xref: /linux/drivers/gpu/drm/panthor/panthor_sched.c (revision 565ed40b5fc1242f7538a016fce5a85f802d4fb5)
1 // SPDX-License-Identifier: GPL-2.0 or MIT
2 /* Copyright 2023 Collabora ltd. */
3 
4 #include <drm/drm_drv.h>
5 #include <drm/drm_exec.h>
6 #include <drm/drm_gem_shmem_helper.h>
7 #include <drm/drm_managed.h>
8 #include <drm/drm_print.h>
9 #include <drm/gpu_scheduler.h>
10 #include <drm/panthor_drm.h>
11 
12 #include <linux/build_bug.h>
13 #include <linux/cleanup.h>
14 #include <linux/clk.h>
15 #include <linux/delay.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/dma-resv.h>
18 #include <linux/firmware.h>
19 #include <linux/interrupt.h>
20 #include <linux/io.h>
21 #include <linux/iopoll.h>
22 #include <linux/iosys-map.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/rcupdate.h>
27 
28 #include "panthor_devfreq.h"
29 #include "panthor_device.h"
30 #include "panthor_fw.h"
31 #include "panthor_gem.h"
32 #include "panthor_gpu.h"
33 #include "panthor_heap.h"
34 #include "panthor_mmu.h"
35 #include "panthor_regs.h"
36 #include "panthor_sched.h"
37 
38 /**
39  * DOC: Scheduler
40  *
41  * Mali CSF hardware adopts a firmware-assisted scheduling model, where
42  * the firmware takes care of scheduling aspects, to some extent.
43  *
44  * The scheduling happens at the scheduling group level, each group
45  * contains 1 to N queues (N is FW/hardware dependent, and exposed
46  * through the firmware interface). Each queue is assigned a command
47  * stream ring buffer, which serves as a way to get jobs submitted to
48  * the GPU, among other things.
49  *
50  * The firmware can schedule a maximum of M groups (M is FW/hardware
51  * dependent, and exposed through the firmware interface). Passed
52  * this maximum number of groups, the kernel must take care of
53  * rotating the groups passed to the firmware so every group gets
54  * a chance to have his queues scheduled for execution.
55  *
56  * The current implementation only supports with kernel-mode queues.
57  * In other terms, userspace doesn't have access to the ring-buffer.
58  * Instead, userspace passes indirect command stream buffers that are
59  * called from the queue ring-buffer by the kernel using a pre-defined
60  * sequence of command stream instructions to ensure the userspace driver
61  * always gets consistent results (cache maintenance,
62  * synchronization, ...).
63  *
64  * We rely on the drm_gpu_scheduler framework to deal with job
65  * dependencies and submission. As any other driver dealing with a
66  * FW-scheduler, we use the 1:1 entity:scheduler mode, such that each
67  * entity has its own job scheduler. When a job is ready to be executed
68  * (all its dependencies are met), it is pushed to the appropriate
69  * queue ring-buffer, and the group is scheduled for execution if it
70  * wasn't already active.
71  *
72  * Kernel-side group scheduling is timeslice-based. When we have less
73  * groups than there are slots, the periodic tick is disabled and we
74  * just let the FW schedule the active groups. When there are more
75  * groups than slots, we let each group a chance to execute stuff for
76  * a given amount of time, and then re-evaluate and pick new groups
77  * to schedule. The group selection algorithm is based on
78  * priority+round-robin.
79  *
80  * Even though user-mode queues is out of the scope right now, the
81  * current design takes them into account by avoiding any guess on the
82  * group/queue state that would be based on information we wouldn't have
83  * if userspace was in charge of the ring-buffer. That's also one of the
84  * reason we don't do 'cooperative' scheduling (encoding FW group slot
85  * reservation as dma_fence that would be returned from the
86  * drm_gpu_scheduler::prepare_job() hook, and treating group rotation as
87  * a queue of waiters, ordered by job submission order). This approach
88  * would work for kernel-mode queues, but would make user-mode queues a
89  * lot more complicated to retrofit.
90  */
91 
92 #define JOB_TIMEOUT_MS				5000
93 
94 #define MAX_CSG_PRIO				0xf
95 
96 #define NUM_INSTRS_PER_CACHE_LINE		(64 / sizeof(u64))
97 #define MAX_INSTRS_PER_JOB			24
98 
99 struct panthor_group;
100 
101 /**
102  * struct panthor_csg_slot - Command stream group slot
103  *
104  * This represents a FW slot for a scheduling group.
105  */
106 struct panthor_csg_slot {
107 	/** @group: Scheduling group bound to this slot. */
108 	struct panthor_group *group;
109 
110 	/** @priority: Group priority. */
111 	u8 priority;
112 };
113 
114 /**
115  * enum panthor_csg_priority - Group priority
116  */
117 enum panthor_csg_priority {
118 	/** @PANTHOR_CSG_PRIORITY_LOW: Low priority group. */
119 	PANTHOR_CSG_PRIORITY_LOW = 0,
120 
121 	/** @PANTHOR_CSG_PRIORITY_MEDIUM: Medium priority group. */
122 	PANTHOR_CSG_PRIORITY_MEDIUM,
123 
124 	/** @PANTHOR_CSG_PRIORITY_HIGH: High priority group. */
125 	PANTHOR_CSG_PRIORITY_HIGH,
126 
127 	/**
128 	 * @PANTHOR_CSG_PRIORITY_RT: Real-time priority group.
129 	 *
130 	 * Real-time priority allows one to preempt scheduling of other
131 	 * non-real-time groups. When such a group becomes executable,
132 	 * it will evict the group with the lowest non-rt priority if
133 	 * there's no free group slot available.
134 	 */
135 	PANTHOR_CSG_PRIORITY_RT,
136 
137 	/** @PANTHOR_CSG_PRIORITY_COUNT: Number of priority levels. */
138 	PANTHOR_CSG_PRIORITY_COUNT,
139 };
140 
141 /**
142  * struct panthor_scheduler - Object used to manage the scheduler
143  */
144 struct panthor_scheduler {
145 	/** @ptdev: Device. */
146 	struct panthor_device *ptdev;
147 
148 	/**
149 	 * @wq: Workqueue used by our internal scheduler logic and
150 	 * drm_gpu_scheduler.
151 	 *
152 	 * Used for the scheduler tick, group update or other kind of FW
153 	 * event processing that can't be handled in the threaded interrupt
154 	 * path. Also passed to the drm_gpu_scheduler instances embedded
155 	 * in panthor_queue.
156 	 */
157 	struct workqueue_struct *wq;
158 
159 	/**
160 	 * @heap_alloc_wq: Workqueue used to schedule tiler_oom works.
161 	 *
162 	 * We have a queue dedicated to heap chunk allocation works to avoid
163 	 * blocking the rest of the scheduler if the allocation tries to
164 	 * reclaim memory.
165 	 */
166 	struct workqueue_struct *heap_alloc_wq;
167 
168 	/** @tick_work: Work executed on a scheduling tick. */
169 	struct delayed_work tick_work;
170 
171 	/**
172 	 * @sync_upd_work: Work used to process synchronization object updates.
173 	 *
174 	 * We use this work to unblock queues/groups that were waiting on a
175 	 * synchronization object.
176 	 */
177 	struct work_struct sync_upd_work;
178 
179 	/**
180 	 * @fw_events_work: Work used to process FW events outside the interrupt path.
181 	 *
182 	 * Even if the interrupt is threaded, we need any event processing
183 	 * that require taking the panthor_scheduler::lock to be processed
184 	 * outside the interrupt path so we don't block the tick logic when
185 	 * it calls panthor_fw_{csg,wait}_wait_acks(). Since most of the
186 	 * event processing requires taking this lock, we just delegate all
187 	 * FW event processing to the scheduler workqueue.
188 	 */
189 	struct work_struct fw_events_work;
190 
191 	/**
192 	 * @fw_events: Bitmask encoding pending FW events.
193 	 */
194 	atomic_t fw_events;
195 
196 	/**
197 	 * @resched_target: When the next tick should occur.
198 	 *
199 	 * Expressed in jiffies.
200 	 */
201 	u64 resched_target;
202 
203 	/**
204 	 * @last_tick: When the last tick occurred.
205 	 *
206 	 * Expressed in jiffies.
207 	 */
208 	u64 last_tick;
209 
210 	/** @tick_period: Tick period in jiffies. */
211 	u64 tick_period;
212 
213 	/**
214 	 * @lock: Lock protecting access to all the scheduler fields.
215 	 *
216 	 * Should be taken in the tick work, the irq handler, and anywhere the @groups
217 	 * fields are touched.
218 	 */
219 	struct mutex lock;
220 
221 	/** @groups: Various lists used to classify groups. */
222 	struct {
223 		/**
224 		 * @runnable: Runnable group lists.
225 		 *
226 		 * When a group has queues that want to execute something,
227 		 * its panthor_group::run_node should be inserted here.
228 		 *
229 		 * One list per-priority.
230 		 */
231 		struct list_head runnable[PANTHOR_CSG_PRIORITY_COUNT];
232 
233 		/**
234 		 * @idle: Idle group lists.
235 		 *
236 		 * When all queues of a group are idle (either because they
237 		 * have nothing to execute, or because they are blocked), the
238 		 * panthor_group::run_node field should be inserted here.
239 		 *
240 		 * One list per-priority.
241 		 */
242 		struct list_head idle[PANTHOR_CSG_PRIORITY_COUNT];
243 
244 		/**
245 		 * @waiting: List of groups whose queues are blocked on a
246 		 * synchronization object.
247 		 *
248 		 * Insert panthor_group::wait_node here when a group is waiting
249 		 * for synchronization objects to be signaled.
250 		 *
251 		 * This list is evaluated in the @sync_upd_work work.
252 		 */
253 		struct list_head waiting;
254 	} groups;
255 
256 	/**
257 	 * @csg_slots: FW command stream group slots.
258 	 */
259 	struct panthor_csg_slot csg_slots[MAX_CSGS];
260 
261 	/** @csg_slot_count: Number of command stream group slots exposed by the FW. */
262 	u32 csg_slot_count;
263 
264 	/** @cs_slot_count: Number of command stream slot per group slot exposed by the FW. */
265 	u32 cs_slot_count;
266 
267 	/** @as_slot_count: Number of address space slots supported by the MMU. */
268 	u32 as_slot_count;
269 
270 	/** @used_csg_slot_count: Number of command stream group slot currently used. */
271 	u32 used_csg_slot_count;
272 
273 	/** @sb_slot_count: Number of scoreboard slots. */
274 	u32 sb_slot_count;
275 
276 	/**
277 	 * @might_have_idle_groups: True if an active group might have become idle.
278 	 *
279 	 * This will force a tick, so other runnable groups can be scheduled if one
280 	 * or more active groups became idle.
281 	 */
282 	bool might_have_idle_groups;
283 
284 	/** @pm: Power management related fields. */
285 	struct {
286 		/** @has_ref: True if the scheduler owns a runtime PM reference. */
287 		bool has_ref;
288 	} pm;
289 
290 	/** @reset: Reset related fields. */
291 	struct {
292 		/** @lock: Lock protecting the other reset fields. */
293 		struct mutex lock;
294 
295 		/**
296 		 * @in_progress: True if a reset is in progress.
297 		 *
298 		 * Set to true in panthor_sched_pre_reset() and back to false in
299 		 * panthor_sched_post_reset().
300 		 */
301 		atomic_t in_progress;
302 
303 		/**
304 		 * @stopped_groups: List containing all groups that were stopped
305 		 * before a reset.
306 		 *
307 		 * Insert panthor_group::run_node in the pre_reset path.
308 		 */
309 		struct list_head stopped_groups;
310 	} reset;
311 };
312 
313 /**
314  * struct panthor_syncobj_32b - 32-bit FW synchronization object
315  */
316 struct panthor_syncobj_32b {
317 	/** @seqno: Sequence number. */
318 	u32 seqno;
319 
320 	/**
321 	 * @status: Status.
322 	 *
323 	 * Not zero on failure.
324 	 */
325 	u32 status;
326 };
327 
328 /**
329  * struct panthor_syncobj_64b - 64-bit FW synchronization object
330  */
331 struct panthor_syncobj_64b {
332 	/** @seqno: Sequence number. */
333 	u64 seqno;
334 
335 	/**
336 	 * @status: Status.
337 	 *
338 	 * Not zero on failure.
339 	 */
340 	u32 status;
341 
342 	/** @pad: MBZ. */
343 	u32 pad;
344 };
345 
346 /**
347  * struct panthor_queue - Execution queue
348  */
349 struct panthor_queue {
350 	/** @scheduler: DRM scheduler used for this queue. */
351 	struct drm_gpu_scheduler scheduler;
352 
353 	/** @entity: DRM scheduling entity used for this queue. */
354 	struct drm_sched_entity entity;
355 
356 	/** @name: DRM scheduler name for this queue. */
357 	char *name;
358 
359 	/** @timeout: Queue timeout related fields. */
360 	struct {
361 		/** @timeout.work: Work executed when a queue timeout occurs. */
362 		struct delayed_work work;
363 
364 		/**
365 		 * @timeout.remaining: Time remaining before a queue timeout.
366 		 *
367 		 * When the timer is running, this value is set to MAX_SCHEDULE_TIMEOUT.
368 		 * When the timer is suspended, it's set to the time remaining when the
369 		 * timer was suspended.
370 		 */
371 		unsigned long remaining;
372 	} timeout;
373 
374 	/**
375 	 * @doorbell_id: Doorbell assigned to this queue.
376 	 *
377 	 * Right now, all groups share the same doorbell, and the doorbell ID
378 	 * is assigned to group_slot + 1 when the group is assigned a slot. But
379 	 * we might decide to provide fine grained doorbell assignment at some
380 	 * point, so don't have to wake up all queues in a group every time one
381 	 * of them is updated.
382 	 */
383 	u8 doorbell_id;
384 
385 	/**
386 	 * @priority: Priority of the queue inside the group.
387 	 *
388 	 * Must be less than 16 (Only 4 bits available).
389 	 */
390 	u8 priority;
391 #define CSF_MAX_QUEUE_PRIO	GENMASK(3, 0)
392 
393 	/** @ringbuf: Command stream ring-buffer. */
394 	struct panthor_kernel_bo *ringbuf;
395 
396 	/** @iface: Firmware interface. */
397 	struct {
398 		/** @mem: FW memory allocated for this interface. */
399 		struct panthor_kernel_bo *mem;
400 
401 		/** @input: Input interface. */
402 		struct panthor_fw_ringbuf_input_iface *input;
403 
404 		/** @output: Output interface. */
405 		const struct panthor_fw_ringbuf_output_iface *output;
406 
407 		/** @input_fw_va: FW virtual address of the input interface buffer. */
408 		u32 input_fw_va;
409 
410 		/** @output_fw_va: FW virtual address of the output interface buffer. */
411 		u32 output_fw_va;
412 	} iface;
413 
414 	/**
415 	 * @syncwait: Stores information about the synchronization object this
416 	 * queue is waiting on.
417 	 */
418 	struct {
419 		/** @gpu_va: GPU address of the synchronization object. */
420 		u64 gpu_va;
421 
422 		/** @ref: Reference value to compare against. */
423 		u64 ref;
424 
425 		/** @gt: True if this is a greater-than test. */
426 		bool gt;
427 
428 		/** @sync64: True if this is a 64-bit sync object. */
429 		bool sync64;
430 
431 		/** @bo: Buffer object holding the synchronization object. */
432 		struct drm_gem_object *obj;
433 
434 		/** @offset: Offset of the synchronization object inside @bo. */
435 		u64 offset;
436 
437 		/**
438 		 * @kmap: Kernel mapping of the buffer object holding the
439 		 * synchronization object.
440 		 */
441 		void *kmap;
442 	} syncwait;
443 
444 	/** @fence_ctx: Fence context fields. */
445 	struct {
446 		/** @lock: Used to protect access to all fences allocated by this context. */
447 		spinlock_t lock;
448 
449 		/**
450 		 * @id: Fence context ID.
451 		 *
452 		 * Allocated with dma_fence_context_alloc().
453 		 */
454 		u64 id;
455 
456 		/** @seqno: Sequence number of the last initialized fence. */
457 		atomic64_t seqno;
458 
459 		/**
460 		 * @last_fence: Fence of the last submitted job.
461 		 *
462 		 * We return this fence when we get an empty command stream.
463 		 * This way, we are guaranteed that all earlier jobs have completed
464 		 * when drm_sched_job::s_fence::finished without having to feed
465 		 * the CS ring buffer with a dummy job that only signals the fence.
466 		 */
467 		struct dma_fence *last_fence;
468 
469 		/**
470 		 * @in_flight_jobs: List containing all in-flight jobs.
471 		 *
472 		 * Used to keep track and signal panthor_job::done_fence when the
473 		 * synchronization object attached to the queue is signaled.
474 		 */
475 		struct list_head in_flight_jobs;
476 	} fence_ctx;
477 
478 	/** @profiling: Job profiling data slots and access information. */
479 	struct {
480 		/** @slots: Kernel BO holding the slots. */
481 		struct panthor_kernel_bo *slots;
482 
483 		/** @slot_count: Number of jobs ringbuffer can hold at once. */
484 		u32 slot_count;
485 
486 		/** @seqno: Index of the next available profiling information slot. */
487 		u32 seqno;
488 	} profiling;
489 };
490 
491 /**
492  * enum panthor_group_state - Scheduling group state.
493  */
494 enum panthor_group_state {
495 	/** @PANTHOR_CS_GROUP_CREATED: Group was created, but not scheduled yet. */
496 	PANTHOR_CS_GROUP_CREATED,
497 
498 	/** @PANTHOR_CS_GROUP_ACTIVE: Group is currently scheduled. */
499 	PANTHOR_CS_GROUP_ACTIVE,
500 
501 	/**
502 	 * @PANTHOR_CS_GROUP_SUSPENDED: Group was scheduled at least once, but is
503 	 * inactive/suspended right now.
504 	 */
505 	PANTHOR_CS_GROUP_SUSPENDED,
506 
507 	/**
508 	 * @PANTHOR_CS_GROUP_TERMINATED: Group was terminated.
509 	 *
510 	 * Can no longer be scheduled. The only allowed action is a destruction.
511 	 */
512 	PANTHOR_CS_GROUP_TERMINATED,
513 
514 	/**
515 	 * @PANTHOR_CS_GROUP_UNKNOWN_STATE: Group is an unknown state.
516 	 *
517 	 * The FW returned an inconsistent state. The group is flagged unusable
518 	 * and can no longer be scheduled. The only allowed action is a
519 	 * destruction.
520 	 *
521 	 * When that happens, we also schedule a FW reset, to start from a fresh
522 	 * state.
523 	 */
524 	PANTHOR_CS_GROUP_UNKNOWN_STATE,
525 };
526 
527 /**
528  * struct panthor_group - Scheduling group object
529  */
530 struct panthor_group {
531 	/** @refcount: Reference count */
532 	struct kref refcount;
533 
534 	/** @ptdev: Device. */
535 	struct panthor_device *ptdev;
536 
537 	/** @vm: VM bound to the group. */
538 	struct panthor_vm *vm;
539 
540 	/** @compute_core_mask: Mask of shader cores that can be used for compute jobs. */
541 	u64 compute_core_mask;
542 
543 	/** @fragment_core_mask: Mask of shader cores that can be used for fragment jobs. */
544 	u64 fragment_core_mask;
545 
546 	/** @tiler_core_mask: Mask of tiler cores that can be used for tiler jobs. */
547 	u64 tiler_core_mask;
548 
549 	/** @max_compute_cores: Maximum number of shader cores used for compute jobs. */
550 	u8 max_compute_cores;
551 
552 	/** @max_fragment_cores: Maximum number of shader cores used for fragment jobs. */
553 	u8 max_fragment_cores;
554 
555 	/** @max_tiler_cores: Maximum number of tiler cores used for tiler jobs. */
556 	u8 max_tiler_cores;
557 
558 	/** @priority: Group priority (check panthor_csg_priority). */
559 	u8 priority;
560 
561 	/** @blocked_queues: Bitmask reflecting the blocked queues. */
562 	u32 blocked_queues;
563 
564 	/** @idle_queues: Bitmask reflecting the idle queues. */
565 	u32 idle_queues;
566 
567 	/** @fatal_lock: Lock used to protect access to fatal fields. */
568 	spinlock_t fatal_lock;
569 
570 	/** @fatal_queues: Bitmask reflecting the queues that hit a fatal exception. */
571 	u32 fatal_queues;
572 
573 	/** @tiler_oom: Mask of queues that have a tiler OOM event to process. */
574 	atomic_t tiler_oom;
575 
576 	/** @queue_count: Number of queues in this group. */
577 	u32 queue_count;
578 
579 	/** @queues: Queues owned by this group. */
580 	struct panthor_queue *queues[MAX_CS_PER_CSG];
581 
582 	/**
583 	 * @csg_id: ID of the FW group slot.
584 	 *
585 	 * -1 when the group is not scheduled/active.
586 	 */
587 	int csg_id;
588 
589 	/**
590 	 * @destroyed: True when the group has been destroyed.
591 	 *
592 	 * If a group is destroyed it becomes useless: no further jobs can be submitted
593 	 * to its queues. We simply wait for all references to be dropped so we can
594 	 * release the group object.
595 	 */
596 	bool destroyed;
597 
598 	/**
599 	 * @timedout: True when a timeout occurred on any of the queues owned by
600 	 * this group.
601 	 *
602 	 * Timeouts can be reported by drm_sched or by the FW. If a reset is required,
603 	 * and the group can't be suspended, this also leads to a timeout. In any case,
604 	 * any timeout situation is unrecoverable, and the group becomes useless. We
605 	 * simply wait for all references to be dropped so we can release the group
606 	 * object.
607 	 */
608 	bool timedout;
609 
610 	/**
611 	 * @innocent: True when the group becomes unusable because the group suspension
612 	 * failed during a reset.
613 	 *
614 	 * Sometimes the FW was put in a bad state by other groups, causing the group
615 	 * suspension happening in the reset path to fail. In that case, we consider the
616 	 * group innocent.
617 	 */
618 	bool innocent;
619 
620 	/**
621 	 * @syncobjs: Pool of per-queue synchronization objects.
622 	 *
623 	 * One sync object per queue. The position of the sync object is
624 	 * determined by the queue index.
625 	 */
626 	struct panthor_kernel_bo *syncobjs;
627 
628 	/** @fdinfo: Per-file info exposed through /proc/<process>/fdinfo */
629 	struct {
630 		/** @data: Total sampled values for jobs in queues from this group. */
631 		struct panthor_gpu_usage data;
632 
633 		/**
634 		 * @fdinfo.lock: Spinlock to govern concurrent access from drm file's fdinfo
635 		 * callback and job post-completion processing function
636 		 */
637 		spinlock_t lock;
638 
639 		/** @fdinfo.kbo_sizes: Aggregate size of private kernel BO's held by the group. */
640 		size_t kbo_sizes;
641 	} fdinfo;
642 
643 	/** @task_info: Info of current->group_leader that created the group. */
644 	struct {
645 		/** @task_info.pid: pid of current->group_leader */
646 		pid_t pid;
647 
648 		/** @task_info.comm: comm of current->group_leader */
649 		char comm[TASK_COMM_LEN];
650 	} task_info;
651 
652 	/** @state: Group state. */
653 	enum panthor_group_state state;
654 
655 	/**
656 	 * @suspend_buf: Suspend buffer.
657 	 *
658 	 * Stores the state of the group and its queues when a group is suspended.
659 	 * Used at resume time to restore the group in its previous state.
660 	 *
661 	 * The size of the suspend buffer is exposed through the FW interface.
662 	 */
663 	struct panthor_kernel_bo *suspend_buf;
664 
665 	/**
666 	 * @protm_suspend_buf: Protection mode suspend buffer.
667 	 *
668 	 * Stores the state of the group and its queues when a group that's in
669 	 * protection mode is suspended.
670 	 *
671 	 * Used at resume time to restore the group in its previous state.
672 	 *
673 	 * The size of the protection mode suspend buffer is exposed through the
674 	 * FW interface.
675 	 */
676 	struct panthor_kernel_bo *protm_suspend_buf;
677 
678 	/** @sync_upd_work: Work used to check/signal job fences. */
679 	struct work_struct sync_upd_work;
680 
681 	/** @tiler_oom_work: Work used to process tiler OOM events happening on this group. */
682 	struct work_struct tiler_oom_work;
683 
684 	/** @term_work: Work used to finish the group termination procedure. */
685 	struct work_struct term_work;
686 
687 	/**
688 	 * @release_work: Work used to release group resources.
689 	 *
690 	 * We need to postpone the group release to avoid a deadlock when
691 	 * the last ref is released in the tick work.
692 	 */
693 	struct work_struct release_work;
694 
695 	/**
696 	 * @run_node: Node used to insert the group in the
697 	 * panthor_group::groups::{runnable,idle} and
698 	 * panthor_group::reset.stopped_groups lists.
699 	 */
700 	struct list_head run_node;
701 
702 	/**
703 	 * @wait_node: Node used to insert the group in the
704 	 * panthor_group::groups::waiting list.
705 	 */
706 	struct list_head wait_node;
707 };
708 
709 struct panthor_job_profiling_data {
710 	struct {
711 		u64 before;
712 		u64 after;
713 	} cycles;
714 
715 	struct {
716 		u64 before;
717 		u64 after;
718 	} time;
719 };
720 
721 /**
722  * group_queue_work() - Queue a group work
723  * @group: Group to queue the work for.
724  * @wname: Work name.
725  *
726  * Grabs a ref and queue a work item to the scheduler workqueue. If
727  * the work was already queued, we release the reference we grabbed.
728  *
729  * Work callbacks must release the reference we grabbed here.
730  */
731 #define group_queue_work(group, wname) \
732 	do { \
733 		group_get(group); \
734 		if (!queue_work((group)->ptdev->scheduler->wq, &(group)->wname ## _work)) \
735 			group_put(group); \
736 	} while (0)
737 
738 /**
739  * sched_queue_work() - Queue a scheduler work.
740  * @sched: Scheduler object.
741  * @wname: Work name.
742  *
743  * Conditionally queues a scheduler work if no reset is pending/in-progress.
744  */
745 #define sched_queue_work(sched, wname) \
746 	do { \
747 		if (!atomic_read(&(sched)->reset.in_progress) && \
748 		    !panthor_device_reset_is_pending((sched)->ptdev)) \
749 			queue_work((sched)->wq, &(sched)->wname ## _work); \
750 	} while (0)
751 
752 /**
753  * sched_queue_delayed_work() - Queue a scheduler delayed work.
754  * @sched: Scheduler object.
755  * @wname: Work name.
756  * @delay: Work delay in jiffies.
757  *
758  * Conditionally queues a scheduler delayed work if no reset is
759  * pending/in-progress.
760  */
761 #define sched_queue_delayed_work(sched, wname, delay) \
762 	do { \
763 		if (!atomic_read(&sched->reset.in_progress) && \
764 		    !panthor_device_reset_is_pending((sched)->ptdev)) \
765 			mod_delayed_work((sched)->wq, &(sched)->wname ## _work, delay); \
766 	} while (0)
767 
768 /*
769  * We currently set the maximum of groups per file to an arbitrary low value.
770  * But this can be updated if we need more.
771  */
772 #define MAX_GROUPS_PER_POOL 128
773 
774 /*
775  * Mark added on an entry of group pool Xarray to identify if the group has
776  * been fully initialized and can be accessed elsewhere in the driver code.
777  */
778 #define GROUP_REGISTERED XA_MARK_1
779 
780 /**
781  * struct panthor_group_pool - Group pool
782  *
783  * Each file get assigned a group pool.
784  */
785 struct panthor_group_pool {
786 	/** @xa: Xarray used to manage group handles. */
787 	struct xarray xa;
788 };
789 
790 /**
791  * struct panthor_job - Used to manage GPU job
792  */
793 struct panthor_job {
794 	/** @base: Inherit from drm_sched_job. */
795 	struct drm_sched_job base;
796 
797 	/** @refcount: Reference count. */
798 	struct kref refcount;
799 
800 	/** @group: Group of the queue this job will be pushed to. */
801 	struct panthor_group *group;
802 
803 	/** @queue_idx: Index of the queue inside @group. */
804 	u32 queue_idx;
805 
806 	/** @call_info: Information about the userspace command stream call. */
807 	struct {
808 		/** @start: GPU address of the userspace command stream. */
809 		u64 start;
810 
811 		/** @size: Size of the userspace command stream. */
812 		u32 size;
813 
814 		/**
815 		 * @latest_flush: Flush ID at the time the userspace command
816 		 * stream was built.
817 		 *
818 		 * Needed for the flush reduction mechanism.
819 		 */
820 		u32 latest_flush;
821 	} call_info;
822 
823 	/** @ringbuf: Position of this job is in the ring buffer. */
824 	struct {
825 		/** @start: Start offset. */
826 		u64 start;
827 
828 		/** @end: End offset. */
829 		u64 end;
830 	} ringbuf;
831 
832 	/**
833 	 * @node: Used to insert the job in the panthor_queue::fence_ctx::in_flight_jobs
834 	 * list.
835 	 */
836 	struct list_head node;
837 
838 	/** @done_fence: Fence signaled when the job is finished or cancelled. */
839 	struct dma_fence *done_fence;
840 
841 	/** @profiling: Job profiling information. */
842 	struct {
843 		/** @mask: Current device job profiling enablement bitmask. */
844 		u32 mask;
845 
846 		/** @slot: Job index in the profiling slots BO. */
847 		u32 slot;
848 	} profiling;
849 };
850 
851 static void
852 panthor_queue_put_syncwait_obj(struct panthor_queue *queue)
853 {
854 	if (queue->syncwait.kmap) {
855 		struct iosys_map map = IOSYS_MAP_INIT_VADDR(queue->syncwait.kmap);
856 
857 		drm_gem_vunmap(queue->syncwait.obj, &map);
858 		queue->syncwait.kmap = NULL;
859 	}
860 
861 	drm_gem_object_put(queue->syncwait.obj);
862 	queue->syncwait.obj = NULL;
863 }
864 
865 static void *
866 panthor_queue_get_syncwait_obj(struct panthor_group *group, struct panthor_queue *queue)
867 {
868 	struct panthor_device *ptdev = group->ptdev;
869 	struct panthor_gem_object *bo;
870 	struct iosys_map map;
871 	int ret;
872 
873 	if (queue->syncwait.kmap) {
874 		bo = container_of(queue->syncwait.obj,
875 				  struct panthor_gem_object, base.base);
876 		goto out_sync;
877 	}
878 
879 	bo = panthor_vm_get_bo_for_va(group->vm,
880 				      queue->syncwait.gpu_va,
881 				      &queue->syncwait.offset);
882 	if (drm_WARN_ON(&ptdev->base, IS_ERR_OR_NULL(bo)))
883 		goto err_put_syncwait_obj;
884 
885 	queue->syncwait.obj = &bo->base.base;
886 	ret = drm_gem_vmap(queue->syncwait.obj, &map);
887 	if (drm_WARN_ON(&ptdev->base, ret))
888 		goto err_put_syncwait_obj;
889 
890 	queue->syncwait.kmap = map.vaddr;
891 	if (drm_WARN_ON(&ptdev->base, !queue->syncwait.kmap))
892 		goto err_put_syncwait_obj;
893 
894 out_sync:
895 	/* Make sure the CPU caches are invalidated before the seqno is read.
896 	 * drm_gem_shmem_sync() is a NOP if map_wc=true, so no need to check
897 	 * it here.
898 	 */
899 	panthor_gem_sync(&bo->base.base, queue->syncwait.offset,
900 			 queue->syncwait.sync64 ?
901 			 sizeof(struct panthor_syncobj_64b) :
902 			 sizeof(struct panthor_syncobj_32b),
903 			 DRM_PANTHOR_BO_SYNC_CPU_CACHE_FLUSH_AND_INVALIDATE);
904 
905 	return queue->syncwait.kmap + queue->syncwait.offset;
906 
907 err_put_syncwait_obj:
908 	panthor_queue_put_syncwait_obj(queue);
909 	return NULL;
910 }
911 
912 static void group_free_queue(struct panthor_group *group, struct panthor_queue *queue)
913 {
914 	if (IS_ERR_OR_NULL(queue))
915 		return;
916 
917 	/* Disable the timeout before tearing down drm_sched components. */
918 	disable_delayed_work_sync(&queue->timeout.work);
919 
920 	if (queue->entity.fence_context)
921 		drm_sched_entity_destroy(&queue->entity);
922 
923 	if (queue->scheduler.ops)
924 		drm_sched_fini(&queue->scheduler);
925 
926 	kfree(queue->name);
927 
928 	panthor_queue_put_syncwait_obj(queue);
929 
930 	panthor_kernel_bo_destroy(queue->ringbuf);
931 	panthor_kernel_bo_destroy(queue->iface.mem);
932 	panthor_kernel_bo_destroy(queue->profiling.slots);
933 
934 	/* Release the last_fence we were holding, if any. */
935 	dma_fence_put(queue->fence_ctx.last_fence);
936 
937 	kfree(queue);
938 }
939 
940 static void group_release_work(struct work_struct *work)
941 {
942 	struct panthor_group *group = container_of(work,
943 						   struct panthor_group,
944 						   release_work);
945 	u32 i;
946 
947 	/* dma-fences may still be accessing group->queues under rcu lock. */
948 	synchronize_rcu();
949 
950 	for (i = 0; i < group->queue_count; i++)
951 		group_free_queue(group, group->queues[i]);
952 
953 	panthor_kernel_bo_destroy(group->suspend_buf);
954 	panthor_kernel_bo_destroy(group->protm_suspend_buf);
955 	panthor_kernel_bo_destroy(group->syncobjs);
956 
957 	panthor_vm_put(group->vm);
958 	kfree(group);
959 }
960 
961 static void group_release(struct kref *kref)
962 {
963 	struct panthor_group *group = container_of(kref,
964 						   struct panthor_group,
965 						   refcount);
966 	struct panthor_device *ptdev = group->ptdev;
967 
968 	drm_WARN_ON(&ptdev->base, group->csg_id >= 0);
969 	drm_WARN_ON(&ptdev->base, !list_empty(&group->run_node));
970 	drm_WARN_ON(&ptdev->base, !list_empty(&group->wait_node));
971 
972 	queue_work(panthor_cleanup_wq, &group->release_work);
973 }
974 
975 static void group_put(struct panthor_group *group)
976 {
977 	if (group)
978 		kref_put(&group->refcount, group_release);
979 }
980 
981 static struct panthor_group *
982 group_get(struct panthor_group *group)
983 {
984 	if (group)
985 		kref_get(&group->refcount);
986 
987 	return group;
988 }
989 
990 /**
991  * group_bind_locked() - Bind a group to a group slot
992  * @group: Group.
993  * @csg_id: Slot.
994  *
995  * Return: 0 on success, a negative error code otherwise.
996  */
997 static int
998 group_bind_locked(struct panthor_group *group, u32 csg_id)
999 {
1000 	struct panthor_device *ptdev = group->ptdev;
1001 	struct panthor_csg_slot *csg_slot;
1002 	int ret;
1003 
1004 	lockdep_assert_held(&ptdev->scheduler->lock);
1005 
1006 	if (drm_WARN_ON(&ptdev->base, group->csg_id != -1 || csg_id >= MAX_CSGS ||
1007 			ptdev->scheduler->csg_slots[csg_id].group))
1008 		return -EINVAL;
1009 
1010 	ret = panthor_vm_active(group->vm);
1011 	if (ret)
1012 		return ret;
1013 
1014 	csg_slot = &ptdev->scheduler->csg_slots[csg_id];
1015 	group_get(group);
1016 	group->csg_id = csg_id;
1017 
1018 	/* Dummy doorbell allocation: doorbell is assigned to the group and
1019 	 * all queues use the same doorbell.
1020 	 *
1021 	 * TODO: Implement LRU-based doorbell assignment, so the most often
1022 	 * updated queues get their own doorbell, thus avoiding useless checks
1023 	 * on queues belonging to the same group that are rarely updated.
1024 	 */
1025 	for (u32 i = 0; i < group->queue_count; i++)
1026 		group->queues[i]->doorbell_id = csg_id + 1;
1027 
1028 	csg_slot->group = group;
1029 
1030 	return 0;
1031 }
1032 
1033 /**
1034  * group_unbind_locked() - Unbind a group from a slot.
1035  * @group: Group to unbind.
1036  *
1037  * Return: 0 on success, a negative error code otherwise.
1038  */
1039 static int
1040 group_unbind_locked(struct panthor_group *group)
1041 {
1042 	struct panthor_device *ptdev = group->ptdev;
1043 	struct panthor_csg_slot *slot;
1044 
1045 	lockdep_assert_held(&ptdev->scheduler->lock);
1046 
1047 	if (drm_WARN_ON(&ptdev->base, group->csg_id < 0 || group->csg_id >= MAX_CSGS))
1048 		return -EINVAL;
1049 
1050 	if (drm_WARN_ON(&ptdev->base, group->state == PANTHOR_CS_GROUP_ACTIVE))
1051 		return -EINVAL;
1052 
1053 	slot = &ptdev->scheduler->csg_slots[group->csg_id];
1054 	panthor_vm_idle(group->vm);
1055 	group->csg_id = -1;
1056 
1057 	/* Tiler OOM events will be re-issued next time the group is scheduled. */
1058 	atomic_set(&group->tiler_oom, 0);
1059 	cancel_work(&group->tiler_oom_work);
1060 
1061 	for (u32 i = 0; i < group->queue_count; i++)
1062 		group->queues[i]->doorbell_id = -1;
1063 
1064 	slot->group = NULL;
1065 
1066 	group_put(group);
1067 	return 0;
1068 }
1069 
1070 static bool
1071 group_is_idle(struct panthor_group *group)
1072 {
1073 	u32 inactive_queues = group->idle_queues | group->blocked_queues;
1074 
1075 	return hweight32(inactive_queues) == group->queue_count;
1076 }
1077 
1078 static bool
1079 group_can_run(struct panthor_group *group)
1080 {
1081 	return group->state != PANTHOR_CS_GROUP_TERMINATED &&
1082 	       group->state != PANTHOR_CS_GROUP_UNKNOWN_STATE &&
1083 	       !group->destroyed && group->fatal_queues == 0 &&
1084 	       !group->timedout;
1085 }
1086 
1087 static bool
1088 queue_timeout_is_suspended(struct panthor_queue *queue)
1089 {
1090 	/* When running, the remaining time is set to MAX_SCHEDULE_TIMEOUT. */
1091 	return queue->timeout.remaining != MAX_SCHEDULE_TIMEOUT;
1092 }
1093 
1094 static void
1095 queue_reset_timeout_locked(struct panthor_queue *queue)
1096 {
1097 	lockdep_assert_held(&queue->fence_ctx.lock);
1098 
1099 	if (!queue_timeout_is_suspended(queue)) {
1100 		mod_delayed_work(queue->scheduler.timeout_wq,
1101 				 &queue->timeout.work,
1102 				 msecs_to_jiffies(JOB_TIMEOUT_MS));
1103 	}
1104 }
1105 
1106 static void
1107 queue_suspend_timeout_locked(struct panthor_queue *queue)
1108 {
1109 	unsigned long qtimeout, now;
1110 	struct panthor_group *group;
1111 	struct panthor_job *job;
1112 	bool timer_was_active;
1113 
1114 	lockdep_assert_held(&queue->fence_ctx.lock);
1115 
1116 	/* Already suspended, nothing to do. */
1117 	if (queue_timeout_is_suspended(queue))
1118 		return;
1119 
1120 	job = list_first_entry_or_null(&queue->fence_ctx.in_flight_jobs,
1121 				       struct panthor_job, node);
1122 	group = job ? job->group : NULL;
1123 
1124 	/* If the queue is blocked and the group is idle, we want the timer to
1125 	 * keep running because the group can't be unblocked by other queues,
1126 	 * so it has to come from an external source, and we want to timebox
1127 	 * this external signalling.
1128 	 */
1129 	if (group && group_can_run(group) &&
1130 	    (group->blocked_queues & BIT(job->queue_idx)) &&
1131 	    group_is_idle(group))
1132 		return;
1133 
1134 	now = jiffies;
1135 	qtimeout = queue->timeout.work.timer.expires;
1136 
1137 	/* Cancel the timer. */
1138 	timer_was_active = cancel_delayed_work(&queue->timeout.work);
1139 	if (!timer_was_active || !job)
1140 		queue->timeout.remaining = msecs_to_jiffies(JOB_TIMEOUT_MS);
1141 	else if (time_after(qtimeout, now))
1142 		queue->timeout.remaining = qtimeout - now;
1143 	else
1144 		queue->timeout.remaining = 0;
1145 
1146 	if (WARN_ON_ONCE(queue->timeout.remaining > msecs_to_jiffies(JOB_TIMEOUT_MS)))
1147 		queue->timeout.remaining = msecs_to_jiffies(JOB_TIMEOUT_MS);
1148 }
1149 
1150 static void
1151 queue_suspend_timeout(struct panthor_queue *queue)
1152 {
1153 	spin_lock(&queue->fence_ctx.lock);
1154 	queue_suspend_timeout_locked(queue);
1155 	spin_unlock(&queue->fence_ctx.lock);
1156 }
1157 
1158 static void
1159 queue_resume_timeout(struct panthor_queue *queue)
1160 {
1161 	spin_lock(&queue->fence_ctx.lock);
1162 
1163 	if (queue_timeout_is_suspended(queue)) {
1164 		mod_delayed_work(queue->scheduler.timeout_wq,
1165 				 &queue->timeout.work,
1166 				 queue->timeout.remaining);
1167 
1168 		queue->timeout.remaining = MAX_SCHEDULE_TIMEOUT;
1169 	}
1170 
1171 	spin_unlock(&queue->fence_ctx.lock);
1172 }
1173 
1174 /**
1175  * cs_slot_prog_locked() - Program a queue slot
1176  * @ptdev: Device.
1177  * @csg_id: Group slot ID.
1178  * @cs_id: Queue slot ID.
1179  *
1180  * Program a queue slot with the queue information so things can start being
1181  * executed on this queue.
1182  *
1183  * The group slot must have a group bound to it already (group_bind_locked()).
1184  */
1185 static void
1186 cs_slot_prog_locked(struct panthor_device *ptdev, u32 csg_id, u32 cs_id)
1187 {
1188 	struct panthor_queue *queue = ptdev->scheduler->csg_slots[csg_id].group->queues[cs_id];
1189 	struct panthor_fw_cs_iface *cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
1190 
1191 	lockdep_assert_held(&ptdev->scheduler->lock);
1192 
1193 	queue->iface.input->extract = queue->iface.output->extract;
1194 	drm_WARN_ON(&ptdev->base, queue->iface.input->insert < queue->iface.input->extract);
1195 
1196 	cs_iface->input->ringbuf_base = panthor_kernel_bo_gpuva(queue->ringbuf);
1197 	cs_iface->input->ringbuf_size = panthor_kernel_bo_size(queue->ringbuf);
1198 	cs_iface->input->ringbuf_input = queue->iface.input_fw_va;
1199 	cs_iface->input->ringbuf_output = queue->iface.output_fw_va;
1200 	cs_iface->input->config = CS_CONFIG_PRIORITY(queue->priority) |
1201 				  CS_CONFIG_DOORBELL(queue->doorbell_id);
1202 	cs_iface->input->ack_irq_mask = ~0;
1203 	panthor_fw_update_reqs(cs_iface, req,
1204 			       CS_IDLE_SYNC_WAIT |
1205 			       CS_IDLE_EMPTY |
1206 			       CS_STATE_START,
1207 			       CS_IDLE_SYNC_WAIT |
1208 			       CS_IDLE_EMPTY |
1209 			       CS_STATE_MASK);
1210 	if (queue->iface.input->insert != queue->iface.input->extract)
1211 		queue_resume_timeout(queue);
1212 }
1213 
1214 /**
1215  * cs_slot_reset_locked() - Reset a queue slot
1216  * @ptdev: Device.
1217  * @csg_id: Group slot.
1218  * @cs_id: Queue slot.
1219  *
1220  * Change the queue slot state to STOP and suspend the queue timeout if
1221  * the queue is not blocked.
1222  *
1223  * The group slot must have a group bound to it (group_bind_locked()).
1224  */
1225 static int
1226 cs_slot_reset_locked(struct panthor_device *ptdev, u32 csg_id, u32 cs_id)
1227 {
1228 	struct panthor_fw_cs_iface *cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
1229 	struct panthor_group *group = ptdev->scheduler->csg_slots[csg_id].group;
1230 	struct panthor_queue *queue = group->queues[cs_id];
1231 
1232 	lockdep_assert_held(&ptdev->scheduler->lock);
1233 
1234 	panthor_fw_update_reqs(cs_iface, req,
1235 			       CS_STATE_STOP,
1236 			       CS_STATE_MASK);
1237 
1238 	queue_suspend_timeout(queue);
1239 
1240 	return 0;
1241 }
1242 
1243 /**
1244  * csg_slot_sync_priority_locked() - Synchronize the group slot priority
1245  * @ptdev: Device.
1246  * @csg_id: Group slot ID.
1247  *
1248  * Group slot priority update happens asynchronously. When we receive a
1249  * %CSG_ENDPOINT_CONFIG, we know the update is effective, and can
1250  * reflect it to our panthor_csg_slot object.
1251  */
1252 static void
1253 csg_slot_sync_priority_locked(struct panthor_device *ptdev, u32 csg_id)
1254 {
1255 	struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id];
1256 	struct panthor_fw_csg_iface *csg_iface;
1257 	u64 endpoint_req;
1258 
1259 	lockdep_assert_held(&ptdev->scheduler->lock);
1260 
1261 	csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
1262 	endpoint_req = panthor_fw_csg_endpoint_req_get(ptdev, csg_iface);
1263 	csg_slot->priority = CSG_EP_REQ_PRIORITY_GET(endpoint_req);
1264 }
1265 
1266 /**
1267  * cs_slot_sync_queue_state_locked() - Synchronize the queue slot priority
1268  * @ptdev: Device.
1269  * @csg_id: Group slot.
1270  * @cs_id: Queue slot.
1271  *
1272  * Queue state is updated on group suspend or STATUS_UPDATE event.
1273  */
1274 static void
1275 cs_slot_sync_queue_state_locked(struct panthor_device *ptdev, u32 csg_id, u32 cs_id)
1276 {
1277 	struct panthor_group *group = ptdev->scheduler->csg_slots[csg_id].group;
1278 	struct panthor_queue *queue = group->queues[cs_id];
1279 	struct panthor_fw_cs_iface *cs_iface =
1280 		panthor_fw_get_cs_iface(group->ptdev, csg_id, cs_id);
1281 
1282 	u32 status_wait_cond;
1283 
1284 	switch (cs_iface->output->status_blocked_reason) {
1285 	case CS_STATUS_BLOCKED_REASON_UNBLOCKED:
1286 		if (queue->iface.input->insert == queue->iface.output->extract &&
1287 		    cs_iface->output->status_scoreboards == 0)
1288 			group->idle_queues |= BIT(cs_id);
1289 		break;
1290 
1291 	case CS_STATUS_BLOCKED_REASON_SYNC_WAIT:
1292 		if (list_empty(&group->wait_node)) {
1293 			list_move_tail(&group->wait_node,
1294 				       &group->ptdev->scheduler->groups.waiting);
1295 		}
1296 
1297 		/* The queue is only blocked if there's no deferred operation
1298 		 * pending, which can be checked through the scoreboard status.
1299 		 */
1300 		if (!cs_iface->output->status_scoreboards)
1301 			group->blocked_queues |= BIT(cs_id);
1302 
1303 		queue->syncwait.gpu_va = cs_iface->output->status_wait_sync_ptr;
1304 		queue->syncwait.ref = cs_iface->output->status_wait_sync_value;
1305 		status_wait_cond = cs_iface->output->status_wait & CS_STATUS_WAIT_SYNC_COND_MASK;
1306 		queue->syncwait.gt = status_wait_cond == CS_STATUS_WAIT_SYNC_COND_GT;
1307 		if (cs_iface->output->status_wait & CS_STATUS_WAIT_SYNC_64B) {
1308 			u64 sync_val_hi = cs_iface->output->status_wait_sync_value_hi;
1309 
1310 			queue->syncwait.sync64 = true;
1311 			queue->syncwait.ref |= sync_val_hi << 32;
1312 		} else {
1313 			queue->syncwait.sync64 = false;
1314 		}
1315 		break;
1316 
1317 	default:
1318 		/* Other reasons are not blocking. Consider the queue as runnable
1319 		 * in those cases.
1320 		 */
1321 		break;
1322 	}
1323 }
1324 
1325 static void
1326 csg_slot_sync_queues_state_locked(struct panthor_device *ptdev, u32 csg_id)
1327 {
1328 	struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id];
1329 	struct panthor_group *group = csg_slot->group;
1330 	u32 i;
1331 
1332 	lockdep_assert_held(&ptdev->scheduler->lock);
1333 
1334 	group->idle_queues = 0;
1335 	group->blocked_queues = 0;
1336 
1337 	for (i = 0; i < group->queue_count; i++) {
1338 		if (group->queues[i])
1339 			cs_slot_sync_queue_state_locked(ptdev, csg_id, i);
1340 	}
1341 }
1342 
1343 static void
1344 csg_slot_sync_state_locked(struct panthor_device *ptdev, u32 csg_id)
1345 {
1346 	struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id];
1347 	struct panthor_fw_csg_iface *csg_iface;
1348 	struct panthor_group *group;
1349 	enum panthor_group_state new_state, old_state;
1350 	u32 csg_state;
1351 
1352 	lockdep_assert_held(&ptdev->scheduler->lock);
1353 
1354 	csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
1355 	group = csg_slot->group;
1356 
1357 	if (!group)
1358 		return;
1359 
1360 	old_state = group->state;
1361 	csg_state = csg_iface->output->ack & CSG_STATE_MASK;
1362 	switch (csg_state) {
1363 	case CSG_STATE_START:
1364 	case CSG_STATE_RESUME:
1365 		new_state = PANTHOR_CS_GROUP_ACTIVE;
1366 		break;
1367 	case CSG_STATE_TERMINATE:
1368 		new_state = PANTHOR_CS_GROUP_TERMINATED;
1369 		break;
1370 	case CSG_STATE_SUSPEND:
1371 		new_state = PANTHOR_CS_GROUP_SUSPENDED;
1372 		break;
1373 	default:
1374 		/* The unknown state might be caused by a FW state corruption,
1375 		 * which means the group metadata can't be trusted anymore, and
1376 		 * the SUSPEND operation might propagate the corruption to the
1377 		 * suspend buffers. Flag the group state as unknown to make
1378 		 * sure it's unusable after that point.
1379 		 */
1380 		drm_err(&ptdev->base, "Invalid state on CSG %d (state=%d)",
1381 			csg_id, csg_state);
1382 		new_state = PANTHOR_CS_GROUP_UNKNOWN_STATE;
1383 		break;
1384 	}
1385 
1386 	if (old_state == new_state)
1387 		return;
1388 
1389 	/* The unknown state might be caused by a FW issue, reset the FW to
1390 	 * take a fresh start.
1391 	 */
1392 	if (new_state == PANTHOR_CS_GROUP_UNKNOWN_STATE)
1393 		panthor_device_schedule_reset(ptdev);
1394 
1395 	if (new_state == PANTHOR_CS_GROUP_SUSPENDED)
1396 		csg_slot_sync_queues_state_locked(ptdev, csg_id);
1397 
1398 	if (old_state == PANTHOR_CS_GROUP_ACTIVE) {
1399 		u32 i;
1400 
1401 		/* Reset the queue slots so we start from a clean
1402 		 * state when starting/resuming a new group on this
1403 		 * CSG slot. No wait needed here, and no ringbell
1404 		 * either, since the CS slot will only be re-used
1405 		 * on the next CSG start operation.
1406 		 */
1407 		for (i = 0; i < group->queue_count; i++) {
1408 			if (group->queues[i])
1409 				cs_slot_reset_locked(ptdev, csg_id, i);
1410 		}
1411 	}
1412 
1413 	group->state = new_state;
1414 }
1415 
1416 static int
1417 csg_slot_prog_locked(struct panthor_device *ptdev, u32 csg_id, u32 priority)
1418 {
1419 	struct panthor_fw_csg_iface *csg_iface;
1420 	struct panthor_csg_slot *csg_slot;
1421 	struct panthor_group *group;
1422 	u32 queue_mask = 0, i;
1423 	u64 endpoint_req;
1424 
1425 	lockdep_assert_held(&ptdev->scheduler->lock);
1426 
1427 	if (priority > MAX_CSG_PRIO)
1428 		return -EINVAL;
1429 
1430 	if (drm_WARN_ON(&ptdev->base, csg_id >= MAX_CSGS))
1431 		return -EINVAL;
1432 
1433 	csg_slot = &ptdev->scheduler->csg_slots[csg_id];
1434 	group = csg_slot->group;
1435 	if (!group || group->state == PANTHOR_CS_GROUP_ACTIVE)
1436 		return 0;
1437 
1438 	csg_iface = panthor_fw_get_csg_iface(group->ptdev, csg_id);
1439 
1440 	for (i = 0; i < group->queue_count; i++) {
1441 		if (group->queues[i]) {
1442 			cs_slot_prog_locked(ptdev, csg_id, i);
1443 			queue_mask |= BIT(i);
1444 		}
1445 	}
1446 
1447 	csg_iface->input->allow_compute = group->compute_core_mask;
1448 	csg_iface->input->allow_fragment = group->fragment_core_mask;
1449 	csg_iface->input->allow_other = group->tiler_core_mask;
1450 	endpoint_req = CSG_EP_REQ_COMPUTE(group->max_compute_cores) |
1451 		       CSG_EP_REQ_FRAGMENT(group->max_fragment_cores) |
1452 		       CSG_EP_REQ_TILER(group->max_tiler_cores) |
1453 		       CSG_EP_REQ_PRIORITY(priority);
1454 	panthor_fw_csg_endpoint_req_set(ptdev, csg_iface, endpoint_req);
1455 
1456 	csg_iface->input->config = panthor_vm_as(group->vm);
1457 
1458 	if (group->suspend_buf)
1459 		csg_iface->input->suspend_buf = panthor_kernel_bo_gpuva(group->suspend_buf);
1460 	else
1461 		csg_iface->input->suspend_buf = 0;
1462 
1463 	if (group->protm_suspend_buf) {
1464 		csg_iface->input->protm_suspend_buf =
1465 			panthor_kernel_bo_gpuva(group->protm_suspend_buf);
1466 	} else {
1467 		csg_iface->input->protm_suspend_buf = 0;
1468 	}
1469 
1470 	csg_iface->input->ack_irq_mask = ~0;
1471 	panthor_fw_toggle_reqs(csg_iface, doorbell_req, doorbell_ack, queue_mask);
1472 	return 0;
1473 }
1474 
1475 static void
1476 cs_slot_process_fatal_event_locked(struct panthor_device *ptdev,
1477 				   u32 csg_id, u32 cs_id)
1478 {
1479 	struct panthor_scheduler *sched = ptdev->scheduler;
1480 	struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
1481 	struct panthor_group *group = csg_slot->group;
1482 	struct panthor_fw_cs_iface *cs_iface;
1483 	u32 fatal;
1484 	u64 info;
1485 
1486 	lockdep_assert_held(&sched->lock);
1487 
1488 	cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
1489 	fatal = cs_iface->output->fatal;
1490 	info = cs_iface->output->fatal_info;
1491 
1492 	if (group) {
1493 		drm_warn(&ptdev->base, "CS_FATAL: pid=%d, comm=%s\n",
1494 			 group->task_info.pid, group->task_info.comm);
1495 
1496 		group->fatal_queues |= BIT(cs_id);
1497 	}
1498 
1499 	if (CS_EXCEPTION_TYPE(fatal) == DRM_PANTHOR_EXCEPTION_CS_UNRECOVERABLE) {
1500 		/* If this exception is unrecoverable, queue a reset, and make
1501 		 * sure we stop scheduling groups until the reset has happened.
1502 		 */
1503 		panthor_device_schedule_reset(ptdev);
1504 		cancel_delayed_work(&sched->tick_work);
1505 	} else {
1506 		sched_queue_delayed_work(sched, tick, 0);
1507 	}
1508 
1509 	drm_warn(&ptdev->base,
1510 		 "CSG slot %d CS slot: %d\n"
1511 		 "CS_FATAL.EXCEPTION_TYPE: 0x%x (%s)\n"
1512 		 "CS_FATAL.EXCEPTION_DATA: 0x%x\n"
1513 		 "CS_FATAL_INFO.EXCEPTION_DATA: 0x%llx\n",
1514 		 csg_id, cs_id,
1515 		 (unsigned int)CS_EXCEPTION_TYPE(fatal),
1516 		 panthor_exception_name(ptdev, CS_EXCEPTION_TYPE(fatal)),
1517 		 (unsigned int)CS_EXCEPTION_DATA(fatal),
1518 		 info);
1519 }
1520 
1521 static void
1522 cs_slot_process_fault_event_locked(struct panthor_device *ptdev,
1523 				   u32 csg_id, u32 cs_id)
1524 {
1525 	struct panthor_scheduler *sched = ptdev->scheduler;
1526 	struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
1527 	struct panthor_group *group = csg_slot->group;
1528 	struct panthor_queue *queue = group && cs_id < group->queue_count ?
1529 				      group->queues[cs_id] : NULL;
1530 	struct panthor_fw_cs_iface *cs_iface;
1531 	u32 fault;
1532 	u64 info;
1533 
1534 	lockdep_assert_held(&sched->lock);
1535 
1536 	cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
1537 	fault = cs_iface->output->fault;
1538 	info = cs_iface->output->fault_info;
1539 
1540 	if (queue) {
1541 		u64 cs_extract = queue->iface.output->extract;
1542 		struct panthor_job *job;
1543 
1544 		spin_lock(&queue->fence_ctx.lock);
1545 		list_for_each_entry(job, &queue->fence_ctx.in_flight_jobs, node) {
1546 			if (cs_extract >= job->ringbuf.end)
1547 				continue;
1548 
1549 			if (cs_extract < job->ringbuf.start)
1550 				break;
1551 
1552 			dma_fence_set_error(job->done_fence, -EINVAL);
1553 		}
1554 		spin_unlock(&queue->fence_ctx.lock);
1555 	}
1556 
1557 	if (group) {
1558 		drm_warn(&ptdev->base, "CS_FAULT: pid=%d, comm=%s\n",
1559 			 group->task_info.pid, group->task_info.comm);
1560 	}
1561 
1562 	drm_warn(&ptdev->base,
1563 		 "CSG slot %d CS slot: %d\n"
1564 		 "CS_FAULT.EXCEPTION_TYPE: 0x%x (%s)\n"
1565 		 "CS_FAULT.EXCEPTION_DATA: 0x%x\n"
1566 		 "CS_FAULT_INFO.EXCEPTION_DATA: 0x%llx\n",
1567 		 csg_id, cs_id,
1568 		 (unsigned int)CS_EXCEPTION_TYPE(fault),
1569 		 panthor_exception_name(ptdev, CS_EXCEPTION_TYPE(fault)),
1570 		 (unsigned int)CS_EXCEPTION_DATA(fault),
1571 		 info);
1572 }
1573 
1574 static int group_process_tiler_oom(struct panthor_group *group, u32 cs_id)
1575 {
1576 	struct panthor_device *ptdev = group->ptdev;
1577 	struct panthor_scheduler *sched = ptdev->scheduler;
1578 	u32 renderpasses_in_flight, pending_frag_count;
1579 	struct panthor_heap_pool *heaps = NULL;
1580 	u64 heap_address, new_chunk_va = 0;
1581 	u32 vt_start, vt_end, frag_end;
1582 	int ret, csg_id;
1583 
1584 	mutex_lock(&sched->lock);
1585 	csg_id = group->csg_id;
1586 	if (csg_id >= 0) {
1587 		struct panthor_fw_cs_iface *cs_iface;
1588 
1589 		cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
1590 		heaps = panthor_vm_get_heap_pool(group->vm, false);
1591 		heap_address = cs_iface->output->heap_address;
1592 		vt_start = cs_iface->output->heap_vt_start;
1593 		vt_end = cs_iface->output->heap_vt_end;
1594 		frag_end = cs_iface->output->heap_frag_end;
1595 		renderpasses_in_flight = vt_start - frag_end;
1596 		pending_frag_count = vt_end - frag_end;
1597 	}
1598 	mutex_unlock(&sched->lock);
1599 
1600 	/* The group got scheduled out, we stop here. We will get a new tiler OOM event
1601 	 * when it's scheduled again.
1602 	 */
1603 	if (unlikely(csg_id < 0))
1604 		return 0;
1605 
1606 	if (IS_ERR(heaps) || frag_end > vt_end || vt_end >= vt_start) {
1607 		ret = -EINVAL;
1608 	} else {
1609 		/* We do the allocation without holding the scheduler lock to avoid
1610 		 * blocking the scheduling.
1611 		 */
1612 		ret = panthor_heap_grow(heaps, heap_address,
1613 					renderpasses_in_flight,
1614 					pending_frag_count, &new_chunk_va);
1615 	}
1616 
1617 	/* If the heap context doesn't have memory for us, we want to let the
1618 	 * FW try to reclaim memory by waiting for fragment jobs to land or by
1619 	 * executing the tiler OOM exception handler, which is supposed to
1620 	 * implement incremental rendering.
1621 	 */
1622 	if (ret && ret != -ENOMEM) {
1623 		drm_warn(&ptdev->base, "Failed to extend the tiler heap\n");
1624 		group->fatal_queues |= BIT(cs_id);
1625 		sched_queue_delayed_work(sched, tick, 0);
1626 		goto out_put_heap_pool;
1627 	}
1628 
1629 	mutex_lock(&sched->lock);
1630 	csg_id = group->csg_id;
1631 	if (csg_id >= 0) {
1632 		struct panthor_fw_csg_iface *csg_iface;
1633 		struct panthor_fw_cs_iface *cs_iface;
1634 
1635 		csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
1636 		cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
1637 
1638 		cs_iface->input->heap_start = new_chunk_va;
1639 		cs_iface->input->heap_end = new_chunk_va;
1640 		panthor_fw_update_reqs(cs_iface, req, cs_iface->output->ack, CS_TILER_OOM);
1641 		panthor_fw_toggle_reqs(csg_iface, doorbell_req, doorbell_ack, BIT(cs_id));
1642 		panthor_fw_ring_csg_doorbells(ptdev, BIT(csg_id));
1643 	}
1644 	mutex_unlock(&sched->lock);
1645 
1646 	/* We allocated a chunck, but couldn't link it to the heap
1647 	 * context because the group was scheduled out while we were
1648 	 * allocating memory. We need to return this chunk to the heap.
1649 	 */
1650 	if (unlikely(csg_id < 0 && new_chunk_va))
1651 		panthor_heap_return_chunk(heaps, heap_address, new_chunk_va);
1652 
1653 	ret = 0;
1654 
1655 out_put_heap_pool:
1656 	panthor_heap_pool_put(heaps);
1657 	return ret;
1658 }
1659 
1660 static void group_tiler_oom_work(struct work_struct *work)
1661 {
1662 	struct panthor_group *group =
1663 		container_of(work, struct panthor_group, tiler_oom_work);
1664 	u32 tiler_oom = atomic_xchg(&group->tiler_oom, 0);
1665 
1666 	while (tiler_oom) {
1667 		u32 cs_id = ffs(tiler_oom) - 1;
1668 
1669 		group_process_tiler_oom(group, cs_id);
1670 		tiler_oom &= ~BIT(cs_id);
1671 	}
1672 
1673 	group_put(group);
1674 }
1675 
1676 static void
1677 cs_slot_process_tiler_oom_event_locked(struct panthor_device *ptdev,
1678 				       u32 csg_id, u32 cs_id)
1679 {
1680 	struct panthor_scheduler *sched = ptdev->scheduler;
1681 	struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
1682 	struct panthor_group *group = csg_slot->group;
1683 
1684 	lockdep_assert_held(&sched->lock);
1685 
1686 	if (drm_WARN_ON(&ptdev->base, !group))
1687 		return;
1688 
1689 	atomic_or(BIT(cs_id), &group->tiler_oom);
1690 
1691 	/* We don't use group_queue_work() here because we want to queue the
1692 	 * work item to the heap_alloc_wq.
1693 	 */
1694 	group_get(group);
1695 	if (!queue_work(sched->heap_alloc_wq, &group->tiler_oom_work))
1696 		group_put(group);
1697 }
1698 
1699 static bool cs_slot_process_irq_locked(struct panthor_device *ptdev,
1700 				       u32 csg_id, u32 cs_id)
1701 {
1702 	struct panthor_fw_cs_iface *cs_iface;
1703 	u32 req, ack, events;
1704 
1705 	lockdep_assert_held(&ptdev->scheduler->lock);
1706 
1707 	cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
1708 	req = cs_iface->input->req;
1709 	ack = cs_iface->output->ack;
1710 	events = (req ^ ack) & CS_EVT_MASK;
1711 
1712 	if (events & CS_FATAL)
1713 		cs_slot_process_fatal_event_locked(ptdev, csg_id, cs_id);
1714 
1715 	if (events & CS_FAULT)
1716 		cs_slot_process_fault_event_locked(ptdev, csg_id, cs_id);
1717 
1718 	if (events & CS_TILER_OOM)
1719 		cs_slot_process_tiler_oom_event_locked(ptdev, csg_id, cs_id);
1720 
1721 	/* We don't acknowledge the TILER_OOM event since its handling is
1722 	 * deferred to a separate work.
1723 	 */
1724 	panthor_fw_update_reqs(cs_iface, req, ack, CS_FATAL | CS_FAULT);
1725 
1726 	return (events & (CS_FAULT | CS_TILER_OOM)) != 0;
1727 }
1728 
1729 static void csg_slot_process_idle_event_locked(struct panthor_device *ptdev, u32 csg_id)
1730 {
1731 	struct panthor_scheduler *sched = ptdev->scheduler;
1732 
1733 	lockdep_assert_held(&sched->lock);
1734 
1735 	sched->might_have_idle_groups = true;
1736 
1737 	/* Schedule a tick so we can evict idle groups and schedule non-idle
1738 	 * ones. This will also update runtime PM and devfreq busy/idle states,
1739 	 * so the device can lower its frequency or get suspended.
1740 	 */
1741 	sched_queue_delayed_work(sched, tick, 0);
1742 }
1743 
1744 static void csg_slot_sync_update_locked(struct panthor_device *ptdev,
1745 					u32 csg_id)
1746 {
1747 	struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id];
1748 	struct panthor_group *group = csg_slot->group;
1749 
1750 	lockdep_assert_held(&ptdev->scheduler->lock);
1751 
1752 	if (group)
1753 		group_queue_work(group, sync_upd);
1754 
1755 	sched_queue_work(ptdev->scheduler, sync_upd);
1756 }
1757 
1758 static void
1759 csg_slot_process_progress_timer_event_locked(struct panthor_device *ptdev, u32 csg_id)
1760 {
1761 	struct panthor_scheduler *sched = ptdev->scheduler;
1762 	struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
1763 	struct panthor_group *group = csg_slot->group;
1764 
1765 	lockdep_assert_held(&sched->lock);
1766 
1767 	group = csg_slot->group;
1768 	if (!drm_WARN_ON(&ptdev->base, !group)) {
1769 		drm_warn(&ptdev->base, "CSG_PROGRESS_TIMER_EVENT: pid=%d, comm=%s\n",
1770 			 group->task_info.pid, group->task_info.comm);
1771 
1772 		group->timedout = true;
1773 	}
1774 
1775 	drm_warn(&ptdev->base, "CSG slot %d progress timeout\n", csg_id);
1776 
1777 	sched_queue_delayed_work(sched, tick, 0);
1778 }
1779 
1780 static void sched_process_csg_irq_locked(struct panthor_device *ptdev, u32 csg_id)
1781 {
1782 	u32 req, ack, cs_irq_req, cs_irq_ack, cs_irqs, csg_events;
1783 	struct panthor_fw_csg_iface *csg_iface;
1784 	u32 ring_cs_db_mask = 0;
1785 
1786 	lockdep_assert_held(&ptdev->scheduler->lock);
1787 
1788 	if (drm_WARN_ON(&ptdev->base, csg_id >= ptdev->scheduler->csg_slot_count))
1789 		return;
1790 
1791 	csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
1792 	req = READ_ONCE(csg_iface->input->req);
1793 	ack = READ_ONCE(csg_iface->output->ack);
1794 	cs_irq_req = READ_ONCE(csg_iface->output->cs_irq_req);
1795 	cs_irq_ack = READ_ONCE(csg_iface->input->cs_irq_ack);
1796 	csg_events = (req ^ ack) & CSG_EVT_MASK;
1797 
1798 	/* There may not be any pending CSG/CS interrupts to process */
1799 	if (req == ack && cs_irq_req == cs_irq_ack)
1800 		return;
1801 
1802 	/* Immediately set IRQ_ACK bits to be same as the IRQ_REQ bits before
1803 	 * examining the CS_ACK & CS_REQ bits. This would ensure that Host
1804 	 * doesn't miss an interrupt for the CS in the race scenario where
1805 	 * whilst Host is servicing an interrupt for the CS, firmware sends
1806 	 * another interrupt for that CS.
1807 	 */
1808 	csg_iface->input->cs_irq_ack = cs_irq_req;
1809 
1810 	panthor_fw_update_reqs(csg_iface, req, ack,
1811 			       CSG_SYNC_UPDATE |
1812 			       CSG_IDLE |
1813 			       CSG_PROGRESS_TIMER_EVENT);
1814 
1815 	if (csg_events & CSG_IDLE)
1816 		csg_slot_process_idle_event_locked(ptdev, csg_id);
1817 
1818 	if (csg_events & CSG_PROGRESS_TIMER_EVENT)
1819 		csg_slot_process_progress_timer_event_locked(ptdev, csg_id);
1820 
1821 	cs_irqs = cs_irq_req ^ cs_irq_ack;
1822 	while (cs_irqs) {
1823 		u32 cs_id = ffs(cs_irqs) - 1;
1824 
1825 		if (cs_slot_process_irq_locked(ptdev, csg_id, cs_id))
1826 			ring_cs_db_mask |= BIT(cs_id);
1827 
1828 		cs_irqs &= ~BIT(cs_id);
1829 	}
1830 
1831 	if (csg_events & CSG_SYNC_UPDATE)
1832 		csg_slot_sync_update_locked(ptdev, csg_id);
1833 
1834 	if (ring_cs_db_mask)
1835 		panthor_fw_toggle_reqs(csg_iface, doorbell_req, doorbell_ack, ring_cs_db_mask);
1836 
1837 	panthor_fw_ring_csg_doorbells(ptdev, BIT(csg_id));
1838 }
1839 
1840 static void sched_process_idle_event_locked(struct panthor_device *ptdev)
1841 {
1842 	struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev);
1843 
1844 	lockdep_assert_held(&ptdev->scheduler->lock);
1845 
1846 	/* Acknowledge the idle event and schedule a tick. */
1847 	panthor_fw_update_reqs(glb_iface, req, glb_iface->output->ack, GLB_IDLE);
1848 	sched_queue_delayed_work(ptdev->scheduler, tick, 0);
1849 }
1850 
1851 /**
1852  * sched_process_global_irq_locked() - Process the scheduling part of a global IRQ
1853  * @ptdev: Device.
1854  */
1855 static void sched_process_global_irq_locked(struct panthor_device *ptdev)
1856 {
1857 	struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev);
1858 	u32 req, ack, evts;
1859 
1860 	lockdep_assert_held(&ptdev->scheduler->lock);
1861 
1862 	req = READ_ONCE(glb_iface->input->req);
1863 	ack = READ_ONCE(glb_iface->output->ack);
1864 	evts = (req ^ ack) & GLB_EVT_MASK;
1865 
1866 	if (evts & GLB_IDLE)
1867 		sched_process_idle_event_locked(ptdev);
1868 }
1869 
1870 static void process_fw_events_work(struct work_struct *work)
1871 {
1872 	struct panthor_scheduler *sched = container_of(work, struct panthor_scheduler,
1873 						      fw_events_work);
1874 	u32 events = atomic_xchg(&sched->fw_events, 0);
1875 	struct panthor_device *ptdev = sched->ptdev;
1876 
1877 	mutex_lock(&sched->lock);
1878 
1879 	if (events & JOB_INT_GLOBAL_IF) {
1880 		sched_process_global_irq_locked(ptdev);
1881 		events &= ~JOB_INT_GLOBAL_IF;
1882 	}
1883 
1884 	while (events) {
1885 		u32 csg_id = ffs(events) - 1;
1886 
1887 		sched_process_csg_irq_locked(ptdev, csg_id);
1888 		events &= ~BIT(csg_id);
1889 	}
1890 
1891 	mutex_unlock(&sched->lock);
1892 }
1893 
1894 /**
1895  * panthor_sched_report_fw_events() - Report FW events to the scheduler.
1896  */
1897 void panthor_sched_report_fw_events(struct panthor_device *ptdev, u32 events)
1898 {
1899 	if (!ptdev->scheduler)
1900 		return;
1901 
1902 	atomic_or(events, &ptdev->scheduler->fw_events);
1903 	sched_queue_work(ptdev->scheduler, fw_events);
1904 }
1905 
1906 static const char *fence_get_driver_name(struct dma_fence *fence)
1907 {
1908 	return "panthor";
1909 }
1910 
1911 static const char *queue_fence_get_timeline_name(struct dma_fence *fence)
1912 {
1913 	return "queue-fence";
1914 }
1915 
1916 static const struct dma_fence_ops panthor_queue_fence_ops = {
1917 	.get_driver_name = fence_get_driver_name,
1918 	.get_timeline_name = queue_fence_get_timeline_name,
1919 };
1920 
1921 struct panthor_csg_slots_upd_ctx {
1922 	u32 update_mask;
1923 	u32 timedout_mask;
1924 	struct {
1925 		u32 value;
1926 		u32 mask;
1927 	} requests[MAX_CSGS];
1928 };
1929 
1930 static void csgs_upd_ctx_init(struct panthor_csg_slots_upd_ctx *ctx)
1931 {
1932 	memset(ctx, 0, sizeof(*ctx));
1933 }
1934 
1935 static void csgs_upd_ctx_queue_reqs(struct panthor_device *ptdev,
1936 				    struct panthor_csg_slots_upd_ctx *ctx,
1937 				    u32 csg_id, u32 value, u32 mask)
1938 {
1939 	if (drm_WARN_ON(&ptdev->base, !mask) ||
1940 	    drm_WARN_ON(&ptdev->base, csg_id >= ptdev->scheduler->csg_slot_count))
1941 		return;
1942 
1943 	ctx->requests[csg_id].value = (ctx->requests[csg_id].value & ~mask) | (value & mask);
1944 	ctx->requests[csg_id].mask |= mask;
1945 	ctx->update_mask |= BIT(csg_id);
1946 }
1947 
1948 static int csgs_upd_ctx_apply_locked(struct panthor_device *ptdev,
1949 				     struct panthor_csg_slots_upd_ctx *ctx)
1950 {
1951 	struct panthor_scheduler *sched = ptdev->scheduler;
1952 	u32 update_slots = ctx->update_mask;
1953 
1954 	lockdep_assert_held(&sched->lock);
1955 
1956 	if (!ctx->update_mask)
1957 		return 0;
1958 
1959 	while (update_slots) {
1960 		struct panthor_fw_csg_iface *csg_iface;
1961 		u32 csg_id = ffs(update_slots) - 1;
1962 
1963 		update_slots &= ~BIT(csg_id);
1964 		csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
1965 		panthor_fw_update_reqs(csg_iface, req,
1966 				       ctx->requests[csg_id].value,
1967 				       ctx->requests[csg_id].mask);
1968 	}
1969 
1970 	panthor_fw_ring_csg_doorbells(ptdev, ctx->update_mask);
1971 
1972 	update_slots = ctx->update_mask;
1973 	while (update_slots) {
1974 		struct panthor_fw_csg_iface *csg_iface;
1975 		u32 csg_id = ffs(update_slots) - 1;
1976 		u32 req_mask = ctx->requests[csg_id].mask, acked;
1977 		int ret;
1978 
1979 		update_slots &= ~BIT(csg_id);
1980 		csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
1981 
1982 		ret = panthor_fw_csg_wait_acks(ptdev, csg_id, req_mask, &acked, 100);
1983 
1984 		if (acked & CSG_ENDPOINT_CONFIG)
1985 			csg_slot_sync_priority_locked(ptdev, csg_id);
1986 
1987 		if (acked & CSG_STATE_MASK)
1988 			csg_slot_sync_state_locked(ptdev, csg_id);
1989 
1990 		if (acked & CSG_STATUS_UPDATE)
1991 			csg_slot_sync_queues_state_locked(ptdev, csg_id);
1992 
1993 		if (ret && acked != req_mask &&
1994 		    ((csg_iface->input->req ^ csg_iface->output->ack) & req_mask) != 0) {
1995 			drm_err(&ptdev->base, "CSG %d update request timedout", csg_id);
1996 			ctx->timedout_mask |= BIT(csg_id);
1997 		}
1998 	}
1999 
2000 	if (ctx->timedout_mask)
2001 		return -ETIMEDOUT;
2002 
2003 	return 0;
2004 }
2005 
2006 struct panthor_sched_tick_ctx {
2007 	struct list_head old_groups[PANTHOR_CSG_PRIORITY_COUNT];
2008 	struct list_head groups[PANTHOR_CSG_PRIORITY_COUNT];
2009 	u32 idle_group_count;
2010 	u32 group_count;
2011 	struct panthor_vm *vms[MAX_CS_PER_CSG];
2012 	u32 as_count;
2013 	bool immediate_tick;
2014 	bool stop_tick;
2015 	u32 csg_upd_failed_mask;
2016 };
2017 
2018 static bool
2019 tick_ctx_is_full(const struct panthor_scheduler *sched,
2020 		 const struct panthor_sched_tick_ctx *ctx)
2021 {
2022 	return ctx->group_count == sched->csg_slot_count;
2023 }
2024 
2025 static void
2026 tick_ctx_pick_groups_from_list(const struct panthor_scheduler *sched,
2027 			       struct panthor_sched_tick_ctx *ctx,
2028 			       struct list_head *queue,
2029 			       bool skip_idle_groups,
2030 			       bool owned_by_tick_ctx)
2031 {
2032 	struct panthor_group *group, *tmp;
2033 
2034 	if (tick_ctx_is_full(sched, ctx))
2035 		return;
2036 
2037 	list_for_each_entry_safe(group, tmp, queue, run_node) {
2038 		u32 i;
2039 
2040 		if (!group_can_run(group))
2041 			continue;
2042 
2043 		if (skip_idle_groups && group_is_idle(group))
2044 			continue;
2045 
2046 		for (i = 0; i < ctx->as_count; i++) {
2047 			if (ctx->vms[i] == group->vm)
2048 				break;
2049 		}
2050 
2051 		if (i == ctx->as_count && ctx->as_count == sched->as_slot_count)
2052 			continue;
2053 
2054 		if (!owned_by_tick_ctx)
2055 			group_get(group);
2056 
2057 		ctx->group_count++;
2058 
2059 		/* If we have more than one active group with the same priority,
2060 		 * we need to keep ticking to rotate the CSG priority.
2061 		 */
2062 		if (group_is_idle(group))
2063 			ctx->idle_group_count++;
2064 		else if (!list_empty(&ctx->groups[group->priority]))
2065 			ctx->stop_tick = false;
2066 
2067 		list_move_tail(&group->run_node, &ctx->groups[group->priority]);
2068 
2069 		if (i == ctx->as_count)
2070 			ctx->vms[ctx->as_count++] = group->vm;
2071 
2072 		if (tick_ctx_is_full(sched, ctx))
2073 			return;
2074 	}
2075 }
2076 
2077 static void
2078 tick_ctx_insert_old_group(struct panthor_scheduler *sched,
2079 			  struct panthor_sched_tick_ctx *ctx,
2080 			  struct panthor_group *group)
2081 {
2082 	struct panthor_csg_slot *csg_slot = &sched->csg_slots[group->csg_id];
2083 	struct panthor_group *other_group;
2084 
2085 	/* Class groups in descending priority order so we can easily rotate. */
2086 	list_for_each_entry(other_group,
2087 			    &ctx->old_groups[csg_slot->group->priority],
2088 			    run_node) {
2089 		struct panthor_csg_slot *other_csg_slot = &sched->csg_slots[other_group->csg_id];
2090 
2091 		/* Our group has a higher prio than the one we're testing against,
2092 		 * place it just before.
2093 		 */
2094 		if (csg_slot->priority > other_csg_slot->priority) {
2095 			list_add_tail(&group->run_node, &other_group->run_node);
2096 			return;
2097 		}
2098 	}
2099 
2100 	list_add_tail(&group->run_node, &ctx->old_groups[group->priority]);
2101 }
2102 
2103 static void
2104 tick_ctx_init(struct panthor_scheduler *sched,
2105 	      struct panthor_sched_tick_ctx *ctx)
2106 {
2107 	struct panthor_device *ptdev = sched->ptdev;
2108 	struct panthor_csg_slots_upd_ctx upd_ctx;
2109 	int ret;
2110 	u32 i;
2111 
2112 	memset(ctx, 0, sizeof(*ctx));
2113 	csgs_upd_ctx_init(&upd_ctx);
2114 
2115 	ctx->stop_tick = true;
2116 	for (i = 0; i < ARRAY_SIZE(ctx->groups); i++) {
2117 		INIT_LIST_HEAD(&ctx->groups[i]);
2118 		INIT_LIST_HEAD(&ctx->old_groups[i]);
2119 	}
2120 
2121 	for (i = 0; i < sched->csg_slot_count; i++) {
2122 		struct panthor_csg_slot *csg_slot = &sched->csg_slots[i];
2123 		struct panthor_group *group = csg_slot->group;
2124 		struct panthor_fw_csg_iface *csg_iface;
2125 
2126 		if (!group)
2127 			continue;
2128 
2129 		csg_iface = panthor_fw_get_csg_iface(ptdev, i);
2130 		group_get(group);
2131 
2132 		/* If there was unhandled faults on the VM, force processing of
2133 		 * CSG IRQs, so we can flag the faulty queue.
2134 		 */
2135 		if (panthor_vm_has_unhandled_faults(group->vm)) {
2136 			sched_process_csg_irq_locked(ptdev, i);
2137 
2138 			/* No fatal fault reported, flag all queues as faulty. */
2139 			if (!group->fatal_queues)
2140 				group->fatal_queues |= GENMASK(group->queue_count - 1, 0);
2141 		}
2142 
2143 		tick_ctx_insert_old_group(sched, ctx, group);
2144 		csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, i,
2145 					csg_iface->output->ack ^ CSG_STATUS_UPDATE,
2146 					CSG_STATUS_UPDATE);
2147 	}
2148 
2149 	ret = csgs_upd_ctx_apply_locked(ptdev, &upd_ctx);
2150 	if (ret) {
2151 		panthor_device_schedule_reset(ptdev);
2152 		ctx->csg_upd_failed_mask |= upd_ctx.timedout_mask;
2153 	}
2154 }
2155 
2156 static void
2157 group_term_post_processing(struct panthor_group *group)
2158 {
2159 	struct panthor_job *job, *tmp;
2160 	LIST_HEAD(faulty_jobs);
2161 	bool cookie;
2162 	u32 i = 0;
2163 
2164 	if (drm_WARN_ON(&group->ptdev->base, group_can_run(group)))
2165 		return;
2166 
2167 	cookie = dma_fence_begin_signalling();
2168 	for (i = 0; i < group->queue_count; i++) {
2169 		struct panthor_queue *queue = group->queues[i];
2170 		struct panthor_syncobj_64b *syncobj;
2171 		int err;
2172 
2173 		if (group->fatal_queues & BIT(i))
2174 			err = -EINVAL;
2175 		else if (group->timedout)
2176 			err = -ETIMEDOUT;
2177 		else
2178 			err = -ECANCELED;
2179 
2180 		if (!queue)
2181 			continue;
2182 
2183 		spin_lock(&queue->fence_ctx.lock);
2184 		list_for_each_entry_safe(job, tmp, &queue->fence_ctx.in_flight_jobs, node) {
2185 			list_move_tail(&job->node, &faulty_jobs);
2186 			dma_fence_set_error(job->done_fence, err);
2187 			dma_fence_signal_locked(job->done_fence);
2188 		}
2189 		spin_unlock(&queue->fence_ctx.lock);
2190 
2191 		/* Manually update the syncobj seqno to unblock waiters. */
2192 		syncobj = group->syncobjs->kmap + (i * sizeof(*syncobj));
2193 		syncobj->status = ~0;
2194 		syncobj->seqno = atomic64_read(&queue->fence_ctx.seqno);
2195 		sched_queue_work(group->ptdev->scheduler, sync_upd);
2196 	}
2197 	dma_fence_end_signalling(cookie);
2198 
2199 	list_for_each_entry_safe(job, tmp, &faulty_jobs, node) {
2200 		list_del_init(&job->node);
2201 		panthor_job_put(&job->base);
2202 	}
2203 }
2204 
2205 static void group_term_work(struct work_struct *work)
2206 {
2207 	struct panthor_group *group =
2208 		container_of(work, struct panthor_group, term_work);
2209 
2210 	group_term_post_processing(group);
2211 	group_put(group);
2212 }
2213 
2214 static void
2215 tick_ctx_cleanup(struct panthor_scheduler *sched,
2216 		 struct panthor_sched_tick_ctx *ctx)
2217 {
2218 	struct panthor_device *ptdev = sched->ptdev;
2219 	struct panthor_group *group, *tmp;
2220 	u32 i;
2221 
2222 	for (i = 0; i < ARRAY_SIZE(ctx->old_groups); i++) {
2223 		list_for_each_entry_safe(group, tmp, &ctx->old_groups[i], run_node) {
2224 			/* If everything went fine, we should only have groups
2225 			 * to be terminated in the old_groups lists.
2226 			 */
2227 			drm_WARN_ON(&ptdev->base, !ctx->csg_upd_failed_mask &&
2228 				    group_can_run(group));
2229 
2230 			if (!group_can_run(group)) {
2231 				list_del_init(&group->run_node);
2232 				list_del_init(&group->wait_node);
2233 				group_queue_work(group, term);
2234 			} else if (group->csg_id >= 0) {
2235 				list_del_init(&group->run_node);
2236 			} else {
2237 				list_move(&group->run_node,
2238 					  group_is_idle(group) ?
2239 					  &sched->groups.idle[group->priority] :
2240 					  &sched->groups.runnable[group->priority]);
2241 			}
2242 			group_put(group);
2243 		}
2244 	}
2245 
2246 	for (i = 0; i < ARRAY_SIZE(ctx->groups); i++) {
2247 		/* If everything went fine, the groups to schedule lists should
2248 		 * be empty.
2249 		 */
2250 		drm_WARN_ON(&ptdev->base,
2251 			    !ctx->csg_upd_failed_mask && !list_empty(&ctx->groups[i]));
2252 
2253 		list_for_each_entry_safe(group, tmp, &ctx->groups[i], run_node) {
2254 			if (group->csg_id >= 0) {
2255 				list_del_init(&group->run_node);
2256 			} else {
2257 				list_move(&group->run_node,
2258 					  group_is_idle(group) ?
2259 					  &sched->groups.idle[group->priority] :
2260 					  &sched->groups.runnable[group->priority]);
2261 			}
2262 			group_put(group);
2263 		}
2264 	}
2265 }
2266 
2267 static void
2268 tick_ctx_apply(struct panthor_scheduler *sched, struct panthor_sched_tick_ctx *ctx)
2269 {
2270 	struct panthor_group *group, *tmp;
2271 	struct panthor_device *ptdev = sched->ptdev;
2272 	struct panthor_csg_slot *csg_slot;
2273 	int prio, new_csg_prio = MAX_CSG_PRIO, i;
2274 	u32 free_csg_slots = 0;
2275 	struct panthor_csg_slots_upd_ctx upd_ctx;
2276 	int ret;
2277 
2278 	csgs_upd_ctx_init(&upd_ctx);
2279 
2280 	for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) {
2281 		/* Suspend or terminate evicted groups. */
2282 		list_for_each_entry(group, &ctx->old_groups[prio], run_node) {
2283 			bool term = !group_can_run(group);
2284 			int csg_id = group->csg_id;
2285 
2286 			if (drm_WARN_ON(&ptdev->base, csg_id < 0))
2287 				continue;
2288 
2289 			csg_slot = &sched->csg_slots[csg_id];
2290 			csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id,
2291 						term ? CSG_STATE_TERMINATE : CSG_STATE_SUSPEND,
2292 						CSG_STATE_MASK);
2293 		}
2294 
2295 		/* Update priorities on already running groups. */
2296 		list_for_each_entry(group, &ctx->groups[prio], run_node) {
2297 			struct panthor_fw_csg_iface *csg_iface;
2298 			int csg_id = group->csg_id;
2299 
2300 			if (csg_id < 0) {
2301 				new_csg_prio--;
2302 				continue;
2303 			}
2304 
2305 			csg_slot = &sched->csg_slots[csg_id];
2306 			csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
2307 			if (csg_slot->priority == new_csg_prio) {
2308 				new_csg_prio--;
2309 				continue;
2310 			}
2311 
2312 			panthor_fw_csg_endpoint_req_update(ptdev, csg_iface,
2313 							   CSG_EP_REQ_PRIORITY(new_csg_prio),
2314 							   CSG_EP_REQ_PRIORITY_MASK);
2315 			csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id,
2316 						csg_iface->output->ack ^ CSG_ENDPOINT_CONFIG,
2317 						CSG_ENDPOINT_CONFIG);
2318 			new_csg_prio--;
2319 		}
2320 	}
2321 
2322 	ret = csgs_upd_ctx_apply_locked(ptdev, &upd_ctx);
2323 	if (ret) {
2324 		panthor_device_schedule_reset(ptdev);
2325 		ctx->csg_upd_failed_mask |= upd_ctx.timedout_mask;
2326 		return;
2327 	}
2328 
2329 	/* Unbind evicted groups. */
2330 	for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) {
2331 		list_for_each_entry(group, &ctx->old_groups[prio], run_node) {
2332 			/* This group is gone. Process interrupts to clear
2333 			 * any pending interrupts before we start the new
2334 			 * group.
2335 			 */
2336 			if (group->csg_id >= 0)
2337 				sched_process_csg_irq_locked(ptdev, group->csg_id);
2338 
2339 			group_unbind_locked(group);
2340 		}
2341 	}
2342 
2343 	for (i = 0; i < sched->csg_slot_count; i++) {
2344 		if (!sched->csg_slots[i].group)
2345 			free_csg_slots |= BIT(i);
2346 	}
2347 
2348 	csgs_upd_ctx_init(&upd_ctx);
2349 	new_csg_prio = MAX_CSG_PRIO;
2350 
2351 	/* Start new groups. */
2352 	for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) {
2353 		list_for_each_entry(group, &ctx->groups[prio], run_node) {
2354 			int csg_id = group->csg_id;
2355 			struct panthor_fw_csg_iface *csg_iface;
2356 
2357 			if (csg_id >= 0) {
2358 				new_csg_prio--;
2359 				continue;
2360 			}
2361 
2362 			csg_id = ffs(free_csg_slots) - 1;
2363 			if (drm_WARN_ON(&ptdev->base, csg_id < 0))
2364 				break;
2365 
2366 			csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
2367 			csg_slot = &sched->csg_slots[csg_id];
2368 			group_bind_locked(group, csg_id);
2369 			csg_slot_prog_locked(ptdev, csg_id, new_csg_prio--);
2370 			csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id,
2371 						group->state == PANTHOR_CS_GROUP_SUSPENDED ?
2372 						CSG_STATE_RESUME : CSG_STATE_START,
2373 						CSG_STATE_MASK);
2374 			csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id,
2375 						csg_iface->output->ack ^ CSG_ENDPOINT_CONFIG,
2376 						CSG_ENDPOINT_CONFIG);
2377 			free_csg_slots &= ~BIT(csg_id);
2378 		}
2379 	}
2380 
2381 	ret = csgs_upd_ctx_apply_locked(ptdev, &upd_ctx);
2382 	if (ret) {
2383 		panthor_device_schedule_reset(ptdev);
2384 		ctx->csg_upd_failed_mask |= upd_ctx.timedout_mask;
2385 		return;
2386 	}
2387 
2388 	for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) {
2389 		list_for_each_entry_safe(group, tmp, &ctx->groups[prio], run_node) {
2390 			list_del_init(&group->run_node);
2391 
2392 			/* If the group has been destroyed while we were
2393 			 * scheduling, ask for an immediate tick to
2394 			 * re-evaluate as soon as possible and get rid of
2395 			 * this dangling group.
2396 			 */
2397 			if (group->destroyed)
2398 				ctx->immediate_tick = true;
2399 			group_put(group);
2400 		}
2401 
2402 		/* Return evicted groups to the idle or run queues. Groups
2403 		 * that can no longer be run (because they've been destroyed
2404 		 * or experienced an unrecoverable error) will be scheduled
2405 		 * for destruction in tick_ctx_cleanup().
2406 		 */
2407 		list_for_each_entry_safe(group, tmp, &ctx->old_groups[prio], run_node) {
2408 			if (!group_can_run(group))
2409 				continue;
2410 
2411 			if (group_is_idle(group))
2412 				list_move_tail(&group->run_node, &sched->groups.idle[prio]);
2413 			else
2414 				list_move_tail(&group->run_node, &sched->groups.runnable[prio]);
2415 			group_put(group);
2416 		}
2417 	}
2418 
2419 	sched->used_csg_slot_count = ctx->group_count;
2420 	sched->might_have_idle_groups = ctx->idle_group_count > 0;
2421 }
2422 
2423 static u64
2424 tick_ctx_update_resched_target(struct panthor_scheduler *sched,
2425 			       const struct panthor_sched_tick_ctx *ctx)
2426 {
2427 	u64 resched_target;
2428 
2429 	if (ctx->stop_tick)
2430 		goto no_tick;
2431 
2432 	resched_target = sched->last_tick + sched->tick_period;
2433 
2434 	if (time_before64(sched->resched_target, sched->last_tick) ||
2435 	    time_before64(resched_target, sched->resched_target))
2436 		sched->resched_target = resched_target;
2437 
2438 	return sched->resched_target - sched->last_tick;
2439 
2440 no_tick:
2441 	sched->resched_target = U64_MAX;
2442 	return U64_MAX;
2443 }
2444 
2445 static void tick_work(struct work_struct *work)
2446 {
2447 	struct panthor_scheduler *sched = container_of(work, struct panthor_scheduler,
2448 						      tick_work.work);
2449 	struct panthor_device *ptdev = sched->ptdev;
2450 	struct panthor_sched_tick_ctx ctx;
2451 	u64 resched_target = sched->resched_target;
2452 	u64 remaining_jiffies = 0, resched_delay;
2453 	u64 now = get_jiffies_64();
2454 	int prio, ret, cookie;
2455 	bool full_tick;
2456 
2457 	if (!drm_dev_enter(&ptdev->base, &cookie))
2458 		return;
2459 
2460 	ret = panthor_device_resume_and_get(ptdev);
2461 	if (drm_WARN_ON(&ptdev->base, ret))
2462 		goto out_dev_exit;
2463 
2464 	/* If the tick is stopped, calculate when the next tick would be */
2465 	if (resched_target == U64_MAX)
2466 		resched_target = sched->last_tick + sched->tick_period;
2467 
2468 	if (time_before64(now, resched_target))
2469 		remaining_jiffies = resched_target - now;
2470 
2471 	full_tick = remaining_jiffies == 0;
2472 
2473 	mutex_lock(&sched->lock);
2474 	if (panthor_device_reset_is_pending(sched->ptdev))
2475 		goto out_unlock;
2476 
2477 	tick_ctx_init(sched, &ctx);
2478 	if (ctx.csg_upd_failed_mask)
2479 		goto out_cleanup_ctx;
2480 
2481 	if (!full_tick) {
2482 		/* Scheduling forced in the middle of a tick. Only RT groups
2483 		 * can preempt non-RT ones. Currently running RT groups can't be
2484 		 * preempted.
2485 		 */
2486 		for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1;
2487 		     prio >= 0 && !tick_ctx_is_full(sched, &ctx);
2488 		     prio--) {
2489 			tick_ctx_pick_groups_from_list(sched, &ctx, &ctx.old_groups[prio],
2490 						       true, true);
2491 			if (prio == PANTHOR_CSG_PRIORITY_RT) {
2492 				tick_ctx_pick_groups_from_list(sched, &ctx,
2493 							       &sched->groups.runnable[prio],
2494 							       true, false);
2495 			}
2496 		}
2497 	}
2498 
2499 	/* First pick non-idle groups */
2500 	for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1;
2501 	     prio >= 0 && !tick_ctx_is_full(sched, &ctx);
2502 	     prio--) {
2503 		struct panthor_group *old_highest_prio_group =
2504 			list_first_entry_or_null(&ctx.old_groups[prio],
2505 						 struct panthor_group, run_node);
2506 
2507 		/* Pull out the group with the highest prio for rotation. */
2508 		if (old_highest_prio_group)
2509 			list_del(&old_highest_prio_group->run_node);
2510 
2511 		/* Re-insert old active groups so they get a chance to run with higher prio. */
2512 		tick_ctx_pick_groups_from_list(sched, &ctx, &ctx.old_groups[prio], true, true);
2513 
2514 		/* Fill the remaining slots with runnable groups. */
2515 		tick_ctx_pick_groups_from_list(sched, &ctx, &sched->groups.runnable[prio],
2516 					       true, false);
2517 
2518 		/* Re-insert the old group with the highest prio, and give it a chance to be
2519 		 * scheduled again (but with a lower prio) if there's room left.
2520 		 */
2521 		if (old_highest_prio_group) {
2522 			list_add_tail(&old_highest_prio_group->run_node, &ctx.old_groups[prio]);
2523 			tick_ctx_pick_groups_from_list(sched, &ctx, &ctx.old_groups[prio],
2524 						       true, true);
2525 		}
2526 	}
2527 
2528 	/* If we have free CSG slots left, pick idle groups */
2529 	for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1;
2530 	     prio >= 0 && !tick_ctx_is_full(sched, &ctx);
2531 	     prio--) {
2532 		/* Check the old_group queue first to avoid reprogramming the slots */
2533 		tick_ctx_pick_groups_from_list(sched, &ctx, &ctx.old_groups[prio], false, true);
2534 		tick_ctx_pick_groups_from_list(sched, &ctx, &sched->groups.idle[prio],
2535 					       false, false);
2536 	}
2537 
2538 	tick_ctx_apply(sched, &ctx);
2539 	if (ctx.csg_upd_failed_mask)
2540 		goto out_cleanup_ctx;
2541 
2542 	if (ctx.idle_group_count == ctx.group_count) {
2543 		panthor_devfreq_record_idle(sched->ptdev);
2544 		if (sched->pm.has_ref) {
2545 			pm_runtime_put_autosuspend(ptdev->base.dev);
2546 			sched->pm.has_ref = false;
2547 		}
2548 	} else {
2549 		panthor_devfreq_record_busy(sched->ptdev);
2550 		if (!sched->pm.has_ref) {
2551 			pm_runtime_get(ptdev->base.dev);
2552 			sched->pm.has_ref = true;
2553 		}
2554 	}
2555 
2556 	sched->last_tick = now;
2557 	resched_delay = tick_ctx_update_resched_target(sched, &ctx);
2558 	if (ctx.immediate_tick)
2559 		resched_delay = 0;
2560 
2561 	if (resched_delay != U64_MAX)
2562 		sched_queue_delayed_work(sched, tick, resched_delay);
2563 
2564 out_cleanup_ctx:
2565 	tick_ctx_cleanup(sched, &ctx);
2566 
2567 out_unlock:
2568 	mutex_unlock(&sched->lock);
2569 	pm_runtime_mark_last_busy(ptdev->base.dev);
2570 	pm_runtime_put_autosuspend(ptdev->base.dev);
2571 
2572 out_dev_exit:
2573 	drm_dev_exit(cookie);
2574 }
2575 
2576 static int panthor_queue_eval_syncwait(struct panthor_group *group, u8 queue_idx)
2577 {
2578 	struct panthor_queue *queue = group->queues[queue_idx];
2579 	union {
2580 		struct panthor_syncobj_64b sync64;
2581 		struct panthor_syncobj_32b sync32;
2582 	} *syncobj;
2583 	bool result;
2584 	u64 value;
2585 
2586 	syncobj = panthor_queue_get_syncwait_obj(group, queue);
2587 	if (!syncobj)
2588 		return -EINVAL;
2589 
2590 	value = queue->syncwait.sync64 ?
2591 		syncobj->sync64.seqno :
2592 		syncobj->sync32.seqno;
2593 
2594 	if (queue->syncwait.gt)
2595 		result = value > queue->syncwait.ref;
2596 	else
2597 		result = value <= queue->syncwait.ref;
2598 
2599 	if (result)
2600 		panthor_queue_put_syncwait_obj(queue);
2601 
2602 	return result;
2603 }
2604 
2605 static void sync_upd_work(struct work_struct *work)
2606 {
2607 	struct panthor_scheduler *sched = container_of(work,
2608 						      struct panthor_scheduler,
2609 						      sync_upd_work);
2610 	struct panthor_group *group, *tmp;
2611 	bool immediate_tick = false;
2612 
2613 	mutex_lock(&sched->lock);
2614 	list_for_each_entry_safe(group, tmp, &sched->groups.waiting, wait_node) {
2615 		u32 tested_queues = group->blocked_queues;
2616 		u32 unblocked_queues = 0;
2617 
2618 		while (tested_queues) {
2619 			u32 cs_id = ffs(tested_queues) - 1;
2620 			int ret;
2621 
2622 			ret = panthor_queue_eval_syncwait(group, cs_id);
2623 			drm_WARN_ON(&group->ptdev->base, ret < 0);
2624 			if (ret)
2625 				unblocked_queues |= BIT(cs_id);
2626 
2627 			tested_queues &= ~BIT(cs_id);
2628 		}
2629 
2630 		if (unblocked_queues) {
2631 			group->blocked_queues &= ~unblocked_queues;
2632 
2633 			if (group->csg_id < 0) {
2634 				list_move(&group->run_node,
2635 					  &sched->groups.runnable[group->priority]);
2636 				if (group->priority == PANTHOR_CSG_PRIORITY_RT)
2637 					immediate_tick = true;
2638 			}
2639 		}
2640 
2641 		if (!group->blocked_queues)
2642 			list_del_init(&group->wait_node);
2643 	}
2644 	mutex_unlock(&sched->lock);
2645 
2646 	if (immediate_tick)
2647 		sched_queue_delayed_work(sched, tick, 0);
2648 }
2649 
2650 static void sched_resume_tick(struct panthor_device *ptdev)
2651 {
2652 	struct panthor_scheduler *sched = ptdev->scheduler;
2653 	u64 delay_jiffies, now;
2654 
2655 	drm_WARN_ON(&ptdev->base, sched->resched_target != U64_MAX);
2656 
2657 	/* Scheduler tick was off, recalculate the resched_target based on the
2658 	 * last tick event, and queue the scheduler work.
2659 	 */
2660 	now = get_jiffies_64();
2661 	sched->resched_target = sched->last_tick + sched->tick_period;
2662 	if (sched->used_csg_slot_count == sched->csg_slot_count &&
2663 	    time_before64(now, sched->resched_target))
2664 		delay_jiffies = min_t(unsigned long, sched->resched_target - now, ULONG_MAX);
2665 	else
2666 		delay_jiffies = 0;
2667 
2668 	sched_queue_delayed_work(sched, tick, delay_jiffies);
2669 }
2670 
2671 static void group_schedule_locked(struct panthor_group *group, u32 queue_mask)
2672 {
2673 	struct panthor_device *ptdev = group->ptdev;
2674 	struct panthor_scheduler *sched = ptdev->scheduler;
2675 	struct list_head *queue = &sched->groups.runnable[group->priority];
2676 	bool was_idle;
2677 
2678 	if (!group_can_run(group))
2679 		return;
2680 
2681 	/* All updated queues are blocked, no need to wake up the scheduler. */
2682 	if ((queue_mask & group->blocked_queues) == queue_mask)
2683 		return;
2684 
2685 	was_idle = group_is_idle(group);
2686 	group->idle_queues &= ~queue_mask;
2687 
2688 	/* Don't mess up with the lists if we're in a middle of a reset. */
2689 	if (atomic_read(&sched->reset.in_progress))
2690 		return;
2691 
2692 	if (was_idle && !group_is_idle(group))
2693 		list_move_tail(&group->run_node, queue);
2694 
2695 	/* RT groups are preemptive. */
2696 	if (group->priority == PANTHOR_CSG_PRIORITY_RT) {
2697 		sched_queue_delayed_work(sched, tick, 0);
2698 		return;
2699 	}
2700 
2701 	/* Some groups might be idle, force an immediate tick to
2702 	 * re-evaluate.
2703 	 */
2704 	if (sched->might_have_idle_groups) {
2705 		sched_queue_delayed_work(sched, tick, 0);
2706 		return;
2707 	}
2708 
2709 	/* Scheduler is ticking, nothing to do. */
2710 	if (sched->resched_target != U64_MAX) {
2711 		/* If there are free slots, force immediating ticking. */
2712 		if (sched->used_csg_slot_count < sched->csg_slot_count)
2713 			sched_queue_delayed_work(sched, tick, 0);
2714 
2715 		return;
2716 	}
2717 
2718 	/* Scheduler tick was off, recalculate the resched_target based on the
2719 	 * last tick event, and queue the scheduler work.
2720 	 */
2721 	sched_resume_tick(ptdev);
2722 }
2723 
2724 static void queue_stop(struct panthor_queue *queue,
2725 		       struct panthor_job *bad_job)
2726 {
2727 	disable_delayed_work_sync(&queue->timeout.work);
2728 	drm_sched_stop(&queue->scheduler, bad_job ? &bad_job->base : NULL);
2729 }
2730 
2731 static void queue_start(struct panthor_queue *queue)
2732 {
2733 	struct panthor_job *job;
2734 
2735 	/* Re-assign the parent fences. */
2736 	list_for_each_entry(job, &queue->scheduler.pending_list, base.list)
2737 		job->base.s_fence->parent = dma_fence_get(job->done_fence);
2738 
2739 	enable_delayed_work(&queue->timeout.work);
2740 	drm_sched_start(&queue->scheduler, 0);
2741 }
2742 
2743 static void panthor_group_stop(struct panthor_group *group)
2744 {
2745 	struct panthor_scheduler *sched = group->ptdev->scheduler;
2746 
2747 	lockdep_assert_held(&sched->reset.lock);
2748 
2749 	for (u32 i = 0; i < group->queue_count; i++)
2750 		queue_stop(group->queues[i], NULL);
2751 
2752 	group_get(group);
2753 	list_move_tail(&group->run_node, &sched->reset.stopped_groups);
2754 }
2755 
2756 static void panthor_group_start(struct panthor_group *group)
2757 {
2758 	struct panthor_scheduler *sched = group->ptdev->scheduler;
2759 
2760 	lockdep_assert_held(&group->ptdev->scheduler->reset.lock);
2761 
2762 	for (u32 i = 0; i < group->queue_count; i++)
2763 		queue_start(group->queues[i]);
2764 
2765 	if (group_can_run(group)) {
2766 		list_move_tail(&group->run_node,
2767 			       group_is_idle(group) ?
2768 			       &sched->groups.idle[group->priority] :
2769 			       &sched->groups.runnable[group->priority]);
2770 	} else {
2771 		list_del_init(&group->run_node);
2772 		list_del_init(&group->wait_node);
2773 		group_queue_work(group, term);
2774 	}
2775 
2776 	group_put(group);
2777 }
2778 
2779 /**
2780  * panthor_sched_report_mmu_fault() - Report MMU faults to the scheduler.
2781  */
2782 void panthor_sched_report_mmu_fault(struct panthor_device *ptdev)
2783 {
2784 	/* Force a tick to immediately kill faulty groups. */
2785 	if (ptdev->scheduler)
2786 		sched_queue_delayed_work(ptdev->scheduler, tick, 0);
2787 }
2788 
2789 void panthor_sched_prepare_for_vm_destruction(struct panthor_device *ptdev)
2790 {
2791 	/* FW can write out internal state, like the heap context, during CSG
2792 	 * suspend. It is therefore important that the scheduler has fully
2793 	 * evicted any pending and related groups before VM destruction can
2794 	 * safely continue. Failure to do so can lead to GPU page faults.
2795 	 * A controlled termination of a Panthor instance involves destroying
2796 	 * the group(s) before the VM. This means any relevant group eviction
2797 	 * has already been initiated by this point, and we just need to
2798 	 * ensure that any pending tick_work() has been completed.
2799 	 */
2800 	flush_work(&ptdev->scheduler->tick_work.work);
2801 }
2802 
2803 void panthor_sched_resume(struct panthor_device *ptdev)
2804 {
2805 	/* Force a tick to re-evaluate after a resume. */
2806 	sched_queue_delayed_work(ptdev->scheduler, tick, 0);
2807 }
2808 
2809 void panthor_sched_suspend(struct panthor_device *ptdev)
2810 {
2811 	struct panthor_scheduler *sched = ptdev->scheduler;
2812 	struct panthor_csg_slots_upd_ctx upd_ctx;
2813 	u32 suspended_slots;
2814 	u32 i;
2815 
2816 	mutex_lock(&sched->lock);
2817 	csgs_upd_ctx_init(&upd_ctx);
2818 	for (i = 0; i < sched->csg_slot_count; i++) {
2819 		struct panthor_csg_slot *csg_slot = &sched->csg_slots[i];
2820 
2821 		if (csg_slot->group) {
2822 			csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, i,
2823 						group_can_run(csg_slot->group) ?
2824 						CSG_STATE_SUSPEND : CSG_STATE_TERMINATE,
2825 						CSG_STATE_MASK);
2826 		}
2827 	}
2828 
2829 	suspended_slots = upd_ctx.update_mask;
2830 
2831 	csgs_upd_ctx_apply_locked(ptdev, &upd_ctx);
2832 	suspended_slots &= ~upd_ctx.timedout_mask;
2833 
2834 	if (upd_ctx.timedout_mask) {
2835 		u32 slot_mask = upd_ctx.timedout_mask;
2836 
2837 		drm_err(&ptdev->base, "CSG suspend failed, escalating to termination");
2838 		csgs_upd_ctx_init(&upd_ctx);
2839 		while (slot_mask) {
2840 			u32 csg_id = ffs(slot_mask) - 1;
2841 			struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
2842 
2843 			/* If the group was still usable before that point, we consider
2844 			 * it innocent.
2845 			 */
2846 			if (group_can_run(csg_slot->group))
2847 				csg_slot->group->innocent = true;
2848 
2849 			/* We consider group suspension failures as fatal and flag the
2850 			 * group as unusable by setting timedout=true.
2851 			 */
2852 			csg_slot->group->timedout = true;
2853 
2854 			csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id,
2855 						CSG_STATE_TERMINATE,
2856 						CSG_STATE_MASK);
2857 			slot_mask &= ~BIT(csg_id);
2858 		}
2859 
2860 		csgs_upd_ctx_apply_locked(ptdev, &upd_ctx);
2861 
2862 		slot_mask = upd_ctx.timedout_mask;
2863 		while (slot_mask) {
2864 			u32 csg_id = ffs(slot_mask) - 1;
2865 			struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
2866 			struct panthor_group *group = csg_slot->group;
2867 
2868 			/* Terminate command timedout, but the soft-reset will
2869 			 * automatically terminate all active groups, so let's
2870 			 * force the state to halted here.
2871 			 */
2872 			if (group->state != PANTHOR_CS_GROUP_TERMINATED) {
2873 				group->state = PANTHOR_CS_GROUP_TERMINATED;
2874 
2875 				/* Reset the queue slots manually if the termination
2876 				 * request failed.
2877 				 */
2878 				for (i = 0; i < group->queue_count; i++) {
2879 					if (group->queues[i])
2880 						cs_slot_reset_locked(ptdev, csg_id, i);
2881 				}
2882 			}
2883 			slot_mask &= ~BIT(csg_id);
2884 		}
2885 	}
2886 
2887 	/* Flush L2 and LSC caches to make sure suspend state is up-to-date.
2888 	 * If the flush fails, flag all queues for termination.
2889 	 */
2890 	if (suspended_slots) {
2891 		bool flush_caches_failed = false;
2892 		u32 slot_mask = suspended_slots;
2893 
2894 		if (panthor_gpu_flush_caches(ptdev, CACHE_CLEAN, CACHE_CLEAN, 0))
2895 			flush_caches_failed = true;
2896 
2897 		while (slot_mask) {
2898 			u32 csg_id = ffs(slot_mask) - 1;
2899 			struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
2900 
2901 			if (flush_caches_failed)
2902 				csg_slot->group->state = PANTHOR_CS_GROUP_TERMINATED;
2903 			else
2904 				csg_slot_sync_update_locked(ptdev, csg_id);
2905 
2906 			slot_mask &= ~BIT(csg_id);
2907 		}
2908 	}
2909 
2910 	for (i = 0; i < sched->csg_slot_count; i++) {
2911 		struct panthor_csg_slot *csg_slot = &sched->csg_slots[i];
2912 		struct panthor_group *group = csg_slot->group;
2913 
2914 		if (!group)
2915 			continue;
2916 
2917 		group_get(group);
2918 
2919 		if (group->csg_id >= 0)
2920 			sched_process_csg_irq_locked(ptdev, group->csg_id);
2921 
2922 		group_unbind_locked(group);
2923 
2924 		drm_WARN_ON(&group->ptdev->base, !list_empty(&group->run_node));
2925 
2926 		if (group_can_run(group)) {
2927 			list_add(&group->run_node,
2928 				 &sched->groups.idle[group->priority]);
2929 		} else {
2930 			/* We don't bother stopping the scheduler if the group is
2931 			 * faulty, the group termination work will finish the job.
2932 			 */
2933 			list_del_init(&group->wait_node);
2934 			group_queue_work(group, term);
2935 		}
2936 		group_put(group);
2937 	}
2938 	mutex_unlock(&sched->lock);
2939 }
2940 
2941 void panthor_sched_pre_reset(struct panthor_device *ptdev)
2942 {
2943 	struct panthor_scheduler *sched = ptdev->scheduler;
2944 	struct panthor_group *group, *group_tmp;
2945 	u32 i;
2946 
2947 	mutex_lock(&sched->reset.lock);
2948 	atomic_set(&sched->reset.in_progress, true);
2949 
2950 	/* Cancel all scheduler works. Once this is done, these works can't be
2951 	 * scheduled again until the reset operation is complete.
2952 	 */
2953 	cancel_work_sync(&sched->sync_upd_work);
2954 	cancel_delayed_work_sync(&sched->tick_work);
2955 
2956 	panthor_sched_suspend(ptdev);
2957 
2958 	/* Stop all groups that might still accept jobs, so we don't get passed
2959 	 * new jobs while we're resetting.
2960 	 */
2961 	for (i = 0; i < ARRAY_SIZE(sched->groups.runnable); i++) {
2962 		list_for_each_entry_safe(group, group_tmp, &sched->groups.runnable[i], run_node)
2963 			panthor_group_stop(group);
2964 	}
2965 
2966 	for (i = 0; i < ARRAY_SIZE(sched->groups.idle); i++) {
2967 		list_for_each_entry_safe(group, group_tmp, &sched->groups.idle[i], run_node)
2968 			panthor_group_stop(group);
2969 	}
2970 
2971 	mutex_unlock(&sched->reset.lock);
2972 }
2973 
2974 void panthor_sched_post_reset(struct panthor_device *ptdev, bool reset_failed)
2975 {
2976 	struct panthor_scheduler *sched = ptdev->scheduler;
2977 	struct panthor_group *group, *group_tmp;
2978 
2979 	mutex_lock(&sched->reset.lock);
2980 
2981 	list_for_each_entry_safe(group, group_tmp, &sched->reset.stopped_groups, run_node) {
2982 		/* Consider all previously running group as terminated if the
2983 		 * reset failed.
2984 		 */
2985 		if (reset_failed)
2986 			group->state = PANTHOR_CS_GROUP_TERMINATED;
2987 
2988 		panthor_group_start(group);
2989 	}
2990 
2991 	/* We're done resetting the GPU, clear the reset.in_progress bit so we can
2992 	 * kick the scheduler.
2993 	 */
2994 	atomic_set(&sched->reset.in_progress, false);
2995 	mutex_unlock(&sched->reset.lock);
2996 
2997 	/* No need to queue a tick and update syncs if the reset failed. */
2998 	if (!reset_failed) {
2999 		sched_queue_delayed_work(sched, tick, 0);
3000 		sched_queue_work(sched, sync_upd);
3001 	}
3002 }
3003 
3004 static void update_fdinfo_stats(struct panthor_job *job)
3005 {
3006 	struct panthor_group *group = job->group;
3007 	struct panthor_queue *queue = group->queues[job->queue_idx];
3008 	struct panthor_gpu_usage *fdinfo = &group->fdinfo.data;
3009 	struct panthor_job_profiling_data *slots = queue->profiling.slots->kmap;
3010 	struct panthor_job_profiling_data *data = &slots[job->profiling.slot];
3011 
3012 	scoped_guard(spinlock, &group->fdinfo.lock) {
3013 		if (job->profiling.mask & PANTHOR_DEVICE_PROFILING_CYCLES)
3014 			fdinfo->cycles += data->cycles.after - data->cycles.before;
3015 		if (job->profiling.mask & PANTHOR_DEVICE_PROFILING_TIMESTAMP)
3016 			fdinfo->time += data->time.after - data->time.before;
3017 	}
3018 }
3019 
3020 void panthor_fdinfo_gather_group_samples(struct panthor_file *pfile)
3021 {
3022 	struct panthor_group_pool *gpool = pfile->groups;
3023 	struct panthor_group *group;
3024 	unsigned long i;
3025 
3026 	if (IS_ERR_OR_NULL(gpool))
3027 		return;
3028 
3029 	xa_lock(&gpool->xa);
3030 	xa_for_each_marked(&gpool->xa, i, group, GROUP_REGISTERED) {
3031 		guard(spinlock)(&group->fdinfo.lock);
3032 		pfile->stats.cycles += group->fdinfo.data.cycles;
3033 		pfile->stats.time += group->fdinfo.data.time;
3034 		group->fdinfo.data.cycles = 0;
3035 		group->fdinfo.data.time = 0;
3036 	}
3037 	xa_unlock(&gpool->xa);
3038 }
3039 
3040 static bool queue_check_job_completion(struct panthor_queue *queue)
3041 {
3042 	struct panthor_syncobj_64b *syncobj = NULL;
3043 	struct panthor_job *job, *job_tmp;
3044 	bool cookie, progress = false;
3045 	LIST_HEAD(done_jobs);
3046 
3047 	cookie = dma_fence_begin_signalling();
3048 	spin_lock(&queue->fence_ctx.lock);
3049 	list_for_each_entry_safe(job, job_tmp, &queue->fence_ctx.in_flight_jobs, node) {
3050 		if (!syncobj) {
3051 			struct panthor_group *group = job->group;
3052 
3053 			syncobj = group->syncobjs->kmap +
3054 				  (job->queue_idx * sizeof(*syncobj));
3055 		}
3056 
3057 		if (syncobj->seqno < job->done_fence->seqno)
3058 			break;
3059 
3060 		list_move_tail(&job->node, &done_jobs);
3061 		dma_fence_signal_locked(job->done_fence);
3062 	}
3063 
3064 	if (list_empty(&queue->fence_ctx.in_flight_jobs)) {
3065 		/* If we have no job left, we cancel the timer, and reset remaining
3066 		 * time to its default so it can be restarted next time
3067 		 * queue_resume_timeout() is called.
3068 		 */
3069 		queue_suspend_timeout_locked(queue);
3070 
3071 		/* If there's no job pending, we consider it progress to avoid a
3072 		 * spurious timeout if the timeout handler and the sync update
3073 		 * handler raced.
3074 		 */
3075 		progress = true;
3076 	} else if (!list_empty(&done_jobs)) {
3077 		queue_reset_timeout_locked(queue);
3078 		progress = true;
3079 	}
3080 	spin_unlock(&queue->fence_ctx.lock);
3081 	dma_fence_end_signalling(cookie);
3082 
3083 	list_for_each_entry_safe(job, job_tmp, &done_jobs, node) {
3084 		if (job->profiling.mask)
3085 			update_fdinfo_stats(job);
3086 		list_del_init(&job->node);
3087 		panthor_job_put(&job->base);
3088 	}
3089 
3090 	return progress;
3091 }
3092 
3093 static void group_sync_upd_work(struct work_struct *work)
3094 {
3095 	struct panthor_group *group =
3096 		container_of(work, struct panthor_group, sync_upd_work);
3097 	u32 queue_idx;
3098 	bool cookie;
3099 
3100 	cookie = dma_fence_begin_signalling();
3101 	for (queue_idx = 0; queue_idx < group->queue_count; queue_idx++) {
3102 		struct panthor_queue *queue = group->queues[queue_idx];
3103 
3104 		if (!queue)
3105 			continue;
3106 
3107 		queue_check_job_completion(queue);
3108 	}
3109 	dma_fence_end_signalling(cookie);
3110 
3111 	group_put(group);
3112 }
3113 
3114 struct panthor_job_ringbuf_instrs {
3115 	u64 buffer[MAX_INSTRS_PER_JOB];
3116 	u32 count;
3117 };
3118 
3119 struct panthor_job_instr {
3120 	u32 profile_mask;
3121 	u64 instr;
3122 };
3123 
3124 #define JOB_INSTR(__prof, __instr) \
3125 	{ \
3126 		.profile_mask = __prof, \
3127 		.instr = __instr, \
3128 	}
3129 
3130 static void
3131 copy_instrs_to_ringbuf(struct panthor_queue *queue,
3132 		       struct panthor_job *job,
3133 		       struct panthor_job_ringbuf_instrs *instrs)
3134 {
3135 	u64 ringbuf_size = panthor_kernel_bo_size(queue->ringbuf);
3136 	u64 start = job->ringbuf.start & (ringbuf_size - 1);
3137 	u64 size, written;
3138 
3139 	/*
3140 	 * We need to write a whole slot, including any trailing zeroes
3141 	 * that may come at the end of it. Also, because instrs.buffer has
3142 	 * been zero-initialised, there's no need to pad it with 0's
3143 	 */
3144 	instrs->count = ALIGN(instrs->count, NUM_INSTRS_PER_CACHE_LINE);
3145 	size = instrs->count * sizeof(u64);
3146 	WARN_ON(size > ringbuf_size);
3147 	written = min(ringbuf_size - start, size);
3148 
3149 	memcpy(queue->ringbuf->kmap + start, instrs->buffer, written);
3150 
3151 	if (written < size)
3152 		memcpy(queue->ringbuf->kmap,
3153 		       &instrs->buffer[written / sizeof(u64)],
3154 		       size - written);
3155 }
3156 
3157 struct panthor_job_cs_params {
3158 	u32 profile_mask;
3159 	u64 addr_reg; u64 val_reg;
3160 	u64 cycle_reg; u64 time_reg;
3161 	u64 sync_addr; u64 times_addr;
3162 	u64 cs_start; u64 cs_size;
3163 	u32 last_flush; u32 waitall_mask;
3164 };
3165 
3166 static void
3167 get_job_cs_params(struct panthor_job *job, struct panthor_job_cs_params *params)
3168 {
3169 	struct panthor_group *group = job->group;
3170 	struct panthor_queue *queue = group->queues[job->queue_idx];
3171 	struct panthor_device *ptdev = group->ptdev;
3172 	struct panthor_scheduler *sched = ptdev->scheduler;
3173 
3174 	params->addr_reg = ptdev->csif_info.cs_reg_count -
3175 			   ptdev->csif_info.unpreserved_cs_reg_count;
3176 	params->val_reg = params->addr_reg + 2;
3177 	params->cycle_reg = params->addr_reg;
3178 	params->time_reg = params->val_reg;
3179 
3180 	params->sync_addr = panthor_kernel_bo_gpuva(group->syncobjs) +
3181 			    job->queue_idx * sizeof(struct panthor_syncobj_64b);
3182 	params->times_addr = panthor_kernel_bo_gpuva(queue->profiling.slots) +
3183 			     (job->profiling.slot * sizeof(struct panthor_job_profiling_data));
3184 	params->waitall_mask = GENMASK(sched->sb_slot_count - 1, 0);
3185 
3186 	params->cs_start = job->call_info.start;
3187 	params->cs_size = job->call_info.size;
3188 	params->last_flush = job->call_info.latest_flush;
3189 
3190 	params->profile_mask = job->profiling.mask;
3191 }
3192 
3193 #define JOB_INSTR_ALWAYS(instr) \
3194 	JOB_INSTR(PANTHOR_DEVICE_PROFILING_DISABLED, (instr))
3195 #define JOB_INSTR_TIMESTAMP(instr) \
3196 	JOB_INSTR(PANTHOR_DEVICE_PROFILING_TIMESTAMP, (instr))
3197 #define JOB_INSTR_CYCLES(instr) \
3198 	JOB_INSTR(PANTHOR_DEVICE_PROFILING_CYCLES, (instr))
3199 
3200 static void
3201 prepare_job_instrs(const struct panthor_job_cs_params *params,
3202 		   struct panthor_job_ringbuf_instrs *instrs)
3203 {
3204 	const struct panthor_job_instr instr_seq[] = {
3205 		/* MOV32 rX+2, cs.latest_flush */
3206 		JOB_INSTR_ALWAYS((2ull << 56) | (params->val_reg << 48) | params->last_flush),
3207 		/* FLUSH_CACHE2.clean_inv_all.no_wait.signal(0) rX+2 */
3208 		JOB_INSTR_ALWAYS((36ull << 56) | (0ull << 48) | (params->val_reg << 40) |
3209 				 (0 << 16) | 0x233),
3210 		/* MOV48 rX:rX+1, cycles_offset */
3211 		JOB_INSTR_CYCLES((1ull << 56) | (params->cycle_reg << 48) |
3212 				 (params->times_addr +
3213 				  offsetof(struct panthor_job_profiling_data, cycles.before))),
3214 		/* STORE_STATE cycles */
3215 		JOB_INSTR_CYCLES((40ull << 56) | (params->cycle_reg << 40) | (1ll << 32)),
3216 		/* MOV48 rX:rX+1, time_offset */
3217 		JOB_INSTR_TIMESTAMP((1ull << 56) | (params->time_reg << 48) |
3218 				    (params->times_addr +
3219 				     offsetof(struct panthor_job_profiling_data, time.before))),
3220 		/* STORE_STATE timer */
3221 		JOB_INSTR_TIMESTAMP((40ull << 56) | (params->time_reg << 40) | (0ll << 32)),
3222 		/* MOV48 rX:rX+1, cs.start */
3223 		JOB_INSTR_ALWAYS((1ull << 56) | (params->addr_reg << 48) | params->cs_start),
3224 		/* MOV32 rX+2, cs.size */
3225 		JOB_INSTR_ALWAYS((2ull << 56) | (params->val_reg << 48) | params->cs_size),
3226 		/* WAIT(0) => waits for FLUSH_CACHE2 instruction */
3227 		JOB_INSTR_ALWAYS((3ull << 56) | (1 << 16)),
3228 		/* CALL rX:rX+1, rX+2 */
3229 		JOB_INSTR_ALWAYS((32ull << 56) | (params->addr_reg << 40) |
3230 				 (params->val_reg << 32)),
3231 		/* MOV48 rX:rX+1, cycles_offset */
3232 		JOB_INSTR_CYCLES((1ull << 56) | (params->cycle_reg << 48) |
3233 				 (params->times_addr +
3234 				  offsetof(struct panthor_job_profiling_data, cycles.after))),
3235 		/* STORE_STATE cycles */
3236 		JOB_INSTR_CYCLES((40ull << 56) | (params->cycle_reg << 40) | (1ll << 32)),
3237 		/* MOV48 rX:rX+1, time_offset */
3238 		JOB_INSTR_TIMESTAMP((1ull << 56) | (params->time_reg << 48) |
3239 			  (params->times_addr +
3240 			   offsetof(struct panthor_job_profiling_data, time.after))),
3241 		/* STORE_STATE timer */
3242 		JOB_INSTR_TIMESTAMP((40ull << 56) | (params->time_reg << 40) | (0ll << 32)),
3243 		/* MOV48 rX:rX+1, sync_addr */
3244 		JOB_INSTR_ALWAYS((1ull << 56) | (params->addr_reg << 48) | params->sync_addr),
3245 		/* MOV48 rX+2, #1 */
3246 		JOB_INSTR_ALWAYS((1ull << 56) | (params->val_reg << 48) | 1),
3247 		/* WAIT(all) */
3248 		JOB_INSTR_ALWAYS((3ull << 56) | (params->waitall_mask << 16)),
3249 		/* SYNC_ADD64.system_scope.propage_err.nowait rX:rX+1, rX+2*/
3250 		JOB_INSTR_ALWAYS((51ull << 56) | (0ull << 48) | (params->addr_reg << 40) |
3251 				 (params->val_reg << 32) | (0 << 16) | 1),
3252 		/* ERROR_BARRIER, so we can recover from faults at job boundaries. */
3253 		JOB_INSTR_ALWAYS((47ull << 56)),
3254 	};
3255 	u32 pad;
3256 
3257 	instrs->count = 0;
3258 
3259 	/* NEED to be cacheline aligned to please the prefetcher. */
3260 	static_assert(sizeof(instrs->buffer) % 64 == 0,
3261 		      "panthor_job_ringbuf_instrs::buffer is not aligned on a cacheline");
3262 
3263 	/* Make sure we have enough storage to store the whole sequence. */
3264 	static_assert(ALIGN(ARRAY_SIZE(instr_seq), NUM_INSTRS_PER_CACHE_LINE) ==
3265 		      ARRAY_SIZE(instrs->buffer),
3266 		      "instr_seq vs panthor_job_ringbuf_instrs::buffer size mismatch");
3267 
3268 	for (u32 i = 0; i < ARRAY_SIZE(instr_seq); i++) {
3269 		/* If the profile mask of this instruction is not enabled, skip it. */
3270 		if (instr_seq[i].profile_mask &&
3271 		    !(instr_seq[i].profile_mask & params->profile_mask))
3272 			continue;
3273 
3274 		instrs->buffer[instrs->count++] = instr_seq[i].instr;
3275 	}
3276 
3277 	pad = ALIGN(instrs->count, NUM_INSTRS_PER_CACHE_LINE);
3278 	memset(&instrs->buffer[instrs->count], 0,
3279 	       (pad - instrs->count) * sizeof(instrs->buffer[0]));
3280 	instrs->count = pad;
3281 }
3282 
3283 static u32 calc_job_credits(u32 profile_mask)
3284 {
3285 	struct panthor_job_ringbuf_instrs instrs;
3286 	struct panthor_job_cs_params params = {
3287 		.profile_mask = profile_mask,
3288 	};
3289 
3290 	prepare_job_instrs(&params, &instrs);
3291 	return instrs.count;
3292 }
3293 
3294 static struct dma_fence *
3295 queue_run_job(struct drm_sched_job *sched_job)
3296 {
3297 	struct panthor_job *job = container_of(sched_job, struct panthor_job, base);
3298 	struct panthor_group *group = job->group;
3299 	struct panthor_queue *queue = group->queues[job->queue_idx];
3300 	struct panthor_device *ptdev = group->ptdev;
3301 	struct panthor_scheduler *sched = ptdev->scheduler;
3302 	struct panthor_job_ringbuf_instrs instrs;
3303 	struct panthor_job_cs_params cs_params;
3304 	struct dma_fence *done_fence;
3305 	int ret;
3306 
3307 	/* Stream size is zero, nothing to do except making sure all previously
3308 	 * submitted jobs are done before we signal the
3309 	 * drm_sched_job::s_fence::finished fence.
3310 	 */
3311 	if (!job->call_info.size) {
3312 		job->done_fence = dma_fence_get(queue->fence_ctx.last_fence);
3313 		return dma_fence_get(job->done_fence);
3314 	}
3315 
3316 	ret = panthor_device_resume_and_get(ptdev);
3317 	if (drm_WARN_ON(&ptdev->base, ret))
3318 		return ERR_PTR(ret);
3319 
3320 	mutex_lock(&sched->lock);
3321 	if (!group_can_run(group)) {
3322 		done_fence = ERR_PTR(-ECANCELED);
3323 		goto out_unlock;
3324 	}
3325 
3326 	dma_fence_init(job->done_fence,
3327 		       &panthor_queue_fence_ops,
3328 		       &queue->fence_ctx.lock,
3329 		       queue->fence_ctx.id,
3330 		       atomic64_inc_return(&queue->fence_ctx.seqno));
3331 
3332 	job->profiling.slot = queue->profiling.seqno++;
3333 	if (queue->profiling.seqno == queue->profiling.slot_count)
3334 		queue->profiling.seqno = 0;
3335 
3336 	job->ringbuf.start = queue->iface.input->insert;
3337 
3338 	get_job_cs_params(job, &cs_params);
3339 	prepare_job_instrs(&cs_params, &instrs);
3340 	copy_instrs_to_ringbuf(queue, job, &instrs);
3341 
3342 	job->ringbuf.end = job->ringbuf.start + (instrs.count * sizeof(u64));
3343 
3344 	panthor_job_get(&job->base);
3345 	spin_lock(&queue->fence_ctx.lock);
3346 	list_add_tail(&job->node, &queue->fence_ctx.in_flight_jobs);
3347 	spin_unlock(&queue->fence_ctx.lock);
3348 
3349 	/* Make sure the ring buffer is updated before the INSERT
3350 	 * register.
3351 	 */
3352 	wmb();
3353 
3354 	queue->iface.input->extract = queue->iface.output->extract;
3355 	queue->iface.input->insert = job->ringbuf.end;
3356 
3357 	if (group->csg_id < 0) {
3358 		group_schedule_locked(group, BIT(job->queue_idx));
3359 	} else {
3360 		u32 queue_mask = BIT(job->queue_idx);
3361 		bool resume_tick = group_is_idle(group) &&
3362 				   (group->idle_queues & queue_mask) &&
3363 				   !(group->blocked_queues & queue_mask) &&
3364 				   sched->resched_target == U64_MAX;
3365 
3366 		/* We just added something to the queue, so it's no longer idle. */
3367 		group->idle_queues &= ~queue_mask;
3368 
3369 		if (resume_tick)
3370 			sched_resume_tick(ptdev);
3371 
3372 		gpu_write(ptdev, CSF_DOORBELL(queue->doorbell_id), 1);
3373 		if (!sched->pm.has_ref &&
3374 		    !(group->blocked_queues & BIT(job->queue_idx))) {
3375 			pm_runtime_get(ptdev->base.dev);
3376 			sched->pm.has_ref = true;
3377 		}
3378 		queue_resume_timeout(queue);
3379 		panthor_devfreq_record_busy(sched->ptdev);
3380 	}
3381 
3382 	/* Update the last fence. */
3383 	dma_fence_put(queue->fence_ctx.last_fence);
3384 	queue->fence_ctx.last_fence = dma_fence_get(job->done_fence);
3385 
3386 	done_fence = dma_fence_get(job->done_fence);
3387 
3388 out_unlock:
3389 	mutex_unlock(&sched->lock);
3390 	pm_runtime_mark_last_busy(ptdev->base.dev);
3391 	pm_runtime_put_autosuspend(ptdev->base.dev);
3392 
3393 	return done_fence;
3394 }
3395 
3396 static enum drm_gpu_sched_stat
3397 queue_timedout_job(struct drm_sched_job *sched_job)
3398 {
3399 	struct panthor_job *job = container_of(sched_job, struct panthor_job, base);
3400 	struct panthor_group *group = job->group;
3401 	struct panthor_device *ptdev = group->ptdev;
3402 	struct panthor_scheduler *sched = ptdev->scheduler;
3403 	struct panthor_queue *queue = group->queues[job->queue_idx];
3404 
3405 	drm_warn(&ptdev->base, "job timeout: pid=%d, comm=%s, seqno=%llu\n",
3406 		 group->task_info.pid, group->task_info.comm, job->done_fence->seqno);
3407 
3408 	drm_WARN_ON(&ptdev->base, atomic_read(&sched->reset.in_progress));
3409 
3410 	queue_stop(queue, job);
3411 
3412 	mutex_lock(&sched->lock);
3413 	group->timedout = true;
3414 	if (group->csg_id >= 0) {
3415 		sched_queue_delayed_work(ptdev->scheduler, tick, 0);
3416 	} else {
3417 		/* Remove from the run queues, so the scheduler can't
3418 		 * pick the group on the next tick.
3419 		 */
3420 		list_del_init(&group->run_node);
3421 		list_del_init(&group->wait_node);
3422 
3423 		group_queue_work(group, term);
3424 	}
3425 	mutex_unlock(&sched->lock);
3426 
3427 	queue_start(queue);
3428 	return DRM_GPU_SCHED_STAT_RESET;
3429 }
3430 
3431 static void queue_free_job(struct drm_sched_job *sched_job)
3432 {
3433 	drm_sched_job_cleanup(sched_job);
3434 	panthor_job_put(sched_job);
3435 }
3436 
3437 static const struct drm_sched_backend_ops panthor_queue_sched_ops = {
3438 	.run_job = queue_run_job,
3439 	.timedout_job = queue_timedout_job,
3440 	.free_job = queue_free_job,
3441 };
3442 
3443 static u32 calc_profiling_ringbuf_num_slots(struct panthor_device *ptdev,
3444 					    u32 cs_ringbuf_size)
3445 {
3446 	u32 min_profiled_job_instrs = U32_MAX;
3447 	u32 last_flag = fls(PANTHOR_DEVICE_PROFILING_ALL);
3448 
3449 	/*
3450 	 * We want to calculate the minimum size of a profiled job's CS,
3451 	 * because since they need additional instructions for the sampling
3452 	 * of performance metrics, they might take up further slots in
3453 	 * the queue's ringbuffer. This means we might not need as many job
3454 	 * slots for keeping track of their profiling information. What we
3455 	 * need is the maximum number of slots we should allocate to this end,
3456 	 * which matches the maximum number of profiled jobs we can place
3457 	 * simultaneously in the queue's ring buffer.
3458 	 * That has to be calculated separately for every single job profiling
3459 	 * flag, but not in the case job profiling is disabled, since unprofiled
3460 	 * jobs don't need to keep track of this at all.
3461 	 */
3462 	for (u32 i = 0; i < last_flag; i++) {
3463 		min_profiled_job_instrs =
3464 			min(min_profiled_job_instrs, calc_job_credits(BIT(i)));
3465 	}
3466 
3467 	return DIV_ROUND_UP(cs_ringbuf_size, min_profiled_job_instrs * sizeof(u64));
3468 }
3469 
3470 static void queue_timeout_work(struct work_struct *work)
3471 {
3472 	struct panthor_queue *queue = container_of(work, struct panthor_queue,
3473 						   timeout.work.work);
3474 	bool progress;
3475 
3476 	progress = queue_check_job_completion(queue);
3477 	if (!progress)
3478 		drm_sched_fault(&queue->scheduler);
3479 }
3480 
3481 static struct panthor_queue *
3482 group_create_queue(struct panthor_group *group,
3483 		   const struct drm_panthor_queue_create *args,
3484 		   u64 drm_client_id, u32 gid, u32 qid)
3485 {
3486 	struct drm_sched_init_args sched_args = {
3487 		.ops = &panthor_queue_sched_ops,
3488 		.submit_wq = group->ptdev->scheduler->wq,
3489 		.num_rqs = 1,
3490 		/*
3491 		 * The credit limit argument tells us the total number of
3492 		 * instructions across all CS slots in the ringbuffer, with
3493 		 * some jobs requiring twice as many as others, depending on
3494 		 * their profiling status.
3495 		 */
3496 		.credit_limit = args->ringbuf_size / sizeof(u64),
3497 		.timeout = MAX_SCHEDULE_TIMEOUT,
3498 		.timeout_wq = group->ptdev->reset.wq,
3499 		.dev = group->ptdev->base.dev,
3500 	};
3501 	struct drm_gpu_scheduler *drm_sched;
3502 	struct panthor_queue *queue;
3503 	int ret;
3504 
3505 	if (args->pad[0] || args->pad[1] || args->pad[2])
3506 		return ERR_PTR(-EINVAL);
3507 
3508 	if (args->ringbuf_size < SZ_4K || args->ringbuf_size > SZ_64K ||
3509 	    !is_power_of_2(args->ringbuf_size))
3510 		return ERR_PTR(-EINVAL);
3511 
3512 	if (args->priority > CSF_MAX_QUEUE_PRIO)
3513 		return ERR_PTR(-EINVAL);
3514 
3515 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
3516 	if (!queue)
3517 		return ERR_PTR(-ENOMEM);
3518 
3519 	queue->timeout.remaining = msecs_to_jiffies(JOB_TIMEOUT_MS);
3520 	INIT_DELAYED_WORK(&queue->timeout.work, queue_timeout_work);
3521 	queue->fence_ctx.id = dma_fence_context_alloc(1);
3522 	spin_lock_init(&queue->fence_ctx.lock);
3523 	INIT_LIST_HEAD(&queue->fence_ctx.in_flight_jobs);
3524 
3525 	queue->priority = args->priority;
3526 
3527 	queue->ringbuf = panthor_kernel_bo_create(group->ptdev, group->vm,
3528 						  args->ringbuf_size,
3529 						  DRM_PANTHOR_BO_NO_MMAP,
3530 						  DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC |
3531 						  DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED,
3532 						  PANTHOR_VM_KERNEL_AUTO_VA,
3533 						  "CS ring buffer");
3534 	if (IS_ERR(queue->ringbuf)) {
3535 		ret = PTR_ERR(queue->ringbuf);
3536 		goto err_free_queue;
3537 	}
3538 
3539 	ret = panthor_kernel_bo_vmap(queue->ringbuf);
3540 	if (ret)
3541 		goto err_free_queue;
3542 
3543 	queue->iface.mem = panthor_fw_alloc_queue_iface_mem(group->ptdev,
3544 							    &queue->iface.input,
3545 							    &queue->iface.output,
3546 							    &queue->iface.input_fw_va,
3547 							    &queue->iface.output_fw_va);
3548 	if (IS_ERR(queue->iface.mem)) {
3549 		ret = PTR_ERR(queue->iface.mem);
3550 		goto err_free_queue;
3551 	}
3552 
3553 	queue->profiling.slot_count =
3554 		calc_profiling_ringbuf_num_slots(group->ptdev, args->ringbuf_size);
3555 
3556 	queue->profiling.slots =
3557 		panthor_kernel_bo_create(group->ptdev, group->vm,
3558 					 queue->profiling.slot_count *
3559 					 sizeof(struct panthor_job_profiling_data),
3560 					 DRM_PANTHOR_BO_NO_MMAP,
3561 					 DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC |
3562 					 DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED,
3563 					 PANTHOR_VM_KERNEL_AUTO_VA,
3564 					 "Group job stats");
3565 
3566 	if (IS_ERR(queue->profiling.slots)) {
3567 		ret = PTR_ERR(queue->profiling.slots);
3568 		goto err_free_queue;
3569 	}
3570 
3571 	ret = panthor_kernel_bo_vmap(queue->profiling.slots);
3572 	if (ret)
3573 		goto err_free_queue;
3574 
3575 	/* assign a unique name */
3576 	queue->name = kasprintf(GFP_KERNEL, "panthor-queue-%llu-%u-%u", drm_client_id, gid, qid);
3577 	if (!queue->name) {
3578 		ret = -ENOMEM;
3579 		goto err_free_queue;
3580 	}
3581 
3582 	sched_args.name = queue->name;
3583 
3584 	ret = drm_sched_init(&queue->scheduler, &sched_args);
3585 	if (ret)
3586 		goto err_free_queue;
3587 
3588 	drm_sched = &queue->scheduler;
3589 	ret = drm_sched_entity_init(&queue->entity, 0, &drm_sched, 1, NULL);
3590 	if (ret)
3591 		goto err_free_queue;
3592 
3593 	return queue;
3594 
3595 err_free_queue:
3596 	group_free_queue(group, queue);
3597 	return ERR_PTR(ret);
3598 }
3599 
3600 static void group_init_task_info(struct panthor_group *group)
3601 {
3602 	struct task_struct *task = current->group_leader;
3603 
3604 	group->task_info.pid = task->pid;
3605 	get_task_comm(group->task_info.comm, task);
3606 }
3607 
3608 static void add_group_kbo_sizes(struct panthor_device *ptdev,
3609 				struct panthor_group *group)
3610 {
3611 	struct panthor_queue *queue;
3612 	int i;
3613 
3614 	if (drm_WARN_ON(&ptdev->base, IS_ERR_OR_NULL(group)))
3615 		return;
3616 	if (drm_WARN_ON(&ptdev->base, ptdev != group->ptdev))
3617 		return;
3618 
3619 	group->fdinfo.kbo_sizes += group->suspend_buf->obj->size;
3620 	group->fdinfo.kbo_sizes += group->protm_suspend_buf->obj->size;
3621 	group->fdinfo.kbo_sizes += group->syncobjs->obj->size;
3622 
3623 	for (i = 0; i < group->queue_count; i++) {
3624 		queue =	group->queues[i];
3625 		group->fdinfo.kbo_sizes += queue->ringbuf->obj->size;
3626 		group->fdinfo.kbo_sizes += queue->iface.mem->obj->size;
3627 		group->fdinfo.kbo_sizes += queue->profiling.slots->obj->size;
3628 	}
3629 }
3630 
3631 #define MAX_GROUPS_PER_POOL		128
3632 
3633 int panthor_group_create(struct panthor_file *pfile,
3634 			 const struct drm_panthor_group_create *group_args,
3635 			 const struct drm_panthor_queue_create *queue_args,
3636 			 u64 drm_client_id)
3637 {
3638 	struct panthor_device *ptdev = pfile->ptdev;
3639 	struct panthor_group_pool *gpool = pfile->groups;
3640 	struct panthor_scheduler *sched = ptdev->scheduler;
3641 	struct panthor_fw_csg_iface *csg_iface = panthor_fw_get_csg_iface(ptdev, 0);
3642 	struct panthor_group *group = NULL;
3643 	u32 gid, i, suspend_size;
3644 	int ret;
3645 
3646 	if (group_args->pad)
3647 		return -EINVAL;
3648 
3649 	if (group_args->priority >= PANTHOR_CSG_PRIORITY_COUNT)
3650 		return -EINVAL;
3651 
3652 	if ((group_args->compute_core_mask & ~ptdev->gpu_info.shader_present) ||
3653 	    (group_args->fragment_core_mask & ~ptdev->gpu_info.shader_present) ||
3654 	    (group_args->tiler_core_mask & ~ptdev->gpu_info.tiler_present))
3655 		return -EINVAL;
3656 
3657 	if (hweight64(group_args->compute_core_mask) < group_args->max_compute_cores ||
3658 	    hweight64(group_args->fragment_core_mask) < group_args->max_fragment_cores ||
3659 	    hweight64(group_args->tiler_core_mask) < group_args->max_tiler_cores)
3660 		return -EINVAL;
3661 
3662 	group = kzalloc(sizeof(*group), GFP_KERNEL);
3663 	if (!group)
3664 		return -ENOMEM;
3665 
3666 	spin_lock_init(&group->fatal_lock);
3667 	kref_init(&group->refcount);
3668 	group->state = PANTHOR_CS_GROUP_CREATED;
3669 	group->csg_id = -1;
3670 
3671 	group->ptdev = ptdev;
3672 	group->max_compute_cores = group_args->max_compute_cores;
3673 	group->compute_core_mask = group_args->compute_core_mask;
3674 	group->max_fragment_cores = group_args->max_fragment_cores;
3675 	group->fragment_core_mask = group_args->fragment_core_mask;
3676 	group->max_tiler_cores = group_args->max_tiler_cores;
3677 	group->tiler_core_mask = group_args->tiler_core_mask;
3678 	group->priority = group_args->priority;
3679 
3680 	INIT_LIST_HEAD(&group->wait_node);
3681 	INIT_LIST_HEAD(&group->run_node);
3682 	INIT_WORK(&group->term_work, group_term_work);
3683 	INIT_WORK(&group->sync_upd_work, group_sync_upd_work);
3684 	INIT_WORK(&group->tiler_oom_work, group_tiler_oom_work);
3685 	INIT_WORK(&group->release_work, group_release_work);
3686 
3687 	group->vm = panthor_vm_pool_get_vm(pfile->vms, group_args->vm_id);
3688 	if (!group->vm) {
3689 		ret = -EINVAL;
3690 		goto err_put_group;
3691 	}
3692 
3693 	suspend_size = csg_iface->control->suspend_size;
3694 	group->suspend_buf = panthor_fw_alloc_suspend_buf_mem(ptdev, suspend_size);
3695 	if (IS_ERR(group->suspend_buf)) {
3696 		ret = PTR_ERR(group->suspend_buf);
3697 		group->suspend_buf = NULL;
3698 		goto err_put_group;
3699 	}
3700 
3701 	suspend_size = csg_iface->control->protm_suspend_size;
3702 	group->protm_suspend_buf = panthor_fw_alloc_suspend_buf_mem(ptdev, suspend_size);
3703 	if (IS_ERR(group->protm_suspend_buf)) {
3704 		ret = PTR_ERR(group->protm_suspend_buf);
3705 		group->protm_suspend_buf = NULL;
3706 		goto err_put_group;
3707 	}
3708 
3709 	group->syncobjs = panthor_kernel_bo_create(ptdev, group->vm,
3710 						   group_args->queues.count *
3711 						   sizeof(struct panthor_syncobj_64b),
3712 						   DRM_PANTHOR_BO_NO_MMAP,
3713 						   DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC |
3714 						   DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED,
3715 						   PANTHOR_VM_KERNEL_AUTO_VA,
3716 						   "Group sync objects");
3717 	if (IS_ERR(group->syncobjs)) {
3718 		ret = PTR_ERR(group->syncobjs);
3719 		goto err_put_group;
3720 	}
3721 
3722 	ret = panthor_kernel_bo_vmap(group->syncobjs);
3723 	if (ret)
3724 		goto err_put_group;
3725 
3726 	memset(group->syncobjs->kmap, 0,
3727 	       group_args->queues.count * sizeof(struct panthor_syncobj_64b));
3728 
3729 	ret = xa_alloc(&gpool->xa, &gid, group, XA_LIMIT(1, MAX_GROUPS_PER_POOL), GFP_KERNEL);
3730 	if (ret)
3731 		goto err_put_group;
3732 
3733 	for (i = 0; i < group_args->queues.count; i++) {
3734 		group->queues[i] = group_create_queue(group, &queue_args[i], drm_client_id, gid, i);
3735 		if (IS_ERR(group->queues[i])) {
3736 			ret = PTR_ERR(group->queues[i]);
3737 			group->queues[i] = NULL;
3738 			goto err_erase_gid;
3739 		}
3740 
3741 		group->queue_count++;
3742 	}
3743 
3744 	group->idle_queues = GENMASK(group->queue_count - 1, 0);
3745 
3746 	mutex_lock(&sched->reset.lock);
3747 	if (atomic_read(&sched->reset.in_progress)) {
3748 		panthor_group_stop(group);
3749 	} else {
3750 		mutex_lock(&sched->lock);
3751 		list_add_tail(&group->run_node,
3752 			      &sched->groups.idle[group->priority]);
3753 		mutex_unlock(&sched->lock);
3754 	}
3755 	mutex_unlock(&sched->reset.lock);
3756 
3757 	add_group_kbo_sizes(group->ptdev, group);
3758 	spin_lock_init(&group->fdinfo.lock);
3759 
3760 	group_init_task_info(group);
3761 
3762 	xa_set_mark(&gpool->xa, gid, GROUP_REGISTERED);
3763 
3764 	return gid;
3765 
3766 err_erase_gid:
3767 	xa_erase(&gpool->xa, gid);
3768 
3769 err_put_group:
3770 	group_put(group);
3771 	return ret;
3772 }
3773 
3774 int panthor_group_destroy(struct panthor_file *pfile, u32 group_handle)
3775 {
3776 	struct panthor_group_pool *gpool = pfile->groups;
3777 	struct panthor_device *ptdev = pfile->ptdev;
3778 	struct panthor_scheduler *sched = ptdev->scheduler;
3779 	struct panthor_group *group;
3780 
3781 	if (!xa_get_mark(&gpool->xa, group_handle, GROUP_REGISTERED))
3782 		return -EINVAL;
3783 
3784 	group = xa_erase(&gpool->xa, group_handle);
3785 	if (!group)
3786 		return -EINVAL;
3787 
3788 	mutex_lock(&sched->reset.lock);
3789 	mutex_lock(&sched->lock);
3790 	group->destroyed = true;
3791 	if (group->csg_id >= 0) {
3792 		sched_queue_delayed_work(sched, tick, 0);
3793 	} else if (!atomic_read(&sched->reset.in_progress)) {
3794 		/* Remove from the run queues, so the scheduler can't
3795 		 * pick the group on the next tick.
3796 		 */
3797 		list_del_init(&group->run_node);
3798 		list_del_init(&group->wait_node);
3799 		group_queue_work(group, term);
3800 	}
3801 	mutex_unlock(&sched->lock);
3802 	mutex_unlock(&sched->reset.lock);
3803 
3804 	group_put(group);
3805 	return 0;
3806 }
3807 
3808 static struct panthor_group *group_from_handle(struct panthor_group_pool *pool,
3809 					       unsigned long group_handle)
3810 {
3811 	struct panthor_group *group;
3812 
3813 	xa_lock(&pool->xa);
3814 	group = group_get(xa_find(&pool->xa, &group_handle, group_handle, GROUP_REGISTERED));
3815 	xa_unlock(&pool->xa);
3816 
3817 	return group;
3818 }
3819 
3820 int panthor_group_get_state(struct panthor_file *pfile,
3821 			    struct drm_panthor_group_get_state *get_state)
3822 {
3823 	struct panthor_group_pool *gpool = pfile->groups;
3824 	struct panthor_device *ptdev = pfile->ptdev;
3825 	struct panthor_scheduler *sched = ptdev->scheduler;
3826 	struct panthor_group *group;
3827 
3828 	if (get_state->pad)
3829 		return -EINVAL;
3830 
3831 	group = group_from_handle(gpool, get_state->group_handle);
3832 	if (!group)
3833 		return -EINVAL;
3834 
3835 	memset(get_state, 0, sizeof(*get_state));
3836 
3837 	mutex_lock(&sched->lock);
3838 	if (group->timedout)
3839 		get_state->state |= DRM_PANTHOR_GROUP_STATE_TIMEDOUT;
3840 	if (group->fatal_queues) {
3841 		get_state->state |= DRM_PANTHOR_GROUP_STATE_FATAL_FAULT;
3842 		get_state->fatal_queues = group->fatal_queues;
3843 	}
3844 	if (group->innocent)
3845 		get_state->state |= DRM_PANTHOR_GROUP_STATE_INNOCENT;
3846 	mutex_unlock(&sched->lock);
3847 
3848 	group_put(group);
3849 	return 0;
3850 }
3851 
3852 int panthor_group_pool_create(struct panthor_file *pfile)
3853 {
3854 	struct panthor_group_pool *gpool;
3855 
3856 	gpool = kzalloc(sizeof(*gpool), GFP_KERNEL);
3857 	if (!gpool)
3858 		return -ENOMEM;
3859 
3860 	xa_init_flags(&gpool->xa, XA_FLAGS_ALLOC1);
3861 	pfile->groups = gpool;
3862 	return 0;
3863 }
3864 
3865 void panthor_group_pool_destroy(struct panthor_file *pfile)
3866 {
3867 	struct panthor_group_pool *gpool = pfile->groups;
3868 	struct panthor_group *group;
3869 	unsigned long i;
3870 
3871 	if (IS_ERR_OR_NULL(gpool))
3872 		return;
3873 
3874 	xa_for_each(&gpool->xa, i, group)
3875 		panthor_group_destroy(pfile, i);
3876 
3877 	xa_destroy(&gpool->xa);
3878 	kfree(gpool);
3879 	pfile->groups = NULL;
3880 }
3881 
3882 /**
3883  * panthor_fdinfo_gather_group_mem_info() - Retrieve aggregate size of all private kernel BO's
3884  * belonging to all the groups owned by an open Panthor file
3885  * @pfile: File.
3886  * @stats: Memory statistics to be updated.
3887  *
3888  */
3889 void
3890 panthor_fdinfo_gather_group_mem_info(struct panthor_file *pfile,
3891 				     struct drm_memory_stats *stats)
3892 {
3893 	struct panthor_group_pool *gpool = pfile->groups;
3894 	struct panthor_group *group;
3895 	unsigned long i;
3896 
3897 	if (IS_ERR_OR_NULL(gpool))
3898 		return;
3899 
3900 	xa_lock(&gpool->xa);
3901 	xa_for_each_marked(&gpool->xa, i, group, GROUP_REGISTERED) {
3902 		stats->resident += group->fdinfo.kbo_sizes;
3903 		if (group->csg_id >= 0)
3904 			stats->active += group->fdinfo.kbo_sizes;
3905 	}
3906 	xa_unlock(&gpool->xa);
3907 }
3908 
3909 static void job_release(struct kref *ref)
3910 {
3911 	struct panthor_job *job = container_of(ref, struct panthor_job, refcount);
3912 
3913 	drm_WARN_ON(&job->group->ptdev->base, !list_empty(&job->node));
3914 
3915 	if (job->base.s_fence)
3916 		drm_sched_job_cleanup(&job->base);
3917 
3918 	if (job->done_fence && job->done_fence->ops)
3919 		dma_fence_put(job->done_fence);
3920 	else
3921 		dma_fence_free(job->done_fence);
3922 
3923 	group_put(job->group);
3924 
3925 	kfree(job);
3926 }
3927 
3928 struct drm_sched_job *panthor_job_get(struct drm_sched_job *sched_job)
3929 {
3930 	if (sched_job) {
3931 		struct panthor_job *job = container_of(sched_job, struct panthor_job, base);
3932 
3933 		kref_get(&job->refcount);
3934 	}
3935 
3936 	return sched_job;
3937 }
3938 
3939 void panthor_job_put(struct drm_sched_job *sched_job)
3940 {
3941 	struct panthor_job *job = container_of(sched_job, struct panthor_job, base);
3942 
3943 	if (sched_job)
3944 		kref_put(&job->refcount, job_release);
3945 }
3946 
3947 struct panthor_vm *panthor_job_vm(struct drm_sched_job *sched_job)
3948 {
3949 	struct panthor_job *job = container_of(sched_job, struct panthor_job, base);
3950 
3951 	return job->group->vm;
3952 }
3953 
3954 struct drm_sched_job *
3955 panthor_job_create(struct panthor_file *pfile,
3956 		   u16 group_handle,
3957 		   const struct drm_panthor_queue_submit *qsubmit,
3958 		   u64 drm_client_id)
3959 {
3960 	struct panthor_group_pool *gpool = pfile->groups;
3961 	struct panthor_job *job;
3962 	u32 credits;
3963 	int ret;
3964 
3965 	if (qsubmit->pad)
3966 		return ERR_PTR(-EINVAL);
3967 
3968 	/* If stream_addr is zero, so stream_size should be. */
3969 	if ((qsubmit->stream_size == 0) != (qsubmit->stream_addr == 0))
3970 		return ERR_PTR(-EINVAL);
3971 
3972 	/* Make sure the address is aligned on 64-byte (cacheline) and the size is
3973 	 * aligned on 8-byte (instruction size).
3974 	 */
3975 	if ((qsubmit->stream_addr & 63) || (qsubmit->stream_size & 7))
3976 		return ERR_PTR(-EINVAL);
3977 
3978 	/* bits 24:30 must be zero. */
3979 	if (qsubmit->latest_flush & GENMASK(30, 24))
3980 		return ERR_PTR(-EINVAL);
3981 
3982 	job = kzalloc(sizeof(*job), GFP_KERNEL);
3983 	if (!job)
3984 		return ERR_PTR(-ENOMEM);
3985 
3986 	kref_init(&job->refcount);
3987 	job->queue_idx = qsubmit->queue_index;
3988 	job->call_info.size = qsubmit->stream_size;
3989 	job->call_info.start = qsubmit->stream_addr;
3990 	job->call_info.latest_flush = qsubmit->latest_flush;
3991 	INIT_LIST_HEAD(&job->node);
3992 
3993 	job->group = group_from_handle(gpool, group_handle);
3994 	if (!job->group) {
3995 		ret = -EINVAL;
3996 		goto err_put_job;
3997 	}
3998 
3999 	if (!group_can_run(job->group)) {
4000 		ret = -EINVAL;
4001 		goto err_put_job;
4002 	}
4003 
4004 	if (job->queue_idx >= job->group->queue_count ||
4005 	    !job->group->queues[job->queue_idx]) {
4006 		ret = -EINVAL;
4007 		goto err_put_job;
4008 	}
4009 
4010 	/* Empty command streams don't need a fence, they'll pick the one from
4011 	 * the previously submitted job.
4012 	 */
4013 	if (job->call_info.size) {
4014 		job->done_fence = kzalloc(sizeof(*job->done_fence), GFP_KERNEL);
4015 		if (!job->done_fence) {
4016 			ret = -ENOMEM;
4017 			goto err_put_job;
4018 		}
4019 	}
4020 
4021 	job->profiling.mask = pfile->ptdev->profile_mask;
4022 	credits = calc_job_credits(job->profiling.mask);
4023 	if (credits == 0) {
4024 		ret = -EINVAL;
4025 		goto err_put_job;
4026 	}
4027 
4028 	ret = drm_sched_job_init(&job->base,
4029 				 &job->group->queues[job->queue_idx]->entity,
4030 				 credits, job->group, drm_client_id);
4031 	if (ret)
4032 		goto err_put_job;
4033 
4034 	return &job->base;
4035 
4036 err_put_job:
4037 	panthor_job_put(&job->base);
4038 	return ERR_PTR(ret);
4039 }
4040 
4041 void panthor_job_update_resvs(struct drm_exec *exec, struct drm_sched_job *sched_job)
4042 {
4043 	struct panthor_job *job = container_of(sched_job, struct panthor_job, base);
4044 
4045 	panthor_vm_update_resvs(job->group->vm, exec, &sched_job->s_fence->finished,
4046 				DMA_RESV_USAGE_BOOKKEEP, DMA_RESV_USAGE_BOOKKEEP);
4047 }
4048 
4049 void panthor_sched_unplug(struct panthor_device *ptdev)
4050 {
4051 	struct panthor_scheduler *sched = ptdev->scheduler;
4052 
4053 	disable_delayed_work_sync(&sched->tick_work);
4054 	disable_work_sync(&sched->fw_events_work);
4055 	disable_work_sync(&sched->sync_upd_work);
4056 
4057 	mutex_lock(&sched->lock);
4058 	if (sched->pm.has_ref) {
4059 		pm_runtime_put(ptdev->base.dev);
4060 		sched->pm.has_ref = false;
4061 	}
4062 	mutex_unlock(&sched->lock);
4063 }
4064 
4065 static void panthor_sched_fini(struct drm_device *ddev, void *res)
4066 {
4067 	struct panthor_scheduler *sched = res;
4068 	int prio;
4069 
4070 	if (!sched || !sched->csg_slot_count)
4071 		return;
4072 
4073 	if (sched->wq)
4074 		destroy_workqueue(sched->wq);
4075 
4076 	if (sched->heap_alloc_wq)
4077 		destroy_workqueue(sched->heap_alloc_wq);
4078 
4079 	for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) {
4080 		drm_WARN_ON(ddev, !list_empty(&sched->groups.runnable[prio]));
4081 		drm_WARN_ON(ddev, !list_empty(&sched->groups.idle[prio]));
4082 	}
4083 
4084 	drm_WARN_ON(ddev, !list_empty(&sched->groups.waiting));
4085 }
4086 
4087 int panthor_sched_init(struct panthor_device *ptdev)
4088 {
4089 	struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev);
4090 	struct panthor_fw_csg_iface *csg_iface = panthor_fw_get_csg_iface(ptdev, 0);
4091 	struct panthor_fw_cs_iface *cs_iface = panthor_fw_get_cs_iface(ptdev, 0, 0);
4092 	struct panthor_scheduler *sched;
4093 	u32 gpu_as_count, num_groups;
4094 	int prio, ret;
4095 
4096 	sched = drmm_kzalloc(&ptdev->base, sizeof(*sched), GFP_KERNEL);
4097 	if (!sched)
4098 		return -ENOMEM;
4099 
4100 	/* The highest bit in JOB_INT_* is reserved for globabl IRQs. That
4101 	 * leaves 31 bits for CSG IRQs, hence the MAX_CSGS clamp here.
4102 	 */
4103 	num_groups = min_t(u32, MAX_CSGS, glb_iface->control->group_num);
4104 
4105 	/* The FW-side scheduler might deadlock if two groups with the same
4106 	 * priority try to access a set of resources that overlaps, with part
4107 	 * of the resources being allocated to one group and the other part to
4108 	 * the other group, both groups waiting for the remaining resources to
4109 	 * be allocated. To avoid that, it is recommended to assign each CSG a
4110 	 * different priority. In theory we could allow several groups to have
4111 	 * the same CSG priority if they don't request the same resources, but
4112 	 * that makes the scheduling logic more complicated, so let's clamp
4113 	 * the number of CSG slots to MAX_CSG_PRIO + 1 for now.
4114 	 */
4115 	num_groups = min_t(u32, MAX_CSG_PRIO + 1, num_groups);
4116 
4117 	/* We need at least one AS for the MCU and one for the GPU contexts. */
4118 	gpu_as_count = hweight32(ptdev->gpu_info.as_present & GENMASK(31, 1));
4119 	if (!gpu_as_count) {
4120 		drm_err(&ptdev->base, "Not enough AS (%d, expected at least 2)",
4121 			gpu_as_count + 1);
4122 		return -EINVAL;
4123 	}
4124 
4125 	sched->ptdev = ptdev;
4126 	sched->sb_slot_count = CS_FEATURES_SCOREBOARDS(cs_iface->control->features);
4127 	sched->csg_slot_count = num_groups;
4128 	sched->cs_slot_count = csg_iface->control->stream_num;
4129 	sched->as_slot_count = gpu_as_count;
4130 	ptdev->csif_info.csg_slot_count = sched->csg_slot_count;
4131 	ptdev->csif_info.cs_slot_count = sched->cs_slot_count;
4132 	ptdev->csif_info.scoreboard_slot_count = sched->sb_slot_count;
4133 
4134 	sched->last_tick = 0;
4135 	sched->resched_target = U64_MAX;
4136 	sched->tick_period = msecs_to_jiffies(10);
4137 	INIT_DELAYED_WORK(&sched->tick_work, tick_work);
4138 	INIT_WORK(&sched->sync_upd_work, sync_upd_work);
4139 	INIT_WORK(&sched->fw_events_work, process_fw_events_work);
4140 
4141 	ret = drmm_mutex_init(&ptdev->base, &sched->lock);
4142 	if (ret)
4143 		return ret;
4144 
4145 	for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) {
4146 		INIT_LIST_HEAD(&sched->groups.runnable[prio]);
4147 		INIT_LIST_HEAD(&sched->groups.idle[prio]);
4148 	}
4149 	INIT_LIST_HEAD(&sched->groups.waiting);
4150 
4151 	ret = drmm_mutex_init(&ptdev->base, &sched->reset.lock);
4152 	if (ret)
4153 		return ret;
4154 
4155 	INIT_LIST_HEAD(&sched->reset.stopped_groups);
4156 
4157 	/* sched->heap_alloc_wq will be used for heap chunk allocation on
4158 	 * tiler OOM events, which means we can't use the same workqueue for
4159 	 * the scheduler because works queued by the scheduler are in
4160 	 * the dma-signalling path. Allocate a dedicated heap_alloc_wq to
4161 	 * work around this limitation.
4162 	 *
4163 	 * FIXME: Ultimately, what we need is a failable/non-blocking GEM
4164 	 * allocation path that we can call when a heap OOM is reported. The
4165 	 * FW is smart enough to fall back on other methods if the kernel can't
4166 	 * allocate memory, and fail the tiling job if none of these
4167 	 * countermeasures worked.
4168 	 *
4169 	 * Set WQ_MEM_RECLAIM on sched->wq to unblock the situation when the
4170 	 * system is running out of memory.
4171 	 */
4172 	sched->heap_alloc_wq = alloc_workqueue("panthor-heap-alloc", WQ_UNBOUND, 0);
4173 	sched->wq = alloc_workqueue("panthor-csf-sched", WQ_MEM_RECLAIM | WQ_UNBOUND, 0);
4174 	if (!sched->wq || !sched->heap_alloc_wq) {
4175 		panthor_sched_fini(&ptdev->base, sched);
4176 		drm_err(&ptdev->base, "Failed to allocate the workqueues");
4177 		return -ENOMEM;
4178 	}
4179 
4180 	ret = drmm_add_action_or_reset(&ptdev->base, panthor_sched_fini, sched);
4181 	if (ret)
4182 		return ret;
4183 
4184 	ptdev->scheduler = sched;
4185 	return 0;
4186 }
4187