1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * This file contains the base functions to manage periodic tick 4 * related events. 5 * 6 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 7 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 8 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner 9 */ 10 #include <linux/compiler.h> 11 #include <linux/cpu.h> 12 #include <linux/err.h> 13 #include <linux/hrtimer.h> 14 #include <linux/interrupt.h> 15 #include <linux/nmi.h> 16 #include <linux/percpu.h> 17 #include <linux/profile.h> 18 #include <linux/sched.h> 19 #include <linux/module.h> 20 #include <trace/events/power.h> 21 22 #include <asm/irq_regs.h> 23 24 #include "tick-internal.h" 25 26 /* 27 * Tick devices 28 */ 29 DEFINE_PER_CPU(struct tick_device, tick_cpu_device); 30 /* 31 * Tick next event: keeps track of the tick time. It's updated by the 32 * CPU which handles the tick and protected by jiffies_lock. There is 33 * no requirement to write hold the jiffies seqcount for it. 34 */ 35 ktime_t tick_next_period; 36 37 /* 38 * tick_do_timer_cpu is a timer core internal variable which holds the CPU NR 39 * which is responsible for calling do_timer(), i.e. the timekeeping stuff. This 40 * variable has two functions: 41 * 42 * 1) Prevent a thundering herd issue of a gazillion of CPUs trying to grab the 43 * timekeeping lock all at once. Only the CPU which is assigned to do the 44 * update is handling it. 45 * 46 * 2) Hand off the duty in the NOHZ idle case by setting the value to 47 * TICK_DO_TIMER_NONE, i.e. a non existing CPU. So the next cpu which looks 48 * at it will take over and keep the time keeping alive. The handover 49 * procedure also covers cpu hotplug. 50 */ 51 int tick_do_timer_cpu __read_mostly = TICK_DO_TIMER_BOOT; 52 #ifdef CONFIG_NO_HZ_FULL 53 /* 54 * tick_do_timer_boot_cpu indicates the boot CPU temporarily owns 55 * tick_do_timer_cpu and it should be taken over by an eligible secondary 56 * when one comes online. 57 */ 58 static int tick_do_timer_boot_cpu __read_mostly = -1; 59 #endif 60 61 /* 62 * Debugging: see timer_list.c 63 */ 64 struct tick_device *tick_get_device(int cpu) 65 { 66 return &per_cpu(tick_cpu_device, cpu); 67 } 68 69 /** 70 * tick_is_oneshot_available - check for a oneshot capable event device 71 */ 72 int tick_is_oneshot_available(void) 73 { 74 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); 75 76 if (!dev || !(dev->features & CLOCK_EVT_FEAT_ONESHOT)) 77 return 0; 78 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) 79 return 1; 80 return tick_broadcast_oneshot_available(); 81 } 82 83 /* 84 * Periodic tick 85 */ 86 static void tick_periodic(int cpu) 87 { 88 if (READ_ONCE(tick_do_timer_cpu) == cpu) { 89 raw_spin_lock(&jiffies_lock); 90 write_seqcount_begin(&jiffies_seq); 91 92 /* Keep track of the next tick event */ 93 tick_next_period = ktime_add_ns(tick_next_period, TICK_NSEC); 94 95 do_timer(1); 96 write_seqcount_end(&jiffies_seq); 97 raw_spin_unlock(&jiffies_lock); 98 update_wall_time(); 99 } 100 101 update_process_times(user_mode(get_irq_regs())); 102 profile_tick(CPU_PROFILING); 103 } 104 105 /* 106 * Event handler for periodic ticks 107 */ 108 void tick_handle_periodic(struct clock_event_device *dev) 109 { 110 int cpu = smp_processor_id(); 111 ktime_t next = dev->next_event; 112 113 tick_periodic(cpu); 114 115 /* 116 * The cpu might have transitioned to HIGHRES or NOHZ mode via 117 * update_process_times() -> run_local_timers() -> 118 * hrtimer_run_queues(). 119 */ 120 if (IS_ENABLED(CONFIG_TICK_ONESHOT) && dev->event_handler != tick_handle_periodic) 121 return; 122 123 if (!clockevent_state_oneshot(dev)) 124 return; 125 for (;;) { 126 /* 127 * Setup the next period for devices, which do not have 128 * periodic mode: 129 */ 130 next = ktime_add_ns(next, TICK_NSEC); 131 132 if (!clockevents_program_event(dev, next, false)) 133 return; 134 /* 135 * Have to be careful here. If we're in oneshot mode, 136 * before we call tick_periodic() in a loop, we need 137 * to be sure we're using a real hardware clocksource. 138 * Otherwise we could get trapped in an infinite 139 * loop, as the tick_periodic() increments jiffies, 140 * which then will increment time, possibly causing 141 * the loop to trigger again and again. 142 */ 143 if (timekeeping_valid_for_hres()) 144 tick_periodic(cpu); 145 } 146 } 147 148 /* 149 * Setup the device for a periodic tick 150 */ 151 void tick_setup_periodic(struct clock_event_device *dev, int broadcast) 152 { 153 tick_set_periodic_handler(dev, broadcast); 154 155 /* Broadcast setup ? */ 156 if (!tick_device_is_functional(dev)) 157 return; 158 159 if ((dev->features & CLOCK_EVT_FEAT_PERIODIC) && 160 !tick_broadcast_oneshot_active()) { 161 clockevents_switch_state(dev, CLOCK_EVT_STATE_PERIODIC); 162 } else { 163 unsigned int seq; 164 ktime_t next; 165 166 do { 167 seq = read_seqcount_begin(&jiffies_seq); 168 next = tick_next_period; 169 } while (read_seqcount_retry(&jiffies_seq, seq)); 170 171 clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT); 172 173 for (;;) { 174 if (!clockevents_program_event(dev, next, false)) 175 return; 176 next = ktime_add_ns(next, TICK_NSEC); 177 } 178 } 179 } 180 181 /* 182 * Setup the tick device 183 */ 184 static void tick_setup_device(struct tick_device *td, 185 struct clock_event_device *newdev, int cpu, 186 const struct cpumask *cpumask) 187 { 188 void (*handler)(struct clock_event_device *) = NULL; 189 ktime_t next_event = 0; 190 191 /* 192 * First device setup ? 193 */ 194 if (!td->evtdev) { 195 /* 196 * If no cpu took the do_timer update, assign it to 197 * this cpu: 198 */ 199 if (READ_ONCE(tick_do_timer_cpu) == TICK_DO_TIMER_BOOT) { 200 WRITE_ONCE(tick_do_timer_cpu, cpu); 201 tick_next_period = ktime_get(); 202 #ifdef CONFIG_NO_HZ_FULL 203 /* 204 * The boot CPU may be nohz_full, in which case the 205 * first housekeeping secondary will take do_timer() 206 * from it. 207 */ 208 if (tick_nohz_full_cpu(cpu)) 209 tick_do_timer_boot_cpu = cpu; 210 211 } else if (tick_do_timer_boot_cpu != -1 && !tick_nohz_full_cpu(cpu)) { 212 tick_do_timer_boot_cpu = -1; 213 /* 214 * The boot CPU will stay in periodic (NOHZ disabled) 215 * mode until clocksource_done_booting() called after 216 * smp_init() selects a high resolution clocksource and 217 * timekeeping_notify() kicks the NOHZ stuff alive. 218 * 219 * So this WRITE_ONCE can only race with the READ_ONCE 220 * check in tick_periodic() but this race is harmless. 221 */ 222 WRITE_ONCE(tick_do_timer_cpu, cpu); 223 #endif 224 } 225 226 /* 227 * Startup in periodic mode first. 228 */ 229 td->mode = TICKDEV_MODE_PERIODIC; 230 } else { 231 handler = td->evtdev->event_handler; 232 next_event = td->evtdev->next_event; 233 td->evtdev->event_handler = clockevents_handle_noop; 234 } 235 236 td->evtdev = newdev; 237 238 /* 239 * When the device is not per cpu, pin the interrupt to the 240 * current cpu: 241 */ 242 if (!cpumask_equal(newdev->cpumask, cpumask)) 243 irq_set_affinity(newdev->irq, cpumask); 244 245 /* 246 * When global broadcasting is active, check if the current 247 * device is registered as a placeholder for broadcast mode. 248 * This allows us to handle this x86 misfeature in a generic 249 * way. This function also returns !=0 when we keep the 250 * current active broadcast state for this CPU. 251 */ 252 if (tick_device_uses_broadcast(newdev, cpu)) 253 return; 254 255 if (td->mode == TICKDEV_MODE_PERIODIC) 256 tick_setup_periodic(newdev, 0); 257 else 258 tick_setup_oneshot(newdev, handler, next_event); 259 } 260 261 void tick_install_replacement(struct clock_event_device *newdev) 262 { 263 struct tick_device *td = this_cpu_ptr(&tick_cpu_device); 264 int cpu = smp_processor_id(); 265 266 clockevents_exchange_device(td->evtdev, newdev); 267 tick_setup_device(td, newdev, cpu, cpumask_of(cpu)); 268 if (newdev->features & CLOCK_EVT_FEAT_ONESHOT) 269 tick_oneshot_notify(); 270 } 271 272 static bool tick_check_percpu(struct clock_event_device *curdev, 273 struct clock_event_device *newdev, int cpu) 274 { 275 if (!cpumask_test_cpu(cpu, newdev->cpumask)) 276 return false; 277 if (cpumask_equal(newdev->cpumask, cpumask_of(cpu))) 278 return true; 279 /* Check if irq affinity can be set */ 280 if (newdev->irq >= 0 && !irq_can_set_affinity(newdev->irq)) 281 return false; 282 /* Prefer an existing cpu local device */ 283 if (curdev && cpumask_equal(curdev->cpumask, cpumask_of(cpu))) 284 return false; 285 return true; 286 } 287 288 static bool tick_check_preferred(struct clock_event_device *curdev, 289 struct clock_event_device *newdev) 290 { 291 /* Prefer oneshot capable device */ 292 if (!(newdev->features & CLOCK_EVT_FEAT_ONESHOT)) { 293 if (curdev && (curdev->features & CLOCK_EVT_FEAT_ONESHOT)) 294 return false; 295 if (tick_oneshot_mode_active()) 296 return false; 297 } 298 299 /* 300 * Use the higher rated one, but prefer a CPU local device with a lower 301 * rating than a non-CPU local device 302 */ 303 return !curdev || 304 newdev->rating > curdev->rating || 305 !cpumask_equal(curdev->cpumask, newdev->cpumask); 306 } 307 308 /* 309 * Check whether the new device is a better fit than curdev. curdev 310 * can be NULL ! 311 */ 312 bool tick_check_replacement(struct clock_event_device *curdev, 313 struct clock_event_device *newdev) 314 { 315 if (!tick_check_percpu(curdev, newdev, smp_processor_id())) 316 return false; 317 318 return tick_check_preferred(curdev, newdev); 319 } 320 321 /* 322 * Check, if the new registered device should be used. Called with 323 * clockevents_lock held and interrupts disabled. 324 */ 325 void tick_check_new_device(struct clock_event_device *newdev) 326 { 327 struct clock_event_device *curdev; 328 struct tick_device *td; 329 int cpu; 330 331 cpu = smp_processor_id(); 332 td = &per_cpu(tick_cpu_device, cpu); 333 curdev = td->evtdev; 334 335 if (!tick_check_replacement(curdev, newdev)) 336 goto out_bc; 337 338 if (!try_module_get(newdev->owner)) 339 return; 340 341 /* 342 * Replace the eventually existing device by the new 343 * device. If the current device is the broadcast device, do 344 * not give it back to the clockevents layer ! 345 */ 346 if (tick_is_broadcast_device(curdev)) { 347 clockevents_shutdown(curdev); 348 curdev = NULL; 349 } 350 clockevents_exchange_device(curdev, newdev); 351 tick_setup_device(td, newdev, cpu, cpumask_of(cpu)); 352 if (newdev->features & CLOCK_EVT_FEAT_ONESHOT) 353 tick_oneshot_notify(); 354 return; 355 356 out_bc: 357 /* 358 * Can the new device be used as a broadcast device ? 359 */ 360 tick_install_broadcast_device(newdev, cpu); 361 } 362 363 /** 364 * tick_broadcast_oneshot_control - Enter/exit broadcast oneshot mode 365 * @state: The target state (enter/exit) 366 * 367 * The system enters/leaves a state, where affected devices might stop 368 * Returns 0 on success, -EBUSY if the cpu is used to broadcast wakeups. 369 * 370 * Called with interrupts disabled, so clockevents_lock is not 371 * required here because the local clock event device cannot go away 372 * under us. 373 */ 374 int tick_broadcast_oneshot_control(enum tick_broadcast_state state) 375 { 376 struct tick_device *td = this_cpu_ptr(&tick_cpu_device); 377 378 if (!(td->evtdev->features & CLOCK_EVT_FEAT_C3STOP)) 379 return 0; 380 381 return __tick_broadcast_oneshot_control(state); 382 } 383 EXPORT_SYMBOL_GPL(tick_broadcast_oneshot_control); 384 385 #ifdef CONFIG_HOTPLUG_CPU 386 void tick_assert_timekeeping_handover(void) 387 { 388 WARN_ON_ONCE(tick_do_timer_cpu == smp_processor_id()); 389 } 390 /* 391 * Stop the tick and transfer the timekeeping job away from a dying cpu. 392 */ 393 int tick_cpu_dying(unsigned int dying_cpu) 394 { 395 /* 396 * If the current CPU is the timekeeper, it's the only one that can 397 * safely hand over its duty. Also all online CPUs are in stop 398 * machine, guaranteed not to be idle, therefore there is no 399 * concurrency and it's safe to pick any online successor. 400 */ 401 if (tick_do_timer_cpu == dying_cpu) 402 tick_do_timer_cpu = cpumask_first(cpu_online_mask); 403 404 /* Make sure the CPU won't try to retake the timekeeping duty */ 405 tick_sched_timer_dying(dying_cpu); 406 407 /* Remove CPU from timer broadcasting */ 408 tick_offline_cpu(dying_cpu); 409 410 return 0; 411 } 412 413 /* 414 * Shutdown an event device on a given cpu: 415 * 416 * This is called on a life CPU, when a CPU is dead. So we cannot 417 * access the hardware device itself. 418 * We just set the mode and remove it from the lists. 419 */ 420 void tick_shutdown(unsigned int cpu) 421 { 422 struct tick_device *td = &per_cpu(tick_cpu_device, cpu); 423 struct clock_event_device *dev = td->evtdev; 424 425 td->mode = TICKDEV_MODE_PERIODIC; 426 if (dev) { 427 /* 428 * Prevent that the clock events layer tries to call 429 * the set mode function! 430 */ 431 clockevent_set_state(dev, CLOCK_EVT_STATE_DETACHED); 432 clockevents_exchange_device(dev, NULL); 433 dev->event_handler = clockevents_handle_noop; 434 td->evtdev = NULL; 435 } 436 } 437 #endif 438 439 /** 440 * tick_suspend_local - Suspend the local tick device 441 * 442 * Called from the local cpu for freeze with interrupts disabled. 443 * 444 * No locks required. Nothing can change the per cpu device. 445 */ 446 void tick_suspend_local(void) 447 { 448 struct tick_device *td = this_cpu_ptr(&tick_cpu_device); 449 450 clockevents_shutdown(td->evtdev); 451 } 452 453 /** 454 * tick_resume_local - Resume the local tick device 455 * 456 * Called from the local CPU for unfreeze or XEN resume magic. 457 * 458 * No locks required. Nothing can change the per cpu device. 459 */ 460 void tick_resume_local(void) 461 { 462 struct tick_device *td = this_cpu_ptr(&tick_cpu_device); 463 bool broadcast = tick_resume_check_broadcast(); 464 465 clockevents_tick_resume(td->evtdev); 466 if (!broadcast) { 467 if (td->mode == TICKDEV_MODE_PERIODIC) 468 tick_setup_periodic(td->evtdev, 0); 469 else 470 tick_resume_oneshot(); 471 } 472 473 /* 474 * Ensure that hrtimers are up to date and the clockevents device 475 * is reprogrammed correctly when high resolution timers are 476 * enabled. 477 */ 478 hrtimers_resume_local(); 479 } 480 481 /** 482 * tick_suspend - Suspend the tick and the broadcast device 483 * 484 * Called from syscore_suspend() via timekeeping_suspend with only one 485 * CPU online and interrupts disabled or from tick_unfreeze() under 486 * tick_freeze_lock. 487 * 488 * No locks required. Nothing can change the per cpu device. 489 */ 490 void tick_suspend(void) 491 { 492 tick_suspend_local(); 493 tick_suspend_broadcast(); 494 } 495 496 /** 497 * tick_resume - Resume the tick and the broadcast device 498 * 499 * Called from syscore_resume() via timekeeping_resume with only one 500 * CPU online and interrupts disabled. 501 * 502 * No locks required. Nothing can change the per cpu device. 503 */ 504 void tick_resume(void) 505 { 506 tick_resume_broadcast(); 507 tick_resume_local(); 508 } 509 510 #ifdef CONFIG_SUSPEND 511 static DEFINE_RAW_SPINLOCK(tick_freeze_lock); 512 static unsigned int tick_freeze_depth; 513 514 /** 515 * tick_freeze - Suspend the local tick and (possibly) timekeeping. 516 * 517 * Check if this is the last online CPU executing the function and if so, 518 * suspend timekeeping. Otherwise suspend the local tick. 519 * 520 * Call with interrupts disabled. Must be balanced with %tick_unfreeze(). 521 * Interrupts must not be enabled before the subsequent %tick_unfreeze(). 522 */ 523 void tick_freeze(void) 524 { 525 raw_spin_lock(&tick_freeze_lock); 526 527 tick_freeze_depth++; 528 if (tick_freeze_depth == num_online_cpus()) { 529 trace_suspend_resume(TPS("timekeeping_freeze"), 530 smp_processor_id(), true); 531 system_state = SYSTEM_SUSPEND; 532 sched_clock_suspend(); 533 timekeeping_suspend(); 534 } else { 535 tick_suspend_local(); 536 } 537 538 raw_spin_unlock(&tick_freeze_lock); 539 } 540 541 /** 542 * tick_unfreeze - Resume the local tick and (possibly) timekeeping. 543 * 544 * Check if this is the first CPU executing the function and if so, resume 545 * timekeeping. Otherwise resume the local tick. 546 * 547 * Call with interrupts disabled. Must be balanced with %tick_freeze(). 548 * Interrupts must not be enabled after the preceding %tick_freeze(). 549 */ 550 void tick_unfreeze(void) 551 { 552 raw_spin_lock(&tick_freeze_lock); 553 554 if (tick_freeze_depth == num_online_cpus()) { 555 timekeeping_resume(); 556 sched_clock_resume(); 557 system_state = SYSTEM_RUNNING; 558 trace_suspend_resume(TPS("timekeeping_freeze"), 559 smp_processor_id(), false); 560 } else { 561 touch_softlockup_watchdog(); 562 tick_resume_local(); 563 } 564 565 tick_freeze_depth--; 566 567 raw_spin_unlock(&tick_freeze_lock); 568 } 569 #endif /* CONFIG_SUSPEND */ 570 571 /** 572 * tick_init - initialize the tick control 573 */ 574 void __init tick_init(void) 575 { 576 tick_broadcast_init(); 577 tick_nohz_init(); 578 } 579