerspec32 __user *,utmr,struct old_itimerspec32 __user *,otmr)588 SYSCALL_DEFINE4(timerfd_settime32, int, ufd, int, flags,
589 const struct old_itimerspec32 __user *, utmr,
590 struct old_itimerspec32 __user *, otmr)
591 {
592 struct itimerspec64 new, old;
593 int ret;
594
595 if (get_old_itimerspec32(&new, utmr))
596 return -EFAULT;
597 ret = do_timerfd_settime(ufd, flags, &new, &old);
598 if (ret)
599 return ret;
600 if (otmr && put_old_itimerspec32(&old, otmr))
601 return -EFAULT;
602 return ret;
603 }
604
SYSCALL_DEFINE2(timerfd_gettime32,int,ufd,struct old_itimerspec32 __user *,otmr)605 SYSCALL_DEFINE2(timerfd_gettime32, int, ufd,
606 struct old_itimerspec32 __user *, otmr)
607 {
608 struct itimerspec64 kotmr;
609 int ret = do_timerfd_gettime(ufd, &kotmr);
610 if (ret)
611 return ret;
612 return put_old_itimerspec32(&kotmr, otmr) ? -EFAULT : 0;
613 }
614 #endif
615