1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright(C) 2005-2006, Linutronix GmbH, Thomas Gleixner <tglx@kernel.org> 4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 6 * 7 * NOHZ implementation for low and high resolution timers 8 * 9 * Started by: Thomas Gleixner and Ingo Molnar 10 */ 11 #include <linux/compiler.h> 12 #include <linux/cpu.h> 13 #include <linux/err.h> 14 #include <linux/hrtimer.h> 15 #include <linux/interrupt.h> 16 #include <linux/kernel_stat.h> 17 #include <linux/percpu.h> 18 #include <linux/nmi.h> 19 #include <linux/profile.h> 20 #include <linux/sched/signal.h> 21 #include <linux/sched/clock.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/nohz.h> 24 #include <linux/sched/loadavg.h> 25 #include <linux/module.h> 26 #include <linux/irq_work.h> 27 #include <linux/posix-timers.h> 28 #include <linux/context_tracking.h> 29 #include <linux/mm.h> 30 31 #include <asm/irq_regs.h> 32 33 #include "tick-internal.h" 34 35 #include <trace/events/timer.h> 36 37 /* 38 * Per-CPU nohz control structure 39 */ 40 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched); 41 42 struct tick_sched *tick_get_tick_sched(int cpu) 43 { 44 return &per_cpu(tick_cpu_sched, cpu); 45 } 46 47 /* 48 * The time when the last jiffy update happened. Write access must hold 49 * jiffies_lock and jiffies_seq. tick_nohz_next_event() needs to get a 50 * consistent view of jiffies and last_jiffies_update. 51 */ 52 static ktime_t last_jiffies_update; 53 54 /* 55 * Must be called with interrupts disabled ! 56 */ 57 static void tick_do_update_jiffies64(ktime_t now) 58 { 59 unsigned long ticks = 1; 60 ktime_t delta, nextp; 61 62 /* 63 * 64-bit can do a quick check without holding the jiffies lock and 64 * without looking at the sequence count. The smp_load_acquire() 65 * pairs with the update done later in this function. 66 * 67 * 32-bit cannot do that because the store of 'tick_next_period' 68 * consists of two 32-bit stores, and the first store could be 69 * moved by the CPU to a random point in the future. 70 */ 71 if (IS_ENABLED(CONFIG_64BIT)) { 72 if (ktime_before(now, smp_load_acquire(&tick_next_period))) 73 return; 74 } else { 75 unsigned int seq; 76 77 /* 78 * Avoid contention on 'jiffies_lock' and protect the quick 79 * check with the sequence count. 80 */ 81 do { 82 seq = read_seqcount_begin(&jiffies_seq); 83 nextp = tick_next_period; 84 } while (read_seqcount_retry(&jiffies_seq, seq)); 85 86 if (ktime_before(now, nextp)) 87 return; 88 } 89 90 /* Quick check failed, i.e. update is required. */ 91 raw_spin_lock(&jiffies_lock); 92 /* 93 * Re-evaluate with the lock held. Another CPU might have done the 94 * update already. 95 */ 96 if (ktime_before(now, tick_next_period)) { 97 raw_spin_unlock(&jiffies_lock); 98 return; 99 } 100 101 write_seqcount_begin(&jiffies_seq); 102 103 delta = ktime_sub(now, tick_next_period); 104 if (unlikely(delta >= TICK_NSEC)) { 105 /* Slow path for long idle sleep times */ 106 s64 incr = TICK_NSEC; 107 108 ticks += ktime_divns(delta, incr); 109 110 last_jiffies_update = ktime_add_ns(last_jiffies_update, 111 incr * ticks); 112 } else { 113 last_jiffies_update = ktime_add_ns(last_jiffies_update, 114 TICK_NSEC); 115 } 116 117 /* Advance jiffies to complete the 'jiffies_seq' protected job */ 118 jiffies_64 += ticks; 119 120 /* Keep the tick_next_period variable up to date */ 121 nextp = ktime_add_ns(last_jiffies_update, TICK_NSEC); 122 123 if (IS_ENABLED(CONFIG_64BIT)) { 124 /* 125 * Pairs with smp_load_acquire() in the lockless quick 126 * check above, and ensures that the update to 'jiffies_64' is 127 * not reordered vs. the store to 'tick_next_period', neither 128 * by the compiler nor by the CPU. 129 */ 130 smp_store_release(&tick_next_period, nextp); 131 } else { 132 /* 133 * A plain store is good enough on 32-bit, as the quick check 134 * above is protected by the sequence count. 135 */ 136 tick_next_period = nextp; 137 } 138 139 /* 140 * Release the sequence count. calc_global_load() below is not 141 * protected by it, but 'jiffies_lock' needs to be held to prevent 142 * concurrent invocations. 143 */ 144 write_seqcount_end(&jiffies_seq); 145 146 calc_global_load(); 147 148 raw_spin_unlock(&jiffies_lock); 149 update_wall_time(); 150 } 151 152 /* 153 * Initialize and return retrieve the jiffies update. 154 */ 155 static ktime_t tick_init_jiffy_update(void) 156 { 157 ktime_t period; 158 159 raw_spin_lock(&jiffies_lock); 160 write_seqcount_begin(&jiffies_seq); 161 162 /* Have we started the jiffies update yet ? */ 163 if (last_jiffies_update == 0) { 164 u32 rem; 165 166 /* 167 * Ensure that the tick is aligned to a multiple of 168 * TICK_NSEC. 169 */ 170 div_u64_rem(tick_next_period, TICK_NSEC, &rem); 171 if (rem) 172 tick_next_period += TICK_NSEC - rem; 173 174 last_jiffies_update = tick_next_period; 175 } 176 period = last_jiffies_update; 177 178 write_seqcount_end(&jiffies_seq); 179 raw_spin_unlock(&jiffies_lock); 180 181 return period; 182 } 183 184 static inline int tick_sched_flag_test(struct tick_sched *ts, 185 unsigned long flag) 186 { 187 return !!(ts->flags & flag); 188 } 189 190 static inline void tick_sched_flag_set(struct tick_sched *ts, 191 unsigned long flag) 192 { 193 lockdep_assert_irqs_disabled(); 194 ts->flags |= flag; 195 } 196 197 static inline void tick_sched_flag_clear(struct tick_sched *ts, 198 unsigned long flag) 199 { 200 lockdep_assert_irqs_disabled(); 201 ts->flags &= ~flag; 202 } 203 204 /* 205 * Allow only one non-timekeeper CPU at a time update jiffies from 206 * the timer tick. 207 * 208 * Returns true if update was run. 209 */ 210 static bool tick_limited_update_jiffies64(struct tick_sched *ts, ktime_t now) 211 { 212 static atomic_t in_progress; 213 int inp; 214 215 inp = atomic_read(&in_progress); 216 if (inp || !atomic_try_cmpxchg(&in_progress, &inp, 1)) 217 return false; 218 219 if (ts->last_tick_jiffies == jiffies) 220 tick_do_update_jiffies64(now); 221 atomic_set(&in_progress, 0); 222 return true; 223 } 224 225 #define MAX_STALLED_JIFFIES 5 226 227 static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now) 228 { 229 int tick_cpu, cpu = smp_processor_id(); 230 231 /* 232 * Check if the do_timer duty was dropped. We don't care about 233 * concurrency: This happens only when the CPU in charge went 234 * into a long sleep. If two CPUs happen to assign themselves to 235 * this duty, then the jiffies update is still serialized by 236 * 'jiffies_lock'. 237 * 238 * If nohz_full is enabled, this should not happen because the 239 * 'tick_do_timer_cpu' CPU never relinquishes. 240 */ 241 tick_cpu = READ_ONCE(tick_do_timer_cpu); 242 243 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && unlikely(tick_cpu == TICK_DO_TIMER_NONE)) { 244 #ifdef CONFIG_NO_HZ_FULL 245 WARN_ON_ONCE(tick_nohz_full_running); 246 #endif 247 WRITE_ONCE(tick_do_timer_cpu, cpu); 248 tick_cpu = cpu; 249 } 250 251 /* Check if jiffies need an update */ 252 if (tick_cpu == cpu) 253 tick_do_update_jiffies64(now); 254 255 /* 256 * If the jiffies update stalled for too long (timekeeper in stop_machine() 257 * or VMEXIT'ed for several msecs), force an update. 258 */ 259 if (ts->last_tick_jiffies != jiffies) { 260 ts->stalled_jiffies = 0; 261 ts->last_tick_jiffies = READ_ONCE(jiffies); 262 } else { 263 if (++ts->stalled_jiffies >= MAX_STALLED_JIFFIES) { 264 if (tick_limited_update_jiffies64(ts, now)) { 265 ts->stalled_jiffies = 0; 266 ts->last_tick_jiffies = READ_ONCE(jiffies); 267 } 268 } 269 } 270 271 if (tick_sched_flag_test(ts, TS_FLAG_INIDLE)) 272 ts->got_idle_tick = 1; 273 } 274 275 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs) 276 { 277 /* 278 * When we are idle and the tick is stopped, we have to touch 279 * the watchdog as we might not schedule for a really long 280 * time. This happens on completely idle SMP systems while 281 * waiting on the login prompt. We also increment the "start of 282 * idle" jiffy stamp so the idle accounting adjustment we do 283 * when we go busy again does not account too many ticks. 284 */ 285 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && 286 tick_sched_flag_test(ts, TS_FLAG_STOPPED)) { 287 touch_softlockup_watchdog_sched(); 288 if (is_idle_task(current)) 289 ts->idle_jiffies++; 290 /* 291 * In case the current tick fired too early past its expected 292 * expiration, make sure we don't bypass the next clock reprogramming 293 * to the same deadline. 294 */ 295 ts->next_tick = 0; 296 } 297 298 update_process_times(user_mode(regs)); 299 profile_tick(CPU_PROFILING); 300 } 301 302 /* 303 * We rearm the timer until we get disabled by the idle code. 304 * Called with interrupts disabled. 305 */ 306 static enum hrtimer_restart tick_nohz_handler(struct hrtimer *timer) 307 { 308 struct tick_sched *ts = container_of(timer, struct tick_sched, sched_timer); 309 struct pt_regs *regs = get_irq_regs(); 310 ktime_t now = ktime_get(); 311 312 tick_sched_do_timer(ts, now); 313 314 /* 315 * Do not call when we are not in IRQ context and have 316 * no valid 'regs' pointer 317 */ 318 if (regs) 319 tick_sched_handle(ts, regs); 320 else 321 ts->next_tick = 0; 322 323 /* 324 * In dynticks mode, tick reprogram is deferred: 325 * - to the idle task if in dynticks-idle 326 * - to IRQ exit if in full-dynticks. 327 */ 328 if (unlikely(tick_sched_flag_test(ts, TS_FLAG_STOPPED))) 329 return HRTIMER_NORESTART; 330 331 hrtimer_forward(timer, now, TICK_NSEC); 332 333 return HRTIMER_RESTART; 334 } 335 336 #ifdef CONFIG_NO_HZ_FULL 337 cpumask_var_t tick_nohz_full_mask; 338 EXPORT_SYMBOL_GPL(tick_nohz_full_mask); 339 bool tick_nohz_full_running; 340 EXPORT_SYMBOL_GPL(tick_nohz_full_running); 341 static atomic_t tick_dep_mask; 342 343 static bool check_tick_dependency(atomic_t *dep) 344 { 345 int val = atomic_read(dep); 346 347 if (likely(!tracepoint_enabled(tick_stop))) 348 return !val; 349 350 if (val & TICK_DEP_MASK_POSIX_TIMER) { 351 trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER); 352 return true; 353 } 354 355 if (val & TICK_DEP_MASK_PERF_EVENTS) { 356 trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS); 357 return true; 358 } 359 360 if (val & TICK_DEP_MASK_SCHED) { 361 trace_tick_stop(0, TICK_DEP_MASK_SCHED); 362 return true; 363 } 364 365 if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) { 366 trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE); 367 return true; 368 } 369 370 if (val & TICK_DEP_MASK_RCU) { 371 trace_tick_stop(0, TICK_DEP_MASK_RCU); 372 return true; 373 } 374 375 if (val & TICK_DEP_MASK_RCU_EXP) { 376 trace_tick_stop(0, TICK_DEP_MASK_RCU_EXP); 377 return true; 378 } 379 380 return false; 381 } 382 383 static bool can_stop_full_tick(int cpu, struct tick_sched *ts) 384 { 385 lockdep_assert_irqs_disabled(); 386 387 if (unlikely(!cpu_online(cpu))) 388 return false; 389 390 if (check_tick_dependency(&tick_dep_mask)) 391 return false; 392 393 if (check_tick_dependency(&ts->tick_dep_mask)) 394 return false; 395 396 if (check_tick_dependency(¤t->tick_dep_mask)) 397 return false; 398 399 if (check_tick_dependency(¤t->signal->tick_dep_mask)) 400 return false; 401 402 return true; 403 } 404 405 static void nohz_full_kick_func(struct irq_work *work) 406 { 407 /* Empty, the tick restart happens on tick_nohz_irq_exit() */ 408 } 409 410 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = 411 IRQ_WORK_INIT_HARD(nohz_full_kick_func); 412 413 /* 414 * Kick this CPU if it's full dynticks in order to force it to 415 * re-evaluate its dependency on the tick and restart it if necessary. 416 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(), 417 * is NMI safe. 418 */ 419 static void tick_nohz_full_kick(void) 420 { 421 if (!tick_nohz_full_cpu(smp_processor_id())) 422 return; 423 424 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work)); 425 } 426 427 /* 428 * Kick the CPU if it's full dynticks in order to force it to 429 * re-evaluate its dependency on the tick and restart it if necessary. 430 */ 431 void tick_nohz_full_kick_cpu(int cpu) 432 { 433 if (!tick_nohz_full_cpu(cpu)) 434 return; 435 436 irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu); 437 } 438 439 static void tick_nohz_kick_task(struct task_struct *tsk) 440 { 441 int cpu; 442 443 /* 444 * If the task is not running, run_posix_cpu_timers() 445 * has nothing to elapse, and an IPI can then be optimized out. 446 * 447 * activate_task() STORE p->tick_dep_mask 448 * STORE p->on_rq 449 * __schedule() (switch to task 'p') smp_mb() (atomic_fetch_or()) 450 * LOCK rq->lock LOAD p->on_rq 451 * smp_mb__after_spin_lock() 452 * tick_nohz_task_switch() 453 * LOAD p->tick_dep_mask 454 * 455 * XXX given a task picks up the dependency on schedule(), should we 456 * only care about tasks that are currently on the CPU instead of all 457 * that are on the runqueue? 458 * 459 * That is, does this want to be: task_on_cpu() / task_curr()? 460 */ 461 if (!sched_task_on_rq(tsk)) 462 return; 463 464 /* 465 * If the task concurrently migrates to another CPU, 466 * we guarantee it sees the new tick dependency upon 467 * schedule. 468 * 469 * set_task_cpu(p, cpu); 470 * STORE p->cpu = @cpu 471 * __schedule() (switch to task 'p') 472 * LOCK rq->lock 473 * smp_mb__after_spin_lock() STORE p->tick_dep_mask 474 * tick_nohz_task_switch() smp_mb() (atomic_fetch_or()) 475 * LOAD p->tick_dep_mask LOAD p->cpu 476 */ 477 cpu = task_cpu(tsk); 478 479 preempt_disable(); 480 if (cpu_online(cpu)) 481 tick_nohz_full_kick_cpu(cpu); 482 preempt_enable(); 483 } 484 485 /* 486 * Kick all full dynticks CPUs in order to force these to re-evaluate 487 * their dependency on the tick and restart it if necessary. 488 */ 489 static void tick_nohz_full_kick_all(void) 490 { 491 int cpu; 492 493 if (!tick_nohz_full_running) 494 return; 495 496 preempt_disable(); 497 for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask) 498 tick_nohz_full_kick_cpu(cpu); 499 preempt_enable(); 500 } 501 502 static void tick_nohz_dep_set_all(atomic_t *dep, 503 enum tick_dep_bits bit) 504 { 505 int prev; 506 507 prev = atomic_fetch_or(BIT(bit), dep); 508 if (!prev) 509 tick_nohz_full_kick_all(); 510 } 511 512 /* 513 * Set a global tick dependency. Used by perf events that rely on freq and 514 * unstable clocks. 515 */ 516 void tick_nohz_dep_set(enum tick_dep_bits bit) 517 { 518 tick_nohz_dep_set_all(&tick_dep_mask, bit); 519 } 520 521 void tick_nohz_dep_clear(enum tick_dep_bits bit) 522 { 523 atomic_andnot(BIT(bit), &tick_dep_mask); 524 } 525 526 /* 527 * Set per-CPU tick dependency. Used by scheduler and perf events in order to 528 * manage event-throttling. 529 */ 530 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit) 531 { 532 int prev; 533 struct tick_sched *ts; 534 535 ts = per_cpu_ptr(&tick_cpu_sched, cpu); 536 537 prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask); 538 if (!prev) { 539 preempt_disable(); 540 /* Perf needs local kick that is NMI safe */ 541 if (cpu == smp_processor_id()) { 542 tick_nohz_full_kick(); 543 } else { 544 /* Remote IRQ work not NMI-safe */ 545 if (!WARN_ON_ONCE(in_nmi())) 546 tick_nohz_full_kick_cpu(cpu); 547 } 548 preempt_enable(); 549 } 550 } 551 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu); 552 553 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit) 554 { 555 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu); 556 557 atomic_andnot(BIT(bit), &ts->tick_dep_mask); 558 } 559 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu); 560 561 /* 562 * Set a per-task tick dependency. RCU needs this. Also posix CPU timers 563 * in order to elapse per task timers. 564 */ 565 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit) 566 { 567 if (!atomic_fetch_or(BIT(bit), &tsk->tick_dep_mask)) 568 tick_nohz_kick_task(tsk); 569 } 570 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task); 571 572 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit) 573 { 574 atomic_andnot(BIT(bit), &tsk->tick_dep_mask); 575 } 576 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task); 577 578 /* 579 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse 580 * per process timers. 581 */ 582 void tick_nohz_dep_set_signal(struct task_struct *tsk, 583 enum tick_dep_bits bit) 584 { 585 int prev; 586 struct signal_struct *sig = tsk->signal; 587 588 prev = atomic_fetch_or(BIT(bit), &sig->tick_dep_mask); 589 if (!prev) { 590 struct task_struct *t; 591 592 lockdep_assert_held(&tsk->sighand->siglock); 593 __for_each_thread(sig, t) 594 tick_nohz_kick_task(t); 595 } 596 } 597 598 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit) 599 { 600 atomic_andnot(BIT(bit), &sig->tick_dep_mask); 601 } 602 603 /* 604 * Re-evaluate the need for the tick as we switch the current task. 605 * It might need the tick due to per task/process properties: 606 * perf events, posix CPU timers, ... 607 */ 608 void __tick_nohz_task_switch(void) 609 { 610 struct tick_sched *ts; 611 612 if (!tick_nohz_full_cpu(smp_processor_id())) 613 return; 614 615 ts = this_cpu_ptr(&tick_cpu_sched); 616 617 if (tick_sched_flag_test(ts, TS_FLAG_STOPPED)) { 618 if (atomic_read(¤t->tick_dep_mask) || 619 atomic_read(¤t->signal->tick_dep_mask)) 620 tick_nohz_full_kick(); 621 } 622 } 623 624 /* Get the boot-time nohz CPU list from the kernel parameters. */ 625 void __init tick_nohz_full_setup(cpumask_var_t cpumask) 626 { 627 alloc_bootmem_cpumask_var(&tick_nohz_full_mask); 628 cpumask_copy(tick_nohz_full_mask, cpumask); 629 tick_nohz_full_running = true; 630 } 631 632 bool tick_nohz_cpu_hotpluggable(unsigned int cpu) 633 { 634 /* 635 * The 'tick_do_timer_cpu' CPU handles housekeeping duty (unbound 636 * timers, workqueues, timekeeping, ...) on behalf of full dynticks 637 * CPUs. It must remain online when nohz full is enabled. 638 */ 639 if (tick_nohz_full_running && READ_ONCE(tick_do_timer_cpu) == cpu) 640 return false; 641 return true; 642 } 643 644 static int tick_nohz_cpu_down(unsigned int cpu) 645 { 646 return tick_nohz_cpu_hotpluggable(cpu) ? 0 : -EBUSY; 647 } 648 649 void __init tick_nohz_init(void) 650 { 651 int cpu, ret; 652 653 if (!tick_nohz_full_running) 654 return; 655 656 /* 657 * Full dynticks uses IRQ work to drive the tick rescheduling on safe 658 * locking contexts. But then we need IRQ work to raise its own 659 * interrupts to avoid circular dependency on the tick. 660 */ 661 if (!arch_irq_work_has_interrupt()) { 662 pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support IRQ work self-IPIs\n"); 663 cpumask_clear(tick_nohz_full_mask); 664 tick_nohz_full_running = false; 665 return; 666 } 667 668 if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) && 669 !IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) { 670 cpu = smp_processor_id(); 671 672 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) { 673 pr_warn("NO_HZ: Clearing %d from nohz_full range " 674 "for timekeeping\n", cpu); 675 cpumask_clear_cpu(cpu, tick_nohz_full_mask); 676 } 677 } 678 679 for_each_cpu(cpu, tick_nohz_full_mask) 680 ct_cpu_track_user(cpu); 681 682 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 683 "kernel/nohz:predown", NULL, 684 tick_nohz_cpu_down); 685 WARN_ON(ret < 0); 686 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n", 687 cpumask_pr_args(tick_nohz_full_mask)); 688 } 689 #endif /* #ifdef CONFIG_NO_HZ_FULL */ 690 691 /* 692 * NOHZ - aka dynamic tick functionality 693 */ 694 #ifdef CONFIG_NO_HZ_COMMON 695 /* 696 * NO HZ enabled ? 697 */ 698 bool tick_nohz_enabled __read_mostly = true; 699 static unsigned long tick_nohz_active __read_mostly; 700 /* 701 * Enable / Disable tickless mode 702 */ 703 static int __init setup_tick_nohz(char *str) 704 { 705 return (kstrtobool(str, &tick_nohz_enabled) == 0); 706 } 707 708 __setup("nohz=", setup_tick_nohz); 709 710 bool tick_nohz_is_active(void) 711 { 712 return tick_nohz_active; 713 } 714 EXPORT_SYMBOL_GPL(tick_nohz_is_active); 715 716 bool tick_nohz_tick_stopped(void) 717 { 718 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 719 720 return tick_sched_flag_test(ts, TS_FLAG_STOPPED); 721 } 722 723 bool tick_nohz_tick_stopped_cpu(int cpu) 724 { 725 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu); 726 727 return tick_sched_flag_test(ts, TS_FLAG_STOPPED); 728 } 729 730 /** 731 * tick_nohz_update_jiffies - update jiffies when idle was interrupted 732 * @now: current ktime_t 733 * 734 * Called from interrupt entry when the CPU was idle 735 * 736 * In case the sched_tick was stopped on this CPU, we have to check if jiffies 737 * must be updated. Otherwise an interrupt handler could use a stale jiffy 738 * value. We do this unconditionally on any CPU, as we don't know whether the 739 * CPU, which has the update task assigned, is in a long sleep. 740 */ 741 static void tick_nohz_update_jiffies(ktime_t now) 742 { 743 unsigned long flags; 744 745 __this_cpu_write(tick_cpu_sched.idle_waketime, now); 746 747 local_irq_save(flags); 748 tick_do_update_jiffies64(now); 749 local_irq_restore(flags); 750 751 touch_softlockup_watchdog_sched(); 752 } 753 754 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now) 755 { 756 ktime_t delta; 757 758 if (WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE))) 759 return; 760 761 delta = ktime_sub(now, ts->idle_entrytime); 762 763 write_seqcount_begin(&ts->idle_sleeptime_seq); 764 if (nr_iowait_cpu(smp_processor_id()) > 0) 765 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta); 766 else 767 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); 768 769 ts->idle_entrytime = now; 770 tick_sched_flag_clear(ts, TS_FLAG_IDLE_ACTIVE); 771 write_seqcount_end(&ts->idle_sleeptime_seq); 772 773 sched_clock_idle_wakeup_event(); 774 } 775 776 static void tick_nohz_start_idle(struct tick_sched *ts) 777 { 778 write_seqcount_begin(&ts->idle_sleeptime_seq); 779 ts->idle_entrytime = ktime_get(); 780 tick_sched_flag_set(ts, TS_FLAG_IDLE_ACTIVE); 781 write_seqcount_end(&ts->idle_sleeptime_seq); 782 783 sched_clock_idle_sleep_event(); 784 } 785 786 static u64 get_cpu_sleep_time_us(struct tick_sched *ts, ktime_t *sleeptime, 787 bool compute_delta, u64 *last_update_time) 788 { 789 ktime_t now, idle; 790 unsigned int seq; 791 792 if (!tick_nohz_active) 793 return -1; 794 795 now = ktime_get(); 796 if (last_update_time) 797 *last_update_time = ktime_to_us(now); 798 799 do { 800 seq = read_seqcount_begin(&ts->idle_sleeptime_seq); 801 802 if (tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE) && compute_delta) { 803 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 804 805 idle = ktime_add(*sleeptime, delta); 806 } else { 807 idle = *sleeptime; 808 } 809 } while (read_seqcount_retry(&ts->idle_sleeptime_seq, seq)); 810 811 return ktime_to_us(idle); 812 813 } 814 815 /** 816 * get_cpu_idle_time_us - get the total idle time of a CPU 817 * @cpu: CPU number to query 818 * @last_update_time: variable to store update time in. Do not update 819 * counters if NULL. 820 * 821 * Return the cumulative idle time (since boot) for a given 822 * CPU, in microseconds. Note that this is partially broken due to 823 * the counter of iowait tasks that can be remotely updated without 824 * any synchronization. Therefore it is possible to observe backward 825 * values within two consecutive reads. 826 * 827 * This time is measured via accounting rather than sampling, 828 * and is as accurate as ktime_get() is. 829 * 830 * Return: -1 if NOHZ is not enabled, else total idle time of the @cpu 831 */ 832 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time) 833 { 834 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 835 836 return get_cpu_sleep_time_us(ts, &ts->idle_sleeptime, 837 !nr_iowait_cpu(cpu), last_update_time); 838 } 839 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us); 840 841 /** 842 * get_cpu_iowait_time_us - get the total iowait time of a CPU 843 * @cpu: CPU number to query 844 * @last_update_time: variable to store update time in. Do not update 845 * counters if NULL. 846 * 847 * Return the cumulative iowait time (since boot) for a given 848 * CPU, in microseconds. Note this is partially broken due to 849 * the counter of iowait tasks that can be remotely updated without 850 * any synchronization. Therefore it is possible to observe backward 851 * values within two consecutive reads. 852 * 853 * This time is measured via accounting rather than sampling, 854 * and is as accurate as ktime_get() is. 855 * 856 * Return: -1 if NOHZ is not enabled, else total iowait time of @cpu 857 */ 858 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time) 859 { 860 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 861 862 return get_cpu_sleep_time_us(ts, &ts->iowait_sleeptime, 863 nr_iowait_cpu(cpu), last_update_time); 864 } 865 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us); 866 867 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now) 868 { 869 hrtimer_cancel(&ts->sched_timer); 870 hrtimer_set_expires(&ts->sched_timer, ts->last_tick); 871 872 /* Forward the time to expire in the future */ 873 hrtimer_forward(&ts->sched_timer, now, TICK_NSEC); 874 875 if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES)) { 876 hrtimer_start_expires(&ts->sched_timer, 877 HRTIMER_MODE_ABS_PINNED_HARD); 878 } else { 879 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 880 } 881 882 /* 883 * Reset to make sure the next tick stop doesn't get fooled by past 884 * cached clock deadline. 885 */ 886 ts->next_tick = 0; 887 } 888 889 static inline bool local_timer_softirq_pending(void) 890 { 891 return local_timers_pending() & BIT(TIMER_SOFTIRQ); 892 } 893 894 /* 895 * Read jiffies and the time when jiffies were updated last 896 */ 897 u64 get_jiffies_update(unsigned long *basej) 898 { 899 unsigned long basejiff; 900 unsigned int seq; 901 u64 basemono; 902 903 do { 904 seq = read_seqcount_begin(&jiffies_seq); 905 basemono = last_jiffies_update; 906 basejiff = jiffies; 907 } while (read_seqcount_retry(&jiffies_seq, seq)); 908 *basej = basejiff; 909 return basemono; 910 } 911 912 /** 913 * tick_nohz_next_event() - return the clock monotonic based next event 914 * @ts: pointer to tick_sched struct 915 * @cpu: CPU number 916 * 917 * Return: 918 * *%0 - When the next event is a maximum of TICK_NSEC in the future 919 * and the tick is not stopped yet 920 * *%next_event - Next event based on clock monotonic 921 */ 922 static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu) 923 { 924 u64 basemono, next_tick, delta, expires; 925 unsigned long basejiff; 926 int tick_cpu; 927 928 basemono = get_jiffies_update(&basejiff); 929 ts->last_jiffies = basejiff; 930 ts->timer_expires_base = basemono; 931 932 /* 933 * Keep the periodic tick, when RCU, architecture or irq_work 934 * requests it. 935 * Aside of that, check whether the local timer softirq is 936 * pending. If so, its a bad idea to call get_next_timer_interrupt(), 937 * because there is an already expired timer, so it will request 938 * immediate expiry, which rearms the hardware timer with a 939 * minimal delta, which brings us back to this place 940 * immediately. Lather, rinse and repeat... 941 */ 942 if (rcu_needs_cpu() || arch_needs_cpu() || 943 irq_work_needs_cpu() || local_timer_softirq_pending()) { 944 next_tick = basemono + TICK_NSEC; 945 } else { 946 /* 947 * Get the next pending timer. If high resolution 948 * timers are enabled this only takes the timer wheel 949 * timers into account. If high resolution timers are 950 * disabled this also looks at the next expiring 951 * hrtimer. 952 */ 953 next_tick = get_next_timer_interrupt(basejiff, basemono); 954 ts->next_timer = next_tick; 955 } 956 957 /* Make sure next_tick is never before basemono! */ 958 if (WARN_ON_ONCE(basemono > next_tick)) 959 next_tick = basemono; 960 961 /* 962 * If the tick is due in the next period, keep it ticking or 963 * force prod the timer. 964 */ 965 delta = next_tick - basemono; 966 if (delta <= (u64)TICK_NSEC) { 967 /* 968 * We've not stopped the tick yet, and there's a timer in the 969 * next period, so no point in stopping it either, bail. 970 */ 971 if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED)) { 972 ts->timer_expires = 0; 973 goto out; 974 } 975 } 976 977 /* 978 * If this CPU is the one which had the do_timer() duty last, we limit 979 * the sleep time to the timekeeping 'max_deferment' value. 980 * Otherwise we can sleep as long as we want. 981 */ 982 delta = timekeeping_max_deferment(); 983 tick_cpu = READ_ONCE(tick_do_timer_cpu); 984 if (tick_cpu != cpu && 985 (tick_cpu != TICK_DO_TIMER_NONE || !tick_sched_flag_test(ts, TS_FLAG_DO_TIMER_LAST))) 986 delta = KTIME_MAX; 987 988 /* Calculate the next expiry time */ 989 if (delta < (KTIME_MAX - basemono)) 990 expires = basemono + delta; 991 else 992 expires = KTIME_MAX; 993 994 ts->timer_expires = min_t(u64, expires, next_tick); 995 996 out: 997 return ts->timer_expires; 998 } 999 1000 static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu) 1001 { 1002 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); 1003 unsigned long basejiff = ts->last_jiffies; 1004 u64 basemono = ts->timer_expires_base; 1005 bool timer_idle = tick_sched_flag_test(ts, TS_FLAG_STOPPED); 1006 int tick_cpu; 1007 u64 expires; 1008 1009 /* Make sure we won't be trying to stop it twice in a row. */ 1010 ts->timer_expires_base = 0; 1011 1012 /* 1013 * Now the tick should be stopped definitely - so the timer base needs 1014 * to be marked idle as well to not miss a newly queued timer. 1015 */ 1016 expires = timer_base_try_to_set_idle(basejiff, basemono, &timer_idle); 1017 if (expires > ts->timer_expires) { 1018 /* 1019 * This path could only happen when the first timer was removed 1020 * between calculating the possible sleep length and now (when 1021 * high resolution mode is not active, timer could also be a 1022 * hrtimer). 1023 * 1024 * We have to stick to the original calculated expiry value to 1025 * not stop the tick for too long with a shallow C-state (which 1026 * was programmed by cpuidle because of an early next expiration 1027 * value). 1028 */ 1029 expires = ts->timer_expires; 1030 } 1031 1032 /* If the timer base is not idle, retain the not yet stopped tick. */ 1033 if (!timer_idle) 1034 return; 1035 1036 /* 1037 * If this CPU is the one which updates jiffies, then give up 1038 * the assignment and let it be taken by the CPU which runs 1039 * the tick timer next, which might be this CPU as well. If we 1040 * don't drop this here, the jiffies might be stale and 1041 * do_timer() never gets invoked. Keep track of the fact that it 1042 * was the one which had the do_timer() duty last. 1043 */ 1044 tick_cpu = READ_ONCE(tick_do_timer_cpu); 1045 if (tick_cpu == cpu) { 1046 WRITE_ONCE(tick_do_timer_cpu, TICK_DO_TIMER_NONE); 1047 tick_sched_flag_set(ts, TS_FLAG_DO_TIMER_LAST); 1048 } else if (tick_cpu != TICK_DO_TIMER_NONE) { 1049 tick_sched_flag_clear(ts, TS_FLAG_DO_TIMER_LAST); 1050 } 1051 1052 /* Skip reprogram of event if it's not changed */ 1053 if (tick_sched_flag_test(ts, TS_FLAG_STOPPED) && (expires == ts->next_tick)) { 1054 /* Sanity check: make sure clockevent is actually programmed */ 1055 if (expires == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer)) 1056 return; 1057 1058 WARN_ONCE(1, "basemono: %llu ts->next_tick: %llu dev->next_event: %llu " 1059 "timer->active: %d timer->expires: %llu\n", basemono, ts->next_tick, 1060 dev->next_event, hrtimer_active(&ts->sched_timer), 1061 hrtimer_get_expires(&ts->sched_timer)); 1062 } 1063 1064 /* 1065 * tick_nohz_stop_tick() can be called several times before 1066 * tick_nohz_restart_sched_tick() is called. This happens when 1067 * interrupts arrive which do not cause a reschedule. In the first 1068 * call we save the current tick time, so we can restart the 1069 * scheduler tick in tick_nohz_restart_sched_tick(). 1070 */ 1071 if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED)) { 1072 calc_load_nohz_start(); 1073 quiet_vmstat(); 1074 1075 ts->last_tick = hrtimer_get_expires(&ts->sched_timer); 1076 tick_sched_flag_set(ts, TS_FLAG_STOPPED); 1077 trace_tick_stop(1, TICK_DEP_MASK_NONE); 1078 } 1079 1080 ts->next_tick = expires; 1081 1082 /* 1083 * If the expiration time == KTIME_MAX, then we simply stop 1084 * the tick timer. 1085 */ 1086 if (unlikely(expires == KTIME_MAX)) { 1087 if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES)) 1088 hrtimer_cancel(&ts->sched_timer); 1089 else 1090 tick_program_event(KTIME_MAX, 1); 1091 return; 1092 } 1093 1094 if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES)) { 1095 hrtimer_start(&ts->sched_timer, expires, 1096 HRTIMER_MODE_ABS_PINNED_HARD); 1097 } else { 1098 hrtimer_set_expires(&ts->sched_timer, expires); 1099 tick_program_event(expires, 1); 1100 } 1101 } 1102 1103 static void tick_nohz_retain_tick(struct tick_sched *ts) 1104 { 1105 ts->timer_expires_base = 0; 1106 } 1107 1108 #ifdef CONFIG_NO_HZ_FULL 1109 static void tick_nohz_full_stop_tick(struct tick_sched *ts, int cpu) 1110 { 1111 if (tick_nohz_next_event(ts, cpu)) 1112 tick_nohz_stop_tick(ts, cpu); 1113 else 1114 tick_nohz_retain_tick(ts); 1115 } 1116 #endif /* CONFIG_NO_HZ_FULL */ 1117 1118 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now) 1119 { 1120 /* Update jiffies first */ 1121 tick_do_update_jiffies64(now); 1122 1123 /* 1124 * Clear the timer idle flag, so we avoid IPIs on remote queueing and 1125 * the clock forward checks in the enqueue path: 1126 */ 1127 timer_clear_idle(); 1128 1129 calc_load_nohz_stop(); 1130 touch_softlockup_watchdog_sched(); 1131 1132 /* Cancel the scheduled timer and restore the tick: */ 1133 tick_sched_flag_clear(ts, TS_FLAG_STOPPED); 1134 tick_nohz_restart(ts, now); 1135 } 1136 1137 static void __tick_nohz_full_update_tick(struct tick_sched *ts, 1138 ktime_t now) 1139 { 1140 #ifdef CONFIG_NO_HZ_FULL 1141 int cpu = smp_processor_id(); 1142 1143 if (can_stop_full_tick(cpu, ts)) 1144 tick_nohz_full_stop_tick(ts, cpu); 1145 else if (tick_sched_flag_test(ts, TS_FLAG_STOPPED)) 1146 tick_nohz_restart_sched_tick(ts, now); 1147 #endif 1148 } 1149 1150 static void tick_nohz_full_update_tick(struct tick_sched *ts) 1151 { 1152 if (!tick_nohz_full_cpu(smp_processor_id())) 1153 return; 1154 1155 if (!tick_sched_flag_test(ts, TS_FLAG_NOHZ)) 1156 return; 1157 1158 __tick_nohz_full_update_tick(ts, ktime_get()); 1159 } 1160 1161 /* 1162 * A pending softirq outside an IRQ (or softirq disabled section) context 1163 * should be waiting for ksoftirqd to handle it. Therefore we shouldn't 1164 * reach this code due to the need_resched() early check in can_stop_idle_tick(). 1165 * 1166 * However if we are between CPUHP_AP_SMPBOOT_THREADS and CPU_TEARDOWN_CPU on the 1167 * cpu_down() process, softirqs can still be raised while ksoftirqd is parked, 1168 * triggering the code below, since wakep_softirqd() is ignored. 1169 * 1170 */ 1171 static bool report_idle_softirq(void) 1172 { 1173 static int ratelimit; 1174 unsigned int pending = local_softirq_pending(); 1175 1176 if (likely(!pending)) 1177 return false; 1178 1179 /* Some softirqs claim to be safe against hotplug and ksoftirqd parking */ 1180 if (!cpu_active(smp_processor_id())) { 1181 pending &= ~SOFTIRQ_HOTPLUG_SAFE_MASK; 1182 if (!pending) 1183 return false; 1184 } 1185 1186 /* On RT, softirq handling may be waiting on some lock */ 1187 if (local_bh_blocked()) 1188 return false; 1189 1190 if (ratelimit < 10) { 1191 pr_warn("NOHZ tick-stop error: local softirq work is pending, handler #%02x!!!\n", 1192 pending); 1193 ratelimit++; 1194 } 1195 1196 return true; 1197 } 1198 1199 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts) 1200 { 1201 WARN_ON_ONCE(cpu_is_offline(cpu)); 1202 1203 if (unlikely(!tick_sched_flag_test(ts, TS_FLAG_NOHZ))) 1204 return false; 1205 1206 if (need_resched()) 1207 return false; 1208 1209 if (unlikely(report_idle_softirq())) 1210 return false; 1211 1212 if (tick_nohz_full_enabled()) { 1213 int tick_cpu = READ_ONCE(tick_do_timer_cpu); 1214 1215 /* 1216 * Keep the tick alive to guarantee timekeeping progression 1217 * if there are full dynticks CPUs around 1218 */ 1219 if (tick_cpu == cpu) 1220 return false; 1221 1222 /* Should not happen for nohz-full */ 1223 if (WARN_ON_ONCE(tick_cpu == TICK_DO_TIMER_NONE)) 1224 return false; 1225 } 1226 1227 return true; 1228 } 1229 1230 /** 1231 * tick_nohz_idle_stop_tick - stop the idle tick from the idle task 1232 * 1233 * When the next event is more than a tick into the future, stop the idle tick 1234 */ 1235 void tick_nohz_idle_stop_tick(void) 1236 { 1237 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1238 int cpu = smp_processor_id(); 1239 ktime_t expires; 1240 1241 /* 1242 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the 1243 * tick timer expiration time is known already. 1244 */ 1245 if (ts->timer_expires_base) 1246 expires = ts->timer_expires; 1247 else if (can_stop_idle_tick(cpu, ts)) 1248 expires = tick_nohz_next_event(ts, cpu); 1249 else 1250 return; 1251 1252 ts->idle_calls++; 1253 1254 if (expires > 0LL) { 1255 int was_stopped = tick_sched_flag_test(ts, TS_FLAG_STOPPED); 1256 1257 tick_nohz_stop_tick(ts, cpu); 1258 1259 ts->idle_sleeps++; 1260 ts->idle_expires = expires; 1261 1262 if (!was_stopped && tick_sched_flag_test(ts, TS_FLAG_STOPPED)) { 1263 ts->idle_jiffies = ts->last_jiffies; 1264 nohz_balance_enter_idle(cpu); 1265 } 1266 } else { 1267 tick_nohz_retain_tick(ts); 1268 } 1269 } 1270 1271 void tick_nohz_idle_retain_tick(void) 1272 { 1273 tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched)); 1274 } 1275 1276 /** 1277 * tick_nohz_idle_enter - prepare for entering idle on the current CPU 1278 * 1279 * Called when we start the idle loop. 1280 */ 1281 void tick_nohz_idle_enter(void) 1282 { 1283 struct tick_sched *ts; 1284 1285 lockdep_assert_irqs_enabled(); 1286 1287 local_irq_disable(); 1288 1289 ts = this_cpu_ptr(&tick_cpu_sched); 1290 1291 WARN_ON_ONCE(ts->timer_expires_base); 1292 1293 tick_sched_flag_set(ts, TS_FLAG_INIDLE); 1294 tick_nohz_start_idle(ts); 1295 1296 local_irq_enable(); 1297 } 1298 1299 /** 1300 * tick_nohz_irq_exit - Notify the tick about IRQ exit 1301 * 1302 * A timer may have been added/modified/deleted either by the current IRQ, 1303 * or by another place using this IRQ as a notification. This IRQ may have 1304 * also updated the RCU callback list. These events may require a 1305 * re-evaluation of the next tick. Depending on the context: 1306 * 1307 * 1) If the CPU is idle and no resched is pending, just proceed with idle 1308 * time accounting. The next tick will be re-evaluated on the next idle 1309 * loop iteration. 1310 * 1311 * 2) If the CPU is nohz_full: 1312 * 1313 * 2.1) If there is any tick dependency, restart the tick if stopped. 1314 * 1315 * 2.2) If there is no tick dependency, (re-)evaluate the next tick and 1316 * stop/update it accordingly. 1317 */ 1318 void tick_nohz_irq_exit(void) 1319 { 1320 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1321 1322 if (tick_sched_flag_test(ts, TS_FLAG_INIDLE)) 1323 tick_nohz_start_idle(ts); 1324 else 1325 tick_nohz_full_update_tick(ts); 1326 } 1327 1328 /** 1329 * tick_nohz_idle_got_tick - Check whether or not the tick handler has run 1330 * 1331 * Return: %true if the tick handler has run, otherwise %false 1332 */ 1333 bool tick_nohz_idle_got_tick(void) 1334 { 1335 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1336 1337 if (ts->got_idle_tick) { 1338 ts->got_idle_tick = 0; 1339 return true; 1340 } 1341 return false; 1342 } 1343 1344 /** 1345 * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer 1346 * or the tick, whichever expires first. Note that, if the tick has been 1347 * stopped, it returns the next hrtimer. 1348 * 1349 * Called from power state control code with interrupts disabled 1350 * 1351 * Return: the next expiration time 1352 */ 1353 ktime_t tick_nohz_get_next_hrtimer(void) 1354 { 1355 return __this_cpu_read(tick_cpu_device.evtdev)->next_event; 1356 } 1357 1358 /** 1359 * tick_nohz_get_sleep_length - return the expected length of the current sleep 1360 * @delta_next: duration until the next event if the tick cannot be stopped 1361 * 1362 * Called from power state control code with interrupts disabled. 1363 * 1364 * The return value of this function and/or the value returned by it through the 1365 * @delta_next pointer can be negative which must be taken into account by its 1366 * callers. 1367 * 1368 * Return: the expected length of the current sleep 1369 */ 1370 ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next) 1371 { 1372 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); 1373 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1374 int cpu = smp_processor_id(); 1375 /* 1376 * The idle entry time is expected to be a sufficient approximation of 1377 * the current time at this point. 1378 */ 1379 ktime_t now = ts->idle_entrytime; 1380 ktime_t next_event; 1381 1382 WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_INIDLE)); 1383 1384 *delta_next = ktime_sub(dev->next_event, now); 1385 1386 if (!can_stop_idle_tick(cpu, ts)) 1387 return *delta_next; 1388 1389 next_event = tick_nohz_next_event(ts, cpu); 1390 if (!next_event) 1391 return *delta_next; 1392 1393 /* 1394 * If the next highres timer to expire is earlier than 'next_event', the 1395 * idle governor needs to know that. 1396 */ 1397 next_event = min_t(u64, next_event, 1398 hrtimer_next_event_without(&ts->sched_timer)); 1399 1400 return ktime_sub(next_event, now); 1401 } 1402 1403 /** 1404 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value 1405 * for a particular CPU. 1406 * @cpu: target CPU number 1407 * 1408 * Called from the schedutil frequency scaling governor in scheduler context. 1409 * 1410 * Return: the current idle calls counter value for @cpu 1411 */ 1412 unsigned long tick_nohz_get_idle_calls_cpu(int cpu) 1413 { 1414 struct tick_sched *ts = tick_get_tick_sched(cpu); 1415 1416 return ts->idle_calls; 1417 } 1418 1419 static void tick_nohz_account_idle_time(struct tick_sched *ts, 1420 ktime_t now) 1421 { 1422 unsigned long ticks; 1423 1424 ts->idle_exittime = now; 1425 1426 if (vtime_accounting_enabled_this_cpu()) 1427 return; 1428 /* 1429 * We stopped the tick in idle. update_process_times() would miss the 1430 * time we slept, as it does only a 1 tick accounting. 1431 * Enforce that this is accounted to idle ! 1432 */ 1433 ticks = jiffies - ts->idle_jiffies; 1434 /* 1435 * We might be one off. Do not randomly account a huge number of ticks! 1436 */ 1437 if (ticks && ticks < LONG_MAX) 1438 account_idle_ticks(ticks); 1439 } 1440 1441 void tick_nohz_idle_restart_tick(void) 1442 { 1443 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1444 1445 if (tick_sched_flag_test(ts, TS_FLAG_STOPPED)) { 1446 ktime_t now = ktime_get(); 1447 tick_nohz_restart_sched_tick(ts, now); 1448 tick_nohz_account_idle_time(ts, now); 1449 } 1450 } 1451 1452 static void tick_nohz_idle_update_tick(struct tick_sched *ts, ktime_t now) 1453 { 1454 if (tick_nohz_full_cpu(smp_processor_id())) 1455 __tick_nohz_full_update_tick(ts, now); 1456 else 1457 tick_nohz_restart_sched_tick(ts, now); 1458 1459 tick_nohz_account_idle_time(ts, now); 1460 } 1461 1462 /** 1463 * tick_nohz_idle_exit - Update the tick upon idle task exit 1464 * 1465 * When the idle task exits, update the tick depending on the 1466 * following situations: 1467 * 1468 * 1) If the CPU is not in nohz_full mode (most cases), then 1469 * restart the tick. 1470 * 1471 * 2) If the CPU is in nohz_full mode (corner case): 1472 * 2.1) If the tick can be kept stopped (no tick dependencies) 1473 * then re-evaluate the next tick and try to keep it stopped 1474 * as long as possible. 1475 * 2.2) If the tick has dependencies, restart the tick. 1476 * 1477 */ 1478 void tick_nohz_idle_exit(void) 1479 { 1480 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1481 bool idle_active, tick_stopped; 1482 ktime_t now; 1483 1484 local_irq_disable(); 1485 1486 WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_INIDLE)); 1487 WARN_ON_ONCE(ts->timer_expires_base); 1488 1489 tick_sched_flag_clear(ts, TS_FLAG_INIDLE); 1490 idle_active = tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE); 1491 tick_stopped = tick_sched_flag_test(ts, TS_FLAG_STOPPED); 1492 1493 if (idle_active || tick_stopped) 1494 now = ktime_get(); 1495 1496 if (idle_active) 1497 tick_nohz_stop_idle(ts, now); 1498 1499 if (tick_stopped) 1500 tick_nohz_idle_update_tick(ts, now); 1501 1502 local_irq_enable(); 1503 } 1504 1505 /* 1506 * In low-resolution mode, the tick handler must be implemented directly 1507 * at the clockevent level. hrtimer can't be used instead, because its 1508 * infrastructure actually relies on the tick itself as a backend in 1509 * low-resolution mode (see hrtimer_run_queues()). 1510 */ 1511 static void tick_nohz_lowres_handler(struct clock_event_device *dev) 1512 { 1513 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1514 1515 dev->next_event = KTIME_MAX; 1516 1517 if (likely(tick_nohz_handler(&ts->sched_timer) == HRTIMER_RESTART)) 1518 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 1519 } 1520 1521 static inline void tick_nohz_activate(struct tick_sched *ts) 1522 { 1523 if (!tick_nohz_enabled) 1524 return; 1525 tick_sched_flag_set(ts, TS_FLAG_NOHZ); 1526 /* One update is enough */ 1527 if (!test_and_set_bit(0, &tick_nohz_active)) 1528 timers_update_nohz(); 1529 } 1530 1531 /** 1532 * tick_nohz_switch_to_nohz - switch to NOHZ mode 1533 */ 1534 static void tick_nohz_switch_to_nohz(void) 1535 { 1536 if (!tick_nohz_enabled) 1537 return; 1538 1539 if (tick_switch_to_oneshot(tick_nohz_lowres_handler)) 1540 return; 1541 1542 /* 1543 * Recycle the hrtimer in 'ts', so we can share the 1544 * highres code. 1545 */ 1546 tick_setup_sched_timer(false); 1547 } 1548 1549 static inline void tick_nohz_irq_enter(void) 1550 { 1551 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1552 ktime_t now; 1553 1554 if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED | TS_FLAG_IDLE_ACTIVE)) 1555 return; 1556 now = ktime_get(); 1557 if (tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE)) 1558 tick_nohz_stop_idle(ts, now); 1559 /* 1560 * If all CPUs are idle we may need to update a stale jiffies value. 1561 * Note nohz_full is a special case: a timekeeper is guaranteed to stay 1562 * alive but it might be busy looping with interrupts disabled in some 1563 * rare case (typically stop machine). So we must make sure we have a 1564 * last resort. 1565 */ 1566 if (tick_sched_flag_test(ts, TS_FLAG_STOPPED)) 1567 tick_nohz_update_jiffies(now); 1568 } 1569 1570 #else 1571 1572 static inline void tick_nohz_switch_to_nohz(void) { } 1573 static inline void tick_nohz_irq_enter(void) { } 1574 static inline void tick_nohz_activate(struct tick_sched *ts) { } 1575 1576 #endif /* CONFIG_NO_HZ_COMMON */ 1577 1578 /* 1579 * Called from irq_enter() to notify about the possible interruption of idle() 1580 */ 1581 void tick_irq_enter(void) 1582 { 1583 tick_check_oneshot_broadcast_this_cpu(); 1584 tick_nohz_irq_enter(); 1585 } 1586 1587 static int sched_skew_tick; 1588 1589 static int __init skew_tick(char *str) 1590 { 1591 get_option(&str, &sched_skew_tick); 1592 1593 return 0; 1594 } 1595 early_param("skew_tick", skew_tick); 1596 1597 /** 1598 * tick_setup_sched_timer - setup the tick emulation timer 1599 * @hrtimer: whether to use the hrtimer or not 1600 */ 1601 void tick_setup_sched_timer(bool hrtimer) 1602 { 1603 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1604 1605 /* Emulate tick processing via per-CPU hrtimers: */ 1606 hrtimer_setup(&ts->sched_timer, tick_nohz_handler, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD); 1607 1608 if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS) && hrtimer) 1609 tick_sched_flag_set(ts, TS_FLAG_HIGHRES); 1610 1611 /* Get the next period (per-CPU) */ 1612 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update()); 1613 1614 /* Offset the tick to avert 'jiffies_lock' contention. */ 1615 if (sched_skew_tick) { 1616 u64 offset = TICK_NSEC >> 1; 1617 do_div(offset, num_possible_cpus()); 1618 offset *= smp_processor_id(); 1619 hrtimer_add_expires_ns(&ts->sched_timer, offset); 1620 } 1621 1622 hrtimer_forward_now(&ts->sched_timer, TICK_NSEC); 1623 if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS) && hrtimer) 1624 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD); 1625 else 1626 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 1627 tick_nohz_activate(ts); 1628 } 1629 1630 /* 1631 * Shut down the tick and make sure the CPU won't try to retake the timekeeping 1632 * duty before disabling IRQs in idle for the last time. 1633 */ 1634 void tick_sched_timer_dying(int cpu) 1635 { 1636 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 1637 ktime_t idle_sleeptime, iowait_sleeptime; 1638 unsigned long idle_calls, idle_sleeps; 1639 1640 /* This must happen before hrtimers are migrated! */ 1641 if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES)) 1642 hrtimer_cancel(&ts->sched_timer); 1643 1644 idle_sleeptime = ts->idle_sleeptime; 1645 iowait_sleeptime = ts->iowait_sleeptime; 1646 idle_calls = ts->idle_calls; 1647 idle_sleeps = ts->idle_sleeps; 1648 memset(ts, 0, sizeof(*ts)); 1649 ts->idle_sleeptime = idle_sleeptime; 1650 ts->iowait_sleeptime = iowait_sleeptime; 1651 ts->idle_calls = idle_calls; 1652 ts->idle_sleeps = idle_sleeps; 1653 } 1654 1655 /* 1656 * Async notification about clocksource changes 1657 */ 1658 void tick_clock_notify(void) 1659 { 1660 int cpu; 1661 1662 for_each_possible_cpu(cpu) 1663 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks); 1664 } 1665 1666 /* 1667 * Async notification about clock event changes 1668 */ 1669 void tick_oneshot_notify(void) 1670 { 1671 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1672 1673 set_bit(0, &ts->check_clocks); 1674 } 1675 1676 /* 1677 * Check if a change happened, which makes oneshot possible. 1678 * 1679 * Called cyclically from the hrtimer softirq (driven by the timer 1680 * softirq). 'allow_nohz' signals that we can switch into low-res NOHZ 1681 * mode, because high resolution timers are disabled (either compile 1682 * or runtime). Called with interrupts disabled. 1683 */ 1684 int tick_check_oneshot_change(int allow_nohz) 1685 { 1686 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1687 1688 if (!test_and_clear_bit(0, &ts->check_clocks)) 1689 return 0; 1690 1691 if (tick_sched_flag_test(ts, TS_FLAG_NOHZ)) 1692 return 0; 1693 1694 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available()) 1695 return 0; 1696 1697 if (!allow_nohz) 1698 return 1; 1699 1700 tick_nohz_switch_to_nohz(); 1701 return 0; 1702 } 1703