xref: /linux/drivers/net/ethernet/intel/ice/ice_ptp.c (revision 2c1ed907520c50326b8f604907a8478b27881a2e)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2021, Intel Corporation. */
3 
4 #include "ice.h"
5 #include "ice_lib.h"
6 #include "ice_trace.h"
7 #include "ice_cgu_regs.h"
8 
9 static const char ice_pin_names[][64] = {
10 	"SDP0",
11 	"SDP1",
12 	"SDP2",
13 	"SDP3",
14 	"TIME_SYNC",
15 	"1PPS"
16 };
17 
18 static const struct ice_ptp_pin_desc ice_pin_desc_e82x[] = {
19 	/* name,        gpio,       delay */
20 	{  TIME_SYNC, {  4, -1 }, { 0,  0 }},
21 	{  ONE_PPS,   { -1,  5 }, { 0, 11 }},
22 };
23 
24 static const struct ice_ptp_pin_desc ice_pin_desc_e825c[] = {
25 	/* name,        gpio,       delay */
26 	{  SDP0,      {  0,  0 }, { 15, 14 }},
27 	{  SDP1,      {  1,  1 }, { 15, 14 }},
28 	{  SDP2,      {  2,  2 }, { 15, 14 }},
29 	{  SDP3,      {  3,  3 }, { 15, 14 }},
30 	{  TIME_SYNC, {  4, -1 }, { 11,  0 }},
31 	{  ONE_PPS,   { -1,  5 }, {  0,  9 }},
32 };
33 
34 static const struct ice_ptp_pin_desc ice_pin_desc_e810[] = {
35 	/* name,        gpio,       delay */
36 	{  SDP0,      {  0,  0 }, { 0, 1 }},
37 	{  SDP1,      {  1,  1 }, { 0, 1 }},
38 	{  SDP2,      {  2,  2 }, { 0, 1 }},
39 	{  SDP3,      {  3,  3 }, { 0, 1 }},
40 	{  ONE_PPS,   { -1,  5 }, { 0, 1 }},
41 };
42 
43 static const char ice_pin_names_nvm[][64] = {
44 	"GNSS",
45 	"SMA1",
46 	"U.FL1",
47 	"SMA2",
48 	"U.FL2",
49 };
50 
51 static const struct ice_ptp_pin_desc ice_pin_desc_e810_sma[] = {
52 	/* name,   gpio,       delay */
53 	{  GNSS, {  1, -1 }, { 0, 0 }},
54 	{  SMA1, {  1,  0 }, { 0, 1 }},
55 	{  UFL1, { -1,  0 }, { 0, 1 }},
56 	{  SMA2, {  3,  2 }, { 0, 1 }},
57 	{  UFL2, {  3, -1 }, { 0, 0 }},
58 };
59 
ice_get_ctrl_pf(struct ice_pf * pf)60 static struct ice_pf *ice_get_ctrl_pf(struct ice_pf *pf)
61 {
62 	return !pf->adapter ? NULL : pf->adapter->ctrl_pf;
63 }
64 
ice_get_ctrl_ptp(struct ice_pf * pf)65 static struct ice_ptp *ice_get_ctrl_ptp(struct ice_pf *pf)
66 {
67 	struct ice_pf *ctrl_pf = ice_get_ctrl_pf(pf);
68 
69 	return !ctrl_pf ? NULL : &ctrl_pf->ptp;
70 }
71 
72 /**
73  * ice_ptp_find_pin_idx - Find pin index in ptp_pin_desc
74  * @pf: Board private structure
75  * @func: Pin function
76  * @chan: GPIO channel
77  *
78  * Return: positive pin number when pin is present, -1 otherwise
79  */
ice_ptp_find_pin_idx(struct ice_pf * pf,enum ptp_pin_function func,unsigned int chan)80 static int ice_ptp_find_pin_idx(struct ice_pf *pf, enum ptp_pin_function func,
81 				unsigned int chan)
82 {
83 	const struct ptp_clock_info *info = &pf->ptp.info;
84 	int i;
85 
86 	for (i = 0; i < info->n_pins; i++) {
87 		if (info->pin_config[i].func == func &&
88 		    info->pin_config[i].chan == chan)
89 			return i;
90 	}
91 
92 	return -1;
93 }
94 
95 /**
96  * ice_ptp_update_sma_data - update SMA pins data according to pins setup
97  * @pf: Board private structure
98  * @sma_pins: parsed SMA pins status
99  * @data: SMA data to update
100  */
ice_ptp_update_sma_data(struct ice_pf * pf,unsigned int sma_pins[],u8 * data)101 static void ice_ptp_update_sma_data(struct ice_pf *pf, unsigned int sma_pins[],
102 				    u8 *data)
103 {
104 	const char *state1, *state2;
105 
106 	/* Set the right state based on the desired configuration.
107 	 * When bit is set, functionality is disabled.
108 	 */
109 	*data &= ~ICE_ALL_SMA_MASK;
110 	if (!sma_pins[UFL1 - 1]) {
111 		if (sma_pins[SMA1 - 1] == PTP_PF_EXTTS) {
112 			state1 = "SMA1 Rx, U.FL1 disabled";
113 			*data |= ICE_SMA1_TX_EN;
114 		} else if (sma_pins[SMA1 - 1] == PTP_PF_PEROUT) {
115 			state1 = "SMA1 Tx U.FL1 disabled";
116 			*data |= ICE_SMA1_DIR_EN;
117 		} else {
118 			state1 = "SMA1 disabled, U.FL1 disabled";
119 			*data |= ICE_SMA1_MASK;
120 		}
121 	} else {
122 		/* U.FL1 Tx will always enable SMA1 Rx */
123 		state1 = "SMA1 Rx, U.FL1 Tx";
124 	}
125 
126 	if (!sma_pins[UFL2 - 1]) {
127 		if (sma_pins[SMA2 - 1] == PTP_PF_EXTTS) {
128 			state2 = "SMA2 Rx, U.FL2 disabled";
129 			*data |= ICE_SMA2_TX_EN | ICE_SMA2_UFL2_RX_DIS;
130 		} else if (sma_pins[SMA2 - 1] == PTP_PF_PEROUT) {
131 			state2 = "SMA2 Tx, U.FL2 disabled";
132 			*data |= ICE_SMA2_DIR_EN | ICE_SMA2_UFL2_RX_DIS;
133 		} else {
134 			state2 = "SMA2 disabled, U.FL2 disabled";
135 			*data |= ICE_SMA2_MASK;
136 		}
137 	} else {
138 		if (!sma_pins[SMA2 - 1]) {
139 			state2 = "SMA2 disabled, U.FL2 Rx";
140 			*data |= ICE_SMA2_DIR_EN | ICE_SMA2_TX_EN;
141 		} else {
142 			state2 = "SMA2 Tx, U.FL2 Rx";
143 			*data |= ICE_SMA2_DIR_EN;
144 		}
145 	}
146 
147 	dev_dbg(ice_pf_to_dev(pf), "%s, %s\n", state1, state2);
148 }
149 
150 /**
151  * ice_ptp_set_sma_cfg - set the configuration of the SMA control logic
152  * @pf: Board private structure
153  *
154  * Return: 0 on success, negative error code otherwise
155  */
ice_ptp_set_sma_cfg(struct ice_pf * pf)156 static int ice_ptp_set_sma_cfg(struct ice_pf *pf)
157 {
158 	const struct ice_ptp_pin_desc *ice_pins = pf->ptp.ice_pin_desc;
159 	struct ptp_pin_desc *pins = pf->ptp.pin_desc;
160 	unsigned int sma_pins[ICE_SMA_PINS_NUM] = {};
161 	int err;
162 	u8 data;
163 
164 	/* Read initial pin state value */
165 	err = ice_read_sma_ctrl(&pf->hw, &data);
166 	if (err)
167 		return err;
168 
169 	/* Get SMA/U.FL pins states */
170 	for (int i = 0; i < pf->ptp.info.n_pins; i++)
171 		if (pins[i].func) {
172 			int name_idx = ice_pins[i].name_idx;
173 
174 			switch (name_idx) {
175 			case SMA1:
176 			case UFL1:
177 			case SMA2:
178 			case UFL2:
179 				sma_pins[name_idx - 1] = pins[i].func;
180 				break;
181 			default:
182 				continue;
183 			}
184 		}
185 
186 	ice_ptp_update_sma_data(pf, sma_pins, &data);
187 	return ice_write_sma_ctrl(&pf->hw, data);
188 }
189 
190 /**
191  * ice_ptp_cfg_tx_interrupt - Configure Tx timestamp interrupt for the device
192  * @pf: Board private structure
193  *
194  * Program the device to respond appropriately to the Tx timestamp interrupt
195  * cause.
196  */
ice_ptp_cfg_tx_interrupt(struct ice_pf * pf)197 static void ice_ptp_cfg_tx_interrupt(struct ice_pf *pf)
198 {
199 	struct ice_hw *hw = &pf->hw;
200 	bool enable;
201 	u32 val;
202 
203 	switch (pf->ptp.tx_interrupt_mode) {
204 	case ICE_PTP_TX_INTERRUPT_ALL:
205 		/* React to interrupts across all quads. */
206 		wr32(hw, PFINT_TSYN_MSK + (0x4 * hw->pf_id), (u32)0x1f);
207 		enable = true;
208 		break;
209 	case ICE_PTP_TX_INTERRUPT_NONE:
210 		/* Do not react to interrupts on any quad. */
211 		wr32(hw, PFINT_TSYN_MSK + (0x4 * hw->pf_id), (u32)0x0);
212 		enable = false;
213 		break;
214 	case ICE_PTP_TX_INTERRUPT_SELF:
215 	default:
216 		enable = pf->ptp.tstamp_config.tx_type == HWTSTAMP_TX_ON;
217 		break;
218 	}
219 
220 	/* Configure the Tx timestamp interrupt */
221 	val = rd32(hw, PFINT_OICR_ENA);
222 	if (enable)
223 		val |= PFINT_OICR_TSYN_TX_M;
224 	else
225 		val &= ~PFINT_OICR_TSYN_TX_M;
226 	wr32(hw, PFINT_OICR_ENA, val);
227 }
228 
229 /**
230  * ice_set_rx_tstamp - Enable or disable Rx timestamping
231  * @pf: The PF pointer to search in
232  * @on: bool value for whether timestamps are enabled or disabled
233  */
ice_set_rx_tstamp(struct ice_pf * pf,bool on)234 static void ice_set_rx_tstamp(struct ice_pf *pf, bool on)
235 {
236 	struct ice_vsi *vsi;
237 	u16 i;
238 
239 	vsi = ice_get_main_vsi(pf);
240 	if (!vsi || !vsi->rx_rings)
241 		return;
242 
243 	/* Set the timestamp flag for all the Rx rings */
244 	ice_for_each_rxq(vsi, i) {
245 		if (!vsi->rx_rings[i])
246 			continue;
247 		vsi->rx_rings[i]->ptp_rx = on;
248 	}
249 }
250 
251 /**
252  * ice_ptp_disable_timestamp_mode - Disable current timestamp mode
253  * @pf: Board private structure
254  *
255  * Called during preparation for reset to temporarily disable timestamping on
256  * the device. Called during remove to disable timestamping while cleaning up
257  * driver resources.
258  */
ice_ptp_disable_timestamp_mode(struct ice_pf * pf)259 static void ice_ptp_disable_timestamp_mode(struct ice_pf *pf)
260 {
261 	struct ice_hw *hw = &pf->hw;
262 	u32 val;
263 
264 	val = rd32(hw, PFINT_OICR_ENA);
265 	val &= ~PFINT_OICR_TSYN_TX_M;
266 	wr32(hw, PFINT_OICR_ENA, val);
267 
268 	ice_set_rx_tstamp(pf, false);
269 }
270 
271 /**
272  * ice_ptp_restore_timestamp_mode - Restore timestamp configuration
273  * @pf: Board private structure
274  *
275  * Called at the end of rebuild to restore timestamp configuration after
276  * a device reset.
277  */
ice_ptp_restore_timestamp_mode(struct ice_pf * pf)278 void ice_ptp_restore_timestamp_mode(struct ice_pf *pf)
279 {
280 	struct ice_hw *hw = &pf->hw;
281 	bool enable_rx;
282 
283 	ice_ptp_cfg_tx_interrupt(pf);
284 
285 	enable_rx = pf->ptp.tstamp_config.rx_filter == HWTSTAMP_FILTER_ALL;
286 	ice_set_rx_tstamp(pf, enable_rx);
287 
288 	/* Trigger an immediate software interrupt to ensure that timestamps
289 	 * which occurred during reset are handled now.
290 	 */
291 	wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M);
292 	ice_flush(hw);
293 }
294 
295 /**
296  * ice_ptp_read_src_clk_reg - Read the source clock register
297  * @pf: Board private structure
298  * @sts: Optional parameter for holding a pair of system timestamps from
299  *       the system clock. Will be ignored if NULL is given.
300  */
301 static u64
ice_ptp_read_src_clk_reg(struct ice_pf * pf,struct ptp_system_timestamp * sts)302 ice_ptp_read_src_clk_reg(struct ice_pf *pf, struct ptp_system_timestamp *sts)
303 {
304 	struct ice_hw *hw = &pf->hw;
305 	u32 hi, lo, lo2;
306 	u8 tmr_idx;
307 
308 	tmr_idx = ice_get_ptp_src_clock_index(hw);
309 	guard(spinlock)(&pf->adapter->ptp_gltsyn_time_lock);
310 	/* Read the system timestamp pre PHC read */
311 	ptp_read_system_prets(sts);
312 
313 	lo = rd32(hw, GLTSYN_TIME_L(tmr_idx));
314 
315 	/* Read the system timestamp post PHC read */
316 	ptp_read_system_postts(sts);
317 
318 	hi = rd32(hw, GLTSYN_TIME_H(tmr_idx));
319 	lo2 = rd32(hw, GLTSYN_TIME_L(tmr_idx));
320 
321 	if (lo2 < lo) {
322 		/* if TIME_L rolled over read TIME_L again and update
323 		 * system timestamps
324 		 */
325 		ptp_read_system_prets(sts);
326 		lo = rd32(hw, GLTSYN_TIME_L(tmr_idx));
327 		ptp_read_system_postts(sts);
328 		hi = rd32(hw, GLTSYN_TIME_H(tmr_idx));
329 	}
330 
331 	return ((u64)hi << 32) | lo;
332 }
333 
334 /**
335  * ice_ptp_extend_32b_ts - Convert a 32b nanoseconds timestamp to 64b
336  * @cached_phc_time: recently cached copy of PHC time
337  * @in_tstamp: Ingress/egress 32b nanoseconds timestamp value
338  *
339  * Hardware captures timestamps which contain only 32 bits of nominal
340  * nanoseconds, as opposed to the 64bit timestamps that the stack expects.
341  * Note that the captured timestamp values may be 40 bits, but the lower
342  * 8 bits are sub-nanoseconds and generally discarded.
343  *
344  * Extend the 32bit nanosecond timestamp using the following algorithm and
345  * assumptions:
346  *
347  * 1) have a recently cached copy of the PHC time
348  * 2) assume that the in_tstamp was captured 2^31 nanoseconds (~2.1
349  *    seconds) before or after the PHC time was captured.
350  * 3) calculate the delta between the cached time and the timestamp
351  * 4) if the delta is smaller than 2^31 nanoseconds, then the timestamp was
352  *    captured after the PHC time. In this case, the full timestamp is just
353  *    the cached PHC time plus the delta.
354  * 5) otherwise, if the delta is larger than 2^31 nanoseconds, then the
355  *    timestamp was captured *before* the PHC time, i.e. because the PHC
356  *    cache was updated after the timestamp was captured by hardware. In this
357  *    case, the full timestamp is the cached time minus the inverse delta.
358  *
359  * This algorithm works even if the PHC time was updated after a Tx timestamp
360  * was requested, but before the Tx timestamp event was reported from
361  * hardware.
362  *
363  * This calculation primarily relies on keeping the cached PHC time up to
364  * date. If the timestamp was captured more than 2^31 nanoseconds after the
365  * PHC time, it is possible that the lower 32bits of PHC time have
366  * overflowed more than once, and we might generate an incorrect timestamp.
367  *
368  * This is prevented by (a) periodically updating the cached PHC time once
369  * a second, and (b) discarding any Tx timestamp packet if it has waited for
370  * a timestamp for more than one second.
371  */
ice_ptp_extend_32b_ts(u64 cached_phc_time,u32 in_tstamp)372 static u64 ice_ptp_extend_32b_ts(u64 cached_phc_time, u32 in_tstamp)
373 {
374 	u32 delta, phc_time_lo;
375 	u64 ns;
376 
377 	/* Extract the lower 32 bits of the PHC time */
378 	phc_time_lo = (u32)cached_phc_time;
379 
380 	/* Calculate the delta between the lower 32bits of the cached PHC
381 	 * time and the in_tstamp value
382 	 */
383 	delta = (in_tstamp - phc_time_lo);
384 
385 	/* Do not assume that the in_tstamp is always more recent than the
386 	 * cached PHC time. If the delta is large, it indicates that the
387 	 * in_tstamp was taken in the past, and should be converted
388 	 * forward.
389 	 */
390 	if (delta > (U32_MAX / 2)) {
391 		/* reverse the delta calculation here */
392 		delta = (phc_time_lo - in_tstamp);
393 		ns = cached_phc_time - delta;
394 	} else {
395 		ns = cached_phc_time + delta;
396 	}
397 
398 	return ns;
399 }
400 
401 /**
402  * ice_ptp_extend_40b_ts - Convert a 40b timestamp to 64b nanoseconds
403  * @pf: Board private structure
404  * @in_tstamp: Ingress/egress 40b timestamp value
405  *
406  * The Tx and Rx timestamps are 40 bits wide, including 32 bits of nominal
407  * nanoseconds, 7 bits of sub-nanoseconds, and a valid bit.
408  *
409  *  *--------------------------------------------------------------*
410  *  | 32 bits of nanoseconds | 7 high bits of sub ns underflow | v |
411  *  *--------------------------------------------------------------*
412  *
413  * The low bit is an indicator of whether the timestamp is valid. The next
414  * 7 bits are a capture of the upper 7 bits of the sub-nanosecond underflow,
415  * and the remaining 32 bits are the lower 32 bits of the PHC timer.
416  *
417  * It is assumed that the caller verifies the timestamp is valid prior to
418  * calling this function.
419  *
420  * Extract the 32bit nominal nanoseconds and extend them. Use the cached PHC
421  * time stored in the device private PTP structure as the basis for timestamp
422  * extension.
423  *
424  * See ice_ptp_extend_32b_ts for a detailed explanation of the extension
425  * algorithm.
426  */
ice_ptp_extend_40b_ts(struct ice_pf * pf,u64 in_tstamp)427 static u64 ice_ptp_extend_40b_ts(struct ice_pf *pf, u64 in_tstamp)
428 {
429 	const u64 mask = GENMASK_ULL(31, 0);
430 	unsigned long discard_time;
431 
432 	/* Discard the hardware timestamp if the cached PHC time is too old */
433 	discard_time = pf->ptp.cached_phc_jiffies + msecs_to_jiffies(2000);
434 	if (time_is_before_jiffies(discard_time)) {
435 		pf->ptp.tx_hwtstamp_discarded++;
436 		return 0;
437 	}
438 
439 	return ice_ptp_extend_32b_ts(pf->ptp.cached_phc_time,
440 				     (in_tstamp >> 8) & mask);
441 }
442 
443 /**
444  * ice_ptp_is_tx_tracker_up - Check if Tx tracker is ready for new timestamps
445  * @tx: the PTP Tx timestamp tracker to check
446  *
447  * Check that a given PTP Tx timestamp tracker is up, i.e. that it is ready
448  * to accept new timestamp requests.
449  *
450  * Assumes the tx->lock spinlock is already held.
451  */
452 static bool
ice_ptp_is_tx_tracker_up(struct ice_ptp_tx * tx)453 ice_ptp_is_tx_tracker_up(struct ice_ptp_tx *tx)
454 {
455 	lockdep_assert_held(&tx->lock);
456 
457 	return tx->init && !tx->calibrating;
458 }
459 
460 /**
461  * ice_ptp_req_tx_single_tstamp - Request Tx timestamp for a port from FW
462  * @tx: the PTP Tx timestamp tracker
463  * @idx: index of the timestamp to request
464  */
ice_ptp_req_tx_single_tstamp(struct ice_ptp_tx * tx,u8 idx)465 void ice_ptp_req_tx_single_tstamp(struct ice_ptp_tx *tx, u8 idx)
466 {
467 	struct ice_e810_params *params;
468 	struct ice_ptp_port *ptp_port;
469 	unsigned long flags;
470 	struct sk_buff *skb;
471 	struct ice_pf *pf;
472 
473 	if (!tx->init)
474 		return;
475 
476 	ptp_port = container_of(tx, struct ice_ptp_port, tx);
477 	pf = ptp_port_to_pf(ptp_port);
478 	params = &pf->hw.ptp.phy.e810;
479 
480 	/* Drop packets which have waited for more than 2 seconds */
481 	if (time_is_before_jiffies(tx->tstamps[idx].start + 2 * HZ)) {
482 		/* Count the number of Tx timestamps that timed out */
483 		pf->ptp.tx_hwtstamp_timeouts++;
484 
485 		skb = tx->tstamps[idx].skb;
486 		tx->tstamps[idx].skb = NULL;
487 		clear_bit(idx, tx->in_use);
488 
489 		dev_kfree_skb_any(skb);
490 		return;
491 	}
492 
493 	ice_trace(tx_tstamp_fw_req, tx->tstamps[idx].skb, idx);
494 
495 	spin_lock_irqsave(&params->atqbal_wq.lock, flags);
496 
497 	params->atqbal_flags |= ATQBAL_FLAGS_INTR_IN_PROGRESS;
498 
499 	/* Write TS index to read to the PF register so the FW can read it */
500 	wr32(&pf->hw, REG_LL_PROXY_H,
501 	     REG_LL_PROXY_H_TS_INTR_ENA | FIELD_PREP(REG_LL_PROXY_H_TS_IDX, idx) |
502 	     REG_LL_PROXY_H_EXEC);
503 	tx->last_ll_ts_idx_read = idx;
504 
505 	spin_unlock_irqrestore(&params->atqbal_wq.lock, flags);
506 }
507 
508 /**
509  * ice_ptp_complete_tx_single_tstamp - Complete Tx timestamp for a port
510  * @tx: the PTP Tx timestamp tracker
511  */
ice_ptp_complete_tx_single_tstamp(struct ice_ptp_tx * tx)512 void ice_ptp_complete_tx_single_tstamp(struct ice_ptp_tx *tx)
513 {
514 	struct skb_shared_hwtstamps shhwtstamps = {};
515 	u8 idx = tx->last_ll_ts_idx_read;
516 	struct ice_e810_params *params;
517 	struct ice_ptp_port *ptp_port;
518 	u64 raw_tstamp, tstamp;
519 	bool drop_ts = false;
520 	struct sk_buff *skb;
521 	unsigned long flags;
522 	struct device *dev;
523 	struct ice_pf *pf;
524 	u32 reg_ll_high;
525 
526 	if (!tx->init || tx->last_ll_ts_idx_read < 0)
527 		return;
528 
529 	ptp_port = container_of(tx, struct ice_ptp_port, tx);
530 	pf = ptp_port_to_pf(ptp_port);
531 	dev = ice_pf_to_dev(pf);
532 	params = &pf->hw.ptp.phy.e810;
533 
534 	ice_trace(tx_tstamp_fw_done, tx->tstamps[idx].skb, idx);
535 
536 	spin_lock_irqsave(&params->atqbal_wq.lock, flags);
537 
538 	if (!(params->atqbal_flags & ATQBAL_FLAGS_INTR_IN_PROGRESS))
539 		dev_dbg(dev, "%s: low latency interrupt request not in progress?\n",
540 			__func__);
541 
542 	/* Read the low 32 bit value */
543 	raw_tstamp = rd32(&pf->hw, REG_LL_PROXY_L);
544 	/* Read the status together with high TS part */
545 	reg_ll_high = rd32(&pf->hw, REG_LL_PROXY_H);
546 
547 	/* Wake up threads waiting on low latency interface */
548 	params->atqbal_flags &= ~ATQBAL_FLAGS_INTR_IN_PROGRESS;
549 
550 	wake_up_locked(&params->atqbal_wq);
551 
552 	spin_unlock_irqrestore(&params->atqbal_wq.lock, flags);
553 
554 	/* When the bit is cleared, the TS is ready in the register */
555 	if (reg_ll_high & REG_LL_PROXY_H_EXEC) {
556 		dev_err(ice_pf_to_dev(pf), "Failed to get the Tx tstamp - FW not ready");
557 		return;
558 	}
559 
560 	/* High 8 bit value of the TS is on the bits 16:23 */
561 	raw_tstamp |= ((u64)FIELD_GET(REG_LL_PROXY_H_TS_HIGH, reg_ll_high)) << 32;
562 
563 	/* Devices using this interface always verify the timestamp differs
564 	 * relative to the last cached timestamp value.
565 	 */
566 	if (raw_tstamp == tx->tstamps[idx].cached_tstamp)
567 		return;
568 
569 	tx->tstamps[idx].cached_tstamp = raw_tstamp;
570 	clear_bit(idx, tx->in_use);
571 	skb = tx->tstamps[idx].skb;
572 	tx->tstamps[idx].skb = NULL;
573 	if (test_and_clear_bit(idx, tx->stale))
574 		drop_ts = true;
575 
576 	if (!skb)
577 		return;
578 
579 	if (drop_ts) {
580 		dev_kfree_skb_any(skb);
581 		return;
582 	}
583 
584 	/* Extend the timestamp using cached PHC time */
585 	tstamp = ice_ptp_extend_40b_ts(pf, raw_tstamp);
586 	if (tstamp) {
587 		shhwtstamps.hwtstamp = ns_to_ktime(tstamp);
588 		ice_trace(tx_tstamp_complete, skb, idx);
589 	}
590 
591 	skb_tstamp_tx(skb, &shhwtstamps);
592 	dev_kfree_skb_any(skb);
593 }
594 
595 /**
596  * ice_ptp_process_tx_tstamp - Process Tx timestamps for a port
597  * @tx: the PTP Tx timestamp tracker
598  *
599  * Process timestamps captured by the PHY associated with this port. To do
600  * this, loop over each index with a waiting skb.
601  *
602  * If a given index has a valid timestamp, perform the following steps:
603  *
604  * 1) check that the timestamp request is not stale
605  * 2) check that a timestamp is ready and available in the PHY memory bank
606  * 3) read and copy the timestamp out of the PHY register
607  * 4) unlock the index by clearing the associated in_use bit
608  * 5) check if the timestamp is stale, and discard if so
609  * 6) extend the 40 bit timestamp value to get a 64 bit timestamp value
610  * 7) send this 64 bit timestamp to the stack
611  *
612  * Note that we do not hold the tracking lock while reading the Tx timestamp.
613  * This is because reading the timestamp requires taking a mutex that might
614  * sleep.
615  *
616  * The only place where we set in_use is when a new timestamp is initiated
617  * with a slot index. This is only called in the hard xmit routine where an
618  * SKB has a request flag set. The only places where we clear this bit is this
619  * function, or during teardown when the Tx timestamp tracker is being
620  * removed. A timestamp index will never be re-used until the in_use bit for
621  * that index is cleared.
622  *
623  * If a Tx thread starts a new timestamp, we might not begin processing it
624  * right away but we will notice it at the end when we re-queue the task.
625  *
626  * If a Tx thread starts a new timestamp just after this function exits, the
627  * interrupt for that timestamp should re-trigger this function once
628  * a timestamp is ready.
629  *
630  * In cases where the PTP hardware clock was directly adjusted, some
631  * timestamps may not be able to safely use the timestamp extension math. In
632  * this case, software will set the stale bit for any outstanding Tx
633  * timestamps when the clock is adjusted. Then this function will discard
634  * those captured timestamps instead of sending them to the stack.
635  *
636  * If a Tx packet has been waiting for more than 2 seconds, it is not possible
637  * to correctly extend the timestamp using the cached PHC time. It is
638  * extremely unlikely that a packet will ever take this long to timestamp. If
639  * we detect a Tx timestamp request that has waited for this long we assume
640  * the packet will never be sent by hardware and discard it without reading
641  * the timestamp register.
642  */
ice_ptp_process_tx_tstamp(struct ice_ptp_tx * tx)643 static void ice_ptp_process_tx_tstamp(struct ice_ptp_tx *tx)
644 {
645 	struct ice_ptp_port *ptp_port;
646 	unsigned long flags;
647 	struct ice_pf *pf;
648 	struct ice_hw *hw;
649 	u64 tstamp_ready;
650 	bool link_up;
651 	int err;
652 	u8 idx;
653 
654 	ptp_port = container_of(tx, struct ice_ptp_port, tx);
655 	pf = ptp_port_to_pf(ptp_port);
656 	hw = &pf->hw;
657 
658 	/* Read the Tx ready status first */
659 	if (tx->has_ready_bitmap) {
660 		err = ice_get_phy_tx_tstamp_ready(hw, tx->block, &tstamp_ready);
661 		if (err)
662 			return;
663 	}
664 
665 	/* Drop packets if the link went down */
666 	link_up = ptp_port->link_up;
667 
668 	for_each_set_bit(idx, tx->in_use, tx->len) {
669 		struct skb_shared_hwtstamps shhwtstamps = {};
670 		u8 phy_idx = idx + tx->offset;
671 		u64 raw_tstamp = 0, tstamp;
672 		bool drop_ts = !link_up;
673 		struct sk_buff *skb;
674 
675 		/* Drop packets which have waited for more than 2 seconds */
676 		if (time_is_before_jiffies(tx->tstamps[idx].start + 2 * HZ)) {
677 			drop_ts = true;
678 
679 			/* Count the number of Tx timestamps that timed out */
680 			pf->ptp.tx_hwtstamp_timeouts++;
681 		}
682 
683 		/* Only read a timestamp from the PHY if its marked as ready
684 		 * by the tstamp_ready register. This avoids unnecessary
685 		 * reading of timestamps which are not yet valid. This is
686 		 * important as we must read all timestamps which are valid
687 		 * and only timestamps which are valid during each interrupt.
688 		 * If we do not, the hardware logic for generating a new
689 		 * interrupt can get stuck on some devices.
690 		 */
691 		if (tx->has_ready_bitmap &&
692 		    !(tstamp_ready & BIT_ULL(phy_idx))) {
693 			if (drop_ts)
694 				goto skip_ts_read;
695 
696 			continue;
697 		}
698 
699 		ice_trace(tx_tstamp_fw_req, tx->tstamps[idx].skb, idx);
700 
701 		err = ice_read_phy_tstamp(hw, tx->block, phy_idx, &raw_tstamp);
702 		if (err && !drop_ts)
703 			continue;
704 
705 		ice_trace(tx_tstamp_fw_done, tx->tstamps[idx].skb, idx);
706 
707 		/* For PHYs which don't implement a proper timestamp ready
708 		 * bitmap, verify that the timestamp value is different
709 		 * from the last cached timestamp. If it is not, skip this for
710 		 * now assuming it hasn't yet been captured by hardware.
711 		 */
712 		if (!drop_ts && !tx->has_ready_bitmap &&
713 		    raw_tstamp == tx->tstamps[idx].cached_tstamp)
714 			continue;
715 
716 		/* Discard any timestamp value without the valid bit set */
717 		if (!(raw_tstamp & ICE_PTP_TS_VALID))
718 			drop_ts = true;
719 
720 skip_ts_read:
721 		spin_lock_irqsave(&tx->lock, flags);
722 		if (!tx->has_ready_bitmap && raw_tstamp)
723 			tx->tstamps[idx].cached_tstamp = raw_tstamp;
724 		clear_bit(idx, tx->in_use);
725 		skb = tx->tstamps[idx].skb;
726 		tx->tstamps[idx].skb = NULL;
727 		if (test_and_clear_bit(idx, tx->stale))
728 			drop_ts = true;
729 		spin_unlock_irqrestore(&tx->lock, flags);
730 
731 		/* It is unlikely but possible that the SKB will have been
732 		 * flushed at this point due to link change or teardown.
733 		 */
734 		if (!skb)
735 			continue;
736 
737 		if (drop_ts) {
738 			dev_kfree_skb_any(skb);
739 			continue;
740 		}
741 
742 		/* Extend the timestamp using cached PHC time */
743 		tstamp = ice_ptp_extend_40b_ts(pf, raw_tstamp);
744 		if (tstamp) {
745 			shhwtstamps.hwtstamp = ns_to_ktime(tstamp);
746 			ice_trace(tx_tstamp_complete, skb, idx);
747 		}
748 
749 		skb_tstamp_tx(skb, &shhwtstamps);
750 		dev_kfree_skb_any(skb);
751 	}
752 }
753 
754 /**
755  * ice_ptp_tx_tstamp_owner - Process Tx timestamps for all ports on the device
756  * @pf: Board private structure
757  */
ice_ptp_tx_tstamp_owner(struct ice_pf * pf)758 static enum ice_tx_tstamp_work ice_ptp_tx_tstamp_owner(struct ice_pf *pf)
759 {
760 	struct ice_ptp_port *port;
761 	unsigned int i;
762 
763 	mutex_lock(&pf->adapter->ports.lock);
764 	list_for_each_entry(port, &pf->adapter->ports.ports, list_node) {
765 		struct ice_ptp_tx *tx = &port->tx;
766 
767 		if (!tx || !tx->init)
768 			continue;
769 
770 		ice_ptp_process_tx_tstamp(tx);
771 	}
772 	mutex_unlock(&pf->adapter->ports.lock);
773 
774 	for (i = 0; i < ICE_GET_QUAD_NUM(pf->hw.ptp.num_lports); i++) {
775 		u64 tstamp_ready;
776 		int err;
777 
778 		/* Read the Tx ready status first */
779 		err = ice_get_phy_tx_tstamp_ready(&pf->hw, i, &tstamp_ready);
780 		if (err)
781 			break;
782 		else if (tstamp_ready)
783 			return ICE_TX_TSTAMP_WORK_PENDING;
784 	}
785 
786 	return ICE_TX_TSTAMP_WORK_DONE;
787 }
788 
789 /**
790  * ice_ptp_tx_tstamp - Process Tx timestamps for this function.
791  * @tx: Tx tracking structure to initialize
792  *
793  * Returns: ICE_TX_TSTAMP_WORK_PENDING if there are any outstanding incomplete
794  * Tx timestamps, or ICE_TX_TSTAMP_WORK_DONE otherwise.
795  */
ice_ptp_tx_tstamp(struct ice_ptp_tx * tx)796 static enum ice_tx_tstamp_work ice_ptp_tx_tstamp(struct ice_ptp_tx *tx)
797 {
798 	bool more_timestamps;
799 	unsigned long flags;
800 
801 	if (!tx->init)
802 		return ICE_TX_TSTAMP_WORK_DONE;
803 
804 	/* Process the Tx timestamp tracker */
805 	ice_ptp_process_tx_tstamp(tx);
806 
807 	/* Check if there are outstanding Tx timestamps */
808 	spin_lock_irqsave(&tx->lock, flags);
809 	more_timestamps = tx->init && !bitmap_empty(tx->in_use, tx->len);
810 	spin_unlock_irqrestore(&tx->lock, flags);
811 
812 	if (more_timestamps)
813 		return ICE_TX_TSTAMP_WORK_PENDING;
814 
815 	return ICE_TX_TSTAMP_WORK_DONE;
816 }
817 
818 /**
819  * ice_ptp_alloc_tx_tracker - Initialize tracking for Tx timestamps
820  * @tx: Tx tracking structure to initialize
821  *
822  * Assumes that the length has already been initialized. Do not call directly,
823  * use the ice_ptp_init_tx_* instead.
824  */
825 static int
ice_ptp_alloc_tx_tracker(struct ice_ptp_tx * tx)826 ice_ptp_alloc_tx_tracker(struct ice_ptp_tx *tx)
827 {
828 	unsigned long *in_use, *stale;
829 	struct ice_tx_tstamp *tstamps;
830 
831 	tstamps = kcalloc(tx->len, sizeof(*tstamps), GFP_KERNEL);
832 	in_use = bitmap_zalloc(tx->len, GFP_KERNEL);
833 	stale = bitmap_zalloc(tx->len, GFP_KERNEL);
834 
835 	if (!tstamps || !in_use || !stale) {
836 		kfree(tstamps);
837 		bitmap_free(in_use);
838 		bitmap_free(stale);
839 
840 		return -ENOMEM;
841 	}
842 
843 	tx->tstamps = tstamps;
844 	tx->in_use = in_use;
845 	tx->stale = stale;
846 	tx->init = 1;
847 	tx->last_ll_ts_idx_read = -1;
848 
849 	spin_lock_init(&tx->lock);
850 
851 	return 0;
852 }
853 
854 /**
855  * ice_ptp_flush_tx_tracker - Flush any remaining timestamps from the tracker
856  * @pf: Board private structure
857  * @tx: the tracker to flush
858  *
859  * Called during teardown when a Tx tracker is being removed.
860  */
861 static void
ice_ptp_flush_tx_tracker(struct ice_pf * pf,struct ice_ptp_tx * tx)862 ice_ptp_flush_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx)
863 {
864 	struct ice_hw *hw = &pf->hw;
865 	unsigned long flags;
866 	u64 tstamp_ready;
867 	int err;
868 	u8 idx;
869 
870 	err = ice_get_phy_tx_tstamp_ready(hw, tx->block, &tstamp_ready);
871 	if (err) {
872 		dev_dbg(ice_pf_to_dev(pf), "Failed to get the Tx tstamp ready bitmap for block %u, err %d\n",
873 			tx->block, err);
874 
875 		/* If we fail to read the Tx timestamp ready bitmap just
876 		 * skip clearing the PHY timestamps.
877 		 */
878 		tstamp_ready = 0;
879 	}
880 
881 	for_each_set_bit(idx, tx->in_use, tx->len) {
882 		u8 phy_idx = idx + tx->offset;
883 		struct sk_buff *skb;
884 
885 		/* In case this timestamp is ready, we need to clear it. */
886 		if (!hw->reset_ongoing && (tstamp_ready & BIT_ULL(phy_idx)))
887 			ice_clear_phy_tstamp(hw, tx->block, phy_idx);
888 
889 		spin_lock_irqsave(&tx->lock, flags);
890 		skb = tx->tstamps[idx].skb;
891 		tx->tstamps[idx].skb = NULL;
892 		clear_bit(idx, tx->in_use);
893 		clear_bit(idx, tx->stale);
894 		spin_unlock_irqrestore(&tx->lock, flags);
895 
896 		/* Count the number of Tx timestamps flushed */
897 		pf->ptp.tx_hwtstamp_flushed++;
898 
899 		/* Free the SKB after we've cleared the bit */
900 		dev_kfree_skb_any(skb);
901 	}
902 }
903 
904 /**
905  * ice_ptp_mark_tx_tracker_stale - Mark unfinished timestamps as stale
906  * @tx: the tracker to mark
907  *
908  * Mark currently outstanding Tx timestamps as stale. This prevents sending
909  * their timestamp value to the stack. This is required to prevent extending
910  * the 40bit hardware timestamp incorrectly.
911  *
912  * This should be called when the PTP clock is modified such as after a set
913  * time request.
914  */
915 static void
ice_ptp_mark_tx_tracker_stale(struct ice_ptp_tx * tx)916 ice_ptp_mark_tx_tracker_stale(struct ice_ptp_tx *tx)
917 {
918 	unsigned long flags;
919 
920 	spin_lock_irqsave(&tx->lock, flags);
921 	bitmap_or(tx->stale, tx->stale, tx->in_use, tx->len);
922 	spin_unlock_irqrestore(&tx->lock, flags);
923 }
924 
925 /**
926  * ice_ptp_flush_all_tx_tracker - Flush all timestamp trackers on this clock
927  * @pf: Board private structure
928  *
929  * Called by the clock owner to flush all the Tx timestamp trackers associated
930  * with the clock.
931  */
932 static void
ice_ptp_flush_all_tx_tracker(struct ice_pf * pf)933 ice_ptp_flush_all_tx_tracker(struct ice_pf *pf)
934 {
935 	struct ice_ptp_port *port;
936 
937 	list_for_each_entry(port, &pf->adapter->ports.ports, list_node)
938 		ice_ptp_flush_tx_tracker(ptp_port_to_pf(port), &port->tx);
939 }
940 
941 /**
942  * ice_ptp_release_tx_tracker - Release allocated memory for Tx tracker
943  * @pf: Board private structure
944  * @tx: Tx tracking structure to release
945  *
946  * Free memory associated with the Tx timestamp tracker.
947  */
948 static void
ice_ptp_release_tx_tracker(struct ice_pf * pf,struct ice_ptp_tx * tx)949 ice_ptp_release_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx)
950 {
951 	unsigned long flags;
952 
953 	spin_lock_irqsave(&tx->lock, flags);
954 	tx->init = 0;
955 	spin_unlock_irqrestore(&tx->lock, flags);
956 
957 	/* wait for potentially outstanding interrupt to complete */
958 	synchronize_irq(pf->oicr_irq.virq);
959 
960 	ice_ptp_flush_tx_tracker(pf, tx);
961 
962 	kfree(tx->tstamps);
963 	tx->tstamps = NULL;
964 
965 	bitmap_free(tx->in_use);
966 	tx->in_use = NULL;
967 
968 	bitmap_free(tx->stale);
969 	tx->stale = NULL;
970 
971 	tx->len = 0;
972 }
973 
974 /**
975  * ice_ptp_init_tx_eth56g - Initialize tracking for Tx timestamps
976  * @pf: Board private structure
977  * @tx: the Tx tracking structure to initialize
978  * @port: the port this structure tracks
979  *
980  * Initialize the Tx timestamp tracker for this port. ETH56G PHYs
981  * have independent memory blocks for all ports.
982  *
983  * Return: 0 for success, -ENOMEM when failed to allocate Tx tracker
984  */
ice_ptp_init_tx_eth56g(struct ice_pf * pf,struct ice_ptp_tx * tx,u8 port)985 static int ice_ptp_init_tx_eth56g(struct ice_pf *pf, struct ice_ptp_tx *tx,
986 				  u8 port)
987 {
988 	tx->block = port;
989 	tx->offset = 0;
990 	tx->len = INDEX_PER_PORT_ETH56G;
991 	tx->has_ready_bitmap = 1;
992 
993 	return ice_ptp_alloc_tx_tracker(tx);
994 }
995 
996 /**
997  * ice_ptp_init_tx_e82x - Initialize tracking for Tx timestamps
998  * @pf: Board private structure
999  * @tx: the Tx tracking structure to initialize
1000  * @port: the port this structure tracks
1001  *
1002  * Initialize the Tx timestamp tracker for this port. For generic MAC devices,
1003  * the timestamp block is shared for all ports in the same quad. To avoid
1004  * ports using the same timestamp index, logically break the block of
1005  * registers into chunks based on the port number.
1006  */
1007 static int
ice_ptp_init_tx_e82x(struct ice_pf * pf,struct ice_ptp_tx * tx,u8 port)1008 ice_ptp_init_tx_e82x(struct ice_pf *pf, struct ice_ptp_tx *tx, u8 port)
1009 {
1010 	tx->block = ICE_GET_QUAD_NUM(port);
1011 	tx->offset = (port % ICE_PORTS_PER_QUAD) * INDEX_PER_PORT_E82X;
1012 	tx->len = INDEX_PER_PORT_E82X;
1013 	tx->has_ready_bitmap = 1;
1014 
1015 	return ice_ptp_alloc_tx_tracker(tx);
1016 }
1017 
1018 /**
1019  * ice_ptp_init_tx_e810 - Initialize tracking for Tx timestamps
1020  * @pf: Board private structure
1021  * @tx: the Tx tracking structure to initialize
1022  *
1023  * Initialize the Tx timestamp tracker for this PF. For E810 devices, each
1024  * port has its own block of timestamps, independent of the other ports.
1025  */
1026 static int
ice_ptp_init_tx_e810(struct ice_pf * pf,struct ice_ptp_tx * tx)1027 ice_ptp_init_tx_e810(struct ice_pf *pf, struct ice_ptp_tx *tx)
1028 {
1029 	tx->block = pf->hw.port_info->lport;
1030 	tx->offset = 0;
1031 	tx->len = INDEX_PER_PORT_E810;
1032 	/* The E810 PHY does not provide a timestamp ready bitmap. Instead,
1033 	 * verify new timestamps against cached copy of the last read
1034 	 * timestamp.
1035 	 */
1036 	tx->has_ready_bitmap = 0;
1037 
1038 	return ice_ptp_alloc_tx_tracker(tx);
1039 }
1040 
1041 /**
1042  * ice_ptp_update_cached_phctime - Update the cached PHC time values
1043  * @pf: Board specific private structure
1044  *
1045  * This function updates the system time values which are cached in the PF
1046  * structure and the Rx rings.
1047  *
1048  * This function must be called periodically to ensure that the cached value
1049  * is never more than 2 seconds old.
1050  *
1051  * Note that the cached copy in the PF PTP structure is always updated, even
1052  * if we can't update the copy in the Rx rings.
1053  *
1054  * Return:
1055  * * 0 - OK, successfully updated
1056  * * -EAGAIN - PF was busy, need to reschedule the update
1057  */
ice_ptp_update_cached_phctime(struct ice_pf * pf)1058 static int ice_ptp_update_cached_phctime(struct ice_pf *pf)
1059 {
1060 	struct device *dev = ice_pf_to_dev(pf);
1061 	unsigned long update_before;
1062 	u64 systime;
1063 	int i;
1064 
1065 	update_before = pf->ptp.cached_phc_jiffies + msecs_to_jiffies(2000);
1066 	if (pf->ptp.cached_phc_time &&
1067 	    time_is_before_jiffies(update_before)) {
1068 		unsigned long time_taken = jiffies - pf->ptp.cached_phc_jiffies;
1069 
1070 		dev_warn(dev, "%u msecs passed between update to cached PHC time\n",
1071 			 jiffies_to_msecs(time_taken));
1072 		pf->ptp.late_cached_phc_updates++;
1073 	}
1074 
1075 	/* Read the current PHC time */
1076 	systime = ice_ptp_read_src_clk_reg(pf, NULL);
1077 
1078 	/* Update the cached PHC time stored in the PF structure */
1079 	WRITE_ONCE(pf->ptp.cached_phc_time, systime);
1080 	WRITE_ONCE(pf->ptp.cached_phc_jiffies, jiffies);
1081 
1082 	if (test_and_set_bit(ICE_CFG_BUSY, pf->state))
1083 		return -EAGAIN;
1084 
1085 	ice_for_each_vsi(pf, i) {
1086 		struct ice_vsi *vsi = pf->vsi[i];
1087 		int j;
1088 
1089 		if (!vsi)
1090 			continue;
1091 
1092 		if (vsi->type != ICE_VSI_PF)
1093 			continue;
1094 
1095 		ice_for_each_rxq(vsi, j) {
1096 			if (!vsi->rx_rings[j])
1097 				continue;
1098 			WRITE_ONCE(vsi->rx_rings[j]->cached_phctime, systime);
1099 		}
1100 	}
1101 	clear_bit(ICE_CFG_BUSY, pf->state);
1102 
1103 	return 0;
1104 }
1105 
1106 /**
1107  * ice_ptp_reset_cached_phctime - Reset cached PHC time after an update
1108  * @pf: Board specific private structure
1109  *
1110  * This function must be called when the cached PHC time is no longer valid,
1111  * such as after a time adjustment. It marks any currently outstanding Tx
1112  * timestamps as stale and updates the cached PHC time for both the PF and Rx
1113  * rings.
1114  *
1115  * If updating the PHC time cannot be done immediately, a warning message is
1116  * logged and the work item is scheduled immediately to minimize the window
1117  * with a wrong cached timestamp.
1118  */
ice_ptp_reset_cached_phctime(struct ice_pf * pf)1119 static void ice_ptp_reset_cached_phctime(struct ice_pf *pf)
1120 {
1121 	struct device *dev = ice_pf_to_dev(pf);
1122 	int err;
1123 
1124 	/* Update the cached PHC time immediately if possible, otherwise
1125 	 * schedule the work item to execute soon.
1126 	 */
1127 	err = ice_ptp_update_cached_phctime(pf);
1128 	if (err) {
1129 		/* If another thread is updating the Rx rings, we won't
1130 		 * properly reset them here. This could lead to reporting of
1131 		 * invalid timestamps, but there isn't much we can do.
1132 		 */
1133 		dev_warn(dev, "%s: ICE_CFG_BUSY, unable to immediately update cached PHC time\n",
1134 			 __func__);
1135 
1136 		/* Queue the work item to update the Rx rings when possible */
1137 		kthread_queue_delayed_work(pf->ptp.kworker, &pf->ptp.work,
1138 					   msecs_to_jiffies(10));
1139 	}
1140 
1141 	/* Mark any outstanding timestamps as stale, since they might have
1142 	 * been captured in hardware before the time update. This could lead
1143 	 * to us extending them with the wrong cached value resulting in
1144 	 * incorrect timestamp values.
1145 	 */
1146 	ice_ptp_mark_tx_tracker_stale(&pf->ptp.port.tx);
1147 }
1148 
1149 /**
1150  * ice_ptp_write_init - Set PHC time to provided value
1151  * @pf: Board private structure
1152  * @ts: timespec structure that holds the new time value
1153  *
1154  * Set the PHC time to the specified time provided in the timespec.
1155  */
ice_ptp_write_init(struct ice_pf * pf,struct timespec64 * ts)1156 static int ice_ptp_write_init(struct ice_pf *pf, struct timespec64 *ts)
1157 {
1158 	u64 ns = timespec64_to_ns(ts);
1159 	struct ice_hw *hw = &pf->hw;
1160 
1161 	return ice_ptp_init_time(hw, ns);
1162 }
1163 
1164 /**
1165  * ice_ptp_write_adj - Adjust PHC clock time atomically
1166  * @pf: Board private structure
1167  * @adj: Adjustment in nanoseconds
1168  *
1169  * Perform an atomic adjustment of the PHC time by the specified number of
1170  * nanoseconds.
1171  */
ice_ptp_write_adj(struct ice_pf * pf,s32 adj)1172 static int ice_ptp_write_adj(struct ice_pf *pf, s32 adj)
1173 {
1174 	struct ice_hw *hw = &pf->hw;
1175 
1176 	return ice_ptp_adj_clock(hw, adj);
1177 }
1178 
1179 /**
1180  * ice_base_incval - Get base timer increment value
1181  * @pf: Board private structure
1182  *
1183  * Look up the base timer increment value for this device. The base increment
1184  * value is used to define the nominal clock tick rate. This increment value
1185  * is programmed during device initialization. It is also used as the basis
1186  * for calculating adjustments using scaled_ppm.
1187  */
ice_base_incval(struct ice_pf * pf)1188 static u64 ice_base_incval(struct ice_pf *pf)
1189 {
1190 	struct ice_hw *hw = &pf->hw;
1191 	u64 incval;
1192 
1193 	incval = ice_get_base_incval(hw);
1194 
1195 	dev_dbg(ice_pf_to_dev(pf), "PTP: using base increment value of 0x%016llx\n",
1196 		incval);
1197 
1198 	return incval;
1199 }
1200 
1201 /**
1202  * ice_ptp_check_tx_fifo - Check whether Tx FIFO is in an OK state
1203  * @port: PTP port for which Tx FIFO is checked
1204  */
ice_ptp_check_tx_fifo(struct ice_ptp_port * port)1205 static int ice_ptp_check_tx_fifo(struct ice_ptp_port *port)
1206 {
1207 	int offs = port->port_num % ICE_PORTS_PER_QUAD;
1208 	int quad = ICE_GET_QUAD_NUM(port->port_num);
1209 	struct ice_pf *pf;
1210 	struct ice_hw *hw;
1211 	u32 val, phy_sts;
1212 	int err;
1213 
1214 	pf = ptp_port_to_pf(port);
1215 	hw = &pf->hw;
1216 
1217 	if (port->tx_fifo_busy_cnt == FIFO_OK)
1218 		return 0;
1219 
1220 	/* need to read FIFO state */
1221 	if (offs == 0 || offs == 1)
1222 		err = ice_read_quad_reg_e82x(hw, quad, Q_REG_FIFO01_STATUS,
1223 					     &val);
1224 	else
1225 		err = ice_read_quad_reg_e82x(hw, quad, Q_REG_FIFO23_STATUS,
1226 					     &val);
1227 
1228 	if (err) {
1229 		dev_err(ice_pf_to_dev(pf), "PTP failed to check port %d Tx FIFO, err %d\n",
1230 			port->port_num, err);
1231 		return err;
1232 	}
1233 
1234 	if (offs & 0x1)
1235 		phy_sts = FIELD_GET(Q_REG_FIFO13_M, val);
1236 	else
1237 		phy_sts = FIELD_GET(Q_REG_FIFO02_M, val);
1238 
1239 	if (phy_sts & FIFO_EMPTY) {
1240 		port->tx_fifo_busy_cnt = FIFO_OK;
1241 		return 0;
1242 	}
1243 
1244 	port->tx_fifo_busy_cnt++;
1245 
1246 	dev_dbg(ice_pf_to_dev(pf), "Try %d, port %d FIFO not empty\n",
1247 		port->tx_fifo_busy_cnt, port->port_num);
1248 
1249 	if (port->tx_fifo_busy_cnt == ICE_PTP_FIFO_NUM_CHECKS) {
1250 		dev_dbg(ice_pf_to_dev(pf),
1251 			"Port %d Tx FIFO still not empty; resetting quad %d\n",
1252 			port->port_num, quad);
1253 		ice_ptp_reset_ts_memory_quad_e82x(hw, quad);
1254 		port->tx_fifo_busy_cnt = FIFO_OK;
1255 		return 0;
1256 	}
1257 
1258 	return -EAGAIN;
1259 }
1260 
1261 /**
1262  * ice_ptp_wait_for_offsets - Check for valid Tx and Rx offsets
1263  * @work: Pointer to the kthread_work structure for this task
1264  *
1265  * Check whether hardware has completed measuring the Tx and Rx offset values
1266  * used to configure and enable vernier timestamp calibration.
1267  *
1268  * Once the offset in either direction is measured, configure the associated
1269  * registers with the calibrated offset values and enable timestamping. The Tx
1270  * and Rx directions are configured independently as soon as their associated
1271  * offsets are known.
1272  *
1273  * This function reschedules itself until both Tx and Rx calibration have
1274  * completed.
1275  */
ice_ptp_wait_for_offsets(struct kthread_work * work)1276 static void ice_ptp_wait_for_offsets(struct kthread_work *work)
1277 {
1278 	struct ice_ptp_port *port;
1279 	struct ice_pf *pf;
1280 	struct ice_hw *hw;
1281 	int tx_err;
1282 	int rx_err;
1283 
1284 	port = container_of(work, struct ice_ptp_port, ov_work.work);
1285 	pf = ptp_port_to_pf(port);
1286 	hw = &pf->hw;
1287 
1288 	if (ice_is_reset_in_progress(pf->state)) {
1289 		/* wait for device driver to complete reset */
1290 		kthread_queue_delayed_work(pf->ptp.kworker,
1291 					   &port->ov_work,
1292 					   msecs_to_jiffies(100));
1293 		return;
1294 	}
1295 
1296 	tx_err = ice_ptp_check_tx_fifo(port);
1297 	if (!tx_err)
1298 		tx_err = ice_phy_cfg_tx_offset_e82x(hw, port->port_num);
1299 	rx_err = ice_phy_cfg_rx_offset_e82x(hw, port->port_num);
1300 	if (tx_err || rx_err) {
1301 		/* Tx and/or Rx offset not yet configured, try again later */
1302 		kthread_queue_delayed_work(pf->ptp.kworker,
1303 					   &port->ov_work,
1304 					   msecs_to_jiffies(100));
1305 		return;
1306 	}
1307 }
1308 
1309 /**
1310  * ice_ptp_port_phy_stop - Stop timestamping for a PHY port
1311  * @ptp_port: PTP port to stop
1312  */
1313 static int
ice_ptp_port_phy_stop(struct ice_ptp_port * ptp_port)1314 ice_ptp_port_phy_stop(struct ice_ptp_port *ptp_port)
1315 {
1316 	struct ice_pf *pf = ptp_port_to_pf(ptp_port);
1317 	u8 port = ptp_port->port_num;
1318 	struct ice_hw *hw = &pf->hw;
1319 	int err;
1320 
1321 	if (ice_is_e810(hw))
1322 		return 0;
1323 
1324 	mutex_lock(&ptp_port->ps_lock);
1325 
1326 	switch (ice_get_phy_model(hw)) {
1327 	case ICE_PHY_ETH56G:
1328 		err = ice_stop_phy_timer_eth56g(hw, port, true);
1329 		break;
1330 	case ICE_PHY_E82X:
1331 		kthread_cancel_delayed_work_sync(&ptp_port->ov_work);
1332 
1333 		err = ice_stop_phy_timer_e82x(hw, port, true);
1334 		break;
1335 	default:
1336 		err = -ENODEV;
1337 	}
1338 	if (err && err != -EBUSY)
1339 		dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d down, err %d\n",
1340 			port, err);
1341 
1342 	mutex_unlock(&ptp_port->ps_lock);
1343 
1344 	return err;
1345 }
1346 
1347 /**
1348  * ice_ptp_port_phy_restart - (Re)start and calibrate PHY timestamping
1349  * @ptp_port: PTP port for which the PHY start is set
1350  *
1351  * Start the PHY timestamping block, and initiate Vernier timestamping
1352  * calibration. If timestamping cannot be calibrated (such as if link is down)
1353  * then disable the timestamping block instead.
1354  */
1355 static int
ice_ptp_port_phy_restart(struct ice_ptp_port * ptp_port)1356 ice_ptp_port_phy_restart(struct ice_ptp_port *ptp_port)
1357 {
1358 	struct ice_pf *pf = ptp_port_to_pf(ptp_port);
1359 	u8 port = ptp_port->port_num;
1360 	struct ice_hw *hw = &pf->hw;
1361 	unsigned long flags;
1362 	int err;
1363 
1364 	if (ice_is_e810(hw))
1365 		return 0;
1366 
1367 	if (!ptp_port->link_up)
1368 		return ice_ptp_port_phy_stop(ptp_port);
1369 
1370 	mutex_lock(&ptp_port->ps_lock);
1371 
1372 	switch (ice_get_phy_model(hw)) {
1373 	case ICE_PHY_ETH56G:
1374 		err = ice_start_phy_timer_eth56g(hw, port);
1375 		break;
1376 	case ICE_PHY_E82X:
1377 		/* Start the PHY timer in Vernier mode */
1378 		kthread_cancel_delayed_work_sync(&ptp_port->ov_work);
1379 
1380 		/* temporarily disable Tx timestamps while calibrating
1381 		 * PHY offset
1382 		 */
1383 		spin_lock_irqsave(&ptp_port->tx.lock, flags);
1384 		ptp_port->tx.calibrating = true;
1385 		spin_unlock_irqrestore(&ptp_port->tx.lock, flags);
1386 		ptp_port->tx_fifo_busy_cnt = 0;
1387 
1388 		/* Start the PHY timer in Vernier mode */
1389 		err = ice_start_phy_timer_e82x(hw, port);
1390 		if (err)
1391 			break;
1392 
1393 		/* Enable Tx timestamps right away */
1394 		spin_lock_irqsave(&ptp_port->tx.lock, flags);
1395 		ptp_port->tx.calibrating = false;
1396 		spin_unlock_irqrestore(&ptp_port->tx.lock, flags);
1397 
1398 		kthread_queue_delayed_work(pf->ptp.kworker, &ptp_port->ov_work,
1399 					   0);
1400 		break;
1401 	default:
1402 		err = -ENODEV;
1403 	}
1404 
1405 	if (err)
1406 		dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d up, err %d\n",
1407 			port, err);
1408 
1409 	mutex_unlock(&ptp_port->ps_lock);
1410 
1411 	return err;
1412 }
1413 
1414 /**
1415  * ice_ptp_link_change - Reconfigure PTP after link status change
1416  * @pf: Board private structure
1417  * @linkup: Link is up or down
1418  */
ice_ptp_link_change(struct ice_pf * pf,bool linkup)1419 void ice_ptp_link_change(struct ice_pf *pf, bool linkup)
1420 {
1421 	struct ice_ptp_port *ptp_port;
1422 	struct ice_hw *hw = &pf->hw;
1423 
1424 	if (pf->ptp.state != ICE_PTP_READY)
1425 		return;
1426 
1427 	ptp_port = &pf->ptp.port;
1428 
1429 	/* Update cached link status for this port immediately */
1430 	ptp_port->link_up = linkup;
1431 
1432 	/* Skip HW writes if reset is in progress */
1433 	if (pf->hw.reset_ongoing)
1434 		return;
1435 	switch (ice_get_phy_model(hw)) {
1436 	case ICE_PHY_E810:
1437 		/* Do not reconfigure E810 PHY */
1438 		return;
1439 	case ICE_PHY_ETH56G:
1440 	case ICE_PHY_E82X:
1441 		ice_ptp_port_phy_restart(ptp_port);
1442 		return;
1443 	default:
1444 		dev_warn(ice_pf_to_dev(pf), "%s: Unknown PHY type\n", __func__);
1445 	}
1446 }
1447 
1448 /**
1449  * ice_ptp_cfg_phy_interrupt - Configure PHY interrupt settings
1450  * @pf: PF private structure
1451  * @ena: bool value to enable or disable interrupt
1452  * @threshold: Minimum number of packets at which intr is triggered
1453  *
1454  * Utility function to configure all the PHY interrupt settings, including
1455  * whether the PHY interrupt is enabled, and what threshold to use. Also
1456  * configures The E82X timestamp owner to react to interrupts from all PHYs.
1457  *
1458  * Return: 0 on success, -EOPNOTSUPP when PHY model incorrect, other error codes
1459  * when failed to configure PHY interrupt for E82X
1460  */
ice_ptp_cfg_phy_interrupt(struct ice_pf * pf,bool ena,u32 threshold)1461 static int ice_ptp_cfg_phy_interrupt(struct ice_pf *pf, bool ena, u32 threshold)
1462 {
1463 	struct device *dev = ice_pf_to_dev(pf);
1464 	struct ice_hw *hw = &pf->hw;
1465 
1466 	ice_ptp_reset_ts_memory(hw);
1467 
1468 	switch (ice_get_phy_model(hw)) {
1469 	case ICE_PHY_ETH56G: {
1470 		int port;
1471 
1472 		for (port = 0; port < hw->ptp.num_lports; port++) {
1473 			int err;
1474 
1475 			err = ice_phy_cfg_intr_eth56g(hw, port, ena, threshold);
1476 			if (err) {
1477 				dev_err(dev, "Failed to configure PHY interrupt for port %d, err %d\n",
1478 					port, err);
1479 				return err;
1480 			}
1481 		}
1482 
1483 		return 0;
1484 	}
1485 	case ICE_PHY_E82X: {
1486 		int quad;
1487 
1488 		for (quad = 0; quad < ICE_GET_QUAD_NUM(hw->ptp.num_lports);
1489 		     quad++) {
1490 			int err;
1491 
1492 			err = ice_phy_cfg_intr_e82x(hw, quad, ena, threshold);
1493 			if (err) {
1494 				dev_err(dev, "Failed to configure PHY interrupt for quad %d, err %d\n",
1495 					quad, err);
1496 				return err;
1497 			}
1498 		}
1499 
1500 		return 0;
1501 	}
1502 	case ICE_PHY_E810:
1503 		return 0;
1504 	case ICE_PHY_UNSUP:
1505 	default:
1506 		dev_warn(dev, "%s: Unexpected PHY model %d\n", __func__,
1507 			 ice_get_phy_model(hw));
1508 		return -EOPNOTSUPP;
1509 	}
1510 }
1511 
1512 /**
1513  * ice_ptp_reset_phy_timestamping - Reset PHY timestamping block
1514  * @pf: Board private structure
1515  */
ice_ptp_reset_phy_timestamping(struct ice_pf * pf)1516 static void ice_ptp_reset_phy_timestamping(struct ice_pf *pf)
1517 {
1518 	ice_ptp_port_phy_restart(&pf->ptp.port);
1519 }
1520 
1521 /**
1522  * ice_ptp_restart_all_phy - Restart all PHYs to recalibrate timestamping
1523  * @pf: Board private structure
1524  */
ice_ptp_restart_all_phy(struct ice_pf * pf)1525 static void ice_ptp_restart_all_phy(struct ice_pf *pf)
1526 {
1527 	struct list_head *entry;
1528 
1529 	list_for_each(entry, &pf->adapter->ports.ports) {
1530 		struct ice_ptp_port *port = list_entry(entry,
1531 						       struct ice_ptp_port,
1532 						       list_node);
1533 
1534 		if (port->link_up)
1535 			ice_ptp_port_phy_restart(port);
1536 	}
1537 }
1538 
1539 /**
1540  * ice_ptp_adjfine - Adjust clock increment rate
1541  * @info: the driver's PTP info structure
1542  * @scaled_ppm: Parts per million with 16-bit fractional field
1543  *
1544  * Adjust the frequency of the clock by the indicated scaled ppm from the
1545  * base frequency.
1546  */
ice_ptp_adjfine(struct ptp_clock_info * info,long scaled_ppm)1547 static int ice_ptp_adjfine(struct ptp_clock_info *info, long scaled_ppm)
1548 {
1549 	struct ice_pf *pf = ptp_info_to_pf(info);
1550 	struct ice_hw *hw = &pf->hw;
1551 	u64 incval;
1552 	int err;
1553 
1554 	incval = adjust_by_scaled_ppm(ice_base_incval(pf), scaled_ppm);
1555 	err = ice_ptp_write_incval_locked(hw, incval);
1556 	if (err) {
1557 		dev_err(ice_pf_to_dev(pf), "PTP failed to set incval, err %d\n",
1558 			err);
1559 		return -EIO;
1560 	}
1561 
1562 	return 0;
1563 }
1564 
1565 /**
1566  * ice_ptp_extts_event - Process PTP external clock event
1567  * @pf: Board private structure
1568  */
ice_ptp_extts_event(struct ice_pf * pf)1569 void ice_ptp_extts_event(struct ice_pf *pf)
1570 {
1571 	struct ptp_clock_event event;
1572 	struct ice_hw *hw = &pf->hw;
1573 	u8 chan, tmr_idx;
1574 	u32 hi, lo;
1575 
1576 	/* Don't process timestamp events if PTP is not ready */
1577 	if (pf->ptp.state != ICE_PTP_READY)
1578 		return;
1579 
1580 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1581 	/* Event time is captured by one of the two matched registers
1582 	 *      GLTSYN_EVNT_L: 32 LSB of sampled time event
1583 	 *      GLTSYN_EVNT_H: 32 MSB of sampled time event
1584 	 * Event is defined in GLTSYN_EVNT_0 register
1585 	 */
1586 	for (chan = 0; chan < GLTSYN_EVNT_H_IDX_MAX; chan++) {
1587 		int pin_desc_idx;
1588 
1589 		/* Check if channel is enabled */
1590 		if (!(pf->ptp.ext_ts_irq & (1 << chan)))
1591 			continue;
1592 
1593 		lo = rd32(hw, GLTSYN_EVNT_L(chan, tmr_idx));
1594 		hi = rd32(hw, GLTSYN_EVNT_H(chan, tmr_idx));
1595 		event.timestamp = (u64)hi << 32 | lo;
1596 
1597 		/* Add delay compensation */
1598 		pin_desc_idx = ice_ptp_find_pin_idx(pf, PTP_PF_EXTTS, chan);
1599 		if (pin_desc_idx >= 0) {
1600 			const struct ice_ptp_pin_desc *desc;
1601 
1602 			desc = &pf->ptp.ice_pin_desc[pin_desc_idx];
1603 			event.timestamp -= desc->delay[0];
1604 		}
1605 
1606 		event.type = PTP_CLOCK_EXTTS;
1607 		event.index = chan;
1608 		pf->ptp.ext_ts_irq &= ~(1 << chan);
1609 		ptp_clock_event(pf->ptp.clock, &event);
1610 	}
1611 }
1612 
1613 /**
1614  * ice_ptp_cfg_extts - Configure EXTTS pin and channel
1615  * @pf: Board private structure
1616  * @rq: External timestamp request
1617  * @on: Enable/disable flag
1618  *
1619  * Configure an external timestamp event on the requested channel.
1620  *
1621  * Return: 0 on success, negative error code otherwise
1622  */
ice_ptp_cfg_extts(struct ice_pf * pf,struct ptp_extts_request * rq,int on)1623 static int ice_ptp_cfg_extts(struct ice_pf *pf, struct ptp_extts_request *rq,
1624 			     int on)
1625 {
1626 	u32 aux_reg, gpio_reg, irq_reg;
1627 	struct ice_hw *hw = &pf->hw;
1628 	unsigned int chan, gpio_pin;
1629 	int pin_desc_idx;
1630 	u8 tmr_idx;
1631 
1632 	/* Reject requests with unsupported flags */
1633 
1634 	if (rq->flags & ~(PTP_ENABLE_FEATURE |
1635 			  PTP_RISING_EDGE |
1636 			  PTP_FALLING_EDGE |
1637 			  PTP_STRICT_FLAGS))
1638 		return -EOPNOTSUPP;
1639 
1640 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1641 	chan = rq->index;
1642 
1643 	pin_desc_idx = ice_ptp_find_pin_idx(pf, PTP_PF_EXTTS, chan);
1644 	if (pin_desc_idx < 0)
1645 		return -EIO;
1646 
1647 	gpio_pin = pf->ptp.ice_pin_desc[pin_desc_idx].gpio[0];
1648 	irq_reg = rd32(hw, PFINT_OICR_ENA);
1649 
1650 	if (on) {
1651 		/* Enable the interrupt */
1652 		irq_reg |= PFINT_OICR_TSYN_EVNT_M;
1653 		aux_reg = GLTSYN_AUX_IN_0_INT_ENA_M;
1654 
1655 #define GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE	BIT(0)
1656 #define GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE	BIT(1)
1657 
1658 		/* set event level to requested edge */
1659 		if (rq->flags & PTP_FALLING_EDGE)
1660 			aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE;
1661 		if (rq->flags & PTP_RISING_EDGE)
1662 			aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE;
1663 
1664 		/* Write GPIO CTL reg.
1665 		 * 0x1 is input sampled by EVENT register(channel)
1666 		 * + num_in_channels * tmr_idx
1667 		 */
1668 		gpio_reg = FIELD_PREP(GLGEN_GPIO_CTL_PIN_FUNC_M,
1669 				      1 + chan + (tmr_idx * 3));
1670 	} else {
1671 		bool last_enabled = true;
1672 
1673 		/* clear the values we set to reset defaults */
1674 		aux_reg = 0;
1675 		gpio_reg = 0;
1676 
1677 		for (unsigned int i = 0; i < pf->ptp.info.n_ext_ts; i++)
1678 			if ((pf->ptp.extts_rqs[i].flags &
1679 			     PTP_ENABLE_FEATURE) &&
1680 			    i != chan) {
1681 				last_enabled = false;
1682 			}
1683 
1684 		if (last_enabled)
1685 			irq_reg &= ~PFINT_OICR_TSYN_EVNT_M;
1686 	}
1687 
1688 	wr32(hw, PFINT_OICR_ENA, irq_reg);
1689 	wr32(hw, GLTSYN_AUX_IN(chan, tmr_idx), aux_reg);
1690 	wr32(hw, GLGEN_GPIO_CTL(gpio_pin), gpio_reg);
1691 
1692 	return 0;
1693 }
1694 
1695 /**
1696  * ice_ptp_disable_all_extts - Disable all EXTTS channels
1697  * @pf: Board private structure
1698  */
ice_ptp_disable_all_extts(struct ice_pf * pf)1699 static void ice_ptp_disable_all_extts(struct ice_pf *pf)
1700 {
1701 	for (unsigned int i = 0; i < pf->ptp.info.n_ext_ts ; i++)
1702 		if (pf->ptp.extts_rqs[i].flags & PTP_ENABLE_FEATURE)
1703 			ice_ptp_cfg_extts(pf, &pf->ptp.extts_rqs[i],
1704 					  false);
1705 
1706 	synchronize_irq(pf->oicr_irq.virq);
1707 }
1708 
1709 /**
1710  * ice_ptp_enable_all_extts - Enable all EXTTS channels
1711  * @pf: Board private structure
1712  *
1713  * Called during reset to restore user configuration.
1714  */
ice_ptp_enable_all_extts(struct ice_pf * pf)1715 static void ice_ptp_enable_all_extts(struct ice_pf *pf)
1716 {
1717 	for (unsigned int i = 0; i < pf->ptp.info.n_ext_ts ; i++)
1718 		if (pf->ptp.extts_rqs[i].flags & PTP_ENABLE_FEATURE)
1719 			ice_ptp_cfg_extts(pf, &pf->ptp.extts_rqs[i],
1720 					  true);
1721 }
1722 
1723 /**
1724  * ice_ptp_write_perout - Write periodic wave parameters to HW
1725  * @hw: pointer to the HW struct
1726  * @chan: target channel
1727  * @gpio_pin: target GPIO pin
1728  * @start: target time to start periodic output
1729  * @period: target period
1730  *
1731  * Return: 0 on success, negative error code otherwise
1732  */
ice_ptp_write_perout(struct ice_hw * hw,unsigned int chan,unsigned int gpio_pin,u64 start,u64 period)1733 static int ice_ptp_write_perout(struct ice_hw *hw, unsigned int chan,
1734 				unsigned int gpio_pin, u64 start, u64 period)
1735 {
1736 
1737 	u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1738 	u32 val = 0;
1739 
1740 	/* 0. Reset mode & out_en in AUX_OUT */
1741 	wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), 0);
1742 
1743 	if (ice_is_e825c(hw)) {
1744 		int err;
1745 
1746 		/* Enable/disable CGU 1PPS output for E825C */
1747 		err = ice_cgu_cfg_pps_out(hw, !!period);
1748 		if (err)
1749 			return err;
1750 	}
1751 
1752 	/* 1. Write perout with half of required period value.
1753 	 * HW toggles output when source clock hits the TGT and then adds
1754 	 * GLTSYN_CLKO value to the target, so it ends up with 50% duty cycle.
1755 	 */
1756 	period >>= 1;
1757 
1758 	/* For proper operation, GLTSYN_CLKO must be larger than clock tick and
1759 	 * period has to fit in 32 bit register.
1760 	 */
1761 #define MIN_PULSE 3
1762 	if (!!period && (period <= MIN_PULSE || period > U32_MAX)) {
1763 		dev_err(ice_hw_to_dev(hw), "CLK period ticks must be >= %d && <= 2^32",
1764 			MIN_PULSE);
1765 		return -EIO;
1766 	}
1767 
1768 	wr32(hw, GLTSYN_CLKO(chan, tmr_idx), lower_32_bits(period));
1769 
1770 	/* 2. Write TARGET time */
1771 	wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), lower_32_bits(start));
1772 	wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), upper_32_bits(start));
1773 
1774 	/* 3. Write AUX_OUT register */
1775 	if (!!period)
1776 		val = GLTSYN_AUX_OUT_0_OUT_ENA_M | GLTSYN_AUX_OUT_0_OUTMOD_M;
1777 	wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), val);
1778 
1779 	/* 4. write GPIO CTL reg */
1780 	val = GLGEN_GPIO_CTL_PIN_DIR_M;
1781 	if (!!period)
1782 		val |= FIELD_PREP(GLGEN_GPIO_CTL_PIN_FUNC_M,
1783 				  8 + chan + (tmr_idx * 4));
1784 
1785 	wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val);
1786 
1787 	return 0;
1788 }
1789 
1790 /**
1791  * ice_ptp_cfg_perout - Configure clock to generate periodic wave
1792  * @pf: Board private structure
1793  * @rq: Periodic output request
1794  * @on: Enable/disable flag
1795  *
1796  * Configure the internal clock generator modules to generate the clock wave of
1797  * specified period.
1798  *
1799  * Return: 0 on success, negative error code otherwise
1800  */
ice_ptp_cfg_perout(struct ice_pf * pf,struct ptp_perout_request * rq,int on)1801 static int ice_ptp_cfg_perout(struct ice_pf *pf, struct ptp_perout_request *rq,
1802 			      int on)
1803 {
1804 	unsigned int gpio_pin, prop_delay_ns;
1805 	u64 clk, period, start, phase;
1806 	struct ice_hw *hw = &pf->hw;
1807 	int pin_desc_idx;
1808 
1809 	if (rq->flags & ~PTP_PEROUT_PHASE)
1810 		return -EOPNOTSUPP;
1811 
1812 	pin_desc_idx = ice_ptp_find_pin_idx(pf, PTP_PF_PEROUT, rq->index);
1813 	if (pin_desc_idx < 0)
1814 		return -EIO;
1815 
1816 	gpio_pin = pf->ptp.ice_pin_desc[pin_desc_idx].gpio[1];
1817 	prop_delay_ns = pf->ptp.ice_pin_desc[pin_desc_idx].delay[1];
1818 	period = rq->period.sec * NSEC_PER_SEC + rq->period.nsec;
1819 
1820 	/* If we're disabling the output or period is 0, clear out CLKO and TGT
1821 	 * and keep output level low.
1822 	 */
1823 	if (!on || !period)
1824 		return ice_ptp_write_perout(hw, rq->index, gpio_pin, 0, 0);
1825 
1826 	if (strncmp(pf->ptp.pin_desc[pin_desc_idx].name, "1PPS", 64) == 0 &&
1827 	    period != NSEC_PER_SEC && hw->ptp.phy_model == ICE_PHY_E82X) {
1828 		dev_err(ice_pf_to_dev(pf), "1PPS pin supports only 1 s period\n");
1829 		return -EOPNOTSUPP;
1830 	}
1831 
1832 	if (period & 0x1) {
1833 		dev_err(ice_pf_to_dev(pf), "CLK Period must be an even value\n");
1834 		return -EIO;
1835 	}
1836 
1837 	start = rq->start.sec * NSEC_PER_SEC + rq->start.nsec;
1838 
1839 	/* If PTP_PEROUT_PHASE is set, rq has phase instead of start time */
1840 	if (rq->flags & PTP_PEROUT_PHASE)
1841 		phase = start;
1842 	else
1843 		div64_u64_rem(start, period, &phase);
1844 
1845 	/* If we have only phase or start time is in the past, start the timer
1846 	 * at the next multiple of period, maintaining phase.
1847 	 */
1848 	clk = ice_ptp_read_src_clk_reg(pf, NULL);
1849 	if (rq->flags & PTP_PEROUT_PHASE || start <= clk - prop_delay_ns)
1850 		start = div64_u64(clk + period - 1, period) * period + phase;
1851 
1852 	/* Compensate for propagation delay from the generator to the pin. */
1853 	start -= prop_delay_ns;
1854 
1855 	return ice_ptp_write_perout(hw, rq->index, gpio_pin, start, period);
1856 }
1857 
1858 /**
1859  * ice_ptp_disable_all_perout - Disable all currently configured outputs
1860  * @pf: Board private structure
1861  *
1862  * Disable all currently configured clock outputs. This is necessary before
1863  * certain changes to the PTP hardware clock. Use ice_ptp_enable_all_perout to
1864  * re-enable the clocks again.
1865  */
ice_ptp_disable_all_perout(struct ice_pf * pf)1866 static void ice_ptp_disable_all_perout(struct ice_pf *pf)
1867 {
1868 	for (unsigned int i = 0; i < pf->ptp.info.n_per_out; i++)
1869 		if (pf->ptp.perout_rqs[i].period.sec ||
1870 		    pf->ptp.perout_rqs[i].period.nsec)
1871 			ice_ptp_cfg_perout(pf, &pf->ptp.perout_rqs[i],
1872 					   false);
1873 }
1874 
1875 /**
1876  * ice_ptp_enable_all_perout - Enable all configured periodic clock outputs
1877  * @pf: Board private structure
1878  *
1879  * Enable all currently configured clock outputs. Use this after
1880  * ice_ptp_disable_all_perout to reconfigure the output signals according to
1881  * their configuration.
1882  */
ice_ptp_enable_all_perout(struct ice_pf * pf)1883 static void ice_ptp_enable_all_perout(struct ice_pf *pf)
1884 {
1885 	for (unsigned int i = 0; i < pf->ptp.info.n_per_out; i++)
1886 		if (pf->ptp.perout_rqs[i].period.sec ||
1887 		    pf->ptp.perout_rqs[i].period.nsec)
1888 			ice_ptp_cfg_perout(pf, &pf->ptp.perout_rqs[i],
1889 					   true);
1890 }
1891 
1892 /**
1893  * ice_ptp_disable_shared_pin - Disable enabled pin that shares GPIO
1894  * @pf: Board private structure
1895  * @pin: Pin index
1896  * @func: Assigned function
1897  *
1898  * Return: 0 on success, negative error code otherwise
1899  */
ice_ptp_disable_shared_pin(struct ice_pf * pf,unsigned int pin,enum ptp_pin_function func)1900 static int ice_ptp_disable_shared_pin(struct ice_pf *pf, unsigned int pin,
1901 				      enum ptp_pin_function func)
1902 {
1903 	unsigned int gpio_pin;
1904 
1905 	switch (func) {
1906 	case PTP_PF_PEROUT:
1907 		gpio_pin = pf->ptp.ice_pin_desc[pin].gpio[1];
1908 		break;
1909 	case PTP_PF_EXTTS:
1910 		gpio_pin = pf->ptp.ice_pin_desc[pin].gpio[0];
1911 		break;
1912 	default:
1913 		return -EOPNOTSUPP;
1914 	}
1915 
1916 	for (unsigned int i = 0; i < pf->ptp.info.n_pins; i++) {
1917 		struct ptp_pin_desc *pin_desc = &pf->ptp.pin_desc[i];
1918 		unsigned int chan = pin_desc->chan;
1919 
1920 		/* Skip pin idx from the request */
1921 		if (i == pin)
1922 			continue;
1923 
1924 		if (pin_desc->func == PTP_PF_PEROUT &&
1925 		    pf->ptp.ice_pin_desc[i].gpio[1] == gpio_pin) {
1926 			pf->ptp.perout_rqs[chan].period.sec = 0;
1927 			pf->ptp.perout_rqs[chan].period.nsec = 0;
1928 			pin_desc->func = PTP_PF_NONE;
1929 			pin_desc->chan = 0;
1930 			dev_dbg(ice_pf_to_dev(pf), "Disabling pin %u with shared output GPIO pin %u\n",
1931 				i, gpio_pin);
1932 			return ice_ptp_cfg_perout(pf, &pf->ptp.perout_rqs[chan],
1933 						  false);
1934 		} else if (pf->ptp.pin_desc->func == PTP_PF_EXTTS &&
1935 			   pf->ptp.ice_pin_desc[i].gpio[0] == gpio_pin) {
1936 			pf->ptp.extts_rqs[chan].flags &= ~PTP_ENABLE_FEATURE;
1937 			pin_desc->func = PTP_PF_NONE;
1938 			pin_desc->chan = 0;
1939 			dev_dbg(ice_pf_to_dev(pf), "Disabling pin %u with shared input GPIO pin %u\n",
1940 				i, gpio_pin);
1941 			return ice_ptp_cfg_extts(pf, &pf->ptp.extts_rqs[chan],
1942 						 false);
1943 		}
1944 	}
1945 
1946 	return 0;
1947 }
1948 
1949 /**
1950  * ice_verify_pin - verify if pin supports requested pin function
1951  * @info: the driver's PTP info structure
1952  * @pin: Pin index
1953  * @func: Assigned function
1954  * @chan: Assigned channel
1955  *
1956  * Return: 0 on success, -EOPNOTSUPP when function is not supported.
1957  */
ice_verify_pin(struct ptp_clock_info * info,unsigned int pin,enum ptp_pin_function func,unsigned int chan)1958 static int ice_verify_pin(struct ptp_clock_info *info, unsigned int pin,
1959 			  enum ptp_pin_function func, unsigned int chan)
1960 {
1961 	struct ice_pf *pf = ptp_info_to_pf(info);
1962 	const struct ice_ptp_pin_desc *pin_desc;
1963 
1964 	pin_desc = &pf->ptp.ice_pin_desc[pin];
1965 
1966 	/* Is assigned function allowed? */
1967 	switch (func) {
1968 	case PTP_PF_EXTTS:
1969 		if (pin_desc->gpio[0] < 0)
1970 			return -EOPNOTSUPP;
1971 		break;
1972 	case PTP_PF_PEROUT:
1973 		if (pin_desc->gpio[1] < 0)
1974 			return -EOPNOTSUPP;
1975 		break;
1976 	case PTP_PF_NONE:
1977 		break;
1978 	case PTP_PF_PHYSYNC:
1979 	default:
1980 		return -EOPNOTSUPP;
1981 	}
1982 
1983 	/* On adapters with SMA_CTRL disable other pins that share same GPIO */
1984 	if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL)) {
1985 		ice_ptp_disable_shared_pin(pf, pin, func);
1986 		pf->ptp.pin_desc[pin].func = func;
1987 		pf->ptp.pin_desc[pin].chan = chan;
1988 		return ice_ptp_set_sma_cfg(pf);
1989 	}
1990 
1991 	return 0;
1992 }
1993 
1994 /**
1995  * ice_ptp_gpio_enable - Enable/disable ancillary features of PHC
1996  * @info: The driver's PTP info structure
1997  * @rq: The requested feature to change
1998  * @on: Enable/disable flag
1999  *
2000  * Return: 0 on success, negative error code otherwise
2001  */
ice_ptp_gpio_enable(struct ptp_clock_info * info,struct ptp_clock_request * rq,int on)2002 static int ice_ptp_gpio_enable(struct ptp_clock_info *info,
2003 			       struct ptp_clock_request *rq, int on)
2004 {
2005 	struct ice_pf *pf = ptp_info_to_pf(info);
2006 	int err;
2007 
2008 	switch (rq->type) {
2009 	case PTP_CLK_REQ_PEROUT:
2010 	{
2011 		struct ptp_perout_request *cached =
2012 			&pf->ptp.perout_rqs[rq->perout.index];
2013 
2014 		err = ice_ptp_cfg_perout(pf, &rq->perout, on);
2015 		if (!err) {
2016 			*cached = rq->perout;
2017 		} else {
2018 			cached->period.sec = 0;
2019 			cached->period.nsec = 0;
2020 		}
2021 		return err;
2022 	}
2023 	case PTP_CLK_REQ_EXTTS:
2024 	{
2025 		struct ptp_extts_request *cached =
2026 			&pf->ptp.extts_rqs[rq->extts.index];
2027 
2028 		err = ice_ptp_cfg_extts(pf, &rq->extts, on);
2029 		if (!err)
2030 			*cached = rq->extts;
2031 		else
2032 			cached->flags &= ~PTP_ENABLE_FEATURE;
2033 		return err;
2034 	}
2035 	default:
2036 		return -EOPNOTSUPP;
2037 	}
2038 }
2039 
2040 /**
2041  * ice_ptp_gettimex64 - Get the time of the clock
2042  * @info: the driver's PTP info structure
2043  * @ts: timespec64 structure to hold the current time value
2044  * @sts: Optional parameter for holding a pair of system timestamps from
2045  *       the system clock. Will be ignored if NULL is given.
2046  *
2047  * Read the device clock and return the correct value on ns, after converting it
2048  * into a timespec struct.
2049  */
2050 static int
ice_ptp_gettimex64(struct ptp_clock_info * info,struct timespec64 * ts,struct ptp_system_timestamp * sts)2051 ice_ptp_gettimex64(struct ptp_clock_info *info, struct timespec64 *ts,
2052 		   struct ptp_system_timestamp *sts)
2053 {
2054 	struct ice_pf *pf = ptp_info_to_pf(info);
2055 	u64 time_ns;
2056 
2057 	time_ns = ice_ptp_read_src_clk_reg(pf, sts);
2058 	*ts = ns_to_timespec64(time_ns);
2059 	return 0;
2060 }
2061 
2062 /**
2063  * ice_ptp_settime64 - Set the time of the clock
2064  * @info: the driver's PTP info structure
2065  * @ts: timespec64 structure that holds the new time value
2066  *
2067  * Set the device clock to the user input value. The conversion from timespec
2068  * to ns happens in the write function.
2069  */
2070 static int
ice_ptp_settime64(struct ptp_clock_info * info,const struct timespec64 * ts)2071 ice_ptp_settime64(struct ptp_clock_info *info, const struct timespec64 *ts)
2072 {
2073 	struct ice_pf *pf = ptp_info_to_pf(info);
2074 	struct timespec64 ts64 = *ts;
2075 	struct ice_hw *hw = &pf->hw;
2076 	int err;
2077 
2078 	/* For Vernier mode on E82X, we need to recalibrate after new settime.
2079 	 * Start with marking timestamps as invalid.
2080 	 */
2081 	if (ice_get_phy_model(hw) == ICE_PHY_E82X) {
2082 		err = ice_ptp_clear_phy_offset_ready_e82x(hw);
2083 		if (err)
2084 			dev_warn(ice_pf_to_dev(pf), "Failed to mark timestamps as invalid before settime\n");
2085 	}
2086 
2087 	if (!ice_ptp_lock(hw)) {
2088 		err = -EBUSY;
2089 		goto exit;
2090 	}
2091 
2092 	/* Disable periodic outputs */
2093 	ice_ptp_disable_all_perout(pf);
2094 
2095 	err = ice_ptp_write_init(pf, &ts64);
2096 	ice_ptp_unlock(hw);
2097 
2098 	if (!err)
2099 		ice_ptp_reset_cached_phctime(pf);
2100 
2101 	/* Reenable periodic outputs */
2102 	ice_ptp_enable_all_perout(pf);
2103 
2104 	/* Recalibrate and re-enable timestamp blocks for E822/E823 */
2105 	if (ice_get_phy_model(hw) == ICE_PHY_E82X)
2106 		ice_ptp_restart_all_phy(pf);
2107 exit:
2108 	if (err) {
2109 		dev_err(ice_pf_to_dev(pf), "PTP failed to set time %d\n", err);
2110 		return err;
2111 	}
2112 
2113 	return 0;
2114 }
2115 
2116 /**
2117  * ice_ptp_adjtime_nonatomic - Do a non-atomic clock adjustment
2118  * @info: the driver's PTP info structure
2119  * @delta: Offset in nanoseconds to adjust the time by
2120  */
ice_ptp_adjtime_nonatomic(struct ptp_clock_info * info,s64 delta)2121 static int ice_ptp_adjtime_nonatomic(struct ptp_clock_info *info, s64 delta)
2122 {
2123 	struct timespec64 now, then;
2124 	int ret;
2125 
2126 	then = ns_to_timespec64(delta);
2127 	ret = ice_ptp_gettimex64(info, &now, NULL);
2128 	if (ret)
2129 		return ret;
2130 	now = timespec64_add(now, then);
2131 
2132 	return ice_ptp_settime64(info, (const struct timespec64 *)&now);
2133 }
2134 
2135 /**
2136  * ice_ptp_adjtime - Adjust the time of the clock by the indicated delta
2137  * @info: the driver's PTP info structure
2138  * @delta: Offset in nanoseconds to adjust the time by
2139  */
ice_ptp_adjtime(struct ptp_clock_info * info,s64 delta)2140 static int ice_ptp_adjtime(struct ptp_clock_info *info, s64 delta)
2141 {
2142 	struct ice_pf *pf = ptp_info_to_pf(info);
2143 	struct ice_hw *hw = &pf->hw;
2144 	struct device *dev;
2145 	int err;
2146 
2147 	dev = ice_pf_to_dev(pf);
2148 
2149 	/* Hardware only supports atomic adjustments using signed 32-bit
2150 	 * integers. For any adjustment outside this range, perform
2151 	 * a non-atomic get->adjust->set flow.
2152 	 */
2153 	if (delta > S32_MAX || delta < S32_MIN) {
2154 		dev_dbg(dev, "delta = %lld, adjtime non-atomic\n", delta);
2155 		return ice_ptp_adjtime_nonatomic(info, delta);
2156 	}
2157 
2158 	if (!ice_ptp_lock(hw)) {
2159 		dev_err(dev, "PTP failed to acquire semaphore in adjtime\n");
2160 		return -EBUSY;
2161 	}
2162 
2163 	/* Disable periodic outputs */
2164 	ice_ptp_disable_all_perout(pf);
2165 
2166 	err = ice_ptp_write_adj(pf, delta);
2167 
2168 	/* Reenable periodic outputs */
2169 	ice_ptp_enable_all_perout(pf);
2170 
2171 	ice_ptp_unlock(hw);
2172 
2173 	if (err) {
2174 		dev_err(dev, "PTP failed to adjust time, err %d\n", err);
2175 		return err;
2176 	}
2177 
2178 	ice_ptp_reset_cached_phctime(pf);
2179 
2180 	return 0;
2181 }
2182 
2183 #ifdef CONFIG_ICE_HWTS
2184 /**
2185  * ice_ptp_get_syncdevicetime - Get the cross time stamp info
2186  * @device: Current device time
2187  * @system: System counter value read synchronously with device time
2188  * @ctx: Context provided by timekeeping code
2189  *
2190  * Read device and system (ART) clock simultaneously and return the corrected
2191  * clock values in ns.
2192  */
2193 static int
ice_ptp_get_syncdevicetime(ktime_t * device,struct system_counterval_t * system,void * ctx)2194 ice_ptp_get_syncdevicetime(ktime_t *device,
2195 			   struct system_counterval_t *system,
2196 			   void *ctx)
2197 {
2198 	struct ice_pf *pf = (struct ice_pf *)ctx;
2199 	struct ice_hw *hw = &pf->hw;
2200 	u32 hh_lock, hh_art_ctl;
2201 	int i;
2202 
2203 #define MAX_HH_HW_LOCK_TRIES	5
2204 #define MAX_HH_CTL_LOCK_TRIES	100
2205 
2206 	for (i = 0; i < MAX_HH_HW_LOCK_TRIES; i++) {
2207 		/* Get the HW lock */
2208 		hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id));
2209 		if (hh_lock & PFHH_SEM_BUSY_M) {
2210 			usleep_range(10000, 15000);
2211 			continue;
2212 		}
2213 		break;
2214 	}
2215 	if (hh_lock & PFHH_SEM_BUSY_M) {
2216 		dev_err(ice_pf_to_dev(pf), "PTP failed to get hh lock\n");
2217 		return -EBUSY;
2218 	}
2219 
2220 	/* Program cmd to master timer */
2221 	ice_ptp_src_cmd(hw, ICE_PTP_READ_TIME);
2222 
2223 	/* Start the ART and device clock sync sequence */
2224 	hh_art_ctl = rd32(hw, GLHH_ART_CTL);
2225 	hh_art_ctl = hh_art_ctl | GLHH_ART_CTL_ACTIVE_M;
2226 	wr32(hw, GLHH_ART_CTL, hh_art_ctl);
2227 
2228 	for (i = 0; i < MAX_HH_CTL_LOCK_TRIES; i++) {
2229 		/* Wait for sync to complete */
2230 		hh_art_ctl = rd32(hw, GLHH_ART_CTL);
2231 		if (hh_art_ctl & GLHH_ART_CTL_ACTIVE_M) {
2232 			udelay(1);
2233 			continue;
2234 		} else {
2235 			u32 hh_ts_lo, hh_ts_hi, tmr_idx;
2236 			u64 hh_ts;
2237 
2238 			tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
2239 			/* Read ART time */
2240 			hh_ts_lo = rd32(hw, GLHH_ART_TIME_L);
2241 			hh_ts_hi = rd32(hw, GLHH_ART_TIME_H);
2242 			hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo;
2243 			system->cycles = hh_ts;
2244 			system->cs_id = CSID_X86_ART;
2245 			/* Read Device source clock time */
2246 			hh_ts_lo = rd32(hw, GLTSYN_HHTIME_L(tmr_idx));
2247 			hh_ts_hi = rd32(hw, GLTSYN_HHTIME_H(tmr_idx));
2248 			hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo;
2249 			*device = ns_to_ktime(hh_ts);
2250 			break;
2251 		}
2252 	}
2253 
2254 	/* Clear the master timer */
2255 	ice_ptp_src_cmd(hw, ICE_PTP_NOP);
2256 
2257 	/* Release HW lock */
2258 	hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id));
2259 	hh_lock = hh_lock & ~PFHH_SEM_BUSY_M;
2260 	wr32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id), hh_lock);
2261 
2262 	if (i == MAX_HH_CTL_LOCK_TRIES)
2263 		return -ETIMEDOUT;
2264 
2265 	return 0;
2266 }
2267 
2268 /**
2269  * ice_ptp_getcrosststamp_e82x - Capture a device cross timestamp
2270  * @info: the driver's PTP info structure
2271  * @cts: The memory to fill the cross timestamp info
2272  *
2273  * Capture a cross timestamp between the ART and the device PTP hardware
2274  * clock. Fill the cross timestamp information and report it back to the
2275  * caller.
2276  *
2277  * This is only valid for E822 and E823 devices which have support for
2278  * generating the cross timestamp via PCIe PTM.
2279  *
2280  * In order to correctly correlate the ART timestamp back to the TSC time, the
2281  * CPU must have X86_FEATURE_TSC_KNOWN_FREQ.
2282  */
2283 static int
ice_ptp_getcrosststamp_e82x(struct ptp_clock_info * info,struct system_device_crosststamp * cts)2284 ice_ptp_getcrosststamp_e82x(struct ptp_clock_info *info,
2285 			    struct system_device_crosststamp *cts)
2286 {
2287 	struct ice_pf *pf = ptp_info_to_pf(info);
2288 
2289 	return get_device_system_crosststamp(ice_ptp_get_syncdevicetime,
2290 					     pf, NULL, cts);
2291 }
2292 #endif /* CONFIG_ICE_HWTS */
2293 
2294 /**
2295  * ice_ptp_get_ts_config - ioctl interface to read the timestamping config
2296  * @pf: Board private structure
2297  * @ifr: ioctl data
2298  *
2299  * Copy the timestamping config to user buffer
2300  */
ice_ptp_get_ts_config(struct ice_pf * pf,struct ifreq * ifr)2301 int ice_ptp_get_ts_config(struct ice_pf *pf, struct ifreq *ifr)
2302 {
2303 	struct hwtstamp_config *config;
2304 
2305 	if (pf->ptp.state != ICE_PTP_READY)
2306 		return -EIO;
2307 
2308 	config = &pf->ptp.tstamp_config;
2309 
2310 	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
2311 		-EFAULT : 0;
2312 }
2313 
2314 /**
2315  * ice_ptp_set_timestamp_mode - Setup driver for requested timestamp mode
2316  * @pf: Board private structure
2317  * @config: hwtstamp settings requested or saved
2318  */
2319 static int
ice_ptp_set_timestamp_mode(struct ice_pf * pf,struct hwtstamp_config * config)2320 ice_ptp_set_timestamp_mode(struct ice_pf *pf, struct hwtstamp_config *config)
2321 {
2322 	switch (config->tx_type) {
2323 	case HWTSTAMP_TX_OFF:
2324 		pf->ptp.tstamp_config.tx_type = HWTSTAMP_TX_OFF;
2325 		break;
2326 	case HWTSTAMP_TX_ON:
2327 		pf->ptp.tstamp_config.tx_type = HWTSTAMP_TX_ON;
2328 		break;
2329 	default:
2330 		return -ERANGE;
2331 	}
2332 
2333 	switch (config->rx_filter) {
2334 	case HWTSTAMP_FILTER_NONE:
2335 		pf->ptp.tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
2336 		break;
2337 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
2338 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
2339 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
2340 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
2341 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2342 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2343 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
2344 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
2345 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2346 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
2347 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
2348 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2349 	case HWTSTAMP_FILTER_NTP_ALL:
2350 	case HWTSTAMP_FILTER_ALL:
2351 		pf->ptp.tstamp_config.rx_filter = HWTSTAMP_FILTER_ALL;
2352 		break;
2353 	default:
2354 		return -ERANGE;
2355 	}
2356 
2357 	/* Immediately update the device timestamping mode */
2358 	ice_ptp_restore_timestamp_mode(pf);
2359 
2360 	return 0;
2361 }
2362 
2363 /**
2364  * ice_ptp_set_ts_config - ioctl interface to control the timestamping
2365  * @pf: Board private structure
2366  * @ifr: ioctl data
2367  *
2368  * Get the user config and store it
2369  */
ice_ptp_set_ts_config(struct ice_pf * pf,struct ifreq * ifr)2370 int ice_ptp_set_ts_config(struct ice_pf *pf, struct ifreq *ifr)
2371 {
2372 	struct hwtstamp_config config;
2373 	int err;
2374 
2375 	if (pf->ptp.state != ICE_PTP_READY)
2376 		return -EAGAIN;
2377 
2378 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
2379 		return -EFAULT;
2380 
2381 	err = ice_ptp_set_timestamp_mode(pf, &config);
2382 	if (err)
2383 		return err;
2384 
2385 	/* Return the actual configuration set */
2386 	config = pf->ptp.tstamp_config;
2387 
2388 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2389 		-EFAULT : 0;
2390 }
2391 
2392 /**
2393  * ice_ptp_get_rx_hwts - Get packet Rx timestamp in ns
2394  * @rx_desc: Receive descriptor
2395  * @pkt_ctx: Packet context to get the cached time
2396  *
2397  * The driver receives a notification in the receive descriptor with timestamp.
2398  */
ice_ptp_get_rx_hwts(const union ice_32b_rx_flex_desc * rx_desc,const struct ice_pkt_ctx * pkt_ctx)2399 u64 ice_ptp_get_rx_hwts(const union ice_32b_rx_flex_desc *rx_desc,
2400 			const struct ice_pkt_ctx *pkt_ctx)
2401 {
2402 	u64 ts_ns, cached_time;
2403 	u32 ts_high;
2404 
2405 	if (!(rx_desc->wb.time_stamp_low & ICE_PTP_TS_VALID))
2406 		return 0;
2407 
2408 	cached_time = READ_ONCE(pkt_ctx->cached_phctime);
2409 
2410 	/* Do not report a timestamp if we don't have a cached PHC time */
2411 	if (!cached_time)
2412 		return 0;
2413 
2414 	/* Use ice_ptp_extend_32b_ts directly, using the ring-specific cached
2415 	 * PHC value, rather than accessing the PF. This also allows us to
2416 	 * simply pass the upper 32bits of nanoseconds directly. Calling
2417 	 * ice_ptp_extend_40b_ts is unnecessary as it would just discard these
2418 	 * bits itself.
2419 	 */
2420 	ts_high = le32_to_cpu(rx_desc->wb.flex_ts.ts_high);
2421 	ts_ns = ice_ptp_extend_32b_ts(cached_time, ts_high);
2422 
2423 	return ts_ns;
2424 }
2425 
2426 /**
2427  * ice_ptp_setup_pin_cfg - setup PTP pin_config structure
2428  * @pf: Board private structure
2429  */
ice_ptp_setup_pin_cfg(struct ice_pf * pf)2430 static void ice_ptp_setup_pin_cfg(struct ice_pf *pf)
2431 {
2432 	for (unsigned int i = 0; i < pf->ptp.info.n_pins; i++) {
2433 		const struct ice_ptp_pin_desc *desc = &pf->ptp.ice_pin_desc[i];
2434 		struct ptp_pin_desc *pin = &pf->ptp.pin_desc[i];
2435 		const char *name = NULL;
2436 
2437 		if (!ice_is_feature_supported(pf, ICE_F_SMA_CTRL))
2438 			name = ice_pin_names[desc->name_idx];
2439 		else if (desc->name_idx != GPIO_NA)
2440 			name = ice_pin_names_nvm[desc->name_idx];
2441 		if (name)
2442 			strscpy(pin->name, name, sizeof(pin->name));
2443 
2444 		pin->index = i;
2445 	}
2446 
2447 	pf->ptp.info.pin_config = pf->ptp.pin_desc;
2448 }
2449 
2450 /**
2451  * ice_ptp_disable_pins - Disable PTP pins
2452  * @pf: pointer to the PF structure
2453  *
2454  * Disable the OS access to the SMA pins. Called to clear out the OS
2455  * indications of pin support when we fail to setup the SMA control register.
2456  */
ice_ptp_disable_pins(struct ice_pf * pf)2457 static void ice_ptp_disable_pins(struct ice_pf *pf)
2458 {
2459 	struct ptp_clock_info *info = &pf->ptp.info;
2460 
2461 	dev_warn(ice_pf_to_dev(pf), "Failed to configure PTP pin control\n");
2462 
2463 	info->enable = NULL;
2464 	info->verify = NULL;
2465 	info->n_pins = 0;
2466 	info->n_ext_ts = 0;
2467 	info->n_per_out = 0;
2468 }
2469 
2470 /**
2471  * ice_ptp_parse_sdp_entries - update ice_ptp_pin_desc structure from NVM
2472  * @pf: pointer to the PF structure
2473  * @entries: SDP connection section from NVM
2474  * @num_entries: number of valid entries in sdp_entries
2475  * @pins: PTP pins array to update
2476  *
2477  * Return: 0 on success, negative error code otherwise.
2478  */
ice_ptp_parse_sdp_entries(struct ice_pf * pf,__le16 * entries,unsigned int num_entries,struct ice_ptp_pin_desc * pins)2479 static int ice_ptp_parse_sdp_entries(struct ice_pf *pf, __le16 *entries,
2480 				     unsigned int num_entries,
2481 				     struct ice_ptp_pin_desc *pins)
2482 {
2483 	unsigned int n_pins = 0;
2484 	unsigned int i;
2485 
2486 	/* Setup ice_pin_desc array */
2487 	for (i = 0; i < ICE_N_PINS_MAX; i++) {
2488 		pins[i].name_idx = -1;
2489 		pins[i].gpio[0] = -1;
2490 		pins[i].gpio[1] = -1;
2491 	}
2492 
2493 	for (i = 0; i < num_entries; i++) {
2494 		u16 entry = le16_to_cpu(entries[i]);
2495 		DECLARE_BITMAP(bitmap, GPIO_NA);
2496 		unsigned int bitmap_idx;
2497 		bool dir;
2498 		u16 gpio;
2499 
2500 		*bitmap = FIELD_GET(ICE_AQC_NVM_SDP_AC_PIN_M, entry);
2501 		dir = !!FIELD_GET(ICE_AQC_NVM_SDP_AC_DIR_M, entry);
2502 		gpio = FIELD_GET(ICE_AQC_NVM_SDP_AC_SDP_NUM_M, entry);
2503 		for_each_set_bit(bitmap_idx, bitmap, GPIO_NA + 1) {
2504 			unsigned int idx;
2505 
2506 			/* Check if entry's pin bit is valid */
2507 			if (bitmap_idx >= NUM_PTP_PINS_NVM &&
2508 			    bitmap_idx != GPIO_NA)
2509 				continue;
2510 
2511 			/* Check if pin already exists */
2512 			for (idx = 0; idx < ICE_N_PINS_MAX; idx++)
2513 				if (pins[idx].name_idx == bitmap_idx)
2514 					break;
2515 
2516 			if (idx == ICE_N_PINS_MAX) {
2517 				/* Pin not found, setup its entry and name */
2518 				idx = n_pins++;
2519 				pins[idx].name_idx = bitmap_idx;
2520 				if (bitmap_idx == GPIO_NA)
2521 					strscpy(pf->ptp.pin_desc[idx].name,
2522 						ice_pin_names[gpio],
2523 						sizeof(pf->ptp.pin_desc[idx]
2524 							       .name));
2525 			}
2526 
2527 			/* Setup in/out GPIO number */
2528 			pins[idx].gpio[dir] = gpio;
2529 		}
2530 	}
2531 
2532 	for (i = 0; i < n_pins; i++) {
2533 		dev_dbg(ice_pf_to_dev(pf),
2534 			"NVM pin entry[%d] : name_idx %d gpio_out %d gpio_in %d\n",
2535 			i, pins[i].name_idx, pins[i].gpio[1], pins[i].gpio[0]);
2536 	}
2537 
2538 	pf->ptp.info.n_pins = n_pins;
2539 	return 0;
2540 }
2541 
2542 /**
2543  * ice_ptp_set_funcs_e82x - Set specialized functions for E82X support
2544  * @pf: Board private structure
2545  *
2546  * Assign functions to the PTP capabilities structure for E82X devices.
2547  * Functions which operate across all device families should be set directly
2548  * in ice_ptp_set_caps. Only add functions here which are distinct for E82X
2549  * devices.
2550  */
ice_ptp_set_funcs_e82x(struct ice_pf * pf)2551 static void ice_ptp_set_funcs_e82x(struct ice_pf *pf)
2552 {
2553 #ifdef CONFIG_ICE_HWTS
2554 	if (boot_cpu_has(X86_FEATURE_ART) &&
2555 	    boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ))
2556 		pf->ptp.info.getcrosststamp = ice_ptp_getcrosststamp_e82x;
2557 
2558 #endif /* CONFIG_ICE_HWTS */
2559 	if (ice_is_e825c(&pf->hw)) {
2560 		pf->ptp.ice_pin_desc = ice_pin_desc_e825c;
2561 		pf->ptp.info.n_pins = ICE_PIN_DESC_ARR_LEN(ice_pin_desc_e825c);
2562 	} else {
2563 		pf->ptp.ice_pin_desc = ice_pin_desc_e82x;
2564 		pf->ptp.info.n_pins = ICE_PIN_DESC_ARR_LEN(ice_pin_desc_e82x);
2565 	}
2566 	ice_ptp_setup_pin_cfg(pf);
2567 }
2568 
2569 /**
2570  * ice_ptp_set_funcs_e810 - Set specialized functions for E810 support
2571  * @pf: Board private structure
2572  *
2573  * Assign functions to the PTP capabiltiies structure for E810 devices.
2574  * Functions which operate across all device families should be set directly
2575  * in ice_ptp_set_caps. Only add functions here which are distinct for E810
2576  * devices.
2577  */
ice_ptp_set_funcs_e810(struct ice_pf * pf)2578 static void ice_ptp_set_funcs_e810(struct ice_pf *pf)
2579 {
2580 	__le16 entries[ICE_AQC_NVM_SDP_AC_MAX_SIZE];
2581 	struct ice_ptp_pin_desc *desc = NULL;
2582 	struct ice_ptp *ptp = &pf->ptp;
2583 	unsigned int num_entries;
2584 	int err;
2585 
2586 	err = ice_ptp_read_sdp_ac(&pf->hw, entries, &num_entries);
2587 	if (err) {
2588 		/* SDP section does not exist in NVM or is corrupted */
2589 		if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL)) {
2590 			ptp->ice_pin_desc = ice_pin_desc_e810_sma;
2591 			ptp->info.n_pins =
2592 				ICE_PIN_DESC_ARR_LEN(ice_pin_desc_e810_sma);
2593 		} else {
2594 			pf->ptp.ice_pin_desc = ice_pin_desc_e810;
2595 			pf->ptp.info.n_pins =
2596 				ICE_PIN_DESC_ARR_LEN(ice_pin_desc_e810);
2597 			err = 0;
2598 		}
2599 	} else {
2600 		desc = devm_kcalloc(ice_pf_to_dev(pf), ICE_N_PINS_MAX,
2601 				    sizeof(struct ice_ptp_pin_desc),
2602 				    GFP_KERNEL);
2603 		if (!desc)
2604 			goto err;
2605 
2606 		err = ice_ptp_parse_sdp_entries(pf, entries, num_entries, desc);
2607 		if (err)
2608 			goto err;
2609 
2610 		ptp->ice_pin_desc = (const struct ice_ptp_pin_desc *)desc;
2611 	}
2612 
2613 	ptp->info.pin_config = ptp->pin_desc;
2614 	ice_ptp_setup_pin_cfg(pf);
2615 
2616 	if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL))
2617 		err = ice_ptp_set_sma_cfg(pf);
2618 err:
2619 	if (err) {
2620 		devm_kfree(ice_pf_to_dev(pf), desc);
2621 		ice_ptp_disable_pins(pf);
2622 	}
2623 }
2624 
2625 /**
2626  * ice_ptp_set_caps - Set PTP capabilities
2627  * @pf: Board private structure
2628  */
ice_ptp_set_caps(struct ice_pf * pf)2629 static void ice_ptp_set_caps(struct ice_pf *pf)
2630 {
2631 	struct ptp_clock_info *info = &pf->ptp.info;
2632 	struct device *dev = ice_pf_to_dev(pf);
2633 
2634 	snprintf(info->name, sizeof(info->name) - 1, "%s-%s-clk",
2635 		 dev_driver_string(dev), dev_name(dev));
2636 	info->owner = THIS_MODULE;
2637 	info->max_adj = 100000000;
2638 	info->adjtime = ice_ptp_adjtime;
2639 	info->adjfine = ice_ptp_adjfine;
2640 	info->gettimex64 = ice_ptp_gettimex64;
2641 	info->settime64 = ice_ptp_settime64;
2642 	info->n_per_out = GLTSYN_TGT_H_IDX_MAX;
2643 	info->n_ext_ts = GLTSYN_EVNT_H_IDX_MAX;
2644 	info->enable = ice_ptp_gpio_enable;
2645 	info->verify = ice_verify_pin;
2646 
2647 	if (ice_is_e810(&pf->hw))
2648 		ice_ptp_set_funcs_e810(pf);
2649 	else
2650 		ice_ptp_set_funcs_e82x(pf);
2651 }
2652 
2653 /**
2654  * ice_ptp_create_clock - Create PTP clock device for userspace
2655  * @pf: Board private structure
2656  *
2657  * This function creates a new PTP clock device. It only creates one if we
2658  * don't already have one. Will return error if it can't create one, but success
2659  * if we already have a device. Should be used by ice_ptp_init to create clock
2660  * initially, and prevent global resets from creating new clock devices.
2661  */
ice_ptp_create_clock(struct ice_pf * pf)2662 static long ice_ptp_create_clock(struct ice_pf *pf)
2663 {
2664 	struct ptp_clock_info *info;
2665 	struct device *dev;
2666 
2667 	/* No need to create a clock device if we already have one */
2668 	if (pf->ptp.clock)
2669 		return 0;
2670 
2671 	ice_ptp_set_caps(pf);
2672 
2673 	info = &pf->ptp.info;
2674 	dev = ice_pf_to_dev(pf);
2675 
2676 	/* Attempt to register the clock before enabling the hardware. */
2677 	pf->ptp.clock = ptp_clock_register(info, dev);
2678 	if (IS_ERR(pf->ptp.clock)) {
2679 		dev_err(ice_pf_to_dev(pf), "Failed to register PTP clock device");
2680 		return PTR_ERR(pf->ptp.clock);
2681 	}
2682 
2683 	return 0;
2684 }
2685 
2686 /**
2687  * ice_ptp_request_ts - Request an available Tx timestamp index
2688  * @tx: the PTP Tx timestamp tracker to request from
2689  * @skb: the SKB to associate with this timestamp request
2690  */
ice_ptp_request_ts(struct ice_ptp_tx * tx,struct sk_buff * skb)2691 s8 ice_ptp_request_ts(struct ice_ptp_tx *tx, struct sk_buff *skb)
2692 {
2693 	unsigned long flags;
2694 	u8 idx;
2695 
2696 	spin_lock_irqsave(&tx->lock, flags);
2697 
2698 	/* Check that this tracker is accepting new timestamp requests */
2699 	if (!ice_ptp_is_tx_tracker_up(tx)) {
2700 		spin_unlock_irqrestore(&tx->lock, flags);
2701 		return -1;
2702 	}
2703 
2704 	/* Find and set the first available index */
2705 	idx = find_next_zero_bit(tx->in_use, tx->len,
2706 				 tx->last_ll_ts_idx_read + 1);
2707 	if (idx == tx->len)
2708 		idx = find_first_zero_bit(tx->in_use, tx->len);
2709 
2710 	if (idx < tx->len) {
2711 		/* We got a valid index that no other thread could have set. Store
2712 		 * a reference to the skb and the start time to allow discarding old
2713 		 * requests.
2714 		 */
2715 		set_bit(idx, tx->in_use);
2716 		clear_bit(idx, tx->stale);
2717 		tx->tstamps[idx].start = jiffies;
2718 		tx->tstamps[idx].skb = skb_get(skb);
2719 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2720 		ice_trace(tx_tstamp_request, skb, idx);
2721 	}
2722 
2723 	spin_unlock_irqrestore(&tx->lock, flags);
2724 
2725 	/* return the appropriate PHY timestamp register index, -1 if no
2726 	 * indexes were available.
2727 	 */
2728 	if (idx >= tx->len)
2729 		return -1;
2730 	else
2731 		return idx + tx->offset;
2732 }
2733 
2734 /**
2735  * ice_ptp_process_ts - Process the PTP Tx timestamps
2736  * @pf: Board private structure
2737  *
2738  * Returns: ICE_TX_TSTAMP_WORK_PENDING if there are any outstanding Tx
2739  * timestamps that need processing, and ICE_TX_TSTAMP_WORK_DONE otherwise.
2740  */
ice_ptp_process_ts(struct ice_pf * pf)2741 enum ice_tx_tstamp_work ice_ptp_process_ts(struct ice_pf *pf)
2742 {
2743 	switch (pf->ptp.tx_interrupt_mode) {
2744 	case ICE_PTP_TX_INTERRUPT_NONE:
2745 		/* This device has the clock owner handle timestamps for it */
2746 		return ICE_TX_TSTAMP_WORK_DONE;
2747 	case ICE_PTP_TX_INTERRUPT_SELF:
2748 		/* This device handles its own timestamps */
2749 		return ice_ptp_tx_tstamp(&pf->ptp.port.tx);
2750 	case ICE_PTP_TX_INTERRUPT_ALL:
2751 		/* This device handles timestamps for all ports */
2752 		return ice_ptp_tx_tstamp_owner(pf);
2753 	default:
2754 		WARN_ONCE(1, "Unexpected Tx timestamp interrupt mode %u\n",
2755 			  pf->ptp.tx_interrupt_mode);
2756 		return ICE_TX_TSTAMP_WORK_DONE;
2757 	}
2758 }
2759 
2760 /**
2761  * ice_ptp_maybe_trigger_tx_interrupt - Trigger Tx timstamp interrupt
2762  * @pf: Board private structure
2763  *
2764  * The device PHY issues Tx timestamp interrupts to the driver for processing
2765  * timestamp data from the PHY. It will not interrupt again until all
2766  * current timestamp data is read. In rare circumstances, it is possible that
2767  * the driver fails to read all outstanding data.
2768  *
2769  * To avoid getting permanently stuck, periodically check if the PHY has
2770  * outstanding timestamp data. If so, trigger an interrupt from software to
2771  * process this data.
2772  */
ice_ptp_maybe_trigger_tx_interrupt(struct ice_pf * pf)2773 static void ice_ptp_maybe_trigger_tx_interrupt(struct ice_pf *pf)
2774 {
2775 	struct device *dev = ice_pf_to_dev(pf);
2776 	struct ice_hw *hw = &pf->hw;
2777 	bool trigger_oicr = false;
2778 	unsigned int i;
2779 
2780 	if (ice_is_e810(hw))
2781 		return;
2782 
2783 	if (!ice_pf_src_tmr_owned(pf))
2784 		return;
2785 
2786 	for (i = 0; i < ICE_GET_QUAD_NUM(hw->ptp.num_lports); i++) {
2787 		u64 tstamp_ready;
2788 		int err;
2789 
2790 		err = ice_get_phy_tx_tstamp_ready(&pf->hw, i, &tstamp_ready);
2791 		if (!err && tstamp_ready) {
2792 			trigger_oicr = true;
2793 			break;
2794 		}
2795 	}
2796 
2797 	if (trigger_oicr) {
2798 		/* Trigger a software interrupt, to ensure this data
2799 		 * gets processed.
2800 		 */
2801 		dev_dbg(dev, "PTP periodic task detected waiting timestamps. Triggering Tx timestamp interrupt now.\n");
2802 
2803 		wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M);
2804 		ice_flush(hw);
2805 	}
2806 }
2807 
ice_ptp_periodic_work(struct kthread_work * work)2808 static void ice_ptp_periodic_work(struct kthread_work *work)
2809 {
2810 	struct ice_ptp *ptp = container_of(work, struct ice_ptp, work.work);
2811 	struct ice_pf *pf = container_of(ptp, struct ice_pf, ptp);
2812 	int err;
2813 
2814 	if (pf->ptp.state != ICE_PTP_READY)
2815 		return;
2816 
2817 	err = ice_ptp_update_cached_phctime(pf);
2818 
2819 	ice_ptp_maybe_trigger_tx_interrupt(pf);
2820 
2821 	/* Run twice a second or reschedule if phc update failed */
2822 	kthread_queue_delayed_work(ptp->kworker, &ptp->work,
2823 				   msecs_to_jiffies(err ? 10 : 500));
2824 }
2825 
2826 /**
2827  * ice_ptp_prepare_for_reset - Prepare PTP for reset
2828  * @pf: Board private structure
2829  * @reset_type: the reset type being performed
2830  */
ice_ptp_prepare_for_reset(struct ice_pf * pf,enum ice_reset_req reset_type)2831 void ice_ptp_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
2832 {
2833 	struct ice_ptp *ptp = &pf->ptp;
2834 	u8 src_tmr;
2835 
2836 	if (ptp->state != ICE_PTP_READY)
2837 		return;
2838 
2839 	ptp->state = ICE_PTP_RESETTING;
2840 
2841 	/* Disable timestamping for both Tx and Rx */
2842 	ice_ptp_disable_timestamp_mode(pf);
2843 
2844 	kthread_cancel_delayed_work_sync(&ptp->work);
2845 
2846 	if (reset_type == ICE_RESET_PFR)
2847 		return;
2848 
2849 	ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx);
2850 
2851 	/* Disable periodic outputs */
2852 	ice_ptp_disable_all_perout(pf);
2853 
2854 	src_tmr = ice_get_ptp_src_clock_index(&pf->hw);
2855 
2856 	/* Disable source clock */
2857 	wr32(&pf->hw, GLTSYN_ENA(src_tmr), (u32)~GLTSYN_ENA_TSYN_ENA_M);
2858 
2859 	/* Acquire PHC and system timer to restore after reset */
2860 	ptp->reset_time = ktime_get_real_ns();
2861 }
2862 
2863 /**
2864  * ice_ptp_rebuild_owner - Initialize PTP clock owner after reset
2865  * @pf: Board private structure
2866  *
2867  * Companion function for ice_ptp_rebuild() which handles tasks that only the
2868  * PTP clock owner instance should perform.
2869  */
ice_ptp_rebuild_owner(struct ice_pf * pf)2870 static int ice_ptp_rebuild_owner(struct ice_pf *pf)
2871 {
2872 	struct ice_ptp *ptp = &pf->ptp;
2873 	struct ice_hw *hw = &pf->hw;
2874 	struct timespec64 ts;
2875 	u64 time_diff;
2876 	int err;
2877 
2878 	err = ice_ptp_init_phc(hw);
2879 	if (err)
2880 		return err;
2881 
2882 	/* Acquire the global hardware lock */
2883 	if (!ice_ptp_lock(hw)) {
2884 		err = -EBUSY;
2885 		return err;
2886 	}
2887 
2888 	/* Write the increment time value to PHY and LAN */
2889 	err = ice_ptp_write_incval(hw, ice_base_incval(pf));
2890 	if (err)
2891 		goto err_unlock;
2892 
2893 	/* Write the initial Time value to PHY and LAN using the cached PHC
2894 	 * time before the reset and time difference between stopping and
2895 	 * starting the clock.
2896 	 */
2897 	if (ptp->cached_phc_time) {
2898 		time_diff = ktime_get_real_ns() - ptp->reset_time;
2899 		ts = ns_to_timespec64(ptp->cached_phc_time + time_diff);
2900 	} else {
2901 		ts = ktime_to_timespec64(ktime_get_real());
2902 	}
2903 	err = ice_ptp_write_init(pf, &ts);
2904 	if (err)
2905 		goto err_unlock;
2906 
2907 	/* Release the global hardware lock */
2908 	ice_ptp_unlock(hw);
2909 
2910 	/* Flush software tracking of any outstanding timestamps since we're
2911 	 * about to flush the PHY timestamp block.
2912 	 */
2913 	ice_ptp_flush_all_tx_tracker(pf);
2914 
2915 	if (!ice_is_e810(hw)) {
2916 		/* Enable quad interrupts */
2917 		err = ice_ptp_cfg_phy_interrupt(pf, true, 1);
2918 		if (err)
2919 			return err;
2920 
2921 		ice_ptp_restart_all_phy(pf);
2922 	}
2923 
2924 	/* Re-enable all periodic outputs and external timestamp events */
2925 	ice_ptp_enable_all_perout(pf);
2926 	ice_ptp_enable_all_extts(pf);
2927 
2928 	return 0;
2929 
2930 err_unlock:
2931 	ice_ptp_unlock(hw);
2932 	return err;
2933 }
2934 
2935 /**
2936  * ice_ptp_rebuild - Initialize PTP hardware clock support after reset
2937  * @pf: Board private structure
2938  * @reset_type: the reset type being performed
2939  */
ice_ptp_rebuild(struct ice_pf * pf,enum ice_reset_req reset_type)2940 void ice_ptp_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
2941 {
2942 	struct ice_ptp *ptp = &pf->ptp;
2943 	int err;
2944 
2945 	if (ptp->state == ICE_PTP_READY) {
2946 		ice_ptp_prepare_for_reset(pf, reset_type);
2947 	} else if (ptp->state != ICE_PTP_RESETTING) {
2948 		err = -EINVAL;
2949 		dev_err(ice_pf_to_dev(pf), "PTP was not initialized\n");
2950 		goto err;
2951 	}
2952 
2953 	if (ice_pf_src_tmr_owned(pf) && reset_type != ICE_RESET_PFR) {
2954 		err = ice_ptp_rebuild_owner(pf);
2955 		if (err)
2956 			goto err;
2957 	}
2958 
2959 	ptp->state = ICE_PTP_READY;
2960 
2961 	/* Start periodic work going */
2962 	kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0);
2963 
2964 	dev_info(ice_pf_to_dev(pf), "PTP reset successful\n");
2965 	return;
2966 
2967 err:
2968 	ptp->state = ICE_PTP_ERROR;
2969 	dev_err(ice_pf_to_dev(pf), "PTP reset failed %d\n", err);
2970 }
2971 
ice_is_primary(struct ice_hw * hw)2972 static bool ice_is_primary(struct ice_hw *hw)
2973 {
2974 	return ice_is_e825c(hw) && ice_is_dual(hw) ?
2975 		!!(hw->dev_caps.nac_topo.mode & ICE_NAC_TOPO_PRIMARY_M) : true;
2976 }
2977 
ice_ptp_setup_adapter(struct ice_pf * pf)2978 static int ice_ptp_setup_adapter(struct ice_pf *pf)
2979 {
2980 	if (!ice_pf_src_tmr_owned(pf) || !ice_is_primary(&pf->hw))
2981 		return -EPERM;
2982 
2983 	pf->adapter->ctrl_pf = pf;
2984 
2985 	return 0;
2986 }
2987 
ice_ptp_setup_pf(struct ice_pf * pf)2988 static int ice_ptp_setup_pf(struct ice_pf *pf)
2989 {
2990 	struct ice_ptp *ctrl_ptp = ice_get_ctrl_ptp(pf);
2991 	struct ice_ptp *ptp = &pf->ptp;
2992 
2993 	if (WARN_ON(!ctrl_ptp) || ice_get_phy_model(&pf->hw) == ICE_PHY_UNSUP)
2994 		return -ENODEV;
2995 
2996 	INIT_LIST_HEAD(&ptp->port.list_node);
2997 	mutex_lock(&pf->adapter->ports.lock);
2998 
2999 	list_add(&ptp->port.list_node,
3000 		 &pf->adapter->ports.ports);
3001 	mutex_unlock(&pf->adapter->ports.lock);
3002 
3003 	return 0;
3004 }
3005 
ice_ptp_cleanup_pf(struct ice_pf * pf)3006 static void ice_ptp_cleanup_pf(struct ice_pf *pf)
3007 {
3008 	struct ice_ptp *ptp = &pf->ptp;
3009 
3010 	if (ice_get_phy_model(&pf->hw) != ICE_PHY_UNSUP) {
3011 		mutex_lock(&pf->adapter->ports.lock);
3012 		list_del(&ptp->port.list_node);
3013 		mutex_unlock(&pf->adapter->ports.lock);
3014 	}
3015 }
3016 
3017 /**
3018  * ice_ptp_clock_index - Get the PTP clock index for this device
3019  * @pf: Board private structure
3020  *
3021  * Returns: the PTP clock index associated with this PF, or -1 if no PTP clock
3022  * is associated.
3023  */
ice_ptp_clock_index(struct ice_pf * pf)3024 int ice_ptp_clock_index(struct ice_pf *pf)
3025 {
3026 	struct ice_ptp *ctrl_ptp = ice_get_ctrl_ptp(pf);
3027 	struct ptp_clock *clock;
3028 
3029 	if (!ctrl_ptp)
3030 		return -1;
3031 	clock = ctrl_ptp->clock;
3032 
3033 	return clock ? ptp_clock_index(clock) : -1;
3034 }
3035 
3036 /**
3037  * ice_ptp_init_owner - Initialize PTP_1588_CLOCK device
3038  * @pf: Board private structure
3039  *
3040  * Setup and initialize a PTP clock device that represents the device hardware
3041  * clock. Save the clock index for other functions connected to the same
3042  * hardware resource.
3043  */
ice_ptp_init_owner(struct ice_pf * pf)3044 static int ice_ptp_init_owner(struct ice_pf *pf)
3045 {
3046 	struct ice_hw *hw = &pf->hw;
3047 	struct timespec64 ts;
3048 	int err;
3049 
3050 	err = ice_ptp_init_phc(hw);
3051 	if (err) {
3052 		dev_err(ice_pf_to_dev(pf), "Failed to initialize PHC, err %d\n",
3053 			err);
3054 		return err;
3055 	}
3056 
3057 	/* Acquire the global hardware lock */
3058 	if (!ice_ptp_lock(hw)) {
3059 		err = -EBUSY;
3060 		goto err_exit;
3061 	}
3062 
3063 	/* Write the increment time value to PHY and LAN */
3064 	err = ice_ptp_write_incval(hw, ice_base_incval(pf));
3065 	if (err)
3066 		goto err_unlock;
3067 
3068 	ts = ktime_to_timespec64(ktime_get_real());
3069 	/* Write the initial Time value to PHY and LAN */
3070 	err = ice_ptp_write_init(pf, &ts);
3071 	if (err)
3072 		goto err_unlock;
3073 
3074 	/* Release the global hardware lock */
3075 	ice_ptp_unlock(hw);
3076 
3077 	/* Configure PHY interrupt settings */
3078 	err = ice_ptp_cfg_phy_interrupt(pf, true, 1);
3079 	if (err)
3080 		goto err_exit;
3081 
3082 	/* Ensure we have a clock device */
3083 	err = ice_ptp_create_clock(pf);
3084 	if (err)
3085 		goto err_clk;
3086 
3087 	return 0;
3088 err_clk:
3089 	pf->ptp.clock = NULL;
3090 err_exit:
3091 	return err;
3092 
3093 err_unlock:
3094 	ice_ptp_unlock(hw);
3095 	return err;
3096 }
3097 
3098 /**
3099  * ice_ptp_init_work - Initialize PTP work threads
3100  * @pf: Board private structure
3101  * @ptp: PF PTP structure
3102  */
ice_ptp_init_work(struct ice_pf * pf,struct ice_ptp * ptp)3103 static int ice_ptp_init_work(struct ice_pf *pf, struct ice_ptp *ptp)
3104 {
3105 	struct kthread_worker *kworker;
3106 
3107 	/* Initialize work functions */
3108 	kthread_init_delayed_work(&ptp->work, ice_ptp_periodic_work);
3109 
3110 	/* Allocate a kworker for handling work required for the ports
3111 	 * connected to the PTP hardware clock.
3112 	 */
3113 	kworker = kthread_run_worker(0, "ice-ptp-%s",
3114 					dev_name(ice_pf_to_dev(pf)));
3115 	if (IS_ERR(kworker))
3116 		return PTR_ERR(kworker);
3117 
3118 	ptp->kworker = kworker;
3119 
3120 	/* Start periodic work going */
3121 	kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0);
3122 
3123 	return 0;
3124 }
3125 
3126 /**
3127  * ice_ptp_init_port - Initialize PTP port structure
3128  * @pf: Board private structure
3129  * @ptp_port: PTP port structure
3130  */
ice_ptp_init_port(struct ice_pf * pf,struct ice_ptp_port * ptp_port)3131 static int ice_ptp_init_port(struct ice_pf *pf, struct ice_ptp_port *ptp_port)
3132 {
3133 	struct ice_hw *hw = &pf->hw;
3134 
3135 	mutex_init(&ptp_port->ps_lock);
3136 
3137 	switch (ice_get_phy_model(hw)) {
3138 	case ICE_PHY_ETH56G:
3139 		return ice_ptp_init_tx_eth56g(pf, &ptp_port->tx,
3140 					      ptp_port->port_num);
3141 	case ICE_PHY_E810:
3142 		return ice_ptp_init_tx_e810(pf, &ptp_port->tx);
3143 	case ICE_PHY_E82X:
3144 		kthread_init_delayed_work(&ptp_port->ov_work,
3145 					  ice_ptp_wait_for_offsets);
3146 
3147 		return ice_ptp_init_tx_e82x(pf, &ptp_port->tx,
3148 					    ptp_port->port_num);
3149 	default:
3150 		return -ENODEV;
3151 	}
3152 }
3153 
3154 /**
3155  * ice_ptp_init_tx_interrupt_mode - Initialize device Tx interrupt mode
3156  * @pf: Board private structure
3157  *
3158  * Initialize the Tx timestamp interrupt mode for this device. For most device
3159  * types, each PF processes the interrupt and manages its own timestamps. For
3160  * E822-based devices, only the clock owner processes the timestamps. Other
3161  * PFs disable the interrupt and do not process their own timestamps.
3162  */
ice_ptp_init_tx_interrupt_mode(struct ice_pf * pf)3163 static void ice_ptp_init_tx_interrupt_mode(struct ice_pf *pf)
3164 {
3165 	switch (ice_get_phy_model(&pf->hw)) {
3166 	case ICE_PHY_E82X:
3167 		/* E822 based PHY has the clock owner process the interrupt
3168 		 * for all ports.
3169 		 */
3170 		if (ice_pf_src_tmr_owned(pf))
3171 			pf->ptp.tx_interrupt_mode = ICE_PTP_TX_INTERRUPT_ALL;
3172 		else
3173 			pf->ptp.tx_interrupt_mode = ICE_PTP_TX_INTERRUPT_NONE;
3174 		break;
3175 	default:
3176 		/* other PHY types handle their own Tx interrupt */
3177 		pf->ptp.tx_interrupt_mode = ICE_PTP_TX_INTERRUPT_SELF;
3178 	}
3179 }
3180 
3181 /**
3182  * ice_ptp_init - Initialize PTP hardware clock support
3183  * @pf: Board private structure
3184  *
3185  * Set up the device for interacting with the PTP hardware clock for all
3186  * functions, both the function that owns the clock hardware, and the
3187  * functions connected to the clock hardware.
3188  *
3189  * The clock owner will allocate and register a ptp_clock with the
3190  * PTP_1588_CLOCK infrastructure. All functions allocate a kthread and work
3191  * items used for asynchronous work such as Tx timestamps and periodic work.
3192  */
ice_ptp_init(struct ice_pf * pf)3193 void ice_ptp_init(struct ice_pf *pf)
3194 {
3195 	struct ice_ptp *ptp = &pf->ptp;
3196 	struct ice_hw *hw = &pf->hw;
3197 	int lane_num, err;
3198 
3199 	ptp->state = ICE_PTP_INITIALIZING;
3200 
3201 	lane_num = ice_get_phy_lane_number(hw);
3202 	if (lane_num < 0) {
3203 		err = lane_num;
3204 		goto err_exit;
3205 	}
3206 
3207 	ptp->port.port_num = (u8)lane_num;
3208 	ice_ptp_init_hw(hw);
3209 
3210 	ice_ptp_init_tx_interrupt_mode(pf);
3211 
3212 	/* If this function owns the clock hardware, it must allocate and
3213 	 * configure the PTP clock device to represent it.
3214 	 */
3215 	if (ice_pf_src_tmr_owned(pf) && ice_is_primary(hw)) {
3216 		err = ice_ptp_setup_adapter(pf);
3217 		if (err)
3218 			goto err_exit;
3219 		err = ice_ptp_init_owner(pf);
3220 		if (err)
3221 			goto err_exit;
3222 	}
3223 
3224 	err = ice_ptp_setup_pf(pf);
3225 	if (err)
3226 		goto err_exit;
3227 
3228 	err = ice_ptp_init_port(pf, &ptp->port);
3229 	if (err)
3230 		goto err_exit;
3231 
3232 	/* Start the PHY timestamping block */
3233 	ice_ptp_reset_phy_timestamping(pf);
3234 
3235 	/* Configure initial Tx interrupt settings */
3236 	ice_ptp_cfg_tx_interrupt(pf);
3237 
3238 	ptp->state = ICE_PTP_READY;
3239 
3240 	err = ice_ptp_init_work(pf, ptp);
3241 	if (err)
3242 		goto err_exit;
3243 
3244 	dev_info(ice_pf_to_dev(pf), "PTP init successful\n");
3245 	return;
3246 
3247 err_exit:
3248 	/* If we registered a PTP clock, release it */
3249 	if (pf->ptp.clock) {
3250 		ptp_clock_unregister(ptp->clock);
3251 		pf->ptp.clock = NULL;
3252 	}
3253 	ptp->state = ICE_PTP_ERROR;
3254 	dev_err(ice_pf_to_dev(pf), "PTP failed %d\n", err);
3255 }
3256 
3257 /**
3258  * ice_ptp_release - Disable the driver/HW support and unregister the clock
3259  * @pf: Board private structure
3260  *
3261  * This function handles the cleanup work required from the initialization by
3262  * clearing out the important information and unregistering the clock
3263  */
ice_ptp_release(struct ice_pf * pf)3264 void ice_ptp_release(struct ice_pf *pf)
3265 {
3266 	if (pf->ptp.state != ICE_PTP_READY)
3267 		return;
3268 
3269 	pf->ptp.state = ICE_PTP_UNINIT;
3270 
3271 	/* Disable timestamping for both Tx and Rx */
3272 	ice_ptp_disable_timestamp_mode(pf);
3273 
3274 	ice_ptp_cleanup_pf(pf);
3275 
3276 	ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx);
3277 
3278 	ice_ptp_disable_all_extts(pf);
3279 
3280 	kthread_cancel_delayed_work_sync(&pf->ptp.work);
3281 
3282 	ice_ptp_port_phy_stop(&pf->ptp.port);
3283 	mutex_destroy(&pf->ptp.port.ps_lock);
3284 	if (pf->ptp.kworker) {
3285 		kthread_destroy_worker(pf->ptp.kworker);
3286 		pf->ptp.kworker = NULL;
3287 	}
3288 
3289 	if (!pf->ptp.clock)
3290 		return;
3291 
3292 	/* Disable periodic outputs */
3293 	ice_ptp_disable_all_perout(pf);
3294 
3295 	ptp_clock_unregister(pf->ptp.clock);
3296 	pf->ptp.clock = NULL;
3297 
3298 	dev_info(ice_pf_to_dev(pf), "Removed PTP clock\n");
3299 }
3300