xref: /linux/arch/x86/include/asm/kvm_host.h (revision 6e9128ff9d8113ef208e5ec82573b96ead100072)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This header defines architecture specific interfaces, x86 version
6  */
7 
8 #ifndef _ASM_X86_KVM_HOST_H
9 #define _ASM_X86_KVM_HOST_H
10 
11 #include <linux/types.h>
12 #include <linux/mm.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/tracepoint.h>
15 #include <linux/cpumask.h>
16 #include <linux/irq_work.h>
17 #include <linux/irq.h>
18 #include <linux/workqueue.h>
19 
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
22 #include <linux/kvm_types.h>
23 #include <linux/perf_event.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/clocksource.h>
26 #include <linux/irqbypass.h>
27 #include <linux/kfifo.h>
28 #include <linux/sched/vhost_task.h>
29 #include <linux/call_once.h>
30 #include <linux/atomic.h>
31 
32 #include <asm/apic.h>
33 #include <asm/pvclock-abi.h>
34 #include <asm/debugreg.h>
35 #include <asm/desc.h>
36 #include <asm/mtrr.h>
37 #include <asm/msr-index.h>
38 #include <asm/msr.h>
39 #include <asm/asm.h>
40 #include <asm/irq_remapping.h>
41 #include <asm/kvm_page_track.h>
42 #include <asm/kvm_vcpu_regs.h>
43 #include <asm/reboot.h>
44 #include <hyperv/hvhdk.h>
45 
46 #define __KVM_HAVE_ARCH_VCPU_DEBUGFS
47 
48 /*
49  * CONFIG_KVM_MAX_NR_VCPUS is defined iff CONFIG_KVM!=n, provide a dummy max if
50  * KVM is disabled (arbitrarily use the default from CONFIG_KVM_MAX_NR_VCPUS).
51  */
52 #ifdef CONFIG_KVM_MAX_NR_VCPUS
53 #define KVM_MAX_VCPUS CONFIG_KVM_MAX_NR_VCPUS
54 #else
55 #define KVM_MAX_VCPUS 1024
56 #endif
57 
58 /*
59  * In x86, the VCPU ID corresponds to the APIC ID, and APIC IDs
60  * might be larger than the actual number of VCPUs because the
61  * APIC ID encodes CPU topology information.
62  *
63  * In the worst case, we'll need less than one extra bit for the
64  * Core ID, and less than one extra bit for the Package (Die) ID,
65  * so ratio of 4 should be enough.
66  */
67 #define KVM_VCPU_ID_RATIO 4
68 #define KVM_MAX_VCPU_IDS (KVM_MAX_VCPUS * KVM_VCPU_ID_RATIO)
69 
70 /* memory slots that are not exposed to userspace */
71 #define KVM_INTERNAL_MEM_SLOTS 3
72 
73 #define KVM_HALT_POLL_NS_DEFAULT 200000
74 
75 #define KVM_IRQCHIP_NUM_PINS  KVM_IOAPIC_NUM_PINS
76 
77 #define KVM_DIRTY_LOG_MANUAL_CAPS   (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
78 					KVM_DIRTY_LOG_INITIALLY_SET)
79 
80 #define KVM_BUS_LOCK_DETECTION_VALID_MODE	(KVM_BUS_LOCK_DETECTION_OFF | \
81 						 KVM_BUS_LOCK_DETECTION_EXIT)
82 
83 #define KVM_X86_NOTIFY_VMEXIT_VALID_BITS	(KVM_X86_NOTIFY_VMEXIT_ENABLED | \
84 						 KVM_X86_NOTIFY_VMEXIT_USER)
85 
86 /* x86-specific vcpu->requests bit members */
87 #define KVM_REQ_MIGRATE_TIMER		KVM_ARCH_REQ(0)
88 #define KVM_REQ_REPORT_TPR_ACCESS	KVM_ARCH_REQ(1)
89 #define KVM_REQ_TRIPLE_FAULT		KVM_ARCH_REQ(2)
90 #define KVM_REQ_MMU_SYNC		KVM_ARCH_REQ(3)
91 #define KVM_REQ_CLOCK_UPDATE		KVM_ARCH_REQ(4)
92 #define KVM_REQ_LOAD_MMU_PGD		KVM_ARCH_REQ(5)
93 #define KVM_REQ_EVENT			KVM_ARCH_REQ(6)
94 #define KVM_REQ_APF_HALT		KVM_ARCH_REQ(7)
95 #define KVM_REQ_STEAL_UPDATE		KVM_ARCH_REQ(8)
96 #define KVM_REQ_NMI			KVM_ARCH_REQ(9)
97 #define KVM_REQ_PMU			KVM_ARCH_REQ(10)
98 #define KVM_REQ_PMI			KVM_ARCH_REQ(11)
99 #ifdef CONFIG_KVM_SMM
100 #define KVM_REQ_SMI			KVM_ARCH_REQ(12)
101 #endif
102 #define KVM_REQ_MASTERCLOCK_UPDATE	KVM_ARCH_REQ(13)
103 #define KVM_REQ_MCLOCK_INPROGRESS \
104 	KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
105 #define KVM_REQ_SCAN_IOAPIC \
106 	KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
107 #define KVM_REQ_GLOBAL_CLOCK_UPDATE	KVM_ARCH_REQ(16)
108 #define KVM_REQ_APIC_PAGE_RELOAD \
109 	KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
110 #define KVM_REQ_HV_CRASH		KVM_ARCH_REQ(18)
111 #define KVM_REQ_IOAPIC_EOI_EXIT		KVM_ARCH_REQ(19)
112 #define KVM_REQ_HV_RESET		KVM_ARCH_REQ(20)
113 #define KVM_REQ_HV_EXIT			KVM_ARCH_REQ(21)
114 #define KVM_REQ_HV_STIMER		KVM_ARCH_REQ(22)
115 #define KVM_REQ_LOAD_EOI_EXITMAP	KVM_ARCH_REQ(23)
116 #define KVM_REQ_GET_NESTED_STATE_PAGES	KVM_ARCH_REQ(24)
117 #define KVM_REQ_APICV_UPDATE \
118 	KVM_ARCH_REQ_FLAGS(25, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
119 #define KVM_REQ_TLB_FLUSH_CURRENT	KVM_ARCH_REQ(26)
120 #define KVM_REQ_TLB_FLUSH_GUEST \
121 	KVM_ARCH_REQ_FLAGS(27, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
122 #define KVM_REQ_APF_READY		KVM_ARCH_REQ(28)
123 #define KVM_REQ_MSR_FILTER_CHANGED	KVM_ARCH_REQ(29)
124 #define KVM_REQ_UPDATE_CPU_DIRTY_LOGGING \
125 	KVM_ARCH_REQ_FLAGS(30, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
126 #define KVM_REQ_MMU_FREE_OBSOLETE_ROOTS \
127 	KVM_ARCH_REQ_FLAGS(31, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
128 #define KVM_REQ_HV_TLB_FLUSH \
129 	KVM_ARCH_REQ_FLAGS(32, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
130 #define KVM_REQ_UPDATE_PROTECTED_GUEST_STATE \
131 	KVM_ARCH_REQ_FLAGS(34, KVM_REQUEST_WAIT)
132 
133 #define CR0_RESERVED_BITS                                               \
134 	(~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
135 			  | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
136 			  | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
137 
138 #define CR4_RESERVED_BITS                                               \
139 	(~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
140 			  | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
141 			  | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \
142 			  | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \
143 			  | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \
144 			  | X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP \
145 			  | X86_CR4_LAM_SUP))
146 
147 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
148 
149 
150 
151 #define INVALID_PAGE (~(hpa_t)0)
152 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
153 
154 /* KVM Hugepage definitions for x86 */
155 #define KVM_MAX_HUGEPAGE_LEVEL	PG_LEVEL_1G
156 #define KVM_NR_PAGE_SIZES	(KVM_MAX_HUGEPAGE_LEVEL - PG_LEVEL_4K + 1)
157 #define KVM_HPAGE_GFN_SHIFT(x)	(((x) - 1) * 9)
158 #define KVM_HPAGE_SHIFT(x)	(PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x))
159 #define KVM_HPAGE_SIZE(x)	(1UL << KVM_HPAGE_SHIFT(x))
160 #define KVM_HPAGE_MASK(x)	(~(KVM_HPAGE_SIZE(x) - 1))
161 #define KVM_PAGES_PER_HPAGE(x)	(KVM_HPAGE_SIZE(x) / PAGE_SIZE)
162 
163 #define KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO 50
164 #define KVM_MIN_ALLOC_MMU_PAGES 64UL
165 #define KVM_MMU_HASH_SHIFT 12
166 #define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT)
167 #define KVM_MIN_FREE_MMU_PAGES 5
168 #define KVM_REFILL_PAGES 25
169 #define KVM_MAX_CPUID_ENTRIES 256
170 #define KVM_NR_VAR_MTRR 8
171 
172 #define ASYNC_PF_PER_VCPU 64
173 
174 enum kvm_reg {
175 	VCPU_REGS_RAX = __VCPU_REGS_RAX,
176 	VCPU_REGS_RCX = __VCPU_REGS_RCX,
177 	VCPU_REGS_RDX = __VCPU_REGS_RDX,
178 	VCPU_REGS_RBX = __VCPU_REGS_RBX,
179 	VCPU_REGS_RSP = __VCPU_REGS_RSP,
180 	VCPU_REGS_RBP = __VCPU_REGS_RBP,
181 	VCPU_REGS_RSI = __VCPU_REGS_RSI,
182 	VCPU_REGS_RDI = __VCPU_REGS_RDI,
183 #ifdef CONFIG_X86_64
184 	VCPU_REGS_R8  = __VCPU_REGS_R8,
185 	VCPU_REGS_R9  = __VCPU_REGS_R9,
186 	VCPU_REGS_R10 = __VCPU_REGS_R10,
187 	VCPU_REGS_R11 = __VCPU_REGS_R11,
188 	VCPU_REGS_R12 = __VCPU_REGS_R12,
189 	VCPU_REGS_R13 = __VCPU_REGS_R13,
190 	VCPU_REGS_R14 = __VCPU_REGS_R14,
191 	VCPU_REGS_R15 = __VCPU_REGS_R15,
192 #endif
193 	VCPU_REGS_RIP,
194 	NR_VCPU_REGS,
195 
196 	VCPU_EXREG_PDPTR = NR_VCPU_REGS,
197 	VCPU_EXREG_CR0,
198 	VCPU_EXREG_CR3,
199 	VCPU_EXREG_CR4,
200 	VCPU_EXREG_RFLAGS,
201 	VCPU_EXREG_SEGMENTS,
202 	VCPU_EXREG_EXIT_INFO_1,
203 	VCPU_EXREG_EXIT_INFO_2,
204 };
205 
206 enum {
207 	VCPU_SREG_ES,
208 	VCPU_SREG_CS,
209 	VCPU_SREG_SS,
210 	VCPU_SREG_DS,
211 	VCPU_SREG_FS,
212 	VCPU_SREG_GS,
213 	VCPU_SREG_TR,
214 	VCPU_SREG_LDTR,
215 };
216 
217 enum exit_fastpath_completion {
218 	EXIT_FASTPATH_NONE,
219 	EXIT_FASTPATH_REENTER_GUEST,
220 	EXIT_FASTPATH_EXIT_HANDLED,
221 	EXIT_FASTPATH_EXIT_USERSPACE,
222 };
223 typedef enum exit_fastpath_completion fastpath_t;
224 
225 struct x86_emulate_ctxt;
226 struct x86_exception;
227 union kvm_smram;
228 enum x86_intercept;
229 enum x86_intercept_stage;
230 
231 #define KVM_NR_DB_REGS	4
232 
233 #define DR6_BUS_LOCK   (1 << 11)
234 #define DR6_BD		(1 << 13)
235 #define DR6_BS		(1 << 14)
236 #define DR6_BT		(1 << 15)
237 #define DR6_RTM		(1 << 16)
238 /*
239  * DR6_ACTIVE_LOW combines fixed-1 and active-low bits.
240  * We can regard all the bits in DR6_FIXED_1 as active_low bits;
241  * they will never be 0 for now, but when they are defined
242  * in the future it will require no code change.
243  *
244  * DR6_ACTIVE_LOW is also used as the init/reset value for DR6.
245  */
246 #define DR6_ACTIVE_LOW	0xffff0ff0
247 #define DR6_VOLATILE	0x0001e80f
248 #define DR6_FIXED_1	(DR6_ACTIVE_LOW & ~DR6_VOLATILE)
249 
250 #define DR7_BP_EN_MASK	0x000000ff
251 #define DR7_GE		(1 << 9)
252 #define DR7_GD		(1 << 13)
253 #define DR7_VOLATILE	0xffff2bff
254 
255 #define KVM_GUESTDBG_VALID_MASK \
256 	(KVM_GUESTDBG_ENABLE | \
257 	KVM_GUESTDBG_SINGLESTEP | \
258 	KVM_GUESTDBG_USE_HW_BP | \
259 	KVM_GUESTDBG_USE_SW_BP | \
260 	KVM_GUESTDBG_INJECT_BP | \
261 	KVM_GUESTDBG_INJECT_DB | \
262 	KVM_GUESTDBG_BLOCKIRQ)
263 
264 #define PFERR_PRESENT_MASK	BIT(0)
265 #define PFERR_WRITE_MASK	BIT(1)
266 #define PFERR_USER_MASK		BIT(2)
267 #define PFERR_RSVD_MASK		BIT(3)
268 #define PFERR_FETCH_MASK	BIT(4)
269 #define PFERR_PK_MASK		BIT(5)
270 #define PFERR_SGX_MASK		BIT(15)
271 #define PFERR_GUEST_RMP_MASK	BIT_ULL(31)
272 #define PFERR_GUEST_FINAL_MASK	BIT_ULL(32)
273 #define PFERR_GUEST_PAGE_MASK	BIT_ULL(33)
274 #define PFERR_GUEST_ENC_MASK	BIT_ULL(34)
275 #define PFERR_GUEST_SIZEM_MASK	BIT_ULL(35)
276 #define PFERR_GUEST_VMPL_MASK	BIT_ULL(36)
277 
278 /*
279  * IMPLICIT_ACCESS is a KVM-defined flag used to correctly perform SMAP checks
280  * when emulating instructions that triggers implicit access.
281  */
282 #define PFERR_IMPLICIT_ACCESS	BIT_ULL(48)
283 /*
284  * PRIVATE_ACCESS is a KVM-defined flag us to indicate that a fault occurred
285  * when the guest was accessing private memory.
286  */
287 #define PFERR_PRIVATE_ACCESS   BIT_ULL(49)
288 #define PFERR_SYNTHETIC_MASK   (PFERR_IMPLICIT_ACCESS | PFERR_PRIVATE_ACCESS)
289 
290 /* apic attention bits */
291 #define KVM_APIC_CHECK_VAPIC	0
292 /*
293  * The following bit is set with PV-EOI, unset on EOI.
294  * We detect PV-EOI changes by guest by comparing
295  * this bit with PV-EOI in guest memory.
296  * See the implementation in apic_update_pv_eoi.
297  */
298 #define KVM_APIC_PV_EOI_PENDING	1
299 
300 struct kvm_kernel_irq_routing_entry;
301 
302 /*
303  * kvm_mmu_page_role tracks the properties of a shadow page (where shadow page
304  * also includes TDP pages) to determine whether or not a page can be used in
305  * the given MMU context.  This is a subset of the overall kvm_cpu_role to
306  * minimize the size of kvm_memory_slot.arch.gfn_write_track, i.e. allows
307  * allocating 2 bytes per gfn instead of 4 bytes per gfn.
308  *
309  * Upper-level shadow pages having gptes are tracked for write-protection via
310  * gfn_write_track.  As above, gfn_write_track is a 16 bit counter, so KVM must
311  * not create more than 2^16-1 upper-level shadow pages at a single gfn,
312  * otherwise gfn_write_track will overflow and explosions will ensue.
313  *
314  * A unique shadow page (SP) for a gfn is created if and only if an existing SP
315  * cannot be reused.  The ability to reuse a SP is tracked by its role, which
316  * incorporates various mode bits and properties of the SP.  Roughly speaking,
317  * the number of unique SPs that can theoretically be created is 2^n, where n
318  * is the number of bits that are used to compute the role.
319  *
320  * But, even though there are 20 bits in the mask below, not all combinations
321  * of modes and flags are possible:
322  *
323  *   - invalid shadow pages are not accounted, mirror pages are not shadowed,
324  *     so the bits are effectively 18.
325  *
326  *   - quadrant will only be used if has_4_byte_gpte=1 (non-PAE paging);
327  *     execonly and ad_disabled are only used for nested EPT which has
328  *     has_4_byte_gpte=0.  Therefore, 2 bits are always unused.
329  *
330  *   - the 4 bits of level are effectively limited to the values 2/3/4/5,
331  *     as 4k SPs are not tracked (allowed to go unsync).  In addition non-PAE
332  *     paging has exactly one upper level, making level completely redundant
333  *     when has_4_byte_gpte=1.
334  *
335  *   - on top of this, smep_andnot_wp and smap_andnot_wp are only set if
336  *     cr0_wp=0, therefore these three bits only give rise to 5 possibilities.
337  *
338  * Therefore, the maximum number of possible upper-level shadow pages for a
339  * single gfn is a bit less than 2^13.
340  */
341 union kvm_mmu_page_role {
342 	u32 word;
343 	struct {
344 		unsigned level:4;
345 		unsigned has_4_byte_gpte:1;
346 		unsigned quadrant:2;
347 		unsigned direct:1;
348 		unsigned access:3;
349 		unsigned invalid:1;
350 		unsigned efer_nx:1;
351 		unsigned cr0_wp:1;
352 		unsigned smep_andnot_wp:1;
353 		unsigned smap_andnot_wp:1;
354 		unsigned ad_disabled:1;
355 		unsigned guest_mode:1;
356 		unsigned passthrough:1;
357 		unsigned is_mirror:1;
358 		unsigned :4;
359 
360 		/*
361 		 * This is left at the top of the word so that
362 		 * kvm_memslots_for_spte_role can extract it with a
363 		 * simple shift.  While there is room, give it a whole
364 		 * byte so it is also faster to load it from memory.
365 		 */
366 		unsigned smm:8;
367 	};
368 };
369 
370 /*
371  * kvm_mmu_extended_role complements kvm_mmu_page_role, tracking properties
372  * relevant to the current MMU configuration.   When loading CR0, CR4, or EFER,
373  * including on nested transitions, if nothing in the full role changes then
374  * MMU re-configuration can be skipped. @valid bit is set on first usage so we
375  * don't treat all-zero structure as valid data.
376  *
377  * The properties that are tracked in the extended role but not the page role
378  * are for things that either (a) do not affect the validity of the shadow page
379  * or (b) are indirectly reflected in the shadow page's role.  For example,
380  * CR4.PKE only affects permission checks for software walks of the guest page
381  * tables (because KVM doesn't support Protection Keys with shadow paging), and
382  * CR0.PG, CR4.PAE, and CR4.PSE are indirectly reflected in role.level.
383  *
384  * Note, SMEP and SMAP are not redundant with sm*p_andnot_wp in the page role.
385  * If CR0.WP=1, KVM can reuse shadow pages for the guest regardless of SMEP and
386  * SMAP, but the MMU's permission checks for software walks need to be SMEP and
387  * SMAP aware regardless of CR0.WP.
388  */
389 union kvm_mmu_extended_role {
390 	u32 word;
391 	struct {
392 		unsigned int valid:1;
393 		unsigned int execonly:1;
394 		unsigned int cr4_pse:1;
395 		unsigned int cr4_pke:1;
396 		unsigned int cr4_smap:1;
397 		unsigned int cr4_smep:1;
398 		unsigned int cr4_la57:1;
399 		unsigned int efer_lma:1;
400 	};
401 };
402 
403 union kvm_cpu_role {
404 	u64 as_u64;
405 	struct {
406 		union kvm_mmu_page_role base;
407 		union kvm_mmu_extended_role ext;
408 	};
409 };
410 
411 struct kvm_rmap_head {
412 	atomic_long_t val;
413 };
414 
415 struct kvm_pio_request {
416 	unsigned long count;
417 	int in;
418 	int port;
419 	int size;
420 };
421 
422 #define PT64_ROOT_MAX_LEVEL 5
423 
424 struct rsvd_bits_validate {
425 	u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL];
426 	u64 bad_mt_xwr;
427 };
428 
429 struct kvm_mmu_root_info {
430 	gpa_t pgd;
431 	hpa_t hpa;
432 };
433 
434 #define KVM_MMU_ROOT_INFO_INVALID \
435 	((struct kvm_mmu_root_info) { .pgd = INVALID_PAGE, .hpa = INVALID_PAGE })
436 
437 #define KVM_MMU_NUM_PREV_ROOTS 3
438 
439 #define KVM_MMU_ROOT_CURRENT		BIT(0)
440 #define KVM_MMU_ROOT_PREVIOUS(i)	BIT(1+i)
441 #define KVM_MMU_ROOTS_ALL		(BIT(1 + KVM_MMU_NUM_PREV_ROOTS) - 1)
442 
443 #define KVM_HAVE_MMU_RWLOCK
444 
445 struct kvm_mmu_page;
446 struct kvm_page_fault;
447 
448 /*
449  * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit,
450  * and 2-level 32-bit).  The kvm_mmu structure abstracts the details of the
451  * current mmu mode.
452  */
453 struct kvm_mmu {
454 	unsigned long (*get_guest_pgd)(struct kvm_vcpu *vcpu);
455 	u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index);
456 	int (*page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault);
457 	void (*inject_page_fault)(struct kvm_vcpu *vcpu,
458 				  struct x86_exception *fault);
459 	gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
460 			    gpa_t gva_or_gpa, u64 access,
461 			    struct x86_exception *exception);
462 	int (*sync_spte)(struct kvm_vcpu *vcpu,
463 			 struct kvm_mmu_page *sp, int i);
464 	struct kvm_mmu_root_info root;
465 	hpa_t mirror_root_hpa;
466 	union kvm_cpu_role cpu_role;
467 	union kvm_mmu_page_role root_role;
468 
469 	/*
470 	* The pkru_mask indicates if protection key checks are needed.  It
471 	* consists of 16 domains indexed by page fault error code bits [4:1],
472 	* with PFEC.RSVD replaced by ACC_USER_MASK from the page tables.
473 	* Each domain has 2 bits which are ANDed with AD and WD from PKRU.
474 	*/
475 	u32 pkru_mask;
476 
477 	struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS];
478 
479 	/*
480 	 * Bitmap; bit set = permission fault
481 	 * Byte index: page fault error code [4:1]
482 	 * Bit index: pte permissions in ACC_* format
483 	 */
484 	u8 permissions[16];
485 
486 	u64 *pae_root;
487 	u64 *pml4_root;
488 	u64 *pml5_root;
489 
490 	/*
491 	 * check zero bits on shadow page table entries, these
492 	 * bits include not only hardware reserved bits but also
493 	 * the bits spte never used.
494 	 */
495 	struct rsvd_bits_validate shadow_zero_check;
496 
497 	struct rsvd_bits_validate guest_rsvd_check;
498 
499 	u64 pdptrs[4]; /* pae */
500 };
501 
502 enum pmc_type {
503 	KVM_PMC_GP = 0,
504 	KVM_PMC_FIXED,
505 };
506 
507 struct kvm_pmc {
508 	enum pmc_type type;
509 	u8 idx;
510 	bool is_paused;
511 	bool intr;
512 	/*
513 	 * Base value of the PMC counter, relative to the *consumed* count in
514 	 * the associated perf_event.  This value includes counter updates from
515 	 * the perf_event and emulated_count since the last time the counter
516 	 * was reprogrammed, but it is *not* the current value as seen by the
517 	 * guest or userspace.
518 	 *
519 	 * The count is relative to the associated perf_event so that KVM
520 	 * doesn't need to reprogram the perf_event every time the guest writes
521 	 * to the counter.
522 	 */
523 	u64 counter;
524 	/*
525 	 * PMC events triggered by KVM emulation that haven't been fully
526 	 * processed, i.e. haven't undergone overflow detection.
527 	 */
528 	u64 emulated_counter;
529 	u64 eventsel;
530 	struct perf_event *perf_event;
531 	struct kvm_vcpu *vcpu;
532 	/*
533 	 * only for creating or reusing perf_event,
534 	 * eventsel value for general purpose counters,
535 	 * ctrl value for fixed counters.
536 	 */
537 	u64 current_config;
538 };
539 
540 /* More counters may conflict with other existing Architectural MSRs */
541 #define KVM_MAX(a, b)	((a) >= (b) ? (a) : (b))
542 #define KVM_MAX_NR_INTEL_GP_COUNTERS	8
543 #define KVM_MAX_NR_AMD_GP_COUNTERS	6
544 #define KVM_MAX_NR_GP_COUNTERS		KVM_MAX(KVM_MAX_NR_INTEL_GP_COUNTERS, \
545 						KVM_MAX_NR_AMD_GP_COUNTERS)
546 
547 #define KVM_MAX_NR_INTEL_FIXED_COUTNERS	3
548 #define KVM_MAX_NR_AMD_FIXED_COUTNERS	0
549 #define KVM_MAX_NR_FIXED_COUNTERS	KVM_MAX(KVM_MAX_NR_INTEL_FIXED_COUTNERS, \
550 						KVM_MAX_NR_AMD_FIXED_COUTNERS)
551 
552 struct kvm_pmu {
553 	u8 version;
554 	unsigned nr_arch_gp_counters;
555 	unsigned nr_arch_fixed_counters;
556 	unsigned available_event_types;
557 	u64 fixed_ctr_ctrl;
558 	u64 fixed_ctr_ctrl_rsvd;
559 	u64 global_ctrl;
560 	u64 global_status;
561 	u64 counter_bitmask[2];
562 	u64 global_ctrl_rsvd;
563 	u64 global_status_rsvd;
564 	u64 reserved_bits;
565 	u64 raw_event_mask;
566 	struct kvm_pmc gp_counters[KVM_MAX_NR_GP_COUNTERS];
567 	struct kvm_pmc fixed_counters[KVM_MAX_NR_FIXED_COUNTERS];
568 
569 	/*
570 	 * Overlay the bitmap with a 64-bit atomic so that all bits can be
571 	 * set in a single access, e.g. to reprogram all counters when the PMU
572 	 * filter changes.
573 	 */
574 	union {
575 		DECLARE_BITMAP(reprogram_pmi, X86_PMC_IDX_MAX);
576 		atomic64_t __reprogram_pmi;
577 	};
578 	DECLARE_BITMAP(all_valid_pmc_idx, X86_PMC_IDX_MAX);
579 	DECLARE_BITMAP(pmc_in_use, X86_PMC_IDX_MAX);
580 
581 	u64 ds_area;
582 	u64 pebs_enable;
583 	u64 pebs_enable_rsvd;
584 	u64 pebs_data_cfg;
585 	u64 pebs_data_cfg_rsvd;
586 
587 	/*
588 	 * If a guest counter is cross-mapped to host counter with different
589 	 * index, its PEBS capability will be temporarily disabled.
590 	 *
591 	 * The user should make sure that this mask is updated
592 	 * after disabling interrupts and before perf_guest_get_msrs();
593 	 */
594 	u64 host_cross_mapped_mask;
595 
596 	/*
597 	 * The gate to release perf_events not marked in
598 	 * pmc_in_use only once in a vcpu time slice.
599 	 */
600 	bool need_cleanup;
601 
602 	/*
603 	 * The total number of programmed perf_events and it helps to avoid
604 	 * redundant check before cleanup if guest don't use vPMU at all.
605 	 */
606 	u8 event_count;
607 };
608 
609 struct kvm_pmu_ops;
610 
611 enum {
612 	KVM_DEBUGREG_BP_ENABLED		= BIT(0),
613 	KVM_DEBUGREG_WONT_EXIT		= BIT(1),
614 	/*
615 	 * Guest debug registers (DR0-3, DR6 and DR7) are saved/restored by
616 	 * hardware on exit from or enter to guest. KVM needn't switch them.
617 	 * DR0-3, DR6 and DR7 are set to their architectural INIT value on VM
618 	 * exit, host values need to be restored.
619 	 */
620 	KVM_DEBUGREG_AUTO_SWITCH	= BIT(2),
621 };
622 
623 struct kvm_mtrr {
624 	u64 var[KVM_NR_VAR_MTRR * 2];
625 	u64 fixed_64k;
626 	u64 fixed_16k[2];
627 	u64 fixed_4k[8];
628 	u64 deftype;
629 };
630 
631 /* Hyper-V SynIC timer */
632 struct kvm_vcpu_hv_stimer {
633 	struct hrtimer timer;
634 	int index;
635 	union hv_stimer_config config;
636 	u64 count;
637 	u64 exp_time;
638 	struct hv_message msg;
639 	bool msg_pending;
640 };
641 
642 /* Hyper-V synthetic interrupt controller (SynIC)*/
643 struct kvm_vcpu_hv_synic {
644 	u64 version;
645 	u64 control;
646 	u64 msg_page;
647 	u64 evt_page;
648 	atomic64_t sint[HV_SYNIC_SINT_COUNT];
649 	atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT];
650 	DECLARE_BITMAP(auto_eoi_bitmap, 256);
651 	DECLARE_BITMAP(vec_bitmap, 256);
652 	bool active;
653 	bool dont_zero_synic_pages;
654 };
655 
656 /* The maximum number of entries on the TLB flush fifo. */
657 #define KVM_HV_TLB_FLUSH_FIFO_SIZE (16)
658 /*
659  * Note: the following 'magic' entry is made up by KVM to avoid putting
660  * anything besides GVA on the TLB flush fifo. It is theoretically possible
661  * to observe a request to flush 4095 PFNs starting from 0xfffffffffffff000
662  * which will look identical. KVM's action to 'flush everything' instead of
663  * flushing these particular addresses is, however, fully legitimate as
664  * flushing more than requested is always OK.
665  */
666 #define KVM_HV_TLB_FLUSHALL_ENTRY  ((u64)-1)
667 
668 enum hv_tlb_flush_fifos {
669 	HV_L1_TLB_FLUSH_FIFO,
670 	HV_L2_TLB_FLUSH_FIFO,
671 	HV_NR_TLB_FLUSH_FIFOS,
672 };
673 
674 struct kvm_vcpu_hv_tlb_flush_fifo {
675 	spinlock_t write_lock;
676 	DECLARE_KFIFO(entries, u64, KVM_HV_TLB_FLUSH_FIFO_SIZE);
677 };
678 
679 /* Hyper-V per vcpu emulation context */
680 struct kvm_vcpu_hv {
681 	struct kvm_vcpu *vcpu;
682 	u32 vp_index;
683 	u64 hv_vapic;
684 	s64 runtime_offset;
685 	struct kvm_vcpu_hv_synic synic;
686 	struct kvm_hyperv_exit exit;
687 	struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT];
688 	DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
689 	bool enforce_cpuid;
690 	struct {
691 		u32 features_eax; /* HYPERV_CPUID_FEATURES.EAX */
692 		u32 features_ebx; /* HYPERV_CPUID_FEATURES.EBX */
693 		u32 features_edx; /* HYPERV_CPUID_FEATURES.EDX */
694 		u32 enlightenments_eax; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EAX */
695 		u32 enlightenments_ebx; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EBX */
696 		u32 syndbg_cap_eax; /* HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES.EAX */
697 		u32 nested_eax; /* HYPERV_CPUID_NESTED_FEATURES.EAX */
698 		u32 nested_ebx; /* HYPERV_CPUID_NESTED_FEATURES.EBX */
699 	} cpuid_cache;
700 
701 	struct kvm_vcpu_hv_tlb_flush_fifo tlb_flush_fifo[HV_NR_TLB_FLUSH_FIFOS];
702 
703 	/* Preallocated buffer for handling hypercalls passing sparse vCPU set */
704 	u64 sparse_banks[HV_MAX_SPARSE_VCPU_BANKS];
705 
706 	struct hv_vp_assist_page vp_assist_page;
707 
708 	struct {
709 		u64 pa_page_gpa;
710 		u64 vm_id;
711 		u32 vp_id;
712 	} nested;
713 };
714 
715 struct kvm_hypervisor_cpuid {
716 	u32 base;
717 	u32 limit;
718 };
719 
720 #ifdef CONFIG_KVM_XEN
721 /* Xen HVM per vcpu emulation context */
722 struct kvm_vcpu_xen {
723 	u64 hypercall_rip;
724 	u32 current_runstate;
725 	u8 upcall_vector;
726 	struct gfn_to_pfn_cache vcpu_info_cache;
727 	struct gfn_to_pfn_cache vcpu_time_info_cache;
728 	struct gfn_to_pfn_cache runstate_cache;
729 	struct gfn_to_pfn_cache runstate2_cache;
730 	u64 last_steal;
731 	u64 runstate_entry_time;
732 	u64 runstate_times[4];
733 	unsigned long evtchn_pending_sel;
734 	u32 vcpu_id; /* The Xen / ACPI vCPU ID */
735 	u32 timer_virq;
736 	u64 timer_expires; /* In guest epoch */
737 	atomic_t timer_pending;
738 	struct hrtimer timer;
739 	int poll_evtchn;
740 	struct timer_list poll_timer;
741 	struct kvm_hypervisor_cpuid cpuid;
742 };
743 #endif
744 
745 struct kvm_queued_exception {
746 	bool pending;
747 	bool injected;
748 	bool has_error_code;
749 	u8 vector;
750 	u32 error_code;
751 	unsigned long payload;
752 	bool has_payload;
753 };
754 
755 /*
756  * Hardware-defined CPUID leafs that are either scattered by the kernel or are
757  * unknown to the kernel, but need to be directly used by KVM.  Note, these
758  * word values conflict with the kernel's "bug" caps, but KVM doesn't use those.
759  */
760 enum kvm_only_cpuid_leafs {
761 	CPUID_12_EAX	 = NCAPINTS,
762 	CPUID_7_1_EDX,
763 	CPUID_8000_0007_EDX,
764 	CPUID_8000_0022_EAX,
765 	CPUID_7_2_EDX,
766 	CPUID_24_0_EBX,
767 	CPUID_8000_0021_ECX,
768 	NR_KVM_CPU_CAPS,
769 
770 	NKVMCAPINTS = NR_KVM_CPU_CAPS - NCAPINTS,
771 };
772 
773 struct kvm_vcpu_arch {
774 	/*
775 	 * rip and regs accesses must go through
776 	 * kvm_{register,rip}_{read,write} functions.
777 	 */
778 	unsigned long regs[NR_VCPU_REGS];
779 	u32 regs_avail;
780 	u32 regs_dirty;
781 
782 	unsigned long cr0;
783 	unsigned long cr0_guest_owned_bits;
784 	unsigned long cr2;
785 	unsigned long cr3;
786 	unsigned long cr4;
787 	unsigned long cr4_guest_owned_bits;
788 	unsigned long cr4_guest_rsvd_bits;
789 	unsigned long cr8;
790 	u32 host_pkru;
791 	u32 pkru;
792 	u32 hflags;
793 	u64 efer;
794 	u64 host_debugctl;
795 	u64 apic_base;
796 	struct kvm_lapic *apic;    /* kernel irqchip context */
797 	bool load_eoi_exitmap_pending;
798 	DECLARE_BITMAP(ioapic_handled_vectors, 256);
799 	unsigned long apic_attention;
800 	int32_t apic_arb_prio;
801 	int mp_state;
802 	u64 ia32_misc_enable_msr;
803 	u64 smbase;
804 	u64 smi_count;
805 	bool at_instruction_boundary;
806 	bool tpr_access_reporting;
807 	bool xfd_no_write_intercept;
808 	u64 ia32_xss;
809 	u64 microcode_version;
810 	u64 arch_capabilities;
811 	u64 perf_capabilities;
812 
813 	/*
814 	 * Paging state of the vcpu
815 	 *
816 	 * If the vcpu runs in guest mode with two level paging this still saves
817 	 * the paging mode of the l1 guest. This context is always used to
818 	 * handle faults.
819 	 */
820 	struct kvm_mmu *mmu;
821 
822 	/* Non-nested MMU for L1 */
823 	struct kvm_mmu root_mmu;
824 
825 	/* L1 MMU when running nested */
826 	struct kvm_mmu guest_mmu;
827 
828 	/*
829 	 * Paging state of an L2 guest (used for nested npt)
830 	 *
831 	 * This context will save all necessary information to walk page tables
832 	 * of an L2 guest. This context is only initialized for page table
833 	 * walking and not for faulting since we never handle l2 page faults on
834 	 * the host.
835 	 */
836 	struct kvm_mmu nested_mmu;
837 
838 	/*
839 	 * Pointer to the mmu context currently used for
840 	 * gva_to_gpa translations.
841 	 */
842 	struct kvm_mmu *walk_mmu;
843 
844 	struct kvm_mmu_memory_cache mmu_pte_list_desc_cache;
845 	struct kvm_mmu_memory_cache mmu_shadow_page_cache;
846 	struct kvm_mmu_memory_cache mmu_shadowed_info_cache;
847 	struct kvm_mmu_memory_cache mmu_page_header_cache;
848 	/*
849 	 * This cache is to allocate external page table. E.g. private EPT used
850 	 * by the TDX module.
851 	 */
852 	struct kvm_mmu_memory_cache mmu_external_spt_cache;
853 
854 	/*
855 	 * QEMU userspace and the guest each have their own FPU state.
856 	 * In vcpu_run, we switch between the user and guest FPU contexts.
857 	 * While running a VCPU, the VCPU thread will have the guest FPU
858 	 * context.
859 	 *
860 	 * Note that while the PKRU state lives inside the fpu registers,
861 	 * it is switched out separately at VMENTER and VMEXIT time. The
862 	 * "guest_fpstate" state here contains the guest FPU context, with the
863 	 * host PRKU bits.
864 	 */
865 	struct fpu_guest guest_fpu;
866 
867 	u64 xcr0;
868 	u64 guest_supported_xcr0;
869 
870 	struct kvm_pio_request pio;
871 	void *pio_data;
872 	void *sev_pio_data;
873 	unsigned sev_pio_count;
874 
875 	u8 event_exit_inst_len;
876 
877 	bool exception_from_userspace;
878 
879 	/* Exceptions to be injected to the guest. */
880 	struct kvm_queued_exception exception;
881 	/* Exception VM-Exits to be synthesized to L1. */
882 	struct kvm_queued_exception exception_vmexit;
883 
884 	struct kvm_queued_interrupt {
885 		bool injected;
886 		bool soft;
887 		u8 nr;
888 	} interrupt;
889 
890 	int halt_request; /* real mode on Intel only */
891 
892 	int cpuid_nent;
893 	struct kvm_cpuid_entry2 *cpuid_entries;
894 	bool cpuid_dynamic_bits_dirty;
895 	bool is_amd_compatible;
896 
897 	/*
898 	 * cpu_caps holds the effective guest capabilities, i.e. the features
899 	 * the vCPU is allowed to use.  Typically, but not always, features can
900 	 * be used by the guest if and only if both KVM and userspace want to
901 	 * expose the feature to the guest.
902 	 *
903 	 * A common exception is for virtualization holes, i.e. when KVM can't
904 	 * prevent the guest from using a feature, in which case the vCPU "has"
905 	 * the feature regardless of what KVM or userspace desires.
906 	 *
907 	 * Note, features that don't require KVM involvement in any way are
908 	 * NOT enforced/sanitized by KVM, i.e. are taken verbatim from the
909 	 * guest CPUID provided by userspace.
910 	 */
911 	u32 cpu_caps[NR_KVM_CPU_CAPS];
912 
913 	u64 reserved_gpa_bits;
914 	int maxphyaddr;
915 
916 	/* emulate context */
917 
918 	struct x86_emulate_ctxt *emulate_ctxt;
919 	bool emulate_regs_need_sync_to_vcpu;
920 	bool emulate_regs_need_sync_from_vcpu;
921 	int (*complete_userspace_io)(struct kvm_vcpu *vcpu);
922 	unsigned long cui_linear_rip;
923 
924 	gpa_t time;
925 	s8  pvclock_tsc_shift;
926 	u32 pvclock_tsc_mul;
927 	unsigned int hw_tsc_khz;
928 	struct gfn_to_pfn_cache pv_time;
929 	/* set guest stopped flag in pvclock flags field */
930 	bool pvclock_set_guest_stopped_request;
931 
932 	struct {
933 		u8 preempted;
934 		u64 msr_val;
935 		u64 last_steal;
936 		struct gfn_to_hva_cache cache;
937 	} st;
938 
939 	u64 l1_tsc_offset;
940 	u64 tsc_offset; /* current tsc offset */
941 	u64 last_guest_tsc;
942 	u64 last_host_tsc;
943 	u64 tsc_offset_adjustment;
944 	u64 this_tsc_nsec;
945 	u64 this_tsc_write;
946 	u64 this_tsc_generation;
947 	bool tsc_catchup;
948 	bool tsc_always_catchup;
949 	s8 virtual_tsc_shift;
950 	u32 virtual_tsc_mult;
951 	u32 virtual_tsc_khz;
952 	s64 ia32_tsc_adjust_msr;
953 	u64 msr_ia32_power_ctl;
954 	u64 l1_tsc_scaling_ratio;
955 	u64 tsc_scaling_ratio; /* current scaling ratio */
956 
957 	atomic_t nmi_queued;  /* unprocessed asynchronous NMIs */
958 	/* Number of NMIs pending injection, not including hardware vNMIs. */
959 	unsigned int nmi_pending;
960 	bool nmi_injected;    /* Trying to inject an NMI this entry */
961 	bool smi_pending;    /* SMI queued after currently running handler */
962 	u8 handling_intr_from_guest;
963 
964 	struct kvm_mtrr mtrr_state;
965 	u64 pat;
966 
967 	unsigned switch_db_regs;
968 	unsigned long db[KVM_NR_DB_REGS];
969 	unsigned long dr6;
970 	unsigned long dr7;
971 	unsigned long eff_db[KVM_NR_DB_REGS];
972 	unsigned long guest_debug_dr7;
973 	u64 msr_platform_info;
974 	u64 msr_misc_features_enables;
975 
976 	u64 mcg_cap;
977 	u64 mcg_status;
978 	u64 mcg_ctl;
979 	u64 mcg_ext_ctl;
980 	u64 *mce_banks;
981 	u64 *mci_ctl2_banks;
982 
983 	/* Cache MMIO info */
984 	u64 mmio_gva;
985 	unsigned mmio_access;
986 	gfn_t mmio_gfn;
987 	u64 mmio_gen;
988 
989 	struct kvm_pmu pmu;
990 
991 	/* used for guest single stepping over the given code position */
992 	unsigned long singlestep_rip;
993 
994 #ifdef CONFIG_KVM_HYPERV
995 	bool hyperv_enabled;
996 	struct kvm_vcpu_hv *hyperv;
997 #endif
998 #ifdef CONFIG_KVM_XEN
999 	struct kvm_vcpu_xen xen;
1000 #endif
1001 	cpumask_var_t wbinvd_dirty_mask;
1002 
1003 	unsigned long last_retry_eip;
1004 	unsigned long last_retry_addr;
1005 
1006 	struct {
1007 		bool halted;
1008 		gfn_t gfns[ASYNC_PF_PER_VCPU];
1009 		struct gfn_to_hva_cache data;
1010 		u64 msr_en_val; /* MSR_KVM_ASYNC_PF_EN */
1011 		u64 msr_int_val; /* MSR_KVM_ASYNC_PF_INT */
1012 		u16 vec;
1013 		u32 id;
1014 		u32 host_apf_flags;
1015 		bool send_always;
1016 		bool delivery_as_pf_vmexit;
1017 		bool pageready_pending;
1018 	} apf;
1019 
1020 	/* OSVW MSRs (AMD only) */
1021 	struct {
1022 		u64 length;
1023 		u64 status;
1024 	} osvw;
1025 
1026 	struct {
1027 		u64 msr_val;
1028 		struct gfn_to_hva_cache data;
1029 	} pv_eoi;
1030 
1031 	u64 msr_kvm_poll_control;
1032 
1033 	/* pv related host specific info */
1034 	struct {
1035 		bool pv_unhalted;
1036 	} pv;
1037 
1038 	int pending_ioapic_eoi;
1039 	int pending_external_vector;
1040 	int highest_stale_pending_ioapic_eoi;
1041 
1042 	/* be preempted when it's in kernel-mode(cpl=0) */
1043 	bool preempted_in_kernel;
1044 
1045 	/* Flush the L1 Data cache for L1TF mitigation on VMENTER */
1046 	bool l1tf_flush_l1d;
1047 
1048 	/* Host CPU on which VM-entry was most recently attempted */
1049 	int last_vmentry_cpu;
1050 
1051 	/* AMD MSRC001_0015 Hardware Configuration */
1052 	u64 msr_hwcr;
1053 
1054 	/* pv related cpuid info */
1055 	struct {
1056 		/*
1057 		 * value of the eax register in the KVM_CPUID_FEATURES CPUID
1058 		 * leaf.
1059 		 */
1060 		u32 features;
1061 
1062 		/*
1063 		 * indicates whether pv emulation should be disabled if features
1064 		 * are not present in the guest's cpuid
1065 		 */
1066 		bool enforce;
1067 	} pv_cpuid;
1068 
1069 	/* Protected Guests */
1070 	bool guest_state_protected;
1071 	bool guest_tsc_protected;
1072 
1073 	/*
1074 	 * Set when PDPTS were loaded directly by the userspace without
1075 	 * reading the guest memory
1076 	 */
1077 	bool pdptrs_from_userspace;
1078 
1079 #if IS_ENABLED(CONFIG_HYPERV)
1080 	hpa_t hv_root_tdp;
1081 #endif
1082 };
1083 
1084 struct kvm_lpage_info {
1085 	int disallow_lpage;
1086 };
1087 
1088 struct kvm_arch_memory_slot {
1089 	struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES];
1090 	struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1];
1091 	unsigned short *gfn_write_track;
1092 };
1093 
1094 /*
1095  * Track the mode of the optimized logical map, as the rules for decoding the
1096  * destination vary per mode.  Enabling the optimized logical map requires all
1097  * software-enabled local APIs to be in the same mode, each addressable APIC to
1098  * be mapped to only one MDA, and each MDA to map to at most one APIC.
1099  */
1100 enum kvm_apic_logical_mode {
1101 	/* All local APICs are software disabled. */
1102 	KVM_APIC_MODE_SW_DISABLED,
1103 	/* All software enabled local APICs in xAPIC cluster addressing mode. */
1104 	KVM_APIC_MODE_XAPIC_CLUSTER,
1105 	/* All software enabled local APICs in xAPIC flat addressing mode. */
1106 	KVM_APIC_MODE_XAPIC_FLAT,
1107 	/* All software enabled local APICs in x2APIC mode. */
1108 	KVM_APIC_MODE_X2APIC,
1109 	/*
1110 	 * Optimized map disabled, e.g. not all local APICs in the same logical
1111 	 * mode, same logical ID assigned to multiple APICs, etc.
1112 	 */
1113 	KVM_APIC_MODE_MAP_DISABLED,
1114 };
1115 
1116 struct kvm_apic_map {
1117 	struct rcu_head rcu;
1118 	enum kvm_apic_logical_mode logical_mode;
1119 	u32 max_apic_id;
1120 	union {
1121 		struct kvm_lapic *xapic_flat_map[8];
1122 		struct kvm_lapic *xapic_cluster_map[16][4];
1123 	};
1124 	struct kvm_lapic *phys_map[];
1125 };
1126 
1127 /* Hyper-V synthetic debugger (SynDbg)*/
1128 struct kvm_hv_syndbg {
1129 	struct {
1130 		u64 control;
1131 		u64 status;
1132 		u64 send_page;
1133 		u64 recv_page;
1134 		u64 pending_page;
1135 	} control;
1136 	u64 options;
1137 };
1138 
1139 /* Current state of Hyper-V TSC page clocksource */
1140 enum hv_tsc_page_status {
1141 	/* TSC page was not set up or disabled */
1142 	HV_TSC_PAGE_UNSET = 0,
1143 	/* TSC page MSR was written by the guest, update pending */
1144 	HV_TSC_PAGE_GUEST_CHANGED,
1145 	/* TSC page update was triggered from the host side */
1146 	HV_TSC_PAGE_HOST_CHANGED,
1147 	/* TSC page was properly set up and is currently active  */
1148 	HV_TSC_PAGE_SET,
1149 	/* TSC page was set up with an inaccessible GPA */
1150 	HV_TSC_PAGE_BROKEN,
1151 };
1152 
1153 #ifdef CONFIG_KVM_HYPERV
1154 /* Hyper-V emulation context */
1155 struct kvm_hv {
1156 	struct mutex hv_lock;
1157 	u64 hv_guest_os_id;
1158 	u64 hv_hypercall;
1159 	u64 hv_tsc_page;
1160 	enum hv_tsc_page_status hv_tsc_page_status;
1161 
1162 	/* Hyper-v based guest crash (NT kernel bugcheck) parameters */
1163 	u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS];
1164 	u64 hv_crash_ctl;
1165 
1166 	struct ms_hyperv_tsc_page tsc_ref;
1167 
1168 	struct idr conn_to_evt;
1169 
1170 	u64 hv_reenlightenment_control;
1171 	u64 hv_tsc_emulation_control;
1172 	u64 hv_tsc_emulation_status;
1173 	u64 hv_invtsc_control;
1174 
1175 	/* How many vCPUs have VP index != vCPU index */
1176 	atomic_t num_mismatched_vp_indexes;
1177 
1178 	/*
1179 	 * How many SynICs use 'AutoEOI' feature
1180 	 * (protected by arch.apicv_update_lock)
1181 	 */
1182 	unsigned int synic_auto_eoi_used;
1183 
1184 	struct kvm_hv_syndbg hv_syndbg;
1185 
1186 	bool xsaves_xsavec_checked;
1187 };
1188 #endif
1189 
1190 struct msr_bitmap_range {
1191 	u32 flags;
1192 	u32 nmsrs;
1193 	u32 base;
1194 	unsigned long *bitmap;
1195 };
1196 
1197 #ifdef CONFIG_KVM_XEN
1198 /* Xen emulation context */
1199 struct kvm_xen {
1200 	struct mutex xen_lock;
1201 	u32 xen_version;
1202 	bool long_mode;
1203 	bool runstate_update_flag;
1204 	u8 upcall_vector;
1205 	struct gfn_to_pfn_cache shinfo_cache;
1206 	struct idr evtchn_ports;
1207 	unsigned long poll_mask[BITS_TO_LONGS(KVM_MAX_VCPUS)];
1208 
1209 	struct kvm_xen_hvm_config hvm_config;
1210 };
1211 #endif
1212 
1213 enum kvm_irqchip_mode {
1214 	KVM_IRQCHIP_NONE,
1215 	KVM_IRQCHIP_KERNEL,       /* created with KVM_CREATE_IRQCHIP */
1216 	KVM_IRQCHIP_SPLIT,        /* created with KVM_CAP_SPLIT_IRQCHIP */
1217 };
1218 
1219 struct kvm_x86_msr_filter {
1220 	u8 count;
1221 	bool default_allow:1;
1222 	struct msr_bitmap_range ranges[16];
1223 };
1224 
1225 struct kvm_x86_pmu_event_filter {
1226 	__u32 action;
1227 	__u32 nevents;
1228 	__u32 fixed_counter_bitmap;
1229 	__u32 flags;
1230 	__u32 nr_includes;
1231 	__u32 nr_excludes;
1232 	__u64 *includes;
1233 	__u64 *excludes;
1234 	__u64 events[];
1235 };
1236 
1237 enum kvm_apicv_inhibit {
1238 
1239 	/********************************************************************/
1240 	/* INHIBITs that are relevant to both Intel's APICv and AMD's AVIC. */
1241 	/********************************************************************/
1242 
1243 	/*
1244 	 * APIC acceleration is disabled by a module parameter
1245 	 * and/or not supported in hardware.
1246 	 */
1247 	APICV_INHIBIT_REASON_DISABLED,
1248 
1249 	/*
1250 	 * APIC acceleration is inhibited because AutoEOI feature is
1251 	 * being used by a HyperV guest.
1252 	 */
1253 	APICV_INHIBIT_REASON_HYPERV,
1254 
1255 	/*
1256 	 * APIC acceleration is inhibited because the userspace didn't yet
1257 	 * enable the kernel/split irqchip.
1258 	 */
1259 	APICV_INHIBIT_REASON_ABSENT,
1260 
1261 	/* APIC acceleration is inhibited because KVM_GUESTDBG_BLOCKIRQ
1262 	 * (out of band, debug measure of blocking all interrupts on this vCPU)
1263 	 * was enabled, to avoid AVIC/APICv bypassing it.
1264 	 */
1265 	APICV_INHIBIT_REASON_BLOCKIRQ,
1266 
1267 	/*
1268 	 * APICv is disabled because not all vCPUs have a 1:1 mapping between
1269 	 * APIC ID and vCPU, _and_ KVM is not applying its x2APIC hotplug hack.
1270 	 */
1271 	APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED,
1272 
1273 	/*
1274 	 * For simplicity, the APIC acceleration is inhibited
1275 	 * first time either APIC ID or APIC base are changed by the guest
1276 	 * from their reset values.
1277 	 */
1278 	APICV_INHIBIT_REASON_APIC_ID_MODIFIED,
1279 	APICV_INHIBIT_REASON_APIC_BASE_MODIFIED,
1280 
1281 	/******************************************************/
1282 	/* INHIBITs that are relevant only to the AMD's AVIC. */
1283 	/******************************************************/
1284 
1285 	/*
1286 	 * AVIC is inhibited on a vCPU because it runs a nested guest.
1287 	 *
1288 	 * This is needed because unlike APICv, the peers of this vCPU
1289 	 * cannot use the doorbell mechanism to signal interrupts via AVIC when
1290 	 * a vCPU runs nested.
1291 	 */
1292 	APICV_INHIBIT_REASON_NESTED,
1293 
1294 	/*
1295 	 * On SVM, the wait for the IRQ window is implemented with pending vIRQ,
1296 	 * which cannot be injected when the AVIC is enabled, thus AVIC
1297 	 * is inhibited while KVM waits for IRQ window.
1298 	 */
1299 	APICV_INHIBIT_REASON_IRQWIN,
1300 
1301 	/*
1302 	 * PIT (i8254) 're-inject' mode, relies on EOI intercept,
1303 	 * which AVIC doesn't support for edge triggered interrupts.
1304 	 */
1305 	APICV_INHIBIT_REASON_PIT_REINJ,
1306 
1307 	/*
1308 	 * AVIC is disabled because SEV doesn't support it.
1309 	 */
1310 	APICV_INHIBIT_REASON_SEV,
1311 
1312 	/*
1313 	 * AVIC is disabled because not all vCPUs with a valid LDR have a 1:1
1314 	 * mapping between logical ID and vCPU.
1315 	 */
1316 	APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED,
1317 
1318 	NR_APICV_INHIBIT_REASONS,
1319 };
1320 
1321 #define __APICV_INHIBIT_REASON(reason)			\
1322 	{ BIT(APICV_INHIBIT_REASON_##reason), #reason }
1323 
1324 #define APICV_INHIBIT_REASONS				\
1325 	__APICV_INHIBIT_REASON(DISABLED),		\
1326 	__APICV_INHIBIT_REASON(HYPERV),			\
1327 	__APICV_INHIBIT_REASON(ABSENT),			\
1328 	__APICV_INHIBIT_REASON(BLOCKIRQ),		\
1329 	__APICV_INHIBIT_REASON(PHYSICAL_ID_ALIASED),	\
1330 	__APICV_INHIBIT_REASON(APIC_ID_MODIFIED),	\
1331 	__APICV_INHIBIT_REASON(APIC_BASE_MODIFIED),	\
1332 	__APICV_INHIBIT_REASON(NESTED),			\
1333 	__APICV_INHIBIT_REASON(IRQWIN),			\
1334 	__APICV_INHIBIT_REASON(PIT_REINJ),		\
1335 	__APICV_INHIBIT_REASON(SEV),			\
1336 	__APICV_INHIBIT_REASON(LOGICAL_ID_ALIASED)
1337 
1338 struct kvm_arch {
1339 	unsigned long n_used_mmu_pages;
1340 	unsigned long n_requested_mmu_pages;
1341 	unsigned long n_max_mmu_pages;
1342 	unsigned int indirect_shadow_pages;
1343 	u8 mmu_valid_gen;
1344 	u8 vm_type;
1345 	bool has_private_mem;
1346 	bool has_protected_state;
1347 	bool pre_fault_allowed;
1348 	struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES];
1349 	struct list_head active_mmu_pages;
1350 	/*
1351 	 * A list of kvm_mmu_page structs that, if zapped, could possibly be
1352 	 * replaced by an NX huge page.  A shadow page is on this list if its
1353 	 * existence disallows an NX huge page (nx_huge_page_disallowed is set)
1354 	 * and there are no other conditions that prevent a huge page, e.g.
1355 	 * the backing host page is huge, dirtly logging is not enabled for its
1356 	 * memslot, etc...  Note, zapping shadow pages on this list doesn't
1357 	 * guarantee an NX huge page will be created in its stead, e.g. if the
1358 	 * guest attempts to execute from the region then KVM obviously can't
1359 	 * create an NX huge page (without hanging the guest).
1360 	 */
1361 	struct list_head possible_nx_huge_pages;
1362 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING
1363 	struct kvm_page_track_notifier_head track_notifier_head;
1364 #endif
1365 	/*
1366 	 * Protects marking pages unsync during page faults, as TDP MMU page
1367 	 * faults only take mmu_lock for read.  For simplicity, the unsync
1368 	 * pages lock is always taken when marking pages unsync regardless of
1369 	 * whether mmu_lock is held for read or write.
1370 	 */
1371 	spinlock_t mmu_unsync_pages_lock;
1372 
1373 	u64 shadow_mmio_value;
1374 
1375 #define __KVM_HAVE_ARCH_NONCOHERENT_DMA
1376 	atomic_t noncoherent_dma_count;
1377 #define __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1378 	atomic_t assigned_device_count;
1379 	struct kvm_pic *vpic;
1380 	struct kvm_ioapic *vioapic;
1381 	struct kvm_pit *vpit;
1382 	atomic_t vapics_in_nmi_mode;
1383 	struct mutex apic_map_lock;
1384 	struct kvm_apic_map __rcu *apic_map;
1385 	atomic_t apic_map_dirty;
1386 
1387 	bool apic_access_memslot_enabled;
1388 	bool apic_access_memslot_inhibited;
1389 
1390 	/* Protects apicv_inhibit_reasons */
1391 	struct rw_semaphore apicv_update_lock;
1392 	unsigned long apicv_inhibit_reasons;
1393 
1394 	gpa_t wall_clock;
1395 
1396 	bool mwait_in_guest;
1397 	bool hlt_in_guest;
1398 	bool pause_in_guest;
1399 	bool cstate_in_guest;
1400 
1401 	unsigned long irq_sources_bitmap;
1402 	s64 kvmclock_offset;
1403 
1404 	/*
1405 	 * This also protects nr_vcpus_matched_tsc which is read from a
1406 	 * preemption-disabled region, so it must be a raw spinlock.
1407 	 */
1408 	raw_spinlock_t tsc_write_lock;
1409 	u64 last_tsc_nsec;
1410 	u64 last_tsc_write;
1411 	u32 last_tsc_khz;
1412 	u64 last_tsc_offset;
1413 	u64 cur_tsc_nsec;
1414 	u64 cur_tsc_write;
1415 	u64 cur_tsc_offset;
1416 	u64 cur_tsc_generation;
1417 	int nr_vcpus_matched_tsc;
1418 
1419 	u32 default_tsc_khz;
1420 	bool user_set_tsc;
1421 	u64 apic_bus_cycle_ns;
1422 
1423 	seqcount_raw_spinlock_t pvclock_sc;
1424 	bool use_master_clock;
1425 	u64 master_kernel_ns;
1426 	u64 master_cycle_now;
1427 	struct delayed_work kvmclock_update_work;
1428 	struct delayed_work kvmclock_sync_work;
1429 
1430 	/* reads protected by irq_srcu, writes by irq_lock */
1431 	struct hlist_head mask_notifier_list;
1432 
1433 #ifdef CONFIG_KVM_HYPERV
1434 	struct kvm_hv hyperv;
1435 #endif
1436 
1437 #ifdef CONFIG_KVM_XEN
1438 	struct kvm_xen xen;
1439 #endif
1440 
1441 	bool backwards_tsc_observed;
1442 	bool boot_vcpu_runs_old_kvmclock;
1443 	u32 bsp_vcpu_id;
1444 
1445 	u64 disabled_quirks;
1446 
1447 	enum kvm_irqchip_mode irqchip_mode;
1448 	u8 nr_reserved_ioapic_pins;
1449 
1450 	bool disabled_lapic_found;
1451 
1452 	bool x2apic_format;
1453 	bool x2apic_broadcast_quirk_disabled;
1454 
1455 	bool guest_can_read_msr_platform_info;
1456 	bool exception_payload_enabled;
1457 
1458 	bool triple_fault_event;
1459 
1460 	bool bus_lock_detection_enabled;
1461 	bool enable_pmu;
1462 
1463 	u32 notify_window;
1464 	u32 notify_vmexit_flags;
1465 	/*
1466 	 * If exit_on_emulation_error is set, and the in-kernel instruction
1467 	 * emulator fails to emulate an instruction, allow userspace
1468 	 * the opportunity to look at it.
1469 	 */
1470 	bool exit_on_emulation_error;
1471 
1472 	/* Deflect RDMSR and WRMSR to user space when they trigger a #GP */
1473 	u32 user_space_msr_mask;
1474 	struct kvm_x86_msr_filter __rcu *msr_filter;
1475 
1476 	u32 hypercall_exit_enabled;
1477 
1478 	/* Guest can access the SGX PROVISIONKEY. */
1479 	bool sgx_provisioning_allowed;
1480 
1481 	struct kvm_x86_pmu_event_filter __rcu *pmu_event_filter;
1482 	struct vhost_task *nx_huge_page_recovery_thread;
1483 	u64 nx_huge_page_last;
1484 	struct once nx_once;
1485 
1486 #ifdef CONFIG_X86_64
1487 #ifdef CONFIG_KVM_PROVE_MMU
1488 	/*
1489 	 * The number of TDP MMU pages across all roots.  Used only to sanity
1490 	 * check that KVM isn't leaking TDP MMU pages.
1491 	 */
1492 	atomic64_t tdp_mmu_pages;
1493 #endif
1494 
1495 	/*
1496 	 * List of struct kvm_mmu_pages being used as roots.
1497 	 * All struct kvm_mmu_pages in the list should have
1498 	 * tdp_mmu_page set.
1499 	 *
1500 	 * For reads, this list is protected by:
1501 	 *	RCU alone or
1502 	 *	the MMU lock in read mode + RCU or
1503 	 *	the MMU lock in write mode
1504 	 *
1505 	 * For writes, this list is protected by tdp_mmu_pages_lock; see
1506 	 * below for the details.
1507 	 *
1508 	 * Roots will remain in the list until their tdp_mmu_root_count
1509 	 * drops to zero, at which point the thread that decremented the
1510 	 * count to zero should removed the root from the list and clean
1511 	 * it up, freeing the root after an RCU grace period.
1512 	 */
1513 	struct list_head tdp_mmu_roots;
1514 
1515 	/*
1516 	 * Protects accesses to the following fields when the MMU lock
1517 	 * is held in read mode:
1518 	 *  - tdp_mmu_roots (above)
1519 	 *  - the link field of kvm_mmu_page structs used by the TDP MMU
1520 	 *  - possible_nx_huge_pages;
1521 	 *  - the possible_nx_huge_page_link field of kvm_mmu_page structs used
1522 	 *    by the TDP MMU
1523 	 * Because the lock is only taken within the MMU lock, strictly
1524 	 * speaking it is redundant to acquire this lock when the thread
1525 	 * holds the MMU lock in write mode.  However it often simplifies
1526 	 * the code to do so.
1527 	 */
1528 	spinlock_t tdp_mmu_pages_lock;
1529 #endif /* CONFIG_X86_64 */
1530 
1531 	/*
1532 	 * If set, at least one shadow root has been allocated. This flag
1533 	 * is used as one input when determining whether certain memslot
1534 	 * related allocations are necessary.
1535 	 */
1536 	bool shadow_root_allocated;
1537 
1538 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING
1539 	/*
1540 	 * If set, the VM has (or had) an external write tracking user, and
1541 	 * thus all write tracking metadata has been allocated, even if KVM
1542 	 * itself isn't using write tracking.
1543 	 */
1544 	bool external_write_tracking_enabled;
1545 #endif
1546 
1547 #if IS_ENABLED(CONFIG_HYPERV)
1548 	hpa_t	hv_root_tdp;
1549 	spinlock_t hv_root_tdp_lock;
1550 	struct hv_partition_assist_pg *hv_pa_pg;
1551 #endif
1552 	/*
1553 	 * VM-scope maximum vCPU ID. Used to determine the size of structures
1554 	 * that increase along with the maximum vCPU ID, in which case, using
1555 	 * the global KVM_MAX_VCPU_IDS may lead to significant memory waste.
1556 	 */
1557 	u32 max_vcpu_ids;
1558 
1559 	bool disable_nx_huge_pages;
1560 
1561 	/*
1562 	 * Memory caches used to allocate shadow pages when performing eager
1563 	 * page splitting. No need for a shadowed_info_cache since eager page
1564 	 * splitting only allocates direct shadow pages.
1565 	 *
1566 	 * Protected by kvm->slots_lock.
1567 	 */
1568 	struct kvm_mmu_memory_cache split_shadow_page_cache;
1569 	struct kvm_mmu_memory_cache split_page_header_cache;
1570 
1571 	/*
1572 	 * Memory cache used to allocate pte_list_desc structs while splitting
1573 	 * huge pages. In the worst case, to split one huge page, 512
1574 	 * pte_list_desc structs are needed to add each lower level leaf sptep
1575 	 * to the rmap plus 1 to extend the parent_ptes rmap of the lower level
1576 	 * page table.
1577 	 *
1578 	 * Protected by kvm->slots_lock.
1579 	 */
1580 #define SPLIT_DESC_CACHE_MIN_NR_OBJECTS (SPTE_ENT_PER_PAGE + 1)
1581 	struct kvm_mmu_memory_cache split_desc_cache;
1582 
1583 	gfn_t gfn_direct_bits;
1584 
1585 	/*
1586 	 * Size of the CPU's dirty log buffer, i.e. VMX's PML buffer. A Zero
1587 	 * value indicates CPU dirty logging is unsupported or disabled in
1588 	 * current VM.
1589 	 */
1590 	int cpu_dirty_log_size;
1591 };
1592 
1593 struct kvm_vm_stat {
1594 	struct kvm_vm_stat_generic generic;
1595 	u64 mmu_shadow_zapped;
1596 	u64 mmu_pte_write;
1597 	u64 mmu_pde_zapped;
1598 	u64 mmu_flooded;
1599 	u64 mmu_recycled;
1600 	u64 mmu_cache_miss;
1601 	u64 mmu_unsync;
1602 	union {
1603 		struct {
1604 			atomic64_t pages_4k;
1605 			atomic64_t pages_2m;
1606 			atomic64_t pages_1g;
1607 		};
1608 		atomic64_t pages[KVM_NR_PAGE_SIZES];
1609 	};
1610 	u64 nx_lpage_splits;
1611 	u64 max_mmu_page_hash_collisions;
1612 	u64 max_mmu_rmap_size;
1613 };
1614 
1615 struct kvm_vcpu_stat {
1616 	struct kvm_vcpu_stat_generic generic;
1617 	u64 pf_taken;
1618 	u64 pf_fixed;
1619 	u64 pf_emulate;
1620 	u64 pf_spurious;
1621 	u64 pf_fast;
1622 	u64 pf_mmio_spte_created;
1623 	u64 pf_guest;
1624 	u64 tlb_flush;
1625 	u64 invlpg;
1626 
1627 	u64 exits;
1628 	u64 io_exits;
1629 	u64 mmio_exits;
1630 	u64 signal_exits;
1631 	u64 irq_window_exits;
1632 	u64 nmi_window_exits;
1633 	u64 l1d_flush;
1634 	u64 halt_exits;
1635 	u64 request_irq_exits;
1636 	u64 irq_exits;
1637 	u64 host_state_reload;
1638 	u64 fpu_reload;
1639 	u64 insn_emulation;
1640 	u64 insn_emulation_fail;
1641 	u64 hypercalls;
1642 	u64 irq_injections;
1643 	u64 nmi_injections;
1644 	u64 req_event;
1645 	u64 nested_run;
1646 	u64 directed_yield_attempted;
1647 	u64 directed_yield_successful;
1648 	u64 preemption_reported;
1649 	u64 preemption_other;
1650 	u64 guest_mode;
1651 	u64 notify_window_exits;
1652 };
1653 
1654 struct x86_instruction_info;
1655 
1656 struct msr_data {
1657 	bool host_initiated;
1658 	u32 index;
1659 	u64 data;
1660 };
1661 
1662 struct kvm_lapic_irq {
1663 	u32 vector;
1664 	u16 delivery_mode;
1665 	u16 dest_mode;
1666 	bool level;
1667 	u16 trig_mode;
1668 	u32 shorthand;
1669 	u32 dest_id;
1670 	bool msi_redir_hint;
1671 };
1672 
kvm_lapic_irq_dest_mode(bool dest_mode_logical)1673 static inline u16 kvm_lapic_irq_dest_mode(bool dest_mode_logical)
1674 {
1675 	return dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL;
1676 }
1677 
1678 struct kvm_x86_ops {
1679 	const char *name;
1680 
1681 	int (*check_processor_compatibility)(void);
1682 
1683 	int (*enable_virtualization_cpu)(void);
1684 	void (*disable_virtualization_cpu)(void);
1685 	cpu_emergency_virt_cb *emergency_disable_virtualization_cpu;
1686 
1687 	void (*hardware_unsetup)(void);
1688 	bool (*has_emulated_msr)(struct kvm *kvm, u32 index);
1689 	void (*vcpu_after_set_cpuid)(struct kvm_vcpu *vcpu);
1690 
1691 	unsigned int vm_size;
1692 	int (*vm_init)(struct kvm *kvm);
1693 	void (*vm_destroy)(struct kvm *kvm);
1694 	void (*vm_pre_destroy)(struct kvm *kvm);
1695 
1696 	/* Create, but do not attach this VCPU */
1697 	int (*vcpu_precreate)(struct kvm *kvm);
1698 	int (*vcpu_create)(struct kvm_vcpu *vcpu);
1699 	void (*vcpu_free)(struct kvm_vcpu *vcpu);
1700 	void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event);
1701 
1702 	void (*prepare_switch_to_guest)(struct kvm_vcpu *vcpu);
1703 	void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu);
1704 	void (*vcpu_put)(struct kvm_vcpu *vcpu);
1705 
1706 	void (*update_exception_bitmap)(struct kvm_vcpu *vcpu);
1707 	int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1708 	int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1709 	u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg);
1710 	void (*get_segment)(struct kvm_vcpu *vcpu,
1711 			    struct kvm_segment *var, int seg);
1712 	int (*get_cpl)(struct kvm_vcpu *vcpu);
1713 	int (*get_cpl_no_cache)(struct kvm_vcpu *vcpu);
1714 	void (*set_segment)(struct kvm_vcpu *vcpu,
1715 			    struct kvm_segment *var, int seg);
1716 	void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l);
1717 	bool (*is_valid_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
1718 	void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
1719 	void (*post_set_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3);
1720 	bool (*is_valid_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
1721 	void (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
1722 	int (*set_efer)(struct kvm_vcpu *vcpu, u64 efer);
1723 	void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1724 	void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1725 	void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1726 	void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1727 	void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu);
1728 	void (*set_dr6)(struct kvm_vcpu *vcpu, unsigned long value);
1729 	void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value);
1730 	void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg);
1731 	unsigned long (*get_rflags)(struct kvm_vcpu *vcpu);
1732 	void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags);
1733 	bool (*get_if_flag)(struct kvm_vcpu *vcpu);
1734 
1735 	void (*flush_tlb_all)(struct kvm_vcpu *vcpu);
1736 	void (*flush_tlb_current)(struct kvm_vcpu *vcpu);
1737 #if IS_ENABLED(CONFIG_HYPERV)
1738 	int  (*flush_remote_tlbs)(struct kvm *kvm);
1739 	int  (*flush_remote_tlbs_range)(struct kvm *kvm, gfn_t gfn,
1740 					gfn_t nr_pages);
1741 #endif
1742 
1743 	/*
1744 	 * Flush any TLB entries associated with the given GVA.
1745 	 * Does not need to flush GPA->HPA mappings.
1746 	 * Can potentially get non-canonical addresses through INVLPGs, which
1747 	 * the implementation may choose to ignore if appropriate.
1748 	 */
1749 	void (*flush_tlb_gva)(struct kvm_vcpu *vcpu, gva_t addr);
1750 
1751 	/*
1752 	 * Flush any TLB entries created by the guest.  Like tlb_flush_gva(),
1753 	 * does not need to flush GPA->HPA mappings.
1754 	 */
1755 	void (*flush_tlb_guest)(struct kvm_vcpu *vcpu);
1756 
1757 	int (*vcpu_pre_run)(struct kvm_vcpu *vcpu);
1758 	enum exit_fastpath_completion (*vcpu_run)(struct kvm_vcpu *vcpu,
1759 						  bool force_immediate_exit);
1760 	int (*handle_exit)(struct kvm_vcpu *vcpu,
1761 		enum exit_fastpath_completion exit_fastpath);
1762 	int (*skip_emulated_instruction)(struct kvm_vcpu *vcpu);
1763 	void (*update_emulated_instruction)(struct kvm_vcpu *vcpu);
1764 	void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask);
1765 	u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu);
1766 	void (*patch_hypercall)(struct kvm_vcpu *vcpu,
1767 				unsigned char *hypercall_addr);
1768 	void (*inject_irq)(struct kvm_vcpu *vcpu, bool reinjected);
1769 	void (*inject_nmi)(struct kvm_vcpu *vcpu);
1770 	void (*inject_exception)(struct kvm_vcpu *vcpu);
1771 	void (*cancel_injection)(struct kvm_vcpu *vcpu);
1772 	int (*interrupt_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1773 	int (*nmi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1774 	bool (*get_nmi_mask)(struct kvm_vcpu *vcpu);
1775 	void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked);
1776 	/* Whether or not a virtual NMI is pending in hardware. */
1777 	bool (*is_vnmi_pending)(struct kvm_vcpu *vcpu);
1778 	/*
1779 	 * Attempt to pend a virtual NMI in hardware.  Returns %true on success
1780 	 * to allow using static_call_ret0 as the fallback.
1781 	 */
1782 	bool (*set_vnmi_pending)(struct kvm_vcpu *vcpu);
1783 	void (*enable_nmi_window)(struct kvm_vcpu *vcpu);
1784 	void (*enable_irq_window)(struct kvm_vcpu *vcpu);
1785 	void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr);
1786 
1787 	const bool x2apic_icr_is_split;
1788 	const unsigned long required_apicv_inhibits;
1789 	bool allow_apicv_in_x2apic_without_x2apic_virtualization;
1790 	void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu);
1791 	void (*hwapic_isr_update)(struct kvm_vcpu *vcpu, int isr);
1792 	void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap);
1793 	void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu);
1794 	void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu);
1795 	void (*deliver_interrupt)(struct kvm_lapic *apic, int delivery_mode,
1796 				  int trig_mode, int vector);
1797 	int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu);
1798 	int (*set_tss_addr)(struct kvm *kvm, unsigned int addr);
1799 	int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr);
1800 	u8 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio);
1801 
1802 	void (*load_mmu_pgd)(struct kvm_vcpu *vcpu, hpa_t root_hpa,
1803 			     int root_level);
1804 
1805 	/* Update external mapping with page table link. */
1806 	int (*link_external_spt)(struct kvm *kvm, gfn_t gfn, enum pg_level level,
1807 				void *external_spt);
1808 	/* Update the external page table from spte getting set. */
1809 	int (*set_external_spte)(struct kvm *kvm, gfn_t gfn, enum pg_level level,
1810 				 kvm_pfn_t pfn_for_gfn);
1811 
1812 	/* Update external page tables for page table about to be freed. */
1813 	int (*free_external_spt)(struct kvm *kvm, gfn_t gfn, enum pg_level level,
1814 				 void *external_spt);
1815 
1816 	/* Update external page table from spte getting removed, and flush TLB. */
1817 	int (*remove_external_spte)(struct kvm *kvm, gfn_t gfn, enum pg_level level,
1818 				    kvm_pfn_t pfn_for_gfn);
1819 
1820 	bool (*has_wbinvd_exit)(void);
1821 
1822 	u64 (*get_l2_tsc_offset)(struct kvm_vcpu *vcpu);
1823 	u64 (*get_l2_tsc_multiplier)(struct kvm_vcpu *vcpu);
1824 	void (*write_tsc_offset)(struct kvm_vcpu *vcpu);
1825 	void (*write_tsc_multiplier)(struct kvm_vcpu *vcpu);
1826 
1827 	/*
1828 	 * Retrieve somewhat arbitrary exit/entry information.  Intended to
1829 	 * be used only from within tracepoints or error paths.
1830 	 */
1831 	void (*get_exit_info)(struct kvm_vcpu *vcpu, u32 *reason,
1832 			      u64 *info1, u64 *info2,
1833 			      u32 *intr_info, u32 *error_code);
1834 
1835 	void (*get_entry_info)(struct kvm_vcpu *vcpu,
1836 			       u32 *intr_info, u32 *error_code);
1837 
1838 	int (*check_intercept)(struct kvm_vcpu *vcpu,
1839 			       struct x86_instruction_info *info,
1840 			       enum x86_intercept_stage stage,
1841 			       struct x86_exception *exception);
1842 	void (*handle_exit_irqoff)(struct kvm_vcpu *vcpu);
1843 
1844 	void (*update_cpu_dirty_logging)(struct kvm_vcpu *vcpu);
1845 
1846 	const struct kvm_x86_nested_ops *nested_ops;
1847 
1848 	void (*vcpu_blocking)(struct kvm_vcpu *vcpu);
1849 	void (*vcpu_unblocking)(struct kvm_vcpu *vcpu);
1850 
1851 	int (*pi_update_irte)(struct kvm *kvm, unsigned int host_irq,
1852 			      uint32_t guest_irq, bool set);
1853 	void (*pi_start_assignment)(struct kvm *kvm);
1854 	void (*apicv_pre_state_restore)(struct kvm_vcpu *vcpu);
1855 	void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu);
1856 	bool (*dy_apicv_has_pending_interrupt)(struct kvm_vcpu *vcpu);
1857 	bool (*protected_apic_has_interrupt)(struct kvm_vcpu *vcpu);
1858 
1859 	int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
1860 			    bool *expired);
1861 	void (*cancel_hv_timer)(struct kvm_vcpu *vcpu);
1862 
1863 	void (*setup_mce)(struct kvm_vcpu *vcpu);
1864 
1865 #ifdef CONFIG_KVM_SMM
1866 	int (*smi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1867 	int (*enter_smm)(struct kvm_vcpu *vcpu, union kvm_smram *smram);
1868 	int (*leave_smm)(struct kvm_vcpu *vcpu, const union kvm_smram *smram);
1869 	void (*enable_smi_window)(struct kvm_vcpu *vcpu);
1870 #endif
1871 
1872 	int (*dev_get_attr)(u32 group, u64 attr, u64 *val);
1873 	int (*mem_enc_ioctl)(struct kvm *kvm, void __user *argp);
1874 	int (*vcpu_mem_enc_ioctl)(struct kvm_vcpu *vcpu, void __user *argp);
1875 	int (*mem_enc_register_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1876 	int (*mem_enc_unregister_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1877 	int (*vm_copy_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1878 	int (*vm_move_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1879 	void (*guest_memory_reclaimed)(struct kvm *kvm);
1880 
1881 	int (*get_feature_msr)(u32 msr, u64 *data);
1882 
1883 	int (*check_emulate_instruction)(struct kvm_vcpu *vcpu, int emul_type,
1884 					 void *insn, int insn_len);
1885 
1886 	bool (*apic_init_signal_blocked)(struct kvm_vcpu *vcpu);
1887 	int (*enable_l2_tlb_flush)(struct kvm_vcpu *vcpu);
1888 
1889 	void (*migrate_timers)(struct kvm_vcpu *vcpu);
1890 	void (*msr_filter_changed)(struct kvm_vcpu *vcpu);
1891 	int (*complete_emulated_msr)(struct kvm_vcpu *vcpu, int err);
1892 
1893 	void (*vcpu_deliver_sipi_vector)(struct kvm_vcpu *vcpu, u8 vector);
1894 
1895 	/*
1896 	 * Returns vCPU specific APICv inhibit reasons
1897 	 */
1898 	unsigned long (*vcpu_get_apicv_inhibit_reasons)(struct kvm_vcpu *vcpu);
1899 
1900 	gva_t (*get_untagged_addr)(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags);
1901 	void *(*alloc_apic_backing_page)(struct kvm_vcpu *vcpu);
1902 	int (*gmem_prepare)(struct kvm *kvm, kvm_pfn_t pfn, gfn_t gfn, int max_order);
1903 	void (*gmem_invalidate)(kvm_pfn_t start, kvm_pfn_t end);
1904 	int (*private_max_mapping_level)(struct kvm *kvm, kvm_pfn_t pfn);
1905 };
1906 
1907 struct kvm_x86_nested_ops {
1908 	void (*leave_nested)(struct kvm_vcpu *vcpu);
1909 	bool (*is_exception_vmexit)(struct kvm_vcpu *vcpu, u8 vector,
1910 				    u32 error_code);
1911 	int (*check_events)(struct kvm_vcpu *vcpu);
1912 	bool (*has_events)(struct kvm_vcpu *vcpu, bool for_injection);
1913 	void (*triple_fault)(struct kvm_vcpu *vcpu);
1914 	int (*get_state)(struct kvm_vcpu *vcpu,
1915 			 struct kvm_nested_state __user *user_kvm_nested_state,
1916 			 unsigned user_data_size);
1917 	int (*set_state)(struct kvm_vcpu *vcpu,
1918 			 struct kvm_nested_state __user *user_kvm_nested_state,
1919 			 struct kvm_nested_state *kvm_state);
1920 	bool (*get_nested_state_pages)(struct kvm_vcpu *vcpu);
1921 	int (*write_log_dirty)(struct kvm_vcpu *vcpu, gpa_t l2_gpa);
1922 
1923 	int (*enable_evmcs)(struct kvm_vcpu *vcpu,
1924 			    uint16_t *vmcs_version);
1925 	uint16_t (*get_evmcs_version)(struct kvm_vcpu *vcpu);
1926 	void (*hv_inject_synthetic_vmexit_post_tlb_flush)(struct kvm_vcpu *vcpu);
1927 };
1928 
1929 struct kvm_x86_init_ops {
1930 	int (*hardware_setup)(void);
1931 	unsigned int (*handle_intel_pt_intr)(void);
1932 
1933 	struct kvm_x86_ops *runtime_ops;
1934 	struct kvm_pmu_ops *pmu_ops;
1935 };
1936 
1937 struct kvm_arch_async_pf {
1938 	u32 token;
1939 	gfn_t gfn;
1940 	unsigned long cr3;
1941 	bool direct_map;
1942 	u64 error_code;
1943 };
1944 
1945 extern u32 __read_mostly kvm_nr_uret_msrs;
1946 extern bool __read_mostly allow_smaller_maxphyaddr;
1947 extern bool __read_mostly enable_apicv;
1948 extern bool __read_mostly enable_device_posted_irqs;
1949 extern struct kvm_x86_ops kvm_x86_ops;
1950 
1951 #define kvm_x86_call(func) static_call(kvm_x86_##func)
1952 #define kvm_pmu_call(func) static_call(kvm_x86_pmu_##func)
1953 
1954 #define KVM_X86_OP(func) \
1955 	DECLARE_STATIC_CALL(kvm_x86_##func, *(((struct kvm_x86_ops *)0)->func));
1956 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
1957 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
1958 #include <asm/kvm-x86-ops.h>
1959 
1960 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops);
1961 void kvm_x86_vendor_exit(void);
1962 
1963 #define __KVM_HAVE_ARCH_VM_ALLOC
kvm_arch_alloc_vm(void)1964 static inline struct kvm *kvm_arch_alloc_vm(void)
1965 {
1966 	return __vmalloc(kvm_x86_ops.vm_size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1967 }
1968 
1969 #define __KVM_HAVE_ARCH_VM_FREE
1970 void kvm_arch_free_vm(struct kvm *kvm);
1971 
1972 #if IS_ENABLED(CONFIG_HYPERV)
1973 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
kvm_arch_flush_remote_tlbs(struct kvm * kvm)1974 static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
1975 {
1976 	if (kvm_x86_ops.flush_remote_tlbs &&
1977 	    !kvm_x86_call(flush_remote_tlbs)(kvm))
1978 		return 0;
1979 	else
1980 		return -ENOTSUPP;
1981 }
1982 
1983 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
kvm_arch_flush_remote_tlbs_range(struct kvm * kvm,gfn_t gfn,u64 nr_pages)1984 static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn,
1985 						   u64 nr_pages)
1986 {
1987 	if (!kvm_x86_ops.flush_remote_tlbs_range)
1988 		return -EOPNOTSUPP;
1989 
1990 	return kvm_x86_call(flush_remote_tlbs_range)(kvm, gfn, nr_pages);
1991 }
1992 #endif /* CONFIG_HYPERV */
1993 
1994 enum kvm_intr_type {
1995 	/* Values are arbitrary, but must be non-zero. */
1996 	KVM_HANDLING_IRQ = 1,
1997 	KVM_HANDLING_NMI,
1998 };
1999 
2000 /* Enable perf NMI and timer modes to work, and minimise false positives. */
2001 #define kvm_arch_pmi_in_guest(vcpu) \
2002 	((vcpu) && (vcpu)->arch.handling_intr_from_guest && \
2003 	 (!!in_nmi() == ((vcpu)->arch.handling_intr_from_guest == KVM_HANDLING_NMI)))
2004 
2005 void __init kvm_mmu_x86_module_init(void);
2006 int kvm_mmu_vendor_module_init(void);
2007 void kvm_mmu_vendor_module_exit(void);
2008 
2009 void kvm_mmu_destroy(struct kvm_vcpu *vcpu);
2010 int kvm_mmu_create(struct kvm_vcpu *vcpu);
2011 void kvm_mmu_init_vm(struct kvm *kvm);
2012 void kvm_mmu_uninit_vm(struct kvm *kvm);
2013 
2014 void kvm_mmu_init_memslot_memory_attributes(struct kvm *kvm,
2015 					    struct kvm_memory_slot *slot);
2016 
2017 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu);
2018 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu);
2019 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
2020 				      const struct kvm_memory_slot *memslot,
2021 				      int start_level);
2022 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm,
2023 				       const struct kvm_memory_slot *memslot,
2024 				       int target_level);
2025 void kvm_mmu_try_split_huge_pages(struct kvm *kvm,
2026 				  const struct kvm_memory_slot *memslot,
2027 				  u64 start, u64 end,
2028 				  int target_level);
2029 void kvm_mmu_recover_huge_pages(struct kvm *kvm,
2030 				const struct kvm_memory_slot *memslot);
2031 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
2032 				   const struct kvm_memory_slot *memslot);
2033 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen);
2034 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages);
2035 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end);
2036 
2037 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3);
2038 
2039 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
2040 			  const void *val, int bytes);
2041 
2042 struct kvm_irq_mask_notifier {
2043 	void (*func)(struct kvm_irq_mask_notifier *kimn, bool masked);
2044 	int irq;
2045 	struct hlist_node link;
2046 };
2047 
2048 void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq,
2049 				    struct kvm_irq_mask_notifier *kimn);
2050 void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq,
2051 				      struct kvm_irq_mask_notifier *kimn);
2052 void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin,
2053 			     bool mask);
2054 
2055 extern bool tdp_enabled;
2056 
2057 u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu);
2058 
2059 /*
2060  * EMULTYPE_NO_DECODE - Set when re-emulating an instruction (after completing
2061  *			userspace I/O) to indicate that the emulation context
2062  *			should be reused as is, i.e. skip initialization of
2063  *			emulation context, instruction fetch and decode.
2064  *
2065  * EMULTYPE_TRAP_UD - Set when emulating an intercepted #UD from hardware.
2066  *		      Indicates that only select instructions (tagged with
2067  *		      EmulateOnUD) should be emulated (to minimize the emulator
2068  *		      attack surface).  See also EMULTYPE_TRAP_UD_FORCED.
2069  *
2070  * EMULTYPE_SKIP - Set when emulating solely to skip an instruction, i.e. to
2071  *		   decode the instruction length.  For use *only* by
2072  *		   kvm_x86_ops.skip_emulated_instruction() implementations if
2073  *		   EMULTYPE_COMPLETE_USER_EXIT is not set.
2074  *
2075  * EMULTYPE_ALLOW_RETRY_PF - Set when the emulator should resume the guest to
2076  *			     retry native execution under certain conditions,
2077  *			     Can only be set in conjunction with EMULTYPE_PF.
2078  *
2079  * EMULTYPE_TRAP_UD_FORCED - Set when emulating an intercepted #UD that was
2080  *			     triggered by KVM's magic "force emulation" prefix,
2081  *			     which is opt in via module param (off by default).
2082  *			     Bypasses EmulateOnUD restriction despite emulating
2083  *			     due to an intercepted #UD (see EMULTYPE_TRAP_UD).
2084  *			     Used to test the full emulator from userspace.
2085  *
2086  * EMULTYPE_VMWARE_GP - Set when emulating an intercepted #GP for VMware
2087  *			backdoor emulation, which is opt in via module param.
2088  *			VMware backdoor emulation handles select instructions
2089  *			and reinjects the #GP for all other cases.
2090  *
2091  * EMULTYPE_PF - Set when an intercepted #PF triggers the emulation, in which case
2092  *		 the CR2/GPA value pass on the stack is valid.
2093  *
2094  * EMULTYPE_COMPLETE_USER_EXIT - Set when the emulator should update interruptibility
2095  *				 state and inject single-step #DBs after skipping
2096  *				 an instruction (after completing userspace I/O).
2097  *
2098  * EMULTYPE_WRITE_PF_TO_SP - Set when emulating an intercepted page fault that
2099  *			     is attempting to write a gfn that contains one or
2100  *			     more of the PTEs used to translate the write itself,
2101  *			     and the owning page table is being shadowed by KVM.
2102  *			     If emulation of the faulting instruction fails and
2103  *			     this flag is set, KVM will exit to userspace instead
2104  *			     of retrying emulation as KVM cannot make forward
2105  *			     progress.
2106  *
2107  *			     If emulation fails for a write to guest page tables,
2108  *			     KVM unprotects (zaps) the shadow page for the target
2109  *			     gfn and resumes the guest to retry the non-emulatable
2110  *			     instruction (on hardware).  Unprotecting the gfn
2111  *			     doesn't allow forward progress for a self-changing
2112  *			     access because doing so also zaps the translation for
2113  *			     the gfn, i.e. retrying the instruction will hit a
2114  *			     !PRESENT fault, which results in a new shadow page
2115  *			     and sends KVM back to square one.
2116  */
2117 #define EMULTYPE_NO_DECODE	    (1 << 0)
2118 #define EMULTYPE_TRAP_UD	    (1 << 1)
2119 #define EMULTYPE_SKIP		    (1 << 2)
2120 #define EMULTYPE_ALLOW_RETRY_PF	    (1 << 3)
2121 #define EMULTYPE_TRAP_UD_FORCED	    (1 << 4)
2122 #define EMULTYPE_VMWARE_GP	    (1 << 5)
2123 #define EMULTYPE_PF		    (1 << 6)
2124 #define EMULTYPE_COMPLETE_USER_EXIT (1 << 7)
2125 #define EMULTYPE_WRITE_PF_TO_SP	    (1 << 8)
2126 
kvm_can_emulate_event_vectoring(int emul_type)2127 static inline bool kvm_can_emulate_event_vectoring(int emul_type)
2128 {
2129 	return !(emul_type & EMULTYPE_PF);
2130 }
2131 
2132 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type);
2133 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
2134 					void *insn, int insn_len);
2135 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu,
2136 					  u64 *data, u8 ndata);
2137 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu);
2138 
2139 void kvm_prepare_event_vectoring_exit(struct kvm_vcpu *vcpu, gpa_t gpa);
2140 
2141 void kvm_enable_efer_bits(u64);
2142 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer);
2143 int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data);
2144 int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data);
2145 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, bool host_initiated);
2146 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data);
2147 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data);
2148 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu);
2149 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu);
2150 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu);
2151 int kvm_emulate_invd(struct kvm_vcpu *vcpu);
2152 int kvm_emulate_mwait(struct kvm_vcpu *vcpu);
2153 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu);
2154 int kvm_emulate_monitor(struct kvm_vcpu *vcpu);
2155 
2156 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in);
2157 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu);
2158 int kvm_emulate_halt(struct kvm_vcpu *vcpu);
2159 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu);
2160 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu);
2161 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu);
2162 
2163 void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
2164 void kvm_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
2165 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg);
2166 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector);
2167 
2168 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
2169 		    int reason, bool has_error_code, u32 error_code);
2170 
2171 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0);
2172 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4);
2173 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
2174 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
2175 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
2176 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8);
2177 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val);
2178 unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr);
2179 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu);
2180 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw);
2181 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu);
2182 
2183 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
2184 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
2185 
2186 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu);
2187 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
2188 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu);
2189 
2190 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr);
2191 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
2192 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, unsigned long payload);
2193 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned int nr,
2194 			   bool has_error_code, u32 error_code);
2195 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault);
2196 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
2197 				    struct x86_exception *fault);
2198 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl);
2199 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr);
2200 
__kvm_irq_line_state(unsigned long * irq_state,int irq_source_id,int level)2201 static inline int __kvm_irq_line_state(unsigned long *irq_state,
2202 				       int irq_source_id, int level)
2203 {
2204 	/* Logical OR for level trig interrupt */
2205 	if (level)
2206 		__set_bit(irq_source_id, irq_state);
2207 	else
2208 		__clear_bit(irq_source_id, irq_state);
2209 
2210 	return !!(*irq_state);
2211 }
2212 
2213 int kvm_pic_set_irq(struct kvm_pic *pic, int irq, int irq_source_id, int level);
2214 void kvm_pic_clear_all(struct kvm_pic *pic, int irq_source_id);
2215 
2216 void kvm_inject_nmi(struct kvm_vcpu *vcpu);
2217 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu);
2218 
2219 void kvm_update_dr7(struct kvm_vcpu *vcpu);
2220 
2221 bool __kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
2222 				       bool always_retry);
2223 
kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa)2224 static inline bool kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu,
2225 						   gpa_t cr2_or_gpa)
2226 {
2227 	return __kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa, false);
2228 }
2229 
2230 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu,
2231 			ulong roots_to_free);
2232 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu);
2233 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
2234 			      struct x86_exception *exception);
2235 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
2236 			       struct x86_exception *exception);
2237 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
2238 				struct x86_exception *exception);
2239 
2240 bool kvm_apicv_activated(struct kvm *kvm);
2241 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu);
2242 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu);
2243 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
2244 				      enum kvm_apicv_inhibit reason, bool set);
2245 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
2246 				    enum kvm_apicv_inhibit reason, bool set);
2247 
kvm_set_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason)2248 static inline void kvm_set_apicv_inhibit(struct kvm *kvm,
2249 					 enum kvm_apicv_inhibit reason)
2250 {
2251 	kvm_set_or_clear_apicv_inhibit(kvm, reason, true);
2252 }
2253 
kvm_clear_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason)2254 static inline void kvm_clear_apicv_inhibit(struct kvm *kvm,
2255 					   enum kvm_apicv_inhibit reason)
2256 {
2257 	kvm_set_or_clear_apicv_inhibit(kvm, reason, false);
2258 }
2259 
2260 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
2261 		       void *insn, int insn_len);
2262 void kvm_mmu_print_sptes(struct kvm_vcpu *vcpu, gpa_t gpa, const char *msg);
2263 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva);
2264 void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
2265 			     u64 addr, unsigned long roots);
2266 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid);
2267 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd);
2268 
2269 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
2270 		       int tdp_max_root_level, int tdp_huge_page_level);
2271 
2272 
2273 #ifdef CONFIG_KVM_PRIVATE_MEM
2274 #define kvm_arch_has_private_mem(kvm) ((kvm)->arch.has_private_mem)
2275 #else
2276 #define kvm_arch_has_private_mem(kvm) false
2277 #endif
2278 
2279 #define kvm_arch_has_readonly_mem(kvm) (!(kvm)->arch.has_protected_state)
2280 
kvm_read_ldt(void)2281 static inline u16 kvm_read_ldt(void)
2282 {
2283 	u16 ldt;
2284 	asm("sldt %0" : "=g"(ldt));
2285 	return ldt;
2286 }
2287 
kvm_load_ldt(u16 sel)2288 static inline void kvm_load_ldt(u16 sel)
2289 {
2290 	asm("lldt %0" : : "rm"(sel));
2291 }
2292 
2293 #ifdef CONFIG_X86_64
read_msr(unsigned long msr)2294 static inline unsigned long read_msr(unsigned long msr)
2295 {
2296 	u64 value;
2297 
2298 	rdmsrq(msr, value);
2299 	return value;
2300 }
2301 #endif
2302 
kvm_inject_gp(struct kvm_vcpu * vcpu,u32 error_code)2303 static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code)
2304 {
2305 	kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2306 }
2307 
2308 #define TSS_IOPB_BASE_OFFSET 0x66
2309 #define TSS_BASE_SIZE 0x68
2310 #define TSS_IOPB_SIZE (65536 / 8)
2311 #define TSS_REDIRECTION_SIZE (256 / 8)
2312 #define RMODE_TSS_SIZE							\
2313 	(TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1)
2314 
2315 enum {
2316 	TASK_SWITCH_CALL = 0,
2317 	TASK_SWITCH_IRET = 1,
2318 	TASK_SWITCH_JMP = 2,
2319 	TASK_SWITCH_GATE = 3,
2320 };
2321 
2322 #define HF_GUEST_MASK		(1 << 0) /* VCPU is in guest-mode */
2323 
2324 #ifdef CONFIG_KVM_SMM
2325 #define HF_SMM_MASK		(1 << 1)
2326 #define HF_SMM_INSIDE_NMI_MASK	(1 << 2)
2327 
2328 # define KVM_MAX_NR_ADDRESS_SPACES	2
2329 /* SMM is currently unsupported for guests with private memory. */
2330 # define kvm_arch_nr_memslot_as_ids(kvm) (kvm_arch_has_private_mem(kvm) ? 1 : 2)
2331 # define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0)
2332 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm)
2333 #else
2334 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, 0)
2335 #endif
2336 
2337 int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v);
2338 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu);
2339 int kvm_cpu_has_extint(struct kvm_vcpu *v);
2340 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu);
2341 int kvm_cpu_get_extint(struct kvm_vcpu *v);
2342 int kvm_cpu_get_interrupt(struct kvm_vcpu *v);
2343 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event);
2344 
2345 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
2346 		    unsigned long ipi_bitmap_high, u32 min,
2347 		    unsigned long icr, int op_64_bit);
2348 
2349 int kvm_add_user_return_msr(u32 msr);
2350 int kvm_find_user_return_msr(u32 msr);
2351 int kvm_set_user_return_msr(unsigned index, u64 val, u64 mask);
2352 void kvm_user_return_msr_update_cache(unsigned int index, u64 val);
2353 
kvm_is_supported_user_return_msr(u32 msr)2354 static inline bool kvm_is_supported_user_return_msr(u32 msr)
2355 {
2356 	return kvm_find_user_return_msr(msr) >= 0;
2357 }
2358 
2359 u64 kvm_scale_tsc(u64 tsc, u64 ratio);
2360 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc);
2361 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier);
2362 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier);
2363 
2364 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu);
2365 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip);
2366 
2367 void kvm_make_scan_ioapic_request(struct kvm *kvm);
2368 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
2369 				       unsigned long *vcpu_bitmap);
2370 
2371 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
2372 				     struct kvm_async_pf *work);
2373 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
2374 				 struct kvm_async_pf *work);
2375 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
2376 			       struct kvm_async_pf *work);
2377 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu);
2378 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu);
2379 extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
2380 
2381 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu);
2382 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err);
2383 
2384 void __user *__x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
2385 				     u32 size);
2386 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu);
2387 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu);
2388 
2389 bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq,
2390 			     struct kvm_vcpu **dest_vcpu);
2391 
2392 void kvm_set_msi_irq(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
2393 		     struct kvm_lapic_irq *irq);
2394 
kvm_irq_is_postable(struct kvm_lapic_irq * irq)2395 static inline bool kvm_irq_is_postable(struct kvm_lapic_irq *irq)
2396 {
2397 	/* We can only post Fixed and LowPrio IRQs */
2398 	return (irq->delivery_mode == APIC_DM_FIXED ||
2399 		irq->delivery_mode == APIC_DM_LOWEST);
2400 }
2401 
kvm_arch_vcpu_blocking(struct kvm_vcpu * vcpu)2402 static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
2403 {
2404 	kvm_x86_call(vcpu_blocking)(vcpu);
2405 }
2406 
kvm_arch_vcpu_unblocking(struct kvm_vcpu * vcpu)2407 static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
2408 {
2409 	kvm_x86_call(vcpu_unblocking)(vcpu);
2410 }
2411 
kvm_cpu_get_apicid(int mps_cpu)2412 static inline int kvm_cpu_get_apicid(int mps_cpu)
2413 {
2414 #ifdef CONFIG_X86_LOCAL_APIC
2415 	return default_cpu_present_to_apicid(mps_cpu);
2416 #else
2417 	WARN_ON_ONCE(1);
2418 	return BAD_APICID;
2419 #endif
2420 }
2421 
2422 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages);
2423 
2424 #define KVM_CLOCK_VALID_FLAGS						\
2425 	(KVM_CLOCK_TSC_STABLE | KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC)
2426 
2427 #define KVM_X86_VALID_QUIRKS			\
2428 	(KVM_X86_QUIRK_LINT0_REENABLED |	\
2429 	 KVM_X86_QUIRK_CD_NW_CLEARED |		\
2430 	 KVM_X86_QUIRK_LAPIC_MMIO_HOLE |	\
2431 	 KVM_X86_QUIRK_OUT_7E_INC_RIP |		\
2432 	 KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT |	\
2433 	 KVM_X86_QUIRK_FIX_HYPERCALL_INSN |	\
2434 	 KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS |	\
2435 	 KVM_X86_QUIRK_SLOT_ZAP_ALL |		\
2436 	 KVM_X86_QUIRK_STUFF_FEATURE_MSRS |	\
2437 	 KVM_X86_QUIRK_IGNORE_GUEST_PAT)
2438 
2439 #define KVM_X86_CONDITIONAL_QUIRKS		\
2440 	(KVM_X86_QUIRK_CD_NW_CLEARED |		\
2441 	 KVM_X86_QUIRK_IGNORE_GUEST_PAT)
2442 
2443 /*
2444  * KVM previously used a u32 field in kvm_run to indicate the hypercall was
2445  * initiated from long mode. KVM now sets bit 0 to indicate long mode, but the
2446  * remaining 31 lower bits must be 0 to preserve ABI.
2447  */
2448 #define KVM_EXIT_HYPERCALL_MBZ		GENMASK_ULL(31, 1)
2449 
kvm_arch_has_irq_bypass(void)2450 static inline bool kvm_arch_has_irq_bypass(void)
2451 {
2452 	return enable_device_posted_irqs;
2453 }
2454 
2455 #endif /* _ASM_X86_KVM_HOST_H */
2456