1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Kernel timekeeping code and accessor functions. Based on code from
4 * timer.c, moved in commit 8524070b7982.
5 */
6 #include <linux/timekeeper_internal.h>
7 #include <linux/module.h>
8 #include <linux/interrupt.h>
9 #include <linux/kobject.h>
10 #include <linux/percpu.h>
11 #include <linux/init.h>
12 #include <linux/mm.h>
13 #include <linux/nmi.h>
14 #include <linux/sched.h>
15 #include <linux/sched/loadavg.h>
16 #include <linux/sched/clock.h>
17 #include <linux/syscore_ops.h>
18 #include <linux/clocksource.h>
19 #include <linux/jiffies.h>
20 #include <linux/time.h>
21 #include <linux/timex.h>
22 #include <linux/tick.h>
23 #include <linux/stop_machine.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/compiler.h>
26 #include <linux/audit.h>
27 #include <linux/random.h>
28
29 #include <vdso/auxclock.h>
30
31 #include "tick-internal.h"
32 #include "ntp_internal.h"
33 #include "timekeeping_internal.h"
34
35 #define TK_CLEAR_NTP (1 << 0)
36 #define TK_CLOCK_WAS_SET (1 << 1)
37
38 #define TK_UPDATE_ALL (TK_CLEAR_NTP | TK_CLOCK_WAS_SET)
39
40 enum timekeeping_adv_mode {
41 /* Update timekeeper when a tick has passed */
42 TK_ADV_TICK,
43
44 /* Update timekeeper on a direct frequency change */
45 TK_ADV_FREQ
46 };
47
48 /*
49 * The most important data for readout fits into a single 64 byte
50 * cache line.
51 */
52 struct tk_data {
53 seqcount_raw_spinlock_t seq;
54 struct timekeeper timekeeper;
55 struct timekeeper shadow_timekeeper;
56 raw_spinlock_t lock;
57 } ____cacheline_aligned;
58
59 static struct tk_data timekeeper_data[TIMEKEEPERS_MAX];
60
61 /* The core timekeeper */
62 #define tk_core (timekeeper_data[TIMEKEEPER_CORE])
63
64 #ifdef CONFIG_POSIX_AUX_CLOCKS
tk_get_aux_ts64(unsigned int tkid,struct timespec64 * ts)65 static inline bool tk_get_aux_ts64(unsigned int tkid, struct timespec64 *ts)
66 {
67 return ktime_get_aux_ts64(CLOCK_AUX + tkid - TIMEKEEPER_AUX_FIRST, ts);
68 }
69
tk_is_aux(const struct timekeeper * tk)70 static inline bool tk_is_aux(const struct timekeeper *tk)
71 {
72 return tk->id >= TIMEKEEPER_AUX_FIRST && tk->id <= TIMEKEEPER_AUX_LAST;
73 }
74 #else
tk_get_aux_ts64(unsigned int tkid,struct timespec64 * ts)75 static inline bool tk_get_aux_ts64(unsigned int tkid, struct timespec64 *ts)
76 {
77 return false;
78 }
79
tk_is_aux(const struct timekeeper * tk)80 static inline bool tk_is_aux(const struct timekeeper *tk)
81 {
82 return false;
83 }
84 #endif
85
86 /* flag for if timekeeping is suspended */
87 int __read_mostly timekeeping_suspended;
88
89 /**
90 * struct tk_fast - NMI safe timekeeper
91 * @seq: Sequence counter for protecting updates. The lowest bit
92 * is the index for the tk_read_base array
93 * @base: tk_read_base array. Access is indexed by the lowest bit of
94 * @seq.
95 *
96 * See @update_fast_timekeeper() below.
97 */
98 struct tk_fast {
99 seqcount_latch_t seq;
100 struct tk_read_base base[2];
101 };
102
103 /* Suspend-time cycles value for halted fast timekeeper. */
104 static u64 cycles_at_suspend;
105
dummy_clock_read(struct clocksource * cs)106 static u64 dummy_clock_read(struct clocksource *cs)
107 {
108 if (timekeeping_suspended)
109 return cycles_at_suspend;
110 return local_clock();
111 }
112
113 static struct clocksource dummy_clock = {
114 .read = dummy_clock_read,
115 };
116
117 /*
118 * Boot time initialization which allows local_clock() to be utilized
119 * during early boot when clocksources are not available. local_clock()
120 * returns nanoseconds already so no conversion is required, hence mult=1
121 * and shift=0. When the first proper clocksource is installed then
122 * the fast time keepers are updated with the correct values.
123 */
124 #define FAST_TK_INIT \
125 { \
126 .clock = &dummy_clock, \
127 .mask = CLOCKSOURCE_MASK(64), \
128 .mult = 1, \
129 .shift = 0, \
130 }
131
132 static struct tk_fast tk_fast_mono ____cacheline_aligned = {
133 .seq = SEQCNT_LATCH_ZERO(tk_fast_mono.seq),
134 .base[0] = FAST_TK_INIT,
135 .base[1] = FAST_TK_INIT,
136 };
137
138 static struct tk_fast tk_fast_raw ____cacheline_aligned = {
139 .seq = SEQCNT_LATCH_ZERO(tk_fast_raw.seq),
140 .base[0] = FAST_TK_INIT,
141 .base[1] = FAST_TK_INIT,
142 };
143
144 #ifdef CONFIG_POSIX_AUX_CLOCKS
145 static __init void tk_aux_setup(void);
146 static void tk_aux_update_clocksource(void);
147 static void tk_aux_advance(void);
148 #else
tk_aux_setup(void)149 static inline void tk_aux_setup(void) { }
tk_aux_update_clocksource(void)150 static inline void tk_aux_update_clocksource(void) { }
tk_aux_advance(void)151 static inline void tk_aux_advance(void) { }
152 #endif
153
timekeeper_lock_irqsave(void)154 unsigned long timekeeper_lock_irqsave(void)
155 {
156 unsigned long flags;
157
158 raw_spin_lock_irqsave(&tk_core.lock, flags);
159 return flags;
160 }
161
timekeeper_unlock_irqrestore(unsigned long flags)162 void timekeeper_unlock_irqrestore(unsigned long flags)
163 {
164 raw_spin_unlock_irqrestore(&tk_core.lock, flags);
165 }
166
167 /*
168 * Multigrain timestamps require tracking the latest fine-grained timestamp
169 * that has been issued, and never returning a coarse-grained timestamp that is
170 * earlier than that value.
171 *
172 * mg_floor represents the latest fine-grained time that has been handed out as
173 * a file timestamp on the system. This is tracked as a monotonic ktime_t, and
174 * converted to a realtime clock value on an as-needed basis.
175 *
176 * Maintaining mg_floor ensures the multigrain interfaces never issue a
177 * timestamp earlier than one that has been previously issued.
178 *
179 * The exception to this rule is when there is a backward realtime clock jump. If
180 * such an event occurs, a timestamp can appear to be earlier than a previous one.
181 */
182 static __cacheline_aligned_in_smp atomic64_t mg_floor;
183
tk_normalize_xtime(struct timekeeper * tk)184 static inline void tk_normalize_xtime(struct timekeeper *tk)
185 {
186 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
187 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
188 tk->xtime_sec++;
189 }
190 while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
191 tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
192 tk->raw_sec++;
193 }
194 }
195
tk_xtime(const struct timekeeper * tk)196 static inline struct timespec64 tk_xtime(const struct timekeeper *tk)
197 {
198 struct timespec64 ts;
199
200 ts.tv_sec = tk->xtime_sec;
201 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
202 return ts;
203 }
204
tk_xtime_coarse(const struct timekeeper * tk)205 static inline struct timespec64 tk_xtime_coarse(const struct timekeeper *tk)
206 {
207 struct timespec64 ts;
208
209 ts.tv_sec = tk->xtime_sec;
210 ts.tv_nsec = tk->coarse_nsec;
211 return ts;
212 }
213
214 /*
215 * Update the nanoseconds part for the coarse time keepers. They can't rely
216 * on xtime_nsec because xtime_nsec could be adjusted by a small negative
217 * amount when the multiplication factor of the clock is adjusted, which
218 * could cause the coarse clocks to go slightly backwards. See
219 * timekeeping_apply_adjustment(). Thus we keep a separate copy for the coarse
220 * clockids which only is updated when the clock has been set or we have
221 * accumulated time.
222 */
tk_update_coarse_nsecs(struct timekeeper * tk)223 static inline void tk_update_coarse_nsecs(struct timekeeper *tk)
224 {
225 tk->coarse_nsec = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
226 }
227
tk_set_xtime(struct timekeeper * tk,const struct timespec64 * ts)228 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
229 {
230 tk->xtime_sec = ts->tv_sec;
231 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
232 tk_update_coarse_nsecs(tk);
233 }
234
tk_xtime_add(struct timekeeper * tk,const struct timespec64 * ts)235 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
236 {
237 tk->xtime_sec += ts->tv_sec;
238 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
239 tk_normalize_xtime(tk);
240 tk_update_coarse_nsecs(tk);
241 }
242
tk_set_wall_to_mono(struct timekeeper * tk,struct timespec64 wtm)243 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
244 {
245 struct timespec64 tmp;
246
247 /*
248 * Verify consistency of: offset_real = -wall_to_monotonic
249 * before modifying anything
250 */
251 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
252 -tk->wall_to_monotonic.tv_nsec);
253 WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
254 tk->wall_to_monotonic = wtm;
255 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
256 /* Paired with READ_ONCE() in ktime_mono_to_any() */
257 WRITE_ONCE(tk->offs_real, timespec64_to_ktime(tmp));
258 WRITE_ONCE(tk->offs_tai, ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0)));
259 }
260
tk_update_sleep_time(struct timekeeper * tk,ktime_t delta)261 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
262 {
263 /* Paired with READ_ONCE() in ktime_mono_to_any() */
264 WRITE_ONCE(tk->offs_boot, ktime_add(tk->offs_boot, delta));
265 /*
266 * Timespec representation for VDSO update to avoid 64bit division
267 * on every update.
268 */
269 tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot);
270 }
271
272 /*
273 * tk_clock_read - atomic clocksource read() helper
274 *
275 * This helper is necessary to use in the read paths because, while the
276 * seqcount ensures we don't return a bad value while structures are updated,
277 * it doesn't protect from potential crashes. There is the possibility that
278 * the tkr's clocksource may change between the read reference, and the
279 * clock reference passed to the read function. This can cause crashes if
280 * the wrong clocksource is passed to the wrong read function.
281 * This isn't necessary to use when holding the tk_core.lock or doing
282 * a read of the fast-timekeeper tkrs (which is protected by its own locking
283 * and update logic).
284 */
tk_clock_read(const struct tk_read_base * tkr)285 static inline u64 tk_clock_read(const struct tk_read_base *tkr)
286 {
287 struct clocksource *clock = READ_ONCE(tkr->clock);
288
289 return clock->read(clock);
290 }
291
292 /**
293 * tk_setup_internals - Set up internals to use clocksource clock.
294 *
295 * @tk: The target timekeeper to setup.
296 * @clock: Pointer to clocksource.
297 *
298 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
299 * pair and interval request.
300 *
301 * Unless you're the timekeeping code, you should not be using this!
302 */
tk_setup_internals(struct timekeeper * tk,struct clocksource * clock)303 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
304 {
305 u64 interval;
306 u64 tmp, ntpinterval;
307 struct clocksource *old_clock;
308
309 ++tk->cs_was_changed_seq;
310 old_clock = tk->tkr_mono.clock;
311 tk->tkr_mono.clock = clock;
312 tk->tkr_mono.mask = clock->mask;
313 tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
314
315 tk->tkr_raw.clock = clock;
316 tk->tkr_raw.mask = clock->mask;
317 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
318
319 /* Do the ns -> cycle conversion first, using original mult */
320 tmp = NTP_INTERVAL_LENGTH;
321 tmp <<= clock->shift;
322 ntpinterval = tmp;
323 tmp += clock->mult/2;
324 do_div(tmp, clock->mult);
325 if (tmp == 0)
326 tmp = 1;
327
328 interval = (u64) tmp;
329 tk->cycle_interval = interval;
330
331 /* Go back from cycles -> shifted ns */
332 tk->xtime_interval = interval * clock->mult;
333 tk->xtime_remainder = ntpinterval - tk->xtime_interval;
334 tk->raw_interval = interval * clock->mult;
335
336 /* if changing clocks, convert xtime_nsec shift units */
337 if (old_clock) {
338 int shift_change = clock->shift - old_clock->shift;
339 if (shift_change < 0) {
340 tk->tkr_mono.xtime_nsec >>= -shift_change;
341 tk->tkr_raw.xtime_nsec >>= -shift_change;
342 } else {
343 tk->tkr_mono.xtime_nsec <<= shift_change;
344 tk->tkr_raw.xtime_nsec <<= shift_change;
345 }
346 }
347
348 tk->tkr_mono.shift = clock->shift;
349 tk->tkr_raw.shift = clock->shift;
350
351 tk->ntp_error = 0;
352 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
353 tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
354
355 /*
356 * The timekeeper keeps its own mult values for the currently
357 * active clocksource. These value will be adjusted via NTP
358 * to counteract clock drifting.
359 */
360 tk->tkr_mono.mult = clock->mult;
361 tk->tkr_raw.mult = clock->mult;
362 tk->ntp_err_mult = 0;
363 tk->skip_second_overflow = 0;
364 }
365
366 /* Timekeeper helper functions. */
delta_to_ns_safe(const struct tk_read_base * tkr,u64 delta)367 static noinline u64 delta_to_ns_safe(const struct tk_read_base *tkr, u64 delta)
368 {
369 return mul_u64_u32_add_u64_shr(delta, tkr->mult, tkr->xtime_nsec, tkr->shift);
370 }
371
timekeeping_cycles_to_ns(const struct tk_read_base * tkr,u64 cycles)372 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles)
373 {
374 /* Calculate the delta since the last update_wall_time() */
375 u64 mask = tkr->mask, delta = (cycles - tkr->cycle_last) & mask;
376
377 /*
378 * This detects both negative motion and the case where the delta
379 * overflows the multiplication with tkr->mult.
380 */
381 if (unlikely(delta > tkr->clock->max_cycles)) {
382 /*
383 * Handle clocksource inconsistency between CPUs to prevent
384 * time from going backwards by checking for the MSB of the
385 * mask being set in the delta.
386 */
387 if (delta & ~(mask >> 1))
388 return tkr->xtime_nsec >> tkr->shift;
389
390 return delta_to_ns_safe(tkr, delta);
391 }
392
393 return ((delta * tkr->mult) + tkr->xtime_nsec) >> tkr->shift;
394 }
395
timekeeping_get_ns(const struct tk_read_base * tkr)396 static __always_inline u64 timekeeping_get_ns(const struct tk_read_base *tkr)
397 {
398 return timekeeping_cycles_to_ns(tkr, tk_clock_read(tkr));
399 }
400
401 /**
402 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
403 * @tkr: Timekeeping readout base from which we take the update
404 * @tkf: Pointer to NMI safe timekeeper
405 *
406 * We want to use this from any context including NMI and tracing /
407 * instrumenting the timekeeping code itself.
408 *
409 * Employ the latch technique; see @write_seqcount_latch.
410 *
411 * So if a NMI hits the update of base[0] then it will use base[1]
412 * which is still consistent. In the worst case this can result is a
413 * slightly wrong timestamp (a few nanoseconds). See
414 * @ktime_get_mono_fast_ns.
415 */
update_fast_timekeeper(const struct tk_read_base * tkr,struct tk_fast * tkf)416 static void update_fast_timekeeper(const struct tk_read_base *tkr,
417 struct tk_fast *tkf)
418 {
419 struct tk_read_base *base = tkf->base;
420
421 /* Force readers off to base[1] */
422 write_seqcount_latch_begin(&tkf->seq);
423
424 /* Update base[0] */
425 memcpy(base, tkr, sizeof(*base));
426
427 /* Force readers back to base[0] */
428 write_seqcount_latch(&tkf->seq);
429
430 /* Update base[1] */
431 memcpy(base + 1, base, sizeof(*base));
432
433 write_seqcount_latch_end(&tkf->seq);
434 }
435
__ktime_get_fast_ns(struct tk_fast * tkf)436 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
437 {
438 struct tk_read_base *tkr;
439 unsigned int seq;
440 u64 now;
441
442 do {
443 seq = read_seqcount_latch(&tkf->seq);
444 tkr = tkf->base + (seq & 0x01);
445 now = ktime_to_ns(tkr->base);
446 now += timekeeping_get_ns(tkr);
447 } while (read_seqcount_latch_retry(&tkf->seq, seq));
448
449 return now;
450 }
451
452 /**
453 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
454 *
455 * This timestamp is not guaranteed to be monotonic across an update.
456 * The timestamp is calculated by:
457 *
458 * now = base_mono + clock_delta * slope
459 *
460 * So if the update lowers the slope, readers who are forced to the
461 * not yet updated second array are still using the old steeper slope.
462 *
463 * tmono
464 * ^
465 * | o n
466 * | o n
467 * | u
468 * | o
469 * |o
470 * |12345678---> reader order
471 *
472 * o = old slope
473 * u = update
474 * n = new slope
475 *
476 * So reader 6 will observe time going backwards versus reader 5.
477 *
478 * While other CPUs are likely to be able to observe that, the only way
479 * for a CPU local observation is when an NMI hits in the middle of
480 * the update. Timestamps taken from that NMI context might be ahead
481 * of the following timestamps. Callers need to be aware of that and
482 * deal with it.
483 */
ktime_get_mono_fast_ns(void)484 u64 notrace ktime_get_mono_fast_ns(void)
485 {
486 return __ktime_get_fast_ns(&tk_fast_mono);
487 }
488 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
489
490 /**
491 * ktime_get_raw_fast_ns - Fast NMI safe access to clock monotonic raw
492 *
493 * Contrary to ktime_get_mono_fast_ns() this is always correct because the
494 * conversion factor is not affected by NTP/PTP correction.
495 */
ktime_get_raw_fast_ns(void)496 u64 notrace ktime_get_raw_fast_ns(void)
497 {
498 return __ktime_get_fast_ns(&tk_fast_raw);
499 }
500 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
501
502 /**
503 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
504 *
505 * To keep it NMI safe since we're accessing from tracing, we're not using a
506 * separate timekeeper with updates to monotonic clock and boot offset
507 * protected with seqcounts. This has the following minor side effects:
508 *
509 * (1) Its possible that a timestamp be taken after the boot offset is updated
510 * but before the timekeeper is updated. If this happens, the new boot offset
511 * is added to the old timekeeping making the clock appear to update slightly
512 * earlier:
513 * CPU 0 CPU 1
514 * timekeeping_inject_sleeptime64()
515 * __timekeeping_inject_sleeptime(tk, delta);
516 * timestamp();
517 * timekeeping_update_staged(tkd, TK_CLEAR_NTP...);
518 *
519 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
520 * partially updated. Since the tk->offs_boot update is a rare event, this
521 * should be a rare occurrence which postprocessing should be able to handle.
522 *
523 * The caveats vs. timestamp ordering as documented for ktime_get_mono_fast_ns()
524 * apply as well.
525 */
ktime_get_boot_fast_ns(void)526 u64 notrace ktime_get_boot_fast_ns(void)
527 {
528 struct timekeeper *tk = &tk_core.timekeeper;
529
530 return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_boot)));
531 }
532 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
533
534 /**
535 * ktime_get_tai_fast_ns - NMI safe and fast access to tai clock.
536 *
537 * The same limitations as described for ktime_get_boot_fast_ns() apply. The
538 * mono time and the TAI offset are not read atomically which may yield wrong
539 * readouts. However, an update of the TAI offset is an rare event e.g., caused
540 * by settime or adjtimex with an offset. The user of this function has to deal
541 * with the possibility of wrong timestamps in post processing.
542 */
ktime_get_tai_fast_ns(void)543 u64 notrace ktime_get_tai_fast_ns(void)
544 {
545 struct timekeeper *tk = &tk_core.timekeeper;
546
547 return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_tai)));
548 }
549 EXPORT_SYMBOL_GPL(ktime_get_tai_fast_ns);
550
551 /**
552 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
553 *
554 * See ktime_get_mono_fast_ns() for documentation of the time stamp ordering.
555 */
ktime_get_real_fast_ns(void)556 u64 ktime_get_real_fast_ns(void)
557 {
558 struct tk_fast *tkf = &tk_fast_mono;
559 struct tk_read_base *tkr;
560 u64 baser, delta;
561 unsigned int seq;
562
563 do {
564 seq = raw_read_seqcount_latch(&tkf->seq);
565 tkr = tkf->base + (seq & 0x01);
566 baser = ktime_to_ns(tkr->base_real);
567 delta = timekeeping_get_ns(tkr);
568 } while (raw_read_seqcount_latch_retry(&tkf->seq, seq));
569
570 return baser + delta;
571 }
572 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
573
574 /**
575 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
576 * @tk: Timekeeper to snapshot.
577 *
578 * It generally is unsafe to access the clocksource after timekeeping has been
579 * suspended, so take a snapshot of the readout base of @tk and use it as the
580 * fast timekeeper's readout base while suspended. It will return the same
581 * number of cycles every time until timekeeping is resumed at which time the
582 * proper readout base for the fast timekeeper will be restored automatically.
583 */
halt_fast_timekeeper(const struct timekeeper * tk)584 static void halt_fast_timekeeper(const struct timekeeper *tk)
585 {
586 static struct tk_read_base tkr_dummy;
587 const struct tk_read_base *tkr = &tk->tkr_mono;
588
589 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
590 cycles_at_suspend = tk_clock_read(tkr);
591 tkr_dummy.clock = &dummy_clock;
592 tkr_dummy.base_real = tkr->base + tk->offs_real;
593 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
594
595 tkr = &tk->tkr_raw;
596 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
597 tkr_dummy.clock = &dummy_clock;
598 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
599 }
600
601 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
602
update_pvclock_gtod(struct timekeeper * tk,bool was_set)603 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
604 {
605 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
606 }
607
608 /**
609 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
610 * @nb: Pointer to the notifier block to register
611 */
pvclock_gtod_register_notifier(struct notifier_block * nb)612 int pvclock_gtod_register_notifier(struct notifier_block *nb)
613 {
614 struct timekeeper *tk = &tk_core.timekeeper;
615 int ret;
616
617 guard(raw_spinlock_irqsave)(&tk_core.lock);
618 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
619 update_pvclock_gtod(tk, true);
620
621 return ret;
622 }
623 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
624
625 /**
626 * pvclock_gtod_unregister_notifier - unregister a pvclock
627 * timedata update listener
628 * @nb: Pointer to the notifier block to unregister
629 */
pvclock_gtod_unregister_notifier(struct notifier_block * nb)630 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
631 {
632 guard(raw_spinlock_irqsave)(&tk_core.lock);
633 return raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
634 }
635 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
636
637 /*
638 * tk_update_leap_state - helper to update the next_leap_ktime
639 */
tk_update_leap_state(struct timekeeper * tk)640 static inline void tk_update_leap_state(struct timekeeper *tk)
641 {
642 tk->next_leap_ktime = ntp_get_next_leap(tk->id);
643 if (tk->next_leap_ktime != KTIME_MAX)
644 /* Convert to monotonic time */
645 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
646 }
647
648 /*
649 * Leap state update for both shadow and the real timekeeper
650 * Separate to spare a full memcpy() of the timekeeper.
651 */
tk_update_leap_state_all(struct tk_data * tkd)652 static void tk_update_leap_state_all(struct tk_data *tkd)
653 {
654 write_seqcount_begin(&tkd->seq);
655 tk_update_leap_state(&tkd->shadow_timekeeper);
656 tkd->timekeeper.next_leap_ktime = tkd->shadow_timekeeper.next_leap_ktime;
657 write_seqcount_end(&tkd->seq);
658 }
659
660 /*
661 * Update the ktime_t based scalar nsec members of the timekeeper
662 */
tk_update_ktime_data(struct timekeeper * tk)663 static inline void tk_update_ktime_data(struct timekeeper *tk)
664 {
665 u64 seconds;
666 u32 nsec;
667
668 /*
669 * The xtime based monotonic readout is:
670 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
671 * The ktime based monotonic readout is:
672 * nsec = base_mono + now();
673 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
674 */
675 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
676 nsec = (u32) tk->wall_to_monotonic.tv_nsec;
677 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
678
679 /*
680 * The sum of the nanoseconds portions of xtime and
681 * wall_to_monotonic can be greater/equal one second. Take
682 * this into account before updating tk->ktime_sec.
683 */
684 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
685 if (nsec >= NSEC_PER_SEC)
686 seconds++;
687 tk->ktime_sec = seconds;
688
689 /* Update the monotonic raw base */
690 tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
691 }
692
693 /*
694 * Restore the shadow timekeeper from the real timekeeper.
695 */
timekeeping_restore_shadow(struct tk_data * tkd)696 static void timekeeping_restore_shadow(struct tk_data *tkd)
697 {
698 lockdep_assert_held(&tkd->lock);
699 memcpy(&tkd->shadow_timekeeper, &tkd->timekeeper, sizeof(tkd->timekeeper));
700 }
701
timekeeping_update_from_shadow(struct tk_data * tkd,unsigned int action)702 static void timekeeping_update_from_shadow(struct tk_data *tkd, unsigned int action)
703 {
704 struct timekeeper *tk = &tkd->shadow_timekeeper;
705
706 lockdep_assert_held(&tkd->lock);
707
708 /*
709 * Block out readers before running the updates below because that
710 * updates VDSO and other time related infrastructure. Not blocking
711 * the readers might let a reader see time going backwards when
712 * reading from the VDSO after the VDSO update and then reading in
713 * the kernel from the timekeeper before that got updated.
714 */
715 write_seqcount_begin(&tkd->seq);
716
717 if (action & TK_CLEAR_NTP) {
718 tk->ntp_error = 0;
719 ntp_clear(tk->id);
720 }
721
722 tk_update_leap_state(tk);
723 tk_update_ktime_data(tk);
724 tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
725
726 if (tk->id == TIMEKEEPER_CORE) {
727 update_vsyscall(tk);
728 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
729
730 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
731 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw);
732 } else if (tk_is_aux(tk)) {
733 vdso_time_update_aux(tk);
734 }
735
736 if (action & TK_CLOCK_WAS_SET)
737 tk->clock_was_set_seq++;
738
739 /*
740 * Update the real timekeeper.
741 *
742 * We could avoid this memcpy() by switching pointers, but that has
743 * the downside that the reader side does not longer benefit from
744 * the cacheline optimized data layout of the timekeeper and requires
745 * another indirection.
746 */
747 memcpy(&tkd->timekeeper, tk, sizeof(*tk));
748 write_seqcount_end(&tkd->seq);
749 }
750
751 /**
752 * timekeeping_forward_now - update clock to the current time
753 * @tk: Pointer to the timekeeper to update
754 *
755 * Forward the current clock to update its state since the last call to
756 * update_wall_time(). This is useful before significant clock changes,
757 * as it avoids having to deal with this time offset explicitly.
758 */
timekeeping_forward_now(struct timekeeper * tk)759 static void timekeeping_forward_now(struct timekeeper *tk)
760 {
761 u64 cycle_now, delta;
762
763 cycle_now = tk_clock_read(&tk->tkr_mono);
764 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask,
765 tk->tkr_mono.clock->max_raw_delta);
766 tk->tkr_mono.cycle_last = cycle_now;
767 tk->tkr_raw.cycle_last = cycle_now;
768
769 while (delta > 0) {
770 u64 max = tk->tkr_mono.clock->max_cycles;
771 u64 incr = delta < max ? delta : max;
772
773 tk->tkr_mono.xtime_nsec += incr * tk->tkr_mono.mult;
774 tk->tkr_raw.xtime_nsec += incr * tk->tkr_raw.mult;
775 tk_normalize_xtime(tk);
776 delta -= incr;
777 }
778 tk_update_coarse_nsecs(tk);
779 }
780
781 /**
782 * ktime_get_real_ts64 - Returns the time of day in a timespec64.
783 * @ts: pointer to the timespec to be set
784 *
785 * Returns the time of day in a timespec64 (WARN if suspended).
786 */
ktime_get_real_ts64(struct timespec64 * ts)787 void ktime_get_real_ts64(struct timespec64 *ts)
788 {
789 struct timekeeper *tk = &tk_core.timekeeper;
790 unsigned int seq;
791 u64 nsecs;
792
793 WARN_ON(timekeeping_suspended);
794
795 do {
796 seq = read_seqcount_begin(&tk_core.seq);
797
798 ts->tv_sec = tk->xtime_sec;
799 nsecs = timekeeping_get_ns(&tk->tkr_mono);
800
801 } while (read_seqcount_retry(&tk_core.seq, seq));
802
803 ts->tv_nsec = 0;
804 timespec64_add_ns(ts, nsecs);
805 }
806 EXPORT_SYMBOL(ktime_get_real_ts64);
807
ktime_get(void)808 ktime_t ktime_get(void)
809 {
810 struct timekeeper *tk = &tk_core.timekeeper;
811 unsigned int seq;
812 ktime_t base;
813 u64 nsecs;
814
815 WARN_ON(timekeeping_suspended);
816
817 do {
818 seq = read_seqcount_begin(&tk_core.seq);
819 base = tk->tkr_mono.base;
820 nsecs = timekeeping_get_ns(&tk->tkr_mono);
821
822 } while (read_seqcount_retry(&tk_core.seq, seq));
823
824 return ktime_add_ns(base, nsecs);
825 }
826 EXPORT_SYMBOL_GPL(ktime_get);
827
ktime_get_resolution_ns(void)828 u32 ktime_get_resolution_ns(void)
829 {
830 struct timekeeper *tk = &tk_core.timekeeper;
831 unsigned int seq;
832 u32 nsecs;
833
834 WARN_ON(timekeeping_suspended);
835
836 do {
837 seq = read_seqcount_begin(&tk_core.seq);
838 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
839 } while (read_seqcount_retry(&tk_core.seq, seq));
840
841 return nsecs;
842 }
843 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
844
845 static ktime_t *offsets[TK_OFFS_MAX] = {
846 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real,
847 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot,
848 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai,
849 };
850
ktime_get_with_offset(enum tk_offsets offs)851 ktime_t ktime_get_with_offset(enum tk_offsets offs)
852 {
853 struct timekeeper *tk = &tk_core.timekeeper;
854 unsigned int seq;
855 ktime_t base, *offset = offsets[offs];
856 u64 nsecs;
857
858 WARN_ON(timekeeping_suspended);
859
860 do {
861 seq = read_seqcount_begin(&tk_core.seq);
862 base = ktime_add(tk->tkr_mono.base, *offset);
863 nsecs = timekeeping_get_ns(&tk->tkr_mono);
864
865 } while (read_seqcount_retry(&tk_core.seq, seq));
866
867 return ktime_add_ns(base, nsecs);
868
869 }
870 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
871
ktime_get_coarse_with_offset(enum tk_offsets offs)872 ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs)
873 {
874 struct timekeeper *tk = &tk_core.timekeeper;
875 ktime_t base, *offset = offsets[offs];
876 unsigned int seq;
877 u64 nsecs;
878
879 WARN_ON(timekeeping_suspended);
880
881 do {
882 seq = read_seqcount_begin(&tk_core.seq);
883 base = ktime_add(tk->tkr_mono.base, *offset);
884 nsecs = tk->coarse_nsec;
885
886 } while (read_seqcount_retry(&tk_core.seq, seq));
887
888 return ktime_add_ns(base, nsecs);
889 }
890 EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset);
891
892 /**
893 * ktime_mono_to_any() - convert monotonic time to any other time
894 * @tmono: time to convert.
895 * @offs: which offset to use
896 */
ktime_mono_to_any(ktime_t tmono,enum tk_offsets offs)897 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
898 {
899 ktime_t *offset = offsets[offs];
900 unsigned int seq;
901 ktime_t tconv;
902
903 if (IS_ENABLED(CONFIG_64BIT)) {
904 /*
905 * Paired with WRITE_ONCE()s in tk_set_wall_to_mono() and
906 * tk_update_sleep_time().
907 */
908 return ktime_add(tmono, READ_ONCE(*offset));
909 }
910
911 do {
912 seq = read_seqcount_begin(&tk_core.seq);
913 tconv = ktime_add(tmono, *offset);
914 } while (read_seqcount_retry(&tk_core.seq, seq));
915
916 return tconv;
917 }
918 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
919
920 /**
921 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
922 */
ktime_get_raw(void)923 ktime_t ktime_get_raw(void)
924 {
925 struct timekeeper *tk = &tk_core.timekeeper;
926 unsigned int seq;
927 ktime_t base;
928 u64 nsecs;
929
930 do {
931 seq = read_seqcount_begin(&tk_core.seq);
932 base = tk->tkr_raw.base;
933 nsecs = timekeeping_get_ns(&tk->tkr_raw);
934
935 } while (read_seqcount_retry(&tk_core.seq, seq));
936
937 return ktime_add_ns(base, nsecs);
938 }
939 EXPORT_SYMBOL_GPL(ktime_get_raw);
940
941 /**
942 * ktime_get_ts64 - get the monotonic clock in timespec64 format
943 * @ts: pointer to timespec variable
944 *
945 * The function calculates the monotonic clock from the realtime
946 * clock and the wall_to_monotonic offset and stores the result
947 * in normalized timespec64 format in the variable pointed to by @ts.
948 */
ktime_get_ts64(struct timespec64 * ts)949 void ktime_get_ts64(struct timespec64 *ts)
950 {
951 struct timekeeper *tk = &tk_core.timekeeper;
952 struct timespec64 tomono;
953 unsigned int seq;
954 u64 nsec;
955
956 WARN_ON(timekeeping_suspended);
957
958 do {
959 seq = read_seqcount_begin(&tk_core.seq);
960 ts->tv_sec = tk->xtime_sec;
961 nsec = timekeeping_get_ns(&tk->tkr_mono);
962 tomono = tk->wall_to_monotonic;
963
964 } while (read_seqcount_retry(&tk_core.seq, seq));
965
966 ts->tv_sec += tomono.tv_sec;
967 ts->tv_nsec = 0;
968 timespec64_add_ns(ts, nsec + tomono.tv_nsec);
969 }
970 EXPORT_SYMBOL_GPL(ktime_get_ts64);
971
972 /**
973 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
974 *
975 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
976 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
977 * works on both 32 and 64 bit systems. On 32 bit systems the readout
978 * covers ~136 years of uptime which should be enough to prevent
979 * premature wrap arounds.
980 */
ktime_get_seconds(void)981 time64_t ktime_get_seconds(void)
982 {
983 struct timekeeper *tk = &tk_core.timekeeper;
984
985 WARN_ON(timekeeping_suspended);
986 return tk->ktime_sec;
987 }
988 EXPORT_SYMBOL_GPL(ktime_get_seconds);
989
990 /**
991 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
992 *
993 * Returns the wall clock seconds since 1970.
994 *
995 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
996 * 32bit systems the access must be protected with the sequence
997 * counter to provide "atomic" access to the 64bit tk->xtime_sec
998 * value.
999 */
ktime_get_real_seconds(void)1000 time64_t ktime_get_real_seconds(void)
1001 {
1002 struct timekeeper *tk = &tk_core.timekeeper;
1003 time64_t seconds;
1004 unsigned int seq;
1005
1006 if (IS_ENABLED(CONFIG_64BIT))
1007 return tk->xtime_sec;
1008
1009 do {
1010 seq = read_seqcount_begin(&tk_core.seq);
1011 seconds = tk->xtime_sec;
1012
1013 } while (read_seqcount_retry(&tk_core.seq, seq));
1014
1015 return seconds;
1016 }
1017 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
1018
1019 /**
1020 * __ktime_get_real_seconds - Unprotected access to CLOCK_REALTIME seconds
1021 *
1022 * The same as ktime_get_real_seconds() but without the sequence counter
1023 * protection. This function is used in restricted contexts like the x86 MCE
1024 * handler and in KGDB. It's unprotected on 32-bit vs. concurrent half
1025 * completed modification and only to be used for such critical contexts.
1026 *
1027 * Returns: Racy snapshot of the CLOCK_REALTIME seconds value
1028 */
__ktime_get_real_seconds(void)1029 noinstr time64_t __ktime_get_real_seconds(void)
1030 {
1031 struct timekeeper *tk = &tk_core.timekeeper;
1032
1033 return tk->xtime_sec;
1034 }
1035
1036 /**
1037 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
1038 * @systime_snapshot: pointer to struct receiving the system time snapshot
1039 */
ktime_get_snapshot(struct system_time_snapshot * systime_snapshot)1040 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
1041 {
1042 struct timekeeper *tk = &tk_core.timekeeper;
1043 unsigned int seq;
1044 ktime_t base_raw;
1045 ktime_t base_real;
1046 ktime_t base_boot;
1047 u64 nsec_raw;
1048 u64 nsec_real;
1049 u64 now;
1050
1051 WARN_ON_ONCE(timekeeping_suspended);
1052
1053 do {
1054 seq = read_seqcount_begin(&tk_core.seq);
1055 now = tk_clock_read(&tk->tkr_mono);
1056 systime_snapshot->cs_id = tk->tkr_mono.clock->id;
1057 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
1058 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
1059 base_real = ktime_add(tk->tkr_mono.base,
1060 tk_core.timekeeper.offs_real);
1061 base_boot = ktime_add(tk->tkr_mono.base,
1062 tk_core.timekeeper.offs_boot);
1063 base_raw = tk->tkr_raw.base;
1064 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
1065 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
1066 } while (read_seqcount_retry(&tk_core.seq, seq));
1067
1068 systime_snapshot->cycles = now;
1069 systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
1070 systime_snapshot->boot = ktime_add_ns(base_boot, nsec_real);
1071 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
1072 }
1073 EXPORT_SYMBOL_GPL(ktime_get_snapshot);
1074
1075 /* Scale base by mult/div checking for overflow */
scale64_check_overflow(u64 mult,u64 div,u64 * base)1076 static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
1077 {
1078 u64 tmp, rem;
1079
1080 tmp = div64_u64_rem(*base, div, &rem);
1081
1082 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
1083 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
1084 return -EOVERFLOW;
1085 tmp *= mult;
1086
1087 rem = div64_u64(rem * mult, div);
1088 *base = tmp + rem;
1089 return 0;
1090 }
1091
1092 /**
1093 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
1094 * @history: Snapshot representing start of history
1095 * @partial_history_cycles: Cycle offset into history (fractional part)
1096 * @total_history_cycles: Total history length in cycles
1097 * @discontinuity: True indicates clock was set on history period
1098 * @ts: Cross timestamp that should be adjusted using
1099 * partial/total ratio
1100 *
1101 * Helper function used by get_device_system_crosststamp() to correct the
1102 * crosstimestamp corresponding to the start of the current interval to the
1103 * system counter value (timestamp point) provided by the driver. The
1104 * total_history_* quantities are the total history starting at the provided
1105 * reference point and ending at the start of the current interval. The cycle
1106 * count between the driver timestamp point and the start of the current
1107 * interval is partial_history_cycles.
1108 */
adjust_historical_crosststamp(struct system_time_snapshot * history,u64 partial_history_cycles,u64 total_history_cycles,bool discontinuity,struct system_device_crosststamp * ts)1109 static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1110 u64 partial_history_cycles,
1111 u64 total_history_cycles,
1112 bool discontinuity,
1113 struct system_device_crosststamp *ts)
1114 {
1115 struct timekeeper *tk = &tk_core.timekeeper;
1116 u64 corr_raw, corr_real;
1117 bool interp_forward;
1118 int ret;
1119
1120 if (total_history_cycles == 0 || partial_history_cycles == 0)
1121 return 0;
1122
1123 /* Interpolate shortest distance from beginning or end of history */
1124 interp_forward = partial_history_cycles > total_history_cycles / 2;
1125 partial_history_cycles = interp_forward ?
1126 total_history_cycles - partial_history_cycles :
1127 partial_history_cycles;
1128
1129 /*
1130 * Scale the monotonic raw time delta by:
1131 * partial_history_cycles / total_history_cycles
1132 */
1133 corr_raw = (u64)ktime_to_ns(
1134 ktime_sub(ts->sys_monoraw, history->raw));
1135 ret = scale64_check_overflow(partial_history_cycles,
1136 total_history_cycles, &corr_raw);
1137 if (ret)
1138 return ret;
1139
1140 /*
1141 * If there is a discontinuity in the history, scale monotonic raw
1142 * correction by:
1143 * mult(real)/mult(raw) yielding the realtime correction
1144 * Otherwise, calculate the realtime correction similar to monotonic
1145 * raw calculation
1146 */
1147 if (discontinuity) {
1148 corr_real = mul_u64_u32_div
1149 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1150 } else {
1151 corr_real = (u64)ktime_to_ns(
1152 ktime_sub(ts->sys_realtime, history->real));
1153 ret = scale64_check_overflow(partial_history_cycles,
1154 total_history_cycles, &corr_real);
1155 if (ret)
1156 return ret;
1157 }
1158
1159 /* Fixup monotonic raw and real time time values */
1160 if (interp_forward) {
1161 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1162 ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1163 } else {
1164 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1165 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1166 }
1167
1168 return 0;
1169 }
1170
1171 /*
1172 * timestamp_in_interval - true if ts is chronologically in [start, end]
1173 *
1174 * True if ts occurs chronologically at or after start, and before or at end.
1175 */
timestamp_in_interval(u64 start,u64 end,u64 ts)1176 static bool timestamp_in_interval(u64 start, u64 end, u64 ts)
1177 {
1178 if (ts >= start && ts <= end)
1179 return true;
1180 if (start > end && (ts >= start || ts <= end))
1181 return true;
1182 return false;
1183 }
1184
convert_clock(u64 * val,u32 numerator,u32 denominator)1185 static bool convert_clock(u64 *val, u32 numerator, u32 denominator)
1186 {
1187 u64 rem, res;
1188
1189 if (!numerator || !denominator)
1190 return false;
1191
1192 res = div64_u64_rem(*val, denominator, &rem) * numerator;
1193 *val = res + div_u64(rem * numerator, denominator);
1194 return true;
1195 }
1196
convert_base_to_cs(struct system_counterval_t * scv)1197 static bool convert_base_to_cs(struct system_counterval_t *scv)
1198 {
1199 struct clocksource *cs = tk_core.timekeeper.tkr_mono.clock;
1200 struct clocksource_base *base;
1201 u32 num, den;
1202
1203 /* The timestamp was taken from the time keeper clock source */
1204 if (cs->id == scv->cs_id)
1205 return true;
1206
1207 /*
1208 * Check whether cs_id matches the base clock. Prevent the compiler from
1209 * re-evaluating @base as the clocksource might change concurrently.
1210 */
1211 base = READ_ONCE(cs->base);
1212 if (!base || base->id != scv->cs_id)
1213 return false;
1214
1215 num = scv->use_nsecs ? cs->freq_khz : base->numerator;
1216 den = scv->use_nsecs ? USEC_PER_SEC : base->denominator;
1217
1218 if (!convert_clock(&scv->cycles, num, den))
1219 return false;
1220
1221 scv->cycles += base->offset;
1222 return true;
1223 }
1224
convert_cs_to_base(u64 * cycles,enum clocksource_ids base_id)1225 static bool convert_cs_to_base(u64 *cycles, enum clocksource_ids base_id)
1226 {
1227 struct clocksource *cs = tk_core.timekeeper.tkr_mono.clock;
1228 struct clocksource_base *base;
1229
1230 /*
1231 * Check whether base_id matches the base clock. Prevent the compiler from
1232 * re-evaluating @base as the clocksource might change concurrently.
1233 */
1234 base = READ_ONCE(cs->base);
1235 if (!base || base->id != base_id)
1236 return false;
1237
1238 *cycles -= base->offset;
1239 if (!convert_clock(cycles, base->denominator, base->numerator))
1240 return false;
1241 return true;
1242 }
1243
convert_ns_to_cs(u64 * delta)1244 static bool convert_ns_to_cs(u64 *delta)
1245 {
1246 struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono;
1247
1248 if (BITS_TO_BYTES(fls64(*delta) + tkr->shift) >= sizeof(*delta))
1249 return false;
1250
1251 *delta = div_u64((*delta << tkr->shift) - tkr->xtime_nsec, tkr->mult);
1252 return true;
1253 }
1254
1255 /**
1256 * ktime_real_to_base_clock() - Convert CLOCK_REALTIME timestamp to a base clock timestamp
1257 * @treal: CLOCK_REALTIME timestamp to convert
1258 * @base_id: base clocksource id
1259 * @cycles: pointer to store the converted base clock timestamp
1260 *
1261 * Converts a supplied, future realtime clock value to the corresponding base clock value.
1262 *
1263 * Return: true if the conversion is successful, false otherwise.
1264 */
ktime_real_to_base_clock(ktime_t treal,enum clocksource_ids base_id,u64 * cycles)1265 bool ktime_real_to_base_clock(ktime_t treal, enum clocksource_ids base_id, u64 *cycles)
1266 {
1267 struct timekeeper *tk = &tk_core.timekeeper;
1268 unsigned int seq;
1269 u64 delta;
1270
1271 do {
1272 seq = read_seqcount_begin(&tk_core.seq);
1273 if ((u64)treal < tk->tkr_mono.base_real)
1274 return false;
1275 delta = (u64)treal - tk->tkr_mono.base_real;
1276 if (!convert_ns_to_cs(&delta))
1277 return false;
1278 *cycles = tk->tkr_mono.cycle_last + delta;
1279 if (!convert_cs_to_base(cycles, base_id))
1280 return false;
1281 } while (read_seqcount_retry(&tk_core.seq, seq));
1282
1283 return true;
1284 }
1285 EXPORT_SYMBOL_GPL(ktime_real_to_base_clock);
1286
1287 /**
1288 * get_device_system_crosststamp - Synchronously capture system/device timestamp
1289 * @get_time_fn: Callback to get simultaneous device time and
1290 * system counter from the device driver
1291 * @ctx: Context passed to get_time_fn()
1292 * @history_begin: Historical reference point used to interpolate system
1293 * time when counter provided by the driver is before the current interval
1294 * @xtstamp: Receives simultaneously captured system and device time
1295 *
1296 * Reads a timestamp from a device and correlates it to system time
1297 */
get_device_system_crosststamp(int (* get_time_fn)(ktime_t * device_time,struct system_counterval_t * sys_counterval,void * ctx),void * ctx,struct system_time_snapshot * history_begin,struct system_device_crosststamp * xtstamp)1298 int get_device_system_crosststamp(int (*get_time_fn)
1299 (ktime_t *device_time,
1300 struct system_counterval_t *sys_counterval,
1301 void *ctx),
1302 void *ctx,
1303 struct system_time_snapshot *history_begin,
1304 struct system_device_crosststamp *xtstamp)
1305 {
1306 struct system_counterval_t system_counterval = {};
1307 struct timekeeper *tk = &tk_core.timekeeper;
1308 u64 cycles, now, interval_start;
1309 unsigned int clock_was_set_seq = 0;
1310 ktime_t base_real, base_raw;
1311 u64 nsec_real, nsec_raw;
1312 u8 cs_was_changed_seq;
1313 unsigned int seq;
1314 bool do_interp;
1315 int ret;
1316
1317 do {
1318 seq = read_seqcount_begin(&tk_core.seq);
1319 /*
1320 * Try to synchronously capture device time and a system
1321 * counter value calling back into the device driver
1322 */
1323 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1324 if (ret)
1325 return ret;
1326
1327 /*
1328 * Verify that the clocksource ID associated with the captured
1329 * system counter value is the same as for the currently
1330 * installed timekeeper clocksource
1331 */
1332 if (system_counterval.cs_id == CSID_GENERIC ||
1333 !convert_base_to_cs(&system_counterval))
1334 return -ENODEV;
1335 cycles = system_counterval.cycles;
1336
1337 /*
1338 * Check whether the system counter value provided by the
1339 * device driver is on the current timekeeping interval.
1340 */
1341 now = tk_clock_read(&tk->tkr_mono);
1342 interval_start = tk->tkr_mono.cycle_last;
1343 if (!timestamp_in_interval(interval_start, now, cycles)) {
1344 clock_was_set_seq = tk->clock_was_set_seq;
1345 cs_was_changed_seq = tk->cs_was_changed_seq;
1346 cycles = interval_start;
1347 do_interp = true;
1348 } else {
1349 do_interp = false;
1350 }
1351
1352 base_real = ktime_add(tk->tkr_mono.base,
1353 tk_core.timekeeper.offs_real);
1354 base_raw = tk->tkr_raw.base;
1355
1356 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, cycles);
1357 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, cycles);
1358 } while (read_seqcount_retry(&tk_core.seq, seq));
1359
1360 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1361 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1362
1363 /*
1364 * Interpolate if necessary, adjusting back from the start of the
1365 * current interval
1366 */
1367 if (do_interp) {
1368 u64 partial_history_cycles, total_history_cycles;
1369 bool discontinuity;
1370
1371 /*
1372 * Check that the counter value is not before the provided
1373 * history reference and that the history doesn't cross a
1374 * clocksource change
1375 */
1376 if (!history_begin ||
1377 !timestamp_in_interval(history_begin->cycles,
1378 cycles, system_counterval.cycles) ||
1379 history_begin->cs_was_changed_seq != cs_was_changed_seq)
1380 return -EINVAL;
1381 partial_history_cycles = cycles - system_counterval.cycles;
1382 total_history_cycles = cycles - history_begin->cycles;
1383 discontinuity =
1384 history_begin->clock_was_set_seq != clock_was_set_seq;
1385
1386 ret = adjust_historical_crosststamp(history_begin,
1387 partial_history_cycles,
1388 total_history_cycles,
1389 discontinuity, xtstamp);
1390 if (ret)
1391 return ret;
1392 }
1393
1394 return 0;
1395 }
1396 EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1397
1398 /**
1399 * timekeeping_clocksource_has_base - Check whether the current clocksource
1400 * is based on given a base clock
1401 * @id: base clocksource ID
1402 *
1403 * Note: The return value is a snapshot which can become invalid right
1404 * after the function returns.
1405 *
1406 * Return: true if the timekeeper clocksource has a base clock with @id,
1407 * false otherwise
1408 */
timekeeping_clocksource_has_base(enum clocksource_ids id)1409 bool timekeeping_clocksource_has_base(enum clocksource_ids id)
1410 {
1411 /*
1412 * This is a snapshot, so no point in using the sequence
1413 * count. Just prevent the compiler from re-evaluating @base as the
1414 * clocksource might change concurrently.
1415 */
1416 struct clocksource_base *base = READ_ONCE(tk_core.timekeeper.tkr_mono.clock->base);
1417
1418 return base ? base->id == id : false;
1419 }
1420 EXPORT_SYMBOL_GPL(timekeeping_clocksource_has_base);
1421
1422 /**
1423 * do_settimeofday64 - Sets the time of day.
1424 * @ts: pointer to the timespec64 variable containing the new time
1425 *
1426 * Sets the time of day to the new time and update NTP and notify hrtimers
1427 */
do_settimeofday64(const struct timespec64 * ts)1428 int do_settimeofday64(const struct timespec64 *ts)
1429 {
1430 struct timespec64 ts_delta, xt;
1431
1432 if (!timespec64_valid_settod(ts))
1433 return -EINVAL;
1434
1435 scoped_guard (raw_spinlock_irqsave, &tk_core.lock) {
1436 struct timekeeper *tks = &tk_core.shadow_timekeeper;
1437
1438 timekeeping_forward_now(tks);
1439
1440 xt = tk_xtime(tks);
1441 ts_delta = timespec64_sub(*ts, xt);
1442
1443 if (timespec64_compare(&tks->wall_to_monotonic, &ts_delta) > 0) {
1444 timekeeping_restore_shadow(&tk_core);
1445 return -EINVAL;
1446 }
1447
1448 tk_set_wall_to_mono(tks, timespec64_sub(tks->wall_to_monotonic, ts_delta));
1449 tk_set_xtime(tks, ts);
1450 timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL);
1451 }
1452
1453 /* Signal hrtimers about time change */
1454 clock_was_set(CLOCK_SET_WALL);
1455
1456 audit_tk_injoffset(ts_delta);
1457 add_device_randomness(ts, sizeof(*ts));
1458 return 0;
1459 }
1460 EXPORT_SYMBOL(do_settimeofday64);
1461
timekeeper_is_core_tk(struct timekeeper * tk)1462 static inline bool timekeeper_is_core_tk(struct timekeeper *tk)
1463 {
1464 return !IS_ENABLED(CONFIG_POSIX_AUX_CLOCKS) || tk->id == TIMEKEEPER_CORE;
1465 }
1466
1467 /**
1468 * __timekeeping_inject_offset - Adds or subtracts from the current time.
1469 * @tkd: Pointer to the timekeeper to modify
1470 * @ts: Pointer to the timespec variable containing the offset
1471 *
1472 * Adds or subtracts an offset value from the current time.
1473 */
__timekeeping_inject_offset(struct tk_data * tkd,const struct timespec64 * ts)1474 static int __timekeeping_inject_offset(struct tk_data *tkd, const struct timespec64 *ts)
1475 {
1476 struct timekeeper *tks = &tkd->shadow_timekeeper;
1477 struct timespec64 tmp;
1478
1479 if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
1480 return -EINVAL;
1481
1482 timekeeping_forward_now(tks);
1483
1484 if (timekeeper_is_core_tk(tks)) {
1485 /* Make sure the proposed value is valid */
1486 tmp = timespec64_add(tk_xtime(tks), *ts);
1487 if (timespec64_compare(&tks->wall_to_monotonic, ts) > 0 ||
1488 !timespec64_valid_settod(&tmp)) {
1489 timekeeping_restore_shadow(tkd);
1490 return -EINVAL;
1491 }
1492
1493 tk_xtime_add(tks, ts);
1494 tk_set_wall_to_mono(tks, timespec64_sub(tks->wall_to_monotonic, *ts));
1495 } else {
1496 struct tk_read_base *tkr_mono = &tks->tkr_mono;
1497 ktime_t now, offs;
1498
1499 /* Get the current time */
1500 now = ktime_add_ns(tkr_mono->base, timekeeping_get_ns(tkr_mono));
1501 /* Add the relative offset change */
1502 offs = ktime_add(tks->offs_aux, timespec64_to_ktime(*ts));
1503
1504 /* Prevent that the resulting time becomes negative */
1505 if (ktime_add(now, offs) < 0) {
1506 timekeeping_restore_shadow(tkd);
1507 return -EINVAL;
1508 }
1509 tks->offs_aux = offs;
1510 }
1511
1512 timekeeping_update_from_shadow(tkd, TK_UPDATE_ALL);
1513 return 0;
1514 }
1515
timekeeping_inject_offset(const struct timespec64 * ts)1516 static int timekeeping_inject_offset(const struct timespec64 *ts)
1517 {
1518 int ret;
1519
1520 scoped_guard (raw_spinlock_irqsave, &tk_core.lock)
1521 ret = __timekeeping_inject_offset(&tk_core, ts);
1522
1523 /* Signal hrtimers about time change */
1524 if (!ret)
1525 clock_was_set(CLOCK_SET_WALL);
1526 return ret;
1527 }
1528
1529 /*
1530 * Indicates if there is an offset between the system clock and the hardware
1531 * clock/persistent clock/rtc.
1532 */
1533 int persistent_clock_is_local;
1534
1535 /*
1536 * Adjust the time obtained from the CMOS to be UTC time instead of
1537 * local time.
1538 *
1539 * This is ugly, but preferable to the alternatives. Otherwise we
1540 * would either need to write a program to do it in /etc/rc (and risk
1541 * confusion if the program gets run more than once; it would also be
1542 * hard to make the program warp the clock precisely n hours) or
1543 * compile in the timezone information into the kernel. Bad, bad....
1544 *
1545 * - TYT, 1992-01-01
1546 *
1547 * The best thing to do is to keep the CMOS clock in universal time (UTC)
1548 * as real UNIX machines always do it. This avoids all headaches about
1549 * daylight saving times and warping kernel clocks.
1550 */
timekeeping_warp_clock(void)1551 void timekeeping_warp_clock(void)
1552 {
1553 if (sys_tz.tz_minuteswest != 0) {
1554 struct timespec64 adjust;
1555
1556 persistent_clock_is_local = 1;
1557 adjust.tv_sec = sys_tz.tz_minuteswest * 60;
1558 adjust.tv_nsec = 0;
1559 timekeeping_inject_offset(&adjust);
1560 }
1561 }
1562
1563 /*
1564 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1565 */
__timekeeping_set_tai_offset(struct timekeeper * tk,s32 tai_offset)1566 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1567 {
1568 tk->tai_offset = tai_offset;
1569 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1570 }
1571
1572 /*
1573 * change_clocksource - Swaps clocksources if a new one is available
1574 *
1575 * Accumulates current time interval and initializes new clocksource
1576 */
change_clocksource(void * data)1577 static int change_clocksource(void *data)
1578 {
1579 struct clocksource *new = data, *old = NULL;
1580
1581 /*
1582 * If the clocksource is in a module, get a module reference.
1583 * Succeeds for built-in code (owner == NULL) as well. Abort if the
1584 * reference can't be acquired.
1585 */
1586 if (!try_module_get(new->owner))
1587 return 0;
1588
1589 /* Abort if the device can't be enabled */
1590 if (new->enable && new->enable(new) != 0) {
1591 module_put(new->owner);
1592 return 0;
1593 }
1594
1595 scoped_guard (raw_spinlock_irqsave, &tk_core.lock) {
1596 struct timekeeper *tks = &tk_core.shadow_timekeeper;
1597
1598 timekeeping_forward_now(tks);
1599 old = tks->tkr_mono.clock;
1600 tk_setup_internals(tks, new);
1601 timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL);
1602 }
1603
1604 tk_aux_update_clocksource();
1605
1606 if (old) {
1607 if (old->disable)
1608 old->disable(old);
1609 module_put(old->owner);
1610 }
1611
1612 return 0;
1613 }
1614
1615 /**
1616 * timekeeping_notify - Install a new clock source
1617 * @clock: pointer to the clock source
1618 *
1619 * This function is called from clocksource.c after a new, better clock
1620 * source has been registered. The caller holds the clocksource_mutex.
1621 */
timekeeping_notify(struct clocksource * clock)1622 int timekeeping_notify(struct clocksource *clock)
1623 {
1624 struct timekeeper *tk = &tk_core.timekeeper;
1625
1626 if (tk->tkr_mono.clock == clock)
1627 return 0;
1628 stop_machine(change_clocksource, clock, NULL);
1629 tick_clock_notify();
1630 return tk->tkr_mono.clock == clock ? 0 : -1;
1631 }
1632
1633 /**
1634 * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec
1635 * @ts: pointer to the timespec64 to be set
1636 *
1637 * Returns the raw monotonic time (completely un-modified by ntp)
1638 */
ktime_get_raw_ts64(struct timespec64 * ts)1639 void ktime_get_raw_ts64(struct timespec64 *ts)
1640 {
1641 struct timekeeper *tk = &tk_core.timekeeper;
1642 unsigned int seq;
1643 u64 nsecs;
1644
1645 do {
1646 seq = read_seqcount_begin(&tk_core.seq);
1647 ts->tv_sec = tk->raw_sec;
1648 nsecs = timekeeping_get_ns(&tk->tkr_raw);
1649
1650 } while (read_seqcount_retry(&tk_core.seq, seq));
1651
1652 ts->tv_nsec = 0;
1653 timespec64_add_ns(ts, nsecs);
1654 }
1655 EXPORT_SYMBOL(ktime_get_raw_ts64);
1656
1657 /**
1658 * ktime_get_clock_ts64 - Returns time of a clock in a timespec
1659 * @id: POSIX clock ID of the clock to read
1660 * @ts: Pointer to the timespec64 to be set
1661 *
1662 * The timestamp is invalidated (@ts->sec is set to -1) if the
1663 * clock @id is not available.
1664 */
ktime_get_clock_ts64(clockid_t id,struct timespec64 * ts)1665 void ktime_get_clock_ts64(clockid_t id, struct timespec64 *ts)
1666 {
1667 /* Invalidate time stamp */
1668 ts->tv_sec = -1;
1669 ts->tv_nsec = 0;
1670
1671 switch (id) {
1672 case CLOCK_REALTIME:
1673 ktime_get_real_ts64(ts);
1674 return;
1675 case CLOCK_MONOTONIC:
1676 ktime_get_ts64(ts);
1677 return;
1678 case CLOCK_MONOTONIC_RAW:
1679 ktime_get_raw_ts64(ts);
1680 return;
1681 case CLOCK_AUX ... CLOCK_AUX_LAST:
1682 if (IS_ENABLED(CONFIG_POSIX_AUX_CLOCKS))
1683 ktime_get_aux_ts64(id, ts);
1684 return;
1685 default:
1686 WARN_ON_ONCE(1);
1687 }
1688 }
1689 EXPORT_SYMBOL_GPL(ktime_get_clock_ts64);
1690
1691 /**
1692 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1693 */
timekeeping_valid_for_hres(void)1694 int timekeeping_valid_for_hres(void)
1695 {
1696 struct timekeeper *tk = &tk_core.timekeeper;
1697 unsigned int seq;
1698 int ret;
1699
1700 do {
1701 seq = read_seqcount_begin(&tk_core.seq);
1702
1703 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1704
1705 } while (read_seqcount_retry(&tk_core.seq, seq));
1706
1707 return ret;
1708 }
1709
1710 /**
1711 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1712 */
timekeeping_max_deferment(void)1713 u64 timekeeping_max_deferment(void)
1714 {
1715 struct timekeeper *tk = &tk_core.timekeeper;
1716 unsigned int seq;
1717 u64 ret;
1718
1719 do {
1720 seq = read_seqcount_begin(&tk_core.seq);
1721
1722 ret = tk->tkr_mono.clock->max_idle_ns;
1723
1724 } while (read_seqcount_retry(&tk_core.seq, seq));
1725
1726 return ret;
1727 }
1728
1729 /**
1730 * read_persistent_clock64 - Return time from the persistent clock.
1731 * @ts: Pointer to the storage for the readout value
1732 *
1733 * Weak dummy function for arches that do not yet support it.
1734 * Reads the time from the battery backed persistent clock.
1735 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1736 *
1737 * XXX - Do be sure to remove it once all arches implement it.
1738 */
read_persistent_clock64(struct timespec64 * ts)1739 void __weak read_persistent_clock64(struct timespec64 *ts)
1740 {
1741 ts->tv_sec = 0;
1742 ts->tv_nsec = 0;
1743 }
1744
1745 /**
1746 * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset
1747 * from the boot.
1748 * @wall_time: current time as returned by persistent clock
1749 * @boot_offset: offset that is defined as wall_time - boot_time
1750 *
1751 * Weak dummy function for arches that do not yet support it.
1752 *
1753 * The default function calculates offset based on the current value of
1754 * local_clock(). This way architectures that support sched_clock() but don't
1755 * support dedicated boot time clock will provide the best estimate of the
1756 * boot time.
1757 */
1758 void __weak __init
read_persistent_wall_and_boot_offset(struct timespec64 * wall_time,struct timespec64 * boot_offset)1759 read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
1760 struct timespec64 *boot_offset)
1761 {
1762 read_persistent_clock64(wall_time);
1763 *boot_offset = ns_to_timespec64(local_clock());
1764 }
1765
tkd_basic_setup(struct tk_data * tkd,enum timekeeper_ids tk_id,bool valid)1766 static __init void tkd_basic_setup(struct tk_data *tkd, enum timekeeper_ids tk_id, bool valid)
1767 {
1768 raw_spin_lock_init(&tkd->lock);
1769 seqcount_raw_spinlock_init(&tkd->seq, &tkd->lock);
1770 tkd->timekeeper.id = tkd->shadow_timekeeper.id = tk_id;
1771 tkd->timekeeper.clock_valid = tkd->shadow_timekeeper.clock_valid = valid;
1772 }
1773
1774 /*
1775 * Flag reflecting whether timekeeping_resume() has injected sleeptime.
1776 *
1777 * The flag starts of false and is only set when a suspend reaches
1778 * timekeeping_suspend(), timekeeping_resume() sets it to false when the
1779 * timekeeper clocksource is not stopping across suspend and has been
1780 * used to update sleep time. If the timekeeper clocksource has stopped
1781 * then the flag stays true and is used by the RTC resume code to decide
1782 * whether sleeptime must be injected and if so the flag gets false then.
1783 *
1784 * If a suspend fails before reaching timekeeping_resume() then the flag
1785 * stays false and prevents erroneous sleeptime injection.
1786 */
1787 static bool suspend_timing_needed;
1788
1789 /* Flag for if there is a persistent clock on this platform */
1790 static bool persistent_clock_exists;
1791
1792 /*
1793 * timekeeping_init - Initializes the clocksource and common timekeeping values
1794 */
timekeeping_init(void)1795 void __init timekeeping_init(void)
1796 {
1797 struct timespec64 wall_time, boot_offset, wall_to_mono;
1798 struct timekeeper *tks = &tk_core.shadow_timekeeper;
1799 struct clocksource *clock;
1800
1801 tkd_basic_setup(&tk_core, TIMEKEEPER_CORE, true);
1802 tk_aux_setup();
1803
1804 read_persistent_wall_and_boot_offset(&wall_time, &boot_offset);
1805 if (timespec64_valid_settod(&wall_time) &&
1806 timespec64_to_ns(&wall_time) > 0) {
1807 persistent_clock_exists = true;
1808 } else if (timespec64_to_ns(&wall_time) != 0) {
1809 pr_warn("Persistent clock returned invalid value");
1810 wall_time = (struct timespec64){0};
1811 }
1812
1813 if (timespec64_compare(&wall_time, &boot_offset) < 0)
1814 boot_offset = (struct timespec64){0};
1815
1816 /*
1817 * We want set wall_to_mono, so the following is true:
1818 * wall time + wall_to_mono = boot time
1819 */
1820 wall_to_mono = timespec64_sub(boot_offset, wall_time);
1821
1822 guard(raw_spinlock_irqsave)(&tk_core.lock);
1823
1824 ntp_init();
1825
1826 clock = clocksource_default_clock();
1827 if (clock->enable)
1828 clock->enable(clock);
1829 tk_setup_internals(tks, clock);
1830
1831 tk_set_xtime(tks, &wall_time);
1832 tks->raw_sec = 0;
1833
1834 tk_set_wall_to_mono(tks, wall_to_mono);
1835
1836 timekeeping_update_from_shadow(&tk_core, TK_CLOCK_WAS_SET);
1837 }
1838
1839 /* time in seconds when suspend began for persistent clock */
1840 static struct timespec64 timekeeping_suspend_time;
1841
1842 /**
1843 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1844 * @tk: Pointer to the timekeeper to be updated
1845 * @delta: Pointer to the delta value in timespec64 format
1846 *
1847 * Takes a timespec offset measuring a suspend interval and properly
1848 * adds the sleep offset to the timekeeping variables.
1849 */
__timekeeping_inject_sleeptime(struct timekeeper * tk,const struct timespec64 * delta)1850 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1851 const struct timespec64 *delta)
1852 {
1853 if (!timespec64_valid_strict(delta)) {
1854 printk_deferred(KERN_WARNING
1855 "__timekeeping_inject_sleeptime: Invalid "
1856 "sleep delta value!\n");
1857 return;
1858 }
1859 tk_xtime_add(tk, delta);
1860 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1861 tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1862 tk_debug_account_sleep_time(delta);
1863 }
1864
1865 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1866 /*
1867 * We have three kinds of time sources to use for sleep time
1868 * injection, the preference order is:
1869 * 1) non-stop clocksource
1870 * 2) persistent clock (ie: RTC accessible when irqs are off)
1871 * 3) RTC
1872 *
1873 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1874 * If system has neither 1) nor 2), 3) will be used finally.
1875 *
1876 *
1877 * If timekeeping has injected sleeptime via either 1) or 2),
1878 * 3) becomes needless, so in this case we don't need to call
1879 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1880 * means.
1881 */
timekeeping_rtc_skipresume(void)1882 bool timekeeping_rtc_skipresume(void)
1883 {
1884 return !suspend_timing_needed;
1885 }
1886
1887 /*
1888 * 1) can be determined whether to use or not only when doing
1889 * timekeeping_resume() which is invoked after rtc_suspend(),
1890 * so we can't skip rtc_suspend() surely if system has 1).
1891 *
1892 * But if system has 2), 2) will definitely be used, so in this
1893 * case we don't need to call rtc_suspend(), and this is what
1894 * timekeeping_rtc_skipsuspend() means.
1895 */
timekeeping_rtc_skipsuspend(void)1896 bool timekeeping_rtc_skipsuspend(void)
1897 {
1898 return persistent_clock_exists;
1899 }
1900
1901 /**
1902 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1903 * @delta: pointer to a timespec64 delta value
1904 *
1905 * This hook is for architectures that cannot support read_persistent_clock64
1906 * because their RTC/persistent clock is only accessible when irqs are enabled.
1907 * and also don't have an effective nonstop clocksource.
1908 *
1909 * This function should only be called by rtc_resume(), and allows
1910 * a suspend offset to be injected into the timekeeping values.
1911 */
timekeeping_inject_sleeptime64(const struct timespec64 * delta)1912 void timekeeping_inject_sleeptime64(const struct timespec64 *delta)
1913 {
1914 scoped_guard(raw_spinlock_irqsave, &tk_core.lock) {
1915 struct timekeeper *tks = &tk_core.shadow_timekeeper;
1916
1917 suspend_timing_needed = false;
1918 timekeeping_forward_now(tks);
1919 __timekeeping_inject_sleeptime(tks, delta);
1920 timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL);
1921 }
1922
1923 /* Signal hrtimers about time change */
1924 clock_was_set(CLOCK_SET_WALL | CLOCK_SET_BOOT);
1925 }
1926 #endif
1927
1928 /**
1929 * timekeeping_resume - Resumes the generic timekeeping subsystem.
1930 */
timekeeping_resume(void)1931 void timekeeping_resume(void)
1932 {
1933 struct timekeeper *tks = &tk_core.shadow_timekeeper;
1934 struct clocksource *clock = tks->tkr_mono.clock;
1935 struct timespec64 ts_new, ts_delta;
1936 bool inject_sleeptime = false;
1937 u64 cycle_now, nsec;
1938 unsigned long flags;
1939
1940 read_persistent_clock64(&ts_new);
1941
1942 clockevents_resume();
1943 clocksource_resume();
1944
1945 raw_spin_lock_irqsave(&tk_core.lock, flags);
1946
1947 /*
1948 * After system resumes, we need to calculate the suspended time and
1949 * compensate it for the OS time. There are 3 sources that could be
1950 * used: Nonstop clocksource during suspend, persistent clock and rtc
1951 * device.
1952 *
1953 * One specific platform may have 1 or 2 or all of them, and the
1954 * preference will be:
1955 * suspend-nonstop clocksource -> persistent clock -> rtc
1956 * The less preferred source will only be tried if there is no better
1957 * usable source. The rtc part is handled separately in rtc core code.
1958 */
1959 cycle_now = tk_clock_read(&tks->tkr_mono);
1960 nsec = clocksource_stop_suspend_timing(clock, cycle_now);
1961 if (nsec > 0) {
1962 ts_delta = ns_to_timespec64(nsec);
1963 inject_sleeptime = true;
1964 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1965 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1966 inject_sleeptime = true;
1967 }
1968
1969 if (inject_sleeptime) {
1970 suspend_timing_needed = false;
1971 __timekeeping_inject_sleeptime(tks, &ts_delta);
1972 }
1973
1974 /* Re-base the last cycle value */
1975 tks->tkr_mono.cycle_last = cycle_now;
1976 tks->tkr_raw.cycle_last = cycle_now;
1977
1978 tks->ntp_error = 0;
1979 timekeeping_suspended = 0;
1980 timekeeping_update_from_shadow(&tk_core, TK_CLOCK_WAS_SET);
1981 raw_spin_unlock_irqrestore(&tk_core.lock, flags);
1982
1983 touch_softlockup_watchdog();
1984
1985 /* Resume the clockevent device(s) and hrtimers */
1986 tick_resume();
1987 /* Notify timerfd as resume is equivalent to clock_was_set() */
1988 timerfd_resume();
1989 }
1990
timekeeping_suspend(void)1991 int timekeeping_suspend(void)
1992 {
1993 struct timekeeper *tks = &tk_core.shadow_timekeeper;
1994 struct timespec64 delta, delta_delta;
1995 static struct timespec64 old_delta;
1996 struct clocksource *curr_clock;
1997 unsigned long flags;
1998 u64 cycle_now;
1999
2000 read_persistent_clock64(&timekeeping_suspend_time);
2001
2002 /*
2003 * On some systems the persistent_clock can not be detected at
2004 * timekeeping_init by its return value, so if we see a valid
2005 * value returned, update the persistent_clock_exists flag.
2006 */
2007 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
2008 persistent_clock_exists = true;
2009
2010 suspend_timing_needed = true;
2011
2012 raw_spin_lock_irqsave(&tk_core.lock, flags);
2013 timekeeping_forward_now(tks);
2014 timekeeping_suspended = 1;
2015
2016 /*
2017 * Since we've called forward_now, cycle_last stores the value
2018 * just read from the current clocksource. Save this to potentially
2019 * use in suspend timing.
2020 */
2021 curr_clock = tks->tkr_mono.clock;
2022 cycle_now = tks->tkr_mono.cycle_last;
2023 clocksource_start_suspend_timing(curr_clock, cycle_now);
2024
2025 if (persistent_clock_exists) {
2026 /*
2027 * To avoid drift caused by repeated suspend/resumes,
2028 * which each can add ~1 second drift error,
2029 * try to compensate so the difference in system time
2030 * and persistent_clock time stays close to constant.
2031 */
2032 delta = timespec64_sub(tk_xtime(tks), timekeeping_suspend_time);
2033 delta_delta = timespec64_sub(delta, old_delta);
2034 if (abs(delta_delta.tv_sec) >= 2) {
2035 /*
2036 * if delta_delta is too large, assume time correction
2037 * has occurred and set old_delta to the current delta.
2038 */
2039 old_delta = delta;
2040 } else {
2041 /* Otherwise try to adjust old_system to compensate */
2042 timekeeping_suspend_time =
2043 timespec64_add(timekeeping_suspend_time, delta_delta);
2044 }
2045 }
2046
2047 timekeeping_update_from_shadow(&tk_core, 0);
2048 halt_fast_timekeeper(tks);
2049 raw_spin_unlock_irqrestore(&tk_core.lock, flags);
2050
2051 tick_suspend();
2052 clocksource_suspend();
2053 clockevents_suspend();
2054
2055 return 0;
2056 }
2057
2058 /* sysfs resume/suspend bits for timekeeping */
2059 static struct syscore_ops timekeeping_syscore_ops = {
2060 .resume = timekeeping_resume,
2061 .suspend = timekeeping_suspend,
2062 };
2063
timekeeping_init_ops(void)2064 static int __init timekeeping_init_ops(void)
2065 {
2066 register_syscore_ops(&timekeeping_syscore_ops);
2067 return 0;
2068 }
2069 device_initcall(timekeeping_init_ops);
2070
2071 /*
2072 * Apply a multiplier adjustment to the timekeeper
2073 */
timekeeping_apply_adjustment(struct timekeeper * tk,s64 offset,s32 mult_adj)2074 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
2075 s64 offset,
2076 s32 mult_adj)
2077 {
2078 s64 interval = tk->cycle_interval;
2079
2080 if (mult_adj == 0) {
2081 return;
2082 } else if (mult_adj == -1) {
2083 interval = -interval;
2084 offset = -offset;
2085 } else if (mult_adj != 1) {
2086 interval *= mult_adj;
2087 offset *= mult_adj;
2088 }
2089
2090 /*
2091 * So the following can be confusing.
2092 *
2093 * To keep things simple, lets assume mult_adj == 1 for now.
2094 *
2095 * When mult_adj != 1, remember that the interval and offset values
2096 * have been appropriately scaled so the math is the same.
2097 *
2098 * The basic idea here is that we're increasing the multiplier
2099 * by one, this causes the xtime_interval to be incremented by
2100 * one cycle_interval. This is because:
2101 * xtime_interval = cycle_interval * mult
2102 * So if mult is being incremented by one:
2103 * xtime_interval = cycle_interval * (mult + 1)
2104 * Its the same as:
2105 * xtime_interval = (cycle_interval * mult) + cycle_interval
2106 * Which can be shortened to:
2107 * xtime_interval += cycle_interval
2108 *
2109 * So offset stores the non-accumulated cycles. Thus the current
2110 * time (in shifted nanoseconds) is:
2111 * now = (offset * adj) + xtime_nsec
2112 * Now, even though we're adjusting the clock frequency, we have
2113 * to keep time consistent. In other words, we can't jump back
2114 * in time, and we also want to avoid jumping forward in time.
2115 *
2116 * So given the same offset value, we need the time to be the same
2117 * both before and after the freq adjustment.
2118 * now = (offset * adj_1) + xtime_nsec_1
2119 * now = (offset * adj_2) + xtime_nsec_2
2120 * So:
2121 * (offset * adj_1) + xtime_nsec_1 =
2122 * (offset * adj_2) + xtime_nsec_2
2123 * And we know:
2124 * adj_2 = adj_1 + 1
2125 * So:
2126 * (offset * adj_1) + xtime_nsec_1 =
2127 * (offset * (adj_1+1)) + xtime_nsec_2
2128 * (offset * adj_1) + xtime_nsec_1 =
2129 * (offset * adj_1) + offset + xtime_nsec_2
2130 * Canceling the sides:
2131 * xtime_nsec_1 = offset + xtime_nsec_2
2132 * Which gives us:
2133 * xtime_nsec_2 = xtime_nsec_1 - offset
2134 * Which simplifies to:
2135 * xtime_nsec -= offset
2136 */
2137 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
2138 /* NTP adjustment caused clocksource mult overflow */
2139 WARN_ON_ONCE(1);
2140 return;
2141 }
2142
2143 tk->tkr_mono.mult += mult_adj;
2144 tk->xtime_interval += interval;
2145 tk->tkr_mono.xtime_nsec -= offset;
2146 }
2147
2148 /*
2149 * Adjust the timekeeper's multiplier to the correct frequency
2150 * and also to reduce the accumulated error value.
2151 */
timekeeping_adjust(struct timekeeper * tk,s64 offset)2152 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
2153 {
2154 u64 ntp_tl = ntp_tick_length(tk->id);
2155 u32 mult;
2156
2157 /*
2158 * Determine the multiplier from the current NTP tick length.
2159 * Avoid expensive division when the tick length doesn't change.
2160 */
2161 if (likely(tk->ntp_tick == ntp_tl)) {
2162 mult = tk->tkr_mono.mult - tk->ntp_err_mult;
2163 } else {
2164 tk->ntp_tick = ntp_tl;
2165 mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
2166 tk->xtime_remainder, tk->cycle_interval);
2167 }
2168
2169 /*
2170 * If the clock is behind the NTP time, increase the multiplier by 1
2171 * to catch up with it. If it's ahead and there was a remainder in the
2172 * tick division, the clock will slow down. Otherwise it will stay
2173 * ahead until the tick length changes to a non-divisible value.
2174 */
2175 tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
2176 mult += tk->ntp_err_mult;
2177
2178 timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
2179
2180 if (unlikely(tk->tkr_mono.clock->maxadj &&
2181 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
2182 > tk->tkr_mono.clock->maxadj))) {
2183 printk_once(KERN_WARNING
2184 "Adjusting %s more than 11%% (%ld vs %ld)\n",
2185 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
2186 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
2187 }
2188
2189 /*
2190 * It may be possible that when we entered this function, xtime_nsec
2191 * was very small. Further, if we're slightly speeding the clocksource
2192 * in the code above, its possible the required corrective factor to
2193 * xtime_nsec could cause it to underflow.
2194 *
2195 * Now, since we have already accumulated the second and the NTP
2196 * subsystem has been notified via second_overflow(), we need to skip
2197 * the next update.
2198 */
2199 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
2200 tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
2201 tk->tkr_mono.shift;
2202 tk->xtime_sec--;
2203 tk->skip_second_overflow = 1;
2204 }
2205 }
2206
2207 /*
2208 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
2209 *
2210 * Helper function that accumulates the nsecs greater than a second
2211 * from the xtime_nsec field to the xtime_secs field.
2212 * It also calls into the NTP code to handle leapsecond processing.
2213 */
accumulate_nsecs_to_secs(struct timekeeper * tk)2214 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
2215 {
2216 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
2217 unsigned int clock_set = 0;
2218
2219 while (tk->tkr_mono.xtime_nsec >= nsecps) {
2220 int leap;
2221
2222 tk->tkr_mono.xtime_nsec -= nsecps;
2223 tk->xtime_sec++;
2224
2225 /*
2226 * Skip NTP update if this second was accumulated before,
2227 * i.e. xtime_nsec underflowed in timekeeping_adjust()
2228 */
2229 if (unlikely(tk->skip_second_overflow)) {
2230 tk->skip_second_overflow = 0;
2231 continue;
2232 }
2233
2234 /* Figure out if its a leap sec and apply if needed */
2235 leap = second_overflow(tk->id, tk->xtime_sec);
2236 if (unlikely(leap)) {
2237 struct timespec64 ts;
2238
2239 tk->xtime_sec += leap;
2240
2241 ts.tv_sec = leap;
2242 ts.tv_nsec = 0;
2243 tk_set_wall_to_mono(tk,
2244 timespec64_sub(tk->wall_to_monotonic, ts));
2245
2246 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
2247
2248 clock_set = TK_CLOCK_WAS_SET;
2249 }
2250 }
2251 return clock_set;
2252 }
2253
2254 /*
2255 * logarithmic_accumulation - shifted accumulation of cycles
2256 *
2257 * This functions accumulates a shifted interval of cycles into
2258 * a shifted interval nanoseconds. Allows for O(log) accumulation
2259 * loop.
2260 *
2261 * Returns the unconsumed cycles.
2262 */
logarithmic_accumulation(struct timekeeper * tk,u64 offset,u32 shift,unsigned int * clock_set)2263 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
2264 u32 shift, unsigned int *clock_set)
2265 {
2266 u64 interval = tk->cycle_interval << shift;
2267 u64 snsec_per_sec;
2268
2269 /* If the offset is smaller than a shifted interval, do nothing */
2270 if (offset < interval)
2271 return offset;
2272
2273 /* Accumulate one shifted interval */
2274 offset -= interval;
2275 tk->tkr_mono.cycle_last += interval;
2276 tk->tkr_raw.cycle_last += interval;
2277
2278 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2279 *clock_set |= accumulate_nsecs_to_secs(tk);
2280
2281 /* Accumulate raw time */
2282 tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
2283 snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
2284 while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
2285 tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2286 tk->raw_sec++;
2287 }
2288
2289 /* Accumulate error between NTP and clock interval */
2290 tk->ntp_error += tk->ntp_tick << shift;
2291 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2292 (tk->ntp_error_shift + shift);
2293
2294 return offset;
2295 }
2296
2297 /*
2298 * timekeeping_advance - Updates the timekeeper to the current time and
2299 * current NTP tick length
2300 */
__timekeeping_advance(struct tk_data * tkd,enum timekeeping_adv_mode mode)2301 static bool __timekeeping_advance(struct tk_data *tkd, enum timekeeping_adv_mode mode)
2302 {
2303 struct timekeeper *tk = &tkd->shadow_timekeeper;
2304 struct timekeeper *real_tk = &tkd->timekeeper;
2305 unsigned int clock_set = 0;
2306 int shift = 0, maxshift;
2307 u64 offset, orig_offset;
2308
2309 /* Make sure we're fully resumed: */
2310 if (unlikely(timekeeping_suspended))
2311 return false;
2312
2313 offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2314 tk->tkr_mono.cycle_last, tk->tkr_mono.mask,
2315 tk->tkr_mono.clock->max_raw_delta);
2316 orig_offset = offset;
2317 /* Check if there's really nothing to do */
2318 if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK)
2319 return false;
2320
2321 /*
2322 * With NO_HZ we may have to accumulate many cycle_intervals
2323 * (think "ticks") worth of time at once. To do this efficiently,
2324 * we calculate the largest doubling multiple of cycle_intervals
2325 * that is smaller than the offset. We then accumulate that
2326 * chunk in one go, and then try to consume the next smaller
2327 * doubled multiple.
2328 */
2329 shift = ilog2(offset) - ilog2(tk->cycle_interval);
2330 shift = max(0, shift);
2331 /* Bound shift to one less than what overflows tick_length */
2332 maxshift = (64 - (ilog2(ntp_tick_length(tk->id)) + 1)) - 1;
2333 shift = min(shift, maxshift);
2334 while (offset >= tk->cycle_interval) {
2335 offset = logarithmic_accumulation(tk, offset, shift, &clock_set);
2336 if (offset < tk->cycle_interval<<shift)
2337 shift--;
2338 }
2339
2340 /* Adjust the multiplier to correct NTP error */
2341 timekeeping_adjust(tk, offset);
2342
2343 /*
2344 * Finally, make sure that after the rounding
2345 * xtime_nsec isn't larger than NSEC_PER_SEC
2346 */
2347 clock_set |= accumulate_nsecs_to_secs(tk);
2348
2349 /*
2350 * To avoid inconsistencies caused adjtimex TK_ADV_FREQ calls
2351 * making small negative adjustments to the base xtime_nsec
2352 * value, only update the coarse clocks if we accumulated time
2353 */
2354 if (orig_offset != offset)
2355 tk_update_coarse_nsecs(tk);
2356
2357 timekeeping_update_from_shadow(tkd, clock_set);
2358
2359 return !!clock_set;
2360 }
2361
timekeeping_advance(enum timekeeping_adv_mode mode)2362 static bool timekeeping_advance(enum timekeeping_adv_mode mode)
2363 {
2364 guard(raw_spinlock_irqsave)(&tk_core.lock);
2365 return __timekeeping_advance(&tk_core, mode);
2366 }
2367
2368 /**
2369 * update_wall_time - Uses the current clocksource to increment the wall time
2370 *
2371 * It also updates the enabled auxiliary clock timekeepers
2372 */
update_wall_time(void)2373 void update_wall_time(void)
2374 {
2375 if (timekeeping_advance(TK_ADV_TICK))
2376 clock_was_set_delayed();
2377 tk_aux_advance();
2378 }
2379
2380 /**
2381 * getboottime64 - Return the real time of system boot.
2382 * @ts: pointer to the timespec64 to be set
2383 *
2384 * Returns the wall-time of boot in a timespec64.
2385 *
2386 * This is based on the wall_to_monotonic offset and the total suspend
2387 * time. Calls to settimeofday will affect the value returned (which
2388 * basically means that however wrong your real time clock is at boot time,
2389 * you get the right time here).
2390 */
getboottime64(struct timespec64 * ts)2391 void getboottime64(struct timespec64 *ts)
2392 {
2393 struct timekeeper *tk = &tk_core.timekeeper;
2394 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2395
2396 *ts = ktime_to_timespec64(t);
2397 }
2398 EXPORT_SYMBOL_GPL(getboottime64);
2399
ktime_get_coarse_real_ts64(struct timespec64 * ts)2400 void ktime_get_coarse_real_ts64(struct timespec64 *ts)
2401 {
2402 struct timekeeper *tk = &tk_core.timekeeper;
2403 unsigned int seq;
2404
2405 do {
2406 seq = read_seqcount_begin(&tk_core.seq);
2407
2408 *ts = tk_xtime_coarse(tk);
2409 } while (read_seqcount_retry(&tk_core.seq, seq));
2410 }
2411 EXPORT_SYMBOL(ktime_get_coarse_real_ts64);
2412
2413 /**
2414 * ktime_get_coarse_real_ts64_mg - return latter of coarse grained time or floor
2415 * @ts: timespec64 to be filled
2416 *
2417 * Fetch the global mg_floor value, convert it to realtime and compare it
2418 * to the current coarse-grained time. Fill @ts with whichever is
2419 * latest. Note that this is a filesystem-specific interface and should be
2420 * avoided outside of that context.
2421 */
ktime_get_coarse_real_ts64_mg(struct timespec64 * ts)2422 void ktime_get_coarse_real_ts64_mg(struct timespec64 *ts)
2423 {
2424 struct timekeeper *tk = &tk_core.timekeeper;
2425 u64 floor = atomic64_read(&mg_floor);
2426 ktime_t f_real, offset, coarse;
2427 unsigned int seq;
2428
2429 do {
2430 seq = read_seqcount_begin(&tk_core.seq);
2431 *ts = tk_xtime_coarse(tk);
2432 offset = tk_core.timekeeper.offs_real;
2433 } while (read_seqcount_retry(&tk_core.seq, seq));
2434
2435 coarse = timespec64_to_ktime(*ts);
2436 f_real = ktime_add(floor, offset);
2437 if (ktime_after(f_real, coarse))
2438 *ts = ktime_to_timespec64(f_real);
2439 }
2440
2441 /**
2442 * ktime_get_real_ts64_mg - attempt to update floor value and return result
2443 * @ts: pointer to the timespec to be set
2444 *
2445 * Get a monotonic fine-grained time value and attempt to swap it into
2446 * mg_floor. If that succeeds then accept the new floor value. If it fails
2447 * then another task raced in during the interim time and updated the
2448 * floor. Since any update to the floor must be later than the previous
2449 * floor, either outcome is acceptable.
2450 *
2451 * Typically this will be called after calling ktime_get_coarse_real_ts64_mg(),
2452 * and determining that the resulting coarse-grained timestamp did not effect
2453 * a change in ctime. Any more recent floor value would effect a change to
2454 * ctime, so there is no need to retry the atomic64_try_cmpxchg() on failure.
2455 *
2456 * @ts will be filled with the latest floor value, regardless of the outcome of
2457 * the cmpxchg. Note that this is a filesystem specific interface and should be
2458 * avoided outside of that context.
2459 */
ktime_get_real_ts64_mg(struct timespec64 * ts)2460 void ktime_get_real_ts64_mg(struct timespec64 *ts)
2461 {
2462 struct timekeeper *tk = &tk_core.timekeeper;
2463 ktime_t old = atomic64_read(&mg_floor);
2464 ktime_t offset, mono;
2465 unsigned int seq;
2466 u64 nsecs;
2467
2468 do {
2469 seq = read_seqcount_begin(&tk_core.seq);
2470
2471 ts->tv_sec = tk->xtime_sec;
2472 mono = tk->tkr_mono.base;
2473 nsecs = timekeeping_get_ns(&tk->tkr_mono);
2474 offset = tk_core.timekeeper.offs_real;
2475 } while (read_seqcount_retry(&tk_core.seq, seq));
2476
2477 mono = ktime_add_ns(mono, nsecs);
2478
2479 /*
2480 * Attempt to update the floor with the new time value. As any
2481 * update must be later then the existing floor, and would effect
2482 * a change to ctime from the perspective of the current task,
2483 * accept the resulting floor value regardless of the outcome of
2484 * the swap.
2485 */
2486 if (atomic64_try_cmpxchg(&mg_floor, &old, mono)) {
2487 ts->tv_nsec = 0;
2488 timespec64_add_ns(ts, nsecs);
2489 timekeeping_inc_mg_floor_swaps();
2490 } else {
2491 /*
2492 * Another task changed mg_floor since "old" was fetched.
2493 * "old" has been updated with the latest value of "mg_floor".
2494 * That value is newer than the previous floor value, which
2495 * is enough to effect a change to ctime. Accept it.
2496 */
2497 *ts = ktime_to_timespec64(ktime_add(old, offset));
2498 }
2499 }
2500
ktime_get_coarse_ts64(struct timespec64 * ts)2501 void ktime_get_coarse_ts64(struct timespec64 *ts)
2502 {
2503 struct timekeeper *tk = &tk_core.timekeeper;
2504 struct timespec64 now, mono;
2505 unsigned int seq;
2506
2507 do {
2508 seq = read_seqcount_begin(&tk_core.seq);
2509
2510 now = tk_xtime_coarse(tk);
2511 mono = tk->wall_to_monotonic;
2512 } while (read_seqcount_retry(&tk_core.seq, seq));
2513
2514 set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec,
2515 now.tv_nsec + mono.tv_nsec);
2516 }
2517 EXPORT_SYMBOL(ktime_get_coarse_ts64);
2518
2519 /*
2520 * Must hold jiffies_lock
2521 */
do_timer(unsigned long ticks)2522 void do_timer(unsigned long ticks)
2523 {
2524 jiffies_64 += ticks;
2525 calc_global_load();
2526 }
2527
2528 /**
2529 * ktime_get_update_offsets_now - hrtimer helper
2530 * @cwsseq: pointer to check and store the clock was set sequence number
2531 * @offs_real: pointer to storage for monotonic -> realtime offset
2532 * @offs_boot: pointer to storage for monotonic -> boottime offset
2533 * @offs_tai: pointer to storage for monotonic -> clock tai offset
2534 *
2535 * Returns current monotonic time and updates the offsets if the
2536 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2537 * different.
2538 *
2539 * Called from hrtimer_interrupt() or retrigger_next_event()
2540 */
ktime_get_update_offsets_now(unsigned int * cwsseq,ktime_t * offs_real,ktime_t * offs_boot,ktime_t * offs_tai)2541 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2542 ktime_t *offs_boot, ktime_t *offs_tai)
2543 {
2544 struct timekeeper *tk = &tk_core.timekeeper;
2545 unsigned int seq;
2546 ktime_t base;
2547 u64 nsecs;
2548
2549 do {
2550 seq = read_seqcount_begin(&tk_core.seq);
2551
2552 base = tk->tkr_mono.base;
2553 nsecs = timekeeping_get_ns(&tk->tkr_mono);
2554 base = ktime_add_ns(base, nsecs);
2555
2556 if (*cwsseq != tk->clock_was_set_seq) {
2557 *cwsseq = tk->clock_was_set_seq;
2558 *offs_real = tk->offs_real;
2559 *offs_boot = tk->offs_boot;
2560 *offs_tai = tk->offs_tai;
2561 }
2562
2563 /* Handle leapsecond insertion adjustments */
2564 if (unlikely(base >= tk->next_leap_ktime))
2565 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2566
2567 } while (read_seqcount_retry(&tk_core.seq, seq));
2568
2569 return base;
2570 }
2571
2572 /*
2573 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
2574 */
timekeeping_validate_timex(const struct __kernel_timex * txc,bool aux_clock)2575 static int timekeeping_validate_timex(const struct __kernel_timex *txc, bool aux_clock)
2576 {
2577 if (txc->modes & ADJ_ADJTIME) {
2578 /* singleshot must not be used with any other mode bits */
2579 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
2580 return -EINVAL;
2581 if (!(txc->modes & ADJ_OFFSET_READONLY) &&
2582 !capable(CAP_SYS_TIME))
2583 return -EPERM;
2584 } else {
2585 /* In order to modify anything, you gotta be super-user! */
2586 if (txc->modes && !capable(CAP_SYS_TIME))
2587 return -EPERM;
2588 /*
2589 * if the quartz is off by more than 10% then
2590 * something is VERY wrong!
2591 */
2592 if (txc->modes & ADJ_TICK &&
2593 (txc->tick < 900000/USER_HZ ||
2594 txc->tick > 1100000/USER_HZ))
2595 return -EINVAL;
2596 }
2597
2598 if (txc->modes & ADJ_SETOFFSET) {
2599 /* In order to inject time, you gotta be super-user! */
2600 if (!capable(CAP_SYS_TIME))
2601 return -EPERM;
2602
2603 /*
2604 * Validate if a timespec/timeval used to inject a time
2605 * offset is valid. Offsets can be positive or negative, so
2606 * we don't check tv_sec. The value of the timeval/timespec
2607 * is the sum of its fields,but *NOTE*:
2608 * The field tv_usec/tv_nsec must always be non-negative and
2609 * we can't have more nanoseconds/microseconds than a second.
2610 */
2611 if (txc->time.tv_usec < 0)
2612 return -EINVAL;
2613
2614 if (txc->modes & ADJ_NANO) {
2615 if (txc->time.tv_usec >= NSEC_PER_SEC)
2616 return -EINVAL;
2617 } else {
2618 if (txc->time.tv_usec >= USEC_PER_SEC)
2619 return -EINVAL;
2620 }
2621 }
2622
2623 /*
2624 * Check for potential multiplication overflows that can
2625 * only happen on 64-bit systems:
2626 */
2627 if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
2628 if (LLONG_MIN / PPM_SCALE > txc->freq)
2629 return -EINVAL;
2630 if (LLONG_MAX / PPM_SCALE < txc->freq)
2631 return -EINVAL;
2632 }
2633
2634 if (aux_clock) {
2635 /* Auxiliary clocks are similar to TAI and do not have leap seconds */
2636 if (txc->status & (STA_INS | STA_DEL))
2637 return -EINVAL;
2638
2639 /* No TAI offset setting */
2640 if (txc->modes & ADJ_TAI)
2641 return -EINVAL;
2642
2643 /* No PPS support either */
2644 if (txc->status & (STA_PPSFREQ | STA_PPSTIME))
2645 return -EINVAL;
2646 }
2647
2648 return 0;
2649 }
2650
2651 /**
2652 * random_get_entropy_fallback - Returns the raw clock source value,
2653 * used by random.c for platforms with no valid random_get_entropy().
2654 */
random_get_entropy_fallback(void)2655 unsigned long random_get_entropy_fallback(void)
2656 {
2657 struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono;
2658 struct clocksource *clock = READ_ONCE(tkr->clock);
2659
2660 if (unlikely(timekeeping_suspended || !clock))
2661 return 0;
2662 return clock->read(clock);
2663 }
2664 EXPORT_SYMBOL_GPL(random_get_entropy_fallback);
2665
2666 struct adjtimex_result {
2667 struct audit_ntp_data ad;
2668 struct timespec64 delta;
2669 bool clock_set;
2670 };
2671
__do_adjtimex(struct tk_data * tkd,struct __kernel_timex * txc,struct adjtimex_result * result)2672 static int __do_adjtimex(struct tk_data *tkd, struct __kernel_timex *txc,
2673 struct adjtimex_result *result)
2674 {
2675 struct timekeeper *tks = &tkd->shadow_timekeeper;
2676 bool aux_clock = !timekeeper_is_core_tk(tks);
2677 struct timespec64 ts;
2678 s32 orig_tai, tai;
2679 int ret;
2680
2681 /* Validate the data before disabling interrupts */
2682 ret = timekeeping_validate_timex(txc, aux_clock);
2683 if (ret)
2684 return ret;
2685 add_device_randomness(txc, sizeof(*txc));
2686
2687 if (!aux_clock)
2688 ktime_get_real_ts64(&ts);
2689 else
2690 tk_get_aux_ts64(tkd->timekeeper.id, &ts);
2691
2692 add_device_randomness(&ts, sizeof(ts));
2693
2694 guard(raw_spinlock_irqsave)(&tkd->lock);
2695
2696 if (!tks->clock_valid)
2697 return -ENODEV;
2698
2699 if (txc->modes & ADJ_SETOFFSET) {
2700 result->delta.tv_sec = txc->time.tv_sec;
2701 result->delta.tv_nsec = txc->time.tv_usec;
2702 if (!(txc->modes & ADJ_NANO))
2703 result->delta.tv_nsec *= 1000;
2704 ret = __timekeeping_inject_offset(tkd, &result->delta);
2705 if (ret)
2706 return ret;
2707 result->clock_set = true;
2708 }
2709
2710 orig_tai = tai = tks->tai_offset;
2711 ret = ntp_adjtimex(tks->id, txc, &ts, &tai, &result->ad);
2712
2713 if (tai != orig_tai) {
2714 __timekeeping_set_tai_offset(tks, tai);
2715 timekeeping_update_from_shadow(tkd, TK_CLOCK_WAS_SET);
2716 result->clock_set = true;
2717 } else {
2718 tk_update_leap_state_all(&tk_core);
2719 }
2720
2721 /* Update the multiplier immediately if frequency was set directly */
2722 if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK))
2723 result->clock_set |= __timekeeping_advance(tkd, TK_ADV_FREQ);
2724
2725 return ret;
2726 }
2727
2728 /**
2729 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2730 * @txc: Pointer to kernel_timex structure containing NTP parameters
2731 */
do_adjtimex(struct __kernel_timex * txc)2732 int do_adjtimex(struct __kernel_timex *txc)
2733 {
2734 struct adjtimex_result result = { };
2735 int ret;
2736
2737 ret = __do_adjtimex(&tk_core, txc, &result);
2738 if (ret < 0)
2739 return ret;
2740
2741 if (txc->modes & ADJ_SETOFFSET)
2742 audit_tk_injoffset(result.delta);
2743
2744 audit_ntp_log(&result.ad);
2745
2746 if (result.clock_set)
2747 clock_was_set(CLOCK_SET_WALL);
2748
2749 ntp_notify_cmos_timer(result.delta.tv_sec != 0);
2750
2751 return ret;
2752 }
2753
2754 /*
2755 * Invoked from NTP with the time keeper lock held, so lockless access is
2756 * fine.
2757 */
ktime_get_ntp_seconds(unsigned int id)2758 long ktime_get_ntp_seconds(unsigned int id)
2759 {
2760 return timekeeper_data[id].timekeeper.xtime_sec;
2761 }
2762
2763 #ifdef CONFIG_NTP_PPS
2764 /**
2765 * hardpps() - Accessor function to NTP __hardpps function
2766 * @phase_ts: Pointer to timespec64 structure representing phase timestamp
2767 * @raw_ts: Pointer to timespec64 structure representing raw timestamp
2768 */
hardpps(const struct timespec64 * phase_ts,const struct timespec64 * raw_ts)2769 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2770 {
2771 guard(raw_spinlock_irqsave)(&tk_core.lock);
2772 __hardpps(phase_ts, raw_ts);
2773 }
2774 EXPORT_SYMBOL(hardpps);
2775 #endif /* CONFIG_NTP_PPS */
2776
2777 #ifdef CONFIG_POSIX_AUX_CLOCKS
2778 #include "posix-timers.h"
2779
2780 /*
2781 * Bitmap for the activated auxiliary timekeepers to allow lockless quick
2782 * checks in the hot paths without touching extra cache lines. If set, then
2783 * the state of the corresponding timekeeper has to be re-checked under
2784 * timekeeper::lock.
2785 */
2786 static unsigned long aux_timekeepers;
2787
clockid_to_tkid(unsigned int id)2788 static inline unsigned int clockid_to_tkid(unsigned int id)
2789 {
2790 return TIMEKEEPER_AUX_FIRST + id - CLOCK_AUX;
2791 }
2792
aux_get_tk_data(clockid_t id)2793 static inline struct tk_data *aux_get_tk_data(clockid_t id)
2794 {
2795 if (!clockid_aux_valid(id))
2796 return NULL;
2797 return &timekeeper_data[clockid_to_tkid(id)];
2798 }
2799
2800 /* Invoked from timekeeping after a clocksource change */
tk_aux_update_clocksource(void)2801 static void tk_aux_update_clocksource(void)
2802 {
2803 unsigned long active = READ_ONCE(aux_timekeepers);
2804 unsigned int id;
2805
2806 for_each_set_bit(id, &active, BITS_PER_LONG) {
2807 struct tk_data *tkd = &timekeeper_data[id + TIMEKEEPER_AUX_FIRST];
2808 struct timekeeper *tks = &tkd->shadow_timekeeper;
2809
2810 guard(raw_spinlock_irqsave)(&tkd->lock);
2811 if (!tks->clock_valid)
2812 continue;
2813
2814 timekeeping_forward_now(tks);
2815 tk_setup_internals(tks, tk_core.timekeeper.tkr_mono.clock);
2816 timekeeping_update_from_shadow(tkd, TK_UPDATE_ALL);
2817 }
2818 }
2819
tk_aux_advance(void)2820 static void tk_aux_advance(void)
2821 {
2822 unsigned long active = READ_ONCE(aux_timekeepers);
2823 unsigned int id;
2824
2825 /* Lockless quick check to avoid extra cache lines */
2826 for_each_set_bit(id, &active, BITS_PER_LONG) {
2827 struct tk_data *aux_tkd = &timekeeper_data[id + TIMEKEEPER_AUX_FIRST];
2828
2829 guard(raw_spinlock)(&aux_tkd->lock);
2830 if (aux_tkd->shadow_timekeeper.clock_valid)
2831 __timekeeping_advance(aux_tkd, TK_ADV_TICK);
2832 }
2833 }
2834
2835 /**
2836 * ktime_get_aux - Get time for a AUX clock
2837 * @id: ID of the clock to read (CLOCK_AUX...)
2838 * @kt: Pointer to ktime_t to store the time stamp
2839 *
2840 * Returns: True if the timestamp is valid, false otherwise
2841 */
ktime_get_aux(clockid_t id,ktime_t * kt)2842 bool ktime_get_aux(clockid_t id, ktime_t *kt)
2843 {
2844 struct tk_data *aux_tkd = aux_get_tk_data(id);
2845 struct timekeeper *aux_tk;
2846 unsigned int seq;
2847 ktime_t base;
2848 u64 nsecs;
2849
2850 WARN_ON(timekeeping_suspended);
2851
2852 if (!aux_tkd)
2853 return false;
2854
2855 aux_tk = &aux_tkd->timekeeper;
2856 do {
2857 seq = read_seqcount_begin(&aux_tkd->seq);
2858 if (!aux_tk->clock_valid)
2859 return false;
2860
2861 base = ktime_add(aux_tk->tkr_mono.base, aux_tk->offs_aux);
2862 nsecs = timekeeping_get_ns(&aux_tk->tkr_mono);
2863 } while (read_seqcount_retry(&aux_tkd->seq, seq));
2864
2865 *kt = ktime_add_ns(base, nsecs);
2866 return true;
2867 }
2868 EXPORT_SYMBOL_GPL(ktime_get_aux);
2869
2870 /**
2871 * ktime_get_aux_ts64 - Get time for a AUX clock
2872 * @id: ID of the clock to read (CLOCK_AUX...)
2873 * @ts: Pointer to timespec64 to store the time stamp
2874 *
2875 * Returns: True if the timestamp is valid, false otherwise
2876 */
ktime_get_aux_ts64(clockid_t id,struct timespec64 * ts)2877 bool ktime_get_aux_ts64(clockid_t id, struct timespec64 *ts)
2878 {
2879 ktime_t now;
2880
2881 if (!ktime_get_aux(id, &now))
2882 return false;
2883 *ts = ktime_to_timespec64(now);
2884 return true;
2885 }
2886 EXPORT_SYMBOL_GPL(ktime_get_aux_ts64);
2887
aux_get_res(clockid_t id,struct timespec64 * tp)2888 static int aux_get_res(clockid_t id, struct timespec64 *tp)
2889 {
2890 if (!clockid_aux_valid(id))
2891 return -ENODEV;
2892
2893 tp->tv_sec = aux_clock_resolution_ns() / NSEC_PER_SEC;
2894 tp->tv_nsec = aux_clock_resolution_ns() % NSEC_PER_SEC;
2895 return 0;
2896 }
2897
aux_get_timespec(clockid_t id,struct timespec64 * tp)2898 static int aux_get_timespec(clockid_t id, struct timespec64 *tp)
2899 {
2900 return ktime_get_aux_ts64(id, tp) ? 0 : -ENODEV;
2901 }
2902
aux_clock_set(const clockid_t id,const struct timespec64 * tnew)2903 static int aux_clock_set(const clockid_t id, const struct timespec64 *tnew)
2904 {
2905 struct tk_data *aux_tkd = aux_get_tk_data(id);
2906 struct timekeeper *aux_tks;
2907 ktime_t tnow, nsecs;
2908
2909 if (!timespec64_valid_settod(tnew))
2910 return -EINVAL;
2911 if (!aux_tkd)
2912 return -ENODEV;
2913
2914 aux_tks = &aux_tkd->shadow_timekeeper;
2915
2916 guard(raw_spinlock_irq)(&aux_tkd->lock);
2917 if (!aux_tks->clock_valid)
2918 return -ENODEV;
2919
2920 /* Forward the timekeeper base time */
2921 timekeeping_forward_now(aux_tks);
2922 /*
2923 * Get the updated base time. tkr_mono.base has not been
2924 * updated yet, so do that first. That makes the update
2925 * in timekeeping_update_from_shadow() redundant, but
2926 * that's harmless. After that @tnow can be calculated
2927 * by using tkr_mono::cycle_last, which has been set
2928 * by timekeeping_forward_now().
2929 */
2930 tk_update_ktime_data(aux_tks);
2931 nsecs = timekeeping_cycles_to_ns(&aux_tks->tkr_mono, aux_tks->tkr_mono.cycle_last);
2932 tnow = ktime_add(aux_tks->tkr_mono.base, nsecs);
2933
2934 /*
2935 * Calculate the new AUX offset as delta to @tnow ("monotonic").
2936 * That avoids all the tk::xtime back and forth conversions as
2937 * xtime ("realtime") is not applicable for auxiliary clocks and
2938 * kept in sync with "monotonic".
2939 */
2940 aux_tks->offs_aux = ktime_sub(timespec64_to_ktime(*tnew), tnow);
2941
2942 timekeeping_update_from_shadow(aux_tkd, TK_UPDATE_ALL);
2943 return 0;
2944 }
2945
aux_clock_adj(const clockid_t id,struct __kernel_timex * txc)2946 static int aux_clock_adj(const clockid_t id, struct __kernel_timex *txc)
2947 {
2948 struct tk_data *aux_tkd = aux_get_tk_data(id);
2949 struct adjtimex_result result = { };
2950
2951 if (!aux_tkd)
2952 return -ENODEV;
2953
2954 /*
2955 * @result is ignored for now as there are neither hrtimers nor a
2956 * RTC related to auxiliary clocks for now.
2957 */
2958 return __do_adjtimex(aux_tkd, txc, &result);
2959 }
2960
2961 const struct k_clock clock_aux = {
2962 .clock_getres = aux_get_res,
2963 .clock_get_timespec = aux_get_timespec,
2964 .clock_set = aux_clock_set,
2965 .clock_adj = aux_clock_adj,
2966 };
2967
aux_clock_enable(clockid_t id)2968 static void aux_clock_enable(clockid_t id)
2969 {
2970 struct tk_read_base *tkr_raw = &tk_core.timekeeper.tkr_raw;
2971 struct tk_data *aux_tkd = aux_get_tk_data(id);
2972 struct timekeeper *aux_tks = &aux_tkd->shadow_timekeeper;
2973
2974 /* Prevent the core timekeeper from changing. */
2975 guard(raw_spinlock_irq)(&tk_core.lock);
2976
2977 /*
2978 * Setup the auxiliary clock assuming that the raw core timekeeper
2979 * clock frequency conversion is close enough. Userspace has to
2980 * adjust for the deviation via clock_adjtime(2).
2981 */
2982 guard(raw_spinlock_nested)(&aux_tkd->lock);
2983
2984 /* Remove leftovers of a previous registration */
2985 memset(aux_tks, 0, sizeof(*aux_tks));
2986 /* Restore the timekeeper id */
2987 aux_tks->id = aux_tkd->timekeeper.id;
2988 /* Setup the timekeeper based on the current system clocksource */
2989 tk_setup_internals(aux_tks, tkr_raw->clock);
2990
2991 /* Mark it valid and set it live */
2992 aux_tks->clock_valid = true;
2993 timekeeping_update_from_shadow(aux_tkd, TK_UPDATE_ALL);
2994 }
2995
aux_clock_disable(clockid_t id)2996 static void aux_clock_disable(clockid_t id)
2997 {
2998 struct tk_data *aux_tkd = aux_get_tk_data(id);
2999
3000 guard(raw_spinlock_irq)(&aux_tkd->lock);
3001 aux_tkd->shadow_timekeeper.clock_valid = false;
3002 timekeeping_update_from_shadow(aux_tkd, TK_UPDATE_ALL);
3003 }
3004
3005 static DEFINE_MUTEX(aux_clock_mutex);
3006
aux_clock_enable_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3007 static ssize_t aux_clock_enable_store(struct kobject *kobj, struct kobj_attribute *attr,
3008 const char *buf, size_t count)
3009 {
3010 /* Lazy atoi() as name is "0..7" */
3011 int id = kobj->name[0] & 0x7;
3012 bool enable;
3013
3014 if (!capable(CAP_SYS_TIME))
3015 return -EPERM;
3016
3017 if (kstrtobool(buf, &enable) < 0)
3018 return -EINVAL;
3019
3020 guard(mutex)(&aux_clock_mutex);
3021 if (enable == test_bit(id, &aux_timekeepers))
3022 return count;
3023
3024 if (enable) {
3025 aux_clock_enable(CLOCK_AUX + id);
3026 set_bit(id, &aux_timekeepers);
3027 } else {
3028 aux_clock_disable(CLOCK_AUX + id);
3029 clear_bit(id, &aux_timekeepers);
3030 }
3031 return count;
3032 }
3033
aux_clock_enable_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3034 static ssize_t aux_clock_enable_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
3035 {
3036 unsigned long active = READ_ONCE(aux_timekeepers);
3037 /* Lazy atoi() as name is "0..7" */
3038 int id = kobj->name[0] & 0x7;
3039
3040 return sysfs_emit(buf, "%d\n", test_bit(id, &active));
3041 }
3042
3043 static struct kobj_attribute aux_clock_enable_attr = __ATTR_RW(aux_clock_enable);
3044
3045 static struct attribute *aux_clock_enable_attrs[] = {
3046 &aux_clock_enable_attr.attr,
3047 NULL
3048 };
3049
3050 static const struct attribute_group aux_clock_enable_attr_group = {
3051 .attrs = aux_clock_enable_attrs,
3052 };
3053
tk_aux_sysfs_init(void)3054 static int __init tk_aux_sysfs_init(void)
3055 {
3056 struct kobject *auxo, *tko = kobject_create_and_add("time", kernel_kobj);
3057
3058 if (!tko)
3059 return -ENOMEM;
3060
3061 auxo = kobject_create_and_add("aux_clocks", tko);
3062 if (!auxo) {
3063 kobject_put(tko);
3064 return -ENOMEM;
3065 }
3066
3067 for (int i = 0; i <= MAX_AUX_CLOCKS; i++) {
3068 char id[2] = { [0] = '0' + i, };
3069 struct kobject *clk = kobject_create_and_add(id, auxo);
3070
3071 if (!clk)
3072 return -ENOMEM;
3073
3074 int ret = sysfs_create_group(clk, &aux_clock_enable_attr_group);
3075
3076 if (ret)
3077 return ret;
3078 }
3079 return 0;
3080 }
3081 late_initcall(tk_aux_sysfs_init);
3082
tk_aux_setup(void)3083 static __init void tk_aux_setup(void)
3084 {
3085 for (int i = TIMEKEEPER_AUX_FIRST; i <= TIMEKEEPER_AUX_LAST; i++)
3086 tkd_basic_setup(&timekeeper_data[i], i, false);
3087 }
3088 #endif /* CONFIG_POSIX_AUX_CLOCKS */
3089