1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/spinlock.h> 4 #include <linux/minmax.h> 5 #include "misc.h" 6 #include "ctree.h" 7 #include "space-info.h" 8 #include "sysfs.h" 9 #include "volumes.h" 10 #include "free-space-cache.h" 11 #include "ordered-data.h" 12 #include "transaction.h" 13 #include "block-group.h" 14 #include "fs.h" 15 #include "accessors.h" 16 #include "extent-tree.h" 17 #include "zoned.h" 18 #include "delayed-inode.h" 19 20 /* 21 * HOW DOES SPACE RESERVATION WORK 22 * 23 * If you want to know about delalloc specifically, there is a separate comment 24 * for that with the delalloc code. This comment is about how the whole system 25 * works generally. 26 * 27 * BASIC CONCEPTS 28 * 29 * 1) space_info. This is the ultimate arbiter of how much space we can use. 30 * There's a description of the bytes_ fields with the struct declaration, 31 * refer to that for specifics on each field. Suffice it to say that for 32 * reservations we care about total_bytes - SUM(space_info->bytes_) when 33 * determining if there is space to make an allocation. There is a space_info 34 * for METADATA, SYSTEM, and DATA areas. 35 * 36 * 2) block_rsv's. These are basically buckets for every different type of 37 * metadata reservation we have. You can see the comment in the block_rsv 38 * code on the rules for each type, but generally block_rsv->reserved is how 39 * much space is accounted for in space_info->bytes_may_use. 40 * 41 * 3) btrfs_calc*_size. These are the worst case calculations we used based 42 * on the number of items we will want to modify. We have one for changing 43 * items, and one for inserting new items. Generally we use these helpers to 44 * determine the size of the block reserves, and then use the actual bytes 45 * values to adjust the space_info counters. 46 * 47 * MAKING RESERVATIONS, THE NORMAL CASE 48 * 49 * We call into either btrfs_reserve_data_bytes() or 50 * btrfs_reserve_metadata_bytes(), depending on which we're looking for, with 51 * num_bytes we want to reserve. 52 * 53 * ->reserve 54 * space_info->bytes_may_use += num_bytes 55 * 56 * ->extent allocation 57 * Call btrfs_add_reserved_bytes() which does 58 * space_info->bytes_may_use -= num_bytes 59 * space_info->bytes_reserved += extent_bytes 60 * 61 * ->insert reference 62 * Call btrfs_update_block_group() which does 63 * space_info->bytes_reserved -= extent_bytes 64 * space_info->bytes_used += extent_bytes 65 * 66 * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority) 67 * 68 * Assume we are unable to simply make the reservation because we do not have 69 * enough space 70 * 71 * -> reserve_bytes 72 * create a reserve_ticket with ->bytes set to our reservation, add it to 73 * the tail of space_info->tickets, kick async flush thread 74 * 75 * ->handle_reserve_ticket 76 * wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set 77 * on the ticket. 78 * 79 * -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space 80 * Flushes various things attempting to free up space. 81 * 82 * -> btrfs_try_granting_tickets() 83 * This is called by anything that either subtracts space from 84 * space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the 85 * space_info->total_bytes. This loops through the ->priority_tickets and 86 * then the ->tickets list checking to see if the reservation can be 87 * completed. If it can the space is added to space_info->bytes_may_use and 88 * the ticket is woken up. 89 * 90 * -> ticket wakeup 91 * Check if ->bytes == 0, if it does we got our reservation and we can carry 92 * on, if not return the appropriate error (ENOSPC, but can be EINTR if we 93 * were interrupted.) 94 * 95 * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY 96 * 97 * Same as the above, except we add ourselves to the 98 * space_info->priority_tickets, and we do not use ticket->wait, we simply 99 * call flush_space() ourselves for the states that are safe for us to call 100 * without deadlocking and hope for the best. 101 * 102 * THE FLUSHING STATES 103 * 104 * Generally speaking we will have two cases for each state, a "nice" state 105 * and a "ALL THE THINGS" state. In btrfs we delay a lot of work in order to 106 * reduce the locking over head on the various trees, and even to keep from 107 * doing any work at all in the case of delayed refs. Each of these delayed 108 * things however hold reservations, and so letting them run allows us to 109 * reclaim space so we can make new reservations. 110 * 111 * FLUSH_DELAYED_ITEMS 112 * Every inode has a delayed item to update the inode. Take a simple write 113 * for example, we would update the inode item at write time to update the 114 * mtime, and then again at finish_ordered_io() time in order to update the 115 * isize or bytes. We keep these delayed items to coalesce these operations 116 * into a single operation done on demand. These are an easy way to reclaim 117 * metadata space. 118 * 119 * FLUSH_DELALLOC 120 * Look at the delalloc comment to get an idea of how much space is reserved 121 * for delayed allocation. We can reclaim some of this space simply by 122 * running delalloc, but usually we need to wait for ordered extents to 123 * reclaim the bulk of this space. 124 * 125 * FLUSH_DELAYED_REFS 126 * We have a block reserve for the outstanding delayed refs space, and every 127 * delayed ref operation holds a reservation. Running these is a quick way 128 * to reclaim space, but we want to hold this until the end because COW can 129 * churn a lot and we can avoid making some extent tree modifications if we 130 * are able to delay for as long as possible. 131 * 132 * RESET_ZONES 133 * This state works only for the zoned mode. On the zoned mode, we cannot 134 * reuse once allocated then freed region until we reset the zone, due to 135 * the sequential write zone requirement. The RESET_ZONES state resets the 136 * zones of an unused block group and let us reuse the space. The reusing 137 * is faster than removing the block group and allocating another block 138 * group on the zones. 139 * 140 * ALLOC_CHUNK 141 * We will skip this the first time through space reservation, because of 142 * overcommit and we don't want to have a lot of useless metadata space when 143 * our worst case reservations will likely never come true. 144 * 145 * RUN_DELAYED_IPUTS 146 * If we're freeing inodes we're likely freeing checksums, file extent 147 * items, and extent tree items. Loads of space could be freed up by these 148 * operations, however they won't be usable until the transaction commits. 149 * 150 * COMMIT_TRANS 151 * This will commit the transaction. Historically we had a lot of logic 152 * surrounding whether or not we'd commit the transaction, but this waits born 153 * out of a pre-tickets era where we could end up committing the transaction 154 * thousands of times in a row without making progress. Now thanks to our 155 * ticketing system we know if we're not making progress and can error 156 * everybody out after a few commits rather than burning the disk hoping for 157 * a different answer. 158 * 159 * OVERCOMMIT 160 * 161 * Because we hold so many reservations for metadata we will allow you to 162 * reserve more space than is currently free in the currently allocate 163 * metadata space. This only happens with metadata, data does not allow 164 * overcommitting. 165 * 166 * You can see the current logic for when we allow overcommit in 167 * btrfs_can_overcommit(), but it only applies to unallocated space. If there 168 * is no unallocated space to be had, all reservations are kept within the 169 * free space in the allocated metadata chunks. 170 * 171 * Because of overcommitting, you generally want to use the 172 * btrfs_can_overcommit() logic for metadata allocations, as it does the right 173 * thing with or without extra unallocated space. 174 */ 175 176 struct reserve_ticket { 177 u64 bytes; 178 int error; 179 bool steal; 180 struct list_head list; 181 wait_queue_head_t wait; 182 spinlock_t lock; 183 }; 184 185 /* 186 * after adding space to the filesystem, we need to clear the full flags 187 * on all the space infos. 188 */ 189 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 190 { 191 struct list_head *head = &info->space_info; 192 struct btrfs_space_info *found; 193 194 list_for_each_entry(found, head, list) 195 found->full = false; 196 } 197 198 /* 199 * Block groups with more than this value (percents) of unusable space will be 200 * scheduled for background reclaim. 201 */ 202 #define BTRFS_DEFAULT_ZONED_RECLAIM_THRESH (75) 203 204 #define BTRFS_UNALLOC_BLOCK_GROUP_TARGET (10ULL) 205 206 /* 207 * Calculate chunk size depending on volume type (regular or zoned). 208 */ 209 static u64 calc_chunk_size(const struct btrfs_fs_info *fs_info, u64 flags) 210 { 211 if (btrfs_is_zoned(fs_info)) 212 return fs_info->zone_size; 213 214 ASSERT(flags & BTRFS_BLOCK_GROUP_TYPE_MASK, "flags=%llu", flags); 215 216 if (flags & BTRFS_BLOCK_GROUP_DATA) 217 return BTRFS_MAX_DATA_CHUNK_SIZE; 218 else if (flags & (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA_REMAP)) 219 return SZ_32M; 220 221 /* Handle BTRFS_BLOCK_GROUP_METADATA */ 222 if (fs_info->fs_devices->total_rw_bytes > 50ULL * SZ_1G) 223 return SZ_1G; 224 225 return SZ_256M; 226 } 227 228 /* 229 * Update default chunk size. 230 */ 231 void btrfs_update_space_info_chunk_size(struct btrfs_space_info *space_info, 232 u64 chunk_size) 233 { 234 WRITE_ONCE(space_info->chunk_size, chunk_size); 235 } 236 237 static void init_space_info(struct btrfs_fs_info *info, 238 struct btrfs_space_info *space_info, u64 flags) 239 { 240 space_info->fs_info = info; 241 for (int i = 0; i < BTRFS_NR_RAID_TYPES; i++) 242 INIT_LIST_HEAD(&space_info->block_groups[i]); 243 init_rwsem(&space_info->groups_sem); 244 spin_lock_init(&space_info->lock); 245 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 246 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 247 INIT_LIST_HEAD(&space_info->ro_bgs); 248 INIT_LIST_HEAD(&space_info->tickets); 249 INIT_LIST_HEAD(&space_info->priority_tickets); 250 space_info->clamp = 1; 251 btrfs_update_space_info_chunk_size(space_info, calc_chunk_size(info, flags)); 252 space_info->subgroup_id = BTRFS_SUB_GROUP_PRIMARY; 253 254 if (btrfs_is_zoned(info)) 255 space_info->bg_reclaim_threshold = BTRFS_DEFAULT_ZONED_RECLAIM_THRESH; 256 } 257 258 static int create_space_info_sub_group(struct btrfs_space_info *parent, u64 flags, 259 enum btrfs_space_info_sub_group id, int index) 260 { 261 struct btrfs_fs_info *fs_info = parent->fs_info; 262 struct btrfs_space_info *sub_group; 263 int ret; 264 265 ASSERT(parent->subgroup_id == BTRFS_SUB_GROUP_PRIMARY, 266 "parent->subgroup_id=%d", parent->subgroup_id); 267 ASSERT(id != BTRFS_SUB_GROUP_PRIMARY, "id=%d", id); 268 269 sub_group = kzalloc(sizeof(*sub_group), GFP_NOFS); 270 if (!sub_group) 271 return -ENOMEM; 272 273 init_space_info(fs_info, sub_group, flags); 274 parent->sub_group[index] = sub_group; 275 sub_group->parent = parent; 276 sub_group->subgroup_id = id; 277 278 ret = btrfs_sysfs_add_space_info_type(sub_group); 279 if (ret) { 280 kfree(sub_group); 281 parent->sub_group[index] = NULL; 282 } 283 return ret; 284 } 285 286 static int create_space_info(struct btrfs_fs_info *info, u64 flags) 287 { 288 289 struct btrfs_space_info *space_info; 290 int ret = 0; 291 292 space_info = kzalloc(sizeof(*space_info), GFP_NOFS); 293 if (!space_info) 294 return -ENOMEM; 295 296 init_space_info(info, space_info, flags); 297 298 if (btrfs_is_zoned(info)) { 299 if (flags & BTRFS_BLOCK_GROUP_DATA) 300 ret = create_space_info_sub_group(space_info, flags, 301 BTRFS_SUB_GROUP_DATA_RELOC, 302 0); 303 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 304 ret = create_space_info_sub_group(space_info, flags, 305 BTRFS_SUB_GROUP_TREELOG, 306 0); 307 308 if (ret) 309 goto out_free; 310 } 311 312 ret = btrfs_sysfs_add_space_info_type(space_info); 313 if (ret) 314 goto out_free; 315 316 list_add(&space_info->list, &info->space_info); 317 if (flags & BTRFS_BLOCK_GROUP_DATA) 318 info->data_sinfo = space_info; 319 320 return ret; 321 322 out_free: 323 kfree(space_info); 324 return ret; 325 } 326 327 int btrfs_init_space_info(struct btrfs_fs_info *fs_info) 328 { 329 struct btrfs_super_block *disk_super; 330 u64 features; 331 u64 flags; 332 bool mixed = false; 333 int ret; 334 335 disk_super = fs_info->super_copy; 336 if (!btrfs_super_root(disk_super)) 337 return -EINVAL; 338 339 features = btrfs_super_incompat_flags(disk_super); 340 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 341 mixed = true; 342 343 flags = BTRFS_BLOCK_GROUP_SYSTEM; 344 ret = create_space_info(fs_info, flags); 345 if (ret) 346 return ret; 347 348 if (mixed) { 349 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; 350 ret = create_space_info(fs_info, flags); 351 if (ret) 352 return ret; 353 } else { 354 flags = BTRFS_BLOCK_GROUP_METADATA; 355 ret = create_space_info(fs_info, flags); 356 if (ret) 357 return ret; 358 359 flags = BTRFS_BLOCK_GROUP_DATA; 360 ret = create_space_info(fs_info, flags); 361 if (ret) 362 return ret; 363 } 364 365 if (features & BTRFS_FEATURE_INCOMPAT_REMAP_TREE) { 366 flags = BTRFS_BLOCK_GROUP_METADATA_REMAP; 367 ret = create_space_info(fs_info, flags); 368 } 369 370 return ret; 371 } 372 373 void btrfs_add_bg_to_space_info(struct btrfs_fs_info *info, 374 struct btrfs_block_group *block_group) 375 { 376 struct btrfs_space_info *space_info = block_group->space_info; 377 int factor, index; 378 379 factor = btrfs_bg_type_to_factor(block_group->flags); 380 381 spin_lock(&space_info->lock); 382 383 if (!(block_group->flags & BTRFS_BLOCK_GROUP_REMAPPED) || 384 block_group->identity_remap_count != 0) { 385 space_info->total_bytes += block_group->length; 386 space_info->disk_total += block_group->length * factor; 387 } 388 389 space_info->bytes_used += block_group->used; 390 space_info->disk_used += block_group->used * factor; 391 space_info->bytes_readonly += block_group->bytes_super; 392 btrfs_space_info_update_bytes_zone_unusable(space_info, block_group->zone_unusable); 393 if (block_group->length > 0) 394 space_info->full = false; 395 btrfs_try_granting_tickets(space_info); 396 spin_unlock(&space_info->lock); 397 398 block_group->space_info = space_info; 399 400 index = btrfs_bg_flags_to_raid_index(block_group->flags); 401 down_write(&space_info->groups_sem); 402 list_add_tail(&block_group->list, &space_info->block_groups[index]); 403 up_write(&space_info->groups_sem); 404 } 405 406 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info, 407 u64 flags) 408 { 409 struct list_head *head = &info->space_info; 410 struct btrfs_space_info *found; 411 412 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; 413 414 list_for_each_entry(found, head, list) { 415 if (found->flags & flags) 416 return found; 417 } 418 return NULL; 419 } 420 421 static u64 calc_effective_data_chunk_size(struct btrfs_fs_info *fs_info) 422 { 423 struct btrfs_space_info *data_sinfo; 424 u64 data_chunk_size; 425 426 /* 427 * Calculate the data_chunk_size, space_info->chunk_size is the 428 * "optimal" chunk size based on the fs size. However when we actually 429 * allocate the chunk we will strip this down further, making it no 430 * more than 10% of the disk or 1G, whichever is smaller. 431 * 432 * On the zoned mode, we need to use zone_size (= data_sinfo->chunk_size) 433 * as it is. 434 */ 435 data_sinfo = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA); 436 if (btrfs_is_zoned(fs_info)) 437 return data_sinfo->chunk_size; 438 data_chunk_size = min(data_sinfo->chunk_size, 439 mult_perc(fs_info->fs_devices->total_rw_bytes, 10)); 440 return min_t(u64, data_chunk_size, SZ_1G); 441 } 442 443 static u64 calc_available_free_space(const struct btrfs_space_info *space_info, 444 enum btrfs_reserve_flush_enum flush) 445 { 446 struct btrfs_fs_info *fs_info = space_info->fs_info; 447 u64 profile; 448 u64 avail; 449 u64 data_chunk_size; 450 int factor; 451 452 if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM) 453 profile = btrfs_system_alloc_profile(fs_info); 454 else 455 profile = btrfs_metadata_alloc_profile(fs_info); 456 457 avail = atomic64_read(&fs_info->free_chunk_space); 458 459 /* 460 * If we have dup, raid1 or raid10 then only half of the free 461 * space is actually usable. For raid56, the space info used 462 * doesn't include the parity drive, so we don't have to 463 * change the math 464 */ 465 factor = btrfs_bg_type_to_factor(profile); 466 avail = div_u64(avail, factor); 467 if (avail == 0) 468 return 0; 469 470 data_chunk_size = calc_effective_data_chunk_size(fs_info); 471 472 /* 473 * Since data allocations immediately use block groups as part of the 474 * reservation, because we assume that data reservations will == actual 475 * usage, we could potentially overcommit and then immediately have that 476 * available space used by a data allocation, which could put us in a 477 * bind when we get close to filling the file system. 478 * 479 * To handle this simply remove the data_chunk_size from the available 480 * space. If we are relatively empty this won't affect our ability to 481 * overcommit much, and if we're very close to full it'll keep us from 482 * getting into a position where we've given ourselves very little 483 * metadata wiggle room. 484 */ 485 if (avail <= data_chunk_size) 486 return 0; 487 avail -= data_chunk_size; 488 489 /* 490 * If we aren't flushing all things, let us overcommit up to 491 * 1/2th of the space. If we can flush, don't let us overcommit 492 * too much, let it overcommit up to 1/8 of the space. 493 */ 494 if (flush == BTRFS_RESERVE_FLUSH_ALL) 495 avail >>= 3; 496 else 497 avail >>= 1; 498 499 /* 500 * On the zoned mode, we always allocate one zone as one chunk. 501 * Returning non-zone size aligned bytes here will result in 502 * less pressure for the async metadata reclaim process, and it 503 * will over-commit too much leading to ENOSPC. Align down to the 504 * zone size to avoid that. 505 */ 506 if (btrfs_is_zoned(fs_info)) 507 avail = ALIGN_DOWN(avail, fs_info->zone_size); 508 509 return avail; 510 } 511 512 static inline bool check_can_overcommit(const struct btrfs_space_info *space_info, 513 u64 space_info_used_bytes, u64 bytes, 514 enum btrfs_reserve_flush_enum flush) 515 { 516 const u64 avail = calc_available_free_space(space_info, flush); 517 518 return (space_info_used_bytes + bytes < space_info->total_bytes + avail); 519 } 520 521 static inline bool can_overcommit(const struct btrfs_space_info *space_info, 522 u64 space_info_used_bytes, u64 bytes, 523 enum btrfs_reserve_flush_enum flush) 524 { 525 /* Don't overcommit when in mixed mode. */ 526 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA) 527 return false; 528 529 return check_can_overcommit(space_info, space_info_used_bytes, bytes, flush); 530 } 531 532 bool btrfs_can_overcommit(const struct btrfs_space_info *space_info, u64 bytes, 533 enum btrfs_reserve_flush_enum flush) 534 { 535 u64 used; 536 537 /* Don't overcommit when in mixed mode */ 538 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA) 539 return false; 540 541 used = btrfs_space_info_used(space_info, true); 542 543 return check_can_overcommit(space_info, used, bytes, flush); 544 } 545 546 static void remove_ticket(struct btrfs_space_info *space_info, 547 struct reserve_ticket *ticket, int error) 548 { 549 lockdep_assert_held(&space_info->lock); 550 551 if (!list_empty(&ticket->list)) { 552 list_del_init(&ticket->list); 553 ASSERT(space_info->reclaim_size >= ticket->bytes, 554 "space_info->reclaim_size=%llu ticket->bytes=%llu", 555 space_info->reclaim_size, ticket->bytes); 556 space_info->reclaim_size -= ticket->bytes; 557 } 558 559 spin_lock(&ticket->lock); 560 /* 561 * If we are called from a task waiting on the ticket, it may happen 562 * that before it sets an error on the ticket, a reclaim task was able 563 * to satisfy the ticket. In that case ignore the error. 564 */ 565 if (error && ticket->bytes > 0) 566 ticket->error = error; 567 else 568 ticket->bytes = 0; 569 570 wake_up(&ticket->wait); 571 spin_unlock(&ticket->lock); 572 } 573 574 /* 575 * This is for space we already have accounted in space_info->bytes_may_use, so 576 * basically when we're returning space from block_rsv's. 577 */ 578 void btrfs_try_granting_tickets(struct btrfs_space_info *space_info) 579 { 580 struct list_head *head; 581 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH; 582 u64 used = btrfs_space_info_used(space_info, true); 583 584 lockdep_assert_held(&space_info->lock); 585 586 head = &space_info->priority_tickets; 587 again: 588 while (!list_empty(head)) { 589 struct reserve_ticket *ticket; 590 u64 used_after; 591 592 ticket = list_first_entry(head, struct reserve_ticket, list); 593 used_after = used + ticket->bytes; 594 595 /* Check and see if our ticket can be satisfied now. */ 596 if (used_after <= space_info->total_bytes || 597 can_overcommit(space_info, used, ticket->bytes, flush)) { 598 btrfs_space_info_update_bytes_may_use(space_info, ticket->bytes); 599 remove_ticket(space_info, ticket, 0); 600 space_info->tickets_id++; 601 used = used_after; 602 } else { 603 break; 604 } 605 } 606 607 if (head == &space_info->priority_tickets) { 608 head = &space_info->tickets; 609 flush = BTRFS_RESERVE_FLUSH_ALL; 610 goto again; 611 } 612 } 613 614 #define DUMP_BLOCK_RSV(fs_info, rsv_name) \ 615 do { \ 616 struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name; \ 617 spin_lock(&__rsv->lock); \ 618 btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu", \ 619 __rsv->size, __rsv->reserved); \ 620 spin_unlock(&__rsv->lock); \ 621 } while (0) 622 623 static void dump_global_block_rsv(struct btrfs_fs_info *fs_info) 624 { 625 DUMP_BLOCK_RSV(fs_info, global_block_rsv); 626 DUMP_BLOCK_RSV(fs_info, trans_block_rsv); 627 DUMP_BLOCK_RSV(fs_info, chunk_block_rsv); 628 DUMP_BLOCK_RSV(fs_info, remap_block_rsv); 629 DUMP_BLOCK_RSV(fs_info, delayed_block_rsv); 630 DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv); 631 } 632 633 static void __btrfs_dump_space_info(const struct btrfs_space_info *info) 634 { 635 const struct btrfs_fs_info *fs_info = info->fs_info; 636 const char *flag_str = btrfs_space_info_type_str(info); 637 lockdep_assert_held(&info->lock); 638 639 /* The free space could be negative in case of overcommit */ 640 btrfs_info(fs_info, 641 "space_info %s (sub-group id %d) has %lld free, is %sfull", 642 flag_str, info->subgroup_id, 643 (s64)(info->total_bytes - btrfs_space_info_used(info, true)), 644 info->full ? "" : "not "); 645 btrfs_info(fs_info, 646 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu zone_unusable=%llu", 647 info->total_bytes, info->bytes_used, info->bytes_pinned, 648 info->bytes_reserved, info->bytes_may_use, 649 info->bytes_readonly, info->bytes_zone_unusable); 650 } 651 652 void btrfs_dump_space_info(struct btrfs_space_info *info, u64 bytes, 653 bool dump_block_groups) 654 { 655 struct btrfs_fs_info *fs_info = info->fs_info; 656 struct btrfs_block_group *cache; 657 u64 total_avail = 0; 658 int index = 0; 659 660 spin_lock(&info->lock); 661 __btrfs_dump_space_info(info); 662 dump_global_block_rsv(fs_info); 663 spin_unlock(&info->lock); 664 665 if (!dump_block_groups) 666 return; 667 668 down_read(&info->groups_sem); 669 again: 670 list_for_each_entry(cache, &info->block_groups[index], list) { 671 u64 avail; 672 673 spin_lock(&cache->lock); 674 avail = btrfs_block_group_available_space(cache); 675 btrfs_info(fs_info, 676 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %llu delalloc %llu super %llu zone_unusable (%llu bytes available) %s", 677 cache->start, cache->length, cache->used, cache->pinned, 678 cache->reserved, cache->delalloc_bytes, 679 cache->bytes_super, cache->zone_unusable, 680 avail, cache->ro ? "[readonly]" : ""); 681 spin_unlock(&cache->lock); 682 btrfs_dump_free_space(cache, bytes); 683 total_avail += avail; 684 } 685 if (++index < BTRFS_NR_RAID_TYPES) 686 goto again; 687 up_read(&info->groups_sem); 688 689 btrfs_info(fs_info, "%llu bytes available across all block groups", total_avail); 690 } 691 692 static inline u64 calc_reclaim_items_nr(const struct btrfs_fs_info *fs_info, 693 u64 to_reclaim) 694 { 695 u64 bytes; 696 u64 nr; 697 698 bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 699 nr = div64_u64(to_reclaim, bytes); 700 if (!nr) 701 nr = 1; 702 return nr; 703 } 704 705 /* 706 * shrink metadata reservation for delalloc 707 */ 708 static void shrink_delalloc(struct btrfs_space_info *space_info, 709 u64 to_reclaim, bool wait_ordered, 710 bool for_preempt) 711 { 712 struct btrfs_fs_info *fs_info = space_info->fs_info; 713 struct btrfs_trans_handle *trans; 714 u64 delalloc_bytes; 715 u64 ordered_bytes; 716 u64 items; 717 long time_left; 718 int loops; 719 720 delalloc_bytes = percpu_counter_sum_positive(&fs_info->delalloc_bytes); 721 ordered_bytes = percpu_counter_sum_positive(&fs_info->ordered_bytes); 722 if (delalloc_bytes == 0 && ordered_bytes == 0) 723 return; 724 725 /* Calc the number of the pages we need flush for space reservation */ 726 if (to_reclaim == U64_MAX) { 727 items = U64_MAX; 728 } else { 729 /* 730 * to_reclaim is set to however much metadata we need to 731 * reclaim, but reclaiming that much data doesn't really track 732 * exactly. What we really want to do is reclaim full inode's 733 * worth of reservations, however that's not available to us 734 * here. We will take a fraction of the delalloc bytes for our 735 * flushing loops and hope for the best. Delalloc will expand 736 * the amount we write to cover an entire dirty extent, which 737 * will reclaim the metadata reservation for that range. If 738 * it's not enough subsequent flush stages will be more 739 * aggressive. 740 */ 741 to_reclaim = max(to_reclaim, delalloc_bytes >> 3); 742 items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2; 743 } 744 745 trans = current->journal_info; 746 747 /* 748 * If we are doing more ordered than delalloc we need to just wait on 749 * ordered extents, otherwise we'll waste time trying to flush delalloc 750 * that likely won't give us the space back we need. 751 */ 752 if (ordered_bytes > delalloc_bytes && !for_preempt) 753 wait_ordered = true; 754 755 loops = 0; 756 while ((delalloc_bytes || ordered_bytes) && loops < 3) { 757 u64 temp = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT; 758 long nr_pages = min_t(u64, temp, LONG_MAX); 759 int async_pages; 760 761 btrfs_start_delalloc_roots(fs_info, nr_pages, true); 762 763 /* 764 * We need to make sure any outstanding async pages are now 765 * processed before we continue. This is because things like 766 * sync_inode() try to be smart and skip writing if the inode is 767 * marked clean. We don't use filemap_fwrite for flushing 768 * because we want to control how many pages we write out at a 769 * time, thus this is the only safe way to make sure we've 770 * waited for outstanding compressed workers to have started 771 * their jobs and thus have ordered extents set up properly. 772 * 773 * This exists because we do not want to wait for each 774 * individual inode to finish its async work, we simply want to 775 * start the IO on everybody, and then come back here and wait 776 * for all of the async work to catch up. Once we're done with 777 * that we know we'll have ordered extents for everything and we 778 * can decide if we wait for that or not. 779 * 780 * If we choose to replace this in the future, make absolutely 781 * sure that the proper waiting is being done in the async case, 782 * as there have been bugs in that area before. 783 */ 784 async_pages = atomic_read(&fs_info->async_delalloc_pages); 785 if (!async_pages) 786 goto skip_async; 787 788 /* 789 * We don't want to wait forever, if we wrote less pages in this 790 * loop than we have outstanding, only wait for that number of 791 * pages, otherwise we can wait for all async pages to finish 792 * before continuing. 793 */ 794 if (async_pages > nr_pages) 795 async_pages -= nr_pages; 796 else 797 async_pages = 0; 798 wait_event(fs_info->async_submit_wait, 799 atomic_read(&fs_info->async_delalloc_pages) <= 800 async_pages); 801 skip_async: 802 loops++; 803 if (wait_ordered && !trans) { 804 btrfs_wait_ordered_roots(fs_info, items, NULL); 805 } else { 806 time_left = schedule_timeout_killable(1); 807 if (time_left) 808 break; 809 } 810 811 /* 812 * If we are for preemption we just want a one-shot of delalloc 813 * flushing so we can stop flushing if we decide we don't need 814 * to anymore. 815 */ 816 if (for_preempt) 817 break; 818 819 spin_lock(&space_info->lock); 820 if (list_empty(&space_info->tickets) && 821 list_empty(&space_info->priority_tickets)) { 822 spin_unlock(&space_info->lock); 823 break; 824 } 825 spin_unlock(&space_info->lock); 826 827 delalloc_bytes = percpu_counter_sum_positive( 828 &fs_info->delalloc_bytes); 829 ordered_bytes = percpu_counter_sum_positive( 830 &fs_info->ordered_bytes); 831 } 832 } 833 834 /* 835 * Try to flush some data based on policy set by @state. This is only advisory 836 * and may fail for various reasons. The caller is supposed to examine the 837 * state of @space_info to detect the outcome. 838 */ 839 static void flush_space(struct btrfs_space_info *space_info, u64 num_bytes, 840 enum btrfs_flush_state state, bool for_preempt) 841 { 842 struct btrfs_fs_info *fs_info = space_info->fs_info; 843 struct btrfs_root *root = fs_info->tree_root; 844 struct btrfs_trans_handle *trans; 845 int nr; 846 int ret = 0; 847 848 switch (state) { 849 case FLUSH_DELAYED_ITEMS_NR: 850 case FLUSH_DELAYED_ITEMS: 851 if (state == FLUSH_DELAYED_ITEMS_NR) 852 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2; 853 else 854 nr = -1; 855 856 trans = btrfs_join_transaction_nostart(root); 857 if (IS_ERR(trans)) { 858 ret = PTR_ERR(trans); 859 if (ret == -ENOENT) 860 ret = 0; 861 break; 862 } 863 ret = btrfs_run_delayed_items_nr(trans, nr); 864 btrfs_end_transaction(trans); 865 break; 866 case FLUSH_DELALLOC: 867 case FLUSH_DELALLOC_WAIT: 868 case FLUSH_DELALLOC_FULL: 869 if (state == FLUSH_DELALLOC_FULL) 870 num_bytes = U64_MAX; 871 shrink_delalloc(space_info, num_bytes, 872 state != FLUSH_DELALLOC, for_preempt); 873 break; 874 case FLUSH_DELAYED_REFS_NR: 875 case FLUSH_DELAYED_REFS: 876 trans = btrfs_join_transaction_nostart(root); 877 if (IS_ERR(trans)) { 878 ret = PTR_ERR(trans); 879 if (ret == -ENOENT) 880 ret = 0; 881 break; 882 } 883 if (state == FLUSH_DELAYED_REFS_NR) 884 btrfs_run_delayed_refs(trans, num_bytes); 885 else 886 btrfs_run_delayed_refs(trans, 0); 887 btrfs_end_transaction(trans); 888 break; 889 case ALLOC_CHUNK: 890 case ALLOC_CHUNK_FORCE: 891 trans = btrfs_join_transaction(root); 892 if (IS_ERR(trans)) { 893 ret = PTR_ERR(trans); 894 break; 895 } 896 ret = btrfs_chunk_alloc(trans, space_info, 897 btrfs_get_alloc_profile(fs_info, space_info->flags), 898 (state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE : 899 CHUNK_ALLOC_FORCE); 900 btrfs_end_transaction(trans); 901 902 if (ret > 0 || ret == -ENOSPC) 903 ret = 0; 904 break; 905 case RUN_DELAYED_IPUTS: 906 /* 907 * If we have pending delayed iputs then we could free up a 908 * bunch of pinned space, so make sure we run the iputs before 909 * we do our pinned bytes check below. 910 */ 911 btrfs_run_delayed_iputs(fs_info); 912 btrfs_wait_on_delayed_iputs(fs_info); 913 break; 914 case COMMIT_TRANS: 915 ASSERT(current->journal_info == NULL); 916 /* 917 * We don't want to start a new transaction, just attach to the 918 * current one or wait it fully commits in case its commit is 919 * happening at the moment. Note: we don't use a nostart join 920 * because that does not wait for a transaction to fully commit 921 * (only for it to be unblocked, state TRANS_STATE_UNBLOCKED). 922 */ 923 ret = btrfs_commit_current_transaction(root); 924 break; 925 case RESET_ZONES: 926 ret = btrfs_reset_unused_block_groups(space_info, num_bytes); 927 break; 928 default: 929 ret = -ENOSPC; 930 break; 931 } 932 933 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state, 934 ret, for_preempt); 935 return; 936 } 937 938 static u64 btrfs_calc_reclaim_metadata_size(const struct btrfs_space_info *space_info) 939 { 940 u64 used; 941 u64 avail; 942 u64 to_reclaim = space_info->reclaim_size; 943 944 lockdep_assert_held(&space_info->lock); 945 946 avail = calc_available_free_space(space_info, BTRFS_RESERVE_FLUSH_ALL); 947 used = btrfs_space_info_used(space_info, true); 948 949 /* 950 * We may be flushing because suddenly we have less space than we had 951 * before, and now we're well over-committed based on our current free 952 * space. If that's the case add in our overage so we make sure to put 953 * appropriate pressure on the flushing state machine. 954 */ 955 if (space_info->total_bytes + avail < used) 956 to_reclaim += used - (space_info->total_bytes + avail); 957 958 return to_reclaim; 959 } 960 961 static bool need_preemptive_reclaim(const struct btrfs_space_info *space_info) 962 { 963 struct btrfs_fs_info *fs_info = space_info->fs_info; 964 const u64 global_rsv_size = btrfs_block_rsv_reserved(&fs_info->global_block_rsv); 965 u64 ordered, delalloc; 966 u64 thresh; 967 u64 used; 968 969 lockdep_assert_held(&space_info->lock); 970 971 /* 972 * We have tickets queued, bail so we don't compete with the async 973 * flushers. 974 */ 975 if (space_info->reclaim_size) 976 return false; 977 978 thresh = mult_perc(space_info->total_bytes, 90); 979 980 /* If we're just plain full then async reclaim just slows us down. */ 981 if ((space_info->bytes_used + space_info->bytes_reserved + 982 global_rsv_size) >= thresh) 983 return false; 984 985 used = space_info->bytes_may_use + space_info->bytes_pinned; 986 987 /* The total flushable belongs to the global rsv, don't flush. */ 988 if (global_rsv_size >= used) 989 return false; 990 991 /* 992 * 128MiB is 1/4 of the maximum global rsv size. If we have less than 993 * that devoted to other reservations then there's no sense in flushing, 994 * we don't have a lot of things that need flushing. 995 */ 996 if (used - global_rsv_size <= SZ_128M) 997 return false; 998 999 /* 1000 * If we have over half of the free space occupied by reservations or 1001 * pinned then we want to start flushing. 1002 * 1003 * We do not do the traditional thing here, which is to say 1004 * 1005 * if (used >= ((total_bytes + avail) / 2)) 1006 * return 1; 1007 * 1008 * because this doesn't quite work how we want. If we had more than 50% 1009 * of the space_info used by bytes_used and we had 0 available we'd just 1010 * constantly run the background flusher. Instead we want it to kick in 1011 * if our reclaimable space exceeds our clamped free space. 1012 * 1013 * Our clamping range is 2^1 -> 2^8. Practically speaking that means 1014 * the following: 1015 * 1016 * Amount of RAM Minimum threshold Maximum threshold 1017 * 1018 * 256GiB 1GiB 128GiB 1019 * 128GiB 512MiB 64GiB 1020 * 64GiB 256MiB 32GiB 1021 * 32GiB 128MiB 16GiB 1022 * 16GiB 64MiB 8GiB 1023 * 1024 * These are the range our thresholds will fall in, corresponding to how 1025 * much delalloc we need for the background flusher to kick in. 1026 */ 1027 1028 thresh = calc_available_free_space(space_info, BTRFS_RESERVE_FLUSH_ALL); 1029 used = space_info->bytes_used + space_info->bytes_reserved + 1030 space_info->bytes_readonly + global_rsv_size; 1031 if (used < space_info->total_bytes) 1032 thresh += space_info->total_bytes - used; 1033 thresh >>= space_info->clamp; 1034 1035 used = space_info->bytes_pinned; 1036 1037 /* 1038 * If we have more ordered bytes than delalloc bytes then we're either 1039 * doing a lot of DIO, or we simply don't have a lot of delalloc waiting 1040 * around. Preemptive flushing is only useful in that it can free up 1041 * space before tickets need to wait for things to finish. In the case 1042 * of ordered extents, preemptively waiting on ordered extents gets us 1043 * nothing, if our reservations are tied up in ordered extents we'll 1044 * simply have to slow down writers by forcing them to wait on ordered 1045 * extents. 1046 * 1047 * In the case that ordered is larger than delalloc, only include the 1048 * block reserves that we would actually be able to directly reclaim 1049 * from. In this case if we're heavy on metadata operations this will 1050 * clearly be heavy enough to warrant preemptive flushing. In the case 1051 * of heavy DIO or ordered reservations, preemptive flushing will just 1052 * waste time and cause us to slow down. 1053 * 1054 * We want to make sure we truly are maxed out on ordered however, so 1055 * cut ordered in half, and if it's still higher than delalloc then we 1056 * can keep flushing. This is to avoid the case where we start 1057 * flushing, and now delalloc == ordered and we stop preemptively 1058 * flushing when we could still have several gigs of delalloc to flush. 1059 */ 1060 ordered = percpu_counter_read_positive(&fs_info->ordered_bytes) >> 1; 1061 delalloc = percpu_counter_read_positive(&fs_info->delalloc_bytes); 1062 if (ordered >= delalloc) 1063 used += btrfs_block_rsv_reserved(&fs_info->delayed_refs_rsv) + 1064 btrfs_block_rsv_reserved(&fs_info->delayed_block_rsv); 1065 else 1066 used += space_info->bytes_may_use - global_rsv_size; 1067 1068 return (used >= thresh && !btrfs_fs_closing(fs_info) && 1069 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)); 1070 } 1071 1072 static bool steal_from_global_rsv(struct btrfs_space_info *space_info, 1073 struct reserve_ticket *ticket) 1074 { 1075 struct btrfs_fs_info *fs_info = space_info->fs_info; 1076 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 1077 u64 min_bytes; 1078 1079 lockdep_assert_held(&space_info->lock); 1080 1081 if (!ticket->steal) 1082 return false; 1083 1084 if (global_rsv->space_info != space_info) 1085 return false; 1086 1087 spin_lock(&global_rsv->lock); 1088 min_bytes = mult_perc(global_rsv->size, 10); 1089 if (global_rsv->reserved < min_bytes + ticket->bytes) { 1090 spin_unlock(&global_rsv->lock); 1091 return false; 1092 } 1093 global_rsv->reserved -= ticket->bytes; 1094 if (global_rsv->reserved < global_rsv->size) 1095 global_rsv->full = false; 1096 spin_unlock(&global_rsv->lock); 1097 1098 remove_ticket(space_info, ticket, 0); 1099 space_info->tickets_id++; 1100 1101 return true; 1102 } 1103 1104 /* 1105 * We've exhausted our flushing, start failing tickets. 1106 * 1107 * @space_info - the space info we were flushing 1108 * 1109 * We call this when we've exhausted our flushing ability and haven't made 1110 * progress in satisfying tickets. The reservation code handles tickets in 1111 * order, so if there is a large ticket first and then smaller ones we could 1112 * very well satisfy the smaller tickets. This will attempt to wake up any 1113 * tickets in the list to catch this case. 1114 * 1115 * This function returns true if it was able to make progress by clearing out 1116 * other tickets, or if it stumbles across a ticket that was smaller than the 1117 * first ticket. 1118 */ 1119 static bool maybe_fail_all_tickets(struct btrfs_space_info *space_info) 1120 { 1121 struct btrfs_fs_info *fs_info = space_info->fs_info; 1122 struct reserve_ticket *ticket; 1123 u64 tickets_id = space_info->tickets_id; 1124 const int abort_error = BTRFS_FS_ERROR(fs_info); 1125 1126 trace_btrfs_fail_all_tickets(fs_info, space_info); 1127 1128 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 1129 btrfs_info(fs_info, "cannot satisfy tickets, dumping space info"); 1130 __btrfs_dump_space_info(space_info); 1131 } 1132 1133 while (!list_empty(&space_info->tickets) && 1134 tickets_id == space_info->tickets_id) { 1135 ticket = list_first_entry(&space_info->tickets, 1136 struct reserve_ticket, list); 1137 if (unlikely(abort_error)) { 1138 remove_ticket(space_info, ticket, abort_error); 1139 } else { 1140 if (steal_from_global_rsv(space_info, ticket)) 1141 return true; 1142 1143 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) 1144 btrfs_info(fs_info, "failing ticket with %llu bytes", 1145 ticket->bytes); 1146 1147 remove_ticket(space_info, ticket, -ENOSPC); 1148 1149 /* 1150 * We're just throwing tickets away, so more flushing may 1151 * not trip over btrfs_try_granting_tickets, so we need 1152 * to call it here to see if we can make progress with 1153 * the next ticket in the list. 1154 */ 1155 btrfs_try_granting_tickets(space_info); 1156 } 1157 } 1158 return (tickets_id != space_info->tickets_id); 1159 } 1160 1161 static void do_async_reclaim_metadata_space(struct btrfs_space_info *space_info) 1162 { 1163 struct btrfs_fs_info *fs_info = space_info->fs_info; 1164 u64 to_reclaim; 1165 enum btrfs_flush_state flush_state; 1166 int commit_cycles = 0; 1167 u64 last_tickets_id; 1168 enum btrfs_flush_state final_state; 1169 1170 if (btrfs_is_zoned(fs_info)) 1171 final_state = RESET_ZONES; 1172 else 1173 final_state = COMMIT_TRANS; 1174 1175 spin_lock(&space_info->lock); 1176 to_reclaim = btrfs_calc_reclaim_metadata_size(space_info); 1177 if (!to_reclaim) { 1178 space_info->flush = false; 1179 spin_unlock(&space_info->lock); 1180 return; 1181 } 1182 last_tickets_id = space_info->tickets_id; 1183 spin_unlock(&space_info->lock); 1184 1185 flush_state = FLUSH_DELAYED_ITEMS_NR; 1186 do { 1187 flush_space(space_info, to_reclaim, flush_state, false); 1188 spin_lock(&space_info->lock); 1189 if (list_empty(&space_info->tickets)) { 1190 space_info->flush = false; 1191 spin_unlock(&space_info->lock); 1192 return; 1193 } 1194 to_reclaim = btrfs_calc_reclaim_metadata_size(space_info); 1195 if (last_tickets_id == space_info->tickets_id) { 1196 flush_state++; 1197 } else { 1198 last_tickets_id = space_info->tickets_id; 1199 flush_state = FLUSH_DELAYED_ITEMS_NR; 1200 if (commit_cycles) 1201 commit_cycles--; 1202 } 1203 1204 /* 1205 * We do not want to empty the system of delalloc unless we're 1206 * under heavy pressure, so allow one trip through the flushing 1207 * logic before we start doing a FLUSH_DELALLOC_FULL. 1208 */ 1209 if (flush_state == FLUSH_DELALLOC_FULL && !commit_cycles) 1210 flush_state++; 1211 1212 /* 1213 * We don't want to force a chunk allocation until we've tried 1214 * pretty hard to reclaim space. Think of the case where we 1215 * freed up a bunch of space and so have a lot of pinned space 1216 * to reclaim. We would rather use that than possibly create a 1217 * underutilized metadata chunk. So if this is our first run 1218 * through the flushing state machine skip ALLOC_CHUNK_FORCE and 1219 * commit the transaction. If nothing has changed the next go 1220 * around then we can force a chunk allocation. 1221 */ 1222 if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles) 1223 flush_state++; 1224 1225 if (flush_state > final_state) { 1226 commit_cycles++; 1227 if (commit_cycles > 2) { 1228 if (maybe_fail_all_tickets(space_info)) { 1229 flush_state = FLUSH_DELAYED_ITEMS_NR; 1230 commit_cycles--; 1231 } else { 1232 space_info->flush = false; 1233 } 1234 } else { 1235 flush_state = FLUSH_DELAYED_ITEMS_NR; 1236 } 1237 } 1238 spin_unlock(&space_info->lock); 1239 } while (flush_state <= final_state); 1240 } 1241 1242 /* 1243 * This is for normal flushers, it can wait as much time as needed. We will 1244 * loop and continuously try to flush as long as we are making progress. We 1245 * count progress as clearing off tickets each time we have to loop. 1246 */ 1247 static void btrfs_async_reclaim_metadata_space(struct work_struct *work) 1248 { 1249 struct btrfs_fs_info *fs_info; 1250 struct btrfs_space_info *space_info; 1251 1252 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work); 1253 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 1254 do_async_reclaim_metadata_space(space_info); 1255 for (int i = 0; i < BTRFS_SPACE_INFO_SUB_GROUP_MAX; i++) { 1256 if (space_info->sub_group[i]) 1257 do_async_reclaim_metadata_space(space_info->sub_group[i]); 1258 } 1259 } 1260 1261 /* 1262 * This handles pre-flushing of metadata space before we get to the point that 1263 * we need to start blocking threads on tickets. The logic here is different 1264 * from the other flush paths because it doesn't rely on tickets to tell us how 1265 * much we need to flush, instead it attempts to keep us below the 80% full 1266 * watermark of space by flushing whichever reservation pool is currently the 1267 * largest. 1268 */ 1269 static void btrfs_preempt_reclaim_metadata_space(struct work_struct *work) 1270 { 1271 struct btrfs_fs_info *fs_info; 1272 struct btrfs_space_info *space_info; 1273 struct btrfs_block_rsv *delayed_block_rsv; 1274 struct btrfs_block_rsv *delayed_refs_rsv; 1275 struct btrfs_block_rsv *global_rsv; 1276 struct btrfs_block_rsv *trans_rsv; 1277 int loops = 0; 1278 1279 fs_info = container_of(work, struct btrfs_fs_info, 1280 preempt_reclaim_work); 1281 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 1282 delayed_block_rsv = &fs_info->delayed_block_rsv; 1283 delayed_refs_rsv = &fs_info->delayed_refs_rsv; 1284 global_rsv = &fs_info->global_block_rsv; 1285 trans_rsv = &fs_info->trans_block_rsv; 1286 1287 spin_lock(&space_info->lock); 1288 while (need_preemptive_reclaim(space_info)) { 1289 enum btrfs_flush_state flush; 1290 u64 delalloc_size = 0; 1291 u64 to_reclaim, block_rsv_size; 1292 const u64 global_rsv_size = btrfs_block_rsv_reserved(global_rsv); 1293 const u64 bytes_may_use = space_info->bytes_may_use; 1294 const u64 bytes_pinned = space_info->bytes_pinned; 1295 1296 spin_unlock(&space_info->lock); 1297 /* 1298 * We don't have a precise counter for the metadata being 1299 * reserved for delalloc, so we'll approximate it by subtracting 1300 * out the block rsv's space from the bytes_may_use. If that 1301 * amount is higher than the individual reserves, then we can 1302 * assume it's tied up in delalloc reservations. 1303 */ 1304 block_rsv_size = global_rsv_size + 1305 btrfs_block_rsv_reserved(delayed_block_rsv) + 1306 btrfs_block_rsv_reserved(delayed_refs_rsv) + 1307 btrfs_block_rsv_reserved(trans_rsv); 1308 if (block_rsv_size < bytes_may_use) 1309 delalloc_size = bytes_may_use - block_rsv_size; 1310 1311 /* 1312 * We don't want to include the global_rsv in our calculation, 1313 * because that's space we can't touch. Subtract it from the 1314 * block_rsv_size for the next checks. 1315 */ 1316 block_rsv_size -= global_rsv_size; 1317 1318 /* 1319 * We really want to avoid flushing delalloc too much, as it 1320 * could result in poor allocation patterns, so only flush it if 1321 * it's larger than the rest of the pools combined. 1322 */ 1323 if (delalloc_size > block_rsv_size) { 1324 to_reclaim = delalloc_size; 1325 flush = FLUSH_DELALLOC; 1326 } else if (bytes_pinned > 1327 (btrfs_block_rsv_reserved(delayed_block_rsv) + 1328 btrfs_block_rsv_reserved(delayed_refs_rsv))) { 1329 to_reclaim = bytes_pinned; 1330 flush = COMMIT_TRANS; 1331 } else if (btrfs_block_rsv_reserved(delayed_block_rsv) > 1332 btrfs_block_rsv_reserved(delayed_refs_rsv)) { 1333 to_reclaim = btrfs_block_rsv_reserved(delayed_block_rsv); 1334 flush = FLUSH_DELAYED_ITEMS_NR; 1335 } else { 1336 to_reclaim = btrfs_block_rsv_reserved(delayed_refs_rsv); 1337 flush = FLUSH_DELAYED_REFS_NR; 1338 } 1339 1340 loops++; 1341 1342 /* 1343 * We don't want to reclaim everything, just a portion, so scale 1344 * down the to_reclaim by 1/4. If it takes us down to 0, 1345 * reclaim 1 items worth. 1346 */ 1347 to_reclaim >>= 2; 1348 if (!to_reclaim) 1349 to_reclaim = btrfs_calc_insert_metadata_size(fs_info, 1); 1350 flush_space(space_info, to_reclaim, flush, true); 1351 cond_resched(); 1352 spin_lock(&space_info->lock); 1353 } 1354 1355 /* We only went through once, back off our clamping. */ 1356 if (loops == 1 && !space_info->reclaim_size) 1357 space_info->clamp = max(1, space_info->clamp - 1); 1358 trace_btrfs_done_preemptive_reclaim(fs_info, space_info); 1359 spin_unlock(&space_info->lock); 1360 } 1361 1362 /* 1363 * FLUSH_DELALLOC_WAIT: 1364 * Space is freed from flushing delalloc in one of two ways. 1365 * 1366 * 1) compression is on and we allocate less space than we reserved 1367 * 2) we are overwriting existing space 1368 * 1369 * For #1 that extra space is reclaimed as soon as the delalloc pages are 1370 * COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent 1371 * length to ->bytes_reserved, and subtracts the reserved space from 1372 * ->bytes_may_use. 1373 * 1374 * For #2 this is trickier. Once the ordered extent runs we will drop the 1375 * extent in the range we are overwriting, which creates a delayed ref for 1376 * that freed extent. This however is not reclaimed until the transaction 1377 * commits, thus the next stages. 1378 * 1379 * RUN_DELAYED_IPUTS 1380 * If we are freeing inodes, we want to make sure all delayed iputs have 1381 * completed, because they could have been on an inode with i_nlink == 0, and 1382 * thus have been truncated and freed up space. But again this space is not 1383 * immediately reusable, it comes in the form of a delayed ref, which must be 1384 * run and then the transaction must be committed. 1385 * 1386 * COMMIT_TRANS 1387 * This is where we reclaim all of the pinned space generated by running the 1388 * iputs 1389 * 1390 * RESET_ZONES 1391 * This state works only for the zoned mode. We scan the unused block group 1392 * list and reset the zones and reuse the block group. 1393 * 1394 * ALLOC_CHUNK_FORCE 1395 * For data we start with alloc chunk force, however we could have been full 1396 * before, and then the transaction commit could have freed new block groups, 1397 * so if we now have space to allocate do the force chunk allocation. 1398 */ 1399 static const enum btrfs_flush_state data_flush_states[] = { 1400 FLUSH_DELALLOC_FULL, 1401 RUN_DELAYED_IPUTS, 1402 COMMIT_TRANS, 1403 RESET_ZONES, 1404 ALLOC_CHUNK_FORCE, 1405 }; 1406 1407 static void do_async_reclaim_data_space(struct btrfs_space_info *space_info) 1408 { 1409 struct btrfs_fs_info *fs_info = space_info->fs_info; 1410 u64 last_tickets_id; 1411 enum btrfs_flush_state flush_state = 0; 1412 1413 spin_lock(&space_info->lock); 1414 if (list_empty(&space_info->tickets)) { 1415 space_info->flush = false; 1416 spin_unlock(&space_info->lock); 1417 return; 1418 } 1419 last_tickets_id = space_info->tickets_id; 1420 spin_unlock(&space_info->lock); 1421 1422 while (!space_info->full) { 1423 flush_space(space_info, U64_MAX, ALLOC_CHUNK_FORCE, false); 1424 spin_lock(&space_info->lock); 1425 if (list_empty(&space_info->tickets)) { 1426 space_info->flush = false; 1427 spin_unlock(&space_info->lock); 1428 return; 1429 } 1430 1431 /* Something happened, fail everything and bail. */ 1432 if (unlikely(BTRFS_FS_ERROR(fs_info))) 1433 goto aborted_fs; 1434 last_tickets_id = space_info->tickets_id; 1435 spin_unlock(&space_info->lock); 1436 } 1437 1438 while (flush_state < ARRAY_SIZE(data_flush_states)) { 1439 flush_space(space_info, U64_MAX, 1440 data_flush_states[flush_state], false); 1441 spin_lock(&space_info->lock); 1442 if (list_empty(&space_info->tickets)) { 1443 space_info->flush = false; 1444 spin_unlock(&space_info->lock); 1445 return; 1446 } 1447 1448 if (last_tickets_id == space_info->tickets_id) { 1449 flush_state++; 1450 } else { 1451 last_tickets_id = space_info->tickets_id; 1452 flush_state = 0; 1453 } 1454 1455 if (flush_state >= ARRAY_SIZE(data_flush_states)) { 1456 if (space_info->full) { 1457 if (maybe_fail_all_tickets(space_info)) 1458 flush_state = 0; 1459 else 1460 space_info->flush = false; 1461 } else { 1462 flush_state = 0; 1463 } 1464 1465 /* Something happened, fail everything and bail. */ 1466 if (unlikely(BTRFS_FS_ERROR(fs_info))) 1467 goto aborted_fs; 1468 1469 } 1470 spin_unlock(&space_info->lock); 1471 } 1472 return; 1473 1474 aborted_fs: 1475 maybe_fail_all_tickets(space_info); 1476 space_info->flush = false; 1477 spin_unlock(&space_info->lock); 1478 } 1479 1480 static void btrfs_async_reclaim_data_space(struct work_struct *work) 1481 { 1482 struct btrfs_fs_info *fs_info; 1483 struct btrfs_space_info *space_info; 1484 1485 fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work); 1486 space_info = fs_info->data_sinfo; 1487 do_async_reclaim_data_space(space_info); 1488 for (int i = 0; i < BTRFS_SPACE_INFO_SUB_GROUP_MAX; i++) 1489 if (space_info->sub_group[i]) 1490 do_async_reclaim_data_space(space_info->sub_group[i]); 1491 } 1492 1493 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info) 1494 { 1495 INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space); 1496 INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space); 1497 INIT_WORK(&fs_info->preempt_reclaim_work, 1498 btrfs_preempt_reclaim_metadata_space); 1499 } 1500 1501 static const enum btrfs_flush_state priority_flush_states[] = { 1502 FLUSH_DELAYED_ITEMS_NR, 1503 FLUSH_DELAYED_ITEMS, 1504 RESET_ZONES, 1505 ALLOC_CHUNK, 1506 }; 1507 1508 static const enum btrfs_flush_state evict_flush_states[] = { 1509 FLUSH_DELAYED_ITEMS_NR, 1510 FLUSH_DELAYED_ITEMS, 1511 FLUSH_DELAYED_REFS_NR, 1512 FLUSH_DELAYED_REFS, 1513 FLUSH_DELALLOC, 1514 FLUSH_DELALLOC_WAIT, 1515 FLUSH_DELALLOC_FULL, 1516 ALLOC_CHUNK, 1517 COMMIT_TRANS, 1518 RESET_ZONES, 1519 }; 1520 1521 static bool is_ticket_served(struct reserve_ticket *ticket) 1522 { 1523 bool ret; 1524 1525 spin_lock(&ticket->lock); 1526 ret = (ticket->bytes == 0); 1527 spin_unlock(&ticket->lock); 1528 1529 return ret; 1530 } 1531 1532 static void priority_reclaim_metadata_space(struct btrfs_space_info *space_info, 1533 struct reserve_ticket *ticket, 1534 const enum btrfs_flush_state *states, 1535 int states_nr) 1536 { 1537 struct btrfs_fs_info *fs_info = space_info->fs_info; 1538 u64 to_reclaim; 1539 int flush_state = 0; 1540 1541 /* 1542 * This is the priority reclaim path, so to_reclaim could be >0 still 1543 * because we may have only satisfied the priority tickets and still 1544 * left non priority tickets on the list. We would then have 1545 * to_reclaim but ->bytes == 0. 1546 */ 1547 if (is_ticket_served(ticket)) 1548 return; 1549 1550 spin_lock(&space_info->lock); 1551 to_reclaim = btrfs_calc_reclaim_metadata_size(space_info); 1552 spin_unlock(&space_info->lock); 1553 1554 while (flush_state < states_nr) { 1555 flush_space(space_info, to_reclaim, states[flush_state], false); 1556 if (is_ticket_served(ticket)) 1557 return; 1558 flush_state++; 1559 } 1560 1561 spin_lock(&space_info->lock); 1562 /* 1563 * Attempt to steal from the global rsv if we can, except if the fs was 1564 * turned into error mode due to a transaction abort when flushing space 1565 * above, in that case fail with the abort error instead of returning 1566 * success to the caller if we can steal from the global rsv - this is 1567 * just to have caller fail immediately instead of later when trying to 1568 * modify the fs, making it easier to debug -ENOSPC problems. 1569 */ 1570 if (unlikely(BTRFS_FS_ERROR(fs_info))) 1571 remove_ticket(space_info, ticket, BTRFS_FS_ERROR(fs_info)); 1572 else if (!steal_from_global_rsv(space_info, ticket)) 1573 remove_ticket(space_info, ticket, -ENOSPC); 1574 1575 /* 1576 * We must run try_granting_tickets here because we could be a large 1577 * ticket in front of a smaller ticket that can now be satisfied with 1578 * the available space. 1579 */ 1580 btrfs_try_granting_tickets(space_info); 1581 spin_unlock(&space_info->lock); 1582 } 1583 1584 static void priority_reclaim_data_space(struct btrfs_space_info *space_info, 1585 struct reserve_ticket *ticket) 1586 { 1587 /* We could have been granted before we got here. */ 1588 if (is_ticket_served(ticket)) 1589 return; 1590 1591 spin_lock(&space_info->lock); 1592 while (!space_info->full) { 1593 spin_unlock(&space_info->lock); 1594 flush_space(space_info, U64_MAX, ALLOC_CHUNK_FORCE, false); 1595 if (is_ticket_served(ticket)) 1596 return; 1597 spin_lock(&space_info->lock); 1598 } 1599 1600 remove_ticket(space_info, ticket, -ENOSPC); 1601 btrfs_try_granting_tickets(space_info); 1602 spin_unlock(&space_info->lock); 1603 } 1604 1605 static void wait_reserve_ticket(struct btrfs_space_info *space_info, 1606 struct reserve_ticket *ticket) 1607 1608 { 1609 DEFINE_WAIT(wait); 1610 1611 spin_lock(&ticket->lock); 1612 while (ticket->bytes > 0 && ticket->error == 0) { 1613 int ret; 1614 1615 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE); 1616 spin_unlock(&ticket->lock); 1617 if (ret) { 1618 /* 1619 * Delete us from the list. After we unlock the space 1620 * info, we don't want the async reclaim job to reserve 1621 * space for this ticket. If that would happen, then the 1622 * ticket's task would not known that space was reserved 1623 * despite getting an error, resulting in a space leak 1624 * (bytes_may_use counter of our space_info). 1625 */ 1626 spin_lock(&space_info->lock); 1627 remove_ticket(space_info, ticket, -EINTR); 1628 spin_unlock(&space_info->lock); 1629 return; 1630 } 1631 1632 schedule(); 1633 1634 finish_wait(&ticket->wait, &wait); 1635 spin_lock(&ticket->lock); 1636 } 1637 spin_unlock(&ticket->lock); 1638 } 1639 1640 /* 1641 * Do the appropriate flushing and waiting for a ticket. 1642 * 1643 * @space_info: space info for the reservation 1644 * @ticket: ticket for the reservation 1645 * @start_ns: timestamp when the reservation started 1646 * @orig_bytes: amount of bytes originally reserved 1647 * @flush: how much we can flush 1648 * 1649 * This does the work of figuring out how to flush for the ticket, waiting for 1650 * the reservation, and returning the appropriate error if there is one. 1651 */ 1652 static int handle_reserve_ticket(struct btrfs_space_info *space_info, 1653 struct reserve_ticket *ticket, 1654 u64 start_ns, u64 orig_bytes, 1655 enum btrfs_reserve_flush_enum flush) 1656 { 1657 int ret; 1658 1659 switch (flush) { 1660 case BTRFS_RESERVE_FLUSH_DATA: 1661 case BTRFS_RESERVE_FLUSH_ALL: 1662 case BTRFS_RESERVE_FLUSH_ALL_STEAL: 1663 wait_reserve_ticket(space_info, ticket); 1664 break; 1665 case BTRFS_RESERVE_FLUSH_LIMIT: 1666 priority_reclaim_metadata_space(space_info, ticket, 1667 priority_flush_states, 1668 ARRAY_SIZE(priority_flush_states)); 1669 break; 1670 case BTRFS_RESERVE_FLUSH_EVICT: 1671 priority_reclaim_metadata_space(space_info, ticket, 1672 evict_flush_states, 1673 ARRAY_SIZE(evict_flush_states)); 1674 break; 1675 case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE: 1676 priority_reclaim_data_space(space_info, ticket); 1677 break; 1678 default: 1679 ASSERT(0, "flush=%d", flush); 1680 break; 1681 } 1682 1683 ret = ticket->error; 1684 ASSERT(list_empty(&ticket->list)); 1685 /* 1686 * Check that we can't have an error set if the reservation succeeded, 1687 * as that would confuse tasks and lead them to error out without 1688 * releasing reserved space (if an error happens the expectation is that 1689 * space wasn't reserved at all). 1690 */ 1691 ASSERT(!(ticket->bytes == 0 && ticket->error), 1692 "ticket->bytes=%llu ticket->error=%d", ticket->bytes, ticket->error); 1693 trace_btrfs_reserve_ticket(space_info->fs_info, space_info->flags, 1694 orig_bytes, start_ns, flush, ticket->error); 1695 return ret; 1696 } 1697 1698 /* 1699 * This returns true if this flush state will go through the ordinary flushing 1700 * code. 1701 */ 1702 static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush) 1703 { 1704 return (flush == BTRFS_RESERVE_FLUSH_ALL) || 1705 (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL); 1706 } 1707 1708 static inline void maybe_clamp_preempt(struct btrfs_space_info *space_info) 1709 { 1710 struct btrfs_fs_info *fs_info = space_info->fs_info; 1711 u64 ordered = percpu_counter_sum_positive(&fs_info->ordered_bytes); 1712 u64 delalloc = percpu_counter_sum_positive(&fs_info->delalloc_bytes); 1713 1714 /* 1715 * If we're heavy on ordered operations then clamping won't help us. We 1716 * need to clamp specifically to keep up with dirty'ing buffered 1717 * writers, because there's not a 1:1 correlation of writing delalloc 1718 * and freeing space, like there is with flushing delayed refs or 1719 * delayed nodes. If we're already more ordered than delalloc then 1720 * we're keeping up, otherwise we aren't and should probably clamp. 1721 */ 1722 if (ordered < delalloc) 1723 space_info->clamp = min(space_info->clamp + 1, 8); 1724 } 1725 1726 static inline bool can_steal(enum btrfs_reserve_flush_enum flush) 1727 { 1728 return (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL || 1729 flush == BTRFS_RESERVE_FLUSH_EVICT); 1730 } 1731 1732 /* 1733 * NO_FLUSH and FLUSH_EMERGENCY don't want to create a ticket, they just want to 1734 * fail as quickly as possible. 1735 */ 1736 static inline bool can_ticket(enum btrfs_reserve_flush_enum flush) 1737 { 1738 return (flush != BTRFS_RESERVE_NO_FLUSH && 1739 flush != BTRFS_RESERVE_FLUSH_EMERGENCY); 1740 } 1741 1742 /* 1743 * Try to reserve bytes from the block_rsv's space. 1744 * 1745 * @space_info: space info we want to allocate from 1746 * @orig_bytes: number of bytes we want 1747 * @flush: whether or not we can flush to make our reservation 1748 * 1749 * This will reserve orig_bytes number of bytes from the space info associated 1750 * with the block_rsv. If there is not enough space it will make an attempt to 1751 * flush out space to make room. It will do this by flushing delalloc if 1752 * possible or committing the transaction. If flush is 0 then no attempts to 1753 * regain reservations will be made and this will fail if there is not enough 1754 * space already. 1755 */ 1756 static int reserve_bytes(struct btrfs_space_info *space_info, u64 orig_bytes, 1757 enum btrfs_reserve_flush_enum flush) 1758 { 1759 struct btrfs_fs_info *fs_info = space_info->fs_info; 1760 struct work_struct *async_work; 1761 struct reserve_ticket ticket; 1762 u64 start_ns = 0; 1763 u64 used; 1764 int ret = -ENOSPC; 1765 bool pending_tickets; 1766 1767 ASSERT(orig_bytes, "orig_bytes=%llu", orig_bytes); 1768 /* 1769 * If have a transaction handle (current->journal_info != NULL), then 1770 * the flush method can not be neither BTRFS_RESERVE_FLUSH_ALL* nor 1771 * BTRFS_RESERVE_FLUSH_EVICT, as we could deadlock because those 1772 * flushing methods can trigger transaction commits. 1773 */ 1774 if (current->journal_info) { 1775 /* One assert per line for easier debugging. */ 1776 ASSERT(flush != BTRFS_RESERVE_FLUSH_ALL, "flush=%d", flush); 1777 ASSERT(flush != BTRFS_RESERVE_FLUSH_ALL_STEAL, "flush=%d", flush); 1778 ASSERT(flush != BTRFS_RESERVE_FLUSH_EVICT, "flush=%d", flush); 1779 } 1780 1781 if (flush == BTRFS_RESERVE_FLUSH_DATA) 1782 async_work = &fs_info->async_data_reclaim_work; 1783 else 1784 async_work = &fs_info->async_reclaim_work; 1785 1786 spin_lock(&space_info->lock); 1787 used = btrfs_space_info_used(space_info, true); 1788 1789 /* 1790 * We don't want NO_FLUSH allocations to jump everybody, they can 1791 * generally handle ENOSPC in a different way, so treat them the same as 1792 * normal flushers when it comes to skipping pending tickets. 1793 */ 1794 if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH)) 1795 pending_tickets = !list_empty(&space_info->tickets) || 1796 !list_empty(&space_info->priority_tickets); 1797 else 1798 pending_tickets = !list_empty(&space_info->priority_tickets); 1799 1800 /* 1801 * Carry on if we have enough space (short-circuit) OR call 1802 * can_overcommit() to ensure we can overcommit to continue. 1803 */ 1804 if (!pending_tickets && 1805 ((used + orig_bytes <= space_info->total_bytes) || 1806 can_overcommit(space_info, used, orig_bytes, flush))) { 1807 btrfs_space_info_update_bytes_may_use(space_info, orig_bytes); 1808 ret = 0; 1809 } 1810 1811 /* 1812 * Things are dire, we need to make a reservation so we don't abort. We 1813 * will let this reservation go through as long as we have actual space 1814 * left to allocate for the block. 1815 */ 1816 if (ret && unlikely(flush == BTRFS_RESERVE_FLUSH_EMERGENCY)) { 1817 used -= space_info->bytes_may_use; 1818 if (used + orig_bytes <= space_info->total_bytes) { 1819 btrfs_space_info_update_bytes_may_use(space_info, orig_bytes); 1820 ret = 0; 1821 } 1822 } 1823 1824 /* 1825 * If we couldn't make a reservation then setup our reservation ticket 1826 * and kick the async worker if it's not already running. 1827 * 1828 * If we are a priority flusher then we just need to add our ticket to 1829 * the list and we will do our own flushing further down. 1830 */ 1831 if (ret && can_ticket(flush)) { 1832 ticket.bytes = orig_bytes; 1833 ticket.error = 0; 1834 space_info->reclaim_size += ticket.bytes; 1835 init_waitqueue_head(&ticket.wait); 1836 spin_lock_init(&ticket.lock); 1837 ticket.steal = can_steal(flush); 1838 if (trace_btrfs_reserve_ticket_enabled()) 1839 start_ns = ktime_get_ns(); 1840 1841 if (flush == BTRFS_RESERVE_FLUSH_ALL || 1842 flush == BTRFS_RESERVE_FLUSH_ALL_STEAL || 1843 flush == BTRFS_RESERVE_FLUSH_DATA) { 1844 list_add_tail(&ticket.list, &space_info->tickets); 1845 if (!space_info->flush) { 1846 /* 1847 * We were forced to add a reserve ticket, so 1848 * our preemptive flushing is unable to keep 1849 * up. Clamp down on the threshold for the 1850 * preemptive flushing in order to keep up with 1851 * the workload. 1852 */ 1853 maybe_clamp_preempt(space_info); 1854 1855 space_info->flush = true; 1856 trace_btrfs_trigger_flush(fs_info, 1857 space_info->flags, 1858 orig_bytes, flush, 1859 "enospc"); 1860 queue_work(system_dfl_wq, async_work); 1861 } 1862 } else { 1863 list_add_tail(&ticket.list, 1864 &space_info->priority_tickets); 1865 } 1866 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 1867 /* 1868 * We will do the space reservation dance during log replay, 1869 * which means we won't have fs_info->fs_root set, so don't do 1870 * the async reclaim as we will panic. 1871 */ 1872 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) && 1873 !work_busy(&fs_info->preempt_reclaim_work) && 1874 need_preemptive_reclaim(space_info)) { 1875 trace_btrfs_trigger_flush(fs_info, space_info->flags, 1876 orig_bytes, flush, "preempt"); 1877 queue_work(system_dfl_wq, 1878 &fs_info->preempt_reclaim_work); 1879 } 1880 } 1881 spin_unlock(&space_info->lock); 1882 if (!ret || !can_ticket(flush)) 1883 return ret; 1884 1885 return handle_reserve_ticket(space_info, &ticket, start_ns, orig_bytes, flush); 1886 } 1887 1888 /* 1889 * Try to reserve metadata bytes from the block_rsv's space. 1890 * 1891 * @space_info: the space_info we're allocating for 1892 * @orig_bytes: number of bytes we want 1893 * @flush: whether or not we can flush to make our reservation 1894 * 1895 * This will reserve orig_bytes number of bytes from the space info associated 1896 * with the block_rsv. If there is not enough space it will make an attempt to 1897 * flush out space to make room. It will do this by flushing delalloc if 1898 * possible or committing the transaction. If flush is 0 then no attempts to 1899 * regain reservations will be made and this will fail if there is not enough 1900 * space already. 1901 */ 1902 int btrfs_reserve_metadata_bytes(struct btrfs_space_info *space_info, 1903 u64 orig_bytes, 1904 enum btrfs_reserve_flush_enum flush) 1905 { 1906 int ret; 1907 1908 ret = reserve_bytes(space_info, orig_bytes, flush); 1909 if (ret == -ENOSPC) { 1910 struct btrfs_fs_info *fs_info = space_info->fs_info; 1911 1912 trace_btrfs_space_reservation(fs_info, "space_info:enospc", 1913 space_info->flags, orig_bytes, 1); 1914 1915 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) 1916 btrfs_dump_space_info(space_info, orig_bytes, false); 1917 } 1918 return ret; 1919 } 1920 1921 /* 1922 * Try to reserve data bytes for an allocation. 1923 * 1924 * @space_info: the space_info we're allocating for 1925 * @bytes: number of bytes we need 1926 * @flush: how we are allowed to flush 1927 * 1928 * This will reserve bytes from the data space info. If there is not enough 1929 * space then we will attempt to flush space as specified by flush. 1930 */ 1931 int btrfs_reserve_data_bytes(struct btrfs_space_info *space_info, u64 bytes, 1932 enum btrfs_reserve_flush_enum flush) 1933 { 1934 struct btrfs_fs_info *fs_info = space_info->fs_info; 1935 int ret; 1936 1937 ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA || 1938 flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE || 1939 flush == BTRFS_RESERVE_NO_FLUSH, "flush=%d", flush); 1940 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA, 1941 "current->journal_info=0x%lx flush=%d", 1942 (unsigned long)current->journal_info, flush); 1943 1944 ret = reserve_bytes(space_info, bytes, flush); 1945 if (ret == -ENOSPC) { 1946 trace_btrfs_space_reservation(fs_info, "space_info:enospc", 1947 space_info->flags, bytes, 1); 1948 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) 1949 btrfs_dump_space_info(space_info, bytes, false); 1950 } 1951 return ret; 1952 } 1953 1954 /* Dump all the space infos when we abort a transaction due to ENOSPC. */ 1955 __cold void btrfs_dump_space_info_for_trans_abort(struct btrfs_fs_info *fs_info) 1956 { 1957 struct btrfs_space_info *space_info; 1958 1959 btrfs_info(fs_info, "dumping space info:"); 1960 list_for_each_entry(space_info, &fs_info->space_info, list) { 1961 spin_lock(&space_info->lock); 1962 __btrfs_dump_space_info(space_info); 1963 spin_unlock(&space_info->lock); 1964 } 1965 dump_global_block_rsv(fs_info); 1966 } 1967 1968 /* 1969 * Account the unused space of all the readonly block group in the space_info. 1970 * takes mirrors into account. 1971 */ 1972 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 1973 { 1974 struct btrfs_block_group *block_group; 1975 u64 free_bytes = 0; 1976 int factor; 1977 1978 /* It's df, we don't care if it's racy */ 1979 if (data_race(list_empty(&sinfo->ro_bgs))) 1980 return 0; 1981 1982 spin_lock(&sinfo->lock); 1983 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) { 1984 spin_lock(&block_group->lock); 1985 1986 if (!block_group->ro) { 1987 spin_unlock(&block_group->lock); 1988 continue; 1989 } 1990 1991 factor = btrfs_bg_type_to_factor(block_group->flags); 1992 free_bytes += (block_group->length - 1993 block_group->used) * factor; 1994 1995 spin_unlock(&block_group->lock); 1996 } 1997 spin_unlock(&sinfo->lock); 1998 1999 return free_bytes; 2000 } 2001 2002 static u64 calc_pct_ratio(u64 x, u64 y) 2003 { 2004 int ret; 2005 2006 if (!y) 2007 return 0; 2008 again: 2009 ret = check_mul_overflow(100, x, &x); 2010 if (ret) 2011 goto lose_precision; 2012 return div64_u64(x, y); 2013 lose_precision: 2014 x >>= 10; 2015 y >>= 10; 2016 if (!y) 2017 y = 1; 2018 goto again; 2019 } 2020 2021 /* 2022 * A reasonable buffer for unallocated space is 10 data block_groups. 2023 * If we claw this back repeatedly, we can still achieve efficient 2024 * utilization when near full, and not do too much reclaim while 2025 * always maintaining a solid buffer for workloads that quickly 2026 * allocate and pressure the unallocated space. 2027 */ 2028 static u64 calc_unalloc_target(struct btrfs_fs_info *fs_info) 2029 { 2030 u64 chunk_sz = calc_effective_data_chunk_size(fs_info); 2031 2032 return BTRFS_UNALLOC_BLOCK_GROUP_TARGET * chunk_sz; 2033 } 2034 2035 /* 2036 * The fundamental goal of automatic reclaim is to protect the filesystem's 2037 * unallocated space and thus minimize the probability of the filesystem going 2038 * read only when a metadata allocation failure causes a transaction abort. 2039 * 2040 * However, relocations happen into the space_info's unused space, therefore 2041 * automatic reclaim must also back off as that space runs low. There is no 2042 * value in doing trivial "relocations" of re-writing the same block group 2043 * into a fresh one. 2044 * 2045 * Furthermore, we want to avoid doing too much reclaim even if there are good 2046 * candidates. This is because the allocator is pretty good at filling up the 2047 * holes with writes. So we want to do just enough reclaim to try and stay 2048 * safe from running out of unallocated space but not be wasteful about it. 2049 * 2050 * Therefore, the dynamic reclaim threshold is calculated as follows: 2051 * - calculate a target unallocated amount of 5 block group sized chunks 2052 * - ratchet up the intensity of reclaim depending on how far we are from 2053 * that target by using a formula of unalloc / target to set the threshold. 2054 * 2055 * Typically with 10 block groups as the target, the discrete values this comes 2056 * out to are 0, 10, 20, ... , 80, 90, and 99. 2057 */ 2058 static int calc_dynamic_reclaim_threshold(const struct btrfs_space_info *space_info) 2059 { 2060 struct btrfs_fs_info *fs_info = space_info->fs_info; 2061 u64 unalloc = atomic64_read(&fs_info->free_chunk_space); 2062 u64 target = calc_unalloc_target(fs_info); 2063 u64 alloc = space_info->total_bytes; 2064 u64 used = btrfs_space_info_used(space_info, false); 2065 u64 unused = alloc - used; 2066 u64 want = target > unalloc ? target - unalloc : 0; 2067 u64 data_chunk_size = calc_effective_data_chunk_size(fs_info); 2068 2069 /* If we have no unused space, don't bother, it won't work anyway. */ 2070 if (unused < data_chunk_size) 2071 return 0; 2072 2073 /* Cast to int is OK because want <= target. */ 2074 return calc_pct_ratio(want, target); 2075 } 2076 2077 int btrfs_calc_reclaim_threshold(const struct btrfs_space_info *space_info) 2078 { 2079 lockdep_assert_held(&space_info->lock); 2080 2081 if (READ_ONCE(space_info->dynamic_reclaim)) 2082 return calc_dynamic_reclaim_threshold(space_info); 2083 return READ_ONCE(space_info->bg_reclaim_threshold); 2084 } 2085 2086 /* 2087 * Under "urgent" reclaim, we will reclaim even fresh block groups that have 2088 * recently seen successful allocations, as we are desperate to reclaim 2089 * whatever we can to avoid ENOSPC in a transaction leading to a readonly fs. 2090 */ 2091 static bool is_reclaim_urgent(struct btrfs_space_info *space_info) 2092 { 2093 struct btrfs_fs_info *fs_info = space_info->fs_info; 2094 u64 unalloc = atomic64_read(&fs_info->free_chunk_space); 2095 u64 data_chunk_size = calc_effective_data_chunk_size(fs_info); 2096 2097 return unalloc < data_chunk_size; 2098 } 2099 2100 static bool do_reclaim_sweep(struct btrfs_space_info *space_info, int raid) 2101 { 2102 struct btrfs_block_group *bg; 2103 int thresh_pct; 2104 bool will_reclaim = false; 2105 bool urgent; 2106 2107 spin_lock(&space_info->lock); 2108 urgent = is_reclaim_urgent(space_info); 2109 thresh_pct = btrfs_calc_reclaim_threshold(space_info); 2110 spin_unlock(&space_info->lock); 2111 2112 down_read(&space_info->groups_sem); 2113 again: 2114 list_for_each_entry(bg, &space_info->block_groups[raid], list) { 2115 u64 thresh; 2116 bool reclaim = false; 2117 2118 btrfs_get_block_group(bg); 2119 spin_lock(&bg->lock); 2120 thresh = mult_perc(bg->length, thresh_pct); 2121 if (bg->used < thresh && bg->reclaim_mark) { 2122 will_reclaim = true; 2123 reclaim = true; 2124 } 2125 bg->reclaim_mark++; 2126 spin_unlock(&bg->lock); 2127 if (reclaim) 2128 btrfs_mark_bg_to_reclaim(bg); 2129 btrfs_put_block_group(bg); 2130 } 2131 2132 /* 2133 * In situations where we are very motivated to reclaim (low unalloc) 2134 * use two passes to make the reclaim mark check best effort. 2135 * 2136 * If we have any staler groups, we don't touch the fresher ones, but if we 2137 * really need a block group, do take a fresh one. 2138 */ 2139 if (!will_reclaim && urgent) { 2140 urgent = false; 2141 goto again; 2142 } 2143 2144 up_read(&space_info->groups_sem); 2145 return will_reclaim; 2146 } 2147 2148 void btrfs_space_info_update_reclaimable(struct btrfs_space_info *space_info, s64 bytes) 2149 { 2150 u64 chunk_sz = calc_effective_data_chunk_size(space_info->fs_info); 2151 2152 lockdep_assert_held(&space_info->lock); 2153 space_info->reclaimable_bytes += bytes; 2154 2155 if (space_info->reclaimable_bytes > 0 && 2156 space_info->reclaimable_bytes >= chunk_sz) 2157 btrfs_set_periodic_reclaim_ready(space_info, true); 2158 } 2159 2160 void btrfs_set_periodic_reclaim_ready(struct btrfs_space_info *space_info, bool ready) 2161 { 2162 lockdep_assert_held(&space_info->lock); 2163 if (!READ_ONCE(space_info->periodic_reclaim)) 2164 return; 2165 if (ready != space_info->periodic_reclaim_ready) { 2166 space_info->periodic_reclaim_ready = ready; 2167 if (!ready) 2168 space_info->reclaimable_bytes = 0; 2169 } 2170 } 2171 2172 static bool btrfs_should_periodic_reclaim(struct btrfs_space_info *space_info) 2173 { 2174 bool ret; 2175 2176 if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM) 2177 return false; 2178 if (!READ_ONCE(space_info->periodic_reclaim)) 2179 return false; 2180 2181 spin_lock(&space_info->lock); 2182 ret = space_info->periodic_reclaim_ready; 2183 spin_unlock(&space_info->lock); 2184 2185 return ret; 2186 } 2187 2188 void btrfs_reclaim_sweep(const struct btrfs_fs_info *fs_info) 2189 { 2190 int raid; 2191 struct btrfs_space_info *space_info; 2192 2193 list_for_each_entry(space_info, &fs_info->space_info, list) { 2194 if (!btrfs_should_periodic_reclaim(space_info)) 2195 continue; 2196 for (raid = 0; raid < BTRFS_NR_RAID_TYPES; raid++) { 2197 if (do_reclaim_sweep(space_info, raid)) 2198 btrfs_set_periodic_reclaim_ready(space_info, false); 2199 } 2200 } 2201 } 2202 2203 void btrfs_return_free_space(struct btrfs_space_info *space_info, u64 len) 2204 { 2205 struct btrfs_fs_info *fs_info = space_info->fs_info; 2206 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 2207 2208 lockdep_assert_held(&space_info->lock); 2209 2210 /* Prioritize the global reservation to receive the freed space. */ 2211 if (global_rsv->space_info != space_info) 2212 goto grant; 2213 2214 spin_lock(&global_rsv->lock); 2215 if (!global_rsv->full) { 2216 u64 to_add = min(len, global_rsv->size - global_rsv->reserved); 2217 2218 global_rsv->reserved += to_add; 2219 btrfs_space_info_update_bytes_may_use(space_info, to_add); 2220 if (global_rsv->reserved >= global_rsv->size) 2221 global_rsv->full = true; 2222 len -= to_add; 2223 } 2224 spin_unlock(&global_rsv->lock); 2225 2226 grant: 2227 /* Add to any tickets we may have. */ 2228 if (len) 2229 btrfs_try_granting_tickets(space_info); 2230 } 2231