xref: /linux/drivers/gpu/drm/bridge/ti-sn65dsi86.c (revision ddb7a62af2e766eabb4ab7080e6ed8d6b8915302)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2018, The Linux Foundation. All rights reserved.
4  * datasheet: https://www.ti.com/lit/ds/symlink/sn65dsi86.pdf
5  */
6 
7 #include <linux/atomic.h>
8 #include <linux/auxiliary_bus.h>
9 #include <linux/bitfield.h>
10 #include <linux/bits.h>
11 #include <linux/clk.h>
12 #include <linux/debugfs.h>
13 #include <linux/gpio/consumer.h>
14 #include <linux/gpio/driver.h>
15 #include <linux/i2c.h>
16 #include <linux/iopoll.h>
17 #include <linux/module.h>
18 #include <linux/of_graph.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/pwm.h>
21 #include <linux/regmap.h>
22 #include <linux/regulator/consumer.h>
23 
24 #include <linux/unaligned.h>
25 
26 #include <drm/display/drm_dp_aux_bus.h>
27 #include <drm/display/drm_dp_helper.h>
28 #include <drm/drm_atomic.h>
29 #include <drm/drm_atomic_helper.h>
30 #include <drm/drm_bridge.h>
31 #include <drm/drm_bridge_connector.h>
32 #include <drm/drm_edid.h>
33 #include <drm/drm_mipi_dsi.h>
34 #include <drm/drm_of.h>
35 #include <drm/drm_print.h>
36 #include <drm/drm_probe_helper.h>
37 
38 #define SN_DEVICE_ID_REGS			0x00	/* up to 0x07 */
39 #define SN_DEVICE_REV_REG			0x08
40 #define SN_DPPLL_SRC_REG			0x0A
41 #define  DPPLL_CLK_SRC_DSICLK			BIT(0)
42 #define  REFCLK_FREQ_MASK			GENMASK(3, 1)
43 #define  REFCLK_FREQ(x)				((x) << 1)
44 #define  DPPLL_SRC_DP_PLL_LOCK			BIT(7)
45 #define SN_PLL_ENABLE_REG			0x0D
46 #define SN_DSI_LANES_REG			0x10
47 #define  CHA_DSI_LANES_MASK			GENMASK(4, 3)
48 #define  CHA_DSI_LANES(x)			((x) << 3)
49 #define SN_DSIA_CLK_FREQ_REG			0x12
50 #define SN_CHA_ACTIVE_LINE_LENGTH_LOW_REG	0x20
51 #define SN_CHA_VERTICAL_DISPLAY_SIZE_LOW_REG	0x24
52 #define SN_CHA_HSYNC_PULSE_WIDTH_LOW_REG	0x2C
53 #define SN_CHA_HSYNC_PULSE_WIDTH_HIGH_REG	0x2D
54 #define  CHA_HSYNC_POLARITY			BIT(7)
55 #define SN_CHA_VSYNC_PULSE_WIDTH_LOW_REG	0x30
56 #define SN_CHA_VSYNC_PULSE_WIDTH_HIGH_REG	0x31
57 #define  CHA_VSYNC_POLARITY			BIT(7)
58 #define SN_CHA_HORIZONTAL_BACK_PORCH_REG	0x34
59 #define SN_CHA_VERTICAL_BACK_PORCH_REG		0x36
60 #define SN_CHA_HORIZONTAL_FRONT_PORCH_REG	0x38
61 #define SN_CHA_VERTICAL_FRONT_PORCH_REG		0x3A
62 #define SN_LN_ASSIGN_REG			0x59
63 #define  LN_ASSIGN_WIDTH			2
64 #define SN_ENH_FRAME_REG			0x5A
65 #define  VSTREAM_ENABLE				BIT(3)
66 #define  LN_POLRS_OFFSET			4
67 #define  LN_POLRS_MASK				0xf0
68 #define SN_DATA_FORMAT_REG			0x5B
69 #define  BPP_18_RGB				BIT(0)
70 #define SN_HPD_DISABLE_REG			0x5C
71 #define  HPD_DISABLE				BIT(0)
72 #define  HPD_DEBOUNCED_STATE			BIT(4)
73 #define SN_GPIO_IO_REG				0x5E
74 #define  SN_GPIO_INPUT_SHIFT			4
75 #define  SN_GPIO_OUTPUT_SHIFT			0
76 #define SN_GPIO_CTRL_REG			0x5F
77 #define  SN_GPIO_MUX_INPUT			0
78 #define  SN_GPIO_MUX_OUTPUT			1
79 #define  SN_GPIO_MUX_SPECIAL			2
80 #define  SN_GPIO_MUX_MASK			0x3
81 #define SN_AUX_WDATA_REG(x)			(0x64 + (x))
82 #define SN_AUX_ADDR_19_16_REG			0x74
83 #define SN_AUX_ADDR_15_8_REG			0x75
84 #define SN_AUX_ADDR_7_0_REG			0x76
85 #define SN_AUX_ADDR_MASK			GENMASK(19, 0)
86 #define SN_AUX_LENGTH_REG			0x77
87 #define SN_AUX_CMD_REG				0x78
88 #define  AUX_CMD_SEND				BIT(0)
89 #define  AUX_CMD_REQ(x)				((x) << 4)
90 #define SN_AUX_RDATA_REG(x)			(0x79 + (x))
91 #define SN_SSC_CONFIG_REG			0x93
92 #define  DP_NUM_LANES_MASK			GENMASK(5, 4)
93 #define  DP_NUM_LANES(x)			((x) << 4)
94 #define SN_DATARATE_CONFIG_REG			0x94
95 #define  DP_DATARATE_MASK			GENMASK(7, 5)
96 #define  DP_DATARATE(x)				((x) << 5)
97 #define SN_TRAINING_SETTING_REG			0x95
98 #define  SCRAMBLE_DISABLE			BIT(4)
99 #define SN_ML_TX_MODE_REG			0x96
100 #define  ML_TX_MAIN_LINK_OFF			0
101 #define  ML_TX_NORMAL_MODE			BIT(0)
102 #define SN_PWM_PRE_DIV_REG			0xA0
103 #define SN_BACKLIGHT_SCALE_REG			0xA1
104 #define  BACKLIGHT_SCALE_MAX			0xFFFF
105 #define SN_BACKLIGHT_REG			0xA3
106 #define SN_PWM_EN_INV_REG			0xA5
107 #define  SN_PWM_INV_MASK			BIT(0)
108 #define  SN_PWM_EN_MASK				BIT(1)
109 #define SN_AUX_CMD_STATUS_REG			0xF4
110 #define  AUX_IRQ_STATUS_AUX_RPLY_TOUT		BIT(3)
111 #define  AUX_IRQ_STATUS_AUX_SHORT		BIT(5)
112 #define  AUX_IRQ_STATUS_NAT_I2C_FAIL		BIT(6)
113 
114 #define MIN_DSI_CLK_FREQ_MHZ	40
115 
116 /* fudge factor required to account for 8b/10b encoding */
117 #define DP_CLK_FUDGE_NUM	10
118 #define DP_CLK_FUDGE_DEN	8
119 
120 /* Matches DP_AUX_MAX_PAYLOAD_BYTES (for now) */
121 #define SN_AUX_MAX_PAYLOAD_BYTES	16
122 
123 #define SN_REGULATOR_SUPPLY_NUM		4
124 
125 #define SN_MAX_DP_LANES			4
126 #define SN_NUM_GPIOS			4
127 #define SN_GPIO_PHYSICAL_OFFSET		1
128 
129 #define SN_LINK_TRAINING_TRIES		10
130 
131 #define SN_PWM_GPIO_IDX			3 /* 4th GPIO */
132 
133 /**
134  * struct ti_sn65dsi86 - Platform data for ti-sn65dsi86 driver.
135  * @bridge_aux:   AUX-bus sub device for MIPI-to-eDP bridge functionality.
136  * @gpio_aux:     AUX-bus sub device for GPIO controller functionality.
137  * @aux_aux:      AUX-bus sub device for eDP AUX channel functionality.
138  * @pwm_aux:      AUX-bus sub device for PWM controller functionality.
139  *
140  * @dev:          Pointer to the top level (i2c) device.
141  * @regmap:       Regmap for accessing i2c.
142  * @aux:          Our aux channel.
143  * @bridge:       Our bridge.
144  * @connector:    Our connector.
145  * @host_node:    Remote DSI node.
146  * @dsi:          Our MIPI DSI source.
147  * @refclk:       Our reference clock.
148  * @next_bridge:  The bridge on the eDP side.
149  * @enable_gpio:  The GPIO we toggle to enable the bridge.
150  * @supplies:     Data for bulk enabling/disabling our regulators.
151  * @dp_lanes:     Count of dp_lanes we're using.
152  * @ln_assign:    Value to program to the LN_ASSIGN register.
153  * @ln_polrs:     Value for the 4-bit LN_POLRS field of SN_ENH_FRAME_REG.
154  * @comms_enabled: If true then communication over the aux channel is enabled.
155  * @comms_mutex:   Protects modification of comms_enabled.
156  *
157  * @gchip:        If we expose our GPIOs, this is used.
158  * @gchip_output: A cache of whether we've set GPIOs to output.  This
159  *                serves double-duty of keeping track of the direction and
160  *                also keeping track of whether we've incremented the
161  *                pm_runtime reference count for this pin, which we do
162  *                whenever a pin is configured as an output.  This is a
163  *                bitmap so we can do atomic ops on it without an extra
164  *                lock so concurrent users of our 4 GPIOs don't stomp on
165  *                each other's read-modify-write.
166  *
167  * @pchip:        pwm_chip if the PWM is exposed.
168  * @pwm_enabled:  Used to track if the PWM signal is currently enabled.
169  * @pwm_pin_busy: Track if GPIO4 is currently requested for GPIO or PWM.
170  * @pwm_refclk_freq: Cache for the reference clock input to the PWM.
171  */
172 struct ti_sn65dsi86 {
173 	struct auxiliary_device		*bridge_aux;
174 	struct auxiliary_device		*gpio_aux;
175 	struct auxiliary_device		*aux_aux;
176 	struct auxiliary_device		*pwm_aux;
177 
178 	struct device			*dev;
179 	struct regmap			*regmap;
180 	struct drm_dp_aux		aux;
181 	struct drm_bridge		bridge;
182 	struct drm_connector		*connector;
183 	struct device_node		*host_node;
184 	struct mipi_dsi_device		*dsi;
185 	struct clk			*refclk;
186 	struct drm_bridge		*next_bridge;
187 	struct gpio_desc		*enable_gpio;
188 	struct regulator_bulk_data	supplies[SN_REGULATOR_SUPPLY_NUM];
189 	int				dp_lanes;
190 	u8				ln_assign;
191 	u8				ln_polrs;
192 	bool				comms_enabled;
193 	struct mutex			comms_mutex;
194 
195 #if defined(CONFIG_OF_GPIO)
196 	struct gpio_chip		gchip;
197 	DECLARE_BITMAP(gchip_output, SN_NUM_GPIOS);
198 #endif
199 #if IS_REACHABLE(CONFIG_PWM)
200 	struct pwm_chip			*pchip;
201 	bool				pwm_enabled;
202 	atomic_t			pwm_pin_busy;
203 #endif
204 	unsigned int			pwm_refclk_freq;
205 };
206 
207 static const struct regmap_range ti_sn65dsi86_volatile_ranges[] = {
208 	{ .range_min = 0, .range_max = 0xFF },
209 };
210 
211 static const struct regmap_access_table ti_sn_bridge_volatile_table = {
212 	.yes_ranges = ti_sn65dsi86_volatile_ranges,
213 	.n_yes_ranges = ARRAY_SIZE(ti_sn65dsi86_volatile_ranges),
214 };
215 
216 static const struct regmap_config ti_sn65dsi86_regmap_config = {
217 	.reg_bits = 8,
218 	.val_bits = 8,
219 	.volatile_table = &ti_sn_bridge_volatile_table,
220 	.cache_type = REGCACHE_NONE,
221 	.max_register = 0xFF,
222 };
223 
ti_sn65dsi86_read_u16(struct ti_sn65dsi86 * pdata,unsigned int reg,u16 * val)224 static int __maybe_unused ti_sn65dsi86_read_u16(struct ti_sn65dsi86 *pdata,
225 						unsigned int reg, u16 *val)
226 {
227 	u8 buf[2];
228 	int ret;
229 
230 	ret = regmap_bulk_read(pdata->regmap, reg, buf, ARRAY_SIZE(buf));
231 	if (ret)
232 		return ret;
233 
234 	*val = buf[0] | (buf[1] << 8);
235 
236 	return 0;
237 }
238 
ti_sn65dsi86_write_u16(struct ti_sn65dsi86 * pdata,unsigned int reg,u16 val)239 static void ti_sn65dsi86_write_u16(struct ti_sn65dsi86 *pdata,
240 				   unsigned int reg, u16 val)
241 {
242 	u8 buf[2] = { val & 0xff, val >> 8 };
243 
244 	regmap_bulk_write(pdata->regmap, reg, buf, ARRAY_SIZE(buf));
245 }
246 
247 static struct drm_display_mode *
get_new_adjusted_display_mode(struct drm_bridge * bridge,struct drm_atomic_state * state)248 get_new_adjusted_display_mode(struct drm_bridge *bridge,
249 			      struct drm_atomic_state *state)
250 {
251 	struct drm_connector *connector =
252 		drm_atomic_get_new_connector_for_encoder(state, bridge->encoder);
253 	struct drm_connector_state *conn_state =
254 		drm_atomic_get_new_connector_state(state, connector);
255 	struct drm_crtc_state *crtc_state =
256 		drm_atomic_get_new_crtc_state(state, conn_state->crtc);
257 
258 	return &crtc_state->adjusted_mode;
259 }
260 
ti_sn_bridge_get_dsi_freq(struct ti_sn65dsi86 * pdata,struct drm_atomic_state * state)261 static u32 ti_sn_bridge_get_dsi_freq(struct ti_sn65dsi86 *pdata,
262 				     struct drm_atomic_state *state)
263 {
264 	u32 bit_rate_khz, clk_freq_khz;
265 	struct drm_display_mode *mode =
266 		get_new_adjusted_display_mode(&pdata->bridge, state);
267 
268 	bit_rate_khz = mode->clock *
269 			mipi_dsi_pixel_format_to_bpp(pdata->dsi->format);
270 	clk_freq_khz = bit_rate_khz / (pdata->dsi->lanes * 2);
271 
272 	return clk_freq_khz;
273 }
274 
275 /* clk frequencies supported by bridge in Hz in case derived from REFCLK pin */
276 static const u32 ti_sn_bridge_refclk_lut[] = {
277 	12000000,
278 	19200000,
279 	26000000,
280 	27000000,
281 	38400000,
282 };
283 
284 /* clk frequencies supported by bridge in Hz in case derived from DACP/N pin */
285 static const u32 ti_sn_bridge_dsiclk_lut[] = {
286 	468000000,
287 	384000000,
288 	416000000,
289 	486000000,
290 	460800000,
291 };
292 
ti_sn_bridge_set_refclk_freq(struct ti_sn65dsi86 * pdata,struct drm_atomic_state * state)293 static void ti_sn_bridge_set_refclk_freq(struct ti_sn65dsi86 *pdata,
294 					 struct drm_atomic_state *state)
295 {
296 	int i;
297 	u32 refclk_rate;
298 	const u32 *refclk_lut;
299 	size_t refclk_lut_size;
300 
301 	if (pdata->refclk) {
302 		refclk_rate = clk_get_rate(pdata->refclk);
303 		refclk_lut = ti_sn_bridge_refclk_lut;
304 		refclk_lut_size = ARRAY_SIZE(ti_sn_bridge_refclk_lut);
305 		clk_prepare_enable(pdata->refclk);
306 	} else {
307 		refclk_rate = ti_sn_bridge_get_dsi_freq(pdata, state) * 1000;
308 		refclk_lut = ti_sn_bridge_dsiclk_lut;
309 		refclk_lut_size = ARRAY_SIZE(ti_sn_bridge_dsiclk_lut);
310 	}
311 
312 	/* for i equals to refclk_lut_size means default frequency */
313 	for (i = 0; i < refclk_lut_size; i++)
314 		if (refclk_lut[i] == refclk_rate)
315 			break;
316 
317 	/* avoid buffer overflow and "1" is the default rate in the datasheet. */
318 	if (i >= refclk_lut_size)
319 		i = 1;
320 
321 	regmap_update_bits(pdata->regmap, SN_DPPLL_SRC_REG, REFCLK_FREQ_MASK,
322 			   REFCLK_FREQ(i));
323 
324 	/*
325 	 * The PWM refclk is based on the value written to SN_DPPLL_SRC_REG,
326 	 * regardless of its actual sourcing.
327 	 */
328 	pdata->pwm_refclk_freq = ti_sn_bridge_refclk_lut[i];
329 }
330 
ti_sn65dsi86_enable_comms(struct ti_sn65dsi86 * pdata,struct drm_atomic_state * state)331 static void ti_sn65dsi86_enable_comms(struct ti_sn65dsi86 *pdata,
332 				      struct drm_atomic_state *state)
333 {
334 	mutex_lock(&pdata->comms_mutex);
335 
336 	/* configure bridge ref_clk */
337 	ti_sn_bridge_set_refclk_freq(pdata, state);
338 
339 	/*
340 	 * HPD on this bridge chip is a bit useless.  This is an eDP bridge
341 	 * so the HPD is an internal signal that's only there to signal that
342 	 * the panel is done powering up.  ...but the bridge chip debounces
343 	 * this signal by between 100 ms and 400 ms (depending on process,
344 	 * voltage, and temperate--I measured it at about 200 ms).  One
345 	 * particular panel asserted HPD 84 ms after it was powered on meaning
346 	 * that we saw HPD 284 ms after power on.  ...but the same panel said
347 	 * that instead of looking at HPD you could just hardcode a delay of
348 	 * 200 ms.  We'll assume that the panel driver will have the hardcoded
349 	 * delay in its prepare and always disable HPD.
350 	 *
351 	 * For DisplayPort bridge type, we need HPD. So we use the bridge type
352 	 * to conditionally disable HPD.
353 	 * NOTE: The bridge type is set in ti_sn_bridge_probe() but enable_comms()
354 	 * can be called before. So for DisplayPort, HPD will be enabled once
355 	 * bridge type is set. We are using bridge type instead of "no-hpd"
356 	 * property because it is not used properly in devicetree description
357 	 * and hence is unreliable.
358 	 */
359 
360 	if (pdata->bridge.type != DRM_MODE_CONNECTOR_DisplayPort)
361 		regmap_update_bits(pdata->regmap, SN_HPD_DISABLE_REG, HPD_DISABLE,
362 				   HPD_DISABLE);
363 
364 	pdata->comms_enabled = true;
365 
366 	mutex_unlock(&pdata->comms_mutex);
367 }
368 
ti_sn65dsi86_disable_comms(struct ti_sn65dsi86 * pdata)369 static void ti_sn65dsi86_disable_comms(struct ti_sn65dsi86 *pdata)
370 {
371 	mutex_lock(&pdata->comms_mutex);
372 
373 	pdata->comms_enabled = false;
374 	clk_disable_unprepare(pdata->refclk);
375 
376 	mutex_unlock(&pdata->comms_mutex);
377 }
378 
ti_sn65dsi86_resume(struct device * dev)379 static int __maybe_unused ti_sn65dsi86_resume(struct device *dev)
380 {
381 	struct ti_sn65dsi86 *pdata = dev_get_drvdata(dev);
382 	int ret;
383 
384 	ret = regulator_bulk_enable(SN_REGULATOR_SUPPLY_NUM, pdata->supplies);
385 	if (ret) {
386 		DRM_ERROR("failed to enable supplies %d\n", ret);
387 		return ret;
388 	}
389 
390 	/* td2: min 100 us after regulators before enabling the GPIO */
391 	usleep_range(100, 110);
392 
393 	gpiod_set_value_cansleep(pdata->enable_gpio, 1);
394 
395 	/*
396 	 * If we have a reference clock we can enable communication w/ the
397 	 * panel (including the aux channel) w/out any need for an input clock
398 	 * so we can do it in resume which lets us read the EDID before
399 	 * pre_enable(). Without a reference clock we need the MIPI reference
400 	 * clock so reading early doesn't work.
401 	 */
402 	if (pdata->refclk)
403 		ti_sn65dsi86_enable_comms(pdata, NULL);
404 
405 	return ret;
406 }
407 
ti_sn65dsi86_suspend(struct device * dev)408 static int __maybe_unused ti_sn65dsi86_suspend(struct device *dev)
409 {
410 	struct ti_sn65dsi86 *pdata = dev_get_drvdata(dev);
411 	int ret;
412 
413 	if (pdata->refclk)
414 		ti_sn65dsi86_disable_comms(pdata);
415 
416 	gpiod_set_value_cansleep(pdata->enable_gpio, 0);
417 
418 	ret = regulator_bulk_disable(SN_REGULATOR_SUPPLY_NUM, pdata->supplies);
419 	if (ret)
420 		DRM_ERROR("failed to disable supplies %d\n", ret);
421 
422 	return ret;
423 }
424 
425 static const struct dev_pm_ops ti_sn65dsi86_pm_ops = {
426 	SET_RUNTIME_PM_OPS(ti_sn65dsi86_suspend, ti_sn65dsi86_resume, NULL)
427 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
428 				pm_runtime_force_resume)
429 };
430 
status_show(struct seq_file * s,void * data)431 static int status_show(struct seq_file *s, void *data)
432 {
433 	struct ti_sn65dsi86 *pdata = s->private;
434 	unsigned int reg, val;
435 
436 	seq_puts(s, "STATUS REGISTERS:\n");
437 
438 	pm_runtime_get_sync(pdata->dev);
439 
440 	/* IRQ Status Registers, see Table 31 in datasheet */
441 	for (reg = 0xf0; reg <= 0xf8; reg++) {
442 		regmap_read(pdata->regmap, reg, &val);
443 		seq_printf(s, "[0x%02x] = 0x%08x\n", reg, val);
444 	}
445 
446 	pm_runtime_put_autosuspend(pdata->dev);
447 
448 	return 0;
449 }
450 DEFINE_SHOW_ATTRIBUTE(status);
451 
452 /* -----------------------------------------------------------------------------
453  * Auxiliary Devices (*not* AUX)
454  */
455 
ti_sn65dsi86_add_aux_device(struct ti_sn65dsi86 * pdata,struct auxiliary_device ** aux_out,const char * name)456 static int ti_sn65dsi86_add_aux_device(struct ti_sn65dsi86 *pdata,
457 				       struct auxiliary_device **aux_out,
458 				       const char *name)
459 {
460 	struct device *dev = pdata->dev;
461 	const struct i2c_client *client = to_i2c_client(dev);
462 	struct auxiliary_device *aux;
463 	int id;
464 
465 	id = (client->adapter->nr << 10) | client->addr;
466 	aux = __devm_auxiliary_device_create(dev, KBUILD_MODNAME, name,
467 					     NULL, id);
468 	if (!aux)
469 		return -ENODEV;
470 
471 	*aux_out = aux;
472 	return 0;
473 }
474 
475 /* -----------------------------------------------------------------------------
476  * AUX Adapter
477  */
478 
aux_to_ti_sn65dsi86(struct drm_dp_aux * aux)479 static struct ti_sn65dsi86 *aux_to_ti_sn65dsi86(struct drm_dp_aux *aux)
480 {
481 	return container_of(aux, struct ti_sn65dsi86, aux);
482 }
483 
ti_sn_aux_transfer(struct drm_dp_aux * aux,struct drm_dp_aux_msg * msg)484 static ssize_t ti_sn_aux_transfer(struct drm_dp_aux *aux,
485 				  struct drm_dp_aux_msg *msg)
486 {
487 	struct ti_sn65dsi86 *pdata = aux_to_ti_sn65dsi86(aux);
488 	u32 request = msg->request & ~(DP_AUX_I2C_MOT | DP_AUX_I2C_WRITE_STATUS_UPDATE);
489 	u32 request_val = AUX_CMD_REQ(msg->request);
490 	u8 *buf = msg->buffer;
491 	unsigned int len = msg->size;
492 	unsigned int short_len;
493 	unsigned int val;
494 	int ret;
495 	u8 addr_len[SN_AUX_LENGTH_REG + 1 - SN_AUX_ADDR_19_16_REG];
496 
497 	if (len > SN_AUX_MAX_PAYLOAD_BYTES)
498 		return -EINVAL;
499 
500 	pm_runtime_get_sync(pdata->dev);
501 	mutex_lock(&pdata->comms_mutex);
502 
503 	/*
504 	 * If someone tries to do a DDC over AUX transaction before pre_enable()
505 	 * on a device without a dedicated reference clock then we just can't
506 	 * do it. Fail right away. This prevents non-refclk users from reading
507 	 * the EDID before enabling the panel but such is life.
508 	 */
509 	if (!pdata->comms_enabled) {
510 		ret = -EIO;
511 		goto exit;
512 	}
513 
514 	switch (request) {
515 	case DP_AUX_NATIVE_WRITE:
516 	case DP_AUX_I2C_WRITE:
517 	case DP_AUX_NATIVE_READ:
518 	case DP_AUX_I2C_READ:
519 		regmap_write(pdata->regmap, SN_AUX_CMD_REG, request_val);
520 		/* Assume it's good */
521 		msg->reply = 0;
522 		break;
523 	default:
524 		ret = -EINVAL;
525 		goto exit;
526 	}
527 
528 	BUILD_BUG_ON(sizeof(addr_len) != sizeof(__be32));
529 	put_unaligned_be32((msg->address & SN_AUX_ADDR_MASK) << 8 | len,
530 			   addr_len);
531 	regmap_bulk_write(pdata->regmap, SN_AUX_ADDR_19_16_REG, addr_len,
532 			  ARRAY_SIZE(addr_len));
533 
534 	if (request == DP_AUX_NATIVE_WRITE || request == DP_AUX_I2C_WRITE)
535 		regmap_bulk_write(pdata->regmap, SN_AUX_WDATA_REG(0), buf, len);
536 
537 	/* Clear old status bits before start so we don't get confused */
538 	regmap_write(pdata->regmap, SN_AUX_CMD_STATUS_REG,
539 		     AUX_IRQ_STATUS_NAT_I2C_FAIL |
540 		     AUX_IRQ_STATUS_AUX_RPLY_TOUT |
541 		     AUX_IRQ_STATUS_AUX_SHORT);
542 
543 	regmap_write(pdata->regmap, SN_AUX_CMD_REG, request_val | AUX_CMD_SEND);
544 
545 	/* Zero delay loop because i2c transactions are slow already */
546 	ret = regmap_read_poll_timeout(pdata->regmap, SN_AUX_CMD_REG, val,
547 				       !(val & AUX_CMD_SEND), 0, 50 * 1000);
548 	if (ret)
549 		goto exit;
550 
551 	ret = regmap_read(pdata->regmap, SN_AUX_CMD_STATUS_REG, &val);
552 	if (ret)
553 		goto exit;
554 
555 	if (val & AUX_IRQ_STATUS_AUX_RPLY_TOUT) {
556 		/*
557 		 * The hardware tried the message seven times per the DP spec
558 		 * but it hit a timeout. We ignore defers here because they're
559 		 * handled in hardware.
560 		 */
561 		ret = -ETIMEDOUT;
562 		goto exit;
563 	}
564 
565 	if (val & AUX_IRQ_STATUS_AUX_SHORT) {
566 		ret = regmap_read(pdata->regmap, SN_AUX_LENGTH_REG, &short_len);
567 		len = min(len, short_len);
568 		if (ret)
569 			goto exit;
570 	} else if (val & AUX_IRQ_STATUS_NAT_I2C_FAIL) {
571 		switch (request) {
572 		case DP_AUX_I2C_WRITE:
573 		case DP_AUX_I2C_READ:
574 			msg->reply |= DP_AUX_I2C_REPLY_NACK;
575 			break;
576 		case DP_AUX_NATIVE_READ:
577 		case DP_AUX_NATIVE_WRITE:
578 			msg->reply |= DP_AUX_NATIVE_REPLY_NACK;
579 			break;
580 		}
581 		len = 0;
582 		goto exit;
583 	}
584 
585 	if (request != DP_AUX_NATIVE_WRITE && request != DP_AUX_I2C_WRITE && len != 0)
586 		ret = regmap_bulk_read(pdata->regmap, SN_AUX_RDATA_REG(0), buf, len);
587 
588 exit:
589 	mutex_unlock(&pdata->comms_mutex);
590 	pm_runtime_mark_last_busy(pdata->dev);
591 	pm_runtime_put_autosuspend(pdata->dev);
592 
593 	if (ret)
594 		return ret;
595 	return len;
596 }
597 
ti_sn_aux_wait_hpd_asserted(struct drm_dp_aux * aux,unsigned long wait_us)598 static int ti_sn_aux_wait_hpd_asserted(struct drm_dp_aux *aux, unsigned long wait_us)
599 {
600 	/*
601 	 * The HPD in this chip is a bit useless (See comment in
602 	 * ti_sn65dsi86_enable_comms) so if our driver is expected to wait
603 	 * for HPD, we just assume it's asserted after the wait_us delay.
604 	 *
605 	 * In case we are asked to wait forever (wait_us=0) take conservative
606 	 * 500ms delay.
607 	 */
608 	if (wait_us == 0)
609 		wait_us = 500000;
610 
611 	usleep_range(wait_us, wait_us + 1000);
612 
613 	return 0;
614 }
615 
ti_sn_aux_probe(struct auxiliary_device * adev,const struct auxiliary_device_id * id)616 static int ti_sn_aux_probe(struct auxiliary_device *adev,
617 			   const struct auxiliary_device_id *id)
618 {
619 	struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
620 	int ret;
621 
622 	pdata->aux.name = "ti-sn65dsi86-aux";
623 	pdata->aux.dev = &adev->dev;
624 	pdata->aux.transfer = ti_sn_aux_transfer;
625 	pdata->aux.wait_hpd_asserted = ti_sn_aux_wait_hpd_asserted;
626 	drm_dp_aux_init(&pdata->aux);
627 
628 	ret = devm_of_dp_aux_populate_ep_devices(&pdata->aux);
629 	if (ret)
630 		return ret;
631 
632 	/*
633 	 * The eDP to MIPI bridge parts don't work until the AUX channel is
634 	 * setup so we don't add it in the main driver probe, we add it now.
635 	 */
636 	return ti_sn65dsi86_add_aux_device(pdata, &pdata->bridge_aux, "bridge");
637 }
638 
639 static const struct auxiliary_device_id ti_sn_aux_id_table[] = {
640 	{ .name = "ti_sn65dsi86.aux", },
641 	{},
642 };
643 
644 static struct auxiliary_driver ti_sn_aux_driver = {
645 	.name = "aux",
646 	.probe = ti_sn_aux_probe,
647 	.id_table = ti_sn_aux_id_table,
648 };
649 
650 /*------------------------------------------------------------------------------
651  * DRM Bridge
652  */
653 
bridge_to_ti_sn65dsi86(struct drm_bridge * bridge)654 static struct ti_sn65dsi86 *bridge_to_ti_sn65dsi86(struct drm_bridge *bridge)
655 {
656 	return container_of(bridge, struct ti_sn65dsi86, bridge);
657 }
658 
ti_sn_attach_host(struct auxiliary_device * adev,struct ti_sn65dsi86 * pdata)659 static int ti_sn_attach_host(struct auxiliary_device *adev, struct ti_sn65dsi86 *pdata)
660 {
661 	int val;
662 	struct mipi_dsi_host *host;
663 	struct mipi_dsi_device *dsi;
664 	struct device *dev = pdata->dev;
665 	const struct mipi_dsi_device_info info = { .type = "ti_sn_bridge",
666 						   .channel = 0,
667 						   .node = NULL,
668 	};
669 
670 	host = of_find_mipi_dsi_host_by_node(pdata->host_node);
671 	if (!host)
672 		return -EPROBE_DEFER;
673 
674 	dsi = devm_mipi_dsi_device_register_full(&adev->dev, host, &info);
675 	if (IS_ERR(dsi))
676 		return PTR_ERR(dsi);
677 
678 	/* TODO: setting to 4 MIPI lanes always for now */
679 	dsi->lanes = 4;
680 	dsi->format = MIPI_DSI_FMT_RGB888;
681 	dsi->mode_flags = MIPI_DSI_MODE_VIDEO;
682 
683 	/* check if continuous dsi clock is required or not */
684 	pm_runtime_get_sync(dev);
685 	regmap_read(pdata->regmap, SN_DPPLL_SRC_REG, &val);
686 	pm_runtime_put_autosuspend(dev);
687 	if (!(val & DPPLL_CLK_SRC_DSICLK))
688 		dsi->mode_flags |= MIPI_DSI_CLOCK_NON_CONTINUOUS;
689 
690 	pdata->dsi = dsi;
691 
692 	return devm_mipi_dsi_attach(&adev->dev, dsi);
693 }
694 
ti_sn_bridge_attach(struct drm_bridge * bridge,struct drm_encoder * encoder,enum drm_bridge_attach_flags flags)695 static int ti_sn_bridge_attach(struct drm_bridge *bridge,
696 			       struct drm_encoder *encoder,
697 			       enum drm_bridge_attach_flags flags)
698 {
699 	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
700 	int ret;
701 
702 	pdata->aux.drm_dev = bridge->dev;
703 	ret = drm_dp_aux_register(&pdata->aux);
704 	if (ret < 0) {
705 		drm_err(bridge->dev, "Failed to register DP AUX channel: %d\n", ret);
706 		return ret;
707 	}
708 
709 	/*
710 	 * Attach the next bridge.
711 	 * We never want the next bridge to *also* create a connector.
712 	 */
713 	ret = drm_bridge_attach(encoder, pdata->next_bridge,
714 				&pdata->bridge, flags | DRM_BRIDGE_ATTACH_NO_CONNECTOR);
715 	if (ret < 0)
716 		goto err_initted_aux;
717 
718 	if (flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR)
719 		return 0;
720 
721 	pdata->connector = drm_bridge_connector_init(pdata->bridge.dev,
722 						     pdata->bridge.encoder);
723 	if (IS_ERR(pdata->connector)) {
724 		ret = PTR_ERR(pdata->connector);
725 		goto err_initted_aux;
726 	}
727 
728 	drm_connector_attach_encoder(pdata->connector, pdata->bridge.encoder);
729 
730 	return 0;
731 
732 err_initted_aux:
733 	drm_dp_aux_unregister(&pdata->aux);
734 	return ret;
735 }
736 
ti_sn_bridge_detach(struct drm_bridge * bridge)737 static void ti_sn_bridge_detach(struct drm_bridge *bridge)
738 {
739 	drm_dp_aux_unregister(&bridge_to_ti_sn65dsi86(bridge)->aux);
740 }
741 
742 static enum drm_mode_status
ti_sn_bridge_mode_valid(struct drm_bridge * bridge,const struct drm_display_info * info,const struct drm_display_mode * mode)743 ti_sn_bridge_mode_valid(struct drm_bridge *bridge,
744 			const struct drm_display_info *info,
745 			const struct drm_display_mode *mode)
746 {
747 	/* maximum supported resolution is 4K at 60 fps */
748 	if (mode->clock > 594000)
749 		return MODE_CLOCK_HIGH;
750 
751 	/*
752 	 * The front and back porch registers are 8 bits, and pulse width
753 	 * registers are 15 bits, so reject any modes with larger periods.
754 	 */
755 
756 	if ((mode->hsync_start - mode->hdisplay) > 0xff)
757 		return MODE_HBLANK_WIDE;
758 
759 	if ((mode->vsync_start - mode->vdisplay) > 0xff)
760 		return MODE_VBLANK_WIDE;
761 
762 	if ((mode->hsync_end - mode->hsync_start) > 0x7fff)
763 		return MODE_HSYNC_WIDE;
764 
765 	if ((mode->vsync_end - mode->vsync_start) > 0x7fff)
766 		return MODE_VSYNC_WIDE;
767 
768 	if ((mode->htotal - mode->hsync_end) > 0xff)
769 		return MODE_HBLANK_WIDE;
770 
771 	if ((mode->vtotal - mode->vsync_end) > 0xff)
772 		return MODE_VBLANK_WIDE;
773 
774 	return MODE_OK;
775 }
776 
ti_sn_bridge_atomic_disable(struct drm_bridge * bridge,struct drm_atomic_state * state)777 static void ti_sn_bridge_atomic_disable(struct drm_bridge *bridge,
778 					struct drm_atomic_state *state)
779 {
780 	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
781 
782 	/* disable video stream */
783 	regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, VSTREAM_ENABLE, 0);
784 }
785 
ti_sn_bridge_set_dsi_rate(struct ti_sn65dsi86 * pdata,struct drm_atomic_state * state)786 static void ti_sn_bridge_set_dsi_rate(struct ti_sn65dsi86 *pdata,
787 				      struct drm_atomic_state *state)
788 {
789 	unsigned int bit_rate_mhz, clk_freq_mhz;
790 	unsigned int val;
791 	struct drm_display_mode *mode =
792 		get_new_adjusted_display_mode(&pdata->bridge, state);
793 
794 	/* set DSIA clk frequency */
795 	bit_rate_mhz = (mode->clock / 1000) *
796 			mipi_dsi_pixel_format_to_bpp(pdata->dsi->format);
797 	clk_freq_mhz = bit_rate_mhz / (pdata->dsi->lanes * 2);
798 
799 	/* for each increment in val, frequency increases by 5MHz */
800 	val = (MIN_DSI_CLK_FREQ_MHZ / 5) +
801 		(((clk_freq_mhz - MIN_DSI_CLK_FREQ_MHZ) / 5) & 0xFF);
802 	regmap_write(pdata->regmap, SN_DSIA_CLK_FREQ_REG, val);
803 }
804 
ti_sn_bridge_get_bpp(struct drm_connector * connector)805 static unsigned int ti_sn_bridge_get_bpp(struct drm_connector *connector)
806 {
807 	if (connector->display_info.bpc <= 6)
808 		return 18;
809 	else
810 		return 24;
811 }
812 
813 /*
814  * LUT index corresponds to register value and
815  * LUT values corresponds to dp data rate supported
816  * by the bridge in Mbps unit.
817  */
818 static const unsigned int ti_sn_bridge_dp_rate_lut[] = {
819 	0, 1620, 2160, 2430, 2700, 3240, 4320, 5400
820 };
821 
ti_sn_bridge_calc_min_dp_rate_idx(struct ti_sn65dsi86 * pdata,struct drm_atomic_state * state,unsigned int bpp)822 static int ti_sn_bridge_calc_min_dp_rate_idx(struct ti_sn65dsi86 *pdata,
823 					     struct drm_atomic_state *state,
824 					     unsigned int bpp)
825 {
826 	unsigned int bit_rate_khz, dp_rate_mhz;
827 	unsigned int i;
828 	struct drm_display_mode *mode =
829 		get_new_adjusted_display_mode(&pdata->bridge, state);
830 
831 	/* Calculate minimum bit rate based on our pixel clock. */
832 	bit_rate_khz = mode->clock * bpp;
833 
834 	/* Calculate minimum DP data rate, taking 80% as per DP spec */
835 	dp_rate_mhz = DIV_ROUND_UP(bit_rate_khz * DP_CLK_FUDGE_NUM,
836 				   1000 * pdata->dp_lanes * DP_CLK_FUDGE_DEN);
837 
838 	for (i = 1; i < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut) - 1; i++)
839 		if (ti_sn_bridge_dp_rate_lut[i] >= dp_rate_mhz)
840 			break;
841 
842 	return i;
843 }
844 
ti_sn_bridge_read_valid_rates(struct ti_sn65dsi86 * pdata)845 static unsigned int ti_sn_bridge_read_valid_rates(struct ti_sn65dsi86 *pdata)
846 {
847 	unsigned int valid_rates = 0;
848 	unsigned int rate_per_200khz;
849 	unsigned int rate_mhz;
850 	u8 dpcd_val;
851 	int ret;
852 	int i, j;
853 
854 	ret = drm_dp_dpcd_readb(&pdata->aux, DP_EDP_DPCD_REV, &dpcd_val);
855 	if (ret != 1) {
856 		DRM_DEV_ERROR(pdata->dev,
857 			      "Can't read eDP rev (%d), assuming 1.1\n", ret);
858 		dpcd_val = DP_EDP_11;
859 	}
860 
861 	if (dpcd_val >= DP_EDP_14) {
862 		/* eDP 1.4 devices must provide a custom table */
863 		__le16 sink_rates[DP_MAX_SUPPORTED_RATES];
864 
865 		ret = drm_dp_dpcd_read(&pdata->aux, DP_SUPPORTED_LINK_RATES,
866 				       sink_rates, sizeof(sink_rates));
867 
868 		if (ret != sizeof(sink_rates)) {
869 			DRM_DEV_ERROR(pdata->dev,
870 				"Can't read supported rate table (%d)\n", ret);
871 
872 			/* By zeroing we'll fall back to DP_MAX_LINK_RATE. */
873 			memset(sink_rates, 0, sizeof(sink_rates));
874 		}
875 
876 		for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
877 			rate_per_200khz = le16_to_cpu(sink_rates[i]);
878 
879 			if (!rate_per_200khz)
880 				break;
881 
882 			rate_mhz = rate_per_200khz * 200 / 1000;
883 			for (j = 0;
884 			     j < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut);
885 			     j++) {
886 				if (ti_sn_bridge_dp_rate_lut[j] == rate_mhz)
887 					valid_rates |= BIT(j);
888 			}
889 		}
890 
891 		for (i = 0; i < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut); i++) {
892 			if (valid_rates & BIT(i))
893 				return valid_rates;
894 		}
895 		DRM_DEV_ERROR(pdata->dev,
896 			      "No matching eDP rates in table; falling back\n");
897 	}
898 
899 	/* On older versions best we can do is use DP_MAX_LINK_RATE */
900 	ret = drm_dp_dpcd_readb(&pdata->aux, DP_MAX_LINK_RATE, &dpcd_val);
901 	if (ret != 1) {
902 		DRM_DEV_ERROR(pdata->dev,
903 			      "Can't read max rate (%d); assuming 5.4 GHz\n",
904 			      ret);
905 		dpcd_val = DP_LINK_BW_5_4;
906 	}
907 
908 	switch (dpcd_val) {
909 	default:
910 		DRM_DEV_ERROR(pdata->dev,
911 			      "Unexpected max rate (%#x); assuming 5.4 GHz\n",
912 			      (int)dpcd_val);
913 		fallthrough;
914 	case DP_LINK_BW_5_4:
915 		valid_rates |= BIT(7);
916 		fallthrough;
917 	case DP_LINK_BW_2_7:
918 		valid_rates |= BIT(4);
919 		fallthrough;
920 	case DP_LINK_BW_1_62:
921 		valid_rates |= BIT(1);
922 		break;
923 	}
924 
925 	return valid_rates;
926 }
927 
ti_sn_bridge_set_video_timings(struct ti_sn65dsi86 * pdata,struct drm_atomic_state * state)928 static void ti_sn_bridge_set_video_timings(struct ti_sn65dsi86 *pdata,
929 					   struct drm_atomic_state *state)
930 {
931 	struct drm_display_mode *mode =
932 		get_new_adjusted_display_mode(&pdata->bridge, state);
933 	u8 hsync_polarity = 0, vsync_polarity = 0;
934 
935 	if (mode->flags & DRM_MODE_FLAG_NHSYNC)
936 		hsync_polarity = CHA_HSYNC_POLARITY;
937 	if (mode->flags & DRM_MODE_FLAG_NVSYNC)
938 		vsync_polarity = CHA_VSYNC_POLARITY;
939 
940 	ti_sn65dsi86_write_u16(pdata, SN_CHA_ACTIVE_LINE_LENGTH_LOW_REG,
941 			       mode->hdisplay);
942 	ti_sn65dsi86_write_u16(pdata, SN_CHA_VERTICAL_DISPLAY_SIZE_LOW_REG,
943 			       mode->vdisplay);
944 	regmap_write(pdata->regmap, SN_CHA_HSYNC_PULSE_WIDTH_LOW_REG,
945 		     (mode->hsync_end - mode->hsync_start) & 0xFF);
946 	regmap_write(pdata->regmap, SN_CHA_HSYNC_PULSE_WIDTH_HIGH_REG,
947 		     (((mode->hsync_end - mode->hsync_start) >> 8) & 0x7F) |
948 		     hsync_polarity);
949 	regmap_write(pdata->regmap, SN_CHA_VSYNC_PULSE_WIDTH_LOW_REG,
950 		     (mode->vsync_end - mode->vsync_start) & 0xFF);
951 	regmap_write(pdata->regmap, SN_CHA_VSYNC_PULSE_WIDTH_HIGH_REG,
952 		     (((mode->vsync_end - mode->vsync_start) >> 8) & 0x7F) |
953 		     vsync_polarity);
954 
955 	regmap_write(pdata->regmap, SN_CHA_HORIZONTAL_BACK_PORCH_REG,
956 		     (mode->htotal - mode->hsync_end) & 0xFF);
957 	regmap_write(pdata->regmap, SN_CHA_VERTICAL_BACK_PORCH_REG,
958 		     (mode->vtotal - mode->vsync_end) & 0xFF);
959 
960 	regmap_write(pdata->regmap, SN_CHA_HORIZONTAL_FRONT_PORCH_REG,
961 		     (mode->hsync_start - mode->hdisplay) & 0xFF);
962 	regmap_write(pdata->regmap, SN_CHA_VERTICAL_FRONT_PORCH_REG,
963 		     (mode->vsync_start - mode->vdisplay) & 0xFF);
964 
965 	usleep_range(10000, 10500); /* 10ms delay recommended by spec */
966 }
967 
ti_sn_get_max_lanes(struct ti_sn65dsi86 * pdata)968 static unsigned int ti_sn_get_max_lanes(struct ti_sn65dsi86 *pdata)
969 {
970 	u8 data;
971 	int ret;
972 
973 	ret = drm_dp_dpcd_readb(&pdata->aux, DP_MAX_LANE_COUNT, &data);
974 	if (ret != 1) {
975 		DRM_DEV_ERROR(pdata->dev,
976 			      "Can't read lane count (%d); assuming 4\n", ret);
977 		return 4;
978 	}
979 
980 	return data & DP_LANE_COUNT_MASK;
981 }
982 
ti_sn_link_training(struct ti_sn65dsi86 * pdata,int dp_rate_idx,const char ** last_err_str)983 static int ti_sn_link_training(struct ti_sn65dsi86 *pdata, int dp_rate_idx,
984 			       const char **last_err_str)
985 {
986 	unsigned int val;
987 	int ret;
988 	int i;
989 
990 	/* set dp clk frequency value */
991 	regmap_update_bits(pdata->regmap, SN_DATARATE_CONFIG_REG,
992 			   DP_DATARATE_MASK, DP_DATARATE(dp_rate_idx));
993 
994 	/* enable DP PLL */
995 	regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 1);
996 
997 	ret = regmap_read_poll_timeout(pdata->regmap, SN_DPPLL_SRC_REG, val,
998 				       val & DPPLL_SRC_DP_PLL_LOCK, 1000,
999 				       50 * 1000);
1000 	if (ret) {
1001 		*last_err_str = "DP_PLL_LOCK polling failed";
1002 		goto exit;
1003 	}
1004 
1005 	/*
1006 	 * We'll try to link train several times.  As part of link training
1007 	 * the bridge chip will write DP_SET_POWER_D0 to DP_SET_POWER.  If
1008 	 * the panel isn't ready quite it might respond NAK here which means
1009 	 * we need to try again.
1010 	 */
1011 	for (i = 0; i < SN_LINK_TRAINING_TRIES; i++) {
1012 		/* Semi auto link training mode */
1013 		regmap_write(pdata->regmap, SN_ML_TX_MODE_REG, 0x0A);
1014 		ret = regmap_read_poll_timeout(pdata->regmap, SN_ML_TX_MODE_REG, val,
1015 					       val == ML_TX_MAIN_LINK_OFF ||
1016 					       val == ML_TX_NORMAL_MODE, 1000,
1017 					       500 * 1000);
1018 		if (ret) {
1019 			*last_err_str = "Training complete polling failed";
1020 		} else if (val == ML_TX_MAIN_LINK_OFF) {
1021 			*last_err_str = "Link training failed, link is off";
1022 			ret = -EIO;
1023 			continue;
1024 		}
1025 
1026 		break;
1027 	}
1028 
1029 	/* If we saw quite a few retries, add a note about it */
1030 	if (!ret && i > SN_LINK_TRAINING_TRIES / 2)
1031 		DRM_DEV_INFO(pdata->dev, "Link training needed %d retries\n", i);
1032 
1033 exit:
1034 	/* Disable the PLL if we failed */
1035 	if (ret)
1036 		regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 0);
1037 
1038 	return ret;
1039 }
1040 
ti_sn_bridge_atomic_enable(struct drm_bridge * bridge,struct drm_atomic_state * state)1041 static void ti_sn_bridge_atomic_enable(struct drm_bridge *bridge,
1042 				       struct drm_atomic_state *state)
1043 {
1044 	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1045 	struct drm_connector *connector;
1046 	const char *last_err_str = "No supported DP rate";
1047 	unsigned int valid_rates;
1048 	int dp_rate_idx;
1049 	unsigned int val;
1050 	int ret = -EINVAL;
1051 	int max_dp_lanes;
1052 	unsigned int bpp;
1053 
1054 	connector = drm_atomic_get_new_connector_for_encoder(state,
1055 							     bridge->encoder);
1056 	if (!connector) {
1057 		dev_err_ratelimited(pdata->dev, "Could not get the connector\n");
1058 		return;
1059 	}
1060 
1061 	max_dp_lanes = ti_sn_get_max_lanes(pdata);
1062 	pdata->dp_lanes = min(pdata->dp_lanes, max_dp_lanes);
1063 
1064 	/* DSI_A lane config */
1065 	val = CHA_DSI_LANES(SN_MAX_DP_LANES - pdata->dsi->lanes);
1066 	regmap_update_bits(pdata->regmap, SN_DSI_LANES_REG,
1067 			   CHA_DSI_LANES_MASK, val);
1068 
1069 	regmap_write(pdata->regmap, SN_LN_ASSIGN_REG, pdata->ln_assign);
1070 	regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, LN_POLRS_MASK,
1071 			   pdata->ln_polrs << LN_POLRS_OFFSET);
1072 
1073 	/* set dsi clk frequency value */
1074 	ti_sn_bridge_set_dsi_rate(pdata, state);
1075 
1076 	/*
1077 	 * The SN65DSI86 only supports ASSR Display Authentication method and
1078 	 * this method is enabled for eDP panels. An eDP panel must support this
1079 	 * authentication method. We need to enable this method in the eDP panel
1080 	 * at DisplayPort address 0x0010A prior to link training.
1081 	 *
1082 	 * As only ASSR is supported by SN65DSI86, for full DisplayPort displays
1083 	 * we need to disable the scrambler.
1084 	 */
1085 	if (pdata->bridge.type == DRM_MODE_CONNECTOR_eDP) {
1086 		drm_dp_dpcd_writeb(&pdata->aux, DP_EDP_CONFIGURATION_SET,
1087 				   DP_ALTERNATE_SCRAMBLER_RESET_ENABLE);
1088 
1089 		regmap_update_bits(pdata->regmap, SN_TRAINING_SETTING_REG,
1090 				   SCRAMBLE_DISABLE, 0);
1091 	} else {
1092 		regmap_update_bits(pdata->regmap, SN_TRAINING_SETTING_REG,
1093 				   SCRAMBLE_DISABLE, SCRAMBLE_DISABLE);
1094 	}
1095 
1096 	bpp = ti_sn_bridge_get_bpp(connector);
1097 	/* Set the DP output format (18 bpp or 24 bpp) */
1098 	val = bpp == 18 ? BPP_18_RGB : 0;
1099 	regmap_update_bits(pdata->regmap, SN_DATA_FORMAT_REG, BPP_18_RGB, val);
1100 
1101 	/* DP lane config */
1102 	val = DP_NUM_LANES(min(pdata->dp_lanes, 3));
1103 	regmap_update_bits(pdata->regmap, SN_SSC_CONFIG_REG, DP_NUM_LANES_MASK,
1104 			   val);
1105 
1106 	valid_rates = ti_sn_bridge_read_valid_rates(pdata);
1107 
1108 	/* Train until we run out of rates */
1109 	for (dp_rate_idx = ti_sn_bridge_calc_min_dp_rate_idx(pdata, state, bpp);
1110 	     dp_rate_idx < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut);
1111 	     dp_rate_idx++) {
1112 		if (!(valid_rates & BIT(dp_rate_idx)))
1113 			continue;
1114 
1115 		ret = ti_sn_link_training(pdata, dp_rate_idx, &last_err_str);
1116 		if (!ret)
1117 			break;
1118 	}
1119 	if (ret) {
1120 		DRM_DEV_ERROR(pdata->dev, "%s (%d)\n", last_err_str, ret);
1121 		return;
1122 	}
1123 
1124 	/* config video parameters */
1125 	ti_sn_bridge_set_video_timings(pdata, state);
1126 
1127 	/* enable video stream */
1128 	regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, VSTREAM_ENABLE,
1129 			   VSTREAM_ENABLE);
1130 }
1131 
ti_sn_bridge_atomic_pre_enable(struct drm_bridge * bridge,struct drm_atomic_state * state)1132 static void ti_sn_bridge_atomic_pre_enable(struct drm_bridge *bridge,
1133 					   struct drm_atomic_state *state)
1134 {
1135 	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1136 
1137 	pm_runtime_get_sync(pdata->dev);
1138 
1139 	if (!pdata->refclk)
1140 		ti_sn65dsi86_enable_comms(pdata, state);
1141 
1142 	/* td7: min 100 us after enable before DSI data */
1143 	usleep_range(100, 110);
1144 }
1145 
ti_sn_bridge_atomic_post_disable(struct drm_bridge * bridge,struct drm_atomic_state * state)1146 static void ti_sn_bridge_atomic_post_disable(struct drm_bridge *bridge,
1147 					     struct drm_atomic_state *state)
1148 {
1149 	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1150 
1151 	/* semi auto link training mode OFF */
1152 	regmap_write(pdata->regmap, SN_ML_TX_MODE_REG, 0);
1153 	/* Num lanes to 0 as per power sequencing in data sheet */
1154 	regmap_update_bits(pdata->regmap, SN_SSC_CONFIG_REG, DP_NUM_LANES_MASK, 0);
1155 	/* disable DP PLL */
1156 	regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 0);
1157 
1158 	if (!pdata->refclk)
1159 		ti_sn65dsi86_disable_comms(pdata);
1160 
1161 	pm_runtime_put_sync(pdata->dev);
1162 }
1163 
1164 static enum drm_connector_status
ti_sn_bridge_detect(struct drm_bridge * bridge,struct drm_connector * connector)1165 ti_sn_bridge_detect(struct drm_bridge *bridge, struct drm_connector *connector)
1166 {
1167 	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1168 	int val = 0;
1169 
1170 	/*
1171 	 * Runtime reference is grabbed in ti_sn_bridge_hpd_enable()
1172 	 * as the chip won't report HPD just after being powered on.
1173 	 * HPD_DEBOUNCED_STATE reflects correct state only after the
1174 	 * debounce time (~100-400 ms).
1175 	 */
1176 
1177 	regmap_read(pdata->regmap, SN_HPD_DISABLE_REG, &val);
1178 
1179 	return val & HPD_DEBOUNCED_STATE ? connector_status_connected
1180 					 : connector_status_disconnected;
1181 }
1182 
ti_sn_bridge_edid_read(struct drm_bridge * bridge,struct drm_connector * connector)1183 static const struct drm_edid *ti_sn_bridge_edid_read(struct drm_bridge *bridge,
1184 						     struct drm_connector *connector)
1185 {
1186 	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1187 
1188 	return drm_edid_read_ddc(connector, &pdata->aux.ddc);
1189 }
1190 
ti_sn65dsi86_debugfs_init(struct drm_bridge * bridge,struct dentry * root)1191 static void ti_sn65dsi86_debugfs_init(struct drm_bridge *bridge, struct dentry *root)
1192 {
1193 	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1194 	struct dentry *debugfs;
1195 
1196 	debugfs = debugfs_create_dir(dev_name(pdata->dev), root);
1197 	debugfs_create_file("status", 0600, debugfs, pdata, &status_fops);
1198 }
1199 
ti_sn_bridge_hpd_enable(struct drm_bridge * bridge)1200 static void ti_sn_bridge_hpd_enable(struct drm_bridge *bridge)
1201 {
1202 	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1203 
1204 	/*
1205 	 * Device needs to be powered on before reading the HPD state
1206 	 * for reliable hpd detection in ti_sn_bridge_detect() due to
1207 	 * the high debounce time.
1208 	 */
1209 
1210 	pm_runtime_get_sync(pdata->dev);
1211 }
1212 
ti_sn_bridge_hpd_disable(struct drm_bridge * bridge)1213 static void ti_sn_bridge_hpd_disable(struct drm_bridge *bridge)
1214 {
1215 	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1216 
1217 	pm_runtime_put_autosuspend(pdata->dev);
1218 }
1219 
1220 static const struct drm_bridge_funcs ti_sn_bridge_funcs = {
1221 	.attach = ti_sn_bridge_attach,
1222 	.detach = ti_sn_bridge_detach,
1223 	.mode_valid = ti_sn_bridge_mode_valid,
1224 	.edid_read = ti_sn_bridge_edid_read,
1225 	.detect = ti_sn_bridge_detect,
1226 	.atomic_pre_enable = ti_sn_bridge_atomic_pre_enable,
1227 	.atomic_enable = ti_sn_bridge_atomic_enable,
1228 	.atomic_disable = ti_sn_bridge_atomic_disable,
1229 	.atomic_post_disable = ti_sn_bridge_atomic_post_disable,
1230 	.atomic_reset = drm_atomic_helper_bridge_reset,
1231 	.atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state,
1232 	.atomic_destroy_state = drm_atomic_helper_bridge_destroy_state,
1233 	.debugfs_init = ti_sn65dsi86_debugfs_init,
1234 	.hpd_enable = ti_sn_bridge_hpd_enable,
1235 	.hpd_disable = ti_sn_bridge_hpd_disable,
1236 };
1237 
ti_sn_bridge_parse_lanes(struct ti_sn65dsi86 * pdata,struct device_node * np)1238 static void ti_sn_bridge_parse_lanes(struct ti_sn65dsi86 *pdata,
1239 				     struct device_node *np)
1240 {
1241 	u32 lane_assignments[SN_MAX_DP_LANES] = { 0, 1, 2, 3 };
1242 	u32 lane_polarities[SN_MAX_DP_LANES] = { };
1243 	struct device_node *endpoint;
1244 	u8 ln_assign = 0;
1245 	u8 ln_polrs = 0;
1246 	int dp_lanes;
1247 	int i;
1248 
1249 	/*
1250 	 * Read config from the device tree about lane remapping and lane
1251 	 * polarities.  These are optional and we assume identity map and
1252 	 * normal polarity if nothing is specified.  It's OK to specify just
1253 	 * data-lanes but not lane-polarities but not vice versa.
1254 	 *
1255 	 * Error checking is light (we just make sure we don't crash or
1256 	 * buffer overrun) and we assume dts is well formed and specifying
1257 	 * mappings that the hardware supports.
1258 	 */
1259 	endpoint = of_graph_get_endpoint_by_regs(np, 1, -1);
1260 	dp_lanes = drm_of_get_data_lanes_count(endpoint, 1, SN_MAX_DP_LANES);
1261 	if (dp_lanes > 0) {
1262 		of_property_read_u32_array(endpoint, "data-lanes",
1263 					   lane_assignments, dp_lanes);
1264 		of_property_read_u32_array(endpoint, "lane-polarities",
1265 					   lane_polarities, dp_lanes);
1266 	} else {
1267 		dp_lanes = SN_MAX_DP_LANES;
1268 	}
1269 	of_node_put(endpoint);
1270 
1271 	/*
1272 	 * Convert into register format.  Loop over all lanes even if
1273 	 * data-lanes had fewer elements so that we nicely initialize
1274 	 * the LN_ASSIGN register.
1275 	 */
1276 	for (i = SN_MAX_DP_LANES - 1; i >= 0; i--) {
1277 		ln_assign = ln_assign << LN_ASSIGN_WIDTH | lane_assignments[i];
1278 		ln_polrs = ln_polrs << 1 | lane_polarities[i];
1279 	}
1280 
1281 	/* Stash in our struct for when we power on */
1282 	pdata->dp_lanes = dp_lanes;
1283 	pdata->ln_assign = ln_assign;
1284 	pdata->ln_polrs = ln_polrs;
1285 }
1286 
ti_sn_bridge_parse_dsi_host(struct ti_sn65dsi86 * pdata)1287 static int ti_sn_bridge_parse_dsi_host(struct ti_sn65dsi86 *pdata)
1288 {
1289 	struct device_node *np = pdata->dev->of_node;
1290 
1291 	pdata->host_node = of_graph_get_remote_node(np, 0, 0);
1292 
1293 	if (!pdata->host_node) {
1294 		DRM_ERROR("remote dsi host node not found\n");
1295 		return -ENODEV;
1296 	}
1297 
1298 	return 0;
1299 }
1300 
ti_sn_bridge_probe(struct auxiliary_device * adev,const struct auxiliary_device_id * id)1301 static int ti_sn_bridge_probe(struct auxiliary_device *adev,
1302 			      const struct auxiliary_device_id *id)
1303 {
1304 	struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1305 	struct device_node *np = pdata->dev->of_node;
1306 	int ret;
1307 
1308 	pdata->next_bridge = devm_drm_of_get_bridge(&adev->dev, np, 1, 0);
1309 	if (IS_ERR(pdata->next_bridge))
1310 		return dev_err_probe(&adev->dev, PTR_ERR(pdata->next_bridge),
1311 				     "failed to create panel bridge\n");
1312 
1313 	ti_sn_bridge_parse_lanes(pdata, np);
1314 
1315 	ret = ti_sn_bridge_parse_dsi_host(pdata);
1316 	if (ret)
1317 		return ret;
1318 
1319 	pdata->bridge.of_node = np;
1320 	pdata->bridge.type = pdata->next_bridge->type == DRM_MODE_CONNECTOR_DisplayPort
1321 			   ? DRM_MODE_CONNECTOR_DisplayPort : DRM_MODE_CONNECTOR_eDP;
1322 
1323 	if (pdata->bridge.type == DRM_MODE_CONNECTOR_DisplayPort) {
1324 		pdata->bridge.ops = DRM_BRIDGE_OP_EDID | DRM_BRIDGE_OP_DETECT |
1325 				    DRM_BRIDGE_OP_HPD;
1326 		/*
1327 		 * If comms were already enabled they would have been enabled
1328 		 * with the wrong value of HPD_DISABLE. Update it now. Comms
1329 		 * could be enabled if anyone is holding a pm_runtime reference
1330 		 * (like if a GPIO is in use). Note that in most cases nobody
1331 		 * is doing AUX channel xfers before the bridge is added so
1332 		 * HPD doesn't _really_ matter then. The only exception is in
1333 		 * the eDP case where the panel wants to read the EDID before
1334 		 * the bridge is added. We always consistently have HPD disabled
1335 		 * for eDP.
1336 		 */
1337 		mutex_lock(&pdata->comms_mutex);
1338 		if (pdata->comms_enabled)
1339 			regmap_update_bits(pdata->regmap, SN_HPD_DISABLE_REG,
1340 					   HPD_DISABLE, 0);
1341 		mutex_unlock(&pdata->comms_mutex);
1342 	}
1343 
1344 	drm_bridge_add(&pdata->bridge);
1345 
1346 	ret = ti_sn_attach_host(adev, pdata);
1347 	if (ret) {
1348 		dev_err_probe(&adev->dev, ret, "failed to attach dsi host\n");
1349 		goto err_remove_bridge;
1350 	}
1351 
1352 	return 0;
1353 
1354 err_remove_bridge:
1355 	drm_bridge_remove(&pdata->bridge);
1356 	return ret;
1357 }
1358 
ti_sn_bridge_remove(struct auxiliary_device * adev)1359 static void ti_sn_bridge_remove(struct auxiliary_device *adev)
1360 {
1361 	struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1362 
1363 	if (!pdata)
1364 		return;
1365 
1366 	drm_bridge_remove(&pdata->bridge);
1367 
1368 	of_node_put(pdata->host_node);
1369 }
1370 
1371 static const struct auxiliary_device_id ti_sn_bridge_id_table[] = {
1372 	{ .name = "ti_sn65dsi86.bridge", },
1373 	{},
1374 };
1375 
1376 static struct auxiliary_driver ti_sn_bridge_driver = {
1377 	.name = "bridge",
1378 	.probe = ti_sn_bridge_probe,
1379 	.remove = ti_sn_bridge_remove,
1380 	.id_table = ti_sn_bridge_id_table,
1381 };
1382 
1383 /* -----------------------------------------------------------------------------
1384  * PWM Controller
1385  */
1386 #if IS_REACHABLE(CONFIG_PWM)
ti_sn_pwm_pin_request(struct ti_sn65dsi86 * pdata)1387 static int ti_sn_pwm_pin_request(struct ti_sn65dsi86 *pdata)
1388 {
1389 	return atomic_xchg(&pdata->pwm_pin_busy, 1) ? -EBUSY : 0;
1390 }
1391 
ti_sn_pwm_pin_release(struct ti_sn65dsi86 * pdata)1392 static void ti_sn_pwm_pin_release(struct ti_sn65dsi86 *pdata)
1393 {
1394 	atomic_set(&pdata->pwm_pin_busy, 0);
1395 }
1396 
pwm_chip_to_ti_sn_bridge(struct pwm_chip * chip)1397 static struct ti_sn65dsi86 *pwm_chip_to_ti_sn_bridge(struct pwm_chip *chip)
1398 {
1399 	return pwmchip_get_drvdata(chip);
1400 }
1401 
ti_sn_pwm_request(struct pwm_chip * chip,struct pwm_device * pwm)1402 static int ti_sn_pwm_request(struct pwm_chip *chip, struct pwm_device *pwm)
1403 {
1404 	struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
1405 
1406 	return ti_sn_pwm_pin_request(pdata);
1407 }
1408 
ti_sn_pwm_free(struct pwm_chip * chip,struct pwm_device * pwm)1409 static void ti_sn_pwm_free(struct pwm_chip *chip, struct pwm_device *pwm)
1410 {
1411 	struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
1412 
1413 	ti_sn_pwm_pin_release(pdata);
1414 }
1415 
1416 /*
1417  * Limitations:
1418  * - The PWM signal is not driven when the chip is powered down, or in its
1419  *   reset state and the driver does not implement the "suspend state"
1420  *   described in the documentation. In order to save power, state->enabled is
1421  *   interpreted as denoting if the signal is expected to be valid, and is used
1422  *   to determine if the chip needs to be kept powered.
1423  * - Changing both period and duty_cycle is not done atomically, neither is the
1424  *   multi-byte register updates, so the output might briefly be undefined
1425  *   during update.
1426  */
ti_sn_pwm_apply(struct pwm_chip * chip,struct pwm_device * pwm,const struct pwm_state * state)1427 static int ti_sn_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
1428 			   const struct pwm_state *state)
1429 {
1430 	struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
1431 	unsigned int pwm_en_inv;
1432 	unsigned int backlight;
1433 	unsigned int pre_div;
1434 	unsigned int scale;
1435 	u64 period_max;
1436 	u64 period;
1437 	int ret;
1438 
1439 	if (!pdata->pwm_enabled) {
1440 		ret = pm_runtime_resume_and_get(pwmchip_parent(chip));
1441 		if (ret < 0)
1442 			return ret;
1443 	}
1444 
1445 	if (state->enabled) {
1446 		if (!pdata->pwm_enabled) {
1447 			/*
1448 			 * The chip might have been powered down while we
1449 			 * didn't hold a PM runtime reference, so mux in the
1450 			 * PWM function on the GPIO pin again.
1451 			 */
1452 			ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
1453 						 SN_GPIO_MUX_MASK << (2 * SN_PWM_GPIO_IDX),
1454 						 SN_GPIO_MUX_SPECIAL << (2 * SN_PWM_GPIO_IDX));
1455 			if (ret) {
1456 				dev_err(pwmchip_parent(chip), "failed to mux in PWM function\n");
1457 				goto out;
1458 			}
1459 		}
1460 
1461 		/*
1462 		 * Per the datasheet the PWM frequency is given by:
1463 		 *
1464 		 *                          REFCLK_FREQ
1465 		 *   PWM_FREQ = -----------------------------------
1466 		 *               PWM_PRE_DIV * BACKLIGHT_SCALE + 1
1467 		 *
1468 		 * However, after careful review the author is convinced that
1469 		 * the documentation has lost some parenthesis around
1470 		 * "BACKLIGHT_SCALE + 1".
1471 		 *
1472 		 * With the period T_pwm = 1/PWM_FREQ this can be written:
1473 		 *
1474 		 *   T_pwm * REFCLK_FREQ = PWM_PRE_DIV * (BACKLIGHT_SCALE + 1)
1475 		 *
1476 		 * In order to keep BACKLIGHT_SCALE within its 16 bits,
1477 		 * PWM_PRE_DIV must be:
1478 		 *
1479 		 *                     T_pwm * REFCLK_FREQ
1480 		 *   PWM_PRE_DIV >= -------------------------
1481 		 *                   BACKLIGHT_SCALE_MAX + 1
1482 		 *
1483 		 * To simplify the search and to favour higher resolution of
1484 		 * the duty cycle over accuracy of the period, the lowest
1485 		 * possible PWM_PRE_DIV is used. Finally the scale is
1486 		 * calculated as:
1487 		 *
1488 		 *                      T_pwm * REFCLK_FREQ
1489 		 *   BACKLIGHT_SCALE = ---------------------- - 1
1490 		 *                          PWM_PRE_DIV
1491 		 *
1492 		 * Here T_pwm is represented in seconds, so appropriate scaling
1493 		 * to nanoseconds is necessary.
1494 		 */
1495 
1496 		/* Minimum T_pwm is 1 / REFCLK_FREQ */
1497 		if (state->period <= NSEC_PER_SEC / pdata->pwm_refclk_freq) {
1498 			ret = -EINVAL;
1499 			goto out;
1500 		}
1501 
1502 		/*
1503 		 * Maximum T_pwm is 255 * (65535 + 1) / REFCLK_FREQ
1504 		 * Limit period to this to avoid overflows
1505 		 */
1506 		period_max = div_u64((u64)NSEC_PER_SEC * 255 * (65535 + 1),
1507 				     pdata->pwm_refclk_freq);
1508 		period = min(state->period, period_max);
1509 
1510 		pre_div = DIV64_U64_ROUND_UP(period * pdata->pwm_refclk_freq,
1511 					     (u64)NSEC_PER_SEC * (BACKLIGHT_SCALE_MAX + 1));
1512 		scale = div64_u64(period * pdata->pwm_refclk_freq, (u64)NSEC_PER_SEC * pre_div) - 1;
1513 
1514 		/*
1515 		 * The documentation has the duty ratio given as:
1516 		 *
1517 		 *     duty          BACKLIGHT
1518 		 *   ------- = ---------------------
1519 		 *    period    BACKLIGHT_SCALE + 1
1520 		 *
1521 		 * Solve for BACKLIGHT, substituting BACKLIGHT_SCALE according
1522 		 * to definition above and adjusting for nanosecond
1523 		 * representation of duty cycle gives us:
1524 		 */
1525 		backlight = div64_u64(state->duty_cycle * pdata->pwm_refclk_freq,
1526 				      (u64)NSEC_PER_SEC * pre_div);
1527 		if (backlight > scale)
1528 			backlight = scale;
1529 
1530 		ret = regmap_write(pdata->regmap, SN_PWM_PRE_DIV_REG, pre_div);
1531 		if (ret) {
1532 			dev_err(pwmchip_parent(chip), "failed to update PWM_PRE_DIV\n");
1533 			goto out;
1534 		}
1535 
1536 		ti_sn65dsi86_write_u16(pdata, SN_BACKLIGHT_SCALE_REG, scale);
1537 		ti_sn65dsi86_write_u16(pdata, SN_BACKLIGHT_REG, backlight);
1538 	}
1539 
1540 	pwm_en_inv = FIELD_PREP(SN_PWM_EN_MASK, state->enabled) |
1541 		     FIELD_PREP(SN_PWM_INV_MASK, state->polarity == PWM_POLARITY_INVERSED);
1542 	ret = regmap_write(pdata->regmap, SN_PWM_EN_INV_REG, pwm_en_inv);
1543 	if (ret) {
1544 		dev_err(pwmchip_parent(chip), "failed to update PWM_EN/PWM_INV\n");
1545 		goto out;
1546 	}
1547 
1548 	pdata->pwm_enabled = state->enabled;
1549 out:
1550 
1551 	if (!pdata->pwm_enabled)
1552 		pm_runtime_put_sync(pwmchip_parent(chip));
1553 
1554 	return ret;
1555 }
1556 
ti_sn_pwm_get_state(struct pwm_chip * chip,struct pwm_device * pwm,struct pwm_state * state)1557 static int ti_sn_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
1558 			       struct pwm_state *state)
1559 {
1560 	struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
1561 	unsigned int pwm_en_inv;
1562 	unsigned int pre_div;
1563 	u16 backlight;
1564 	u16 scale;
1565 	int ret;
1566 
1567 	ret = regmap_read(pdata->regmap, SN_PWM_EN_INV_REG, &pwm_en_inv);
1568 	if (ret)
1569 		return ret;
1570 
1571 	ret = ti_sn65dsi86_read_u16(pdata, SN_BACKLIGHT_SCALE_REG, &scale);
1572 	if (ret)
1573 		return ret;
1574 
1575 	ret = ti_sn65dsi86_read_u16(pdata, SN_BACKLIGHT_REG, &backlight);
1576 	if (ret)
1577 		return ret;
1578 
1579 	ret = regmap_read(pdata->regmap, SN_PWM_PRE_DIV_REG, &pre_div);
1580 	if (ret)
1581 		return ret;
1582 
1583 	state->enabled = FIELD_GET(SN_PWM_EN_MASK, pwm_en_inv);
1584 	if (FIELD_GET(SN_PWM_INV_MASK, pwm_en_inv))
1585 		state->polarity = PWM_POLARITY_INVERSED;
1586 	else
1587 		state->polarity = PWM_POLARITY_NORMAL;
1588 
1589 	state->period = DIV_ROUND_UP_ULL((u64)NSEC_PER_SEC * pre_div * (scale + 1),
1590 					 pdata->pwm_refclk_freq);
1591 	state->duty_cycle = DIV_ROUND_UP_ULL((u64)NSEC_PER_SEC * pre_div * backlight,
1592 					     pdata->pwm_refclk_freq);
1593 
1594 	if (state->duty_cycle > state->period)
1595 		state->duty_cycle = state->period;
1596 
1597 	return 0;
1598 }
1599 
1600 static const struct pwm_ops ti_sn_pwm_ops = {
1601 	.request = ti_sn_pwm_request,
1602 	.free = ti_sn_pwm_free,
1603 	.apply = ti_sn_pwm_apply,
1604 	.get_state = ti_sn_pwm_get_state,
1605 };
1606 
ti_sn_pwm_probe(struct auxiliary_device * adev,const struct auxiliary_device_id * id)1607 static int ti_sn_pwm_probe(struct auxiliary_device *adev,
1608 			   const struct auxiliary_device_id *id)
1609 {
1610 	struct pwm_chip *chip;
1611 	struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1612 
1613 	pdata->pchip = chip = devm_pwmchip_alloc(&adev->dev, 1, 0);
1614 	if (IS_ERR(chip))
1615 		return PTR_ERR(chip);
1616 
1617 	pwmchip_set_drvdata(chip, pdata);
1618 
1619 	chip->ops = &ti_sn_pwm_ops;
1620 	chip->of_xlate = of_pwm_single_xlate;
1621 
1622 	devm_pm_runtime_enable(&adev->dev);
1623 
1624 	return pwmchip_add(chip);
1625 }
1626 
ti_sn_pwm_remove(struct auxiliary_device * adev)1627 static void ti_sn_pwm_remove(struct auxiliary_device *adev)
1628 {
1629 	struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1630 
1631 	pwmchip_remove(pdata->pchip);
1632 
1633 	if (pdata->pwm_enabled)
1634 		pm_runtime_put_sync(&adev->dev);
1635 }
1636 
1637 static const struct auxiliary_device_id ti_sn_pwm_id_table[] = {
1638 	{ .name = "ti_sn65dsi86.pwm", },
1639 	{},
1640 };
1641 
1642 static struct auxiliary_driver ti_sn_pwm_driver = {
1643 	.name = "pwm",
1644 	.probe = ti_sn_pwm_probe,
1645 	.remove = ti_sn_pwm_remove,
1646 	.id_table = ti_sn_pwm_id_table,
1647 };
1648 
ti_sn_pwm_register(void)1649 static int __init ti_sn_pwm_register(void)
1650 {
1651 	return auxiliary_driver_register(&ti_sn_pwm_driver);
1652 }
1653 
ti_sn_pwm_unregister(void)1654 static void ti_sn_pwm_unregister(void)
1655 {
1656 	auxiliary_driver_unregister(&ti_sn_pwm_driver);
1657 }
1658 
1659 #else
ti_sn_pwm_pin_request(struct ti_sn65dsi86 * pdata)1660 static inline int __maybe_unused ti_sn_pwm_pin_request(struct ti_sn65dsi86 *pdata) { return 0; }
ti_sn_pwm_pin_release(struct ti_sn65dsi86 * pdata)1661 static inline void __maybe_unused ti_sn_pwm_pin_release(struct ti_sn65dsi86 *pdata) {}
1662 
ti_sn_pwm_register(void)1663 static inline int ti_sn_pwm_register(void) { return 0; }
ti_sn_pwm_unregister(void)1664 static inline void ti_sn_pwm_unregister(void) {}
1665 #endif
1666 
1667 /* -----------------------------------------------------------------------------
1668  * GPIO Controller
1669  */
1670 #if defined(CONFIG_OF_GPIO)
1671 
tn_sn_bridge_of_xlate(struct gpio_chip * chip,const struct of_phandle_args * gpiospec,u32 * flags)1672 static int tn_sn_bridge_of_xlate(struct gpio_chip *chip,
1673 				 const struct of_phandle_args *gpiospec,
1674 				 u32 *flags)
1675 {
1676 	if (WARN_ON(gpiospec->args_count < chip->of_gpio_n_cells))
1677 		return -EINVAL;
1678 
1679 	if (gpiospec->args[0] > chip->ngpio || gpiospec->args[0] < 1)
1680 		return -EINVAL;
1681 
1682 	if (flags)
1683 		*flags = gpiospec->args[1];
1684 
1685 	return gpiospec->args[0] - SN_GPIO_PHYSICAL_OFFSET;
1686 }
1687 
ti_sn_bridge_gpio_get_direction(struct gpio_chip * chip,unsigned int offset)1688 static int ti_sn_bridge_gpio_get_direction(struct gpio_chip *chip,
1689 					   unsigned int offset)
1690 {
1691 	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1692 
1693 	/*
1694 	 * We already have to keep track of the direction because we use
1695 	 * that to figure out whether we've powered the device.  We can
1696 	 * just return that rather than (maybe) powering up the device
1697 	 * to ask its direction.
1698 	 */
1699 	return test_bit(offset, pdata->gchip_output) ?
1700 		GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
1701 }
1702 
ti_sn_bridge_gpio_get(struct gpio_chip * chip,unsigned int offset)1703 static int ti_sn_bridge_gpio_get(struct gpio_chip *chip, unsigned int offset)
1704 {
1705 	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1706 	unsigned int val;
1707 	int ret;
1708 
1709 	/*
1710 	 * When the pin is an input we don't forcibly keep the bridge
1711 	 * powered--we just power it on to read the pin.  NOTE: part of
1712 	 * the reason this works is that the bridge defaults (when
1713 	 * powered back on) to all 4 GPIOs being configured as GPIO input.
1714 	 * Also note that if something else is keeping the chip powered the
1715 	 * pm_runtime functions are lightweight increments of a refcount.
1716 	 */
1717 	pm_runtime_get_sync(pdata->dev);
1718 	ret = regmap_read(pdata->regmap, SN_GPIO_IO_REG, &val);
1719 	pm_runtime_put_autosuspend(pdata->dev);
1720 
1721 	if (ret)
1722 		return ret;
1723 
1724 	return !!(val & BIT(SN_GPIO_INPUT_SHIFT + offset));
1725 }
1726 
ti_sn_bridge_gpio_set(struct gpio_chip * chip,unsigned int offset,int val)1727 static int ti_sn_bridge_gpio_set(struct gpio_chip *chip, unsigned int offset,
1728 				 int val)
1729 {
1730 	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1731 
1732 	val &= 1;
1733 	return regmap_update_bits(pdata->regmap, SN_GPIO_IO_REG,
1734 				  BIT(SN_GPIO_OUTPUT_SHIFT + offset),
1735 				  val << (SN_GPIO_OUTPUT_SHIFT + offset));
1736 }
1737 
ti_sn_bridge_gpio_direction_input(struct gpio_chip * chip,unsigned int offset)1738 static int ti_sn_bridge_gpio_direction_input(struct gpio_chip *chip,
1739 					     unsigned int offset)
1740 {
1741 	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1742 	int shift = offset * 2;
1743 	int ret;
1744 
1745 	if (!test_and_clear_bit(offset, pdata->gchip_output))
1746 		return 0;
1747 
1748 	ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
1749 				 SN_GPIO_MUX_MASK << shift,
1750 				 SN_GPIO_MUX_INPUT << shift);
1751 	if (ret) {
1752 		set_bit(offset, pdata->gchip_output);
1753 		return ret;
1754 	}
1755 
1756 	/*
1757 	 * NOTE: if nobody else is powering the device this may fully power
1758 	 * it off and when it comes back it will have lost all state, but
1759 	 * that's OK because the default is input and we're now an input.
1760 	 */
1761 	pm_runtime_put_autosuspend(pdata->dev);
1762 
1763 	return 0;
1764 }
1765 
ti_sn_bridge_gpio_direction_output(struct gpio_chip * chip,unsigned int offset,int val)1766 static int ti_sn_bridge_gpio_direction_output(struct gpio_chip *chip,
1767 					      unsigned int offset, int val)
1768 {
1769 	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1770 	int shift = offset * 2;
1771 	int ret;
1772 
1773 	if (test_and_set_bit(offset, pdata->gchip_output))
1774 		return 0;
1775 
1776 	pm_runtime_get_sync(pdata->dev);
1777 
1778 	/* Set value first to avoid glitching */
1779 	ti_sn_bridge_gpio_set(chip, offset, val);
1780 
1781 	/* Set direction */
1782 	ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
1783 				 SN_GPIO_MUX_MASK << shift,
1784 				 SN_GPIO_MUX_OUTPUT << shift);
1785 	if (ret) {
1786 		clear_bit(offset, pdata->gchip_output);
1787 		pm_runtime_put_autosuspend(pdata->dev);
1788 	}
1789 
1790 	return ret;
1791 }
1792 
ti_sn_bridge_gpio_request(struct gpio_chip * chip,unsigned int offset)1793 static int ti_sn_bridge_gpio_request(struct gpio_chip *chip, unsigned int offset)
1794 {
1795 	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1796 
1797 	if (offset == SN_PWM_GPIO_IDX)
1798 		return ti_sn_pwm_pin_request(pdata);
1799 
1800 	return 0;
1801 }
1802 
ti_sn_bridge_gpio_free(struct gpio_chip * chip,unsigned int offset)1803 static void ti_sn_bridge_gpio_free(struct gpio_chip *chip, unsigned int offset)
1804 {
1805 	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1806 
1807 	/* We won't keep pm_runtime if we're input, so switch there on free */
1808 	ti_sn_bridge_gpio_direction_input(chip, offset);
1809 
1810 	if (offset == SN_PWM_GPIO_IDX)
1811 		ti_sn_pwm_pin_release(pdata);
1812 }
1813 
1814 static const char * const ti_sn_bridge_gpio_names[SN_NUM_GPIOS] = {
1815 	"GPIO1", "GPIO2", "GPIO3", "GPIO4"
1816 };
1817 
ti_sn_gpio_probe(struct auxiliary_device * adev,const struct auxiliary_device_id * id)1818 static int ti_sn_gpio_probe(struct auxiliary_device *adev,
1819 			    const struct auxiliary_device_id *id)
1820 {
1821 	struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1822 	int ret;
1823 
1824 	/* Only init if someone is going to use us as a GPIO controller */
1825 	if (!of_property_read_bool(pdata->dev->of_node, "gpio-controller"))
1826 		return 0;
1827 
1828 	pdata->gchip.label = dev_name(pdata->dev);
1829 	pdata->gchip.parent = pdata->dev;
1830 	pdata->gchip.owner = THIS_MODULE;
1831 	pdata->gchip.of_xlate = tn_sn_bridge_of_xlate;
1832 	pdata->gchip.of_gpio_n_cells = 2;
1833 	pdata->gchip.request = ti_sn_bridge_gpio_request;
1834 	pdata->gchip.free = ti_sn_bridge_gpio_free;
1835 	pdata->gchip.get_direction = ti_sn_bridge_gpio_get_direction;
1836 	pdata->gchip.direction_input = ti_sn_bridge_gpio_direction_input;
1837 	pdata->gchip.direction_output = ti_sn_bridge_gpio_direction_output;
1838 	pdata->gchip.get = ti_sn_bridge_gpio_get;
1839 	pdata->gchip.set_rv = ti_sn_bridge_gpio_set;
1840 	pdata->gchip.can_sleep = true;
1841 	pdata->gchip.names = ti_sn_bridge_gpio_names;
1842 	pdata->gchip.ngpio = SN_NUM_GPIOS;
1843 	pdata->gchip.base = -1;
1844 	ret = devm_gpiochip_add_data(&adev->dev, &pdata->gchip, pdata);
1845 	if (ret)
1846 		dev_err(pdata->dev, "can't add gpio chip\n");
1847 
1848 	return ret;
1849 }
1850 
1851 static const struct auxiliary_device_id ti_sn_gpio_id_table[] = {
1852 	{ .name = "ti_sn65dsi86.gpio", },
1853 	{},
1854 };
1855 
1856 MODULE_DEVICE_TABLE(auxiliary, ti_sn_gpio_id_table);
1857 
1858 static struct auxiliary_driver ti_sn_gpio_driver = {
1859 	.name = "gpio",
1860 	.probe = ti_sn_gpio_probe,
1861 	.id_table = ti_sn_gpio_id_table,
1862 };
1863 
ti_sn_gpio_register(void)1864 static int __init ti_sn_gpio_register(void)
1865 {
1866 	return auxiliary_driver_register(&ti_sn_gpio_driver);
1867 }
1868 
ti_sn_gpio_unregister(void)1869 static void ti_sn_gpio_unregister(void)
1870 {
1871 	auxiliary_driver_unregister(&ti_sn_gpio_driver);
1872 }
1873 
1874 #else
1875 
ti_sn_gpio_register(void)1876 static inline int ti_sn_gpio_register(void) { return 0; }
ti_sn_gpio_unregister(void)1877 static inline void ti_sn_gpio_unregister(void) {}
1878 
1879 #endif
1880 
1881 /* -----------------------------------------------------------------------------
1882  * Probe & Remove
1883  */
1884 
ti_sn65dsi86_runtime_disable(void * data)1885 static void ti_sn65dsi86_runtime_disable(void *data)
1886 {
1887 	pm_runtime_dont_use_autosuspend(data);
1888 	pm_runtime_disable(data);
1889 }
1890 
ti_sn65dsi86_parse_regulators(struct ti_sn65dsi86 * pdata)1891 static int ti_sn65dsi86_parse_regulators(struct ti_sn65dsi86 *pdata)
1892 {
1893 	unsigned int i;
1894 	const char * const ti_sn_bridge_supply_names[] = {
1895 		"vcca", "vcc", "vccio", "vpll",
1896 	};
1897 
1898 	for (i = 0; i < SN_REGULATOR_SUPPLY_NUM; i++)
1899 		pdata->supplies[i].supply = ti_sn_bridge_supply_names[i];
1900 
1901 	return devm_regulator_bulk_get(pdata->dev, SN_REGULATOR_SUPPLY_NUM,
1902 				       pdata->supplies);
1903 }
1904 
ti_sn65dsi86_probe(struct i2c_client * client)1905 static int ti_sn65dsi86_probe(struct i2c_client *client)
1906 {
1907 	struct device *dev = &client->dev;
1908 	struct ti_sn65dsi86 *pdata;
1909 	u8 id_buf[8];
1910 	int ret;
1911 
1912 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
1913 		DRM_ERROR("device doesn't support I2C\n");
1914 		return -ENODEV;
1915 	}
1916 
1917 	pdata = devm_drm_bridge_alloc(dev, struct ti_sn65dsi86, bridge, &ti_sn_bridge_funcs);
1918 	if (IS_ERR(pdata))
1919 		return PTR_ERR(pdata);
1920 	dev_set_drvdata(dev, pdata);
1921 	pdata->dev = dev;
1922 
1923 	mutex_init(&pdata->comms_mutex);
1924 
1925 	pdata->regmap = devm_regmap_init_i2c(client,
1926 					     &ti_sn65dsi86_regmap_config);
1927 	if (IS_ERR(pdata->regmap))
1928 		return dev_err_probe(dev, PTR_ERR(pdata->regmap),
1929 				     "regmap i2c init failed\n");
1930 
1931 	pdata->enable_gpio = devm_gpiod_get_optional(dev, "enable",
1932 						     GPIOD_OUT_LOW);
1933 	if (IS_ERR(pdata->enable_gpio))
1934 		return dev_err_probe(dev, PTR_ERR(pdata->enable_gpio),
1935 				     "failed to get enable gpio from DT\n");
1936 
1937 	ret = ti_sn65dsi86_parse_regulators(pdata);
1938 	if (ret)
1939 		return dev_err_probe(dev, ret, "failed to parse regulators\n");
1940 
1941 	pdata->refclk = devm_clk_get_optional(dev, "refclk");
1942 	if (IS_ERR(pdata->refclk))
1943 		return dev_err_probe(dev, PTR_ERR(pdata->refclk),
1944 				     "failed to get reference clock\n");
1945 
1946 	pm_runtime_enable(dev);
1947 	pm_runtime_set_autosuspend_delay(pdata->dev, 500);
1948 	pm_runtime_use_autosuspend(pdata->dev);
1949 	ret = devm_add_action_or_reset(dev, ti_sn65dsi86_runtime_disable, dev);
1950 	if (ret)
1951 		return ret;
1952 
1953 	pm_runtime_get_sync(dev);
1954 	ret = regmap_bulk_read(pdata->regmap, SN_DEVICE_ID_REGS, id_buf, ARRAY_SIZE(id_buf));
1955 	pm_runtime_put_autosuspend(dev);
1956 	if (ret)
1957 		return dev_err_probe(dev, ret, "failed to read device id\n");
1958 
1959 	/* The ID string is stored backwards */
1960 	if (strncmp(id_buf, "68ISD   ", ARRAY_SIZE(id_buf)))
1961 		return dev_err_probe(dev, -EOPNOTSUPP, "unsupported device id\n");
1962 
1963 	/*
1964 	 * Break ourselves up into a collection of aux devices. The only real
1965 	 * motiviation here is to solve the chicken-and-egg problem of probe
1966 	 * ordering. The bridge wants the panel to be there when it probes.
1967 	 * The panel wants its HPD GPIO (provided by sn65dsi86 on some boards)
1968 	 * when it probes. The panel and maybe backlight might want the DDC
1969 	 * bus or the pwm_chip. Having sub-devices allows the some sub devices
1970 	 * to finish probing even if others return -EPROBE_DEFER and gets us
1971 	 * around the problems.
1972 	 */
1973 
1974 	if (IS_ENABLED(CONFIG_OF_GPIO)) {
1975 		ret = ti_sn65dsi86_add_aux_device(pdata, &pdata->gpio_aux, "gpio");
1976 		if (ret)
1977 			return ret;
1978 	}
1979 
1980 	if (IS_REACHABLE(CONFIG_PWM)) {
1981 		ret = ti_sn65dsi86_add_aux_device(pdata, &pdata->pwm_aux, "pwm");
1982 		if (ret)
1983 			return ret;
1984 	}
1985 
1986 	/*
1987 	 * NOTE: At the end of the AUX channel probe we'll add the aux device
1988 	 * for the bridge. This is because the bridge can't be used until the
1989 	 * AUX channel is there and this is a very simple solution to the
1990 	 * dependency problem.
1991 	 */
1992 	return ti_sn65dsi86_add_aux_device(pdata, &pdata->aux_aux, "aux");
1993 }
1994 
1995 static const struct i2c_device_id ti_sn65dsi86_id[] = {
1996 	{ "ti,sn65dsi86" },
1997 	{}
1998 };
1999 MODULE_DEVICE_TABLE(i2c, ti_sn65dsi86_id);
2000 
2001 static const struct of_device_id ti_sn65dsi86_match_table[] = {
2002 	{.compatible = "ti,sn65dsi86"},
2003 	{},
2004 };
2005 MODULE_DEVICE_TABLE(of, ti_sn65dsi86_match_table);
2006 
2007 static struct i2c_driver ti_sn65dsi86_driver = {
2008 	.driver = {
2009 		.name = "ti_sn65dsi86",
2010 		.of_match_table = ti_sn65dsi86_match_table,
2011 		.pm = &ti_sn65dsi86_pm_ops,
2012 	},
2013 	.probe = ti_sn65dsi86_probe,
2014 	.id_table = ti_sn65dsi86_id,
2015 };
2016 
ti_sn65dsi86_init(void)2017 static int __init ti_sn65dsi86_init(void)
2018 {
2019 	int ret;
2020 
2021 	ret = i2c_add_driver(&ti_sn65dsi86_driver);
2022 	if (ret)
2023 		return ret;
2024 
2025 	ret = ti_sn_gpio_register();
2026 	if (ret)
2027 		goto err_main_was_registered;
2028 
2029 	ret = ti_sn_pwm_register();
2030 	if (ret)
2031 		goto err_gpio_was_registered;
2032 
2033 	ret = auxiliary_driver_register(&ti_sn_aux_driver);
2034 	if (ret)
2035 		goto err_pwm_was_registered;
2036 
2037 	ret = auxiliary_driver_register(&ti_sn_bridge_driver);
2038 	if (ret)
2039 		goto err_aux_was_registered;
2040 
2041 	return 0;
2042 
2043 err_aux_was_registered:
2044 	auxiliary_driver_unregister(&ti_sn_aux_driver);
2045 err_pwm_was_registered:
2046 	ti_sn_pwm_unregister();
2047 err_gpio_was_registered:
2048 	ti_sn_gpio_unregister();
2049 err_main_was_registered:
2050 	i2c_del_driver(&ti_sn65dsi86_driver);
2051 
2052 	return ret;
2053 }
2054 module_init(ti_sn65dsi86_init);
2055 
ti_sn65dsi86_exit(void)2056 static void __exit ti_sn65dsi86_exit(void)
2057 {
2058 	auxiliary_driver_unregister(&ti_sn_bridge_driver);
2059 	auxiliary_driver_unregister(&ti_sn_aux_driver);
2060 	ti_sn_pwm_unregister();
2061 	ti_sn_gpio_unregister();
2062 	i2c_del_driver(&ti_sn65dsi86_driver);
2063 }
2064 module_exit(ti_sn65dsi86_exit);
2065 
2066 MODULE_AUTHOR("Sandeep Panda <spanda@codeaurora.org>");
2067 MODULE_DESCRIPTION("sn65dsi86 DSI to eDP bridge driver");
2068 MODULE_LICENSE("GPL v2");
2069