1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/sched/core.c
4 *
5 * Core kernel CPU scheduler code
6 *
7 * Copyright (C) 1991-2002 Linus Torvalds
8 * Copyright (C) 1998-2024 Ingo Molnar, Red Hat
9 */
10 #include <linux/highmem.h>
11 #include <linux/hrtimer_api.h>
12 #include <linux/ktime_api.h>
13 #include <linux/sched/signal.h>
14 #include <linux/syscalls_api.h>
15 #include <linux/debug_locks.h>
16 #include <linux/prefetch.h>
17 #include <linux/capability.h>
18 #include <linux/pgtable_api.h>
19 #include <linux/wait_bit.h>
20 #include <linux/jiffies.h>
21 #include <linux/spinlock_api.h>
22 #include <linux/cpumask_api.h>
23 #include <linux/lockdep_api.h>
24 #include <linux/hardirq.h>
25 #include <linux/softirq.h>
26 #include <linux/refcount_api.h>
27 #include <linux/topology.h>
28 #include <linux/sched/clock.h>
29 #include <linux/sched/cond_resched.h>
30 #include <linux/sched/cputime.h>
31 #include <linux/sched/debug.h>
32 #include <linux/sched/hotplug.h>
33 #include <linux/sched/init.h>
34 #include <linux/sched/isolation.h>
35 #include <linux/sched/loadavg.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/nohz.h>
38 #include <linux/sched/rseq_api.h>
39 #include <linux/sched/rt.h>
40
41 #include <linux/blkdev.h>
42 #include <linux/context_tracking.h>
43 #include <linux/cpuset.h>
44 #include <linux/delayacct.h>
45 #include <linux/init_task.h>
46 #include <linux/interrupt.h>
47 #include <linux/ioprio.h>
48 #include <linux/kallsyms.h>
49 #include <linux/kcov.h>
50 #include <linux/kprobes.h>
51 #include <linux/llist_api.h>
52 #include <linux/mmu_context.h>
53 #include <linux/mmzone.h>
54 #include <linux/mutex_api.h>
55 #include <linux/nmi.h>
56 #include <linux/nospec.h>
57 #include <linux/perf_event_api.h>
58 #include <linux/profile.h>
59 #include <linux/psi.h>
60 #include <linux/rcuwait_api.h>
61 #include <linux/rseq.h>
62 #include <linux/sched/wake_q.h>
63 #include <linux/scs.h>
64 #include <linux/slab.h>
65 #include <linux/syscalls.h>
66 #include <linux/vtime.h>
67 #include <linux/wait_api.h>
68 #include <linux/workqueue_api.h>
69
70 #ifdef CONFIG_PREEMPT_DYNAMIC
71 # ifdef CONFIG_GENERIC_ENTRY
72 # include <linux/entry-common.h>
73 # endif
74 #endif
75
76 #include <uapi/linux/sched/types.h>
77
78 #include <asm/irq_regs.h>
79 #include <asm/switch_to.h>
80 #include <asm/tlb.h>
81
82 #define CREATE_TRACE_POINTS
83 #include <linux/sched/rseq_api.h>
84 #include <trace/events/sched.h>
85 #include <trace/events/ipi.h>
86 #undef CREATE_TRACE_POINTS
87
88 #include "sched.h"
89 #include "stats.h"
90
91 #include "autogroup.h"
92 #include "pelt.h"
93 #include "smp.h"
94 #include "stats.h"
95
96 #include "../workqueue_internal.h"
97 #include "../../io_uring/io-wq.h"
98 #include "../smpboot.h"
99
100 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu);
101 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask);
102
103 /*
104 * Export tracepoints that act as a bare tracehook (ie: have no trace event
105 * associated with them) to allow external modules to probe them.
106 */
107 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
108 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
109 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
110 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
111 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
112 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_hw_tp);
113 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
114 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
115 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
116 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
117 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
118 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_compute_energy_tp);
119
120 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
121
122 #ifdef CONFIG_SCHED_DEBUG
123 /*
124 * Debugging: various feature bits
125 *
126 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
127 * sysctl_sched_features, defined in sched.h, to allow constants propagation
128 * at compile time and compiler optimization based on features default.
129 */
130 #define SCHED_FEAT(name, enabled) \
131 (1UL << __SCHED_FEAT_##name) * enabled |
132 const_debug unsigned int sysctl_sched_features =
133 #include "features.h"
134 0;
135 #undef SCHED_FEAT
136
137 /*
138 * Print a warning if need_resched is set for the given duration (if
139 * LATENCY_WARN is enabled).
140 *
141 * If sysctl_resched_latency_warn_once is set, only one warning will be shown
142 * per boot.
143 */
144 __read_mostly int sysctl_resched_latency_warn_ms = 100;
145 __read_mostly int sysctl_resched_latency_warn_once = 1;
146 #endif /* CONFIG_SCHED_DEBUG */
147
148 /*
149 * Number of tasks to iterate in a single balance run.
150 * Limited because this is done with IRQs disabled.
151 */
152 const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK;
153
154 __read_mostly int scheduler_running;
155
156 #ifdef CONFIG_SCHED_CORE
157
158 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
159
160 /* kernel prio, less is more */
__task_prio(const struct task_struct * p)161 static inline int __task_prio(const struct task_struct *p)
162 {
163 if (p->sched_class == &stop_sched_class) /* trumps deadline */
164 return -2;
165
166 if (p->dl_server)
167 return -1; /* deadline */
168
169 if (rt_or_dl_prio(p->prio))
170 return p->prio; /* [-1, 99] */
171
172 if (p->sched_class == &idle_sched_class)
173 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
174
175 if (task_on_scx(p))
176 return MAX_RT_PRIO + MAX_NICE + 1; /* 120, squash ext */
177
178 return MAX_RT_PRIO + MAX_NICE; /* 119, squash fair */
179 }
180
181 /*
182 * l(a,b)
183 * le(a,b) := !l(b,a)
184 * g(a,b) := l(b,a)
185 * ge(a,b) := !l(a,b)
186 */
187
188 /* real prio, less is less */
prio_less(const struct task_struct * a,const struct task_struct * b,bool in_fi)189 static inline bool prio_less(const struct task_struct *a,
190 const struct task_struct *b, bool in_fi)
191 {
192
193 int pa = __task_prio(a), pb = __task_prio(b);
194
195 if (-pa < -pb)
196 return true;
197
198 if (-pb < -pa)
199 return false;
200
201 if (pa == -1) { /* dl_prio() doesn't work because of stop_class above */
202 const struct sched_dl_entity *a_dl, *b_dl;
203
204 a_dl = &a->dl;
205 /*
206 * Since,'a' and 'b' can be CFS tasks served by DL server,
207 * __task_prio() can return -1 (for DL) even for those. In that
208 * case, get to the dl_server's DL entity.
209 */
210 if (a->dl_server)
211 a_dl = a->dl_server;
212
213 b_dl = &b->dl;
214 if (b->dl_server)
215 b_dl = b->dl_server;
216
217 return !dl_time_before(a_dl->deadline, b_dl->deadline);
218 }
219
220 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */
221 return cfs_prio_less(a, b, in_fi);
222
223 #ifdef CONFIG_SCHED_CLASS_EXT
224 if (pa == MAX_RT_PRIO + MAX_NICE + 1) /* ext */
225 return scx_prio_less(a, b, in_fi);
226 #endif
227
228 return false;
229 }
230
__sched_core_less(const struct task_struct * a,const struct task_struct * b)231 static inline bool __sched_core_less(const struct task_struct *a,
232 const struct task_struct *b)
233 {
234 if (a->core_cookie < b->core_cookie)
235 return true;
236
237 if (a->core_cookie > b->core_cookie)
238 return false;
239
240 /* flip prio, so high prio is leftmost */
241 if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
242 return true;
243
244 return false;
245 }
246
247 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
248
rb_sched_core_less(struct rb_node * a,const struct rb_node * b)249 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
250 {
251 return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
252 }
253
rb_sched_core_cmp(const void * key,const struct rb_node * node)254 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
255 {
256 const struct task_struct *p = __node_2_sc(node);
257 unsigned long cookie = (unsigned long)key;
258
259 if (cookie < p->core_cookie)
260 return -1;
261
262 if (cookie > p->core_cookie)
263 return 1;
264
265 return 0;
266 }
267
sched_core_enqueue(struct rq * rq,struct task_struct * p)268 void sched_core_enqueue(struct rq *rq, struct task_struct *p)
269 {
270 if (p->se.sched_delayed)
271 return;
272
273 rq->core->core_task_seq++;
274
275 if (!p->core_cookie)
276 return;
277
278 rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
279 }
280
sched_core_dequeue(struct rq * rq,struct task_struct * p,int flags)281 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
282 {
283 if (p->se.sched_delayed)
284 return;
285
286 rq->core->core_task_seq++;
287
288 if (sched_core_enqueued(p)) {
289 rb_erase(&p->core_node, &rq->core_tree);
290 RB_CLEAR_NODE(&p->core_node);
291 }
292
293 /*
294 * Migrating the last task off the cpu, with the cpu in forced idle
295 * state. Reschedule to create an accounting edge for forced idle,
296 * and re-examine whether the core is still in forced idle state.
297 */
298 if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
299 rq->core->core_forceidle_count && rq->curr == rq->idle)
300 resched_curr(rq);
301 }
302
sched_task_is_throttled(struct task_struct * p,int cpu)303 static int sched_task_is_throttled(struct task_struct *p, int cpu)
304 {
305 if (p->sched_class->task_is_throttled)
306 return p->sched_class->task_is_throttled(p, cpu);
307
308 return 0;
309 }
310
sched_core_next(struct task_struct * p,unsigned long cookie)311 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
312 {
313 struct rb_node *node = &p->core_node;
314 int cpu = task_cpu(p);
315
316 do {
317 node = rb_next(node);
318 if (!node)
319 return NULL;
320
321 p = __node_2_sc(node);
322 if (p->core_cookie != cookie)
323 return NULL;
324
325 } while (sched_task_is_throttled(p, cpu));
326
327 return p;
328 }
329
330 /*
331 * Find left-most (aka, highest priority) and unthrottled task matching @cookie.
332 * If no suitable task is found, NULL will be returned.
333 */
sched_core_find(struct rq * rq,unsigned long cookie)334 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
335 {
336 struct task_struct *p;
337 struct rb_node *node;
338
339 node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
340 if (!node)
341 return NULL;
342
343 p = __node_2_sc(node);
344 if (!sched_task_is_throttled(p, rq->cpu))
345 return p;
346
347 return sched_core_next(p, cookie);
348 }
349
350 /*
351 * Magic required such that:
352 *
353 * raw_spin_rq_lock(rq);
354 * ...
355 * raw_spin_rq_unlock(rq);
356 *
357 * ends up locking and unlocking the _same_ lock, and all CPUs
358 * always agree on what rq has what lock.
359 *
360 * XXX entirely possible to selectively enable cores, don't bother for now.
361 */
362
363 static DEFINE_MUTEX(sched_core_mutex);
364 static atomic_t sched_core_count;
365 static struct cpumask sched_core_mask;
366
sched_core_lock(int cpu,unsigned long * flags)367 static void sched_core_lock(int cpu, unsigned long *flags)
368 {
369 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
370 int t, i = 0;
371
372 local_irq_save(*flags);
373 for_each_cpu(t, smt_mask)
374 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
375 }
376
sched_core_unlock(int cpu,unsigned long * flags)377 static void sched_core_unlock(int cpu, unsigned long *flags)
378 {
379 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
380 int t;
381
382 for_each_cpu(t, smt_mask)
383 raw_spin_unlock(&cpu_rq(t)->__lock);
384 local_irq_restore(*flags);
385 }
386
__sched_core_flip(bool enabled)387 static void __sched_core_flip(bool enabled)
388 {
389 unsigned long flags;
390 int cpu, t;
391
392 cpus_read_lock();
393
394 /*
395 * Toggle the online cores, one by one.
396 */
397 cpumask_copy(&sched_core_mask, cpu_online_mask);
398 for_each_cpu(cpu, &sched_core_mask) {
399 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
400
401 sched_core_lock(cpu, &flags);
402
403 for_each_cpu(t, smt_mask)
404 cpu_rq(t)->core_enabled = enabled;
405
406 cpu_rq(cpu)->core->core_forceidle_start = 0;
407
408 sched_core_unlock(cpu, &flags);
409
410 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
411 }
412
413 /*
414 * Toggle the offline CPUs.
415 */
416 for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask)
417 cpu_rq(cpu)->core_enabled = enabled;
418
419 cpus_read_unlock();
420 }
421
sched_core_assert_empty(void)422 static void sched_core_assert_empty(void)
423 {
424 int cpu;
425
426 for_each_possible_cpu(cpu)
427 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
428 }
429
__sched_core_enable(void)430 static void __sched_core_enable(void)
431 {
432 static_branch_enable(&__sched_core_enabled);
433 /*
434 * Ensure all previous instances of raw_spin_rq_*lock() have finished
435 * and future ones will observe !sched_core_disabled().
436 */
437 synchronize_rcu();
438 __sched_core_flip(true);
439 sched_core_assert_empty();
440 }
441
__sched_core_disable(void)442 static void __sched_core_disable(void)
443 {
444 sched_core_assert_empty();
445 __sched_core_flip(false);
446 static_branch_disable(&__sched_core_enabled);
447 }
448
sched_core_get(void)449 void sched_core_get(void)
450 {
451 if (atomic_inc_not_zero(&sched_core_count))
452 return;
453
454 mutex_lock(&sched_core_mutex);
455 if (!atomic_read(&sched_core_count))
456 __sched_core_enable();
457
458 smp_mb__before_atomic();
459 atomic_inc(&sched_core_count);
460 mutex_unlock(&sched_core_mutex);
461 }
462
__sched_core_put(struct work_struct * work)463 static void __sched_core_put(struct work_struct *work)
464 {
465 if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
466 __sched_core_disable();
467 mutex_unlock(&sched_core_mutex);
468 }
469 }
470
sched_core_put(void)471 void sched_core_put(void)
472 {
473 static DECLARE_WORK(_work, __sched_core_put);
474
475 /*
476 * "There can be only one"
477 *
478 * Either this is the last one, or we don't actually need to do any
479 * 'work'. If it is the last *again*, we rely on
480 * WORK_STRUCT_PENDING_BIT.
481 */
482 if (!atomic_add_unless(&sched_core_count, -1, 1))
483 schedule_work(&_work);
484 }
485
486 #else /* !CONFIG_SCHED_CORE */
487
sched_core_enqueue(struct rq * rq,struct task_struct * p)488 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
489 static inline void
sched_core_dequeue(struct rq * rq,struct task_struct * p,int flags)490 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
491
492 #endif /* CONFIG_SCHED_CORE */
493
494 /*
495 * Serialization rules:
496 *
497 * Lock order:
498 *
499 * p->pi_lock
500 * rq->lock
501 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
502 *
503 * rq1->lock
504 * rq2->lock where: rq1 < rq2
505 *
506 * Regular state:
507 *
508 * Normal scheduling state is serialized by rq->lock. __schedule() takes the
509 * local CPU's rq->lock, it optionally removes the task from the runqueue and
510 * always looks at the local rq data structures to find the most eligible task
511 * to run next.
512 *
513 * Task enqueue is also under rq->lock, possibly taken from another CPU.
514 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
515 * the local CPU to avoid bouncing the runqueue state around [ see
516 * ttwu_queue_wakelist() ]
517 *
518 * Task wakeup, specifically wakeups that involve migration, are horribly
519 * complicated to avoid having to take two rq->locks.
520 *
521 * Special state:
522 *
523 * System-calls and anything external will use task_rq_lock() which acquires
524 * both p->pi_lock and rq->lock. As a consequence the state they change is
525 * stable while holding either lock:
526 *
527 * - sched_setaffinity()/
528 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed
529 * - set_user_nice(): p->se.load, p->*prio
530 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio,
531 * p->se.load, p->rt_priority,
532 * p->dl.dl_{runtime, deadline, period, flags, bw, density}
533 * - sched_setnuma(): p->numa_preferred_nid
534 * - sched_move_task(): p->sched_task_group
535 * - uclamp_update_active() p->uclamp*
536 *
537 * p->state <- TASK_*:
538 *
539 * is changed locklessly using set_current_state(), __set_current_state() or
540 * set_special_state(), see their respective comments, or by
541 * try_to_wake_up(). This latter uses p->pi_lock to serialize against
542 * concurrent self.
543 *
544 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
545 *
546 * is set by activate_task() and cleared by deactivate_task(), under
547 * rq->lock. Non-zero indicates the task is runnable, the special
548 * ON_RQ_MIGRATING state is used for migration without holding both
549 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
550 *
551 * Additionally it is possible to be ->on_rq but still be considered not
552 * runnable when p->se.sched_delayed is true. These tasks are on the runqueue
553 * but will be dequeued as soon as they get picked again. See the
554 * task_is_runnable() helper.
555 *
556 * p->on_cpu <- { 0, 1 }:
557 *
558 * is set by prepare_task() and cleared by finish_task() such that it will be
559 * set before p is scheduled-in and cleared after p is scheduled-out, both
560 * under rq->lock. Non-zero indicates the task is running on its CPU.
561 *
562 * [ The astute reader will observe that it is possible for two tasks on one
563 * CPU to have ->on_cpu = 1 at the same time. ]
564 *
565 * task_cpu(p): is changed by set_task_cpu(), the rules are:
566 *
567 * - Don't call set_task_cpu() on a blocked task:
568 *
569 * We don't care what CPU we're not running on, this simplifies hotplug,
570 * the CPU assignment of blocked tasks isn't required to be valid.
571 *
572 * - for try_to_wake_up(), called under p->pi_lock:
573 *
574 * This allows try_to_wake_up() to only take one rq->lock, see its comment.
575 *
576 * - for migration called under rq->lock:
577 * [ see task_on_rq_migrating() in task_rq_lock() ]
578 *
579 * o move_queued_task()
580 * o detach_task()
581 *
582 * - for migration called under double_rq_lock():
583 *
584 * o __migrate_swap_task()
585 * o push_rt_task() / pull_rt_task()
586 * o push_dl_task() / pull_dl_task()
587 * o dl_task_offline_migration()
588 *
589 */
590
raw_spin_rq_lock_nested(struct rq * rq,int subclass)591 void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
592 {
593 raw_spinlock_t *lock;
594
595 /* Matches synchronize_rcu() in __sched_core_enable() */
596 preempt_disable();
597 if (sched_core_disabled()) {
598 raw_spin_lock_nested(&rq->__lock, subclass);
599 /* preempt_count *MUST* be > 1 */
600 preempt_enable_no_resched();
601 return;
602 }
603
604 for (;;) {
605 lock = __rq_lockp(rq);
606 raw_spin_lock_nested(lock, subclass);
607 if (likely(lock == __rq_lockp(rq))) {
608 /* preempt_count *MUST* be > 1 */
609 preempt_enable_no_resched();
610 return;
611 }
612 raw_spin_unlock(lock);
613 }
614 }
615
raw_spin_rq_trylock(struct rq * rq)616 bool raw_spin_rq_trylock(struct rq *rq)
617 {
618 raw_spinlock_t *lock;
619 bool ret;
620
621 /* Matches synchronize_rcu() in __sched_core_enable() */
622 preempt_disable();
623 if (sched_core_disabled()) {
624 ret = raw_spin_trylock(&rq->__lock);
625 preempt_enable();
626 return ret;
627 }
628
629 for (;;) {
630 lock = __rq_lockp(rq);
631 ret = raw_spin_trylock(lock);
632 if (!ret || (likely(lock == __rq_lockp(rq)))) {
633 preempt_enable();
634 return ret;
635 }
636 raw_spin_unlock(lock);
637 }
638 }
639
raw_spin_rq_unlock(struct rq * rq)640 void raw_spin_rq_unlock(struct rq *rq)
641 {
642 raw_spin_unlock(rq_lockp(rq));
643 }
644
645 #ifdef CONFIG_SMP
646 /*
647 * double_rq_lock - safely lock two runqueues
648 */
double_rq_lock(struct rq * rq1,struct rq * rq2)649 void double_rq_lock(struct rq *rq1, struct rq *rq2)
650 {
651 lockdep_assert_irqs_disabled();
652
653 if (rq_order_less(rq2, rq1))
654 swap(rq1, rq2);
655
656 raw_spin_rq_lock(rq1);
657 if (__rq_lockp(rq1) != __rq_lockp(rq2))
658 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
659
660 double_rq_clock_clear_update(rq1, rq2);
661 }
662 #endif
663
664 /*
665 * __task_rq_lock - lock the rq @p resides on.
666 */
__task_rq_lock(struct task_struct * p,struct rq_flags * rf)667 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
668 __acquires(rq->lock)
669 {
670 struct rq *rq;
671
672 lockdep_assert_held(&p->pi_lock);
673
674 for (;;) {
675 rq = task_rq(p);
676 raw_spin_rq_lock(rq);
677 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
678 rq_pin_lock(rq, rf);
679 return rq;
680 }
681 raw_spin_rq_unlock(rq);
682
683 while (unlikely(task_on_rq_migrating(p)))
684 cpu_relax();
685 }
686 }
687
688 /*
689 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
690 */
task_rq_lock(struct task_struct * p,struct rq_flags * rf)691 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
692 __acquires(p->pi_lock)
693 __acquires(rq->lock)
694 {
695 struct rq *rq;
696
697 for (;;) {
698 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
699 rq = task_rq(p);
700 raw_spin_rq_lock(rq);
701 /*
702 * move_queued_task() task_rq_lock()
703 *
704 * ACQUIRE (rq->lock)
705 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
706 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
707 * [S] ->cpu = new_cpu [L] task_rq()
708 * [L] ->on_rq
709 * RELEASE (rq->lock)
710 *
711 * If we observe the old CPU in task_rq_lock(), the acquire of
712 * the old rq->lock will fully serialize against the stores.
713 *
714 * If we observe the new CPU in task_rq_lock(), the address
715 * dependency headed by '[L] rq = task_rq()' and the acquire
716 * will pair with the WMB to ensure we then also see migrating.
717 */
718 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
719 rq_pin_lock(rq, rf);
720 return rq;
721 }
722 raw_spin_rq_unlock(rq);
723 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
724
725 while (unlikely(task_on_rq_migrating(p)))
726 cpu_relax();
727 }
728 }
729
730 /*
731 * RQ-clock updating methods:
732 */
733
update_rq_clock_task(struct rq * rq,s64 delta)734 static void update_rq_clock_task(struct rq *rq, s64 delta)
735 {
736 /*
737 * In theory, the compile should just see 0 here, and optimize out the call
738 * to sched_rt_avg_update. But I don't trust it...
739 */
740 s64 __maybe_unused steal = 0, irq_delta = 0;
741
742 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
743 if (irqtime_enabled()) {
744 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
745
746 /*
747 * Since irq_time is only updated on {soft,}irq_exit, we might run into
748 * this case when a previous update_rq_clock() happened inside a
749 * {soft,}IRQ region.
750 *
751 * When this happens, we stop ->clock_task and only update the
752 * prev_irq_time stamp to account for the part that fit, so that a next
753 * update will consume the rest. This ensures ->clock_task is
754 * monotonic.
755 *
756 * It does however cause some slight miss-attribution of {soft,}IRQ
757 * time, a more accurate solution would be to update the irq_time using
758 * the current rq->clock timestamp, except that would require using
759 * atomic ops.
760 */
761 if (irq_delta > delta)
762 irq_delta = delta;
763
764 rq->prev_irq_time += irq_delta;
765 delta -= irq_delta;
766 delayacct_irq(rq->curr, irq_delta);
767 }
768 #endif
769 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
770 if (static_key_false((¶virt_steal_rq_enabled))) {
771 u64 prev_steal;
772
773 steal = prev_steal = paravirt_steal_clock(cpu_of(rq));
774 steal -= rq->prev_steal_time_rq;
775
776 if (unlikely(steal > delta))
777 steal = delta;
778
779 rq->prev_steal_time_rq = prev_steal;
780 delta -= steal;
781 }
782 #endif
783
784 rq->clock_task += delta;
785
786 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
787 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
788 update_irq_load_avg(rq, irq_delta + steal);
789 #endif
790 update_rq_clock_pelt(rq, delta);
791 }
792
update_rq_clock(struct rq * rq)793 void update_rq_clock(struct rq *rq)
794 {
795 s64 delta;
796 u64 clock;
797
798 lockdep_assert_rq_held(rq);
799
800 if (rq->clock_update_flags & RQCF_ACT_SKIP)
801 return;
802
803 #ifdef CONFIG_SCHED_DEBUG
804 if (sched_feat(WARN_DOUBLE_CLOCK))
805 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
806 rq->clock_update_flags |= RQCF_UPDATED;
807 #endif
808 clock = sched_clock_cpu(cpu_of(rq));
809 scx_rq_clock_update(rq, clock);
810
811 delta = clock - rq->clock;
812 if (delta < 0)
813 return;
814 rq->clock += delta;
815
816 update_rq_clock_task(rq, delta);
817 }
818
819 #ifdef CONFIG_SCHED_HRTICK
820 /*
821 * Use HR-timers to deliver accurate preemption points.
822 */
823
hrtick_clear(struct rq * rq)824 static void hrtick_clear(struct rq *rq)
825 {
826 if (hrtimer_active(&rq->hrtick_timer))
827 hrtimer_cancel(&rq->hrtick_timer);
828 }
829
830 /*
831 * High-resolution timer tick.
832 * Runs from hardirq context with interrupts disabled.
833 */
hrtick(struct hrtimer * timer)834 static enum hrtimer_restart hrtick(struct hrtimer *timer)
835 {
836 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
837 struct rq_flags rf;
838
839 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
840
841 rq_lock(rq, &rf);
842 update_rq_clock(rq);
843 rq->donor->sched_class->task_tick(rq, rq->curr, 1);
844 rq_unlock(rq, &rf);
845
846 return HRTIMER_NORESTART;
847 }
848
849 #ifdef CONFIG_SMP
850
__hrtick_restart(struct rq * rq)851 static void __hrtick_restart(struct rq *rq)
852 {
853 struct hrtimer *timer = &rq->hrtick_timer;
854 ktime_t time = rq->hrtick_time;
855
856 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
857 }
858
859 /*
860 * called from hardirq (IPI) context
861 */
__hrtick_start(void * arg)862 static void __hrtick_start(void *arg)
863 {
864 struct rq *rq = arg;
865 struct rq_flags rf;
866
867 rq_lock(rq, &rf);
868 __hrtick_restart(rq);
869 rq_unlock(rq, &rf);
870 }
871
872 /*
873 * Called to set the hrtick timer state.
874 *
875 * called with rq->lock held and IRQs disabled
876 */
hrtick_start(struct rq * rq,u64 delay)877 void hrtick_start(struct rq *rq, u64 delay)
878 {
879 struct hrtimer *timer = &rq->hrtick_timer;
880 s64 delta;
881
882 /*
883 * Don't schedule slices shorter than 10000ns, that just
884 * doesn't make sense and can cause timer DoS.
885 */
886 delta = max_t(s64, delay, 10000LL);
887 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
888
889 if (rq == this_rq())
890 __hrtick_restart(rq);
891 else
892 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
893 }
894
895 #else
896 /*
897 * Called to set the hrtick timer state.
898 *
899 * called with rq->lock held and IRQs disabled
900 */
hrtick_start(struct rq * rq,u64 delay)901 void hrtick_start(struct rq *rq, u64 delay)
902 {
903 /*
904 * Don't schedule slices shorter than 10000ns, that just
905 * doesn't make sense. Rely on vruntime for fairness.
906 */
907 delay = max_t(u64, delay, 10000LL);
908 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
909 HRTIMER_MODE_REL_PINNED_HARD);
910 }
911
912 #endif /* CONFIG_SMP */
913
hrtick_rq_init(struct rq * rq)914 static void hrtick_rq_init(struct rq *rq)
915 {
916 #ifdef CONFIG_SMP
917 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
918 #endif
919 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
920 rq->hrtick_timer.function = hrtick;
921 }
922 #else /* CONFIG_SCHED_HRTICK */
hrtick_clear(struct rq * rq)923 static inline void hrtick_clear(struct rq *rq)
924 {
925 }
926
hrtick_rq_init(struct rq * rq)927 static inline void hrtick_rq_init(struct rq *rq)
928 {
929 }
930 #endif /* CONFIG_SCHED_HRTICK */
931
932 /*
933 * try_cmpxchg based fetch_or() macro so it works for different integer types:
934 */
935 #define fetch_or(ptr, mask) \
936 ({ \
937 typeof(ptr) _ptr = (ptr); \
938 typeof(mask) _mask = (mask); \
939 typeof(*_ptr) _val = *_ptr; \
940 \
941 do { \
942 } while (!try_cmpxchg(_ptr, &_val, _val | _mask)); \
943 _val; \
944 })
945
946 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
947 /*
948 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
949 * this avoids any races wrt polling state changes and thereby avoids
950 * spurious IPIs.
951 */
set_nr_and_not_polling(struct thread_info * ti,int tif)952 static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif)
953 {
954 return !(fetch_or(&ti->flags, 1 << tif) & _TIF_POLLING_NRFLAG);
955 }
956
957 /*
958 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
959 *
960 * If this returns true, then the idle task promises to call
961 * sched_ttwu_pending() and reschedule soon.
962 */
set_nr_if_polling(struct task_struct * p)963 static bool set_nr_if_polling(struct task_struct *p)
964 {
965 struct thread_info *ti = task_thread_info(p);
966 typeof(ti->flags) val = READ_ONCE(ti->flags);
967
968 do {
969 if (!(val & _TIF_POLLING_NRFLAG))
970 return false;
971 if (val & _TIF_NEED_RESCHED)
972 return true;
973 } while (!try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED));
974
975 return true;
976 }
977
978 #else
set_nr_and_not_polling(struct thread_info * ti,int tif)979 static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif)
980 {
981 set_ti_thread_flag(ti, tif);
982 return true;
983 }
984
985 #ifdef CONFIG_SMP
set_nr_if_polling(struct task_struct * p)986 static inline bool set_nr_if_polling(struct task_struct *p)
987 {
988 return false;
989 }
990 #endif
991 #endif
992
__wake_q_add(struct wake_q_head * head,struct task_struct * task)993 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
994 {
995 struct wake_q_node *node = &task->wake_q;
996
997 /*
998 * Atomically grab the task, if ->wake_q is !nil already it means
999 * it's already queued (either by us or someone else) and will get the
1000 * wakeup due to that.
1001 *
1002 * In order to ensure that a pending wakeup will observe our pending
1003 * state, even in the failed case, an explicit smp_mb() must be used.
1004 */
1005 smp_mb__before_atomic();
1006 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
1007 return false;
1008
1009 /*
1010 * The head is context local, there can be no concurrency.
1011 */
1012 *head->lastp = node;
1013 head->lastp = &node->next;
1014 return true;
1015 }
1016
1017 /**
1018 * wake_q_add() - queue a wakeup for 'later' waking.
1019 * @head: the wake_q_head to add @task to
1020 * @task: the task to queue for 'later' wakeup
1021 *
1022 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
1023 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
1024 * instantly.
1025 *
1026 * This function must be used as-if it were wake_up_process(); IOW the task
1027 * must be ready to be woken at this location.
1028 */
wake_q_add(struct wake_q_head * head,struct task_struct * task)1029 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
1030 {
1031 if (__wake_q_add(head, task))
1032 get_task_struct(task);
1033 }
1034
1035 /**
1036 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
1037 * @head: the wake_q_head to add @task to
1038 * @task: the task to queue for 'later' wakeup
1039 *
1040 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
1041 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
1042 * instantly.
1043 *
1044 * This function must be used as-if it were wake_up_process(); IOW the task
1045 * must be ready to be woken at this location.
1046 *
1047 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
1048 * that already hold reference to @task can call the 'safe' version and trust
1049 * wake_q to do the right thing depending whether or not the @task is already
1050 * queued for wakeup.
1051 */
wake_q_add_safe(struct wake_q_head * head,struct task_struct * task)1052 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
1053 {
1054 if (!__wake_q_add(head, task))
1055 put_task_struct(task);
1056 }
1057
wake_up_q(struct wake_q_head * head)1058 void wake_up_q(struct wake_q_head *head)
1059 {
1060 struct wake_q_node *node = head->first;
1061
1062 while (node != WAKE_Q_TAIL) {
1063 struct task_struct *task;
1064
1065 task = container_of(node, struct task_struct, wake_q);
1066 node = node->next;
1067 /* pairs with cmpxchg_relaxed() in __wake_q_add() */
1068 WRITE_ONCE(task->wake_q.next, NULL);
1069 /* Task can safely be re-inserted now. */
1070
1071 /*
1072 * wake_up_process() executes a full barrier, which pairs with
1073 * the queueing in wake_q_add() so as not to miss wakeups.
1074 */
1075 wake_up_process(task);
1076 put_task_struct(task);
1077 }
1078 }
1079
1080 /*
1081 * resched_curr - mark rq's current task 'to be rescheduled now'.
1082 *
1083 * On UP this means the setting of the need_resched flag, on SMP it
1084 * might also involve a cross-CPU call to trigger the scheduler on
1085 * the target CPU.
1086 */
__resched_curr(struct rq * rq,int tif)1087 static void __resched_curr(struct rq *rq, int tif)
1088 {
1089 struct task_struct *curr = rq->curr;
1090 struct thread_info *cti = task_thread_info(curr);
1091 int cpu;
1092
1093 lockdep_assert_rq_held(rq);
1094
1095 /*
1096 * Always immediately preempt the idle task; no point in delaying doing
1097 * actual work.
1098 */
1099 if (is_idle_task(curr) && tif == TIF_NEED_RESCHED_LAZY)
1100 tif = TIF_NEED_RESCHED;
1101
1102 if (cti->flags & ((1 << tif) | _TIF_NEED_RESCHED))
1103 return;
1104
1105 cpu = cpu_of(rq);
1106
1107 if (cpu == smp_processor_id()) {
1108 set_ti_thread_flag(cti, tif);
1109 if (tif == TIF_NEED_RESCHED)
1110 set_preempt_need_resched();
1111 return;
1112 }
1113
1114 if (set_nr_and_not_polling(cti, tif)) {
1115 if (tif == TIF_NEED_RESCHED)
1116 smp_send_reschedule(cpu);
1117 } else {
1118 trace_sched_wake_idle_without_ipi(cpu);
1119 }
1120 }
1121
resched_curr(struct rq * rq)1122 void resched_curr(struct rq *rq)
1123 {
1124 __resched_curr(rq, TIF_NEED_RESCHED);
1125 }
1126
1127 #ifdef CONFIG_PREEMPT_DYNAMIC
1128 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_preempt_lazy);
dynamic_preempt_lazy(void)1129 static __always_inline bool dynamic_preempt_lazy(void)
1130 {
1131 return static_branch_unlikely(&sk_dynamic_preempt_lazy);
1132 }
1133 #else
dynamic_preempt_lazy(void)1134 static __always_inline bool dynamic_preempt_lazy(void)
1135 {
1136 return IS_ENABLED(CONFIG_PREEMPT_LAZY);
1137 }
1138 #endif
1139
get_lazy_tif_bit(void)1140 static __always_inline int get_lazy_tif_bit(void)
1141 {
1142 if (dynamic_preempt_lazy())
1143 return TIF_NEED_RESCHED_LAZY;
1144
1145 return TIF_NEED_RESCHED;
1146 }
1147
resched_curr_lazy(struct rq * rq)1148 void resched_curr_lazy(struct rq *rq)
1149 {
1150 __resched_curr(rq, get_lazy_tif_bit());
1151 }
1152
resched_cpu(int cpu)1153 void resched_cpu(int cpu)
1154 {
1155 struct rq *rq = cpu_rq(cpu);
1156 unsigned long flags;
1157
1158 raw_spin_rq_lock_irqsave(rq, flags);
1159 if (cpu_online(cpu) || cpu == smp_processor_id())
1160 resched_curr(rq);
1161 raw_spin_rq_unlock_irqrestore(rq, flags);
1162 }
1163
1164 #ifdef CONFIG_SMP
1165 #ifdef CONFIG_NO_HZ_COMMON
1166 /*
1167 * In the semi idle case, use the nearest busy CPU for migrating timers
1168 * from an idle CPU. This is good for power-savings.
1169 *
1170 * We don't do similar optimization for completely idle system, as
1171 * selecting an idle CPU will add more delays to the timers than intended
1172 * (as that CPU's timer base may not be up to date wrt jiffies etc).
1173 */
get_nohz_timer_target(void)1174 int get_nohz_timer_target(void)
1175 {
1176 int i, cpu = smp_processor_id(), default_cpu = -1;
1177 struct sched_domain *sd;
1178 const struct cpumask *hk_mask;
1179
1180 if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) {
1181 if (!idle_cpu(cpu))
1182 return cpu;
1183 default_cpu = cpu;
1184 }
1185
1186 hk_mask = housekeeping_cpumask(HK_TYPE_KERNEL_NOISE);
1187
1188 guard(rcu)();
1189
1190 for_each_domain(cpu, sd) {
1191 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
1192 if (cpu == i)
1193 continue;
1194
1195 if (!idle_cpu(i))
1196 return i;
1197 }
1198 }
1199
1200 if (default_cpu == -1)
1201 default_cpu = housekeeping_any_cpu(HK_TYPE_KERNEL_NOISE);
1202
1203 return default_cpu;
1204 }
1205
1206 /*
1207 * When add_timer_on() enqueues a timer into the timer wheel of an
1208 * idle CPU then this timer might expire before the next timer event
1209 * which is scheduled to wake up that CPU. In case of a completely
1210 * idle system the next event might even be infinite time into the
1211 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1212 * leaves the inner idle loop so the newly added timer is taken into
1213 * account when the CPU goes back to idle and evaluates the timer
1214 * wheel for the next timer event.
1215 */
wake_up_idle_cpu(int cpu)1216 static void wake_up_idle_cpu(int cpu)
1217 {
1218 struct rq *rq = cpu_rq(cpu);
1219
1220 if (cpu == smp_processor_id())
1221 return;
1222
1223 /*
1224 * Set TIF_NEED_RESCHED and send an IPI if in the non-polling
1225 * part of the idle loop. This forces an exit from the idle loop
1226 * and a round trip to schedule(). Now this could be optimized
1227 * because a simple new idle loop iteration is enough to
1228 * re-evaluate the next tick. Provided some re-ordering of tick
1229 * nohz functions that would need to follow TIF_NR_POLLING
1230 * clearing:
1231 *
1232 * - On most architectures, a simple fetch_or on ti::flags with a
1233 * "0" value would be enough to know if an IPI needs to be sent.
1234 *
1235 * - x86 needs to perform a last need_resched() check between
1236 * monitor and mwait which doesn't take timers into account.
1237 * There a dedicated TIF_TIMER flag would be required to
1238 * fetch_or here and be checked along with TIF_NEED_RESCHED
1239 * before mwait().
1240 *
1241 * However, remote timer enqueue is not such a frequent event
1242 * and testing of the above solutions didn't appear to report
1243 * much benefits.
1244 */
1245 if (set_nr_and_not_polling(task_thread_info(rq->idle), TIF_NEED_RESCHED))
1246 smp_send_reschedule(cpu);
1247 else
1248 trace_sched_wake_idle_without_ipi(cpu);
1249 }
1250
wake_up_full_nohz_cpu(int cpu)1251 static bool wake_up_full_nohz_cpu(int cpu)
1252 {
1253 /*
1254 * We just need the target to call irq_exit() and re-evaluate
1255 * the next tick. The nohz full kick at least implies that.
1256 * If needed we can still optimize that later with an
1257 * empty IRQ.
1258 */
1259 if (cpu_is_offline(cpu))
1260 return true; /* Don't try to wake offline CPUs. */
1261 if (tick_nohz_full_cpu(cpu)) {
1262 if (cpu != smp_processor_id() ||
1263 tick_nohz_tick_stopped())
1264 tick_nohz_full_kick_cpu(cpu);
1265 return true;
1266 }
1267
1268 return false;
1269 }
1270
1271 /*
1272 * Wake up the specified CPU. If the CPU is going offline, it is the
1273 * caller's responsibility to deal with the lost wakeup, for example,
1274 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1275 */
wake_up_nohz_cpu(int cpu)1276 void wake_up_nohz_cpu(int cpu)
1277 {
1278 if (!wake_up_full_nohz_cpu(cpu))
1279 wake_up_idle_cpu(cpu);
1280 }
1281
nohz_csd_func(void * info)1282 static void nohz_csd_func(void *info)
1283 {
1284 struct rq *rq = info;
1285 int cpu = cpu_of(rq);
1286 unsigned int flags;
1287
1288 /*
1289 * Release the rq::nohz_csd.
1290 */
1291 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1292 WARN_ON(!(flags & NOHZ_KICK_MASK));
1293
1294 rq->idle_balance = idle_cpu(cpu);
1295 if (rq->idle_balance) {
1296 rq->nohz_idle_balance = flags;
1297 __raise_softirq_irqoff(SCHED_SOFTIRQ);
1298 }
1299 }
1300
1301 #endif /* CONFIG_NO_HZ_COMMON */
1302
1303 #ifdef CONFIG_NO_HZ_FULL
__need_bw_check(struct rq * rq,struct task_struct * p)1304 static inline bool __need_bw_check(struct rq *rq, struct task_struct *p)
1305 {
1306 if (rq->nr_running != 1)
1307 return false;
1308
1309 if (p->sched_class != &fair_sched_class)
1310 return false;
1311
1312 if (!task_on_rq_queued(p))
1313 return false;
1314
1315 return true;
1316 }
1317
sched_can_stop_tick(struct rq * rq)1318 bool sched_can_stop_tick(struct rq *rq)
1319 {
1320 int fifo_nr_running;
1321
1322 /* Deadline tasks, even if single, need the tick */
1323 if (rq->dl.dl_nr_running)
1324 return false;
1325
1326 /*
1327 * If there are more than one RR tasks, we need the tick to affect the
1328 * actual RR behaviour.
1329 */
1330 if (rq->rt.rr_nr_running) {
1331 if (rq->rt.rr_nr_running == 1)
1332 return true;
1333 else
1334 return false;
1335 }
1336
1337 /*
1338 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1339 * forced preemption between FIFO tasks.
1340 */
1341 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1342 if (fifo_nr_running)
1343 return true;
1344
1345 /*
1346 * If there are no DL,RR/FIFO tasks, there must only be CFS or SCX tasks
1347 * left. For CFS, if there's more than one we need the tick for
1348 * involuntary preemption. For SCX, ask.
1349 */
1350 if (scx_enabled() && !scx_can_stop_tick(rq))
1351 return false;
1352
1353 if (rq->cfs.h_nr_queued > 1)
1354 return false;
1355
1356 /*
1357 * If there is one task and it has CFS runtime bandwidth constraints
1358 * and it's on the cpu now we don't want to stop the tick.
1359 * This check prevents clearing the bit if a newly enqueued task here is
1360 * dequeued by migrating while the constrained task continues to run.
1361 * E.g. going from 2->1 without going through pick_next_task().
1362 */
1363 if (__need_bw_check(rq, rq->curr)) {
1364 if (cfs_task_bw_constrained(rq->curr))
1365 return false;
1366 }
1367
1368 return true;
1369 }
1370 #endif /* CONFIG_NO_HZ_FULL */
1371 #endif /* CONFIG_SMP */
1372
1373 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1374 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1375 /*
1376 * Iterate task_group tree rooted at *from, calling @down when first entering a
1377 * node and @up when leaving it for the final time.
1378 *
1379 * Caller must hold rcu_lock or sufficient equivalent.
1380 */
walk_tg_tree_from(struct task_group * from,tg_visitor down,tg_visitor up,void * data)1381 int walk_tg_tree_from(struct task_group *from,
1382 tg_visitor down, tg_visitor up, void *data)
1383 {
1384 struct task_group *parent, *child;
1385 int ret;
1386
1387 parent = from;
1388
1389 down:
1390 ret = (*down)(parent, data);
1391 if (ret)
1392 goto out;
1393 list_for_each_entry_rcu(child, &parent->children, siblings) {
1394 parent = child;
1395 goto down;
1396
1397 up:
1398 continue;
1399 }
1400 ret = (*up)(parent, data);
1401 if (ret || parent == from)
1402 goto out;
1403
1404 child = parent;
1405 parent = parent->parent;
1406 if (parent)
1407 goto up;
1408 out:
1409 return ret;
1410 }
1411
tg_nop(struct task_group * tg,void * data)1412 int tg_nop(struct task_group *tg, void *data)
1413 {
1414 return 0;
1415 }
1416 #endif
1417
set_load_weight(struct task_struct * p,bool update_load)1418 void set_load_weight(struct task_struct *p, bool update_load)
1419 {
1420 int prio = p->static_prio - MAX_RT_PRIO;
1421 struct load_weight lw;
1422
1423 if (task_has_idle_policy(p)) {
1424 lw.weight = scale_load(WEIGHT_IDLEPRIO);
1425 lw.inv_weight = WMULT_IDLEPRIO;
1426 } else {
1427 lw.weight = scale_load(sched_prio_to_weight[prio]);
1428 lw.inv_weight = sched_prio_to_wmult[prio];
1429 }
1430
1431 /*
1432 * SCHED_OTHER tasks have to update their load when changing their
1433 * weight
1434 */
1435 if (update_load && p->sched_class->reweight_task)
1436 p->sched_class->reweight_task(task_rq(p), p, &lw);
1437 else
1438 p->se.load = lw;
1439 }
1440
1441 #ifdef CONFIG_UCLAMP_TASK
1442 /*
1443 * Serializes updates of utilization clamp values
1444 *
1445 * The (slow-path) user-space triggers utilization clamp value updates which
1446 * can require updates on (fast-path) scheduler's data structures used to
1447 * support enqueue/dequeue operations.
1448 * While the per-CPU rq lock protects fast-path update operations, user-space
1449 * requests are serialized using a mutex to reduce the risk of conflicting
1450 * updates or API abuses.
1451 */
1452 static __maybe_unused DEFINE_MUTEX(uclamp_mutex);
1453
1454 /* Max allowed minimum utilization */
1455 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1456
1457 /* Max allowed maximum utilization */
1458 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1459
1460 /*
1461 * By default RT tasks run at the maximum performance point/capacity of the
1462 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1463 * SCHED_CAPACITY_SCALE.
1464 *
1465 * This knob allows admins to change the default behavior when uclamp is being
1466 * used. In battery powered devices, particularly, running at the maximum
1467 * capacity and frequency will increase energy consumption and shorten the
1468 * battery life.
1469 *
1470 * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1471 *
1472 * This knob will not override the system default sched_util_clamp_min defined
1473 * above.
1474 */
1475 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1476
1477 /* All clamps are required to be less or equal than these values */
1478 static struct uclamp_se uclamp_default[UCLAMP_CNT];
1479
1480 /*
1481 * This static key is used to reduce the uclamp overhead in the fast path. It
1482 * primarily disables the call to uclamp_rq_{inc, dec}() in
1483 * enqueue/dequeue_task().
1484 *
1485 * This allows users to continue to enable uclamp in their kernel config with
1486 * minimum uclamp overhead in the fast path.
1487 *
1488 * As soon as userspace modifies any of the uclamp knobs, the static key is
1489 * enabled, since we have an actual users that make use of uclamp
1490 * functionality.
1491 *
1492 * The knobs that would enable this static key are:
1493 *
1494 * * A task modifying its uclamp value with sched_setattr().
1495 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1496 * * An admin modifying the cgroup cpu.uclamp.{min, max}
1497 */
1498 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1499
1500 static inline unsigned int
uclamp_idle_value(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1501 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1502 unsigned int clamp_value)
1503 {
1504 /*
1505 * Avoid blocked utilization pushing up the frequency when we go
1506 * idle (which drops the max-clamp) by retaining the last known
1507 * max-clamp.
1508 */
1509 if (clamp_id == UCLAMP_MAX) {
1510 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1511 return clamp_value;
1512 }
1513
1514 return uclamp_none(UCLAMP_MIN);
1515 }
1516
uclamp_idle_reset(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1517 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1518 unsigned int clamp_value)
1519 {
1520 /* Reset max-clamp retention only on idle exit */
1521 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1522 return;
1523
1524 uclamp_rq_set(rq, clamp_id, clamp_value);
1525 }
1526
1527 static inline
uclamp_rq_max_value(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1528 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1529 unsigned int clamp_value)
1530 {
1531 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1532 int bucket_id = UCLAMP_BUCKETS - 1;
1533
1534 /*
1535 * Since both min and max clamps are max aggregated, find the
1536 * top most bucket with tasks in.
1537 */
1538 for ( ; bucket_id >= 0; bucket_id--) {
1539 if (!bucket[bucket_id].tasks)
1540 continue;
1541 return bucket[bucket_id].value;
1542 }
1543
1544 /* No tasks -- default clamp values */
1545 return uclamp_idle_value(rq, clamp_id, clamp_value);
1546 }
1547
__uclamp_update_util_min_rt_default(struct task_struct * p)1548 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1549 {
1550 unsigned int default_util_min;
1551 struct uclamp_se *uc_se;
1552
1553 lockdep_assert_held(&p->pi_lock);
1554
1555 uc_se = &p->uclamp_req[UCLAMP_MIN];
1556
1557 /* Only sync if user didn't override the default */
1558 if (uc_se->user_defined)
1559 return;
1560
1561 default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1562 uclamp_se_set(uc_se, default_util_min, false);
1563 }
1564
uclamp_update_util_min_rt_default(struct task_struct * p)1565 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1566 {
1567 if (!rt_task(p))
1568 return;
1569
1570 /* Protect updates to p->uclamp_* */
1571 guard(task_rq_lock)(p);
1572 __uclamp_update_util_min_rt_default(p);
1573 }
1574
1575 static inline struct uclamp_se
uclamp_tg_restrict(struct task_struct * p,enum uclamp_id clamp_id)1576 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1577 {
1578 /* Copy by value as we could modify it */
1579 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1580 #ifdef CONFIG_UCLAMP_TASK_GROUP
1581 unsigned int tg_min, tg_max, value;
1582
1583 /*
1584 * Tasks in autogroups or root task group will be
1585 * restricted by system defaults.
1586 */
1587 if (task_group_is_autogroup(task_group(p)))
1588 return uc_req;
1589 if (task_group(p) == &root_task_group)
1590 return uc_req;
1591
1592 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1593 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1594 value = uc_req.value;
1595 value = clamp(value, tg_min, tg_max);
1596 uclamp_se_set(&uc_req, value, false);
1597 #endif
1598
1599 return uc_req;
1600 }
1601
1602 /*
1603 * The effective clamp bucket index of a task depends on, by increasing
1604 * priority:
1605 * - the task specific clamp value, when explicitly requested from userspace
1606 * - the task group effective clamp value, for tasks not either in the root
1607 * group or in an autogroup
1608 * - the system default clamp value, defined by the sysadmin
1609 */
1610 static inline struct uclamp_se
uclamp_eff_get(struct task_struct * p,enum uclamp_id clamp_id)1611 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1612 {
1613 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1614 struct uclamp_se uc_max = uclamp_default[clamp_id];
1615
1616 /* System default restrictions always apply */
1617 if (unlikely(uc_req.value > uc_max.value))
1618 return uc_max;
1619
1620 return uc_req;
1621 }
1622
uclamp_eff_value(struct task_struct * p,enum uclamp_id clamp_id)1623 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1624 {
1625 struct uclamp_se uc_eff;
1626
1627 /* Task currently refcounted: use back-annotated (effective) value */
1628 if (p->uclamp[clamp_id].active)
1629 return (unsigned long)p->uclamp[clamp_id].value;
1630
1631 uc_eff = uclamp_eff_get(p, clamp_id);
1632
1633 return (unsigned long)uc_eff.value;
1634 }
1635
1636 /*
1637 * When a task is enqueued on a rq, the clamp bucket currently defined by the
1638 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1639 * updates the rq's clamp value if required.
1640 *
1641 * Tasks can have a task-specific value requested from user-space, track
1642 * within each bucket the maximum value for tasks refcounted in it.
1643 * This "local max aggregation" allows to track the exact "requested" value
1644 * for each bucket when all its RUNNABLE tasks require the same clamp.
1645 */
uclamp_rq_inc_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1646 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1647 enum uclamp_id clamp_id)
1648 {
1649 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1650 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1651 struct uclamp_bucket *bucket;
1652
1653 lockdep_assert_rq_held(rq);
1654
1655 /* Update task effective clamp */
1656 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1657
1658 bucket = &uc_rq->bucket[uc_se->bucket_id];
1659 bucket->tasks++;
1660 uc_se->active = true;
1661
1662 uclamp_idle_reset(rq, clamp_id, uc_se->value);
1663
1664 /*
1665 * Local max aggregation: rq buckets always track the max
1666 * "requested" clamp value of its RUNNABLE tasks.
1667 */
1668 if (bucket->tasks == 1 || uc_se->value > bucket->value)
1669 bucket->value = uc_se->value;
1670
1671 if (uc_se->value > uclamp_rq_get(rq, clamp_id))
1672 uclamp_rq_set(rq, clamp_id, uc_se->value);
1673 }
1674
1675 /*
1676 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1677 * is released. If this is the last task reference counting the rq's max
1678 * active clamp value, then the rq's clamp value is updated.
1679 *
1680 * Both refcounted tasks and rq's cached clamp values are expected to be
1681 * always valid. If it's detected they are not, as defensive programming,
1682 * enforce the expected state and warn.
1683 */
uclamp_rq_dec_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1684 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1685 enum uclamp_id clamp_id)
1686 {
1687 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1688 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1689 struct uclamp_bucket *bucket;
1690 unsigned int bkt_clamp;
1691 unsigned int rq_clamp;
1692
1693 lockdep_assert_rq_held(rq);
1694
1695 /*
1696 * If sched_uclamp_used was enabled after task @p was enqueued,
1697 * we could end up with unbalanced call to uclamp_rq_dec_id().
1698 *
1699 * In this case the uc_se->active flag should be false since no uclamp
1700 * accounting was performed at enqueue time and we can just return
1701 * here.
1702 *
1703 * Need to be careful of the following enqueue/dequeue ordering
1704 * problem too
1705 *
1706 * enqueue(taskA)
1707 * // sched_uclamp_used gets enabled
1708 * enqueue(taskB)
1709 * dequeue(taskA)
1710 * // Must not decrement bucket->tasks here
1711 * dequeue(taskB)
1712 *
1713 * where we could end up with stale data in uc_se and
1714 * bucket[uc_se->bucket_id].
1715 *
1716 * The following check here eliminates the possibility of such race.
1717 */
1718 if (unlikely(!uc_se->active))
1719 return;
1720
1721 bucket = &uc_rq->bucket[uc_se->bucket_id];
1722
1723 SCHED_WARN_ON(!bucket->tasks);
1724 if (likely(bucket->tasks))
1725 bucket->tasks--;
1726
1727 uc_se->active = false;
1728
1729 /*
1730 * Keep "local max aggregation" simple and accept to (possibly)
1731 * overboost some RUNNABLE tasks in the same bucket.
1732 * The rq clamp bucket value is reset to its base value whenever
1733 * there are no more RUNNABLE tasks refcounting it.
1734 */
1735 if (likely(bucket->tasks))
1736 return;
1737
1738 rq_clamp = uclamp_rq_get(rq, clamp_id);
1739 /*
1740 * Defensive programming: this should never happen. If it happens,
1741 * e.g. due to future modification, warn and fix up the expected value.
1742 */
1743 SCHED_WARN_ON(bucket->value > rq_clamp);
1744 if (bucket->value >= rq_clamp) {
1745 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1746 uclamp_rq_set(rq, clamp_id, bkt_clamp);
1747 }
1748 }
1749
uclamp_rq_inc(struct rq * rq,struct task_struct * p)1750 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1751 {
1752 enum uclamp_id clamp_id;
1753
1754 /*
1755 * Avoid any overhead until uclamp is actually used by the userspace.
1756 *
1757 * The condition is constructed such that a NOP is generated when
1758 * sched_uclamp_used is disabled.
1759 */
1760 if (!static_branch_unlikely(&sched_uclamp_used))
1761 return;
1762
1763 if (unlikely(!p->sched_class->uclamp_enabled))
1764 return;
1765
1766 if (p->se.sched_delayed)
1767 return;
1768
1769 for_each_clamp_id(clamp_id)
1770 uclamp_rq_inc_id(rq, p, clamp_id);
1771
1772 /* Reset clamp idle holding when there is one RUNNABLE task */
1773 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1774 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1775 }
1776
uclamp_rq_dec(struct rq * rq,struct task_struct * p)1777 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1778 {
1779 enum uclamp_id clamp_id;
1780
1781 /*
1782 * Avoid any overhead until uclamp is actually used by the userspace.
1783 *
1784 * The condition is constructed such that a NOP is generated when
1785 * sched_uclamp_used is disabled.
1786 */
1787 if (!static_branch_unlikely(&sched_uclamp_used))
1788 return;
1789
1790 if (unlikely(!p->sched_class->uclamp_enabled))
1791 return;
1792
1793 if (p->se.sched_delayed)
1794 return;
1795
1796 for_each_clamp_id(clamp_id)
1797 uclamp_rq_dec_id(rq, p, clamp_id);
1798 }
1799
uclamp_rq_reinc_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1800 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1801 enum uclamp_id clamp_id)
1802 {
1803 if (!p->uclamp[clamp_id].active)
1804 return;
1805
1806 uclamp_rq_dec_id(rq, p, clamp_id);
1807 uclamp_rq_inc_id(rq, p, clamp_id);
1808
1809 /*
1810 * Make sure to clear the idle flag if we've transiently reached 0
1811 * active tasks on rq.
1812 */
1813 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1814 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1815 }
1816
1817 static inline void
uclamp_update_active(struct task_struct * p)1818 uclamp_update_active(struct task_struct *p)
1819 {
1820 enum uclamp_id clamp_id;
1821 struct rq_flags rf;
1822 struct rq *rq;
1823
1824 /*
1825 * Lock the task and the rq where the task is (or was) queued.
1826 *
1827 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1828 * price to pay to safely serialize util_{min,max} updates with
1829 * enqueues, dequeues and migration operations.
1830 * This is the same locking schema used by __set_cpus_allowed_ptr().
1831 */
1832 rq = task_rq_lock(p, &rf);
1833
1834 /*
1835 * Setting the clamp bucket is serialized by task_rq_lock().
1836 * If the task is not yet RUNNABLE and its task_struct is not
1837 * affecting a valid clamp bucket, the next time it's enqueued,
1838 * it will already see the updated clamp bucket value.
1839 */
1840 for_each_clamp_id(clamp_id)
1841 uclamp_rq_reinc_id(rq, p, clamp_id);
1842
1843 task_rq_unlock(rq, p, &rf);
1844 }
1845
1846 #ifdef CONFIG_UCLAMP_TASK_GROUP
1847 static inline void
uclamp_update_active_tasks(struct cgroup_subsys_state * css)1848 uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1849 {
1850 struct css_task_iter it;
1851 struct task_struct *p;
1852
1853 css_task_iter_start(css, 0, &it);
1854 while ((p = css_task_iter_next(&it)))
1855 uclamp_update_active(p);
1856 css_task_iter_end(&it);
1857 }
1858
1859 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1860 #endif
1861
1862 #ifdef CONFIG_SYSCTL
1863 #ifdef CONFIG_UCLAMP_TASK_GROUP
uclamp_update_root_tg(void)1864 static void uclamp_update_root_tg(void)
1865 {
1866 struct task_group *tg = &root_task_group;
1867
1868 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1869 sysctl_sched_uclamp_util_min, false);
1870 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1871 sysctl_sched_uclamp_util_max, false);
1872
1873 guard(rcu)();
1874 cpu_util_update_eff(&root_task_group.css);
1875 }
1876 #else
uclamp_update_root_tg(void)1877 static void uclamp_update_root_tg(void) { }
1878 #endif
1879
uclamp_sync_util_min_rt_default(void)1880 static void uclamp_sync_util_min_rt_default(void)
1881 {
1882 struct task_struct *g, *p;
1883
1884 /*
1885 * copy_process() sysctl_uclamp
1886 * uclamp_min_rt = X;
1887 * write_lock(&tasklist_lock) read_lock(&tasklist_lock)
1888 * // link thread smp_mb__after_spinlock()
1889 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock);
1890 * sched_post_fork() for_each_process_thread()
1891 * __uclamp_sync_rt() __uclamp_sync_rt()
1892 *
1893 * Ensures that either sched_post_fork() will observe the new
1894 * uclamp_min_rt or for_each_process_thread() will observe the new
1895 * task.
1896 */
1897 read_lock(&tasklist_lock);
1898 smp_mb__after_spinlock();
1899 read_unlock(&tasklist_lock);
1900
1901 guard(rcu)();
1902 for_each_process_thread(g, p)
1903 uclamp_update_util_min_rt_default(p);
1904 }
1905
sysctl_sched_uclamp_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)1906 static int sysctl_sched_uclamp_handler(const struct ctl_table *table, int write,
1907 void *buffer, size_t *lenp, loff_t *ppos)
1908 {
1909 bool update_root_tg = false;
1910 int old_min, old_max, old_min_rt;
1911 int result;
1912
1913 guard(mutex)(&uclamp_mutex);
1914
1915 old_min = sysctl_sched_uclamp_util_min;
1916 old_max = sysctl_sched_uclamp_util_max;
1917 old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1918
1919 result = proc_dointvec(table, write, buffer, lenp, ppos);
1920 if (result)
1921 goto undo;
1922 if (!write)
1923 return 0;
1924
1925 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1926 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE ||
1927 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1928
1929 result = -EINVAL;
1930 goto undo;
1931 }
1932
1933 if (old_min != sysctl_sched_uclamp_util_min) {
1934 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1935 sysctl_sched_uclamp_util_min, false);
1936 update_root_tg = true;
1937 }
1938 if (old_max != sysctl_sched_uclamp_util_max) {
1939 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1940 sysctl_sched_uclamp_util_max, false);
1941 update_root_tg = true;
1942 }
1943
1944 if (update_root_tg) {
1945 static_branch_enable(&sched_uclamp_used);
1946 uclamp_update_root_tg();
1947 }
1948
1949 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1950 static_branch_enable(&sched_uclamp_used);
1951 uclamp_sync_util_min_rt_default();
1952 }
1953
1954 /*
1955 * We update all RUNNABLE tasks only when task groups are in use.
1956 * Otherwise, keep it simple and do just a lazy update at each next
1957 * task enqueue time.
1958 */
1959 return 0;
1960
1961 undo:
1962 sysctl_sched_uclamp_util_min = old_min;
1963 sysctl_sched_uclamp_util_max = old_max;
1964 sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1965 return result;
1966 }
1967 #endif
1968
uclamp_fork(struct task_struct * p)1969 static void uclamp_fork(struct task_struct *p)
1970 {
1971 enum uclamp_id clamp_id;
1972
1973 /*
1974 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1975 * as the task is still at its early fork stages.
1976 */
1977 for_each_clamp_id(clamp_id)
1978 p->uclamp[clamp_id].active = false;
1979
1980 if (likely(!p->sched_reset_on_fork))
1981 return;
1982
1983 for_each_clamp_id(clamp_id) {
1984 uclamp_se_set(&p->uclamp_req[clamp_id],
1985 uclamp_none(clamp_id), false);
1986 }
1987 }
1988
uclamp_post_fork(struct task_struct * p)1989 static void uclamp_post_fork(struct task_struct *p)
1990 {
1991 uclamp_update_util_min_rt_default(p);
1992 }
1993
init_uclamp_rq(struct rq * rq)1994 static void __init init_uclamp_rq(struct rq *rq)
1995 {
1996 enum uclamp_id clamp_id;
1997 struct uclamp_rq *uc_rq = rq->uclamp;
1998
1999 for_each_clamp_id(clamp_id) {
2000 uc_rq[clamp_id] = (struct uclamp_rq) {
2001 .value = uclamp_none(clamp_id)
2002 };
2003 }
2004
2005 rq->uclamp_flags = UCLAMP_FLAG_IDLE;
2006 }
2007
init_uclamp(void)2008 static void __init init_uclamp(void)
2009 {
2010 struct uclamp_se uc_max = {};
2011 enum uclamp_id clamp_id;
2012 int cpu;
2013
2014 for_each_possible_cpu(cpu)
2015 init_uclamp_rq(cpu_rq(cpu));
2016
2017 for_each_clamp_id(clamp_id) {
2018 uclamp_se_set(&init_task.uclamp_req[clamp_id],
2019 uclamp_none(clamp_id), false);
2020 }
2021
2022 /* System defaults allow max clamp values for both indexes */
2023 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2024 for_each_clamp_id(clamp_id) {
2025 uclamp_default[clamp_id] = uc_max;
2026 #ifdef CONFIG_UCLAMP_TASK_GROUP
2027 root_task_group.uclamp_req[clamp_id] = uc_max;
2028 root_task_group.uclamp[clamp_id] = uc_max;
2029 #endif
2030 }
2031 }
2032
2033 #else /* !CONFIG_UCLAMP_TASK */
uclamp_rq_inc(struct rq * rq,struct task_struct * p)2034 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
uclamp_rq_dec(struct rq * rq,struct task_struct * p)2035 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
uclamp_fork(struct task_struct * p)2036 static inline void uclamp_fork(struct task_struct *p) { }
uclamp_post_fork(struct task_struct * p)2037 static inline void uclamp_post_fork(struct task_struct *p) { }
init_uclamp(void)2038 static inline void init_uclamp(void) { }
2039 #endif /* CONFIG_UCLAMP_TASK */
2040
sched_task_on_rq(struct task_struct * p)2041 bool sched_task_on_rq(struct task_struct *p)
2042 {
2043 return task_on_rq_queued(p);
2044 }
2045
get_wchan(struct task_struct * p)2046 unsigned long get_wchan(struct task_struct *p)
2047 {
2048 unsigned long ip = 0;
2049 unsigned int state;
2050
2051 if (!p || p == current)
2052 return 0;
2053
2054 /* Only get wchan if task is blocked and we can keep it that way. */
2055 raw_spin_lock_irq(&p->pi_lock);
2056 state = READ_ONCE(p->__state);
2057 smp_rmb(); /* see try_to_wake_up() */
2058 if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
2059 ip = __get_wchan(p);
2060 raw_spin_unlock_irq(&p->pi_lock);
2061
2062 return ip;
2063 }
2064
enqueue_task(struct rq * rq,struct task_struct * p,int flags)2065 void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2066 {
2067 if (!(flags & ENQUEUE_NOCLOCK))
2068 update_rq_clock(rq);
2069
2070 p->sched_class->enqueue_task(rq, p, flags);
2071 /*
2072 * Must be after ->enqueue_task() because ENQUEUE_DELAYED can clear
2073 * ->sched_delayed.
2074 */
2075 uclamp_rq_inc(rq, p);
2076
2077 psi_enqueue(p, flags);
2078
2079 if (!(flags & ENQUEUE_RESTORE))
2080 sched_info_enqueue(rq, p);
2081
2082 if (sched_core_enabled(rq))
2083 sched_core_enqueue(rq, p);
2084 }
2085
2086 /*
2087 * Must only return false when DEQUEUE_SLEEP.
2088 */
dequeue_task(struct rq * rq,struct task_struct * p,int flags)2089 inline bool dequeue_task(struct rq *rq, struct task_struct *p, int flags)
2090 {
2091 if (sched_core_enabled(rq))
2092 sched_core_dequeue(rq, p, flags);
2093
2094 if (!(flags & DEQUEUE_NOCLOCK))
2095 update_rq_clock(rq);
2096
2097 if (!(flags & DEQUEUE_SAVE))
2098 sched_info_dequeue(rq, p);
2099
2100 psi_dequeue(p, flags);
2101
2102 /*
2103 * Must be before ->dequeue_task() because ->dequeue_task() can 'fail'
2104 * and mark the task ->sched_delayed.
2105 */
2106 uclamp_rq_dec(rq, p);
2107 return p->sched_class->dequeue_task(rq, p, flags);
2108 }
2109
activate_task(struct rq * rq,struct task_struct * p,int flags)2110 void activate_task(struct rq *rq, struct task_struct *p, int flags)
2111 {
2112 if (task_on_rq_migrating(p))
2113 flags |= ENQUEUE_MIGRATED;
2114 if (flags & ENQUEUE_MIGRATED)
2115 sched_mm_cid_migrate_to(rq, p);
2116
2117 enqueue_task(rq, p, flags);
2118
2119 WRITE_ONCE(p->on_rq, TASK_ON_RQ_QUEUED);
2120 ASSERT_EXCLUSIVE_WRITER(p->on_rq);
2121 }
2122
deactivate_task(struct rq * rq,struct task_struct * p,int flags)2123 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
2124 {
2125 SCHED_WARN_ON(flags & DEQUEUE_SLEEP);
2126
2127 WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
2128 ASSERT_EXCLUSIVE_WRITER(p->on_rq);
2129
2130 /*
2131 * Code explicitly relies on TASK_ON_RQ_MIGRATING begin set *before*
2132 * dequeue_task() and cleared *after* enqueue_task().
2133 */
2134
2135 dequeue_task(rq, p, flags);
2136 }
2137
block_task(struct rq * rq,struct task_struct * p,int flags)2138 static void block_task(struct rq *rq, struct task_struct *p, int flags)
2139 {
2140 if (dequeue_task(rq, p, DEQUEUE_SLEEP | flags))
2141 __block_task(rq, p);
2142 }
2143
2144 /**
2145 * task_curr - is this task currently executing on a CPU?
2146 * @p: the task in question.
2147 *
2148 * Return: 1 if the task is currently executing. 0 otherwise.
2149 */
task_curr(const struct task_struct * p)2150 inline int task_curr(const struct task_struct *p)
2151 {
2152 return cpu_curr(task_cpu(p)) == p;
2153 }
2154
2155 /*
2156 * ->switching_to() is called with the pi_lock and rq_lock held and must not
2157 * mess with locking.
2158 */
check_class_changing(struct rq * rq,struct task_struct * p,const struct sched_class * prev_class)2159 void check_class_changing(struct rq *rq, struct task_struct *p,
2160 const struct sched_class *prev_class)
2161 {
2162 if (prev_class != p->sched_class && p->sched_class->switching_to)
2163 p->sched_class->switching_to(rq, p);
2164 }
2165
2166 /*
2167 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2168 * use the balance_callback list if you want balancing.
2169 *
2170 * this means any call to check_class_changed() must be followed by a call to
2171 * balance_callback().
2172 */
check_class_changed(struct rq * rq,struct task_struct * p,const struct sched_class * prev_class,int oldprio)2173 void check_class_changed(struct rq *rq, struct task_struct *p,
2174 const struct sched_class *prev_class,
2175 int oldprio)
2176 {
2177 if (prev_class != p->sched_class) {
2178 if (prev_class->switched_from)
2179 prev_class->switched_from(rq, p);
2180
2181 p->sched_class->switched_to(rq, p);
2182 } else if (oldprio != p->prio || dl_task(p))
2183 p->sched_class->prio_changed(rq, p, oldprio);
2184 }
2185
wakeup_preempt(struct rq * rq,struct task_struct * p,int flags)2186 void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags)
2187 {
2188 struct task_struct *donor = rq->donor;
2189
2190 if (p->sched_class == donor->sched_class)
2191 donor->sched_class->wakeup_preempt(rq, p, flags);
2192 else if (sched_class_above(p->sched_class, donor->sched_class))
2193 resched_curr(rq);
2194
2195 /*
2196 * A queue event has occurred, and we're going to schedule. In
2197 * this case, we can save a useless back to back clock update.
2198 */
2199 if (task_on_rq_queued(donor) && test_tsk_need_resched(rq->curr))
2200 rq_clock_skip_update(rq);
2201 }
2202
2203 static __always_inline
__task_state_match(struct task_struct * p,unsigned int state)2204 int __task_state_match(struct task_struct *p, unsigned int state)
2205 {
2206 if (READ_ONCE(p->__state) & state)
2207 return 1;
2208
2209 if (READ_ONCE(p->saved_state) & state)
2210 return -1;
2211
2212 return 0;
2213 }
2214
2215 static __always_inline
task_state_match(struct task_struct * p,unsigned int state)2216 int task_state_match(struct task_struct *p, unsigned int state)
2217 {
2218 /*
2219 * Serialize against current_save_and_set_rtlock_wait_state(),
2220 * current_restore_rtlock_saved_state(), and __refrigerator().
2221 */
2222 guard(raw_spinlock_irq)(&p->pi_lock);
2223 return __task_state_match(p, state);
2224 }
2225
2226 /*
2227 * wait_task_inactive - wait for a thread to unschedule.
2228 *
2229 * Wait for the thread to block in any of the states set in @match_state.
2230 * If it changes, i.e. @p might have woken up, then return zero. When we
2231 * succeed in waiting for @p to be off its CPU, we return a positive number
2232 * (its total switch count). If a second call a short while later returns the
2233 * same number, the caller can be sure that @p has remained unscheduled the
2234 * whole time.
2235 *
2236 * The caller must ensure that the task *will* unschedule sometime soon,
2237 * else this function might spin for a *long* time. This function can't
2238 * be called with interrupts off, or it may introduce deadlock with
2239 * smp_call_function() if an IPI is sent by the same process we are
2240 * waiting to become inactive.
2241 */
wait_task_inactive(struct task_struct * p,unsigned int match_state)2242 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
2243 {
2244 int running, queued, match;
2245 struct rq_flags rf;
2246 unsigned long ncsw;
2247 struct rq *rq;
2248
2249 for (;;) {
2250 /*
2251 * We do the initial early heuristics without holding
2252 * any task-queue locks at all. We'll only try to get
2253 * the runqueue lock when things look like they will
2254 * work out!
2255 */
2256 rq = task_rq(p);
2257
2258 /*
2259 * If the task is actively running on another CPU
2260 * still, just relax and busy-wait without holding
2261 * any locks.
2262 *
2263 * NOTE! Since we don't hold any locks, it's not
2264 * even sure that "rq" stays as the right runqueue!
2265 * But we don't care, since "task_on_cpu()" will
2266 * return false if the runqueue has changed and p
2267 * is actually now running somewhere else!
2268 */
2269 while (task_on_cpu(rq, p)) {
2270 if (!task_state_match(p, match_state))
2271 return 0;
2272 cpu_relax();
2273 }
2274
2275 /*
2276 * Ok, time to look more closely! We need the rq
2277 * lock now, to be *sure*. If we're wrong, we'll
2278 * just go back and repeat.
2279 */
2280 rq = task_rq_lock(p, &rf);
2281 trace_sched_wait_task(p);
2282 running = task_on_cpu(rq, p);
2283 queued = task_on_rq_queued(p);
2284 ncsw = 0;
2285 if ((match = __task_state_match(p, match_state))) {
2286 /*
2287 * When matching on p->saved_state, consider this task
2288 * still queued so it will wait.
2289 */
2290 if (match < 0)
2291 queued = 1;
2292 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2293 }
2294 task_rq_unlock(rq, p, &rf);
2295
2296 /*
2297 * If it changed from the expected state, bail out now.
2298 */
2299 if (unlikely(!ncsw))
2300 break;
2301
2302 /*
2303 * Was it really running after all now that we
2304 * checked with the proper locks actually held?
2305 *
2306 * Oops. Go back and try again..
2307 */
2308 if (unlikely(running)) {
2309 cpu_relax();
2310 continue;
2311 }
2312
2313 /*
2314 * It's not enough that it's not actively running,
2315 * it must be off the runqueue _entirely_, and not
2316 * preempted!
2317 *
2318 * So if it was still runnable (but just not actively
2319 * running right now), it's preempted, and we should
2320 * yield - it could be a while.
2321 */
2322 if (unlikely(queued)) {
2323 ktime_t to = NSEC_PER_SEC / HZ;
2324
2325 set_current_state(TASK_UNINTERRUPTIBLE);
2326 schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
2327 continue;
2328 }
2329
2330 /*
2331 * Ahh, all good. It wasn't running, and it wasn't
2332 * runnable, which means that it will never become
2333 * running in the future either. We're all done!
2334 */
2335 break;
2336 }
2337
2338 return ncsw;
2339 }
2340
2341 #ifdef CONFIG_SMP
2342
2343 static void
2344 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx);
2345
migrate_disable_switch(struct rq * rq,struct task_struct * p)2346 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2347 {
2348 struct affinity_context ac = {
2349 .new_mask = cpumask_of(rq->cpu),
2350 .flags = SCA_MIGRATE_DISABLE,
2351 };
2352
2353 if (likely(!p->migration_disabled))
2354 return;
2355
2356 if (p->cpus_ptr != &p->cpus_mask)
2357 return;
2358
2359 /*
2360 * Violates locking rules! See comment in __do_set_cpus_allowed().
2361 */
2362 __do_set_cpus_allowed(p, &ac);
2363 }
2364
migrate_disable(void)2365 void migrate_disable(void)
2366 {
2367 struct task_struct *p = current;
2368
2369 if (p->migration_disabled) {
2370 #ifdef CONFIG_DEBUG_PREEMPT
2371 /*
2372 *Warn about overflow half-way through the range.
2373 */
2374 WARN_ON_ONCE((s16)p->migration_disabled < 0);
2375 #endif
2376 p->migration_disabled++;
2377 return;
2378 }
2379
2380 guard(preempt)();
2381 this_rq()->nr_pinned++;
2382 p->migration_disabled = 1;
2383 }
2384 EXPORT_SYMBOL_GPL(migrate_disable);
2385
migrate_enable(void)2386 void migrate_enable(void)
2387 {
2388 struct task_struct *p = current;
2389 struct affinity_context ac = {
2390 .new_mask = &p->cpus_mask,
2391 .flags = SCA_MIGRATE_ENABLE,
2392 };
2393
2394 #ifdef CONFIG_DEBUG_PREEMPT
2395 /*
2396 * Check both overflow from migrate_disable() and superfluous
2397 * migrate_enable().
2398 */
2399 if (WARN_ON_ONCE((s16)p->migration_disabled <= 0))
2400 return;
2401 #endif
2402
2403 if (p->migration_disabled > 1) {
2404 p->migration_disabled--;
2405 return;
2406 }
2407
2408 /*
2409 * Ensure stop_task runs either before or after this, and that
2410 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2411 */
2412 guard(preempt)();
2413 if (p->cpus_ptr != &p->cpus_mask)
2414 __set_cpus_allowed_ptr(p, &ac);
2415 /*
2416 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2417 * regular cpus_mask, otherwise things that race (eg.
2418 * select_fallback_rq) get confused.
2419 */
2420 barrier();
2421 p->migration_disabled = 0;
2422 this_rq()->nr_pinned--;
2423 }
2424 EXPORT_SYMBOL_GPL(migrate_enable);
2425
rq_has_pinned_tasks(struct rq * rq)2426 static inline bool rq_has_pinned_tasks(struct rq *rq)
2427 {
2428 return rq->nr_pinned;
2429 }
2430
2431 /*
2432 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2433 * __set_cpus_allowed_ptr() and select_fallback_rq().
2434 */
is_cpu_allowed(struct task_struct * p,int cpu)2435 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2436 {
2437 /* When not in the task's cpumask, no point in looking further. */
2438 if (!task_allowed_on_cpu(p, cpu))
2439 return false;
2440
2441 /* migrate_disabled() must be allowed to finish. */
2442 if (is_migration_disabled(p))
2443 return cpu_online(cpu);
2444
2445 /* Non kernel threads are not allowed during either online or offline. */
2446 if (!(p->flags & PF_KTHREAD))
2447 return cpu_active(cpu);
2448
2449 /* KTHREAD_IS_PER_CPU is always allowed. */
2450 if (kthread_is_per_cpu(p))
2451 return cpu_online(cpu);
2452
2453 /* Regular kernel threads don't get to stay during offline. */
2454 if (cpu_dying(cpu))
2455 return false;
2456
2457 /* But are allowed during online. */
2458 return cpu_online(cpu);
2459 }
2460
2461 /*
2462 * This is how migration works:
2463 *
2464 * 1) we invoke migration_cpu_stop() on the target CPU using
2465 * stop_one_cpu().
2466 * 2) stopper starts to run (implicitly forcing the migrated thread
2467 * off the CPU)
2468 * 3) it checks whether the migrated task is still in the wrong runqueue.
2469 * 4) if it's in the wrong runqueue then the migration thread removes
2470 * it and puts it into the right queue.
2471 * 5) stopper completes and stop_one_cpu() returns and the migration
2472 * is done.
2473 */
2474
2475 /*
2476 * move_queued_task - move a queued task to new rq.
2477 *
2478 * Returns (locked) new rq. Old rq's lock is released.
2479 */
move_queued_task(struct rq * rq,struct rq_flags * rf,struct task_struct * p,int new_cpu)2480 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2481 struct task_struct *p, int new_cpu)
2482 {
2483 lockdep_assert_rq_held(rq);
2484
2485 deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2486 set_task_cpu(p, new_cpu);
2487 rq_unlock(rq, rf);
2488
2489 rq = cpu_rq(new_cpu);
2490
2491 rq_lock(rq, rf);
2492 WARN_ON_ONCE(task_cpu(p) != new_cpu);
2493 activate_task(rq, p, 0);
2494 wakeup_preempt(rq, p, 0);
2495
2496 return rq;
2497 }
2498
2499 struct migration_arg {
2500 struct task_struct *task;
2501 int dest_cpu;
2502 struct set_affinity_pending *pending;
2503 };
2504
2505 /*
2506 * @refs: number of wait_for_completion()
2507 * @stop_pending: is @stop_work in use
2508 */
2509 struct set_affinity_pending {
2510 refcount_t refs;
2511 unsigned int stop_pending;
2512 struct completion done;
2513 struct cpu_stop_work stop_work;
2514 struct migration_arg arg;
2515 };
2516
2517 /*
2518 * Move (not current) task off this CPU, onto the destination CPU. We're doing
2519 * this because either it can't run here any more (set_cpus_allowed()
2520 * away from this CPU, or CPU going down), or because we're
2521 * attempting to rebalance this task on exec (sched_exec).
2522 *
2523 * So we race with normal scheduler movements, but that's OK, as long
2524 * as the task is no longer on this CPU.
2525 */
__migrate_task(struct rq * rq,struct rq_flags * rf,struct task_struct * p,int dest_cpu)2526 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2527 struct task_struct *p, int dest_cpu)
2528 {
2529 /* Affinity changed (again). */
2530 if (!is_cpu_allowed(p, dest_cpu))
2531 return rq;
2532
2533 rq = move_queued_task(rq, rf, p, dest_cpu);
2534
2535 return rq;
2536 }
2537
2538 /*
2539 * migration_cpu_stop - this will be executed by a high-prio stopper thread
2540 * and performs thread migration by bumping thread off CPU then
2541 * 'pushing' onto another runqueue.
2542 */
migration_cpu_stop(void * data)2543 static int migration_cpu_stop(void *data)
2544 {
2545 struct migration_arg *arg = data;
2546 struct set_affinity_pending *pending = arg->pending;
2547 struct task_struct *p = arg->task;
2548 struct rq *rq = this_rq();
2549 bool complete = false;
2550 struct rq_flags rf;
2551
2552 /*
2553 * The original target CPU might have gone down and we might
2554 * be on another CPU but it doesn't matter.
2555 */
2556 local_irq_save(rf.flags);
2557 /*
2558 * We need to explicitly wake pending tasks before running
2559 * __migrate_task() such that we will not miss enforcing cpus_ptr
2560 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2561 */
2562 flush_smp_call_function_queue();
2563
2564 raw_spin_lock(&p->pi_lock);
2565 rq_lock(rq, &rf);
2566
2567 /*
2568 * If we were passed a pending, then ->stop_pending was set, thus
2569 * p->migration_pending must have remained stable.
2570 */
2571 WARN_ON_ONCE(pending && pending != p->migration_pending);
2572
2573 /*
2574 * If task_rq(p) != rq, it cannot be migrated here, because we're
2575 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2576 * we're holding p->pi_lock.
2577 */
2578 if (task_rq(p) == rq) {
2579 if (is_migration_disabled(p))
2580 goto out;
2581
2582 if (pending) {
2583 p->migration_pending = NULL;
2584 complete = true;
2585
2586 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2587 goto out;
2588 }
2589
2590 if (task_on_rq_queued(p)) {
2591 update_rq_clock(rq);
2592 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2593 } else {
2594 p->wake_cpu = arg->dest_cpu;
2595 }
2596
2597 /*
2598 * XXX __migrate_task() can fail, at which point we might end
2599 * up running on a dodgy CPU, AFAICT this can only happen
2600 * during CPU hotplug, at which point we'll get pushed out
2601 * anyway, so it's probably not a big deal.
2602 */
2603
2604 } else if (pending) {
2605 /*
2606 * This happens when we get migrated between migrate_enable()'s
2607 * preempt_enable() and scheduling the stopper task. At that
2608 * point we're a regular task again and not current anymore.
2609 *
2610 * A !PREEMPT kernel has a giant hole here, which makes it far
2611 * more likely.
2612 */
2613
2614 /*
2615 * The task moved before the stopper got to run. We're holding
2616 * ->pi_lock, so the allowed mask is stable - if it got
2617 * somewhere allowed, we're done.
2618 */
2619 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2620 p->migration_pending = NULL;
2621 complete = true;
2622 goto out;
2623 }
2624
2625 /*
2626 * When migrate_enable() hits a rq mis-match we can't reliably
2627 * determine is_migration_disabled() and so have to chase after
2628 * it.
2629 */
2630 WARN_ON_ONCE(!pending->stop_pending);
2631 preempt_disable();
2632 task_rq_unlock(rq, p, &rf);
2633 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2634 &pending->arg, &pending->stop_work);
2635 preempt_enable();
2636 return 0;
2637 }
2638 out:
2639 if (pending)
2640 pending->stop_pending = false;
2641 task_rq_unlock(rq, p, &rf);
2642
2643 if (complete)
2644 complete_all(&pending->done);
2645
2646 return 0;
2647 }
2648
push_cpu_stop(void * arg)2649 int push_cpu_stop(void *arg)
2650 {
2651 struct rq *lowest_rq = NULL, *rq = this_rq();
2652 struct task_struct *p = arg;
2653
2654 raw_spin_lock_irq(&p->pi_lock);
2655 raw_spin_rq_lock(rq);
2656
2657 if (task_rq(p) != rq)
2658 goto out_unlock;
2659
2660 if (is_migration_disabled(p)) {
2661 p->migration_flags |= MDF_PUSH;
2662 goto out_unlock;
2663 }
2664
2665 p->migration_flags &= ~MDF_PUSH;
2666
2667 if (p->sched_class->find_lock_rq)
2668 lowest_rq = p->sched_class->find_lock_rq(p, rq);
2669
2670 if (!lowest_rq)
2671 goto out_unlock;
2672
2673 // XXX validate p is still the highest prio task
2674 if (task_rq(p) == rq) {
2675 move_queued_task_locked(rq, lowest_rq, p);
2676 resched_curr(lowest_rq);
2677 }
2678
2679 double_unlock_balance(rq, lowest_rq);
2680
2681 out_unlock:
2682 rq->push_busy = false;
2683 raw_spin_rq_unlock(rq);
2684 raw_spin_unlock_irq(&p->pi_lock);
2685
2686 put_task_struct(p);
2687 return 0;
2688 }
2689
2690 /*
2691 * sched_class::set_cpus_allowed must do the below, but is not required to
2692 * actually call this function.
2693 */
set_cpus_allowed_common(struct task_struct * p,struct affinity_context * ctx)2694 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx)
2695 {
2696 if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2697 p->cpus_ptr = ctx->new_mask;
2698 return;
2699 }
2700
2701 cpumask_copy(&p->cpus_mask, ctx->new_mask);
2702 p->nr_cpus_allowed = cpumask_weight(ctx->new_mask);
2703
2704 /*
2705 * Swap in a new user_cpus_ptr if SCA_USER flag set
2706 */
2707 if (ctx->flags & SCA_USER)
2708 swap(p->user_cpus_ptr, ctx->user_mask);
2709 }
2710
2711 static void
__do_set_cpus_allowed(struct task_struct * p,struct affinity_context * ctx)2712 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx)
2713 {
2714 struct rq *rq = task_rq(p);
2715 bool queued, running;
2716
2717 /*
2718 * This here violates the locking rules for affinity, since we're only
2719 * supposed to change these variables while holding both rq->lock and
2720 * p->pi_lock.
2721 *
2722 * HOWEVER, it magically works, because ttwu() is the only code that
2723 * accesses these variables under p->pi_lock and only does so after
2724 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2725 * before finish_task().
2726 *
2727 * XXX do further audits, this smells like something putrid.
2728 */
2729 if (ctx->flags & SCA_MIGRATE_DISABLE)
2730 SCHED_WARN_ON(!p->on_cpu);
2731 else
2732 lockdep_assert_held(&p->pi_lock);
2733
2734 queued = task_on_rq_queued(p);
2735 running = task_current_donor(rq, p);
2736
2737 if (queued) {
2738 /*
2739 * Because __kthread_bind() calls this on blocked tasks without
2740 * holding rq->lock.
2741 */
2742 lockdep_assert_rq_held(rq);
2743 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2744 }
2745 if (running)
2746 put_prev_task(rq, p);
2747
2748 p->sched_class->set_cpus_allowed(p, ctx);
2749 mm_set_cpus_allowed(p->mm, ctx->new_mask);
2750
2751 if (queued)
2752 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2753 if (running)
2754 set_next_task(rq, p);
2755 }
2756
2757 /*
2758 * Used for kthread_bind() and select_fallback_rq(), in both cases the user
2759 * affinity (if any) should be destroyed too.
2760 */
do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask)2761 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2762 {
2763 struct affinity_context ac = {
2764 .new_mask = new_mask,
2765 .user_mask = NULL,
2766 .flags = SCA_USER, /* clear the user requested mask */
2767 };
2768 union cpumask_rcuhead {
2769 cpumask_t cpumask;
2770 struct rcu_head rcu;
2771 };
2772
2773 __do_set_cpus_allowed(p, &ac);
2774
2775 /*
2776 * Because this is called with p->pi_lock held, it is not possible
2777 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using
2778 * kfree_rcu().
2779 */
2780 kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu);
2781 }
2782
dup_user_cpus_ptr(struct task_struct * dst,struct task_struct * src,int node)2783 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2784 int node)
2785 {
2786 cpumask_t *user_mask;
2787 unsigned long flags;
2788
2789 /*
2790 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's
2791 * may differ by now due to racing.
2792 */
2793 dst->user_cpus_ptr = NULL;
2794
2795 /*
2796 * This check is racy and losing the race is a valid situation.
2797 * It is not worth the extra overhead of taking the pi_lock on
2798 * every fork/clone.
2799 */
2800 if (data_race(!src->user_cpus_ptr))
2801 return 0;
2802
2803 user_mask = alloc_user_cpus_ptr(node);
2804 if (!user_mask)
2805 return -ENOMEM;
2806
2807 /*
2808 * Use pi_lock to protect content of user_cpus_ptr
2809 *
2810 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent
2811 * do_set_cpus_allowed().
2812 */
2813 raw_spin_lock_irqsave(&src->pi_lock, flags);
2814 if (src->user_cpus_ptr) {
2815 swap(dst->user_cpus_ptr, user_mask);
2816 cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2817 }
2818 raw_spin_unlock_irqrestore(&src->pi_lock, flags);
2819
2820 if (unlikely(user_mask))
2821 kfree(user_mask);
2822
2823 return 0;
2824 }
2825
clear_user_cpus_ptr(struct task_struct * p)2826 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2827 {
2828 struct cpumask *user_mask = NULL;
2829
2830 swap(p->user_cpus_ptr, user_mask);
2831
2832 return user_mask;
2833 }
2834
release_user_cpus_ptr(struct task_struct * p)2835 void release_user_cpus_ptr(struct task_struct *p)
2836 {
2837 kfree(clear_user_cpus_ptr(p));
2838 }
2839
2840 /*
2841 * This function is wildly self concurrent; here be dragons.
2842 *
2843 *
2844 * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2845 * designated task is enqueued on an allowed CPU. If that task is currently
2846 * running, we have to kick it out using the CPU stopper.
2847 *
2848 * Migrate-Disable comes along and tramples all over our nice sandcastle.
2849 * Consider:
2850 *
2851 * Initial conditions: P0->cpus_mask = [0, 1]
2852 *
2853 * P0@CPU0 P1
2854 *
2855 * migrate_disable();
2856 * <preempted>
2857 * set_cpus_allowed_ptr(P0, [1]);
2858 *
2859 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2860 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2861 * This means we need the following scheme:
2862 *
2863 * P0@CPU0 P1
2864 *
2865 * migrate_disable();
2866 * <preempted>
2867 * set_cpus_allowed_ptr(P0, [1]);
2868 * <blocks>
2869 * <resumes>
2870 * migrate_enable();
2871 * __set_cpus_allowed_ptr();
2872 * <wakes local stopper>
2873 * `--> <woken on migration completion>
2874 *
2875 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2876 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2877 * task p are serialized by p->pi_lock, which we can leverage: the one that
2878 * should come into effect at the end of the Migrate-Disable region is the last
2879 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2880 * but we still need to properly signal those waiting tasks at the appropriate
2881 * moment.
2882 *
2883 * This is implemented using struct set_affinity_pending. The first
2884 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2885 * setup an instance of that struct and install it on the targeted task_struct.
2886 * Any and all further callers will reuse that instance. Those then wait for
2887 * a completion signaled at the tail of the CPU stopper callback (1), triggered
2888 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2889 *
2890 *
2891 * (1) In the cases covered above. There is one more where the completion is
2892 * signaled within affine_move_task() itself: when a subsequent affinity request
2893 * occurs after the stopper bailed out due to the targeted task still being
2894 * Migrate-Disable. Consider:
2895 *
2896 * Initial conditions: P0->cpus_mask = [0, 1]
2897 *
2898 * CPU0 P1 P2
2899 * <P0>
2900 * migrate_disable();
2901 * <preempted>
2902 * set_cpus_allowed_ptr(P0, [1]);
2903 * <blocks>
2904 * <migration/0>
2905 * migration_cpu_stop()
2906 * is_migration_disabled()
2907 * <bails>
2908 * set_cpus_allowed_ptr(P0, [0, 1]);
2909 * <signal completion>
2910 * <awakes>
2911 *
2912 * Note that the above is safe vs a concurrent migrate_enable(), as any
2913 * pending affinity completion is preceded by an uninstallation of
2914 * p->migration_pending done with p->pi_lock held.
2915 */
affine_move_task(struct rq * rq,struct task_struct * p,struct rq_flags * rf,int dest_cpu,unsigned int flags)2916 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2917 int dest_cpu, unsigned int flags)
2918 __releases(rq->lock)
2919 __releases(p->pi_lock)
2920 {
2921 struct set_affinity_pending my_pending = { }, *pending = NULL;
2922 bool stop_pending, complete = false;
2923
2924 /* Can the task run on the task's current CPU? If so, we're done */
2925 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2926 struct task_struct *push_task = NULL;
2927
2928 if ((flags & SCA_MIGRATE_ENABLE) &&
2929 (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2930 rq->push_busy = true;
2931 push_task = get_task_struct(p);
2932 }
2933
2934 /*
2935 * If there are pending waiters, but no pending stop_work,
2936 * then complete now.
2937 */
2938 pending = p->migration_pending;
2939 if (pending && !pending->stop_pending) {
2940 p->migration_pending = NULL;
2941 complete = true;
2942 }
2943
2944 preempt_disable();
2945 task_rq_unlock(rq, p, rf);
2946 if (push_task) {
2947 stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2948 p, &rq->push_work);
2949 }
2950 preempt_enable();
2951
2952 if (complete)
2953 complete_all(&pending->done);
2954
2955 return 0;
2956 }
2957
2958 if (!(flags & SCA_MIGRATE_ENABLE)) {
2959 /* serialized by p->pi_lock */
2960 if (!p->migration_pending) {
2961 /* Install the request */
2962 refcount_set(&my_pending.refs, 1);
2963 init_completion(&my_pending.done);
2964 my_pending.arg = (struct migration_arg) {
2965 .task = p,
2966 .dest_cpu = dest_cpu,
2967 .pending = &my_pending,
2968 };
2969
2970 p->migration_pending = &my_pending;
2971 } else {
2972 pending = p->migration_pending;
2973 refcount_inc(&pending->refs);
2974 /*
2975 * Affinity has changed, but we've already installed a
2976 * pending. migration_cpu_stop() *must* see this, else
2977 * we risk a completion of the pending despite having a
2978 * task on a disallowed CPU.
2979 *
2980 * Serialized by p->pi_lock, so this is safe.
2981 */
2982 pending->arg.dest_cpu = dest_cpu;
2983 }
2984 }
2985 pending = p->migration_pending;
2986 /*
2987 * - !MIGRATE_ENABLE:
2988 * we'll have installed a pending if there wasn't one already.
2989 *
2990 * - MIGRATE_ENABLE:
2991 * we're here because the current CPU isn't matching anymore,
2992 * the only way that can happen is because of a concurrent
2993 * set_cpus_allowed_ptr() call, which should then still be
2994 * pending completion.
2995 *
2996 * Either way, we really should have a @pending here.
2997 */
2998 if (WARN_ON_ONCE(!pending)) {
2999 task_rq_unlock(rq, p, rf);
3000 return -EINVAL;
3001 }
3002
3003 if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
3004 /*
3005 * MIGRATE_ENABLE gets here because 'p == current', but for
3006 * anything else we cannot do is_migration_disabled(), punt
3007 * and have the stopper function handle it all race-free.
3008 */
3009 stop_pending = pending->stop_pending;
3010 if (!stop_pending)
3011 pending->stop_pending = true;
3012
3013 if (flags & SCA_MIGRATE_ENABLE)
3014 p->migration_flags &= ~MDF_PUSH;
3015
3016 preempt_disable();
3017 task_rq_unlock(rq, p, rf);
3018 if (!stop_pending) {
3019 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
3020 &pending->arg, &pending->stop_work);
3021 }
3022 preempt_enable();
3023
3024 if (flags & SCA_MIGRATE_ENABLE)
3025 return 0;
3026 } else {
3027
3028 if (!is_migration_disabled(p)) {
3029 if (task_on_rq_queued(p))
3030 rq = move_queued_task(rq, rf, p, dest_cpu);
3031
3032 if (!pending->stop_pending) {
3033 p->migration_pending = NULL;
3034 complete = true;
3035 }
3036 }
3037 task_rq_unlock(rq, p, rf);
3038
3039 if (complete)
3040 complete_all(&pending->done);
3041 }
3042
3043 wait_for_completion(&pending->done);
3044
3045 if (refcount_dec_and_test(&pending->refs))
3046 wake_up_var(&pending->refs); /* No UaF, just an address */
3047
3048 /*
3049 * Block the original owner of &pending until all subsequent callers
3050 * have seen the completion and decremented the refcount
3051 */
3052 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
3053
3054 /* ARGH */
3055 WARN_ON_ONCE(my_pending.stop_pending);
3056
3057 return 0;
3058 }
3059
3060 /*
3061 * Called with both p->pi_lock and rq->lock held; drops both before returning.
3062 */
__set_cpus_allowed_ptr_locked(struct task_struct * p,struct affinity_context * ctx,struct rq * rq,struct rq_flags * rf)3063 static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
3064 struct affinity_context *ctx,
3065 struct rq *rq,
3066 struct rq_flags *rf)
3067 __releases(rq->lock)
3068 __releases(p->pi_lock)
3069 {
3070 const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
3071 const struct cpumask *cpu_valid_mask = cpu_active_mask;
3072 bool kthread = p->flags & PF_KTHREAD;
3073 unsigned int dest_cpu;
3074 int ret = 0;
3075
3076 update_rq_clock(rq);
3077
3078 if (kthread || is_migration_disabled(p)) {
3079 /*
3080 * Kernel threads are allowed on online && !active CPUs,
3081 * however, during cpu-hot-unplug, even these might get pushed
3082 * away if not KTHREAD_IS_PER_CPU.
3083 *
3084 * Specifically, migration_disabled() tasks must not fail the
3085 * cpumask_any_and_distribute() pick below, esp. so on
3086 * SCA_MIGRATE_ENABLE, otherwise we'll not call
3087 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
3088 */
3089 cpu_valid_mask = cpu_online_mask;
3090 }
3091
3092 if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) {
3093 ret = -EINVAL;
3094 goto out;
3095 }
3096
3097 /*
3098 * Must re-check here, to close a race against __kthread_bind(),
3099 * sched_setaffinity() is not guaranteed to observe the flag.
3100 */
3101 if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
3102 ret = -EINVAL;
3103 goto out;
3104 }
3105
3106 if (!(ctx->flags & SCA_MIGRATE_ENABLE)) {
3107 if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) {
3108 if (ctx->flags & SCA_USER)
3109 swap(p->user_cpus_ptr, ctx->user_mask);
3110 goto out;
3111 }
3112
3113 if (WARN_ON_ONCE(p == current &&
3114 is_migration_disabled(p) &&
3115 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) {
3116 ret = -EBUSY;
3117 goto out;
3118 }
3119 }
3120
3121 /*
3122 * Picking a ~random cpu helps in cases where we are changing affinity
3123 * for groups of tasks (ie. cpuset), so that load balancing is not
3124 * immediately required to distribute the tasks within their new mask.
3125 */
3126 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask);
3127 if (dest_cpu >= nr_cpu_ids) {
3128 ret = -EINVAL;
3129 goto out;
3130 }
3131
3132 __do_set_cpus_allowed(p, ctx);
3133
3134 return affine_move_task(rq, p, rf, dest_cpu, ctx->flags);
3135
3136 out:
3137 task_rq_unlock(rq, p, rf);
3138
3139 return ret;
3140 }
3141
3142 /*
3143 * Change a given task's CPU affinity. Migrate the thread to a
3144 * proper CPU and schedule it away if the CPU it's executing on
3145 * is removed from the allowed bitmask.
3146 *
3147 * NOTE: the caller must have a valid reference to the task, the
3148 * task must not exit() & deallocate itself prematurely. The
3149 * call is not atomic; no spinlocks may be held.
3150 */
__set_cpus_allowed_ptr(struct task_struct * p,struct affinity_context * ctx)3151 int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx)
3152 {
3153 struct rq_flags rf;
3154 struct rq *rq;
3155
3156 rq = task_rq_lock(p, &rf);
3157 /*
3158 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_*
3159 * flags are set.
3160 */
3161 if (p->user_cpus_ptr &&
3162 !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) &&
3163 cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr))
3164 ctx->new_mask = rq->scratch_mask;
3165
3166 return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf);
3167 }
3168
set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask)3169 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
3170 {
3171 struct affinity_context ac = {
3172 .new_mask = new_mask,
3173 .flags = 0,
3174 };
3175
3176 return __set_cpus_allowed_ptr(p, &ac);
3177 }
3178 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
3179
3180 /*
3181 * Change a given task's CPU affinity to the intersection of its current
3182 * affinity mask and @subset_mask, writing the resulting mask to @new_mask.
3183 * If user_cpus_ptr is defined, use it as the basis for restricting CPU
3184 * affinity or use cpu_online_mask instead.
3185 *
3186 * If the resulting mask is empty, leave the affinity unchanged and return
3187 * -EINVAL.
3188 */
restrict_cpus_allowed_ptr(struct task_struct * p,struct cpumask * new_mask,const struct cpumask * subset_mask)3189 static int restrict_cpus_allowed_ptr(struct task_struct *p,
3190 struct cpumask *new_mask,
3191 const struct cpumask *subset_mask)
3192 {
3193 struct affinity_context ac = {
3194 .new_mask = new_mask,
3195 .flags = 0,
3196 };
3197 struct rq_flags rf;
3198 struct rq *rq;
3199 int err;
3200
3201 rq = task_rq_lock(p, &rf);
3202
3203 /*
3204 * Forcefully restricting the affinity of a deadline task is
3205 * likely to cause problems, so fail and noisily override the
3206 * mask entirely.
3207 */
3208 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
3209 err = -EPERM;
3210 goto err_unlock;
3211 }
3212
3213 if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) {
3214 err = -EINVAL;
3215 goto err_unlock;
3216 }
3217
3218 return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf);
3219
3220 err_unlock:
3221 task_rq_unlock(rq, p, &rf);
3222 return err;
3223 }
3224
3225 /*
3226 * Restrict the CPU affinity of task @p so that it is a subset of
3227 * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the
3228 * old affinity mask. If the resulting mask is empty, we warn and walk
3229 * up the cpuset hierarchy until we find a suitable mask.
3230 */
force_compatible_cpus_allowed_ptr(struct task_struct * p)3231 void force_compatible_cpus_allowed_ptr(struct task_struct *p)
3232 {
3233 cpumask_var_t new_mask;
3234 const struct cpumask *override_mask = task_cpu_possible_mask(p);
3235
3236 alloc_cpumask_var(&new_mask, GFP_KERNEL);
3237
3238 /*
3239 * __migrate_task() can fail silently in the face of concurrent
3240 * offlining of the chosen destination CPU, so take the hotplug
3241 * lock to ensure that the migration succeeds.
3242 */
3243 cpus_read_lock();
3244 if (!cpumask_available(new_mask))
3245 goto out_set_mask;
3246
3247 if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
3248 goto out_free_mask;
3249
3250 /*
3251 * We failed to find a valid subset of the affinity mask for the
3252 * task, so override it based on its cpuset hierarchy.
3253 */
3254 cpuset_cpus_allowed(p, new_mask);
3255 override_mask = new_mask;
3256
3257 out_set_mask:
3258 if (printk_ratelimit()) {
3259 printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
3260 task_pid_nr(p), p->comm,
3261 cpumask_pr_args(override_mask));
3262 }
3263
3264 WARN_ON(set_cpus_allowed_ptr(p, override_mask));
3265 out_free_mask:
3266 cpus_read_unlock();
3267 free_cpumask_var(new_mask);
3268 }
3269
3270 /*
3271 * Restore the affinity of a task @p which was previously restricted by a
3272 * call to force_compatible_cpus_allowed_ptr().
3273 *
3274 * It is the caller's responsibility to serialise this with any calls to
3275 * force_compatible_cpus_allowed_ptr(@p).
3276 */
relax_compatible_cpus_allowed_ptr(struct task_struct * p)3277 void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
3278 {
3279 struct affinity_context ac = {
3280 .new_mask = task_user_cpus(p),
3281 .flags = 0,
3282 };
3283 int ret;
3284
3285 /*
3286 * Try to restore the old affinity mask with __sched_setaffinity().
3287 * Cpuset masking will be done there too.
3288 */
3289 ret = __sched_setaffinity(p, &ac);
3290 WARN_ON_ONCE(ret);
3291 }
3292
set_task_cpu(struct task_struct * p,unsigned int new_cpu)3293 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
3294 {
3295 #ifdef CONFIG_SCHED_DEBUG
3296 unsigned int state = READ_ONCE(p->__state);
3297
3298 /*
3299 * We should never call set_task_cpu() on a blocked task,
3300 * ttwu() will sort out the placement.
3301 */
3302 WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
3303
3304 /*
3305 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3306 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3307 * time relying on p->on_rq.
3308 */
3309 WARN_ON_ONCE(state == TASK_RUNNING &&
3310 p->sched_class == &fair_sched_class &&
3311 (p->on_rq && !task_on_rq_migrating(p)));
3312
3313 #ifdef CONFIG_LOCKDEP
3314 /*
3315 * The caller should hold either p->pi_lock or rq->lock, when changing
3316 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3317 *
3318 * sched_move_task() holds both and thus holding either pins the cgroup,
3319 * see task_group().
3320 *
3321 * Furthermore, all task_rq users should acquire both locks, see
3322 * task_rq_lock().
3323 */
3324 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
3325 lockdep_is_held(__rq_lockp(task_rq(p)))));
3326 #endif
3327 /*
3328 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3329 */
3330 WARN_ON_ONCE(!cpu_online(new_cpu));
3331
3332 WARN_ON_ONCE(is_migration_disabled(p));
3333 #endif
3334
3335 trace_sched_migrate_task(p, new_cpu);
3336
3337 if (task_cpu(p) != new_cpu) {
3338 if (p->sched_class->migrate_task_rq)
3339 p->sched_class->migrate_task_rq(p, new_cpu);
3340 p->se.nr_migrations++;
3341 rseq_migrate(p);
3342 sched_mm_cid_migrate_from(p);
3343 perf_event_task_migrate(p);
3344 }
3345
3346 __set_task_cpu(p, new_cpu);
3347 }
3348
3349 #ifdef CONFIG_NUMA_BALANCING
__migrate_swap_task(struct task_struct * p,int cpu)3350 static void __migrate_swap_task(struct task_struct *p, int cpu)
3351 {
3352 if (task_on_rq_queued(p)) {
3353 struct rq *src_rq, *dst_rq;
3354 struct rq_flags srf, drf;
3355
3356 src_rq = task_rq(p);
3357 dst_rq = cpu_rq(cpu);
3358
3359 rq_pin_lock(src_rq, &srf);
3360 rq_pin_lock(dst_rq, &drf);
3361
3362 move_queued_task_locked(src_rq, dst_rq, p);
3363 wakeup_preempt(dst_rq, p, 0);
3364
3365 rq_unpin_lock(dst_rq, &drf);
3366 rq_unpin_lock(src_rq, &srf);
3367
3368 } else {
3369 /*
3370 * Task isn't running anymore; make it appear like we migrated
3371 * it before it went to sleep. This means on wakeup we make the
3372 * previous CPU our target instead of where it really is.
3373 */
3374 p->wake_cpu = cpu;
3375 }
3376 }
3377
3378 struct migration_swap_arg {
3379 struct task_struct *src_task, *dst_task;
3380 int src_cpu, dst_cpu;
3381 };
3382
migrate_swap_stop(void * data)3383 static int migrate_swap_stop(void *data)
3384 {
3385 struct migration_swap_arg *arg = data;
3386 struct rq *src_rq, *dst_rq;
3387
3388 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3389 return -EAGAIN;
3390
3391 src_rq = cpu_rq(arg->src_cpu);
3392 dst_rq = cpu_rq(arg->dst_cpu);
3393
3394 guard(double_raw_spinlock)(&arg->src_task->pi_lock, &arg->dst_task->pi_lock);
3395 guard(double_rq_lock)(src_rq, dst_rq);
3396
3397 if (task_cpu(arg->dst_task) != arg->dst_cpu)
3398 return -EAGAIN;
3399
3400 if (task_cpu(arg->src_task) != arg->src_cpu)
3401 return -EAGAIN;
3402
3403 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
3404 return -EAGAIN;
3405
3406 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
3407 return -EAGAIN;
3408
3409 __migrate_swap_task(arg->src_task, arg->dst_cpu);
3410 __migrate_swap_task(arg->dst_task, arg->src_cpu);
3411
3412 return 0;
3413 }
3414
3415 /*
3416 * Cross migrate two tasks
3417 */
migrate_swap(struct task_struct * cur,struct task_struct * p,int target_cpu,int curr_cpu)3418 int migrate_swap(struct task_struct *cur, struct task_struct *p,
3419 int target_cpu, int curr_cpu)
3420 {
3421 struct migration_swap_arg arg;
3422 int ret = -EINVAL;
3423
3424 arg = (struct migration_swap_arg){
3425 .src_task = cur,
3426 .src_cpu = curr_cpu,
3427 .dst_task = p,
3428 .dst_cpu = target_cpu,
3429 };
3430
3431 if (arg.src_cpu == arg.dst_cpu)
3432 goto out;
3433
3434 /*
3435 * These three tests are all lockless; this is OK since all of them
3436 * will be re-checked with proper locks held further down the line.
3437 */
3438 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3439 goto out;
3440
3441 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
3442 goto out;
3443
3444 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
3445 goto out;
3446
3447 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
3448 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3449
3450 out:
3451 return ret;
3452 }
3453 #endif /* CONFIG_NUMA_BALANCING */
3454
3455 /***
3456 * kick_process - kick a running thread to enter/exit the kernel
3457 * @p: the to-be-kicked thread
3458 *
3459 * Cause a process which is running on another CPU to enter
3460 * kernel-mode, without any delay. (to get signals handled.)
3461 *
3462 * NOTE: this function doesn't have to take the runqueue lock,
3463 * because all it wants to ensure is that the remote task enters
3464 * the kernel. If the IPI races and the task has been migrated
3465 * to another CPU then no harm is done and the purpose has been
3466 * achieved as well.
3467 */
kick_process(struct task_struct * p)3468 void kick_process(struct task_struct *p)
3469 {
3470 guard(preempt)();
3471 int cpu = task_cpu(p);
3472
3473 if ((cpu != smp_processor_id()) && task_curr(p))
3474 smp_send_reschedule(cpu);
3475 }
3476 EXPORT_SYMBOL_GPL(kick_process);
3477
3478 /*
3479 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3480 *
3481 * A few notes on cpu_active vs cpu_online:
3482 *
3483 * - cpu_active must be a subset of cpu_online
3484 *
3485 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3486 * see __set_cpus_allowed_ptr(). At this point the newly online
3487 * CPU isn't yet part of the sched domains, and balancing will not
3488 * see it.
3489 *
3490 * - on CPU-down we clear cpu_active() to mask the sched domains and
3491 * avoid the load balancer to place new tasks on the to be removed
3492 * CPU. Existing tasks will remain running there and will be taken
3493 * off.
3494 *
3495 * This means that fallback selection must not select !active CPUs.
3496 * And can assume that any active CPU must be online. Conversely
3497 * select_task_rq() below may allow selection of !active CPUs in order
3498 * to satisfy the above rules.
3499 */
select_fallback_rq(int cpu,struct task_struct * p)3500 static int select_fallback_rq(int cpu, struct task_struct *p)
3501 {
3502 int nid = cpu_to_node(cpu);
3503 const struct cpumask *nodemask = NULL;
3504 enum { cpuset, possible, fail } state = cpuset;
3505 int dest_cpu;
3506
3507 /*
3508 * If the node that the CPU is on has been offlined, cpu_to_node()
3509 * will return -1. There is no CPU on the node, and we should
3510 * select the CPU on the other node.
3511 */
3512 if (nid != -1) {
3513 nodemask = cpumask_of_node(nid);
3514
3515 /* Look for allowed, online CPU in same node. */
3516 for_each_cpu(dest_cpu, nodemask) {
3517 if (is_cpu_allowed(p, dest_cpu))
3518 return dest_cpu;
3519 }
3520 }
3521
3522 for (;;) {
3523 /* Any allowed, online CPU? */
3524 for_each_cpu(dest_cpu, p->cpus_ptr) {
3525 if (!is_cpu_allowed(p, dest_cpu))
3526 continue;
3527
3528 goto out;
3529 }
3530
3531 /* No more Mr. Nice Guy. */
3532 switch (state) {
3533 case cpuset:
3534 if (cpuset_cpus_allowed_fallback(p)) {
3535 state = possible;
3536 break;
3537 }
3538 fallthrough;
3539 case possible:
3540 /*
3541 * XXX When called from select_task_rq() we only
3542 * hold p->pi_lock and again violate locking order.
3543 *
3544 * More yuck to audit.
3545 */
3546 do_set_cpus_allowed(p, task_cpu_fallback_mask(p));
3547 state = fail;
3548 break;
3549 case fail:
3550 BUG();
3551 break;
3552 }
3553 }
3554
3555 out:
3556 if (state != cpuset) {
3557 /*
3558 * Don't tell them about moving exiting tasks or
3559 * kernel threads (both mm NULL), since they never
3560 * leave kernel.
3561 */
3562 if (p->mm && printk_ratelimit()) {
3563 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3564 task_pid_nr(p), p->comm, cpu);
3565 }
3566 }
3567
3568 return dest_cpu;
3569 }
3570
3571 /*
3572 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3573 */
3574 static inline
select_task_rq(struct task_struct * p,int cpu,int * wake_flags)3575 int select_task_rq(struct task_struct *p, int cpu, int *wake_flags)
3576 {
3577 lockdep_assert_held(&p->pi_lock);
3578
3579 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) {
3580 cpu = p->sched_class->select_task_rq(p, cpu, *wake_flags);
3581 *wake_flags |= WF_RQ_SELECTED;
3582 } else {
3583 cpu = cpumask_any(p->cpus_ptr);
3584 }
3585
3586 /*
3587 * In order not to call set_task_cpu() on a blocking task we need
3588 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3589 * CPU.
3590 *
3591 * Since this is common to all placement strategies, this lives here.
3592 *
3593 * [ this allows ->select_task() to simply return task_cpu(p) and
3594 * not worry about this generic constraint ]
3595 */
3596 if (unlikely(!is_cpu_allowed(p, cpu)))
3597 cpu = select_fallback_rq(task_cpu(p), p);
3598
3599 return cpu;
3600 }
3601
sched_set_stop_task(int cpu,struct task_struct * stop)3602 void sched_set_stop_task(int cpu, struct task_struct *stop)
3603 {
3604 static struct lock_class_key stop_pi_lock;
3605 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3606 struct task_struct *old_stop = cpu_rq(cpu)->stop;
3607
3608 if (stop) {
3609 /*
3610 * Make it appear like a SCHED_FIFO task, its something
3611 * userspace knows about and won't get confused about.
3612 *
3613 * Also, it will make PI more or less work without too
3614 * much confusion -- but then, stop work should not
3615 * rely on PI working anyway.
3616 */
3617 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m);
3618
3619 stop->sched_class = &stop_sched_class;
3620
3621 /*
3622 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3623 * adjust the effective priority of a task. As a result,
3624 * rt_mutex_setprio() can trigger (RT) balancing operations,
3625 * which can then trigger wakeups of the stop thread to push
3626 * around the current task.
3627 *
3628 * The stop task itself will never be part of the PI-chain, it
3629 * never blocks, therefore that ->pi_lock recursion is safe.
3630 * Tell lockdep about this by placing the stop->pi_lock in its
3631 * own class.
3632 */
3633 lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3634 }
3635
3636 cpu_rq(cpu)->stop = stop;
3637
3638 if (old_stop) {
3639 /*
3640 * Reset it back to a normal scheduling class so that
3641 * it can die in pieces.
3642 */
3643 old_stop->sched_class = &rt_sched_class;
3644 }
3645 }
3646
3647 #else /* CONFIG_SMP */
3648
migrate_disable_switch(struct rq * rq,struct task_struct * p)3649 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3650
rq_has_pinned_tasks(struct rq * rq)3651 static inline bool rq_has_pinned_tasks(struct rq *rq)
3652 {
3653 return false;
3654 }
3655
3656 #endif /* !CONFIG_SMP */
3657
3658 static void
ttwu_stat(struct task_struct * p,int cpu,int wake_flags)3659 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3660 {
3661 struct rq *rq;
3662
3663 if (!schedstat_enabled())
3664 return;
3665
3666 rq = this_rq();
3667
3668 #ifdef CONFIG_SMP
3669 if (cpu == rq->cpu) {
3670 __schedstat_inc(rq->ttwu_local);
3671 __schedstat_inc(p->stats.nr_wakeups_local);
3672 } else {
3673 struct sched_domain *sd;
3674
3675 __schedstat_inc(p->stats.nr_wakeups_remote);
3676
3677 guard(rcu)();
3678 for_each_domain(rq->cpu, sd) {
3679 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3680 __schedstat_inc(sd->ttwu_wake_remote);
3681 break;
3682 }
3683 }
3684 }
3685
3686 if (wake_flags & WF_MIGRATED)
3687 __schedstat_inc(p->stats.nr_wakeups_migrate);
3688 #endif /* CONFIG_SMP */
3689
3690 __schedstat_inc(rq->ttwu_count);
3691 __schedstat_inc(p->stats.nr_wakeups);
3692
3693 if (wake_flags & WF_SYNC)
3694 __schedstat_inc(p->stats.nr_wakeups_sync);
3695 }
3696
3697 /*
3698 * Mark the task runnable.
3699 */
ttwu_do_wakeup(struct task_struct * p)3700 static inline void ttwu_do_wakeup(struct task_struct *p)
3701 {
3702 WRITE_ONCE(p->__state, TASK_RUNNING);
3703 trace_sched_wakeup(p);
3704 }
3705
3706 static void
ttwu_do_activate(struct rq * rq,struct task_struct * p,int wake_flags,struct rq_flags * rf)3707 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3708 struct rq_flags *rf)
3709 {
3710 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3711
3712 lockdep_assert_rq_held(rq);
3713
3714 if (p->sched_contributes_to_load)
3715 rq->nr_uninterruptible--;
3716
3717 #ifdef CONFIG_SMP
3718 if (wake_flags & WF_RQ_SELECTED)
3719 en_flags |= ENQUEUE_RQ_SELECTED;
3720 if (wake_flags & WF_MIGRATED)
3721 en_flags |= ENQUEUE_MIGRATED;
3722 else
3723 #endif
3724 if (p->in_iowait) {
3725 delayacct_blkio_end(p);
3726 atomic_dec(&task_rq(p)->nr_iowait);
3727 }
3728
3729 activate_task(rq, p, en_flags);
3730 wakeup_preempt(rq, p, wake_flags);
3731
3732 ttwu_do_wakeup(p);
3733
3734 #ifdef CONFIG_SMP
3735 if (p->sched_class->task_woken) {
3736 /*
3737 * Our task @p is fully woken up and running; so it's safe to
3738 * drop the rq->lock, hereafter rq is only used for statistics.
3739 */
3740 rq_unpin_lock(rq, rf);
3741 p->sched_class->task_woken(rq, p);
3742 rq_repin_lock(rq, rf);
3743 }
3744
3745 if (rq->idle_stamp) {
3746 u64 delta = rq_clock(rq) - rq->idle_stamp;
3747 u64 max = 2*rq->max_idle_balance_cost;
3748
3749 update_avg(&rq->avg_idle, delta);
3750
3751 if (rq->avg_idle > max)
3752 rq->avg_idle = max;
3753
3754 rq->idle_stamp = 0;
3755 }
3756 #endif
3757 }
3758
3759 /*
3760 * Consider @p being inside a wait loop:
3761 *
3762 * for (;;) {
3763 * set_current_state(TASK_UNINTERRUPTIBLE);
3764 *
3765 * if (CONDITION)
3766 * break;
3767 *
3768 * schedule();
3769 * }
3770 * __set_current_state(TASK_RUNNING);
3771 *
3772 * between set_current_state() and schedule(). In this case @p is still
3773 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3774 * an atomic manner.
3775 *
3776 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3777 * then schedule() must still happen and p->state can be changed to
3778 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3779 * need to do a full wakeup with enqueue.
3780 *
3781 * Returns: %true when the wakeup is done,
3782 * %false otherwise.
3783 */
ttwu_runnable(struct task_struct * p,int wake_flags)3784 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3785 {
3786 struct rq_flags rf;
3787 struct rq *rq;
3788 int ret = 0;
3789
3790 rq = __task_rq_lock(p, &rf);
3791 if (task_on_rq_queued(p)) {
3792 update_rq_clock(rq);
3793 if (p->se.sched_delayed)
3794 enqueue_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_DELAYED);
3795 if (!task_on_cpu(rq, p)) {
3796 /*
3797 * When on_rq && !on_cpu the task is preempted, see if
3798 * it should preempt the task that is current now.
3799 */
3800 wakeup_preempt(rq, p, wake_flags);
3801 }
3802 ttwu_do_wakeup(p);
3803 ret = 1;
3804 }
3805 __task_rq_unlock(rq, &rf);
3806
3807 return ret;
3808 }
3809
3810 #ifdef CONFIG_SMP
sched_ttwu_pending(void * arg)3811 void sched_ttwu_pending(void *arg)
3812 {
3813 struct llist_node *llist = arg;
3814 struct rq *rq = this_rq();
3815 struct task_struct *p, *t;
3816 struct rq_flags rf;
3817
3818 if (!llist)
3819 return;
3820
3821 rq_lock_irqsave(rq, &rf);
3822 update_rq_clock(rq);
3823
3824 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3825 if (WARN_ON_ONCE(p->on_cpu))
3826 smp_cond_load_acquire(&p->on_cpu, !VAL);
3827
3828 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3829 set_task_cpu(p, cpu_of(rq));
3830
3831 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3832 }
3833
3834 /*
3835 * Must be after enqueueing at least once task such that
3836 * idle_cpu() does not observe a false-negative -- if it does,
3837 * it is possible for select_idle_siblings() to stack a number
3838 * of tasks on this CPU during that window.
3839 *
3840 * It is OK to clear ttwu_pending when another task pending.
3841 * We will receive IPI after local IRQ enabled and then enqueue it.
3842 * Since now nr_running > 0, idle_cpu() will always get correct result.
3843 */
3844 WRITE_ONCE(rq->ttwu_pending, 0);
3845 rq_unlock_irqrestore(rq, &rf);
3846 }
3847
3848 /*
3849 * Prepare the scene for sending an IPI for a remote smp_call
3850 *
3851 * Returns true if the caller can proceed with sending the IPI.
3852 * Returns false otherwise.
3853 */
call_function_single_prep_ipi(int cpu)3854 bool call_function_single_prep_ipi(int cpu)
3855 {
3856 if (set_nr_if_polling(cpu_rq(cpu)->idle)) {
3857 trace_sched_wake_idle_without_ipi(cpu);
3858 return false;
3859 }
3860
3861 return true;
3862 }
3863
3864 /*
3865 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3866 * necessary. The wakee CPU on receipt of the IPI will queue the task
3867 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3868 * of the wakeup instead of the waker.
3869 */
__ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)3870 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3871 {
3872 struct rq *rq = cpu_rq(cpu);
3873
3874 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3875
3876 WRITE_ONCE(rq->ttwu_pending, 1);
3877 __smp_call_single_queue(cpu, &p->wake_entry.llist);
3878 }
3879
wake_up_if_idle(int cpu)3880 void wake_up_if_idle(int cpu)
3881 {
3882 struct rq *rq = cpu_rq(cpu);
3883
3884 guard(rcu)();
3885 if (is_idle_task(rcu_dereference(rq->curr))) {
3886 guard(rq_lock_irqsave)(rq);
3887 if (is_idle_task(rq->curr))
3888 resched_curr(rq);
3889 }
3890 }
3891
cpus_equal_capacity(int this_cpu,int that_cpu)3892 bool cpus_equal_capacity(int this_cpu, int that_cpu)
3893 {
3894 if (!sched_asym_cpucap_active())
3895 return true;
3896
3897 if (this_cpu == that_cpu)
3898 return true;
3899
3900 return arch_scale_cpu_capacity(this_cpu) == arch_scale_cpu_capacity(that_cpu);
3901 }
3902
cpus_share_cache(int this_cpu,int that_cpu)3903 bool cpus_share_cache(int this_cpu, int that_cpu)
3904 {
3905 if (this_cpu == that_cpu)
3906 return true;
3907
3908 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3909 }
3910
3911 /*
3912 * Whether CPUs are share cache resources, which means LLC on non-cluster
3913 * machines and LLC tag or L2 on machines with clusters.
3914 */
cpus_share_resources(int this_cpu,int that_cpu)3915 bool cpus_share_resources(int this_cpu, int that_cpu)
3916 {
3917 if (this_cpu == that_cpu)
3918 return true;
3919
3920 return per_cpu(sd_share_id, this_cpu) == per_cpu(sd_share_id, that_cpu);
3921 }
3922
ttwu_queue_cond(struct task_struct * p,int cpu)3923 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
3924 {
3925 /*
3926 * The BPF scheduler may depend on select_task_rq() being invoked during
3927 * wakeups. In addition, @p may end up executing on a different CPU
3928 * regardless of what happens in the wakeup path making the ttwu_queue
3929 * optimization less meaningful. Skip if on SCX.
3930 */
3931 if (task_on_scx(p))
3932 return false;
3933
3934 /*
3935 * Do not complicate things with the async wake_list while the CPU is
3936 * in hotplug state.
3937 */
3938 if (!cpu_active(cpu))
3939 return false;
3940
3941 /* Ensure the task will still be allowed to run on the CPU. */
3942 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
3943 return false;
3944
3945 /*
3946 * If the CPU does not share cache, then queue the task on the
3947 * remote rqs wakelist to avoid accessing remote data.
3948 */
3949 if (!cpus_share_cache(smp_processor_id(), cpu))
3950 return true;
3951
3952 if (cpu == smp_processor_id())
3953 return false;
3954
3955 /*
3956 * If the wakee cpu is idle, or the task is descheduling and the
3957 * only running task on the CPU, then use the wakelist to offload
3958 * the task activation to the idle (or soon-to-be-idle) CPU as
3959 * the current CPU is likely busy. nr_running is checked to
3960 * avoid unnecessary task stacking.
3961 *
3962 * Note that we can only get here with (wakee) p->on_rq=0,
3963 * p->on_cpu can be whatever, we've done the dequeue, so
3964 * the wakee has been accounted out of ->nr_running.
3965 */
3966 if (!cpu_rq(cpu)->nr_running)
3967 return true;
3968
3969 return false;
3970 }
3971
ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)3972 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3973 {
3974 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) {
3975 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
3976 __ttwu_queue_wakelist(p, cpu, wake_flags);
3977 return true;
3978 }
3979
3980 return false;
3981 }
3982
3983 #else /* !CONFIG_SMP */
3984
ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)3985 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3986 {
3987 return false;
3988 }
3989
3990 #endif /* CONFIG_SMP */
3991
ttwu_queue(struct task_struct * p,int cpu,int wake_flags)3992 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
3993 {
3994 struct rq *rq = cpu_rq(cpu);
3995 struct rq_flags rf;
3996
3997 if (ttwu_queue_wakelist(p, cpu, wake_flags))
3998 return;
3999
4000 rq_lock(rq, &rf);
4001 update_rq_clock(rq);
4002 ttwu_do_activate(rq, p, wake_flags, &rf);
4003 rq_unlock(rq, &rf);
4004 }
4005
4006 /*
4007 * Invoked from try_to_wake_up() to check whether the task can be woken up.
4008 *
4009 * The caller holds p::pi_lock if p != current or has preemption
4010 * disabled when p == current.
4011 *
4012 * The rules of saved_state:
4013 *
4014 * The related locking code always holds p::pi_lock when updating
4015 * p::saved_state, which means the code is fully serialized in both cases.
4016 *
4017 * For PREEMPT_RT, the lock wait and lock wakeups happen via TASK_RTLOCK_WAIT.
4018 * No other bits set. This allows to distinguish all wakeup scenarios.
4019 *
4020 * For FREEZER, the wakeup happens via TASK_FROZEN. No other bits set. This
4021 * allows us to prevent early wakeup of tasks before they can be run on
4022 * asymmetric ISA architectures (eg ARMv9).
4023 */
4024 static __always_inline
ttwu_state_match(struct task_struct * p,unsigned int state,int * success)4025 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
4026 {
4027 int match;
4028
4029 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
4030 WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
4031 state != TASK_RTLOCK_WAIT);
4032 }
4033
4034 *success = !!(match = __task_state_match(p, state));
4035
4036 /*
4037 * Saved state preserves the task state across blocking on
4038 * an RT lock or TASK_FREEZABLE tasks. If the state matches,
4039 * set p::saved_state to TASK_RUNNING, but do not wake the task
4040 * because it waits for a lock wakeup or __thaw_task(). Also
4041 * indicate success because from the regular waker's point of
4042 * view this has succeeded.
4043 *
4044 * After acquiring the lock the task will restore p::__state
4045 * from p::saved_state which ensures that the regular
4046 * wakeup is not lost. The restore will also set
4047 * p::saved_state to TASK_RUNNING so any further tests will
4048 * not result in false positives vs. @success
4049 */
4050 if (match < 0)
4051 p->saved_state = TASK_RUNNING;
4052
4053 return match > 0;
4054 }
4055
4056 /*
4057 * Notes on Program-Order guarantees on SMP systems.
4058 *
4059 * MIGRATION
4060 *
4061 * The basic program-order guarantee on SMP systems is that when a task [t]
4062 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
4063 * execution on its new CPU [c1].
4064 *
4065 * For migration (of runnable tasks) this is provided by the following means:
4066 *
4067 * A) UNLOCK of the rq(c0)->lock scheduling out task t
4068 * B) migration for t is required to synchronize *both* rq(c0)->lock and
4069 * rq(c1)->lock (if not at the same time, then in that order).
4070 * C) LOCK of the rq(c1)->lock scheduling in task
4071 *
4072 * Release/acquire chaining guarantees that B happens after A and C after B.
4073 * Note: the CPU doing B need not be c0 or c1
4074 *
4075 * Example:
4076 *
4077 * CPU0 CPU1 CPU2
4078 *
4079 * LOCK rq(0)->lock
4080 * sched-out X
4081 * sched-in Y
4082 * UNLOCK rq(0)->lock
4083 *
4084 * LOCK rq(0)->lock // orders against CPU0
4085 * dequeue X
4086 * UNLOCK rq(0)->lock
4087 *
4088 * LOCK rq(1)->lock
4089 * enqueue X
4090 * UNLOCK rq(1)->lock
4091 *
4092 * LOCK rq(1)->lock // orders against CPU2
4093 * sched-out Z
4094 * sched-in X
4095 * UNLOCK rq(1)->lock
4096 *
4097 *
4098 * BLOCKING -- aka. SLEEP + WAKEUP
4099 *
4100 * For blocking we (obviously) need to provide the same guarantee as for
4101 * migration. However the means are completely different as there is no lock
4102 * chain to provide order. Instead we do:
4103 *
4104 * 1) smp_store_release(X->on_cpu, 0) -- finish_task()
4105 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
4106 *
4107 * Example:
4108 *
4109 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
4110 *
4111 * LOCK rq(0)->lock LOCK X->pi_lock
4112 * dequeue X
4113 * sched-out X
4114 * smp_store_release(X->on_cpu, 0);
4115 *
4116 * smp_cond_load_acquire(&X->on_cpu, !VAL);
4117 * X->state = WAKING
4118 * set_task_cpu(X,2)
4119 *
4120 * LOCK rq(2)->lock
4121 * enqueue X
4122 * X->state = RUNNING
4123 * UNLOCK rq(2)->lock
4124 *
4125 * LOCK rq(2)->lock // orders against CPU1
4126 * sched-out Z
4127 * sched-in X
4128 * UNLOCK rq(2)->lock
4129 *
4130 * UNLOCK X->pi_lock
4131 * UNLOCK rq(0)->lock
4132 *
4133 *
4134 * However, for wakeups there is a second guarantee we must provide, namely we
4135 * must ensure that CONDITION=1 done by the caller can not be reordered with
4136 * accesses to the task state; see try_to_wake_up() and set_current_state().
4137 */
4138
4139 /**
4140 * try_to_wake_up - wake up a thread
4141 * @p: the thread to be awakened
4142 * @state: the mask of task states that can be woken
4143 * @wake_flags: wake modifier flags (WF_*)
4144 *
4145 * Conceptually does:
4146 *
4147 * If (@state & @p->state) @p->state = TASK_RUNNING.
4148 *
4149 * If the task was not queued/runnable, also place it back on a runqueue.
4150 *
4151 * This function is atomic against schedule() which would dequeue the task.
4152 *
4153 * It issues a full memory barrier before accessing @p->state, see the comment
4154 * with set_current_state().
4155 *
4156 * Uses p->pi_lock to serialize against concurrent wake-ups.
4157 *
4158 * Relies on p->pi_lock stabilizing:
4159 * - p->sched_class
4160 * - p->cpus_ptr
4161 * - p->sched_task_group
4162 * in order to do migration, see its use of select_task_rq()/set_task_cpu().
4163 *
4164 * Tries really hard to only take one task_rq(p)->lock for performance.
4165 * Takes rq->lock in:
4166 * - ttwu_runnable() -- old rq, unavoidable, see comment there;
4167 * - ttwu_queue() -- new rq, for enqueue of the task;
4168 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
4169 *
4170 * As a consequence we race really badly with just about everything. See the
4171 * many memory barriers and their comments for details.
4172 *
4173 * Return: %true if @p->state changes (an actual wakeup was done),
4174 * %false otherwise.
4175 */
try_to_wake_up(struct task_struct * p,unsigned int state,int wake_flags)4176 int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
4177 {
4178 guard(preempt)();
4179 int cpu, success = 0;
4180
4181 wake_flags |= WF_TTWU;
4182
4183 if (p == current) {
4184 /*
4185 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
4186 * == smp_processor_id()'. Together this means we can special
4187 * case the whole 'p->on_rq && ttwu_runnable()' case below
4188 * without taking any locks.
4189 *
4190 * Specifically, given current runs ttwu() we must be before
4191 * schedule()'s block_task(), as such this must not observe
4192 * sched_delayed.
4193 *
4194 * In particular:
4195 * - we rely on Program-Order guarantees for all the ordering,
4196 * - we're serialized against set_special_state() by virtue of
4197 * it disabling IRQs (this allows not taking ->pi_lock).
4198 */
4199 SCHED_WARN_ON(p->se.sched_delayed);
4200 if (!ttwu_state_match(p, state, &success))
4201 goto out;
4202
4203 trace_sched_waking(p);
4204 ttwu_do_wakeup(p);
4205 goto out;
4206 }
4207
4208 /*
4209 * If we are going to wake up a thread waiting for CONDITION we
4210 * need to ensure that CONDITION=1 done by the caller can not be
4211 * reordered with p->state check below. This pairs with smp_store_mb()
4212 * in set_current_state() that the waiting thread does.
4213 */
4214 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
4215 smp_mb__after_spinlock();
4216 if (!ttwu_state_match(p, state, &success))
4217 break;
4218
4219 trace_sched_waking(p);
4220
4221 /*
4222 * Ensure we load p->on_rq _after_ p->state, otherwise it would
4223 * be possible to, falsely, observe p->on_rq == 0 and get stuck
4224 * in smp_cond_load_acquire() below.
4225 *
4226 * sched_ttwu_pending() try_to_wake_up()
4227 * STORE p->on_rq = 1 LOAD p->state
4228 * UNLOCK rq->lock
4229 *
4230 * __schedule() (switch to task 'p')
4231 * LOCK rq->lock smp_rmb();
4232 * smp_mb__after_spinlock();
4233 * UNLOCK rq->lock
4234 *
4235 * [task p]
4236 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
4237 *
4238 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4239 * __schedule(). See the comment for smp_mb__after_spinlock().
4240 *
4241 * A similar smp_rmb() lives in __task_needs_rq_lock().
4242 */
4243 smp_rmb();
4244 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
4245 break;
4246
4247 #ifdef CONFIG_SMP
4248 /*
4249 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4250 * possible to, falsely, observe p->on_cpu == 0.
4251 *
4252 * One must be running (->on_cpu == 1) in order to remove oneself
4253 * from the runqueue.
4254 *
4255 * __schedule() (switch to task 'p') try_to_wake_up()
4256 * STORE p->on_cpu = 1 LOAD p->on_rq
4257 * UNLOCK rq->lock
4258 *
4259 * __schedule() (put 'p' to sleep)
4260 * LOCK rq->lock smp_rmb();
4261 * smp_mb__after_spinlock();
4262 * STORE p->on_rq = 0 LOAD p->on_cpu
4263 *
4264 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4265 * __schedule(). See the comment for smp_mb__after_spinlock().
4266 *
4267 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4268 * schedule()'s deactivate_task() has 'happened' and p will no longer
4269 * care about it's own p->state. See the comment in __schedule().
4270 */
4271 smp_acquire__after_ctrl_dep();
4272
4273 /*
4274 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4275 * == 0), which means we need to do an enqueue, change p->state to
4276 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4277 * enqueue, such as ttwu_queue_wakelist().
4278 */
4279 WRITE_ONCE(p->__state, TASK_WAKING);
4280
4281 /*
4282 * If the owning (remote) CPU is still in the middle of schedule() with
4283 * this task as prev, considering queueing p on the remote CPUs wake_list
4284 * which potentially sends an IPI instead of spinning on p->on_cpu to
4285 * let the waker make forward progress. This is safe because IRQs are
4286 * disabled and the IPI will deliver after on_cpu is cleared.
4287 *
4288 * Ensure we load task_cpu(p) after p->on_cpu:
4289 *
4290 * set_task_cpu(p, cpu);
4291 * STORE p->cpu = @cpu
4292 * __schedule() (switch to task 'p')
4293 * LOCK rq->lock
4294 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu)
4295 * STORE p->on_cpu = 1 LOAD p->cpu
4296 *
4297 * to ensure we observe the correct CPU on which the task is currently
4298 * scheduling.
4299 */
4300 if (smp_load_acquire(&p->on_cpu) &&
4301 ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
4302 break;
4303
4304 /*
4305 * If the owning (remote) CPU is still in the middle of schedule() with
4306 * this task as prev, wait until it's done referencing the task.
4307 *
4308 * Pairs with the smp_store_release() in finish_task().
4309 *
4310 * This ensures that tasks getting woken will be fully ordered against
4311 * their previous state and preserve Program Order.
4312 */
4313 smp_cond_load_acquire(&p->on_cpu, !VAL);
4314
4315 cpu = select_task_rq(p, p->wake_cpu, &wake_flags);
4316 if (task_cpu(p) != cpu) {
4317 if (p->in_iowait) {
4318 delayacct_blkio_end(p);
4319 atomic_dec(&task_rq(p)->nr_iowait);
4320 }
4321
4322 wake_flags |= WF_MIGRATED;
4323 psi_ttwu_dequeue(p);
4324 set_task_cpu(p, cpu);
4325 }
4326 #else
4327 cpu = task_cpu(p);
4328 #endif /* CONFIG_SMP */
4329
4330 ttwu_queue(p, cpu, wake_flags);
4331 }
4332 out:
4333 if (success)
4334 ttwu_stat(p, task_cpu(p), wake_flags);
4335
4336 return success;
4337 }
4338
__task_needs_rq_lock(struct task_struct * p)4339 static bool __task_needs_rq_lock(struct task_struct *p)
4340 {
4341 unsigned int state = READ_ONCE(p->__state);
4342
4343 /*
4344 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
4345 * the task is blocked. Make sure to check @state since ttwu() can drop
4346 * locks at the end, see ttwu_queue_wakelist().
4347 */
4348 if (state == TASK_RUNNING || state == TASK_WAKING)
4349 return true;
4350
4351 /*
4352 * Ensure we load p->on_rq after p->__state, otherwise it would be
4353 * possible to, falsely, observe p->on_rq == 0.
4354 *
4355 * See try_to_wake_up() for a longer comment.
4356 */
4357 smp_rmb();
4358 if (p->on_rq)
4359 return true;
4360
4361 #ifdef CONFIG_SMP
4362 /*
4363 * Ensure the task has finished __schedule() and will not be referenced
4364 * anymore. Again, see try_to_wake_up() for a longer comment.
4365 */
4366 smp_rmb();
4367 smp_cond_load_acquire(&p->on_cpu, !VAL);
4368 #endif
4369
4370 return false;
4371 }
4372
4373 /**
4374 * task_call_func - Invoke a function on task in fixed state
4375 * @p: Process for which the function is to be invoked, can be @current.
4376 * @func: Function to invoke.
4377 * @arg: Argument to function.
4378 *
4379 * Fix the task in it's current state by avoiding wakeups and or rq operations
4380 * and call @func(@arg) on it. This function can use task_is_runnable() and
4381 * task_curr() to work out what the state is, if required. Given that @func
4382 * can be invoked with a runqueue lock held, it had better be quite
4383 * lightweight.
4384 *
4385 * Returns:
4386 * Whatever @func returns
4387 */
task_call_func(struct task_struct * p,task_call_f func,void * arg)4388 int task_call_func(struct task_struct *p, task_call_f func, void *arg)
4389 {
4390 struct rq *rq = NULL;
4391 struct rq_flags rf;
4392 int ret;
4393
4394 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4395
4396 if (__task_needs_rq_lock(p))
4397 rq = __task_rq_lock(p, &rf);
4398
4399 /*
4400 * At this point the task is pinned; either:
4401 * - blocked and we're holding off wakeups (pi->lock)
4402 * - woken, and we're holding off enqueue (rq->lock)
4403 * - queued, and we're holding off schedule (rq->lock)
4404 * - running, and we're holding off de-schedule (rq->lock)
4405 *
4406 * The called function (@func) can use: task_curr(), p->on_rq and
4407 * p->__state to differentiate between these states.
4408 */
4409 ret = func(p, arg);
4410
4411 if (rq)
4412 rq_unlock(rq, &rf);
4413
4414 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
4415 return ret;
4416 }
4417
4418 /**
4419 * cpu_curr_snapshot - Return a snapshot of the currently running task
4420 * @cpu: The CPU on which to snapshot the task.
4421 *
4422 * Returns the task_struct pointer of the task "currently" running on
4423 * the specified CPU.
4424 *
4425 * If the specified CPU was offline, the return value is whatever it
4426 * is, perhaps a pointer to the task_struct structure of that CPU's idle
4427 * task, but there is no guarantee. Callers wishing a useful return
4428 * value must take some action to ensure that the specified CPU remains
4429 * online throughout.
4430 *
4431 * This function executes full memory barriers before and after fetching
4432 * the pointer, which permits the caller to confine this function's fetch
4433 * with respect to the caller's accesses to other shared variables.
4434 */
cpu_curr_snapshot(int cpu)4435 struct task_struct *cpu_curr_snapshot(int cpu)
4436 {
4437 struct rq *rq = cpu_rq(cpu);
4438 struct task_struct *t;
4439 struct rq_flags rf;
4440
4441 rq_lock_irqsave(rq, &rf);
4442 smp_mb__after_spinlock(); /* Pairing determined by caller's synchronization design. */
4443 t = rcu_dereference(cpu_curr(cpu));
4444 rq_unlock_irqrestore(rq, &rf);
4445 smp_mb(); /* Pairing determined by caller's synchronization design. */
4446
4447 return t;
4448 }
4449
4450 /**
4451 * wake_up_process - Wake up a specific process
4452 * @p: The process to be woken up.
4453 *
4454 * Attempt to wake up the nominated process and move it to the set of runnable
4455 * processes.
4456 *
4457 * Return: 1 if the process was woken up, 0 if it was already running.
4458 *
4459 * This function executes a full memory barrier before accessing the task state.
4460 */
wake_up_process(struct task_struct * p)4461 int wake_up_process(struct task_struct *p)
4462 {
4463 return try_to_wake_up(p, TASK_NORMAL, 0);
4464 }
4465 EXPORT_SYMBOL(wake_up_process);
4466
wake_up_state(struct task_struct * p,unsigned int state)4467 int wake_up_state(struct task_struct *p, unsigned int state)
4468 {
4469 return try_to_wake_up(p, state, 0);
4470 }
4471
4472 /*
4473 * Perform scheduler related setup for a newly forked process p.
4474 * p is forked by current.
4475 *
4476 * __sched_fork() is basic setup which is also used by sched_init() to
4477 * initialize the boot CPU's idle task.
4478 */
__sched_fork(unsigned long clone_flags,struct task_struct * p)4479 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
4480 {
4481 p->on_rq = 0;
4482
4483 p->se.on_rq = 0;
4484 p->se.exec_start = 0;
4485 p->se.sum_exec_runtime = 0;
4486 p->se.prev_sum_exec_runtime = 0;
4487 p->se.nr_migrations = 0;
4488 p->se.vruntime = 0;
4489 p->se.vlag = 0;
4490 INIT_LIST_HEAD(&p->se.group_node);
4491
4492 /* A delayed task cannot be in clone(). */
4493 SCHED_WARN_ON(p->se.sched_delayed);
4494
4495 #ifdef CONFIG_FAIR_GROUP_SCHED
4496 p->se.cfs_rq = NULL;
4497 #endif
4498
4499 #ifdef CONFIG_SCHEDSTATS
4500 /* Even if schedstat is disabled, there should not be garbage */
4501 memset(&p->stats, 0, sizeof(p->stats));
4502 #endif
4503
4504 init_dl_entity(&p->dl);
4505
4506 INIT_LIST_HEAD(&p->rt.run_list);
4507 p->rt.timeout = 0;
4508 p->rt.time_slice = sched_rr_timeslice;
4509 p->rt.on_rq = 0;
4510 p->rt.on_list = 0;
4511
4512 #ifdef CONFIG_SCHED_CLASS_EXT
4513 init_scx_entity(&p->scx);
4514 #endif
4515
4516 #ifdef CONFIG_PREEMPT_NOTIFIERS
4517 INIT_HLIST_HEAD(&p->preempt_notifiers);
4518 #endif
4519
4520 #ifdef CONFIG_COMPACTION
4521 p->capture_control = NULL;
4522 #endif
4523 init_numa_balancing(clone_flags, p);
4524 #ifdef CONFIG_SMP
4525 p->wake_entry.u_flags = CSD_TYPE_TTWU;
4526 p->migration_pending = NULL;
4527 #endif
4528 init_sched_mm_cid(p);
4529 }
4530
4531 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4532
4533 #ifdef CONFIG_NUMA_BALANCING
4534
4535 int sysctl_numa_balancing_mode;
4536
__set_numabalancing_state(bool enabled)4537 static void __set_numabalancing_state(bool enabled)
4538 {
4539 if (enabled)
4540 static_branch_enable(&sched_numa_balancing);
4541 else
4542 static_branch_disable(&sched_numa_balancing);
4543 }
4544
set_numabalancing_state(bool enabled)4545 void set_numabalancing_state(bool enabled)
4546 {
4547 if (enabled)
4548 sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
4549 else
4550 sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
4551 __set_numabalancing_state(enabled);
4552 }
4553
4554 #ifdef CONFIG_PROC_SYSCTL
reset_memory_tiering(void)4555 static void reset_memory_tiering(void)
4556 {
4557 struct pglist_data *pgdat;
4558
4559 for_each_online_pgdat(pgdat) {
4560 pgdat->nbp_threshold = 0;
4561 pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
4562 pgdat->nbp_th_start = jiffies_to_msecs(jiffies);
4563 }
4564 }
4565
sysctl_numa_balancing(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)4566 static int sysctl_numa_balancing(const struct ctl_table *table, int write,
4567 void *buffer, size_t *lenp, loff_t *ppos)
4568 {
4569 struct ctl_table t;
4570 int err;
4571 int state = sysctl_numa_balancing_mode;
4572
4573 if (write && !capable(CAP_SYS_ADMIN))
4574 return -EPERM;
4575
4576 t = *table;
4577 t.data = &state;
4578 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4579 if (err < 0)
4580 return err;
4581 if (write) {
4582 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4583 (state & NUMA_BALANCING_MEMORY_TIERING))
4584 reset_memory_tiering();
4585 sysctl_numa_balancing_mode = state;
4586 __set_numabalancing_state(state);
4587 }
4588 return err;
4589 }
4590 #endif
4591 #endif
4592
4593 #ifdef CONFIG_SCHEDSTATS
4594
4595 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4596
set_schedstats(bool enabled)4597 static void set_schedstats(bool enabled)
4598 {
4599 if (enabled)
4600 static_branch_enable(&sched_schedstats);
4601 else
4602 static_branch_disable(&sched_schedstats);
4603 }
4604
force_schedstat_enabled(void)4605 void force_schedstat_enabled(void)
4606 {
4607 if (!schedstat_enabled()) {
4608 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4609 static_branch_enable(&sched_schedstats);
4610 }
4611 }
4612
setup_schedstats(char * str)4613 static int __init setup_schedstats(char *str)
4614 {
4615 int ret = 0;
4616 if (!str)
4617 goto out;
4618
4619 if (!strcmp(str, "enable")) {
4620 set_schedstats(true);
4621 ret = 1;
4622 } else if (!strcmp(str, "disable")) {
4623 set_schedstats(false);
4624 ret = 1;
4625 }
4626 out:
4627 if (!ret)
4628 pr_warn("Unable to parse schedstats=\n");
4629
4630 return ret;
4631 }
4632 __setup("schedstats=", setup_schedstats);
4633
4634 #ifdef CONFIG_PROC_SYSCTL
sysctl_schedstats(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)4635 static int sysctl_schedstats(const struct ctl_table *table, int write, void *buffer,
4636 size_t *lenp, loff_t *ppos)
4637 {
4638 struct ctl_table t;
4639 int err;
4640 int state = static_branch_likely(&sched_schedstats);
4641
4642 if (write && !capable(CAP_SYS_ADMIN))
4643 return -EPERM;
4644
4645 t = *table;
4646 t.data = &state;
4647 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4648 if (err < 0)
4649 return err;
4650 if (write)
4651 set_schedstats(state);
4652 return err;
4653 }
4654 #endif /* CONFIG_PROC_SYSCTL */
4655 #endif /* CONFIG_SCHEDSTATS */
4656
4657 #ifdef CONFIG_SYSCTL
4658 static const struct ctl_table sched_core_sysctls[] = {
4659 #ifdef CONFIG_SCHEDSTATS
4660 {
4661 .procname = "sched_schedstats",
4662 .data = NULL,
4663 .maxlen = sizeof(unsigned int),
4664 .mode = 0644,
4665 .proc_handler = sysctl_schedstats,
4666 .extra1 = SYSCTL_ZERO,
4667 .extra2 = SYSCTL_ONE,
4668 },
4669 #endif /* CONFIG_SCHEDSTATS */
4670 #ifdef CONFIG_UCLAMP_TASK
4671 {
4672 .procname = "sched_util_clamp_min",
4673 .data = &sysctl_sched_uclamp_util_min,
4674 .maxlen = sizeof(unsigned int),
4675 .mode = 0644,
4676 .proc_handler = sysctl_sched_uclamp_handler,
4677 },
4678 {
4679 .procname = "sched_util_clamp_max",
4680 .data = &sysctl_sched_uclamp_util_max,
4681 .maxlen = sizeof(unsigned int),
4682 .mode = 0644,
4683 .proc_handler = sysctl_sched_uclamp_handler,
4684 },
4685 {
4686 .procname = "sched_util_clamp_min_rt_default",
4687 .data = &sysctl_sched_uclamp_util_min_rt_default,
4688 .maxlen = sizeof(unsigned int),
4689 .mode = 0644,
4690 .proc_handler = sysctl_sched_uclamp_handler,
4691 },
4692 #endif /* CONFIG_UCLAMP_TASK */
4693 #ifdef CONFIG_NUMA_BALANCING
4694 {
4695 .procname = "numa_balancing",
4696 .data = NULL, /* filled in by handler */
4697 .maxlen = sizeof(unsigned int),
4698 .mode = 0644,
4699 .proc_handler = sysctl_numa_balancing,
4700 .extra1 = SYSCTL_ZERO,
4701 .extra2 = SYSCTL_FOUR,
4702 },
4703 #endif /* CONFIG_NUMA_BALANCING */
4704 };
sched_core_sysctl_init(void)4705 static int __init sched_core_sysctl_init(void)
4706 {
4707 register_sysctl_init("kernel", sched_core_sysctls);
4708 return 0;
4709 }
4710 late_initcall(sched_core_sysctl_init);
4711 #endif /* CONFIG_SYSCTL */
4712
4713 /*
4714 * fork()/clone()-time setup:
4715 */
sched_fork(unsigned long clone_flags,struct task_struct * p)4716 int sched_fork(unsigned long clone_flags, struct task_struct *p)
4717 {
4718 __sched_fork(clone_flags, p);
4719 /*
4720 * We mark the process as NEW here. This guarantees that
4721 * nobody will actually run it, and a signal or other external
4722 * event cannot wake it up and insert it on the runqueue either.
4723 */
4724 p->__state = TASK_NEW;
4725
4726 /*
4727 * Make sure we do not leak PI boosting priority to the child.
4728 */
4729 p->prio = current->normal_prio;
4730
4731 uclamp_fork(p);
4732
4733 /*
4734 * Revert to default priority/policy on fork if requested.
4735 */
4736 if (unlikely(p->sched_reset_on_fork)) {
4737 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4738 p->policy = SCHED_NORMAL;
4739 p->static_prio = NICE_TO_PRIO(0);
4740 p->rt_priority = 0;
4741 } else if (PRIO_TO_NICE(p->static_prio) < 0)
4742 p->static_prio = NICE_TO_PRIO(0);
4743
4744 p->prio = p->normal_prio = p->static_prio;
4745 set_load_weight(p, false);
4746 p->se.custom_slice = 0;
4747 p->se.slice = sysctl_sched_base_slice;
4748
4749 /*
4750 * We don't need the reset flag anymore after the fork. It has
4751 * fulfilled its duty:
4752 */
4753 p->sched_reset_on_fork = 0;
4754 }
4755
4756 if (dl_prio(p->prio))
4757 return -EAGAIN;
4758
4759 scx_pre_fork(p);
4760
4761 if (rt_prio(p->prio)) {
4762 p->sched_class = &rt_sched_class;
4763 #ifdef CONFIG_SCHED_CLASS_EXT
4764 } else if (task_should_scx(p->policy)) {
4765 p->sched_class = &ext_sched_class;
4766 #endif
4767 } else {
4768 p->sched_class = &fair_sched_class;
4769 }
4770
4771 init_entity_runnable_average(&p->se);
4772
4773
4774 #ifdef CONFIG_SCHED_INFO
4775 if (likely(sched_info_on()))
4776 memset(&p->sched_info, 0, sizeof(p->sched_info));
4777 #endif
4778 #if defined(CONFIG_SMP)
4779 p->on_cpu = 0;
4780 #endif
4781 init_task_preempt_count(p);
4782 #ifdef CONFIG_SMP
4783 plist_node_init(&p->pushable_tasks, MAX_PRIO);
4784 RB_CLEAR_NODE(&p->pushable_dl_tasks);
4785 #endif
4786 return 0;
4787 }
4788
sched_cgroup_fork(struct task_struct * p,struct kernel_clone_args * kargs)4789 int sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
4790 {
4791 unsigned long flags;
4792
4793 /*
4794 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
4795 * required yet, but lockdep gets upset if rules are violated.
4796 */
4797 raw_spin_lock_irqsave(&p->pi_lock, flags);
4798 #ifdef CONFIG_CGROUP_SCHED
4799 if (1) {
4800 struct task_group *tg;
4801 tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
4802 struct task_group, css);
4803 tg = autogroup_task_group(p, tg);
4804 p->sched_task_group = tg;
4805 }
4806 #endif
4807 rseq_migrate(p);
4808 /*
4809 * We're setting the CPU for the first time, we don't migrate,
4810 * so use __set_task_cpu().
4811 */
4812 __set_task_cpu(p, smp_processor_id());
4813 if (p->sched_class->task_fork)
4814 p->sched_class->task_fork(p);
4815 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4816
4817 return scx_fork(p);
4818 }
4819
sched_cancel_fork(struct task_struct * p)4820 void sched_cancel_fork(struct task_struct *p)
4821 {
4822 scx_cancel_fork(p);
4823 }
4824
sched_post_fork(struct task_struct * p)4825 void sched_post_fork(struct task_struct *p)
4826 {
4827 uclamp_post_fork(p);
4828 scx_post_fork(p);
4829 }
4830
to_ratio(u64 period,u64 runtime)4831 unsigned long to_ratio(u64 period, u64 runtime)
4832 {
4833 if (runtime == RUNTIME_INF)
4834 return BW_UNIT;
4835
4836 /*
4837 * Doing this here saves a lot of checks in all
4838 * the calling paths, and returning zero seems
4839 * safe for them anyway.
4840 */
4841 if (period == 0)
4842 return 0;
4843
4844 return div64_u64(runtime << BW_SHIFT, period);
4845 }
4846
4847 /*
4848 * wake_up_new_task - wake up a newly created task for the first time.
4849 *
4850 * This function will do some initial scheduler statistics housekeeping
4851 * that must be done for every newly created context, then puts the task
4852 * on the runqueue and wakes it.
4853 */
wake_up_new_task(struct task_struct * p)4854 void wake_up_new_task(struct task_struct *p)
4855 {
4856 struct rq_flags rf;
4857 struct rq *rq;
4858 int wake_flags = WF_FORK;
4859
4860 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4861 WRITE_ONCE(p->__state, TASK_RUNNING);
4862 #ifdef CONFIG_SMP
4863 /*
4864 * Fork balancing, do it here and not earlier because:
4865 * - cpus_ptr can change in the fork path
4866 * - any previously selected CPU might disappear through hotplug
4867 *
4868 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4869 * as we're not fully set-up yet.
4870 */
4871 p->recent_used_cpu = task_cpu(p);
4872 rseq_migrate(p);
4873 __set_task_cpu(p, select_task_rq(p, task_cpu(p), &wake_flags));
4874 #endif
4875 rq = __task_rq_lock(p, &rf);
4876 update_rq_clock(rq);
4877 post_init_entity_util_avg(p);
4878
4879 activate_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_INITIAL);
4880 trace_sched_wakeup_new(p);
4881 wakeup_preempt(rq, p, wake_flags);
4882 #ifdef CONFIG_SMP
4883 if (p->sched_class->task_woken) {
4884 /*
4885 * Nothing relies on rq->lock after this, so it's fine to
4886 * drop it.
4887 */
4888 rq_unpin_lock(rq, &rf);
4889 p->sched_class->task_woken(rq, p);
4890 rq_repin_lock(rq, &rf);
4891 }
4892 #endif
4893 task_rq_unlock(rq, p, &rf);
4894 }
4895
4896 #ifdef CONFIG_PREEMPT_NOTIFIERS
4897
4898 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
4899
preempt_notifier_inc(void)4900 void preempt_notifier_inc(void)
4901 {
4902 static_branch_inc(&preempt_notifier_key);
4903 }
4904 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4905
preempt_notifier_dec(void)4906 void preempt_notifier_dec(void)
4907 {
4908 static_branch_dec(&preempt_notifier_key);
4909 }
4910 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4911
4912 /**
4913 * preempt_notifier_register - tell me when current is being preempted & rescheduled
4914 * @notifier: notifier struct to register
4915 */
preempt_notifier_register(struct preempt_notifier * notifier)4916 void preempt_notifier_register(struct preempt_notifier *notifier)
4917 {
4918 if (!static_branch_unlikely(&preempt_notifier_key))
4919 WARN(1, "registering preempt_notifier while notifiers disabled\n");
4920
4921 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
4922 }
4923 EXPORT_SYMBOL_GPL(preempt_notifier_register);
4924
4925 /**
4926 * preempt_notifier_unregister - no longer interested in preemption notifications
4927 * @notifier: notifier struct to unregister
4928 *
4929 * This is *not* safe to call from within a preemption notifier.
4930 */
preempt_notifier_unregister(struct preempt_notifier * notifier)4931 void preempt_notifier_unregister(struct preempt_notifier *notifier)
4932 {
4933 hlist_del(¬ifier->link);
4934 }
4935 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4936
__fire_sched_in_preempt_notifiers(struct task_struct * curr)4937 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
4938 {
4939 struct preempt_notifier *notifier;
4940
4941 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4942 notifier->ops->sched_in(notifier, raw_smp_processor_id());
4943 }
4944
fire_sched_in_preempt_notifiers(struct task_struct * curr)4945 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4946 {
4947 if (static_branch_unlikely(&preempt_notifier_key))
4948 __fire_sched_in_preempt_notifiers(curr);
4949 }
4950
4951 static void
__fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)4952 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
4953 struct task_struct *next)
4954 {
4955 struct preempt_notifier *notifier;
4956
4957 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4958 notifier->ops->sched_out(notifier, next);
4959 }
4960
4961 static __always_inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)4962 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4963 struct task_struct *next)
4964 {
4965 if (static_branch_unlikely(&preempt_notifier_key))
4966 __fire_sched_out_preempt_notifiers(curr, next);
4967 }
4968
4969 #else /* !CONFIG_PREEMPT_NOTIFIERS */
4970
fire_sched_in_preempt_notifiers(struct task_struct * curr)4971 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4972 {
4973 }
4974
4975 static inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)4976 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4977 struct task_struct *next)
4978 {
4979 }
4980
4981 #endif /* CONFIG_PREEMPT_NOTIFIERS */
4982
prepare_task(struct task_struct * next)4983 static inline void prepare_task(struct task_struct *next)
4984 {
4985 #ifdef CONFIG_SMP
4986 /*
4987 * Claim the task as running, we do this before switching to it
4988 * such that any running task will have this set.
4989 *
4990 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
4991 * its ordering comment.
4992 */
4993 WRITE_ONCE(next->on_cpu, 1);
4994 #endif
4995 }
4996
finish_task(struct task_struct * prev)4997 static inline void finish_task(struct task_struct *prev)
4998 {
4999 #ifdef CONFIG_SMP
5000 /*
5001 * This must be the very last reference to @prev from this CPU. After
5002 * p->on_cpu is cleared, the task can be moved to a different CPU. We
5003 * must ensure this doesn't happen until the switch is completely
5004 * finished.
5005 *
5006 * In particular, the load of prev->state in finish_task_switch() must
5007 * happen before this.
5008 *
5009 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
5010 */
5011 smp_store_release(&prev->on_cpu, 0);
5012 #endif
5013 }
5014
5015 #ifdef CONFIG_SMP
5016
do_balance_callbacks(struct rq * rq,struct balance_callback * head)5017 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head)
5018 {
5019 void (*func)(struct rq *rq);
5020 struct balance_callback *next;
5021
5022 lockdep_assert_rq_held(rq);
5023
5024 while (head) {
5025 func = (void (*)(struct rq *))head->func;
5026 next = head->next;
5027 head->next = NULL;
5028 head = next;
5029
5030 func(rq);
5031 }
5032 }
5033
5034 static void balance_push(struct rq *rq);
5035
5036 /*
5037 * balance_push_callback is a right abuse of the callback interface and plays
5038 * by significantly different rules.
5039 *
5040 * Where the normal balance_callback's purpose is to be ran in the same context
5041 * that queued it (only later, when it's safe to drop rq->lock again),
5042 * balance_push_callback is specifically targeted at __schedule().
5043 *
5044 * This abuse is tolerated because it places all the unlikely/odd cases behind
5045 * a single test, namely: rq->balance_callback == NULL.
5046 */
5047 struct balance_callback balance_push_callback = {
5048 .next = NULL,
5049 .func = balance_push,
5050 };
5051
5052 static inline struct balance_callback *
__splice_balance_callbacks(struct rq * rq,bool split)5053 __splice_balance_callbacks(struct rq *rq, bool split)
5054 {
5055 struct balance_callback *head = rq->balance_callback;
5056
5057 if (likely(!head))
5058 return NULL;
5059
5060 lockdep_assert_rq_held(rq);
5061 /*
5062 * Must not take balance_push_callback off the list when
5063 * splice_balance_callbacks() and balance_callbacks() are not
5064 * in the same rq->lock section.
5065 *
5066 * In that case it would be possible for __schedule() to interleave
5067 * and observe the list empty.
5068 */
5069 if (split && head == &balance_push_callback)
5070 head = NULL;
5071 else
5072 rq->balance_callback = NULL;
5073
5074 return head;
5075 }
5076
splice_balance_callbacks(struct rq * rq)5077 struct balance_callback *splice_balance_callbacks(struct rq *rq)
5078 {
5079 return __splice_balance_callbacks(rq, true);
5080 }
5081
__balance_callbacks(struct rq * rq)5082 static void __balance_callbacks(struct rq *rq)
5083 {
5084 do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
5085 }
5086
balance_callbacks(struct rq * rq,struct balance_callback * head)5087 void balance_callbacks(struct rq *rq, struct balance_callback *head)
5088 {
5089 unsigned long flags;
5090
5091 if (unlikely(head)) {
5092 raw_spin_rq_lock_irqsave(rq, flags);
5093 do_balance_callbacks(rq, head);
5094 raw_spin_rq_unlock_irqrestore(rq, flags);
5095 }
5096 }
5097
5098 #else
5099
__balance_callbacks(struct rq * rq)5100 static inline void __balance_callbacks(struct rq *rq)
5101 {
5102 }
5103
5104 #endif
5105
5106 static inline void
prepare_lock_switch(struct rq * rq,struct task_struct * next,struct rq_flags * rf)5107 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
5108 {
5109 /*
5110 * Since the runqueue lock will be released by the next
5111 * task (which is an invalid locking op but in the case
5112 * of the scheduler it's an obvious special-case), so we
5113 * do an early lockdep release here:
5114 */
5115 rq_unpin_lock(rq, rf);
5116 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
5117 #ifdef CONFIG_DEBUG_SPINLOCK
5118 /* this is a valid case when another task releases the spinlock */
5119 rq_lockp(rq)->owner = next;
5120 #endif
5121 }
5122
finish_lock_switch(struct rq * rq)5123 static inline void finish_lock_switch(struct rq *rq)
5124 {
5125 /*
5126 * If we are tracking spinlock dependencies then we have to
5127 * fix up the runqueue lock - which gets 'carried over' from
5128 * prev into current:
5129 */
5130 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
5131 __balance_callbacks(rq);
5132 raw_spin_rq_unlock_irq(rq);
5133 }
5134
5135 /*
5136 * NOP if the arch has not defined these:
5137 */
5138
5139 #ifndef prepare_arch_switch
5140 # define prepare_arch_switch(next) do { } while (0)
5141 #endif
5142
5143 #ifndef finish_arch_post_lock_switch
5144 # define finish_arch_post_lock_switch() do { } while (0)
5145 #endif
5146
kmap_local_sched_out(void)5147 static inline void kmap_local_sched_out(void)
5148 {
5149 #ifdef CONFIG_KMAP_LOCAL
5150 if (unlikely(current->kmap_ctrl.idx))
5151 __kmap_local_sched_out();
5152 #endif
5153 }
5154
kmap_local_sched_in(void)5155 static inline void kmap_local_sched_in(void)
5156 {
5157 #ifdef CONFIG_KMAP_LOCAL
5158 if (unlikely(current->kmap_ctrl.idx))
5159 __kmap_local_sched_in();
5160 #endif
5161 }
5162
5163 /**
5164 * prepare_task_switch - prepare to switch tasks
5165 * @rq: the runqueue preparing to switch
5166 * @prev: the current task that is being switched out
5167 * @next: the task we are going to switch to.
5168 *
5169 * This is called with the rq lock held and interrupts off. It must
5170 * be paired with a subsequent finish_task_switch after the context
5171 * switch.
5172 *
5173 * prepare_task_switch sets up locking and calls architecture specific
5174 * hooks.
5175 */
5176 static inline void
prepare_task_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next)5177 prepare_task_switch(struct rq *rq, struct task_struct *prev,
5178 struct task_struct *next)
5179 {
5180 kcov_prepare_switch(prev);
5181 sched_info_switch(rq, prev, next);
5182 perf_event_task_sched_out(prev, next);
5183 rseq_preempt(prev);
5184 fire_sched_out_preempt_notifiers(prev, next);
5185 kmap_local_sched_out();
5186 prepare_task(next);
5187 prepare_arch_switch(next);
5188 }
5189
5190 /**
5191 * finish_task_switch - clean up after a task-switch
5192 * @prev: the thread we just switched away from.
5193 *
5194 * finish_task_switch must be called after the context switch, paired
5195 * with a prepare_task_switch call before the context switch.
5196 * finish_task_switch will reconcile locking set up by prepare_task_switch,
5197 * and do any other architecture-specific cleanup actions.
5198 *
5199 * Note that we may have delayed dropping an mm in context_switch(). If
5200 * so, we finish that here outside of the runqueue lock. (Doing it
5201 * with the lock held can cause deadlocks; see schedule() for
5202 * details.)
5203 *
5204 * The context switch have flipped the stack from under us and restored the
5205 * local variables which were saved when this task called schedule() in the
5206 * past. 'prev == current' is still correct but we need to recalculate this_rq
5207 * because prev may have moved to another CPU.
5208 */
finish_task_switch(struct task_struct * prev)5209 static struct rq *finish_task_switch(struct task_struct *prev)
5210 __releases(rq->lock)
5211 {
5212 struct rq *rq = this_rq();
5213 struct mm_struct *mm = rq->prev_mm;
5214 unsigned int prev_state;
5215
5216 /*
5217 * The previous task will have left us with a preempt_count of 2
5218 * because it left us after:
5219 *
5220 * schedule()
5221 * preempt_disable(); // 1
5222 * __schedule()
5223 * raw_spin_lock_irq(&rq->lock) // 2
5224 *
5225 * Also, see FORK_PREEMPT_COUNT.
5226 */
5227 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
5228 "corrupted preempt_count: %s/%d/0x%x\n",
5229 current->comm, current->pid, preempt_count()))
5230 preempt_count_set(FORK_PREEMPT_COUNT);
5231
5232 rq->prev_mm = NULL;
5233
5234 /*
5235 * A task struct has one reference for the use as "current".
5236 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
5237 * schedule one last time. The schedule call will never return, and
5238 * the scheduled task must drop that reference.
5239 *
5240 * We must observe prev->state before clearing prev->on_cpu (in
5241 * finish_task), otherwise a concurrent wakeup can get prev
5242 * running on another CPU and we could rave with its RUNNING -> DEAD
5243 * transition, resulting in a double drop.
5244 */
5245 prev_state = READ_ONCE(prev->__state);
5246 vtime_task_switch(prev);
5247 perf_event_task_sched_in(prev, current);
5248 finish_task(prev);
5249 tick_nohz_task_switch();
5250 finish_lock_switch(rq);
5251 finish_arch_post_lock_switch();
5252 kcov_finish_switch(current);
5253 /*
5254 * kmap_local_sched_out() is invoked with rq::lock held and
5255 * interrupts disabled. There is no requirement for that, but the
5256 * sched out code does not have an interrupt enabled section.
5257 * Restoring the maps on sched in does not require interrupts being
5258 * disabled either.
5259 */
5260 kmap_local_sched_in();
5261
5262 fire_sched_in_preempt_notifiers(current);
5263 /*
5264 * When switching through a kernel thread, the loop in
5265 * membarrier_{private,global}_expedited() may have observed that
5266 * kernel thread and not issued an IPI. It is therefore possible to
5267 * schedule between user->kernel->user threads without passing though
5268 * switch_mm(). Membarrier requires a barrier after storing to
5269 * rq->curr, before returning to userspace, so provide them here:
5270 *
5271 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
5272 * provided by mmdrop_lazy_tlb(),
5273 * - a sync_core for SYNC_CORE.
5274 */
5275 if (mm) {
5276 membarrier_mm_sync_core_before_usermode(mm);
5277 mmdrop_lazy_tlb_sched(mm);
5278 }
5279
5280 if (unlikely(prev_state == TASK_DEAD)) {
5281 if (prev->sched_class->task_dead)
5282 prev->sched_class->task_dead(prev);
5283
5284 /* Task is done with its stack. */
5285 put_task_stack(prev);
5286
5287 put_task_struct_rcu_user(prev);
5288 }
5289
5290 return rq;
5291 }
5292
5293 /**
5294 * schedule_tail - first thing a freshly forked thread must call.
5295 * @prev: the thread we just switched away from.
5296 */
schedule_tail(struct task_struct * prev)5297 asmlinkage __visible void schedule_tail(struct task_struct *prev)
5298 __releases(rq->lock)
5299 {
5300 /*
5301 * New tasks start with FORK_PREEMPT_COUNT, see there and
5302 * finish_task_switch() for details.
5303 *
5304 * finish_task_switch() will drop rq->lock() and lower preempt_count
5305 * and the preempt_enable() will end up enabling preemption (on
5306 * PREEMPT_COUNT kernels).
5307 */
5308
5309 finish_task_switch(prev);
5310 preempt_enable();
5311
5312 if (current->set_child_tid)
5313 put_user(task_pid_vnr(current), current->set_child_tid);
5314
5315 calculate_sigpending();
5316 }
5317
5318 /*
5319 * context_switch - switch to the new MM and the new thread's register state.
5320 */
5321 static __always_inline struct rq *
context_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next,struct rq_flags * rf)5322 context_switch(struct rq *rq, struct task_struct *prev,
5323 struct task_struct *next, struct rq_flags *rf)
5324 {
5325 prepare_task_switch(rq, prev, next);
5326
5327 /*
5328 * For paravirt, this is coupled with an exit in switch_to to
5329 * combine the page table reload and the switch backend into
5330 * one hypercall.
5331 */
5332 arch_start_context_switch(prev);
5333
5334 /*
5335 * kernel -> kernel lazy + transfer active
5336 * user -> kernel lazy + mmgrab_lazy_tlb() active
5337 *
5338 * kernel -> user switch + mmdrop_lazy_tlb() active
5339 * user -> user switch
5340 *
5341 * switch_mm_cid() needs to be updated if the barriers provided
5342 * by context_switch() are modified.
5343 */
5344 if (!next->mm) { // to kernel
5345 enter_lazy_tlb(prev->active_mm, next);
5346
5347 next->active_mm = prev->active_mm;
5348 if (prev->mm) // from user
5349 mmgrab_lazy_tlb(prev->active_mm);
5350 else
5351 prev->active_mm = NULL;
5352 } else { // to user
5353 membarrier_switch_mm(rq, prev->active_mm, next->mm);
5354 /*
5355 * sys_membarrier() requires an smp_mb() between setting
5356 * rq->curr / membarrier_switch_mm() and returning to userspace.
5357 *
5358 * The below provides this either through switch_mm(), or in
5359 * case 'prev->active_mm == next->mm' through
5360 * finish_task_switch()'s mmdrop().
5361 */
5362 switch_mm_irqs_off(prev->active_mm, next->mm, next);
5363 lru_gen_use_mm(next->mm);
5364
5365 if (!prev->mm) { // from kernel
5366 /* will mmdrop_lazy_tlb() in finish_task_switch(). */
5367 rq->prev_mm = prev->active_mm;
5368 prev->active_mm = NULL;
5369 }
5370 }
5371
5372 /* switch_mm_cid() requires the memory barriers above. */
5373 switch_mm_cid(rq, prev, next);
5374
5375 prepare_lock_switch(rq, next, rf);
5376
5377 /* Here we just switch the register state and the stack. */
5378 switch_to(prev, next, prev);
5379 barrier();
5380
5381 return finish_task_switch(prev);
5382 }
5383
5384 /*
5385 * nr_running and nr_context_switches:
5386 *
5387 * externally visible scheduler statistics: current number of runnable
5388 * threads, total number of context switches performed since bootup.
5389 */
nr_running(void)5390 unsigned int nr_running(void)
5391 {
5392 unsigned int i, sum = 0;
5393
5394 for_each_online_cpu(i)
5395 sum += cpu_rq(i)->nr_running;
5396
5397 return sum;
5398 }
5399
5400 /*
5401 * Check if only the current task is running on the CPU.
5402 *
5403 * Caution: this function does not check that the caller has disabled
5404 * preemption, thus the result might have a time-of-check-to-time-of-use
5405 * race. The caller is responsible to use it correctly, for example:
5406 *
5407 * - from a non-preemptible section (of course)
5408 *
5409 * - from a thread that is bound to a single CPU
5410 *
5411 * - in a loop with very short iterations (e.g. a polling loop)
5412 */
single_task_running(void)5413 bool single_task_running(void)
5414 {
5415 return raw_rq()->nr_running == 1;
5416 }
5417 EXPORT_SYMBOL(single_task_running);
5418
nr_context_switches_cpu(int cpu)5419 unsigned long long nr_context_switches_cpu(int cpu)
5420 {
5421 return cpu_rq(cpu)->nr_switches;
5422 }
5423
nr_context_switches(void)5424 unsigned long long nr_context_switches(void)
5425 {
5426 int i;
5427 unsigned long long sum = 0;
5428
5429 for_each_possible_cpu(i)
5430 sum += cpu_rq(i)->nr_switches;
5431
5432 return sum;
5433 }
5434
5435 /*
5436 * Consumers of these two interfaces, like for example the cpuidle menu
5437 * governor, are using nonsensical data. Preferring shallow idle state selection
5438 * for a CPU that has IO-wait which might not even end up running the task when
5439 * it does become runnable.
5440 */
5441
nr_iowait_cpu(int cpu)5442 unsigned int nr_iowait_cpu(int cpu)
5443 {
5444 return atomic_read(&cpu_rq(cpu)->nr_iowait);
5445 }
5446
5447 /*
5448 * IO-wait accounting, and how it's mostly bollocks (on SMP).
5449 *
5450 * The idea behind IO-wait account is to account the idle time that we could
5451 * have spend running if it were not for IO. That is, if we were to improve the
5452 * storage performance, we'd have a proportional reduction in IO-wait time.
5453 *
5454 * This all works nicely on UP, where, when a task blocks on IO, we account
5455 * idle time as IO-wait, because if the storage were faster, it could've been
5456 * running and we'd not be idle.
5457 *
5458 * This has been extended to SMP, by doing the same for each CPU. This however
5459 * is broken.
5460 *
5461 * Imagine for instance the case where two tasks block on one CPU, only the one
5462 * CPU will have IO-wait accounted, while the other has regular idle. Even
5463 * though, if the storage were faster, both could've ran at the same time,
5464 * utilising both CPUs.
5465 *
5466 * This means, that when looking globally, the current IO-wait accounting on
5467 * SMP is a lower bound, by reason of under accounting.
5468 *
5469 * Worse, since the numbers are provided per CPU, they are sometimes
5470 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5471 * associated with any one particular CPU, it can wake to another CPU than it
5472 * blocked on. This means the per CPU IO-wait number is meaningless.
5473 *
5474 * Task CPU affinities can make all that even more 'interesting'.
5475 */
5476
nr_iowait(void)5477 unsigned int nr_iowait(void)
5478 {
5479 unsigned int i, sum = 0;
5480
5481 for_each_possible_cpu(i)
5482 sum += nr_iowait_cpu(i);
5483
5484 return sum;
5485 }
5486
5487 #ifdef CONFIG_SMP
5488
5489 /*
5490 * sched_exec - execve() is a valuable balancing opportunity, because at
5491 * this point the task has the smallest effective memory and cache footprint.
5492 */
sched_exec(void)5493 void sched_exec(void)
5494 {
5495 struct task_struct *p = current;
5496 struct migration_arg arg;
5497 int dest_cpu;
5498
5499 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
5500 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
5501 if (dest_cpu == smp_processor_id())
5502 return;
5503
5504 if (unlikely(!cpu_active(dest_cpu)))
5505 return;
5506
5507 arg = (struct migration_arg){ p, dest_cpu };
5508 }
5509 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
5510 }
5511
5512 #endif
5513
5514 DEFINE_PER_CPU(struct kernel_stat, kstat);
5515 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
5516
5517 EXPORT_PER_CPU_SYMBOL(kstat);
5518 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
5519
5520 /*
5521 * The function fair_sched_class.update_curr accesses the struct curr
5522 * and its field curr->exec_start; when called from task_sched_runtime(),
5523 * we observe a high rate of cache misses in practice.
5524 * Prefetching this data results in improved performance.
5525 */
prefetch_curr_exec_start(struct task_struct * p)5526 static inline void prefetch_curr_exec_start(struct task_struct *p)
5527 {
5528 #ifdef CONFIG_FAIR_GROUP_SCHED
5529 struct sched_entity *curr = p->se.cfs_rq->curr;
5530 #else
5531 struct sched_entity *curr = task_rq(p)->cfs.curr;
5532 #endif
5533 prefetch(curr);
5534 prefetch(&curr->exec_start);
5535 }
5536
5537 /*
5538 * Return accounted runtime for the task.
5539 * In case the task is currently running, return the runtime plus current's
5540 * pending runtime that have not been accounted yet.
5541 */
task_sched_runtime(struct task_struct * p)5542 unsigned long long task_sched_runtime(struct task_struct *p)
5543 {
5544 struct rq_flags rf;
5545 struct rq *rq;
5546 u64 ns;
5547
5548 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
5549 /*
5550 * 64-bit doesn't need locks to atomically read a 64-bit value.
5551 * So we have a optimization chance when the task's delta_exec is 0.
5552 * Reading ->on_cpu is racy, but this is OK.
5553 *
5554 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5555 * If we race with it entering CPU, unaccounted time is 0. This is
5556 * indistinguishable from the read occurring a few cycles earlier.
5557 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5558 * been accounted, so we're correct here as well.
5559 */
5560 if (!p->on_cpu || !task_on_rq_queued(p))
5561 return p->se.sum_exec_runtime;
5562 #endif
5563
5564 rq = task_rq_lock(p, &rf);
5565 /*
5566 * Must be ->curr _and_ ->on_rq. If dequeued, we would
5567 * project cycles that may never be accounted to this
5568 * thread, breaking clock_gettime().
5569 */
5570 if (task_current_donor(rq, p) && task_on_rq_queued(p)) {
5571 prefetch_curr_exec_start(p);
5572 update_rq_clock(rq);
5573 p->sched_class->update_curr(rq);
5574 }
5575 ns = p->se.sum_exec_runtime;
5576 task_rq_unlock(rq, p, &rf);
5577
5578 return ns;
5579 }
5580
5581 #ifdef CONFIG_SCHED_DEBUG
cpu_resched_latency(struct rq * rq)5582 static u64 cpu_resched_latency(struct rq *rq)
5583 {
5584 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5585 u64 resched_latency, now = rq_clock(rq);
5586 static bool warned_once;
5587
5588 if (sysctl_resched_latency_warn_once && warned_once)
5589 return 0;
5590
5591 if (!need_resched() || !latency_warn_ms)
5592 return 0;
5593
5594 if (system_state == SYSTEM_BOOTING)
5595 return 0;
5596
5597 if (!rq->last_seen_need_resched_ns) {
5598 rq->last_seen_need_resched_ns = now;
5599 rq->ticks_without_resched = 0;
5600 return 0;
5601 }
5602
5603 rq->ticks_without_resched++;
5604 resched_latency = now - rq->last_seen_need_resched_ns;
5605 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5606 return 0;
5607
5608 warned_once = true;
5609
5610 return resched_latency;
5611 }
5612
setup_resched_latency_warn_ms(char * str)5613 static int __init setup_resched_latency_warn_ms(char *str)
5614 {
5615 long val;
5616
5617 if ((kstrtol(str, 0, &val))) {
5618 pr_warn("Unable to set resched_latency_warn_ms\n");
5619 return 1;
5620 }
5621
5622 sysctl_resched_latency_warn_ms = val;
5623 return 1;
5624 }
5625 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5626 #else
cpu_resched_latency(struct rq * rq)5627 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
5628 #endif /* CONFIG_SCHED_DEBUG */
5629
5630 /*
5631 * This function gets called by the timer code, with HZ frequency.
5632 * We call it with interrupts disabled.
5633 */
sched_tick(void)5634 void sched_tick(void)
5635 {
5636 int cpu = smp_processor_id();
5637 struct rq *rq = cpu_rq(cpu);
5638 /* accounting goes to the donor task */
5639 struct task_struct *donor;
5640 struct rq_flags rf;
5641 unsigned long hw_pressure;
5642 u64 resched_latency;
5643
5644 if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE))
5645 arch_scale_freq_tick();
5646
5647 sched_clock_tick();
5648
5649 rq_lock(rq, &rf);
5650 donor = rq->donor;
5651
5652 psi_account_irqtime(rq, donor, NULL);
5653
5654 update_rq_clock(rq);
5655 hw_pressure = arch_scale_hw_pressure(cpu_of(rq));
5656 update_hw_load_avg(rq_clock_task(rq), rq, hw_pressure);
5657
5658 if (dynamic_preempt_lazy() && tif_test_bit(TIF_NEED_RESCHED_LAZY))
5659 resched_curr(rq);
5660
5661 donor->sched_class->task_tick(rq, donor, 0);
5662 if (sched_feat(LATENCY_WARN))
5663 resched_latency = cpu_resched_latency(rq);
5664 calc_global_load_tick(rq);
5665 sched_core_tick(rq);
5666 task_tick_mm_cid(rq, donor);
5667 scx_tick(rq);
5668
5669 rq_unlock(rq, &rf);
5670
5671 if (sched_feat(LATENCY_WARN) && resched_latency)
5672 resched_latency_warn(cpu, resched_latency);
5673
5674 perf_event_task_tick();
5675
5676 if (donor->flags & PF_WQ_WORKER)
5677 wq_worker_tick(donor);
5678
5679 #ifdef CONFIG_SMP
5680 if (!scx_switched_all()) {
5681 rq->idle_balance = idle_cpu(cpu);
5682 sched_balance_trigger(rq);
5683 }
5684 #endif
5685 }
5686
5687 #ifdef CONFIG_NO_HZ_FULL
5688
5689 struct tick_work {
5690 int cpu;
5691 atomic_t state;
5692 struct delayed_work work;
5693 };
5694 /* Values for ->state, see diagram below. */
5695 #define TICK_SCHED_REMOTE_OFFLINE 0
5696 #define TICK_SCHED_REMOTE_OFFLINING 1
5697 #define TICK_SCHED_REMOTE_RUNNING 2
5698
5699 /*
5700 * State diagram for ->state:
5701 *
5702 *
5703 * TICK_SCHED_REMOTE_OFFLINE
5704 * | ^
5705 * | |
5706 * | | sched_tick_remote()
5707 * | |
5708 * | |
5709 * +--TICK_SCHED_REMOTE_OFFLINING
5710 * | ^
5711 * | |
5712 * sched_tick_start() | | sched_tick_stop()
5713 * | |
5714 * V |
5715 * TICK_SCHED_REMOTE_RUNNING
5716 *
5717 *
5718 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5719 * and sched_tick_start() are happy to leave the state in RUNNING.
5720 */
5721
5722 static struct tick_work __percpu *tick_work_cpu;
5723
sched_tick_remote(struct work_struct * work)5724 static void sched_tick_remote(struct work_struct *work)
5725 {
5726 struct delayed_work *dwork = to_delayed_work(work);
5727 struct tick_work *twork = container_of(dwork, struct tick_work, work);
5728 int cpu = twork->cpu;
5729 struct rq *rq = cpu_rq(cpu);
5730 int os;
5731
5732 /*
5733 * Handle the tick only if it appears the remote CPU is running in full
5734 * dynticks mode. The check is racy by nature, but missing a tick or
5735 * having one too much is no big deal because the scheduler tick updates
5736 * statistics and checks timeslices in a time-independent way, regardless
5737 * of when exactly it is running.
5738 */
5739 if (tick_nohz_tick_stopped_cpu(cpu)) {
5740 guard(rq_lock_irq)(rq);
5741 struct task_struct *curr = rq->curr;
5742
5743 if (cpu_online(cpu)) {
5744 /*
5745 * Since this is a remote tick for full dynticks mode,
5746 * we are always sure that there is no proxy (only a
5747 * single task is running).
5748 */
5749 SCHED_WARN_ON(rq->curr != rq->donor);
5750 update_rq_clock(rq);
5751
5752 if (!is_idle_task(curr)) {
5753 /*
5754 * Make sure the next tick runs within a
5755 * reasonable amount of time.
5756 */
5757 u64 delta = rq_clock_task(rq) - curr->se.exec_start;
5758 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5759 }
5760 curr->sched_class->task_tick(rq, curr, 0);
5761
5762 calc_load_nohz_remote(rq);
5763 }
5764 }
5765
5766 /*
5767 * Run the remote tick once per second (1Hz). This arbitrary
5768 * frequency is large enough to avoid overload but short enough
5769 * to keep scheduler internal stats reasonably up to date. But
5770 * first update state to reflect hotplug activity if required.
5771 */
5772 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5773 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5774 if (os == TICK_SCHED_REMOTE_RUNNING)
5775 queue_delayed_work(system_unbound_wq, dwork, HZ);
5776 }
5777
sched_tick_start(int cpu)5778 static void sched_tick_start(int cpu)
5779 {
5780 int os;
5781 struct tick_work *twork;
5782
5783 if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE))
5784 return;
5785
5786 WARN_ON_ONCE(!tick_work_cpu);
5787
5788 twork = per_cpu_ptr(tick_work_cpu, cpu);
5789 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5790 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5791 if (os == TICK_SCHED_REMOTE_OFFLINE) {
5792 twork->cpu = cpu;
5793 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5794 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5795 }
5796 }
5797
5798 #ifdef CONFIG_HOTPLUG_CPU
sched_tick_stop(int cpu)5799 static void sched_tick_stop(int cpu)
5800 {
5801 struct tick_work *twork;
5802 int os;
5803
5804 if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE))
5805 return;
5806
5807 WARN_ON_ONCE(!tick_work_cpu);
5808
5809 twork = per_cpu_ptr(tick_work_cpu, cpu);
5810 /* There cannot be competing actions, but don't rely on stop-machine. */
5811 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5812 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5813 /* Don't cancel, as this would mess up the state machine. */
5814 }
5815 #endif /* CONFIG_HOTPLUG_CPU */
5816
sched_tick_offload_init(void)5817 int __init sched_tick_offload_init(void)
5818 {
5819 tick_work_cpu = alloc_percpu(struct tick_work);
5820 BUG_ON(!tick_work_cpu);
5821 return 0;
5822 }
5823
5824 #else /* !CONFIG_NO_HZ_FULL */
sched_tick_start(int cpu)5825 static inline void sched_tick_start(int cpu) { }
sched_tick_stop(int cpu)5826 static inline void sched_tick_stop(int cpu) { }
5827 #endif
5828
5829 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5830 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5831 /*
5832 * If the value passed in is equal to the current preempt count
5833 * then we just disabled preemption. Start timing the latency.
5834 */
preempt_latency_start(int val)5835 static inline void preempt_latency_start(int val)
5836 {
5837 if (preempt_count() == val) {
5838 unsigned long ip = get_lock_parent_ip();
5839 #ifdef CONFIG_DEBUG_PREEMPT
5840 current->preempt_disable_ip = ip;
5841 #endif
5842 trace_preempt_off(CALLER_ADDR0, ip);
5843 }
5844 }
5845
preempt_count_add(int val)5846 void preempt_count_add(int val)
5847 {
5848 #ifdef CONFIG_DEBUG_PREEMPT
5849 /*
5850 * Underflow?
5851 */
5852 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5853 return;
5854 #endif
5855 __preempt_count_add(val);
5856 #ifdef CONFIG_DEBUG_PREEMPT
5857 /*
5858 * Spinlock count overflowing soon?
5859 */
5860 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5861 PREEMPT_MASK - 10);
5862 #endif
5863 preempt_latency_start(val);
5864 }
5865 EXPORT_SYMBOL(preempt_count_add);
5866 NOKPROBE_SYMBOL(preempt_count_add);
5867
5868 /*
5869 * If the value passed in equals to the current preempt count
5870 * then we just enabled preemption. Stop timing the latency.
5871 */
preempt_latency_stop(int val)5872 static inline void preempt_latency_stop(int val)
5873 {
5874 if (preempt_count() == val)
5875 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5876 }
5877
preempt_count_sub(int val)5878 void preempt_count_sub(int val)
5879 {
5880 #ifdef CONFIG_DEBUG_PREEMPT
5881 /*
5882 * Underflow?
5883 */
5884 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5885 return;
5886 /*
5887 * Is the spinlock portion underflowing?
5888 */
5889 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5890 !(preempt_count() & PREEMPT_MASK)))
5891 return;
5892 #endif
5893
5894 preempt_latency_stop(val);
5895 __preempt_count_sub(val);
5896 }
5897 EXPORT_SYMBOL(preempt_count_sub);
5898 NOKPROBE_SYMBOL(preempt_count_sub);
5899
5900 #else
preempt_latency_start(int val)5901 static inline void preempt_latency_start(int val) { }
preempt_latency_stop(int val)5902 static inline void preempt_latency_stop(int val) { }
5903 #endif
5904
get_preempt_disable_ip(struct task_struct * p)5905 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5906 {
5907 #ifdef CONFIG_DEBUG_PREEMPT
5908 return p->preempt_disable_ip;
5909 #else
5910 return 0;
5911 #endif
5912 }
5913
5914 /*
5915 * Print scheduling while atomic bug:
5916 */
__schedule_bug(struct task_struct * prev)5917 static noinline void __schedule_bug(struct task_struct *prev)
5918 {
5919 /* Save this before calling printk(), since that will clobber it */
5920 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5921
5922 if (oops_in_progress)
5923 return;
5924
5925 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5926 prev->comm, prev->pid, preempt_count());
5927
5928 debug_show_held_locks(prev);
5929 print_modules();
5930 if (irqs_disabled())
5931 print_irqtrace_events(prev);
5932 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
5933 pr_err("Preemption disabled at:");
5934 print_ip_sym(KERN_ERR, preempt_disable_ip);
5935 }
5936 check_panic_on_warn("scheduling while atomic");
5937
5938 dump_stack();
5939 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5940 }
5941
5942 /*
5943 * Various schedule()-time debugging checks and statistics:
5944 */
schedule_debug(struct task_struct * prev,bool preempt)5945 static inline void schedule_debug(struct task_struct *prev, bool preempt)
5946 {
5947 #ifdef CONFIG_SCHED_STACK_END_CHECK
5948 if (task_stack_end_corrupted(prev))
5949 panic("corrupted stack end detected inside scheduler\n");
5950
5951 if (task_scs_end_corrupted(prev))
5952 panic("corrupted shadow stack detected inside scheduler\n");
5953 #endif
5954
5955 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5956 if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
5957 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5958 prev->comm, prev->pid, prev->non_block_count);
5959 dump_stack();
5960 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5961 }
5962 #endif
5963
5964 if (unlikely(in_atomic_preempt_off())) {
5965 __schedule_bug(prev);
5966 preempt_count_set(PREEMPT_DISABLED);
5967 }
5968 rcu_sleep_check();
5969 SCHED_WARN_ON(ct_state() == CT_STATE_USER);
5970
5971 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5972
5973 schedstat_inc(this_rq()->sched_count);
5974 }
5975
prev_balance(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)5976 static void prev_balance(struct rq *rq, struct task_struct *prev,
5977 struct rq_flags *rf)
5978 {
5979 const struct sched_class *start_class = prev->sched_class;
5980 const struct sched_class *class;
5981
5982 #ifdef CONFIG_SCHED_CLASS_EXT
5983 /*
5984 * SCX requires a balance() call before every pick_task() including when
5985 * waking up from SCHED_IDLE. If @start_class is below SCX, start from
5986 * SCX instead. Also, set a flag to detect missing balance() call.
5987 */
5988 if (scx_enabled()) {
5989 rq->scx.flags |= SCX_RQ_BAL_PENDING;
5990 if (sched_class_above(&ext_sched_class, start_class))
5991 start_class = &ext_sched_class;
5992 }
5993 #endif
5994
5995 /*
5996 * We must do the balancing pass before put_prev_task(), such
5997 * that when we release the rq->lock the task is in the same
5998 * state as before we took rq->lock.
5999 *
6000 * We can terminate the balance pass as soon as we know there is
6001 * a runnable task of @class priority or higher.
6002 */
6003 for_active_class_range(class, start_class, &idle_sched_class) {
6004 if (class->balance && class->balance(rq, prev, rf))
6005 break;
6006 }
6007 }
6008
6009 /*
6010 * Pick up the highest-prio task:
6011 */
6012 static inline struct task_struct *
__pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)6013 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6014 {
6015 const struct sched_class *class;
6016 struct task_struct *p;
6017
6018 rq->dl_server = NULL;
6019
6020 if (scx_enabled())
6021 goto restart;
6022
6023 /*
6024 * Optimization: we know that if all tasks are in the fair class we can
6025 * call that function directly, but only if the @prev task wasn't of a
6026 * higher scheduling class, because otherwise those lose the
6027 * opportunity to pull in more work from other CPUs.
6028 */
6029 if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
6030 rq->nr_running == rq->cfs.h_nr_queued)) {
6031
6032 p = pick_next_task_fair(rq, prev, rf);
6033 if (unlikely(p == RETRY_TASK))
6034 goto restart;
6035
6036 /* Assume the next prioritized class is idle_sched_class */
6037 if (!p) {
6038 p = pick_task_idle(rq);
6039 put_prev_set_next_task(rq, prev, p);
6040 }
6041
6042 return p;
6043 }
6044
6045 restart:
6046 prev_balance(rq, prev, rf);
6047
6048 for_each_active_class(class) {
6049 if (class->pick_next_task) {
6050 p = class->pick_next_task(rq, prev);
6051 if (p)
6052 return p;
6053 } else {
6054 p = class->pick_task(rq);
6055 if (p) {
6056 put_prev_set_next_task(rq, prev, p);
6057 return p;
6058 }
6059 }
6060 }
6061
6062 BUG(); /* The idle class should always have a runnable task. */
6063 }
6064
6065 #ifdef CONFIG_SCHED_CORE
is_task_rq_idle(struct task_struct * t)6066 static inline bool is_task_rq_idle(struct task_struct *t)
6067 {
6068 return (task_rq(t)->idle == t);
6069 }
6070
cookie_equals(struct task_struct * a,unsigned long cookie)6071 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
6072 {
6073 return is_task_rq_idle(a) || (a->core_cookie == cookie);
6074 }
6075
cookie_match(struct task_struct * a,struct task_struct * b)6076 static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
6077 {
6078 if (is_task_rq_idle(a) || is_task_rq_idle(b))
6079 return true;
6080
6081 return a->core_cookie == b->core_cookie;
6082 }
6083
pick_task(struct rq * rq)6084 static inline struct task_struct *pick_task(struct rq *rq)
6085 {
6086 const struct sched_class *class;
6087 struct task_struct *p;
6088
6089 rq->dl_server = NULL;
6090
6091 for_each_active_class(class) {
6092 p = class->pick_task(rq);
6093 if (p)
6094 return p;
6095 }
6096
6097 BUG(); /* The idle class should always have a runnable task. */
6098 }
6099
6100 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
6101
6102 static void queue_core_balance(struct rq *rq);
6103
6104 static struct task_struct *
pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)6105 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6106 {
6107 struct task_struct *next, *p, *max = NULL;
6108 const struct cpumask *smt_mask;
6109 bool fi_before = false;
6110 bool core_clock_updated = (rq == rq->core);
6111 unsigned long cookie;
6112 int i, cpu, occ = 0;
6113 struct rq *rq_i;
6114 bool need_sync;
6115
6116 if (!sched_core_enabled(rq))
6117 return __pick_next_task(rq, prev, rf);
6118
6119 cpu = cpu_of(rq);
6120
6121 /* Stopper task is switching into idle, no need core-wide selection. */
6122 if (cpu_is_offline(cpu)) {
6123 /*
6124 * Reset core_pick so that we don't enter the fastpath when
6125 * coming online. core_pick would already be migrated to
6126 * another cpu during offline.
6127 */
6128 rq->core_pick = NULL;
6129 rq->core_dl_server = NULL;
6130 return __pick_next_task(rq, prev, rf);
6131 }
6132
6133 /*
6134 * If there were no {en,de}queues since we picked (IOW, the task
6135 * pointers are all still valid), and we haven't scheduled the last
6136 * pick yet, do so now.
6137 *
6138 * rq->core_pick can be NULL if no selection was made for a CPU because
6139 * it was either offline or went offline during a sibling's core-wide
6140 * selection. In this case, do a core-wide selection.
6141 */
6142 if (rq->core->core_pick_seq == rq->core->core_task_seq &&
6143 rq->core->core_pick_seq != rq->core_sched_seq &&
6144 rq->core_pick) {
6145 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
6146
6147 next = rq->core_pick;
6148 rq->dl_server = rq->core_dl_server;
6149 rq->core_pick = NULL;
6150 rq->core_dl_server = NULL;
6151 goto out_set_next;
6152 }
6153
6154 prev_balance(rq, prev, rf);
6155
6156 smt_mask = cpu_smt_mask(cpu);
6157 need_sync = !!rq->core->core_cookie;
6158
6159 /* reset state */
6160 rq->core->core_cookie = 0UL;
6161 if (rq->core->core_forceidle_count) {
6162 if (!core_clock_updated) {
6163 update_rq_clock(rq->core);
6164 core_clock_updated = true;
6165 }
6166 sched_core_account_forceidle(rq);
6167 /* reset after accounting force idle */
6168 rq->core->core_forceidle_start = 0;
6169 rq->core->core_forceidle_count = 0;
6170 rq->core->core_forceidle_occupation = 0;
6171 need_sync = true;
6172 fi_before = true;
6173 }
6174
6175 /*
6176 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
6177 *
6178 * @task_seq guards the task state ({en,de}queues)
6179 * @pick_seq is the @task_seq we did a selection on
6180 * @sched_seq is the @pick_seq we scheduled
6181 *
6182 * However, preemptions can cause multiple picks on the same task set.
6183 * 'Fix' this by also increasing @task_seq for every pick.
6184 */
6185 rq->core->core_task_seq++;
6186
6187 /*
6188 * Optimize for common case where this CPU has no cookies
6189 * and there are no cookied tasks running on siblings.
6190 */
6191 if (!need_sync) {
6192 next = pick_task(rq);
6193 if (!next->core_cookie) {
6194 rq->core_pick = NULL;
6195 rq->core_dl_server = NULL;
6196 /*
6197 * For robustness, update the min_vruntime_fi for
6198 * unconstrained picks as well.
6199 */
6200 WARN_ON_ONCE(fi_before);
6201 task_vruntime_update(rq, next, false);
6202 goto out_set_next;
6203 }
6204 }
6205
6206 /*
6207 * For each thread: do the regular task pick and find the max prio task
6208 * amongst them.
6209 *
6210 * Tie-break prio towards the current CPU
6211 */
6212 for_each_cpu_wrap(i, smt_mask, cpu) {
6213 rq_i = cpu_rq(i);
6214
6215 /*
6216 * Current cpu always has its clock updated on entrance to
6217 * pick_next_task(). If the current cpu is not the core,
6218 * the core may also have been updated above.
6219 */
6220 if (i != cpu && (rq_i != rq->core || !core_clock_updated))
6221 update_rq_clock(rq_i);
6222
6223 rq_i->core_pick = p = pick_task(rq_i);
6224 rq_i->core_dl_server = rq_i->dl_server;
6225
6226 if (!max || prio_less(max, p, fi_before))
6227 max = p;
6228 }
6229
6230 cookie = rq->core->core_cookie = max->core_cookie;
6231
6232 /*
6233 * For each thread: try and find a runnable task that matches @max or
6234 * force idle.
6235 */
6236 for_each_cpu(i, smt_mask) {
6237 rq_i = cpu_rq(i);
6238 p = rq_i->core_pick;
6239
6240 if (!cookie_equals(p, cookie)) {
6241 p = NULL;
6242 if (cookie)
6243 p = sched_core_find(rq_i, cookie);
6244 if (!p)
6245 p = idle_sched_class.pick_task(rq_i);
6246 }
6247
6248 rq_i->core_pick = p;
6249 rq_i->core_dl_server = NULL;
6250
6251 if (p == rq_i->idle) {
6252 if (rq_i->nr_running) {
6253 rq->core->core_forceidle_count++;
6254 if (!fi_before)
6255 rq->core->core_forceidle_seq++;
6256 }
6257 } else {
6258 occ++;
6259 }
6260 }
6261
6262 if (schedstat_enabled() && rq->core->core_forceidle_count) {
6263 rq->core->core_forceidle_start = rq_clock(rq->core);
6264 rq->core->core_forceidle_occupation = occ;
6265 }
6266
6267 rq->core->core_pick_seq = rq->core->core_task_seq;
6268 next = rq->core_pick;
6269 rq->core_sched_seq = rq->core->core_pick_seq;
6270
6271 /* Something should have been selected for current CPU */
6272 WARN_ON_ONCE(!next);
6273
6274 /*
6275 * Reschedule siblings
6276 *
6277 * NOTE: L1TF -- at this point we're no longer running the old task and
6278 * sending an IPI (below) ensures the sibling will no longer be running
6279 * their task. This ensures there is no inter-sibling overlap between
6280 * non-matching user state.
6281 */
6282 for_each_cpu(i, smt_mask) {
6283 rq_i = cpu_rq(i);
6284
6285 /*
6286 * An online sibling might have gone offline before a task
6287 * could be picked for it, or it might be offline but later
6288 * happen to come online, but its too late and nothing was
6289 * picked for it. That's Ok - it will pick tasks for itself,
6290 * so ignore it.
6291 */
6292 if (!rq_i->core_pick)
6293 continue;
6294
6295 /*
6296 * Update for new !FI->FI transitions, or if continuing to be in !FI:
6297 * fi_before fi update?
6298 * 0 0 1
6299 * 0 1 1
6300 * 1 0 1
6301 * 1 1 0
6302 */
6303 if (!(fi_before && rq->core->core_forceidle_count))
6304 task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
6305
6306 rq_i->core_pick->core_occupation = occ;
6307
6308 if (i == cpu) {
6309 rq_i->core_pick = NULL;
6310 rq_i->core_dl_server = NULL;
6311 continue;
6312 }
6313
6314 /* Did we break L1TF mitigation requirements? */
6315 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
6316
6317 if (rq_i->curr == rq_i->core_pick) {
6318 rq_i->core_pick = NULL;
6319 rq_i->core_dl_server = NULL;
6320 continue;
6321 }
6322
6323 resched_curr(rq_i);
6324 }
6325
6326 out_set_next:
6327 put_prev_set_next_task(rq, prev, next);
6328 if (rq->core->core_forceidle_count && next == rq->idle)
6329 queue_core_balance(rq);
6330
6331 return next;
6332 }
6333
try_steal_cookie(int this,int that)6334 static bool try_steal_cookie(int this, int that)
6335 {
6336 struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
6337 struct task_struct *p;
6338 unsigned long cookie;
6339 bool success = false;
6340
6341 guard(irq)();
6342 guard(double_rq_lock)(dst, src);
6343
6344 cookie = dst->core->core_cookie;
6345 if (!cookie)
6346 return false;
6347
6348 if (dst->curr != dst->idle)
6349 return false;
6350
6351 p = sched_core_find(src, cookie);
6352 if (!p)
6353 return false;
6354
6355 do {
6356 if (p == src->core_pick || p == src->curr)
6357 goto next;
6358
6359 if (!is_cpu_allowed(p, this))
6360 goto next;
6361
6362 if (p->core_occupation > dst->idle->core_occupation)
6363 goto next;
6364 /*
6365 * sched_core_find() and sched_core_next() will ensure
6366 * that task @p is not throttled now, we also need to
6367 * check whether the runqueue of the destination CPU is
6368 * being throttled.
6369 */
6370 if (sched_task_is_throttled(p, this))
6371 goto next;
6372
6373 move_queued_task_locked(src, dst, p);
6374 resched_curr(dst);
6375
6376 success = true;
6377 break;
6378
6379 next:
6380 p = sched_core_next(p, cookie);
6381 } while (p);
6382
6383 return success;
6384 }
6385
steal_cookie_task(int cpu,struct sched_domain * sd)6386 static bool steal_cookie_task(int cpu, struct sched_domain *sd)
6387 {
6388 int i;
6389
6390 for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) {
6391 if (i == cpu)
6392 continue;
6393
6394 if (need_resched())
6395 break;
6396
6397 if (try_steal_cookie(cpu, i))
6398 return true;
6399 }
6400
6401 return false;
6402 }
6403
sched_core_balance(struct rq * rq)6404 static void sched_core_balance(struct rq *rq)
6405 {
6406 struct sched_domain *sd;
6407 int cpu = cpu_of(rq);
6408
6409 guard(preempt)();
6410 guard(rcu)();
6411
6412 raw_spin_rq_unlock_irq(rq);
6413 for_each_domain(cpu, sd) {
6414 if (need_resched())
6415 break;
6416
6417 if (steal_cookie_task(cpu, sd))
6418 break;
6419 }
6420 raw_spin_rq_lock_irq(rq);
6421 }
6422
6423 static DEFINE_PER_CPU(struct balance_callback, core_balance_head);
6424
queue_core_balance(struct rq * rq)6425 static void queue_core_balance(struct rq *rq)
6426 {
6427 if (!sched_core_enabled(rq))
6428 return;
6429
6430 if (!rq->core->core_cookie)
6431 return;
6432
6433 if (!rq->nr_running) /* not forced idle */
6434 return;
6435
6436 queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
6437 }
6438
6439 DEFINE_LOCK_GUARD_1(core_lock, int,
6440 sched_core_lock(*_T->lock, &_T->flags),
6441 sched_core_unlock(*_T->lock, &_T->flags),
6442 unsigned long flags)
6443
sched_core_cpu_starting(unsigned int cpu)6444 static void sched_core_cpu_starting(unsigned int cpu)
6445 {
6446 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6447 struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6448 int t;
6449
6450 guard(core_lock)(&cpu);
6451
6452 WARN_ON_ONCE(rq->core != rq);
6453
6454 /* if we're the first, we'll be our own leader */
6455 if (cpumask_weight(smt_mask) == 1)
6456 return;
6457
6458 /* find the leader */
6459 for_each_cpu(t, smt_mask) {
6460 if (t == cpu)
6461 continue;
6462 rq = cpu_rq(t);
6463 if (rq->core == rq) {
6464 core_rq = rq;
6465 break;
6466 }
6467 }
6468
6469 if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
6470 return;
6471
6472 /* install and validate core_rq */
6473 for_each_cpu(t, smt_mask) {
6474 rq = cpu_rq(t);
6475
6476 if (t == cpu)
6477 rq->core = core_rq;
6478
6479 WARN_ON_ONCE(rq->core != core_rq);
6480 }
6481 }
6482
sched_core_cpu_deactivate(unsigned int cpu)6483 static void sched_core_cpu_deactivate(unsigned int cpu)
6484 {
6485 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6486 struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6487 int t;
6488
6489 guard(core_lock)(&cpu);
6490
6491 /* if we're the last man standing, nothing to do */
6492 if (cpumask_weight(smt_mask) == 1) {
6493 WARN_ON_ONCE(rq->core != rq);
6494 return;
6495 }
6496
6497 /* if we're not the leader, nothing to do */
6498 if (rq->core != rq)
6499 return;
6500
6501 /* find a new leader */
6502 for_each_cpu(t, smt_mask) {
6503 if (t == cpu)
6504 continue;
6505 core_rq = cpu_rq(t);
6506 break;
6507 }
6508
6509 if (WARN_ON_ONCE(!core_rq)) /* impossible */
6510 return;
6511
6512 /* copy the shared state to the new leader */
6513 core_rq->core_task_seq = rq->core_task_seq;
6514 core_rq->core_pick_seq = rq->core_pick_seq;
6515 core_rq->core_cookie = rq->core_cookie;
6516 core_rq->core_forceidle_count = rq->core_forceidle_count;
6517 core_rq->core_forceidle_seq = rq->core_forceidle_seq;
6518 core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
6519
6520 /*
6521 * Accounting edge for forced idle is handled in pick_next_task().
6522 * Don't need another one here, since the hotplug thread shouldn't
6523 * have a cookie.
6524 */
6525 core_rq->core_forceidle_start = 0;
6526
6527 /* install new leader */
6528 for_each_cpu(t, smt_mask) {
6529 rq = cpu_rq(t);
6530 rq->core = core_rq;
6531 }
6532 }
6533
sched_core_cpu_dying(unsigned int cpu)6534 static inline void sched_core_cpu_dying(unsigned int cpu)
6535 {
6536 struct rq *rq = cpu_rq(cpu);
6537
6538 if (rq->core != rq)
6539 rq->core = rq;
6540 }
6541
6542 #else /* !CONFIG_SCHED_CORE */
6543
sched_core_cpu_starting(unsigned int cpu)6544 static inline void sched_core_cpu_starting(unsigned int cpu) {}
sched_core_cpu_deactivate(unsigned int cpu)6545 static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
sched_core_cpu_dying(unsigned int cpu)6546 static inline void sched_core_cpu_dying(unsigned int cpu) {}
6547
6548 static struct task_struct *
pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)6549 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6550 {
6551 return __pick_next_task(rq, prev, rf);
6552 }
6553
6554 #endif /* CONFIG_SCHED_CORE */
6555
6556 /*
6557 * Constants for the sched_mode argument of __schedule().
6558 *
6559 * The mode argument allows RT enabled kernels to differentiate a
6560 * preemption from blocking on an 'sleeping' spin/rwlock.
6561 */
6562 #define SM_IDLE (-1)
6563 #define SM_NONE 0
6564 #define SM_PREEMPT 1
6565 #define SM_RTLOCK_WAIT 2
6566
6567 /*
6568 * Helper function for __schedule()
6569 *
6570 * If a task does not have signals pending, deactivate it
6571 * Otherwise marks the task's __state as RUNNING
6572 */
try_to_block_task(struct rq * rq,struct task_struct * p,unsigned long task_state)6573 static bool try_to_block_task(struct rq *rq, struct task_struct *p,
6574 unsigned long task_state)
6575 {
6576 int flags = DEQUEUE_NOCLOCK;
6577
6578 if (signal_pending_state(task_state, p)) {
6579 WRITE_ONCE(p->__state, TASK_RUNNING);
6580 return false;
6581 }
6582
6583 p->sched_contributes_to_load =
6584 (task_state & TASK_UNINTERRUPTIBLE) &&
6585 !(task_state & TASK_NOLOAD) &&
6586 !(task_state & TASK_FROZEN);
6587
6588 if (unlikely(is_special_task_state(task_state)))
6589 flags |= DEQUEUE_SPECIAL;
6590
6591 /*
6592 * __schedule() ttwu()
6593 * prev_state = prev->state; if (p->on_rq && ...)
6594 * if (prev_state) goto out;
6595 * p->on_rq = 0; smp_acquire__after_ctrl_dep();
6596 * p->state = TASK_WAKING
6597 *
6598 * Where __schedule() and ttwu() have matching control dependencies.
6599 *
6600 * After this, schedule() must not care about p->state any more.
6601 */
6602 block_task(rq, p, flags);
6603 return true;
6604 }
6605
6606 /*
6607 * __schedule() is the main scheduler function.
6608 *
6609 * The main means of driving the scheduler and thus entering this function are:
6610 *
6611 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6612 *
6613 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6614 * paths. For example, see arch/x86/entry_64.S.
6615 *
6616 * To drive preemption between tasks, the scheduler sets the flag in timer
6617 * interrupt handler sched_tick().
6618 *
6619 * 3. Wakeups don't really cause entry into schedule(). They add a
6620 * task to the run-queue and that's it.
6621 *
6622 * Now, if the new task added to the run-queue preempts the current
6623 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6624 * called on the nearest possible occasion:
6625 *
6626 * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
6627 *
6628 * - in syscall or exception context, at the next outmost
6629 * preempt_enable(). (this might be as soon as the wake_up()'s
6630 * spin_unlock()!)
6631 *
6632 * - in IRQ context, return from interrupt-handler to
6633 * preemptible context
6634 *
6635 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
6636 * then at the next:
6637 *
6638 * - cond_resched() call
6639 * - explicit schedule() call
6640 * - return from syscall or exception to user-space
6641 * - return from interrupt-handler to user-space
6642 *
6643 * WARNING: must be called with preemption disabled!
6644 */
__schedule(int sched_mode)6645 static void __sched notrace __schedule(int sched_mode)
6646 {
6647 struct task_struct *prev, *next;
6648 /*
6649 * On PREEMPT_RT kernel, SM_RTLOCK_WAIT is noted
6650 * as a preemption by schedule_debug() and RCU.
6651 */
6652 bool preempt = sched_mode > SM_NONE;
6653 unsigned long *switch_count;
6654 unsigned long prev_state;
6655 struct rq_flags rf;
6656 struct rq *rq;
6657 int cpu;
6658
6659 cpu = smp_processor_id();
6660 rq = cpu_rq(cpu);
6661 prev = rq->curr;
6662
6663 schedule_debug(prev, preempt);
6664
6665 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
6666 hrtick_clear(rq);
6667
6668 local_irq_disable();
6669 rcu_note_context_switch(preempt);
6670
6671 /*
6672 * Make sure that signal_pending_state()->signal_pending() below
6673 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
6674 * done by the caller to avoid the race with signal_wake_up():
6675 *
6676 * __set_current_state(@state) signal_wake_up()
6677 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING)
6678 * wake_up_state(p, state)
6679 * LOCK rq->lock LOCK p->pi_state
6680 * smp_mb__after_spinlock() smp_mb__after_spinlock()
6681 * if (signal_pending_state()) if (p->state & @state)
6682 *
6683 * Also, the membarrier system call requires a full memory barrier
6684 * after coming from user-space, before storing to rq->curr; this
6685 * barrier matches a full barrier in the proximity of the membarrier
6686 * system call exit.
6687 */
6688 rq_lock(rq, &rf);
6689 smp_mb__after_spinlock();
6690
6691 /* Promote REQ to ACT */
6692 rq->clock_update_flags <<= 1;
6693 update_rq_clock(rq);
6694 rq->clock_update_flags = RQCF_UPDATED;
6695
6696 switch_count = &prev->nivcsw;
6697
6698 /* Task state changes only considers SM_PREEMPT as preemption */
6699 preempt = sched_mode == SM_PREEMPT;
6700
6701 /*
6702 * We must load prev->state once (task_struct::state is volatile), such
6703 * that we form a control dependency vs deactivate_task() below.
6704 */
6705 prev_state = READ_ONCE(prev->__state);
6706 if (sched_mode == SM_IDLE) {
6707 /* SCX must consult the BPF scheduler to tell if rq is empty */
6708 if (!rq->nr_running && !scx_enabled()) {
6709 next = prev;
6710 goto picked;
6711 }
6712 } else if (!preempt && prev_state) {
6713 try_to_block_task(rq, prev, prev_state);
6714 switch_count = &prev->nvcsw;
6715 }
6716
6717 next = pick_next_task(rq, prev, &rf);
6718 rq_set_donor(rq, next);
6719 picked:
6720 clear_tsk_need_resched(prev);
6721 clear_preempt_need_resched();
6722 #ifdef CONFIG_SCHED_DEBUG
6723 rq->last_seen_need_resched_ns = 0;
6724 #endif
6725
6726 if (likely(prev != next)) {
6727 rq->nr_switches++;
6728 /*
6729 * RCU users of rcu_dereference(rq->curr) may not see
6730 * changes to task_struct made by pick_next_task().
6731 */
6732 RCU_INIT_POINTER(rq->curr, next);
6733 /*
6734 * The membarrier system call requires each architecture
6735 * to have a full memory barrier after updating
6736 * rq->curr, before returning to user-space.
6737 *
6738 * Here are the schemes providing that barrier on the
6739 * various architectures:
6740 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC,
6741 * RISC-V. switch_mm() relies on membarrier_arch_switch_mm()
6742 * on PowerPC and on RISC-V.
6743 * - finish_lock_switch() for weakly-ordered
6744 * architectures where spin_unlock is a full barrier,
6745 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6746 * is a RELEASE barrier),
6747 *
6748 * The barrier matches a full barrier in the proximity of
6749 * the membarrier system call entry.
6750 *
6751 * On RISC-V, this barrier pairing is also needed for the
6752 * SYNC_CORE command when switching between processes, cf.
6753 * the inline comments in membarrier_arch_switch_mm().
6754 */
6755 ++*switch_count;
6756
6757 migrate_disable_switch(rq, prev);
6758 psi_account_irqtime(rq, prev, next);
6759 psi_sched_switch(prev, next, !task_on_rq_queued(prev) ||
6760 prev->se.sched_delayed);
6761
6762 trace_sched_switch(preempt, prev, next, prev_state);
6763
6764 /* Also unlocks the rq: */
6765 rq = context_switch(rq, prev, next, &rf);
6766 } else {
6767 rq_unpin_lock(rq, &rf);
6768 __balance_callbacks(rq);
6769 raw_spin_rq_unlock_irq(rq);
6770 }
6771 }
6772
do_task_dead(void)6773 void __noreturn do_task_dead(void)
6774 {
6775 /* Causes final put_task_struct in finish_task_switch(): */
6776 set_special_state(TASK_DEAD);
6777
6778 /* Tell freezer to ignore us: */
6779 current->flags |= PF_NOFREEZE;
6780
6781 __schedule(SM_NONE);
6782 BUG();
6783
6784 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
6785 for (;;)
6786 cpu_relax();
6787 }
6788
sched_submit_work(struct task_struct * tsk)6789 static inline void sched_submit_work(struct task_struct *tsk)
6790 {
6791 static DEFINE_WAIT_OVERRIDE_MAP(sched_map, LD_WAIT_CONFIG);
6792 unsigned int task_flags;
6793
6794 /*
6795 * Establish LD_WAIT_CONFIG context to ensure none of the code called
6796 * will use a blocking primitive -- which would lead to recursion.
6797 */
6798 lock_map_acquire_try(&sched_map);
6799
6800 task_flags = tsk->flags;
6801 /*
6802 * If a worker goes to sleep, notify and ask workqueue whether it
6803 * wants to wake up a task to maintain concurrency.
6804 */
6805 if (task_flags & PF_WQ_WORKER)
6806 wq_worker_sleeping(tsk);
6807 else if (task_flags & PF_IO_WORKER)
6808 io_wq_worker_sleeping(tsk);
6809
6810 /*
6811 * spinlock and rwlock must not flush block requests. This will
6812 * deadlock if the callback attempts to acquire a lock which is
6813 * already acquired.
6814 */
6815 SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT);
6816
6817 /*
6818 * If we are going to sleep and we have plugged IO queued,
6819 * make sure to submit it to avoid deadlocks.
6820 */
6821 blk_flush_plug(tsk->plug, true);
6822
6823 lock_map_release(&sched_map);
6824 }
6825
sched_update_worker(struct task_struct * tsk)6826 static void sched_update_worker(struct task_struct *tsk)
6827 {
6828 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER | PF_BLOCK_TS)) {
6829 if (tsk->flags & PF_BLOCK_TS)
6830 blk_plug_invalidate_ts(tsk);
6831 if (tsk->flags & PF_WQ_WORKER)
6832 wq_worker_running(tsk);
6833 else if (tsk->flags & PF_IO_WORKER)
6834 io_wq_worker_running(tsk);
6835 }
6836 }
6837
__schedule_loop(int sched_mode)6838 static __always_inline void __schedule_loop(int sched_mode)
6839 {
6840 do {
6841 preempt_disable();
6842 __schedule(sched_mode);
6843 sched_preempt_enable_no_resched();
6844 } while (need_resched());
6845 }
6846
schedule(void)6847 asmlinkage __visible void __sched schedule(void)
6848 {
6849 struct task_struct *tsk = current;
6850
6851 #ifdef CONFIG_RT_MUTEXES
6852 lockdep_assert(!tsk->sched_rt_mutex);
6853 #endif
6854
6855 if (!task_is_running(tsk))
6856 sched_submit_work(tsk);
6857 __schedule_loop(SM_NONE);
6858 sched_update_worker(tsk);
6859 }
6860 EXPORT_SYMBOL(schedule);
6861
6862 /*
6863 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6864 * state (have scheduled out non-voluntarily) by making sure that all
6865 * tasks have either left the run queue or have gone into user space.
6866 * As idle tasks do not do either, they must not ever be preempted
6867 * (schedule out non-voluntarily).
6868 *
6869 * schedule_idle() is similar to schedule_preempt_disable() except that it
6870 * never enables preemption because it does not call sched_submit_work().
6871 */
schedule_idle(void)6872 void __sched schedule_idle(void)
6873 {
6874 /*
6875 * As this skips calling sched_submit_work(), which the idle task does
6876 * regardless because that function is a NOP when the task is in a
6877 * TASK_RUNNING state, make sure this isn't used someplace that the
6878 * current task can be in any other state. Note, idle is always in the
6879 * TASK_RUNNING state.
6880 */
6881 WARN_ON_ONCE(current->__state);
6882 do {
6883 __schedule(SM_IDLE);
6884 } while (need_resched());
6885 }
6886
6887 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK)
schedule_user(void)6888 asmlinkage __visible void __sched schedule_user(void)
6889 {
6890 /*
6891 * If we come here after a random call to set_need_resched(),
6892 * or we have been woken up remotely but the IPI has not yet arrived,
6893 * we haven't yet exited the RCU idle mode. Do it here manually until
6894 * we find a better solution.
6895 *
6896 * NB: There are buggy callers of this function. Ideally we
6897 * should warn if prev_state != CT_STATE_USER, but that will trigger
6898 * too frequently to make sense yet.
6899 */
6900 enum ctx_state prev_state = exception_enter();
6901 schedule();
6902 exception_exit(prev_state);
6903 }
6904 #endif
6905
6906 /**
6907 * schedule_preempt_disabled - called with preemption disabled
6908 *
6909 * Returns with preemption disabled. Note: preempt_count must be 1
6910 */
schedule_preempt_disabled(void)6911 void __sched schedule_preempt_disabled(void)
6912 {
6913 sched_preempt_enable_no_resched();
6914 schedule();
6915 preempt_disable();
6916 }
6917
6918 #ifdef CONFIG_PREEMPT_RT
schedule_rtlock(void)6919 void __sched notrace schedule_rtlock(void)
6920 {
6921 __schedule_loop(SM_RTLOCK_WAIT);
6922 }
6923 NOKPROBE_SYMBOL(schedule_rtlock);
6924 #endif
6925
preempt_schedule_common(void)6926 static void __sched notrace preempt_schedule_common(void)
6927 {
6928 do {
6929 /*
6930 * Because the function tracer can trace preempt_count_sub()
6931 * and it also uses preempt_enable/disable_notrace(), if
6932 * NEED_RESCHED is set, the preempt_enable_notrace() called
6933 * by the function tracer will call this function again and
6934 * cause infinite recursion.
6935 *
6936 * Preemption must be disabled here before the function
6937 * tracer can trace. Break up preempt_disable() into two
6938 * calls. One to disable preemption without fear of being
6939 * traced. The other to still record the preemption latency,
6940 * which can also be traced by the function tracer.
6941 */
6942 preempt_disable_notrace();
6943 preempt_latency_start(1);
6944 __schedule(SM_PREEMPT);
6945 preempt_latency_stop(1);
6946 preempt_enable_no_resched_notrace();
6947
6948 /*
6949 * Check again in case we missed a preemption opportunity
6950 * between schedule and now.
6951 */
6952 } while (need_resched());
6953 }
6954
6955 #ifdef CONFIG_PREEMPTION
6956 /*
6957 * This is the entry point to schedule() from in-kernel preemption
6958 * off of preempt_enable.
6959 */
preempt_schedule(void)6960 asmlinkage __visible void __sched notrace preempt_schedule(void)
6961 {
6962 /*
6963 * If there is a non-zero preempt_count or interrupts are disabled,
6964 * we do not want to preempt the current task. Just return..
6965 */
6966 if (likely(!preemptible()))
6967 return;
6968 preempt_schedule_common();
6969 }
6970 NOKPROBE_SYMBOL(preempt_schedule);
6971 EXPORT_SYMBOL(preempt_schedule);
6972
6973 #ifdef CONFIG_PREEMPT_DYNAMIC
6974 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6975 #ifndef preempt_schedule_dynamic_enabled
6976 #define preempt_schedule_dynamic_enabled preempt_schedule
6977 #define preempt_schedule_dynamic_disabled NULL
6978 #endif
6979 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
6980 EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
6981 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6982 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
dynamic_preempt_schedule(void)6983 void __sched notrace dynamic_preempt_schedule(void)
6984 {
6985 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
6986 return;
6987 preempt_schedule();
6988 }
6989 NOKPROBE_SYMBOL(dynamic_preempt_schedule);
6990 EXPORT_SYMBOL(dynamic_preempt_schedule);
6991 #endif
6992 #endif
6993
6994 /**
6995 * preempt_schedule_notrace - preempt_schedule called by tracing
6996 *
6997 * The tracing infrastructure uses preempt_enable_notrace to prevent
6998 * recursion and tracing preempt enabling caused by the tracing
6999 * infrastructure itself. But as tracing can happen in areas coming
7000 * from userspace or just about to enter userspace, a preempt enable
7001 * can occur before user_exit() is called. This will cause the scheduler
7002 * to be called when the system is still in usermode.
7003 *
7004 * To prevent this, the preempt_enable_notrace will use this function
7005 * instead of preempt_schedule() to exit user context if needed before
7006 * calling the scheduler.
7007 */
preempt_schedule_notrace(void)7008 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
7009 {
7010 enum ctx_state prev_ctx;
7011
7012 if (likely(!preemptible()))
7013 return;
7014
7015 do {
7016 /*
7017 * Because the function tracer can trace preempt_count_sub()
7018 * and it also uses preempt_enable/disable_notrace(), if
7019 * NEED_RESCHED is set, the preempt_enable_notrace() called
7020 * by the function tracer will call this function again and
7021 * cause infinite recursion.
7022 *
7023 * Preemption must be disabled here before the function
7024 * tracer can trace. Break up preempt_disable() into two
7025 * calls. One to disable preemption without fear of being
7026 * traced. The other to still record the preemption latency,
7027 * which can also be traced by the function tracer.
7028 */
7029 preempt_disable_notrace();
7030 preempt_latency_start(1);
7031 /*
7032 * Needs preempt disabled in case user_exit() is traced
7033 * and the tracer calls preempt_enable_notrace() causing
7034 * an infinite recursion.
7035 */
7036 prev_ctx = exception_enter();
7037 __schedule(SM_PREEMPT);
7038 exception_exit(prev_ctx);
7039
7040 preempt_latency_stop(1);
7041 preempt_enable_no_resched_notrace();
7042 } while (need_resched());
7043 }
7044 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
7045
7046 #ifdef CONFIG_PREEMPT_DYNAMIC
7047 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
7048 #ifndef preempt_schedule_notrace_dynamic_enabled
7049 #define preempt_schedule_notrace_dynamic_enabled preempt_schedule_notrace
7050 #define preempt_schedule_notrace_dynamic_disabled NULL
7051 #endif
7052 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
7053 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
7054 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7055 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
dynamic_preempt_schedule_notrace(void)7056 void __sched notrace dynamic_preempt_schedule_notrace(void)
7057 {
7058 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
7059 return;
7060 preempt_schedule_notrace();
7061 }
7062 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
7063 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
7064 #endif
7065 #endif
7066
7067 #endif /* CONFIG_PREEMPTION */
7068
7069 /*
7070 * This is the entry point to schedule() from kernel preemption
7071 * off of IRQ context.
7072 * Note, that this is called and return with IRQs disabled. This will
7073 * protect us against recursive calling from IRQ contexts.
7074 */
preempt_schedule_irq(void)7075 asmlinkage __visible void __sched preempt_schedule_irq(void)
7076 {
7077 enum ctx_state prev_state;
7078
7079 /* Catch callers which need to be fixed */
7080 BUG_ON(preempt_count() || !irqs_disabled());
7081
7082 prev_state = exception_enter();
7083
7084 do {
7085 preempt_disable();
7086 local_irq_enable();
7087 __schedule(SM_PREEMPT);
7088 local_irq_disable();
7089 sched_preempt_enable_no_resched();
7090 } while (need_resched());
7091
7092 exception_exit(prev_state);
7093 }
7094
default_wake_function(wait_queue_entry_t * curr,unsigned mode,int wake_flags,void * key)7095 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
7096 void *key)
7097 {
7098 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~(WF_SYNC|WF_CURRENT_CPU));
7099 return try_to_wake_up(curr->private, mode, wake_flags);
7100 }
7101 EXPORT_SYMBOL(default_wake_function);
7102
__setscheduler_class(int policy,int prio)7103 const struct sched_class *__setscheduler_class(int policy, int prio)
7104 {
7105 if (dl_prio(prio))
7106 return &dl_sched_class;
7107
7108 if (rt_prio(prio))
7109 return &rt_sched_class;
7110
7111 #ifdef CONFIG_SCHED_CLASS_EXT
7112 if (task_should_scx(policy))
7113 return &ext_sched_class;
7114 #endif
7115
7116 return &fair_sched_class;
7117 }
7118
7119 #ifdef CONFIG_RT_MUTEXES
7120
7121 /*
7122 * Would be more useful with typeof()/auto_type but they don't mix with
7123 * bit-fields. Since it's a local thing, use int. Keep the generic sounding
7124 * name such that if someone were to implement this function we get to compare
7125 * notes.
7126 */
7127 #define fetch_and_set(x, v) ({ int _x = (x); (x) = (v); _x; })
7128
rt_mutex_pre_schedule(void)7129 void rt_mutex_pre_schedule(void)
7130 {
7131 lockdep_assert(!fetch_and_set(current->sched_rt_mutex, 1));
7132 sched_submit_work(current);
7133 }
7134
rt_mutex_schedule(void)7135 void rt_mutex_schedule(void)
7136 {
7137 lockdep_assert(current->sched_rt_mutex);
7138 __schedule_loop(SM_NONE);
7139 }
7140
rt_mutex_post_schedule(void)7141 void rt_mutex_post_schedule(void)
7142 {
7143 sched_update_worker(current);
7144 lockdep_assert(fetch_and_set(current->sched_rt_mutex, 0));
7145 }
7146
7147 /*
7148 * rt_mutex_setprio - set the current priority of a task
7149 * @p: task to boost
7150 * @pi_task: donor task
7151 *
7152 * This function changes the 'effective' priority of a task. It does
7153 * not touch ->normal_prio like __setscheduler().
7154 *
7155 * Used by the rt_mutex code to implement priority inheritance
7156 * logic. Call site only calls if the priority of the task changed.
7157 */
rt_mutex_setprio(struct task_struct * p,struct task_struct * pi_task)7158 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
7159 {
7160 int prio, oldprio, queued, running, queue_flag =
7161 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7162 const struct sched_class *prev_class, *next_class;
7163 struct rq_flags rf;
7164 struct rq *rq;
7165
7166 /* XXX used to be waiter->prio, not waiter->task->prio */
7167 prio = __rt_effective_prio(pi_task, p->normal_prio);
7168
7169 /*
7170 * If nothing changed; bail early.
7171 */
7172 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
7173 return;
7174
7175 rq = __task_rq_lock(p, &rf);
7176 update_rq_clock(rq);
7177 /*
7178 * Set under pi_lock && rq->lock, such that the value can be used under
7179 * either lock.
7180 *
7181 * Note that there is loads of tricky to make this pointer cache work
7182 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
7183 * ensure a task is de-boosted (pi_task is set to NULL) before the
7184 * task is allowed to run again (and can exit). This ensures the pointer
7185 * points to a blocked task -- which guarantees the task is present.
7186 */
7187 p->pi_top_task = pi_task;
7188
7189 /*
7190 * For FIFO/RR we only need to set prio, if that matches we're done.
7191 */
7192 if (prio == p->prio && !dl_prio(prio))
7193 goto out_unlock;
7194
7195 /*
7196 * Idle task boosting is a no-no in general. There is one
7197 * exception, when PREEMPT_RT and NOHZ is active:
7198 *
7199 * The idle task calls get_next_timer_interrupt() and holds
7200 * the timer wheel base->lock on the CPU and another CPU wants
7201 * to access the timer (probably to cancel it). We can safely
7202 * ignore the boosting request, as the idle CPU runs this code
7203 * with interrupts disabled and will complete the lock
7204 * protected section without being interrupted. So there is no
7205 * real need to boost.
7206 */
7207 if (unlikely(p == rq->idle)) {
7208 WARN_ON(p != rq->curr);
7209 WARN_ON(p->pi_blocked_on);
7210 goto out_unlock;
7211 }
7212
7213 trace_sched_pi_setprio(p, pi_task);
7214 oldprio = p->prio;
7215
7216 if (oldprio == prio)
7217 queue_flag &= ~DEQUEUE_MOVE;
7218
7219 prev_class = p->sched_class;
7220 next_class = __setscheduler_class(p->policy, prio);
7221
7222 if (prev_class != next_class && p->se.sched_delayed)
7223 dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED | DEQUEUE_NOCLOCK);
7224
7225 queued = task_on_rq_queued(p);
7226 running = task_current_donor(rq, p);
7227 if (queued)
7228 dequeue_task(rq, p, queue_flag);
7229 if (running)
7230 put_prev_task(rq, p);
7231
7232 /*
7233 * Boosting condition are:
7234 * 1. -rt task is running and holds mutex A
7235 * --> -dl task blocks on mutex A
7236 *
7237 * 2. -dl task is running and holds mutex A
7238 * --> -dl task blocks on mutex A and could preempt the
7239 * running task
7240 */
7241 if (dl_prio(prio)) {
7242 if (!dl_prio(p->normal_prio) ||
7243 (pi_task && dl_prio(pi_task->prio) &&
7244 dl_entity_preempt(&pi_task->dl, &p->dl))) {
7245 p->dl.pi_se = pi_task->dl.pi_se;
7246 queue_flag |= ENQUEUE_REPLENISH;
7247 } else {
7248 p->dl.pi_se = &p->dl;
7249 }
7250 } else if (rt_prio(prio)) {
7251 if (dl_prio(oldprio))
7252 p->dl.pi_se = &p->dl;
7253 if (oldprio < prio)
7254 queue_flag |= ENQUEUE_HEAD;
7255 } else {
7256 if (dl_prio(oldprio))
7257 p->dl.pi_se = &p->dl;
7258 if (rt_prio(oldprio))
7259 p->rt.timeout = 0;
7260 }
7261
7262 p->sched_class = next_class;
7263 p->prio = prio;
7264
7265 check_class_changing(rq, p, prev_class);
7266
7267 if (queued)
7268 enqueue_task(rq, p, queue_flag);
7269 if (running)
7270 set_next_task(rq, p);
7271
7272 check_class_changed(rq, p, prev_class, oldprio);
7273 out_unlock:
7274 /* Avoid rq from going away on us: */
7275 preempt_disable();
7276
7277 rq_unpin_lock(rq, &rf);
7278 __balance_callbacks(rq);
7279 raw_spin_rq_unlock(rq);
7280
7281 preempt_enable();
7282 }
7283 #endif
7284
7285 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
__cond_resched(void)7286 int __sched __cond_resched(void)
7287 {
7288 if (should_resched(0) && !irqs_disabled()) {
7289 preempt_schedule_common();
7290 return 1;
7291 }
7292 /*
7293 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
7294 * whether the current CPU is in an RCU read-side critical section,
7295 * so the tick can report quiescent states even for CPUs looping
7296 * in kernel context. In contrast, in non-preemptible kernels,
7297 * RCU readers leave no in-memory hints, which means that CPU-bound
7298 * processes executing in kernel context might never report an
7299 * RCU quiescent state. Therefore, the following code causes
7300 * cond_resched() to report a quiescent state, but only when RCU
7301 * is in urgent need of one.
7302 */
7303 #ifndef CONFIG_PREEMPT_RCU
7304 rcu_all_qs();
7305 #endif
7306 return 0;
7307 }
7308 EXPORT_SYMBOL(__cond_resched);
7309 #endif
7310
7311 #ifdef CONFIG_PREEMPT_DYNAMIC
7312 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
7313 #define cond_resched_dynamic_enabled __cond_resched
7314 #define cond_resched_dynamic_disabled ((void *)&__static_call_return0)
7315 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
7316 EXPORT_STATIC_CALL_TRAMP(cond_resched);
7317
7318 #define might_resched_dynamic_enabled __cond_resched
7319 #define might_resched_dynamic_disabled ((void *)&__static_call_return0)
7320 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
7321 EXPORT_STATIC_CALL_TRAMP(might_resched);
7322 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7323 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
dynamic_cond_resched(void)7324 int __sched dynamic_cond_resched(void)
7325 {
7326 klp_sched_try_switch();
7327 if (!static_branch_unlikely(&sk_dynamic_cond_resched))
7328 return 0;
7329 return __cond_resched();
7330 }
7331 EXPORT_SYMBOL(dynamic_cond_resched);
7332
7333 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
dynamic_might_resched(void)7334 int __sched dynamic_might_resched(void)
7335 {
7336 if (!static_branch_unlikely(&sk_dynamic_might_resched))
7337 return 0;
7338 return __cond_resched();
7339 }
7340 EXPORT_SYMBOL(dynamic_might_resched);
7341 #endif
7342 #endif
7343
7344 /*
7345 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
7346 * call schedule, and on return reacquire the lock.
7347 *
7348 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
7349 * operations here to prevent schedule() from being called twice (once via
7350 * spin_unlock(), once by hand).
7351 */
__cond_resched_lock(spinlock_t * lock)7352 int __cond_resched_lock(spinlock_t *lock)
7353 {
7354 int resched = should_resched(PREEMPT_LOCK_OFFSET);
7355 int ret = 0;
7356
7357 lockdep_assert_held(lock);
7358
7359 if (spin_needbreak(lock) || resched) {
7360 spin_unlock(lock);
7361 if (!_cond_resched())
7362 cpu_relax();
7363 ret = 1;
7364 spin_lock(lock);
7365 }
7366 return ret;
7367 }
7368 EXPORT_SYMBOL(__cond_resched_lock);
7369
__cond_resched_rwlock_read(rwlock_t * lock)7370 int __cond_resched_rwlock_read(rwlock_t *lock)
7371 {
7372 int resched = should_resched(PREEMPT_LOCK_OFFSET);
7373 int ret = 0;
7374
7375 lockdep_assert_held_read(lock);
7376
7377 if (rwlock_needbreak(lock) || resched) {
7378 read_unlock(lock);
7379 if (!_cond_resched())
7380 cpu_relax();
7381 ret = 1;
7382 read_lock(lock);
7383 }
7384 return ret;
7385 }
7386 EXPORT_SYMBOL(__cond_resched_rwlock_read);
7387
__cond_resched_rwlock_write(rwlock_t * lock)7388 int __cond_resched_rwlock_write(rwlock_t *lock)
7389 {
7390 int resched = should_resched(PREEMPT_LOCK_OFFSET);
7391 int ret = 0;
7392
7393 lockdep_assert_held_write(lock);
7394
7395 if (rwlock_needbreak(lock) || resched) {
7396 write_unlock(lock);
7397 if (!_cond_resched())
7398 cpu_relax();
7399 ret = 1;
7400 write_lock(lock);
7401 }
7402 return ret;
7403 }
7404 EXPORT_SYMBOL(__cond_resched_rwlock_write);
7405
7406 #ifdef CONFIG_PREEMPT_DYNAMIC
7407
7408 #ifdef CONFIG_GENERIC_ENTRY
7409 #include <linux/entry-common.h>
7410 #endif
7411
7412 /*
7413 * SC:cond_resched
7414 * SC:might_resched
7415 * SC:preempt_schedule
7416 * SC:preempt_schedule_notrace
7417 * SC:irqentry_exit_cond_resched
7418 *
7419 *
7420 * NONE:
7421 * cond_resched <- __cond_resched
7422 * might_resched <- RET0
7423 * preempt_schedule <- NOP
7424 * preempt_schedule_notrace <- NOP
7425 * irqentry_exit_cond_resched <- NOP
7426 * dynamic_preempt_lazy <- false
7427 *
7428 * VOLUNTARY:
7429 * cond_resched <- __cond_resched
7430 * might_resched <- __cond_resched
7431 * preempt_schedule <- NOP
7432 * preempt_schedule_notrace <- NOP
7433 * irqentry_exit_cond_resched <- NOP
7434 * dynamic_preempt_lazy <- false
7435 *
7436 * FULL:
7437 * cond_resched <- RET0
7438 * might_resched <- RET0
7439 * preempt_schedule <- preempt_schedule
7440 * preempt_schedule_notrace <- preempt_schedule_notrace
7441 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched
7442 * dynamic_preempt_lazy <- false
7443 *
7444 * LAZY:
7445 * cond_resched <- RET0
7446 * might_resched <- RET0
7447 * preempt_schedule <- preempt_schedule
7448 * preempt_schedule_notrace <- preempt_schedule_notrace
7449 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched
7450 * dynamic_preempt_lazy <- true
7451 */
7452
7453 enum {
7454 preempt_dynamic_undefined = -1,
7455 preempt_dynamic_none,
7456 preempt_dynamic_voluntary,
7457 preempt_dynamic_full,
7458 preempt_dynamic_lazy,
7459 };
7460
7461 int preempt_dynamic_mode = preempt_dynamic_undefined;
7462
sched_dynamic_mode(const char * str)7463 int sched_dynamic_mode(const char *str)
7464 {
7465 #ifndef CONFIG_PREEMPT_RT
7466 if (!strcmp(str, "none"))
7467 return preempt_dynamic_none;
7468
7469 if (!strcmp(str, "voluntary"))
7470 return preempt_dynamic_voluntary;
7471 #endif
7472
7473 if (!strcmp(str, "full"))
7474 return preempt_dynamic_full;
7475
7476 #ifdef CONFIG_ARCH_HAS_PREEMPT_LAZY
7477 if (!strcmp(str, "lazy"))
7478 return preempt_dynamic_lazy;
7479 #endif
7480
7481 return -EINVAL;
7482 }
7483
7484 #define preempt_dynamic_key_enable(f) static_key_enable(&sk_dynamic_##f.key)
7485 #define preempt_dynamic_key_disable(f) static_key_disable(&sk_dynamic_##f.key)
7486
7487 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
7488 #define preempt_dynamic_enable(f) static_call_update(f, f##_dynamic_enabled)
7489 #define preempt_dynamic_disable(f) static_call_update(f, f##_dynamic_disabled)
7490 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7491 #define preempt_dynamic_enable(f) preempt_dynamic_key_enable(f)
7492 #define preempt_dynamic_disable(f) preempt_dynamic_key_disable(f)
7493 #else
7494 #error "Unsupported PREEMPT_DYNAMIC mechanism"
7495 #endif
7496
7497 static DEFINE_MUTEX(sched_dynamic_mutex);
7498 static bool klp_override;
7499
__sched_dynamic_update(int mode)7500 static void __sched_dynamic_update(int mode)
7501 {
7502 /*
7503 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
7504 * the ZERO state, which is invalid.
7505 */
7506 if (!klp_override)
7507 preempt_dynamic_enable(cond_resched);
7508 preempt_dynamic_enable(might_resched);
7509 preempt_dynamic_enable(preempt_schedule);
7510 preempt_dynamic_enable(preempt_schedule_notrace);
7511 preempt_dynamic_enable(irqentry_exit_cond_resched);
7512 preempt_dynamic_key_disable(preempt_lazy);
7513
7514 switch (mode) {
7515 case preempt_dynamic_none:
7516 if (!klp_override)
7517 preempt_dynamic_enable(cond_resched);
7518 preempt_dynamic_disable(might_resched);
7519 preempt_dynamic_disable(preempt_schedule);
7520 preempt_dynamic_disable(preempt_schedule_notrace);
7521 preempt_dynamic_disable(irqentry_exit_cond_resched);
7522 preempt_dynamic_key_disable(preempt_lazy);
7523 if (mode != preempt_dynamic_mode)
7524 pr_info("Dynamic Preempt: none\n");
7525 break;
7526
7527 case preempt_dynamic_voluntary:
7528 if (!klp_override)
7529 preempt_dynamic_enable(cond_resched);
7530 preempt_dynamic_enable(might_resched);
7531 preempt_dynamic_disable(preempt_schedule);
7532 preempt_dynamic_disable(preempt_schedule_notrace);
7533 preempt_dynamic_disable(irqentry_exit_cond_resched);
7534 preempt_dynamic_key_disable(preempt_lazy);
7535 if (mode != preempt_dynamic_mode)
7536 pr_info("Dynamic Preempt: voluntary\n");
7537 break;
7538
7539 case preempt_dynamic_full:
7540 if (!klp_override)
7541 preempt_dynamic_disable(cond_resched);
7542 preempt_dynamic_disable(might_resched);
7543 preempt_dynamic_enable(preempt_schedule);
7544 preempt_dynamic_enable(preempt_schedule_notrace);
7545 preempt_dynamic_enable(irqentry_exit_cond_resched);
7546 preempt_dynamic_key_disable(preempt_lazy);
7547 if (mode != preempt_dynamic_mode)
7548 pr_info("Dynamic Preempt: full\n");
7549 break;
7550
7551 case preempt_dynamic_lazy:
7552 if (!klp_override)
7553 preempt_dynamic_disable(cond_resched);
7554 preempt_dynamic_disable(might_resched);
7555 preempt_dynamic_enable(preempt_schedule);
7556 preempt_dynamic_enable(preempt_schedule_notrace);
7557 preempt_dynamic_enable(irqentry_exit_cond_resched);
7558 preempt_dynamic_key_enable(preempt_lazy);
7559 if (mode != preempt_dynamic_mode)
7560 pr_info("Dynamic Preempt: lazy\n");
7561 break;
7562 }
7563
7564 preempt_dynamic_mode = mode;
7565 }
7566
sched_dynamic_update(int mode)7567 void sched_dynamic_update(int mode)
7568 {
7569 mutex_lock(&sched_dynamic_mutex);
7570 __sched_dynamic_update(mode);
7571 mutex_unlock(&sched_dynamic_mutex);
7572 }
7573
7574 #ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL
7575
klp_cond_resched(void)7576 static int klp_cond_resched(void)
7577 {
7578 __klp_sched_try_switch();
7579 return __cond_resched();
7580 }
7581
sched_dynamic_klp_enable(void)7582 void sched_dynamic_klp_enable(void)
7583 {
7584 mutex_lock(&sched_dynamic_mutex);
7585
7586 klp_override = true;
7587 static_call_update(cond_resched, klp_cond_resched);
7588
7589 mutex_unlock(&sched_dynamic_mutex);
7590 }
7591
sched_dynamic_klp_disable(void)7592 void sched_dynamic_klp_disable(void)
7593 {
7594 mutex_lock(&sched_dynamic_mutex);
7595
7596 klp_override = false;
7597 __sched_dynamic_update(preempt_dynamic_mode);
7598
7599 mutex_unlock(&sched_dynamic_mutex);
7600 }
7601
7602 #endif /* CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
7603
setup_preempt_mode(char * str)7604 static int __init setup_preempt_mode(char *str)
7605 {
7606 int mode = sched_dynamic_mode(str);
7607 if (mode < 0) {
7608 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
7609 return 0;
7610 }
7611
7612 sched_dynamic_update(mode);
7613 return 1;
7614 }
7615 __setup("preempt=", setup_preempt_mode);
7616
preempt_dynamic_init(void)7617 static void __init preempt_dynamic_init(void)
7618 {
7619 if (preempt_dynamic_mode == preempt_dynamic_undefined) {
7620 if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
7621 sched_dynamic_update(preempt_dynamic_none);
7622 } else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
7623 sched_dynamic_update(preempt_dynamic_voluntary);
7624 } else if (IS_ENABLED(CONFIG_PREEMPT_LAZY)) {
7625 sched_dynamic_update(preempt_dynamic_lazy);
7626 } else {
7627 /* Default static call setting, nothing to do */
7628 WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
7629 preempt_dynamic_mode = preempt_dynamic_full;
7630 pr_info("Dynamic Preempt: full\n");
7631 }
7632 }
7633 }
7634
7635 #define PREEMPT_MODEL_ACCESSOR(mode) \
7636 bool preempt_model_##mode(void) \
7637 { \
7638 WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
7639 return preempt_dynamic_mode == preempt_dynamic_##mode; \
7640 } \
7641 EXPORT_SYMBOL_GPL(preempt_model_##mode)
7642
7643 PREEMPT_MODEL_ACCESSOR(none);
7644 PREEMPT_MODEL_ACCESSOR(voluntary);
7645 PREEMPT_MODEL_ACCESSOR(full);
7646 PREEMPT_MODEL_ACCESSOR(lazy);
7647
7648 #else /* !CONFIG_PREEMPT_DYNAMIC: */
7649
preempt_dynamic_init(void)7650 static inline void preempt_dynamic_init(void) { }
7651
7652 #endif /* CONFIG_PREEMPT_DYNAMIC */
7653
io_schedule_prepare(void)7654 int io_schedule_prepare(void)
7655 {
7656 int old_iowait = current->in_iowait;
7657
7658 current->in_iowait = 1;
7659 blk_flush_plug(current->plug, true);
7660 return old_iowait;
7661 }
7662
io_schedule_finish(int token)7663 void io_schedule_finish(int token)
7664 {
7665 current->in_iowait = token;
7666 }
7667
7668 /*
7669 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
7670 * that process accounting knows that this is a task in IO wait state.
7671 */
io_schedule_timeout(long timeout)7672 long __sched io_schedule_timeout(long timeout)
7673 {
7674 int token;
7675 long ret;
7676
7677 token = io_schedule_prepare();
7678 ret = schedule_timeout(timeout);
7679 io_schedule_finish(token);
7680
7681 return ret;
7682 }
7683 EXPORT_SYMBOL(io_schedule_timeout);
7684
io_schedule(void)7685 void __sched io_schedule(void)
7686 {
7687 int token;
7688
7689 token = io_schedule_prepare();
7690 schedule();
7691 io_schedule_finish(token);
7692 }
7693 EXPORT_SYMBOL(io_schedule);
7694
sched_show_task(struct task_struct * p)7695 void sched_show_task(struct task_struct *p)
7696 {
7697 unsigned long free;
7698 int ppid;
7699
7700 if (!try_get_task_stack(p))
7701 return;
7702
7703 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
7704
7705 if (task_is_running(p))
7706 pr_cont(" running task ");
7707 free = stack_not_used(p);
7708 ppid = 0;
7709 rcu_read_lock();
7710 if (pid_alive(p))
7711 ppid = task_pid_nr(rcu_dereference(p->real_parent));
7712 rcu_read_unlock();
7713 pr_cont(" stack:%-5lu pid:%-5d tgid:%-5d ppid:%-6d task_flags:0x%04x flags:0x%08lx\n",
7714 free, task_pid_nr(p), task_tgid_nr(p),
7715 ppid, p->flags, read_task_thread_flags(p));
7716
7717 print_worker_info(KERN_INFO, p);
7718 print_stop_info(KERN_INFO, p);
7719 print_scx_info(KERN_INFO, p);
7720 show_stack(p, NULL, KERN_INFO);
7721 put_task_stack(p);
7722 }
7723 EXPORT_SYMBOL_GPL(sched_show_task);
7724
7725 static inline bool
state_filter_match(unsigned long state_filter,struct task_struct * p)7726 state_filter_match(unsigned long state_filter, struct task_struct *p)
7727 {
7728 unsigned int state = READ_ONCE(p->__state);
7729
7730 /* no filter, everything matches */
7731 if (!state_filter)
7732 return true;
7733
7734 /* filter, but doesn't match */
7735 if (!(state & state_filter))
7736 return false;
7737
7738 /*
7739 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
7740 * TASK_KILLABLE).
7741 */
7742 if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD))
7743 return false;
7744
7745 return true;
7746 }
7747
7748
show_state_filter(unsigned int state_filter)7749 void show_state_filter(unsigned int state_filter)
7750 {
7751 struct task_struct *g, *p;
7752
7753 rcu_read_lock();
7754 for_each_process_thread(g, p) {
7755 /*
7756 * reset the NMI-timeout, listing all files on a slow
7757 * console might take a lot of time:
7758 * Also, reset softlockup watchdogs on all CPUs, because
7759 * another CPU might be blocked waiting for us to process
7760 * an IPI.
7761 */
7762 touch_nmi_watchdog();
7763 touch_all_softlockup_watchdogs();
7764 if (state_filter_match(state_filter, p))
7765 sched_show_task(p);
7766 }
7767
7768 #ifdef CONFIG_SCHED_DEBUG
7769 if (!state_filter)
7770 sysrq_sched_debug_show();
7771 #endif
7772 rcu_read_unlock();
7773 /*
7774 * Only show locks if all tasks are dumped:
7775 */
7776 if (!state_filter)
7777 debug_show_all_locks();
7778 }
7779
7780 /**
7781 * init_idle - set up an idle thread for a given CPU
7782 * @idle: task in question
7783 * @cpu: CPU the idle task belongs to
7784 *
7785 * NOTE: this function does not set the idle thread's NEED_RESCHED
7786 * flag, to make booting more robust.
7787 */
init_idle(struct task_struct * idle,int cpu)7788 void __init init_idle(struct task_struct *idle, int cpu)
7789 {
7790 #ifdef CONFIG_SMP
7791 struct affinity_context ac = (struct affinity_context) {
7792 .new_mask = cpumask_of(cpu),
7793 .flags = 0,
7794 };
7795 #endif
7796 struct rq *rq = cpu_rq(cpu);
7797 unsigned long flags;
7798
7799 raw_spin_lock_irqsave(&idle->pi_lock, flags);
7800 raw_spin_rq_lock(rq);
7801
7802 idle->__state = TASK_RUNNING;
7803 idle->se.exec_start = sched_clock();
7804 /*
7805 * PF_KTHREAD should already be set at this point; regardless, make it
7806 * look like a proper per-CPU kthread.
7807 */
7808 idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY;
7809 kthread_set_per_cpu(idle, cpu);
7810
7811 #ifdef CONFIG_SMP
7812 /*
7813 * No validation and serialization required at boot time and for
7814 * setting up the idle tasks of not yet online CPUs.
7815 */
7816 set_cpus_allowed_common(idle, &ac);
7817 #endif
7818 /*
7819 * We're having a chicken and egg problem, even though we are
7820 * holding rq->lock, the CPU isn't yet set to this CPU so the
7821 * lockdep check in task_group() will fail.
7822 *
7823 * Similar case to sched_fork(). / Alternatively we could
7824 * use task_rq_lock() here and obtain the other rq->lock.
7825 *
7826 * Silence PROVE_RCU
7827 */
7828 rcu_read_lock();
7829 __set_task_cpu(idle, cpu);
7830 rcu_read_unlock();
7831
7832 rq->idle = idle;
7833 rq_set_donor(rq, idle);
7834 rcu_assign_pointer(rq->curr, idle);
7835 idle->on_rq = TASK_ON_RQ_QUEUED;
7836 #ifdef CONFIG_SMP
7837 idle->on_cpu = 1;
7838 #endif
7839 raw_spin_rq_unlock(rq);
7840 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
7841
7842 /* Set the preempt count _outside_ the spinlocks! */
7843 init_idle_preempt_count(idle, cpu);
7844
7845 /*
7846 * The idle tasks have their own, simple scheduling class:
7847 */
7848 idle->sched_class = &idle_sched_class;
7849 ftrace_graph_init_idle_task(idle, cpu);
7850 vtime_init_idle(idle, cpu);
7851 #ifdef CONFIG_SMP
7852 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
7853 #endif
7854 }
7855
7856 #ifdef CONFIG_SMP
7857
cpuset_cpumask_can_shrink(const struct cpumask * cur,const struct cpumask * trial)7858 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
7859 const struct cpumask *trial)
7860 {
7861 int ret = 1;
7862
7863 if (cpumask_empty(cur))
7864 return ret;
7865
7866 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
7867
7868 return ret;
7869 }
7870
task_can_attach(struct task_struct * p)7871 int task_can_attach(struct task_struct *p)
7872 {
7873 int ret = 0;
7874
7875 /*
7876 * Kthreads which disallow setaffinity shouldn't be moved
7877 * to a new cpuset; we don't want to change their CPU
7878 * affinity and isolating such threads by their set of
7879 * allowed nodes is unnecessary. Thus, cpusets are not
7880 * applicable for such threads. This prevents checking for
7881 * success of set_cpus_allowed_ptr() on all attached tasks
7882 * before cpus_mask may be changed.
7883 */
7884 if (p->flags & PF_NO_SETAFFINITY)
7885 ret = -EINVAL;
7886
7887 return ret;
7888 }
7889
7890 bool sched_smp_initialized __read_mostly;
7891
7892 #ifdef CONFIG_NUMA_BALANCING
7893 /* Migrate current task p to target_cpu */
migrate_task_to(struct task_struct * p,int target_cpu)7894 int migrate_task_to(struct task_struct *p, int target_cpu)
7895 {
7896 struct migration_arg arg = { p, target_cpu };
7897 int curr_cpu = task_cpu(p);
7898
7899 if (curr_cpu == target_cpu)
7900 return 0;
7901
7902 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
7903 return -EINVAL;
7904
7905 /* TODO: This is not properly updating schedstats */
7906
7907 trace_sched_move_numa(p, curr_cpu, target_cpu);
7908 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
7909 }
7910
7911 /*
7912 * Requeue a task on a given node and accurately track the number of NUMA
7913 * tasks on the runqueues
7914 */
sched_setnuma(struct task_struct * p,int nid)7915 void sched_setnuma(struct task_struct *p, int nid)
7916 {
7917 bool queued, running;
7918 struct rq_flags rf;
7919 struct rq *rq;
7920
7921 rq = task_rq_lock(p, &rf);
7922 queued = task_on_rq_queued(p);
7923 running = task_current_donor(rq, p);
7924
7925 if (queued)
7926 dequeue_task(rq, p, DEQUEUE_SAVE);
7927 if (running)
7928 put_prev_task(rq, p);
7929
7930 p->numa_preferred_nid = nid;
7931
7932 if (queued)
7933 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
7934 if (running)
7935 set_next_task(rq, p);
7936 task_rq_unlock(rq, p, &rf);
7937 }
7938 #endif /* CONFIG_NUMA_BALANCING */
7939
7940 #ifdef CONFIG_HOTPLUG_CPU
7941 /*
7942 * Invoked on the outgoing CPU in context of the CPU hotplug thread
7943 * after ensuring that there are no user space tasks left on the CPU.
7944 *
7945 * If there is a lazy mm in use on the hotplug thread, drop it and
7946 * switch to init_mm.
7947 *
7948 * The reference count on init_mm is dropped in finish_cpu().
7949 */
sched_force_init_mm(void)7950 static void sched_force_init_mm(void)
7951 {
7952 struct mm_struct *mm = current->active_mm;
7953
7954 if (mm != &init_mm) {
7955 mmgrab_lazy_tlb(&init_mm);
7956 local_irq_disable();
7957 current->active_mm = &init_mm;
7958 switch_mm_irqs_off(mm, &init_mm, current);
7959 local_irq_enable();
7960 finish_arch_post_lock_switch();
7961 mmdrop_lazy_tlb(mm);
7962 }
7963
7964 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */
7965 }
7966
__balance_push_cpu_stop(void * arg)7967 static int __balance_push_cpu_stop(void *arg)
7968 {
7969 struct task_struct *p = arg;
7970 struct rq *rq = this_rq();
7971 struct rq_flags rf;
7972 int cpu;
7973
7974 raw_spin_lock_irq(&p->pi_lock);
7975 rq_lock(rq, &rf);
7976
7977 update_rq_clock(rq);
7978
7979 if (task_rq(p) == rq && task_on_rq_queued(p)) {
7980 cpu = select_fallback_rq(rq->cpu, p);
7981 rq = __migrate_task(rq, &rf, p, cpu);
7982 }
7983
7984 rq_unlock(rq, &rf);
7985 raw_spin_unlock_irq(&p->pi_lock);
7986
7987 put_task_struct(p);
7988
7989 return 0;
7990 }
7991
7992 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
7993
7994 /*
7995 * Ensure we only run per-cpu kthreads once the CPU goes !active.
7996 *
7997 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
7998 * effective when the hotplug motion is down.
7999 */
balance_push(struct rq * rq)8000 static void balance_push(struct rq *rq)
8001 {
8002 struct task_struct *push_task = rq->curr;
8003
8004 lockdep_assert_rq_held(rq);
8005
8006 /*
8007 * Ensure the thing is persistent until balance_push_set(.on = false);
8008 */
8009 rq->balance_callback = &balance_push_callback;
8010
8011 /*
8012 * Only active while going offline and when invoked on the outgoing
8013 * CPU.
8014 */
8015 if (!cpu_dying(rq->cpu) || rq != this_rq())
8016 return;
8017
8018 /*
8019 * Both the cpu-hotplug and stop task are in this case and are
8020 * required to complete the hotplug process.
8021 */
8022 if (kthread_is_per_cpu(push_task) ||
8023 is_migration_disabled(push_task)) {
8024
8025 /*
8026 * If this is the idle task on the outgoing CPU try to wake
8027 * up the hotplug control thread which might wait for the
8028 * last task to vanish. The rcuwait_active() check is
8029 * accurate here because the waiter is pinned on this CPU
8030 * and can't obviously be running in parallel.
8031 *
8032 * On RT kernels this also has to check whether there are
8033 * pinned and scheduled out tasks on the runqueue. They
8034 * need to leave the migrate disabled section first.
8035 */
8036 if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
8037 rcuwait_active(&rq->hotplug_wait)) {
8038 raw_spin_rq_unlock(rq);
8039 rcuwait_wake_up(&rq->hotplug_wait);
8040 raw_spin_rq_lock(rq);
8041 }
8042 return;
8043 }
8044
8045 get_task_struct(push_task);
8046 /*
8047 * Temporarily drop rq->lock such that we can wake-up the stop task.
8048 * Both preemption and IRQs are still disabled.
8049 */
8050 preempt_disable();
8051 raw_spin_rq_unlock(rq);
8052 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
8053 this_cpu_ptr(&push_work));
8054 preempt_enable();
8055 /*
8056 * At this point need_resched() is true and we'll take the loop in
8057 * schedule(). The next pick is obviously going to be the stop task
8058 * which kthread_is_per_cpu() and will push this task away.
8059 */
8060 raw_spin_rq_lock(rq);
8061 }
8062
balance_push_set(int cpu,bool on)8063 static void balance_push_set(int cpu, bool on)
8064 {
8065 struct rq *rq = cpu_rq(cpu);
8066 struct rq_flags rf;
8067
8068 rq_lock_irqsave(rq, &rf);
8069 if (on) {
8070 WARN_ON_ONCE(rq->balance_callback);
8071 rq->balance_callback = &balance_push_callback;
8072 } else if (rq->balance_callback == &balance_push_callback) {
8073 rq->balance_callback = NULL;
8074 }
8075 rq_unlock_irqrestore(rq, &rf);
8076 }
8077
8078 /*
8079 * Invoked from a CPUs hotplug control thread after the CPU has been marked
8080 * inactive. All tasks which are not per CPU kernel threads are either
8081 * pushed off this CPU now via balance_push() or placed on a different CPU
8082 * during wakeup. Wait until the CPU is quiescent.
8083 */
balance_hotplug_wait(void)8084 static void balance_hotplug_wait(void)
8085 {
8086 struct rq *rq = this_rq();
8087
8088 rcuwait_wait_event(&rq->hotplug_wait,
8089 rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
8090 TASK_UNINTERRUPTIBLE);
8091 }
8092
8093 #else
8094
balance_push(struct rq * rq)8095 static inline void balance_push(struct rq *rq)
8096 {
8097 }
8098
balance_push_set(int cpu,bool on)8099 static inline void balance_push_set(int cpu, bool on)
8100 {
8101 }
8102
balance_hotplug_wait(void)8103 static inline void balance_hotplug_wait(void)
8104 {
8105 }
8106
8107 #endif /* CONFIG_HOTPLUG_CPU */
8108
set_rq_online(struct rq * rq)8109 void set_rq_online(struct rq *rq)
8110 {
8111 if (!rq->online) {
8112 const struct sched_class *class;
8113
8114 cpumask_set_cpu(rq->cpu, rq->rd->online);
8115 rq->online = 1;
8116
8117 for_each_class(class) {
8118 if (class->rq_online)
8119 class->rq_online(rq);
8120 }
8121 }
8122 }
8123
set_rq_offline(struct rq * rq)8124 void set_rq_offline(struct rq *rq)
8125 {
8126 if (rq->online) {
8127 const struct sched_class *class;
8128
8129 update_rq_clock(rq);
8130 for_each_class(class) {
8131 if (class->rq_offline)
8132 class->rq_offline(rq);
8133 }
8134
8135 cpumask_clear_cpu(rq->cpu, rq->rd->online);
8136 rq->online = 0;
8137 }
8138 }
8139
sched_set_rq_online(struct rq * rq,int cpu)8140 static inline void sched_set_rq_online(struct rq *rq, int cpu)
8141 {
8142 struct rq_flags rf;
8143
8144 rq_lock_irqsave(rq, &rf);
8145 if (rq->rd) {
8146 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
8147 set_rq_online(rq);
8148 }
8149 rq_unlock_irqrestore(rq, &rf);
8150 }
8151
sched_set_rq_offline(struct rq * rq,int cpu)8152 static inline void sched_set_rq_offline(struct rq *rq, int cpu)
8153 {
8154 struct rq_flags rf;
8155
8156 rq_lock_irqsave(rq, &rf);
8157 if (rq->rd) {
8158 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
8159 set_rq_offline(rq);
8160 }
8161 rq_unlock_irqrestore(rq, &rf);
8162 }
8163
8164 /*
8165 * used to mark begin/end of suspend/resume:
8166 */
8167 static int num_cpus_frozen;
8168
8169 /*
8170 * Update cpusets according to cpu_active mask. If cpusets are
8171 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
8172 * around partition_sched_domains().
8173 *
8174 * If we come here as part of a suspend/resume, don't touch cpusets because we
8175 * want to restore it back to its original state upon resume anyway.
8176 */
cpuset_cpu_active(void)8177 static void cpuset_cpu_active(void)
8178 {
8179 if (cpuhp_tasks_frozen) {
8180 /*
8181 * num_cpus_frozen tracks how many CPUs are involved in suspend
8182 * resume sequence. As long as this is not the last online
8183 * operation in the resume sequence, just build a single sched
8184 * domain, ignoring cpusets.
8185 */
8186 partition_sched_domains(1, NULL, NULL);
8187 if (--num_cpus_frozen)
8188 return;
8189 /*
8190 * This is the last CPU online operation. So fall through and
8191 * restore the original sched domains by considering the
8192 * cpuset configurations.
8193 */
8194 cpuset_force_rebuild();
8195 }
8196 cpuset_update_active_cpus();
8197 }
8198
cpuset_cpu_inactive(unsigned int cpu)8199 static void cpuset_cpu_inactive(unsigned int cpu)
8200 {
8201 if (!cpuhp_tasks_frozen) {
8202 cpuset_update_active_cpus();
8203 } else {
8204 num_cpus_frozen++;
8205 partition_sched_domains(1, NULL, NULL);
8206 }
8207 }
8208
sched_smt_present_inc(int cpu)8209 static inline void sched_smt_present_inc(int cpu)
8210 {
8211 #ifdef CONFIG_SCHED_SMT
8212 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
8213 static_branch_inc_cpuslocked(&sched_smt_present);
8214 #endif
8215 }
8216
sched_smt_present_dec(int cpu)8217 static inline void sched_smt_present_dec(int cpu)
8218 {
8219 #ifdef CONFIG_SCHED_SMT
8220 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
8221 static_branch_dec_cpuslocked(&sched_smt_present);
8222 #endif
8223 }
8224
sched_cpu_activate(unsigned int cpu)8225 int sched_cpu_activate(unsigned int cpu)
8226 {
8227 struct rq *rq = cpu_rq(cpu);
8228
8229 /*
8230 * Clear the balance_push callback and prepare to schedule
8231 * regular tasks.
8232 */
8233 balance_push_set(cpu, false);
8234
8235 /*
8236 * When going up, increment the number of cores with SMT present.
8237 */
8238 sched_smt_present_inc(cpu);
8239 set_cpu_active(cpu, true);
8240
8241 if (sched_smp_initialized) {
8242 sched_update_numa(cpu, true);
8243 sched_domains_numa_masks_set(cpu);
8244 cpuset_cpu_active();
8245 }
8246
8247 scx_rq_activate(rq);
8248
8249 /*
8250 * Put the rq online, if not already. This happens:
8251 *
8252 * 1) In the early boot process, because we build the real domains
8253 * after all CPUs have been brought up.
8254 *
8255 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
8256 * domains.
8257 */
8258 sched_set_rq_online(rq, cpu);
8259
8260 return 0;
8261 }
8262
sched_cpu_deactivate(unsigned int cpu)8263 int sched_cpu_deactivate(unsigned int cpu)
8264 {
8265 struct rq *rq = cpu_rq(cpu);
8266 int ret;
8267
8268 ret = dl_bw_deactivate(cpu);
8269
8270 if (ret)
8271 return ret;
8272
8273 /*
8274 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
8275 * load balancing when not active
8276 */
8277 nohz_balance_exit_idle(rq);
8278
8279 set_cpu_active(cpu, false);
8280
8281 /*
8282 * From this point forward, this CPU will refuse to run any task that
8283 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
8284 * push those tasks away until this gets cleared, see
8285 * sched_cpu_dying().
8286 */
8287 balance_push_set(cpu, true);
8288
8289 /*
8290 * We've cleared cpu_active_mask / set balance_push, wait for all
8291 * preempt-disabled and RCU users of this state to go away such that
8292 * all new such users will observe it.
8293 *
8294 * Specifically, we rely on ttwu to no longer target this CPU, see
8295 * ttwu_queue_cond() and is_cpu_allowed().
8296 *
8297 * Do sync before park smpboot threads to take care the RCU boost case.
8298 */
8299 synchronize_rcu();
8300
8301 sched_set_rq_offline(rq, cpu);
8302
8303 scx_rq_deactivate(rq);
8304
8305 /*
8306 * When going down, decrement the number of cores with SMT present.
8307 */
8308 sched_smt_present_dec(cpu);
8309
8310 #ifdef CONFIG_SCHED_SMT
8311 sched_core_cpu_deactivate(cpu);
8312 #endif
8313
8314 if (!sched_smp_initialized)
8315 return 0;
8316
8317 sched_update_numa(cpu, false);
8318 cpuset_cpu_inactive(cpu);
8319 sched_domains_numa_masks_clear(cpu);
8320 return 0;
8321 }
8322
sched_rq_cpu_starting(unsigned int cpu)8323 static void sched_rq_cpu_starting(unsigned int cpu)
8324 {
8325 struct rq *rq = cpu_rq(cpu);
8326
8327 rq->calc_load_update = calc_load_update;
8328 update_max_interval();
8329 }
8330
sched_cpu_starting(unsigned int cpu)8331 int sched_cpu_starting(unsigned int cpu)
8332 {
8333 sched_core_cpu_starting(cpu);
8334 sched_rq_cpu_starting(cpu);
8335 sched_tick_start(cpu);
8336 return 0;
8337 }
8338
8339 #ifdef CONFIG_HOTPLUG_CPU
8340
8341 /*
8342 * Invoked immediately before the stopper thread is invoked to bring the
8343 * CPU down completely. At this point all per CPU kthreads except the
8344 * hotplug thread (current) and the stopper thread (inactive) have been
8345 * either parked or have been unbound from the outgoing CPU. Ensure that
8346 * any of those which might be on the way out are gone.
8347 *
8348 * If after this point a bound task is being woken on this CPU then the
8349 * responsible hotplug callback has failed to do it's job.
8350 * sched_cpu_dying() will catch it with the appropriate fireworks.
8351 */
sched_cpu_wait_empty(unsigned int cpu)8352 int sched_cpu_wait_empty(unsigned int cpu)
8353 {
8354 balance_hotplug_wait();
8355 sched_force_init_mm();
8356 return 0;
8357 }
8358
8359 /*
8360 * Since this CPU is going 'away' for a while, fold any nr_active delta we
8361 * might have. Called from the CPU stopper task after ensuring that the
8362 * stopper is the last running task on the CPU, so nr_active count is
8363 * stable. We need to take the tear-down thread which is calling this into
8364 * account, so we hand in adjust = 1 to the load calculation.
8365 *
8366 * Also see the comment "Global load-average calculations".
8367 */
calc_load_migrate(struct rq * rq)8368 static void calc_load_migrate(struct rq *rq)
8369 {
8370 long delta = calc_load_fold_active(rq, 1);
8371
8372 if (delta)
8373 atomic_long_add(delta, &calc_load_tasks);
8374 }
8375
dump_rq_tasks(struct rq * rq,const char * loglvl)8376 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
8377 {
8378 struct task_struct *g, *p;
8379 int cpu = cpu_of(rq);
8380
8381 lockdep_assert_rq_held(rq);
8382
8383 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
8384 for_each_process_thread(g, p) {
8385 if (task_cpu(p) != cpu)
8386 continue;
8387
8388 if (!task_on_rq_queued(p))
8389 continue;
8390
8391 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
8392 }
8393 }
8394
sched_cpu_dying(unsigned int cpu)8395 int sched_cpu_dying(unsigned int cpu)
8396 {
8397 struct rq *rq = cpu_rq(cpu);
8398 struct rq_flags rf;
8399
8400 /* Handle pending wakeups and then migrate everything off */
8401 sched_tick_stop(cpu);
8402
8403 rq_lock_irqsave(rq, &rf);
8404 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
8405 WARN(true, "Dying CPU not properly vacated!");
8406 dump_rq_tasks(rq, KERN_WARNING);
8407 }
8408 rq_unlock_irqrestore(rq, &rf);
8409
8410 calc_load_migrate(rq);
8411 update_max_interval();
8412 hrtick_clear(rq);
8413 sched_core_cpu_dying(cpu);
8414 return 0;
8415 }
8416 #endif
8417
sched_init_smp(void)8418 void __init sched_init_smp(void)
8419 {
8420 sched_init_numa(NUMA_NO_NODE);
8421
8422 /*
8423 * There's no userspace yet to cause hotplug operations; hence all the
8424 * CPU masks are stable and all blatant races in the below code cannot
8425 * happen.
8426 */
8427 mutex_lock(&sched_domains_mutex);
8428 sched_init_domains(cpu_active_mask);
8429 mutex_unlock(&sched_domains_mutex);
8430
8431 /* Move init over to a non-isolated CPU */
8432 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
8433 BUG();
8434 current->flags &= ~PF_NO_SETAFFINITY;
8435 sched_init_granularity();
8436
8437 init_sched_rt_class();
8438 init_sched_dl_class();
8439
8440 sched_smp_initialized = true;
8441 }
8442
migration_init(void)8443 static int __init migration_init(void)
8444 {
8445 sched_cpu_starting(smp_processor_id());
8446 return 0;
8447 }
8448 early_initcall(migration_init);
8449
8450 #else
sched_init_smp(void)8451 void __init sched_init_smp(void)
8452 {
8453 sched_init_granularity();
8454 }
8455 #endif /* CONFIG_SMP */
8456
in_sched_functions(unsigned long addr)8457 int in_sched_functions(unsigned long addr)
8458 {
8459 return in_lock_functions(addr) ||
8460 (addr >= (unsigned long)__sched_text_start
8461 && addr < (unsigned long)__sched_text_end);
8462 }
8463
8464 #ifdef CONFIG_CGROUP_SCHED
8465 /*
8466 * Default task group.
8467 * Every task in system belongs to this group at bootup.
8468 */
8469 struct task_group root_task_group;
8470 LIST_HEAD(task_groups);
8471
8472 /* Cacheline aligned slab cache for task_group */
8473 static struct kmem_cache *task_group_cache __ro_after_init;
8474 #endif
8475
sched_init(void)8476 void __init sched_init(void)
8477 {
8478 unsigned long ptr = 0;
8479 int i;
8480
8481 /* Make sure the linker didn't screw up */
8482 #ifdef CONFIG_SMP
8483 BUG_ON(!sched_class_above(&stop_sched_class, &dl_sched_class));
8484 #endif
8485 BUG_ON(!sched_class_above(&dl_sched_class, &rt_sched_class));
8486 BUG_ON(!sched_class_above(&rt_sched_class, &fair_sched_class));
8487 BUG_ON(!sched_class_above(&fair_sched_class, &idle_sched_class));
8488 #ifdef CONFIG_SCHED_CLASS_EXT
8489 BUG_ON(!sched_class_above(&fair_sched_class, &ext_sched_class));
8490 BUG_ON(!sched_class_above(&ext_sched_class, &idle_sched_class));
8491 #endif
8492
8493 wait_bit_init();
8494
8495 #ifdef CONFIG_FAIR_GROUP_SCHED
8496 ptr += 2 * nr_cpu_ids * sizeof(void **);
8497 #endif
8498 #ifdef CONFIG_RT_GROUP_SCHED
8499 ptr += 2 * nr_cpu_ids * sizeof(void **);
8500 #endif
8501 if (ptr) {
8502 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
8503
8504 #ifdef CONFIG_FAIR_GROUP_SCHED
8505 root_task_group.se = (struct sched_entity **)ptr;
8506 ptr += nr_cpu_ids * sizeof(void **);
8507
8508 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8509 ptr += nr_cpu_ids * sizeof(void **);
8510
8511 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
8512 init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL);
8513 #endif /* CONFIG_FAIR_GROUP_SCHED */
8514 #ifdef CONFIG_EXT_GROUP_SCHED
8515 root_task_group.scx_weight = CGROUP_WEIGHT_DFL;
8516 #endif /* CONFIG_EXT_GROUP_SCHED */
8517 #ifdef CONFIG_RT_GROUP_SCHED
8518 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8519 ptr += nr_cpu_ids * sizeof(void **);
8520
8521 root_task_group.rt_rq = (struct rt_rq **)ptr;
8522 ptr += nr_cpu_ids * sizeof(void **);
8523
8524 #endif /* CONFIG_RT_GROUP_SCHED */
8525 }
8526
8527 #ifdef CONFIG_SMP
8528 init_defrootdomain();
8529 #endif
8530
8531 #ifdef CONFIG_RT_GROUP_SCHED
8532 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8533 global_rt_period(), global_rt_runtime());
8534 #endif /* CONFIG_RT_GROUP_SCHED */
8535
8536 #ifdef CONFIG_CGROUP_SCHED
8537 task_group_cache = KMEM_CACHE(task_group, 0);
8538
8539 list_add(&root_task_group.list, &task_groups);
8540 INIT_LIST_HEAD(&root_task_group.children);
8541 INIT_LIST_HEAD(&root_task_group.siblings);
8542 autogroup_init(&init_task);
8543 #endif /* CONFIG_CGROUP_SCHED */
8544
8545 for_each_possible_cpu(i) {
8546 struct rq *rq;
8547
8548 rq = cpu_rq(i);
8549 raw_spin_lock_init(&rq->__lock);
8550 rq->nr_running = 0;
8551 rq->calc_load_active = 0;
8552 rq->calc_load_update = jiffies + LOAD_FREQ;
8553 init_cfs_rq(&rq->cfs);
8554 init_rt_rq(&rq->rt);
8555 init_dl_rq(&rq->dl);
8556 #ifdef CONFIG_FAIR_GROUP_SCHED
8557 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8558 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
8559 /*
8560 * How much CPU bandwidth does root_task_group get?
8561 *
8562 * In case of task-groups formed through the cgroup filesystem, it
8563 * gets 100% of the CPU resources in the system. This overall
8564 * system CPU resource is divided among the tasks of
8565 * root_task_group and its child task-groups in a fair manner,
8566 * based on each entity's (task or task-group's) weight
8567 * (se->load.weight).
8568 *
8569 * In other words, if root_task_group has 10 tasks of weight
8570 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8571 * then A0's share of the CPU resource is:
8572 *
8573 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8574 *
8575 * We achieve this by letting root_task_group's tasks sit
8576 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
8577 */
8578 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
8579 #endif /* CONFIG_FAIR_GROUP_SCHED */
8580
8581 #ifdef CONFIG_RT_GROUP_SCHED
8582 /*
8583 * This is required for init cpu because rt.c:__enable_runtime()
8584 * starts working after scheduler_running, which is not the case
8585 * yet.
8586 */
8587 rq->rt.rt_runtime = global_rt_runtime();
8588 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
8589 #endif
8590 #ifdef CONFIG_SMP
8591 rq->sd = NULL;
8592 rq->rd = NULL;
8593 rq->cpu_capacity = SCHED_CAPACITY_SCALE;
8594 rq->balance_callback = &balance_push_callback;
8595 rq->active_balance = 0;
8596 rq->next_balance = jiffies;
8597 rq->push_cpu = 0;
8598 rq->cpu = i;
8599 rq->online = 0;
8600 rq->idle_stamp = 0;
8601 rq->avg_idle = 2*sysctl_sched_migration_cost;
8602 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
8603
8604 INIT_LIST_HEAD(&rq->cfs_tasks);
8605
8606 rq_attach_root(rq, &def_root_domain);
8607 #ifdef CONFIG_NO_HZ_COMMON
8608 rq->last_blocked_load_update_tick = jiffies;
8609 atomic_set(&rq->nohz_flags, 0);
8610
8611 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
8612 #endif
8613 #ifdef CONFIG_HOTPLUG_CPU
8614 rcuwait_init(&rq->hotplug_wait);
8615 #endif
8616 #endif /* CONFIG_SMP */
8617 hrtick_rq_init(rq);
8618 atomic_set(&rq->nr_iowait, 0);
8619 fair_server_init(rq);
8620
8621 #ifdef CONFIG_SCHED_CORE
8622 rq->core = rq;
8623 rq->core_pick = NULL;
8624 rq->core_dl_server = NULL;
8625 rq->core_enabled = 0;
8626 rq->core_tree = RB_ROOT;
8627 rq->core_forceidle_count = 0;
8628 rq->core_forceidle_occupation = 0;
8629 rq->core_forceidle_start = 0;
8630
8631 rq->core_cookie = 0UL;
8632 #endif
8633 zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i));
8634 }
8635
8636 set_load_weight(&init_task, false);
8637 init_task.se.slice = sysctl_sched_base_slice,
8638
8639 /*
8640 * The boot idle thread does lazy MMU switching as well:
8641 */
8642 mmgrab_lazy_tlb(&init_mm);
8643 enter_lazy_tlb(&init_mm, current);
8644
8645 /*
8646 * The idle task doesn't need the kthread struct to function, but it
8647 * is dressed up as a per-CPU kthread and thus needs to play the part
8648 * if we want to avoid special-casing it in code that deals with per-CPU
8649 * kthreads.
8650 */
8651 WARN_ON(!set_kthread_struct(current));
8652
8653 /*
8654 * Make us the idle thread. Technically, schedule() should not be
8655 * called from this thread, however somewhere below it might be,
8656 * but because we are the idle thread, we just pick up running again
8657 * when this runqueue becomes "idle".
8658 */
8659 __sched_fork(0, current);
8660 init_idle(current, smp_processor_id());
8661
8662 calc_load_update = jiffies + LOAD_FREQ;
8663
8664 #ifdef CONFIG_SMP
8665 idle_thread_set_boot_cpu();
8666 balance_push_set(smp_processor_id(), false);
8667 #endif
8668 init_sched_fair_class();
8669 init_sched_ext_class();
8670
8671 psi_init();
8672
8673 init_uclamp();
8674
8675 preempt_dynamic_init();
8676
8677 scheduler_running = 1;
8678 }
8679
8680 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
8681
__might_sleep(const char * file,int line)8682 void __might_sleep(const char *file, int line)
8683 {
8684 unsigned int state = get_current_state();
8685 /*
8686 * Blocking primitives will set (and therefore destroy) current->state,
8687 * since we will exit with TASK_RUNNING make sure we enter with it,
8688 * otherwise we will destroy state.
8689 */
8690 WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
8691 "do not call blocking ops when !TASK_RUNNING; "
8692 "state=%x set at [<%p>] %pS\n", state,
8693 (void *)current->task_state_change,
8694 (void *)current->task_state_change);
8695
8696 __might_resched(file, line, 0);
8697 }
8698 EXPORT_SYMBOL(__might_sleep);
8699
print_preempt_disable_ip(int preempt_offset,unsigned long ip)8700 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
8701 {
8702 if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
8703 return;
8704
8705 if (preempt_count() == preempt_offset)
8706 return;
8707
8708 pr_err("Preemption disabled at:");
8709 print_ip_sym(KERN_ERR, ip);
8710 }
8711
resched_offsets_ok(unsigned int offsets)8712 static inline bool resched_offsets_ok(unsigned int offsets)
8713 {
8714 unsigned int nested = preempt_count();
8715
8716 nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
8717
8718 return nested == offsets;
8719 }
8720
__might_resched(const char * file,int line,unsigned int offsets)8721 void __might_resched(const char *file, int line, unsigned int offsets)
8722 {
8723 /* Ratelimiting timestamp: */
8724 static unsigned long prev_jiffy;
8725
8726 unsigned long preempt_disable_ip;
8727
8728 /* WARN_ON_ONCE() by default, no rate limit required: */
8729 rcu_sleep_check();
8730
8731 if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
8732 !is_idle_task(current) && !current->non_block_count) ||
8733 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
8734 oops_in_progress)
8735 return;
8736
8737 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8738 return;
8739 prev_jiffy = jiffies;
8740
8741 /* Save this before calling printk(), since that will clobber it: */
8742 preempt_disable_ip = get_preempt_disable_ip(current);
8743
8744 pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
8745 file, line);
8746 pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
8747 in_atomic(), irqs_disabled(), current->non_block_count,
8748 current->pid, current->comm);
8749 pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
8750 offsets & MIGHT_RESCHED_PREEMPT_MASK);
8751
8752 if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
8753 pr_err("RCU nest depth: %d, expected: %u\n",
8754 rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
8755 }
8756
8757 if (task_stack_end_corrupted(current))
8758 pr_emerg("Thread overran stack, or stack corrupted\n");
8759
8760 debug_show_held_locks(current);
8761 if (irqs_disabled())
8762 print_irqtrace_events(current);
8763
8764 print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
8765 preempt_disable_ip);
8766
8767 dump_stack();
8768 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8769 }
8770 EXPORT_SYMBOL(__might_resched);
8771
__cant_sleep(const char * file,int line,int preempt_offset)8772 void __cant_sleep(const char *file, int line, int preempt_offset)
8773 {
8774 static unsigned long prev_jiffy;
8775
8776 if (irqs_disabled())
8777 return;
8778
8779 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
8780 return;
8781
8782 if (preempt_count() > preempt_offset)
8783 return;
8784
8785 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8786 return;
8787 prev_jiffy = jiffies;
8788
8789 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
8790 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8791 in_atomic(), irqs_disabled(),
8792 current->pid, current->comm);
8793
8794 debug_show_held_locks(current);
8795 dump_stack();
8796 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8797 }
8798 EXPORT_SYMBOL_GPL(__cant_sleep);
8799
8800 #ifdef CONFIG_SMP
__cant_migrate(const char * file,int line)8801 void __cant_migrate(const char *file, int line)
8802 {
8803 static unsigned long prev_jiffy;
8804
8805 if (irqs_disabled())
8806 return;
8807
8808 if (is_migration_disabled(current))
8809 return;
8810
8811 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
8812 return;
8813
8814 if (preempt_count() > 0)
8815 return;
8816
8817 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8818 return;
8819 prev_jiffy = jiffies;
8820
8821 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
8822 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
8823 in_atomic(), irqs_disabled(), is_migration_disabled(current),
8824 current->pid, current->comm);
8825
8826 debug_show_held_locks(current);
8827 dump_stack();
8828 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8829 }
8830 EXPORT_SYMBOL_GPL(__cant_migrate);
8831 #endif
8832 #endif
8833
8834 #ifdef CONFIG_MAGIC_SYSRQ
normalize_rt_tasks(void)8835 void normalize_rt_tasks(void)
8836 {
8837 struct task_struct *g, *p;
8838 struct sched_attr attr = {
8839 .sched_policy = SCHED_NORMAL,
8840 };
8841
8842 read_lock(&tasklist_lock);
8843 for_each_process_thread(g, p) {
8844 /*
8845 * Only normalize user tasks:
8846 */
8847 if (p->flags & PF_KTHREAD)
8848 continue;
8849
8850 p->se.exec_start = 0;
8851 schedstat_set(p->stats.wait_start, 0);
8852 schedstat_set(p->stats.sleep_start, 0);
8853 schedstat_set(p->stats.block_start, 0);
8854
8855 if (!rt_or_dl_task(p)) {
8856 /*
8857 * Renice negative nice level userspace
8858 * tasks back to 0:
8859 */
8860 if (task_nice(p) < 0)
8861 set_user_nice(p, 0);
8862 continue;
8863 }
8864
8865 __sched_setscheduler(p, &attr, false, false);
8866 }
8867 read_unlock(&tasklist_lock);
8868 }
8869
8870 #endif /* CONFIG_MAGIC_SYSRQ */
8871
8872 #if defined(CONFIG_KGDB_KDB)
8873 /*
8874 * These functions are only useful for KDB.
8875 *
8876 * They can only be called when the whole system has been
8877 * stopped - every CPU needs to be quiescent, and no scheduling
8878 * activity can take place. Using them for anything else would
8879 * be a serious bug, and as a result, they aren't even visible
8880 * under any other configuration.
8881 */
8882
8883 /**
8884 * curr_task - return the current task for a given CPU.
8885 * @cpu: the processor in question.
8886 *
8887 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8888 *
8889 * Return: The current task for @cpu.
8890 */
curr_task(int cpu)8891 struct task_struct *curr_task(int cpu)
8892 {
8893 return cpu_curr(cpu);
8894 }
8895
8896 #endif /* defined(CONFIG_KGDB_KDB) */
8897
8898 #ifdef CONFIG_CGROUP_SCHED
8899 /* task_group_lock serializes the addition/removal of task groups */
8900 static DEFINE_SPINLOCK(task_group_lock);
8901
alloc_uclamp_sched_group(struct task_group * tg,struct task_group * parent)8902 static inline void alloc_uclamp_sched_group(struct task_group *tg,
8903 struct task_group *parent)
8904 {
8905 #ifdef CONFIG_UCLAMP_TASK_GROUP
8906 enum uclamp_id clamp_id;
8907
8908 for_each_clamp_id(clamp_id) {
8909 uclamp_se_set(&tg->uclamp_req[clamp_id],
8910 uclamp_none(clamp_id), false);
8911 tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
8912 }
8913 #endif
8914 }
8915
sched_free_group(struct task_group * tg)8916 static void sched_free_group(struct task_group *tg)
8917 {
8918 free_fair_sched_group(tg);
8919 free_rt_sched_group(tg);
8920 autogroup_free(tg);
8921 kmem_cache_free(task_group_cache, tg);
8922 }
8923
sched_free_group_rcu(struct rcu_head * rcu)8924 static void sched_free_group_rcu(struct rcu_head *rcu)
8925 {
8926 sched_free_group(container_of(rcu, struct task_group, rcu));
8927 }
8928
sched_unregister_group(struct task_group * tg)8929 static void sched_unregister_group(struct task_group *tg)
8930 {
8931 unregister_fair_sched_group(tg);
8932 unregister_rt_sched_group(tg);
8933 /*
8934 * We have to wait for yet another RCU grace period to expire, as
8935 * print_cfs_stats() might run concurrently.
8936 */
8937 call_rcu(&tg->rcu, sched_free_group_rcu);
8938 }
8939
8940 /* allocate runqueue etc for a new task group */
sched_create_group(struct task_group * parent)8941 struct task_group *sched_create_group(struct task_group *parent)
8942 {
8943 struct task_group *tg;
8944
8945 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
8946 if (!tg)
8947 return ERR_PTR(-ENOMEM);
8948
8949 if (!alloc_fair_sched_group(tg, parent))
8950 goto err;
8951
8952 if (!alloc_rt_sched_group(tg, parent))
8953 goto err;
8954
8955 scx_group_set_weight(tg, CGROUP_WEIGHT_DFL);
8956 alloc_uclamp_sched_group(tg, parent);
8957
8958 return tg;
8959
8960 err:
8961 sched_free_group(tg);
8962 return ERR_PTR(-ENOMEM);
8963 }
8964
sched_online_group(struct task_group * tg,struct task_group * parent)8965 void sched_online_group(struct task_group *tg, struct task_group *parent)
8966 {
8967 unsigned long flags;
8968
8969 spin_lock_irqsave(&task_group_lock, flags);
8970 list_add_rcu(&tg->list, &task_groups);
8971
8972 /* Root should already exist: */
8973 WARN_ON(!parent);
8974
8975 tg->parent = parent;
8976 INIT_LIST_HEAD(&tg->children);
8977 list_add_rcu(&tg->siblings, &parent->children);
8978 spin_unlock_irqrestore(&task_group_lock, flags);
8979
8980 online_fair_sched_group(tg);
8981 }
8982
8983 /* RCU callback to free various structures associated with a task group */
sched_unregister_group_rcu(struct rcu_head * rhp)8984 static void sched_unregister_group_rcu(struct rcu_head *rhp)
8985 {
8986 /* Now it should be safe to free those cfs_rqs: */
8987 sched_unregister_group(container_of(rhp, struct task_group, rcu));
8988 }
8989
sched_destroy_group(struct task_group * tg)8990 void sched_destroy_group(struct task_group *tg)
8991 {
8992 /* Wait for possible concurrent references to cfs_rqs complete: */
8993 call_rcu(&tg->rcu, sched_unregister_group_rcu);
8994 }
8995
sched_release_group(struct task_group * tg)8996 void sched_release_group(struct task_group *tg)
8997 {
8998 unsigned long flags;
8999
9000 /*
9001 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
9002 * sched_cfs_period_timer()).
9003 *
9004 * For this to be effective, we have to wait for all pending users of
9005 * this task group to leave their RCU critical section to ensure no new
9006 * user will see our dying task group any more. Specifically ensure
9007 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
9008 *
9009 * We therefore defer calling unregister_fair_sched_group() to
9010 * sched_unregister_group() which is guarantied to get called only after the
9011 * current RCU grace period has expired.
9012 */
9013 spin_lock_irqsave(&task_group_lock, flags);
9014 list_del_rcu(&tg->list);
9015 list_del_rcu(&tg->siblings);
9016 spin_unlock_irqrestore(&task_group_lock, flags);
9017 }
9018
sched_get_task_group(struct task_struct * tsk)9019 static struct task_group *sched_get_task_group(struct task_struct *tsk)
9020 {
9021 struct task_group *tg;
9022
9023 /*
9024 * All callers are synchronized by task_rq_lock(); we do not use RCU
9025 * which is pointless here. Thus, we pass "true" to task_css_check()
9026 * to prevent lockdep warnings.
9027 */
9028 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
9029 struct task_group, css);
9030 tg = autogroup_task_group(tsk, tg);
9031
9032 return tg;
9033 }
9034
sched_change_group(struct task_struct * tsk,struct task_group * group)9035 static void sched_change_group(struct task_struct *tsk, struct task_group *group)
9036 {
9037 tsk->sched_task_group = group;
9038
9039 #ifdef CONFIG_FAIR_GROUP_SCHED
9040 if (tsk->sched_class->task_change_group)
9041 tsk->sched_class->task_change_group(tsk);
9042 else
9043 #endif
9044 set_task_rq(tsk, task_cpu(tsk));
9045 }
9046
9047 /*
9048 * Change task's runqueue when it moves between groups.
9049 *
9050 * The caller of this function should have put the task in its new group by
9051 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
9052 * its new group.
9053 */
sched_move_task(struct task_struct * tsk,bool for_autogroup)9054 void sched_move_task(struct task_struct *tsk, bool for_autogroup)
9055 {
9056 int queued, running, queue_flags =
9057 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
9058 struct task_group *group;
9059 struct rq *rq;
9060
9061 CLASS(task_rq_lock, rq_guard)(tsk);
9062 rq = rq_guard.rq;
9063
9064 /*
9065 * Esp. with SCHED_AUTOGROUP enabled it is possible to get superfluous
9066 * group changes.
9067 */
9068 group = sched_get_task_group(tsk);
9069 if (group == tsk->sched_task_group)
9070 return;
9071
9072 update_rq_clock(rq);
9073
9074 running = task_current_donor(rq, tsk);
9075 queued = task_on_rq_queued(tsk);
9076
9077 if (queued)
9078 dequeue_task(rq, tsk, queue_flags);
9079 if (running)
9080 put_prev_task(rq, tsk);
9081
9082 sched_change_group(tsk, group);
9083 if (!for_autogroup)
9084 scx_cgroup_move_task(tsk);
9085
9086 if (queued)
9087 enqueue_task(rq, tsk, queue_flags);
9088 if (running) {
9089 set_next_task(rq, tsk);
9090 /*
9091 * After changing group, the running task may have joined a
9092 * throttled one but it's still the running task. Trigger a
9093 * resched to make sure that task can still run.
9094 */
9095 resched_curr(rq);
9096 }
9097 }
9098
9099 static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)9100 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
9101 {
9102 struct task_group *parent = css_tg(parent_css);
9103 struct task_group *tg;
9104
9105 if (!parent) {
9106 /* This is early initialization for the top cgroup */
9107 return &root_task_group.css;
9108 }
9109
9110 tg = sched_create_group(parent);
9111 if (IS_ERR(tg))
9112 return ERR_PTR(-ENOMEM);
9113
9114 return &tg->css;
9115 }
9116
9117 /* Expose task group only after completing cgroup initialization */
cpu_cgroup_css_online(struct cgroup_subsys_state * css)9118 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
9119 {
9120 struct task_group *tg = css_tg(css);
9121 struct task_group *parent = css_tg(css->parent);
9122 int ret;
9123
9124 ret = scx_tg_online(tg);
9125 if (ret)
9126 return ret;
9127
9128 if (parent)
9129 sched_online_group(tg, parent);
9130
9131 #ifdef CONFIG_UCLAMP_TASK_GROUP
9132 /* Propagate the effective uclamp value for the new group */
9133 guard(mutex)(&uclamp_mutex);
9134 guard(rcu)();
9135 cpu_util_update_eff(css);
9136 #endif
9137
9138 return 0;
9139 }
9140
cpu_cgroup_css_offline(struct cgroup_subsys_state * css)9141 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
9142 {
9143 struct task_group *tg = css_tg(css);
9144
9145 scx_tg_offline(tg);
9146 }
9147
cpu_cgroup_css_released(struct cgroup_subsys_state * css)9148 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
9149 {
9150 struct task_group *tg = css_tg(css);
9151
9152 sched_release_group(tg);
9153 }
9154
cpu_cgroup_css_free(struct cgroup_subsys_state * css)9155 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
9156 {
9157 struct task_group *tg = css_tg(css);
9158
9159 /*
9160 * Relies on the RCU grace period between css_released() and this.
9161 */
9162 sched_unregister_group(tg);
9163 }
9164
cpu_cgroup_can_attach(struct cgroup_taskset * tset)9165 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
9166 {
9167 #ifdef CONFIG_RT_GROUP_SCHED
9168 struct task_struct *task;
9169 struct cgroup_subsys_state *css;
9170
9171 cgroup_taskset_for_each(task, css, tset) {
9172 if (!sched_rt_can_attach(css_tg(css), task))
9173 return -EINVAL;
9174 }
9175 #endif
9176 return scx_cgroup_can_attach(tset);
9177 }
9178
cpu_cgroup_attach(struct cgroup_taskset * tset)9179 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
9180 {
9181 struct task_struct *task;
9182 struct cgroup_subsys_state *css;
9183
9184 cgroup_taskset_for_each(task, css, tset)
9185 sched_move_task(task, false);
9186
9187 scx_cgroup_finish_attach();
9188 }
9189
cpu_cgroup_cancel_attach(struct cgroup_taskset * tset)9190 static void cpu_cgroup_cancel_attach(struct cgroup_taskset *tset)
9191 {
9192 scx_cgroup_cancel_attach(tset);
9193 }
9194
9195 #ifdef CONFIG_UCLAMP_TASK_GROUP
cpu_util_update_eff(struct cgroup_subsys_state * css)9196 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
9197 {
9198 struct cgroup_subsys_state *top_css = css;
9199 struct uclamp_se *uc_parent = NULL;
9200 struct uclamp_se *uc_se = NULL;
9201 unsigned int eff[UCLAMP_CNT];
9202 enum uclamp_id clamp_id;
9203 unsigned int clamps;
9204
9205 lockdep_assert_held(&uclamp_mutex);
9206 SCHED_WARN_ON(!rcu_read_lock_held());
9207
9208 css_for_each_descendant_pre(css, top_css) {
9209 uc_parent = css_tg(css)->parent
9210 ? css_tg(css)->parent->uclamp : NULL;
9211
9212 for_each_clamp_id(clamp_id) {
9213 /* Assume effective clamps matches requested clamps */
9214 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
9215 /* Cap effective clamps with parent's effective clamps */
9216 if (uc_parent &&
9217 eff[clamp_id] > uc_parent[clamp_id].value) {
9218 eff[clamp_id] = uc_parent[clamp_id].value;
9219 }
9220 }
9221 /* Ensure protection is always capped by limit */
9222 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
9223
9224 /* Propagate most restrictive effective clamps */
9225 clamps = 0x0;
9226 uc_se = css_tg(css)->uclamp;
9227 for_each_clamp_id(clamp_id) {
9228 if (eff[clamp_id] == uc_se[clamp_id].value)
9229 continue;
9230 uc_se[clamp_id].value = eff[clamp_id];
9231 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
9232 clamps |= (0x1 << clamp_id);
9233 }
9234 if (!clamps) {
9235 css = css_rightmost_descendant(css);
9236 continue;
9237 }
9238
9239 /* Immediately update descendants RUNNABLE tasks */
9240 uclamp_update_active_tasks(css);
9241 }
9242 }
9243
9244 /*
9245 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
9246 * C expression. Since there is no way to convert a macro argument (N) into a
9247 * character constant, use two levels of macros.
9248 */
9249 #define _POW10(exp) ((unsigned int)1e##exp)
9250 #define POW10(exp) _POW10(exp)
9251
9252 struct uclamp_request {
9253 #define UCLAMP_PERCENT_SHIFT 2
9254 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
9255 s64 percent;
9256 u64 util;
9257 int ret;
9258 };
9259
9260 static inline struct uclamp_request
capacity_from_percent(char * buf)9261 capacity_from_percent(char *buf)
9262 {
9263 struct uclamp_request req = {
9264 .percent = UCLAMP_PERCENT_SCALE,
9265 .util = SCHED_CAPACITY_SCALE,
9266 .ret = 0,
9267 };
9268
9269 buf = strim(buf);
9270 if (strcmp(buf, "max")) {
9271 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
9272 &req.percent);
9273 if (req.ret)
9274 return req;
9275 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
9276 req.ret = -ERANGE;
9277 return req;
9278 }
9279
9280 req.util = req.percent << SCHED_CAPACITY_SHIFT;
9281 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
9282 }
9283
9284 return req;
9285 }
9286
cpu_uclamp_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,enum uclamp_id clamp_id)9287 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
9288 size_t nbytes, loff_t off,
9289 enum uclamp_id clamp_id)
9290 {
9291 struct uclamp_request req;
9292 struct task_group *tg;
9293
9294 req = capacity_from_percent(buf);
9295 if (req.ret)
9296 return req.ret;
9297
9298 static_branch_enable(&sched_uclamp_used);
9299
9300 guard(mutex)(&uclamp_mutex);
9301 guard(rcu)();
9302
9303 tg = css_tg(of_css(of));
9304 if (tg->uclamp_req[clamp_id].value != req.util)
9305 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
9306
9307 /*
9308 * Because of not recoverable conversion rounding we keep track of the
9309 * exact requested value
9310 */
9311 tg->uclamp_pct[clamp_id] = req.percent;
9312
9313 /* Update effective clamps to track the most restrictive value */
9314 cpu_util_update_eff(of_css(of));
9315
9316 return nbytes;
9317 }
9318
cpu_uclamp_min_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)9319 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
9320 char *buf, size_t nbytes,
9321 loff_t off)
9322 {
9323 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
9324 }
9325
cpu_uclamp_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)9326 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
9327 char *buf, size_t nbytes,
9328 loff_t off)
9329 {
9330 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
9331 }
9332
cpu_uclamp_print(struct seq_file * sf,enum uclamp_id clamp_id)9333 static inline void cpu_uclamp_print(struct seq_file *sf,
9334 enum uclamp_id clamp_id)
9335 {
9336 struct task_group *tg;
9337 u64 util_clamp;
9338 u64 percent;
9339 u32 rem;
9340
9341 scoped_guard (rcu) {
9342 tg = css_tg(seq_css(sf));
9343 util_clamp = tg->uclamp_req[clamp_id].value;
9344 }
9345
9346 if (util_clamp == SCHED_CAPACITY_SCALE) {
9347 seq_puts(sf, "max\n");
9348 return;
9349 }
9350
9351 percent = tg->uclamp_pct[clamp_id];
9352 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
9353 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
9354 }
9355
cpu_uclamp_min_show(struct seq_file * sf,void * v)9356 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
9357 {
9358 cpu_uclamp_print(sf, UCLAMP_MIN);
9359 return 0;
9360 }
9361
cpu_uclamp_max_show(struct seq_file * sf,void * v)9362 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
9363 {
9364 cpu_uclamp_print(sf, UCLAMP_MAX);
9365 return 0;
9366 }
9367 #endif /* CONFIG_UCLAMP_TASK_GROUP */
9368
9369 #ifdef CONFIG_GROUP_SCHED_WEIGHT
tg_weight(struct task_group * tg)9370 static unsigned long tg_weight(struct task_group *tg)
9371 {
9372 #ifdef CONFIG_FAIR_GROUP_SCHED
9373 return scale_load_down(tg->shares);
9374 #else
9375 return sched_weight_from_cgroup(tg->scx_weight);
9376 #endif
9377 }
9378
cpu_shares_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 shareval)9379 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
9380 struct cftype *cftype, u64 shareval)
9381 {
9382 int ret;
9383
9384 if (shareval > scale_load_down(ULONG_MAX))
9385 shareval = MAX_SHARES;
9386 ret = sched_group_set_shares(css_tg(css), scale_load(shareval));
9387 if (!ret)
9388 scx_group_set_weight(css_tg(css),
9389 sched_weight_to_cgroup(shareval));
9390 return ret;
9391 }
9392
cpu_shares_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)9393 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
9394 struct cftype *cft)
9395 {
9396 return tg_weight(css_tg(css));
9397 }
9398 #endif /* CONFIG_GROUP_SCHED_WEIGHT */
9399
9400 #ifdef CONFIG_CFS_BANDWIDTH
9401 static DEFINE_MUTEX(cfs_constraints_mutex);
9402
9403 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
9404 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
9405 /* More than 203 days if BW_SHIFT equals 20. */
9406 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
9407
9408 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
9409
tg_set_cfs_bandwidth(struct task_group * tg,u64 period,u64 quota,u64 burst)9410 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
9411 u64 burst)
9412 {
9413 int i, ret = 0, runtime_enabled, runtime_was_enabled;
9414 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9415
9416 if (tg == &root_task_group)
9417 return -EINVAL;
9418
9419 /*
9420 * Ensure we have at some amount of bandwidth every period. This is
9421 * to prevent reaching a state of large arrears when throttled via
9422 * entity_tick() resulting in prolonged exit starvation.
9423 */
9424 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
9425 return -EINVAL;
9426
9427 /*
9428 * Likewise, bound things on the other side by preventing insane quota
9429 * periods. This also allows us to normalize in computing quota
9430 * feasibility.
9431 */
9432 if (period > max_cfs_quota_period)
9433 return -EINVAL;
9434
9435 /*
9436 * Bound quota to defend quota against overflow during bandwidth shift.
9437 */
9438 if (quota != RUNTIME_INF && quota > max_cfs_runtime)
9439 return -EINVAL;
9440
9441 if (quota != RUNTIME_INF && (burst > quota ||
9442 burst + quota > max_cfs_runtime))
9443 return -EINVAL;
9444
9445 /*
9446 * Prevent race between setting of cfs_rq->runtime_enabled and
9447 * unthrottle_offline_cfs_rqs().
9448 */
9449 guard(cpus_read_lock)();
9450 guard(mutex)(&cfs_constraints_mutex);
9451
9452 ret = __cfs_schedulable(tg, period, quota);
9453 if (ret)
9454 return ret;
9455
9456 runtime_enabled = quota != RUNTIME_INF;
9457 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
9458 /*
9459 * If we need to toggle cfs_bandwidth_used, off->on must occur
9460 * before making related changes, and on->off must occur afterwards
9461 */
9462 if (runtime_enabled && !runtime_was_enabled)
9463 cfs_bandwidth_usage_inc();
9464
9465 scoped_guard (raw_spinlock_irq, &cfs_b->lock) {
9466 cfs_b->period = ns_to_ktime(period);
9467 cfs_b->quota = quota;
9468 cfs_b->burst = burst;
9469
9470 __refill_cfs_bandwidth_runtime(cfs_b);
9471
9472 /*
9473 * Restart the period timer (if active) to handle new
9474 * period expiry:
9475 */
9476 if (runtime_enabled)
9477 start_cfs_bandwidth(cfs_b);
9478 }
9479
9480 for_each_online_cpu(i) {
9481 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
9482 struct rq *rq = cfs_rq->rq;
9483
9484 guard(rq_lock_irq)(rq);
9485 cfs_rq->runtime_enabled = runtime_enabled;
9486 cfs_rq->runtime_remaining = 0;
9487
9488 if (cfs_rq->throttled)
9489 unthrottle_cfs_rq(cfs_rq);
9490 }
9491
9492 if (runtime_was_enabled && !runtime_enabled)
9493 cfs_bandwidth_usage_dec();
9494
9495 return 0;
9496 }
9497
tg_set_cfs_quota(struct task_group * tg,long cfs_quota_us)9498 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
9499 {
9500 u64 quota, period, burst;
9501
9502 period = ktime_to_ns(tg->cfs_bandwidth.period);
9503 burst = tg->cfs_bandwidth.burst;
9504 if (cfs_quota_us < 0)
9505 quota = RUNTIME_INF;
9506 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
9507 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
9508 else
9509 return -EINVAL;
9510
9511 return tg_set_cfs_bandwidth(tg, period, quota, burst);
9512 }
9513
tg_get_cfs_quota(struct task_group * tg)9514 static long tg_get_cfs_quota(struct task_group *tg)
9515 {
9516 u64 quota_us;
9517
9518 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
9519 return -1;
9520
9521 quota_us = tg->cfs_bandwidth.quota;
9522 do_div(quota_us, NSEC_PER_USEC);
9523
9524 return quota_us;
9525 }
9526
tg_set_cfs_period(struct task_group * tg,long cfs_period_us)9527 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
9528 {
9529 u64 quota, period, burst;
9530
9531 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
9532 return -EINVAL;
9533
9534 period = (u64)cfs_period_us * NSEC_PER_USEC;
9535 quota = tg->cfs_bandwidth.quota;
9536 burst = tg->cfs_bandwidth.burst;
9537
9538 return tg_set_cfs_bandwidth(tg, period, quota, burst);
9539 }
9540
tg_get_cfs_period(struct task_group * tg)9541 static long tg_get_cfs_period(struct task_group *tg)
9542 {
9543 u64 cfs_period_us;
9544
9545 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
9546 do_div(cfs_period_us, NSEC_PER_USEC);
9547
9548 return cfs_period_us;
9549 }
9550
tg_set_cfs_burst(struct task_group * tg,long cfs_burst_us)9551 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
9552 {
9553 u64 quota, period, burst;
9554
9555 if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
9556 return -EINVAL;
9557
9558 burst = (u64)cfs_burst_us * NSEC_PER_USEC;
9559 period = ktime_to_ns(tg->cfs_bandwidth.period);
9560 quota = tg->cfs_bandwidth.quota;
9561
9562 return tg_set_cfs_bandwidth(tg, period, quota, burst);
9563 }
9564
tg_get_cfs_burst(struct task_group * tg)9565 static long tg_get_cfs_burst(struct task_group *tg)
9566 {
9567 u64 burst_us;
9568
9569 burst_us = tg->cfs_bandwidth.burst;
9570 do_div(burst_us, NSEC_PER_USEC);
9571
9572 return burst_us;
9573 }
9574
cpu_cfs_quota_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)9575 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
9576 struct cftype *cft)
9577 {
9578 return tg_get_cfs_quota(css_tg(css));
9579 }
9580
cpu_cfs_quota_write_s64(struct cgroup_subsys_state * css,struct cftype * cftype,s64 cfs_quota_us)9581 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
9582 struct cftype *cftype, s64 cfs_quota_us)
9583 {
9584 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
9585 }
9586
cpu_cfs_period_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)9587 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
9588 struct cftype *cft)
9589 {
9590 return tg_get_cfs_period(css_tg(css));
9591 }
9592
cpu_cfs_period_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 cfs_period_us)9593 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
9594 struct cftype *cftype, u64 cfs_period_us)
9595 {
9596 return tg_set_cfs_period(css_tg(css), cfs_period_us);
9597 }
9598
cpu_cfs_burst_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)9599 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
9600 struct cftype *cft)
9601 {
9602 return tg_get_cfs_burst(css_tg(css));
9603 }
9604
cpu_cfs_burst_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 cfs_burst_us)9605 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
9606 struct cftype *cftype, u64 cfs_burst_us)
9607 {
9608 return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
9609 }
9610
9611 struct cfs_schedulable_data {
9612 struct task_group *tg;
9613 u64 period, quota;
9614 };
9615
9616 /*
9617 * normalize group quota/period to be quota/max_period
9618 * note: units are usecs
9619 */
normalize_cfs_quota(struct task_group * tg,struct cfs_schedulable_data * d)9620 static u64 normalize_cfs_quota(struct task_group *tg,
9621 struct cfs_schedulable_data *d)
9622 {
9623 u64 quota, period;
9624
9625 if (tg == d->tg) {
9626 period = d->period;
9627 quota = d->quota;
9628 } else {
9629 period = tg_get_cfs_period(tg);
9630 quota = tg_get_cfs_quota(tg);
9631 }
9632
9633 /* note: these should typically be equivalent */
9634 if (quota == RUNTIME_INF || quota == -1)
9635 return RUNTIME_INF;
9636
9637 return to_ratio(period, quota);
9638 }
9639
tg_cfs_schedulable_down(struct task_group * tg,void * data)9640 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
9641 {
9642 struct cfs_schedulable_data *d = data;
9643 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9644 s64 quota = 0, parent_quota = -1;
9645
9646 if (!tg->parent) {
9647 quota = RUNTIME_INF;
9648 } else {
9649 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
9650
9651 quota = normalize_cfs_quota(tg, d);
9652 parent_quota = parent_b->hierarchical_quota;
9653
9654 /*
9655 * Ensure max(child_quota) <= parent_quota. On cgroup2,
9656 * always take the non-RUNTIME_INF min. On cgroup1, only
9657 * inherit when no limit is set. In both cases this is used
9658 * by the scheduler to determine if a given CFS task has a
9659 * bandwidth constraint at some higher level.
9660 */
9661 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
9662 if (quota == RUNTIME_INF)
9663 quota = parent_quota;
9664 else if (parent_quota != RUNTIME_INF)
9665 quota = min(quota, parent_quota);
9666 } else {
9667 if (quota == RUNTIME_INF)
9668 quota = parent_quota;
9669 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
9670 return -EINVAL;
9671 }
9672 }
9673 cfs_b->hierarchical_quota = quota;
9674
9675 return 0;
9676 }
9677
__cfs_schedulable(struct task_group * tg,u64 period,u64 quota)9678 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
9679 {
9680 struct cfs_schedulable_data data = {
9681 .tg = tg,
9682 .period = period,
9683 .quota = quota,
9684 };
9685
9686 if (quota != RUNTIME_INF) {
9687 do_div(data.period, NSEC_PER_USEC);
9688 do_div(data.quota, NSEC_PER_USEC);
9689 }
9690
9691 guard(rcu)();
9692 return walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
9693 }
9694
cpu_cfs_stat_show(struct seq_file * sf,void * v)9695 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
9696 {
9697 struct task_group *tg = css_tg(seq_css(sf));
9698 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9699
9700 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
9701 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
9702 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
9703
9704 if (schedstat_enabled() && tg != &root_task_group) {
9705 struct sched_statistics *stats;
9706 u64 ws = 0;
9707 int i;
9708
9709 for_each_possible_cpu(i) {
9710 stats = __schedstats_from_se(tg->se[i]);
9711 ws += schedstat_val(stats->wait_sum);
9712 }
9713
9714 seq_printf(sf, "wait_sum %llu\n", ws);
9715 }
9716
9717 seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
9718 seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
9719
9720 return 0;
9721 }
9722
throttled_time_self(struct task_group * tg)9723 static u64 throttled_time_self(struct task_group *tg)
9724 {
9725 int i;
9726 u64 total = 0;
9727
9728 for_each_possible_cpu(i) {
9729 total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time);
9730 }
9731
9732 return total;
9733 }
9734
cpu_cfs_local_stat_show(struct seq_file * sf,void * v)9735 static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v)
9736 {
9737 struct task_group *tg = css_tg(seq_css(sf));
9738
9739 seq_printf(sf, "throttled_time %llu\n", throttled_time_self(tg));
9740
9741 return 0;
9742 }
9743 #endif /* CONFIG_CFS_BANDWIDTH */
9744
9745 #ifdef CONFIG_RT_GROUP_SCHED
cpu_rt_runtime_write(struct cgroup_subsys_state * css,struct cftype * cft,s64 val)9746 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
9747 struct cftype *cft, s64 val)
9748 {
9749 return sched_group_set_rt_runtime(css_tg(css), val);
9750 }
9751
cpu_rt_runtime_read(struct cgroup_subsys_state * css,struct cftype * cft)9752 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
9753 struct cftype *cft)
9754 {
9755 return sched_group_rt_runtime(css_tg(css));
9756 }
9757
cpu_rt_period_write_uint(struct cgroup_subsys_state * css,struct cftype * cftype,u64 rt_period_us)9758 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
9759 struct cftype *cftype, u64 rt_period_us)
9760 {
9761 return sched_group_set_rt_period(css_tg(css), rt_period_us);
9762 }
9763
cpu_rt_period_read_uint(struct cgroup_subsys_state * css,struct cftype * cft)9764 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
9765 struct cftype *cft)
9766 {
9767 return sched_group_rt_period(css_tg(css));
9768 }
9769 #endif /* CONFIG_RT_GROUP_SCHED */
9770
9771 #ifdef CONFIG_GROUP_SCHED_WEIGHT
cpu_idle_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)9772 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
9773 struct cftype *cft)
9774 {
9775 return css_tg(css)->idle;
9776 }
9777
cpu_idle_write_s64(struct cgroup_subsys_state * css,struct cftype * cft,s64 idle)9778 static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
9779 struct cftype *cft, s64 idle)
9780 {
9781 int ret;
9782
9783 ret = sched_group_set_idle(css_tg(css), idle);
9784 if (!ret)
9785 scx_group_set_idle(css_tg(css), idle);
9786 return ret;
9787 }
9788 #endif
9789
9790 static struct cftype cpu_legacy_files[] = {
9791 #ifdef CONFIG_GROUP_SCHED_WEIGHT
9792 {
9793 .name = "shares",
9794 .read_u64 = cpu_shares_read_u64,
9795 .write_u64 = cpu_shares_write_u64,
9796 },
9797 {
9798 .name = "idle",
9799 .read_s64 = cpu_idle_read_s64,
9800 .write_s64 = cpu_idle_write_s64,
9801 },
9802 #endif
9803 #ifdef CONFIG_CFS_BANDWIDTH
9804 {
9805 .name = "cfs_quota_us",
9806 .read_s64 = cpu_cfs_quota_read_s64,
9807 .write_s64 = cpu_cfs_quota_write_s64,
9808 },
9809 {
9810 .name = "cfs_period_us",
9811 .read_u64 = cpu_cfs_period_read_u64,
9812 .write_u64 = cpu_cfs_period_write_u64,
9813 },
9814 {
9815 .name = "cfs_burst_us",
9816 .read_u64 = cpu_cfs_burst_read_u64,
9817 .write_u64 = cpu_cfs_burst_write_u64,
9818 },
9819 {
9820 .name = "stat",
9821 .seq_show = cpu_cfs_stat_show,
9822 },
9823 {
9824 .name = "stat.local",
9825 .seq_show = cpu_cfs_local_stat_show,
9826 },
9827 #endif
9828 #ifdef CONFIG_RT_GROUP_SCHED
9829 {
9830 .name = "rt_runtime_us",
9831 .read_s64 = cpu_rt_runtime_read,
9832 .write_s64 = cpu_rt_runtime_write,
9833 },
9834 {
9835 .name = "rt_period_us",
9836 .read_u64 = cpu_rt_period_read_uint,
9837 .write_u64 = cpu_rt_period_write_uint,
9838 },
9839 #endif
9840 #ifdef CONFIG_UCLAMP_TASK_GROUP
9841 {
9842 .name = "uclamp.min",
9843 .flags = CFTYPE_NOT_ON_ROOT,
9844 .seq_show = cpu_uclamp_min_show,
9845 .write = cpu_uclamp_min_write,
9846 },
9847 {
9848 .name = "uclamp.max",
9849 .flags = CFTYPE_NOT_ON_ROOT,
9850 .seq_show = cpu_uclamp_max_show,
9851 .write = cpu_uclamp_max_write,
9852 },
9853 #endif
9854 { } /* Terminate */
9855 };
9856
cpu_extra_stat_show(struct seq_file * sf,struct cgroup_subsys_state * css)9857 static int cpu_extra_stat_show(struct seq_file *sf,
9858 struct cgroup_subsys_state *css)
9859 {
9860 #ifdef CONFIG_CFS_BANDWIDTH
9861 {
9862 struct task_group *tg = css_tg(css);
9863 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9864 u64 throttled_usec, burst_usec;
9865
9866 throttled_usec = cfs_b->throttled_time;
9867 do_div(throttled_usec, NSEC_PER_USEC);
9868 burst_usec = cfs_b->burst_time;
9869 do_div(burst_usec, NSEC_PER_USEC);
9870
9871 seq_printf(sf, "nr_periods %d\n"
9872 "nr_throttled %d\n"
9873 "throttled_usec %llu\n"
9874 "nr_bursts %d\n"
9875 "burst_usec %llu\n",
9876 cfs_b->nr_periods, cfs_b->nr_throttled,
9877 throttled_usec, cfs_b->nr_burst, burst_usec);
9878 }
9879 #endif
9880 return 0;
9881 }
9882
cpu_local_stat_show(struct seq_file * sf,struct cgroup_subsys_state * css)9883 static int cpu_local_stat_show(struct seq_file *sf,
9884 struct cgroup_subsys_state *css)
9885 {
9886 #ifdef CONFIG_CFS_BANDWIDTH
9887 {
9888 struct task_group *tg = css_tg(css);
9889 u64 throttled_self_usec;
9890
9891 throttled_self_usec = throttled_time_self(tg);
9892 do_div(throttled_self_usec, NSEC_PER_USEC);
9893
9894 seq_printf(sf, "throttled_usec %llu\n",
9895 throttled_self_usec);
9896 }
9897 #endif
9898 return 0;
9899 }
9900
9901 #ifdef CONFIG_GROUP_SCHED_WEIGHT
9902
cpu_weight_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)9903 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
9904 struct cftype *cft)
9905 {
9906 return sched_weight_to_cgroup(tg_weight(css_tg(css)));
9907 }
9908
cpu_weight_write_u64(struct cgroup_subsys_state * css,struct cftype * cft,u64 cgrp_weight)9909 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
9910 struct cftype *cft, u64 cgrp_weight)
9911 {
9912 unsigned long weight;
9913 int ret;
9914
9915 if (cgrp_weight < CGROUP_WEIGHT_MIN || cgrp_weight > CGROUP_WEIGHT_MAX)
9916 return -ERANGE;
9917
9918 weight = sched_weight_from_cgroup(cgrp_weight);
9919
9920 ret = sched_group_set_shares(css_tg(css), scale_load(weight));
9921 if (!ret)
9922 scx_group_set_weight(css_tg(css), cgrp_weight);
9923 return ret;
9924 }
9925
cpu_weight_nice_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)9926 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
9927 struct cftype *cft)
9928 {
9929 unsigned long weight = tg_weight(css_tg(css));
9930 int last_delta = INT_MAX;
9931 int prio, delta;
9932
9933 /* find the closest nice value to the current weight */
9934 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
9935 delta = abs(sched_prio_to_weight[prio] - weight);
9936 if (delta >= last_delta)
9937 break;
9938 last_delta = delta;
9939 }
9940
9941 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
9942 }
9943
cpu_weight_nice_write_s64(struct cgroup_subsys_state * css,struct cftype * cft,s64 nice)9944 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
9945 struct cftype *cft, s64 nice)
9946 {
9947 unsigned long weight;
9948 int idx, ret;
9949
9950 if (nice < MIN_NICE || nice > MAX_NICE)
9951 return -ERANGE;
9952
9953 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
9954 idx = array_index_nospec(idx, 40);
9955 weight = sched_prio_to_weight[idx];
9956
9957 ret = sched_group_set_shares(css_tg(css), scale_load(weight));
9958 if (!ret)
9959 scx_group_set_weight(css_tg(css),
9960 sched_weight_to_cgroup(weight));
9961 return ret;
9962 }
9963 #endif /* CONFIG_GROUP_SCHED_WEIGHT */
9964
cpu_period_quota_print(struct seq_file * sf,long period,long quota)9965 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
9966 long period, long quota)
9967 {
9968 if (quota < 0)
9969 seq_puts(sf, "max");
9970 else
9971 seq_printf(sf, "%ld", quota);
9972
9973 seq_printf(sf, " %ld\n", period);
9974 }
9975
9976 /* caller should put the current value in *@periodp before calling */
cpu_period_quota_parse(char * buf,u64 * periodp,u64 * quotap)9977 static int __maybe_unused cpu_period_quota_parse(char *buf,
9978 u64 *periodp, u64 *quotap)
9979 {
9980 char tok[21]; /* U64_MAX */
9981
9982 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
9983 return -EINVAL;
9984
9985 *periodp *= NSEC_PER_USEC;
9986
9987 if (sscanf(tok, "%llu", quotap))
9988 *quotap *= NSEC_PER_USEC;
9989 else if (!strcmp(tok, "max"))
9990 *quotap = RUNTIME_INF;
9991 else
9992 return -EINVAL;
9993
9994 return 0;
9995 }
9996
9997 #ifdef CONFIG_CFS_BANDWIDTH
cpu_max_show(struct seq_file * sf,void * v)9998 static int cpu_max_show(struct seq_file *sf, void *v)
9999 {
10000 struct task_group *tg = css_tg(seq_css(sf));
10001
10002 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
10003 return 0;
10004 }
10005
cpu_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)10006 static ssize_t cpu_max_write(struct kernfs_open_file *of,
10007 char *buf, size_t nbytes, loff_t off)
10008 {
10009 struct task_group *tg = css_tg(of_css(of));
10010 u64 period = tg_get_cfs_period(tg);
10011 u64 burst = tg->cfs_bandwidth.burst;
10012 u64 quota;
10013 int ret;
10014
10015 ret = cpu_period_quota_parse(buf, &period, "a);
10016 if (!ret)
10017 ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
10018 return ret ?: nbytes;
10019 }
10020 #endif
10021
10022 static struct cftype cpu_files[] = {
10023 #ifdef CONFIG_GROUP_SCHED_WEIGHT
10024 {
10025 .name = "weight",
10026 .flags = CFTYPE_NOT_ON_ROOT,
10027 .read_u64 = cpu_weight_read_u64,
10028 .write_u64 = cpu_weight_write_u64,
10029 },
10030 {
10031 .name = "weight.nice",
10032 .flags = CFTYPE_NOT_ON_ROOT,
10033 .read_s64 = cpu_weight_nice_read_s64,
10034 .write_s64 = cpu_weight_nice_write_s64,
10035 },
10036 {
10037 .name = "idle",
10038 .flags = CFTYPE_NOT_ON_ROOT,
10039 .read_s64 = cpu_idle_read_s64,
10040 .write_s64 = cpu_idle_write_s64,
10041 },
10042 #endif
10043 #ifdef CONFIG_CFS_BANDWIDTH
10044 {
10045 .name = "max",
10046 .flags = CFTYPE_NOT_ON_ROOT,
10047 .seq_show = cpu_max_show,
10048 .write = cpu_max_write,
10049 },
10050 {
10051 .name = "max.burst",
10052 .flags = CFTYPE_NOT_ON_ROOT,
10053 .read_u64 = cpu_cfs_burst_read_u64,
10054 .write_u64 = cpu_cfs_burst_write_u64,
10055 },
10056 #endif
10057 #ifdef CONFIG_UCLAMP_TASK_GROUP
10058 {
10059 .name = "uclamp.min",
10060 .flags = CFTYPE_NOT_ON_ROOT,
10061 .seq_show = cpu_uclamp_min_show,
10062 .write = cpu_uclamp_min_write,
10063 },
10064 {
10065 .name = "uclamp.max",
10066 .flags = CFTYPE_NOT_ON_ROOT,
10067 .seq_show = cpu_uclamp_max_show,
10068 .write = cpu_uclamp_max_write,
10069 },
10070 #endif
10071 { } /* terminate */
10072 };
10073
10074 struct cgroup_subsys cpu_cgrp_subsys = {
10075 .css_alloc = cpu_cgroup_css_alloc,
10076 .css_online = cpu_cgroup_css_online,
10077 .css_offline = cpu_cgroup_css_offline,
10078 .css_released = cpu_cgroup_css_released,
10079 .css_free = cpu_cgroup_css_free,
10080 .css_extra_stat_show = cpu_extra_stat_show,
10081 .css_local_stat_show = cpu_local_stat_show,
10082 .can_attach = cpu_cgroup_can_attach,
10083 .attach = cpu_cgroup_attach,
10084 .cancel_attach = cpu_cgroup_cancel_attach,
10085 .legacy_cftypes = cpu_legacy_files,
10086 .dfl_cftypes = cpu_files,
10087 .early_init = true,
10088 .threaded = true,
10089 };
10090
10091 #endif /* CONFIG_CGROUP_SCHED */
10092
dump_cpu_task(int cpu)10093 void dump_cpu_task(int cpu)
10094 {
10095 if (in_hardirq() && cpu == smp_processor_id()) {
10096 struct pt_regs *regs;
10097
10098 regs = get_irq_regs();
10099 if (regs) {
10100 show_regs(regs);
10101 return;
10102 }
10103 }
10104
10105 if (trigger_single_cpu_backtrace(cpu))
10106 return;
10107
10108 pr_info("Task dump for CPU %d:\n", cpu);
10109 sched_show_task(cpu_curr(cpu));
10110 }
10111
10112 /*
10113 * Nice levels are multiplicative, with a gentle 10% change for every
10114 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
10115 * nice 1, it will get ~10% less CPU time than another CPU-bound task
10116 * that remained on nice 0.
10117 *
10118 * The "10% effect" is relative and cumulative: from _any_ nice level,
10119 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
10120 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
10121 * If a task goes up by ~10% and another task goes down by ~10% then
10122 * the relative distance between them is ~25%.)
10123 */
10124 const int sched_prio_to_weight[40] = {
10125 /* -20 */ 88761, 71755, 56483, 46273, 36291,
10126 /* -15 */ 29154, 23254, 18705, 14949, 11916,
10127 /* -10 */ 9548, 7620, 6100, 4904, 3906,
10128 /* -5 */ 3121, 2501, 1991, 1586, 1277,
10129 /* 0 */ 1024, 820, 655, 526, 423,
10130 /* 5 */ 335, 272, 215, 172, 137,
10131 /* 10 */ 110, 87, 70, 56, 45,
10132 /* 15 */ 36, 29, 23, 18, 15,
10133 };
10134
10135 /*
10136 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, pre-calculated.
10137 *
10138 * In cases where the weight does not change often, we can use the
10139 * pre-calculated inverse to speed up arithmetics by turning divisions
10140 * into multiplications:
10141 */
10142 const u32 sched_prio_to_wmult[40] = {
10143 /* -20 */ 48388, 59856, 76040, 92818, 118348,
10144 /* -15 */ 147320, 184698, 229616, 287308, 360437,
10145 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
10146 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
10147 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
10148 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
10149 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
10150 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
10151 };
10152
call_trace_sched_update_nr_running(struct rq * rq,int count)10153 void call_trace_sched_update_nr_running(struct rq *rq, int count)
10154 {
10155 trace_sched_update_nr_running_tp(rq, count);
10156 }
10157
10158 #ifdef CONFIG_SCHED_MM_CID
10159
10160 /*
10161 * @cid_lock: Guarantee forward-progress of cid allocation.
10162 *
10163 * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock
10164 * is only used when contention is detected by the lock-free allocation so
10165 * forward progress can be guaranteed.
10166 */
10167 DEFINE_RAW_SPINLOCK(cid_lock);
10168
10169 /*
10170 * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock.
10171 *
10172 * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is
10173 * detected, it is set to 1 to ensure that all newly coming allocations are
10174 * serialized by @cid_lock until the allocation which detected contention
10175 * completes and sets @use_cid_lock back to 0. This guarantees forward progress
10176 * of a cid allocation.
10177 */
10178 int use_cid_lock;
10179
10180 /*
10181 * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid
10182 * concurrently with respect to the execution of the source runqueue context
10183 * switch.
10184 *
10185 * There is one basic properties we want to guarantee here:
10186 *
10187 * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively
10188 * used by a task. That would lead to concurrent allocation of the cid and
10189 * userspace corruption.
10190 *
10191 * Provide this guarantee by introducing a Dekker memory ordering to guarantee
10192 * that a pair of loads observe at least one of a pair of stores, which can be
10193 * shown as:
10194 *
10195 * X = Y = 0
10196 *
10197 * w[X]=1 w[Y]=1
10198 * MB MB
10199 * r[Y]=y r[X]=x
10200 *
10201 * Which guarantees that x==0 && y==0 is impossible. But rather than using
10202 * values 0 and 1, this algorithm cares about specific state transitions of the
10203 * runqueue current task (as updated by the scheduler context switch), and the
10204 * per-mm/cpu cid value.
10205 *
10206 * Let's introduce task (Y) which has task->mm == mm and task (N) which has
10207 * task->mm != mm for the rest of the discussion. There are two scheduler state
10208 * transitions on context switch we care about:
10209 *
10210 * (TSA) Store to rq->curr with transition from (N) to (Y)
10211 *
10212 * (TSB) Store to rq->curr with transition from (Y) to (N)
10213 *
10214 * On the remote-clear side, there is one transition we care about:
10215 *
10216 * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag
10217 *
10218 * There is also a transition to UNSET state which can be performed from all
10219 * sides (scheduler, remote-clear). It is always performed with a cmpxchg which
10220 * guarantees that only a single thread will succeed:
10221 *
10222 * (TMB) cmpxchg to *pcpu_cid to mark UNSET
10223 *
10224 * Just to be clear, what we do _not_ want to happen is a transition to UNSET
10225 * when a thread is actively using the cid (property (1)).
10226 *
10227 * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions.
10228 *
10229 * Scenario A) (TSA)+(TMA) (from next task perspective)
10230 *
10231 * CPU0 CPU1
10232 *
10233 * Context switch CS-1 Remote-clear
10234 * - store to rq->curr: (N)->(Y) (TSA) - cmpxchg to *pcpu_id to LAZY (TMA)
10235 * (implied barrier after cmpxchg)
10236 * - switch_mm_cid()
10237 * - memory barrier (see switch_mm_cid()
10238 * comment explaining how this barrier
10239 * is combined with other scheduler
10240 * barriers)
10241 * - mm_cid_get (next)
10242 * - READ_ONCE(*pcpu_cid) - rcu_dereference(src_rq->curr)
10243 *
10244 * This Dekker ensures that either task (Y) is observed by the
10245 * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are
10246 * observed.
10247 *
10248 * If task (Y) store is observed by rcu_dereference(), it means that there is
10249 * still an active task on the cpu. Remote-clear will therefore not transition
10250 * to UNSET, which fulfills property (1).
10251 *
10252 * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(),
10253 * it will move its state to UNSET, which clears the percpu cid perhaps
10254 * uselessly (which is not an issue for correctness). Because task (Y) is not
10255 * observed, CPU1 can move ahead to set the state to UNSET. Because moving
10256 * state to UNSET is done with a cmpxchg expecting that the old state has the
10257 * LAZY flag set, only one thread will successfully UNSET.
10258 *
10259 * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0
10260 * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and
10261 * CPU1 will observe task (Y) and do nothing more, which is fine.
10262 *
10263 * What we are effectively preventing with this Dekker is a scenario where
10264 * neither LAZY flag nor store (Y) are observed, which would fail property (1)
10265 * because this would UNSET a cid which is actively used.
10266 */
10267
sched_mm_cid_migrate_from(struct task_struct * t)10268 void sched_mm_cid_migrate_from(struct task_struct *t)
10269 {
10270 t->migrate_from_cpu = task_cpu(t);
10271 }
10272
10273 static
__sched_mm_cid_migrate_from_fetch_cid(struct rq * src_rq,struct task_struct * t,struct mm_cid * src_pcpu_cid)10274 int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq,
10275 struct task_struct *t,
10276 struct mm_cid *src_pcpu_cid)
10277 {
10278 struct mm_struct *mm = t->mm;
10279 struct task_struct *src_task;
10280 int src_cid, last_mm_cid;
10281
10282 if (!mm)
10283 return -1;
10284
10285 last_mm_cid = t->last_mm_cid;
10286 /*
10287 * If the migrated task has no last cid, or if the current
10288 * task on src rq uses the cid, it means the source cid does not need
10289 * to be moved to the destination cpu.
10290 */
10291 if (last_mm_cid == -1)
10292 return -1;
10293 src_cid = READ_ONCE(src_pcpu_cid->cid);
10294 if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid)
10295 return -1;
10296
10297 /*
10298 * If we observe an active task using the mm on this rq, it means we
10299 * are not the last task to be migrated from this cpu for this mm, so
10300 * there is no need to move src_cid to the destination cpu.
10301 */
10302 guard(rcu)();
10303 src_task = rcu_dereference(src_rq->curr);
10304 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
10305 t->last_mm_cid = -1;
10306 return -1;
10307 }
10308
10309 return src_cid;
10310 }
10311
10312 static
__sched_mm_cid_migrate_from_try_steal_cid(struct rq * src_rq,struct task_struct * t,struct mm_cid * src_pcpu_cid,int src_cid)10313 int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq,
10314 struct task_struct *t,
10315 struct mm_cid *src_pcpu_cid,
10316 int src_cid)
10317 {
10318 struct task_struct *src_task;
10319 struct mm_struct *mm = t->mm;
10320 int lazy_cid;
10321
10322 if (src_cid == -1)
10323 return -1;
10324
10325 /*
10326 * Attempt to clear the source cpu cid to move it to the destination
10327 * cpu.
10328 */
10329 lazy_cid = mm_cid_set_lazy_put(src_cid);
10330 if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid))
10331 return -1;
10332
10333 /*
10334 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10335 * rq->curr->mm matches the scheduler barrier in context_switch()
10336 * between store to rq->curr and load of prev and next task's
10337 * per-mm/cpu cid.
10338 *
10339 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10340 * rq->curr->mm_cid_active matches the barrier in
10341 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
10342 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
10343 * load of per-mm/cpu cid.
10344 */
10345
10346 /*
10347 * If we observe an active task using the mm on this rq after setting
10348 * the lazy-put flag, this task will be responsible for transitioning
10349 * from lazy-put flag set to MM_CID_UNSET.
10350 */
10351 scoped_guard (rcu) {
10352 src_task = rcu_dereference(src_rq->curr);
10353 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
10354 /*
10355 * We observed an active task for this mm, there is therefore
10356 * no point in moving this cid to the destination cpu.
10357 */
10358 t->last_mm_cid = -1;
10359 return -1;
10360 }
10361 }
10362
10363 /*
10364 * The src_cid is unused, so it can be unset.
10365 */
10366 if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
10367 return -1;
10368 WRITE_ONCE(src_pcpu_cid->recent_cid, MM_CID_UNSET);
10369 return src_cid;
10370 }
10371
10372 /*
10373 * Migration to dst cpu. Called with dst_rq lock held.
10374 * Interrupts are disabled, which keeps the window of cid ownership without the
10375 * source rq lock held small.
10376 */
sched_mm_cid_migrate_to(struct rq * dst_rq,struct task_struct * t)10377 void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t)
10378 {
10379 struct mm_cid *src_pcpu_cid, *dst_pcpu_cid;
10380 struct mm_struct *mm = t->mm;
10381 int src_cid, src_cpu;
10382 bool dst_cid_is_set;
10383 struct rq *src_rq;
10384
10385 lockdep_assert_rq_held(dst_rq);
10386
10387 if (!mm)
10388 return;
10389 src_cpu = t->migrate_from_cpu;
10390 if (src_cpu == -1) {
10391 t->last_mm_cid = -1;
10392 return;
10393 }
10394 /*
10395 * Move the src cid if the dst cid is unset. This keeps id
10396 * allocation closest to 0 in cases where few threads migrate around
10397 * many CPUs.
10398 *
10399 * If destination cid or recent cid is already set, we may have
10400 * to just clear the src cid to ensure compactness in frequent
10401 * migrations scenarios.
10402 *
10403 * It is not useful to clear the src cid when the number of threads is
10404 * greater or equal to the number of allowed CPUs, because user-space
10405 * can expect that the number of allowed cids can reach the number of
10406 * allowed CPUs.
10407 */
10408 dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq));
10409 dst_cid_is_set = !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->cid)) ||
10410 !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->recent_cid));
10411 if (dst_cid_is_set && atomic_read(&mm->mm_users) >= READ_ONCE(mm->nr_cpus_allowed))
10412 return;
10413 src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu);
10414 src_rq = cpu_rq(src_cpu);
10415 src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid);
10416 if (src_cid == -1)
10417 return;
10418 src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid,
10419 src_cid);
10420 if (src_cid == -1)
10421 return;
10422 if (dst_cid_is_set) {
10423 __mm_cid_put(mm, src_cid);
10424 return;
10425 }
10426 /* Move src_cid to dst cpu. */
10427 mm_cid_snapshot_time(dst_rq, mm);
10428 WRITE_ONCE(dst_pcpu_cid->cid, src_cid);
10429 WRITE_ONCE(dst_pcpu_cid->recent_cid, src_cid);
10430 }
10431
sched_mm_cid_remote_clear(struct mm_struct * mm,struct mm_cid * pcpu_cid,int cpu)10432 static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid,
10433 int cpu)
10434 {
10435 struct rq *rq = cpu_rq(cpu);
10436 struct task_struct *t;
10437 int cid, lazy_cid;
10438
10439 cid = READ_ONCE(pcpu_cid->cid);
10440 if (!mm_cid_is_valid(cid))
10441 return;
10442
10443 /*
10444 * Clear the cpu cid if it is set to keep cid allocation compact. If
10445 * there happens to be other tasks left on the source cpu using this
10446 * mm, the next task using this mm will reallocate its cid on context
10447 * switch.
10448 */
10449 lazy_cid = mm_cid_set_lazy_put(cid);
10450 if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid))
10451 return;
10452
10453 /*
10454 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10455 * rq->curr->mm matches the scheduler barrier in context_switch()
10456 * between store to rq->curr and load of prev and next task's
10457 * per-mm/cpu cid.
10458 *
10459 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10460 * rq->curr->mm_cid_active matches the barrier in
10461 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
10462 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
10463 * load of per-mm/cpu cid.
10464 */
10465
10466 /*
10467 * If we observe an active task using the mm on this rq after setting
10468 * the lazy-put flag, that task will be responsible for transitioning
10469 * from lazy-put flag set to MM_CID_UNSET.
10470 */
10471 scoped_guard (rcu) {
10472 t = rcu_dereference(rq->curr);
10473 if (READ_ONCE(t->mm_cid_active) && t->mm == mm)
10474 return;
10475 }
10476
10477 /*
10478 * The cid is unused, so it can be unset.
10479 * Disable interrupts to keep the window of cid ownership without rq
10480 * lock small.
10481 */
10482 scoped_guard (irqsave) {
10483 if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
10484 __mm_cid_put(mm, cid);
10485 }
10486 }
10487
sched_mm_cid_remote_clear_old(struct mm_struct * mm,int cpu)10488 static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu)
10489 {
10490 struct rq *rq = cpu_rq(cpu);
10491 struct mm_cid *pcpu_cid;
10492 struct task_struct *curr;
10493 u64 rq_clock;
10494
10495 /*
10496 * rq->clock load is racy on 32-bit but one spurious clear once in a
10497 * while is irrelevant.
10498 */
10499 rq_clock = READ_ONCE(rq->clock);
10500 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
10501
10502 /*
10503 * In order to take care of infrequently scheduled tasks, bump the time
10504 * snapshot associated with this cid if an active task using the mm is
10505 * observed on this rq.
10506 */
10507 scoped_guard (rcu) {
10508 curr = rcu_dereference(rq->curr);
10509 if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) {
10510 WRITE_ONCE(pcpu_cid->time, rq_clock);
10511 return;
10512 }
10513 }
10514
10515 if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS)
10516 return;
10517 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
10518 }
10519
sched_mm_cid_remote_clear_weight(struct mm_struct * mm,int cpu,int weight)10520 static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu,
10521 int weight)
10522 {
10523 struct mm_cid *pcpu_cid;
10524 int cid;
10525
10526 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
10527 cid = READ_ONCE(pcpu_cid->cid);
10528 if (!mm_cid_is_valid(cid) || cid < weight)
10529 return;
10530 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
10531 }
10532
task_mm_cid_work(struct callback_head * work)10533 static void task_mm_cid_work(struct callback_head *work)
10534 {
10535 unsigned long now = jiffies, old_scan, next_scan;
10536 struct task_struct *t = current;
10537 struct cpumask *cidmask;
10538 struct mm_struct *mm;
10539 int weight, cpu;
10540
10541 SCHED_WARN_ON(t != container_of(work, struct task_struct, cid_work));
10542
10543 work->next = work; /* Prevent double-add */
10544 if (t->flags & PF_EXITING)
10545 return;
10546 mm = t->mm;
10547 if (!mm)
10548 return;
10549 old_scan = READ_ONCE(mm->mm_cid_next_scan);
10550 next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY);
10551 if (!old_scan) {
10552 unsigned long res;
10553
10554 res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan);
10555 if (res != old_scan)
10556 old_scan = res;
10557 else
10558 old_scan = next_scan;
10559 }
10560 if (time_before(now, old_scan))
10561 return;
10562 if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan))
10563 return;
10564 cidmask = mm_cidmask(mm);
10565 /* Clear cids that were not recently used. */
10566 for_each_possible_cpu(cpu)
10567 sched_mm_cid_remote_clear_old(mm, cpu);
10568 weight = cpumask_weight(cidmask);
10569 /*
10570 * Clear cids that are greater or equal to the cidmask weight to
10571 * recompact it.
10572 */
10573 for_each_possible_cpu(cpu)
10574 sched_mm_cid_remote_clear_weight(mm, cpu, weight);
10575 }
10576
init_sched_mm_cid(struct task_struct * t)10577 void init_sched_mm_cid(struct task_struct *t)
10578 {
10579 struct mm_struct *mm = t->mm;
10580 int mm_users = 0;
10581
10582 if (mm) {
10583 mm_users = atomic_read(&mm->mm_users);
10584 if (mm_users == 1)
10585 mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY);
10586 }
10587 t->cid_work.next = &t->cid_work; /* Protect against double add */
10588 init_task_work(&t->cid_work, task_mm_cid_work);
10589 }
10590
task_tick_mm_cid(struct rq * rq,struct task_struct * curr)10591 void task_tick_mm_cid(struct rq *rq, struct task_struct *curr)
10592 {
10593 struct callback_head *work = &curr->cid_work;
10594 unsigned long now = jiffies;
10595
10596 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) ||
10597 work->next != work)
10598 return;
10599 if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan)))
10600 return;
10601
10602 /* No page allocation under rq lock */
10603 task_work_add(curr, work, TWA_RESUME);
10604 }
10605
sched_mm_cid_exit_signals(struct task_struct * t)10606 void sched_mm_cid_exit_signals(struct task_struct *t)
10607 {
10608 struct mm_struct *mm = t->mm;
10609 struct rq *rq;
10610
10611 if (!mm)
10612 return;
10613
10614 preempt_disable();
10615 rq = this_rq();
10616 guard(rq_lock_irqsave)(rq);
10617 preempt_enable_no_resched(); /* holding spinlock */
10618 WRITE_ONCE(t->mm_cid_active, 0);
10619 /*
10620 * Store t->mm_cid_active before loading per-mm/cpu cid.
10621 * Matches barrier in sched_mm_cid_remote_clear_old().
10622 */
10623 smp_mb();
10624 mm_cid_put(mm);
10625 t->last_mm_cid = t->mm_cid = -1;
10626 }
10627
sched_mm_cid_before_execve(struct task_struct * t)10628 void sched_mm_cid_before_execve(struct task_struct *t)
10629 {
10630 struct mm_struct *mm = t->mm;
10631 struct rq *rq;
10632
10633 if (!mm)
10634 return;
10635
10636 preempt_disable();
10637 rq = this_rq();
10638 guard(rq_lock_irqsave)(rq);
10639 preempt_enable_no_resched(); /* holding spinlock */
10640 WRITE_ONCE(t->mm_cid_active, 0);
10641 /*
10642 * Store t->mm_cid_active before loading per-mm/cpu cid.
10643 * Matches barrier in sched_mm_cid_remote_clear_old().
10644 */
10645 smp_mb();
10646 mm_cid_put(mm);
10647 t->last_mm_cid = t->mm_cid = -1;
10648 }
10649
sched_mm_cid_after_execve(struct task_struct * t)10650 void sched_mm_cid_after_execve(struct task_struct *t)
10651 {
10652 struct mm_struct *mm = t->mm;
10653 struct rq *rq;
10654
10655 if (!mm)
10656 return;
10657
10658 preempt_disable();
10659 rq = this_rq();
10660 scoped_guard (rq_lock_irqsave, rq) {
10661 preempt_enable_no_resched(); /* holding spinlock */
10662 WRITE_ONCE(t->mm_cid_active, 1);
10663 /*
10664 * Store t->mm_cid_active before loading per-mm/cpu cid.
10665 * Matches barrier in sched_mm_cid_remote_clear_old().
10666 */
10667 smp_mb();
10668 t->last_mm_cid = t->mm_cid = mm_cid_get(rq, t, mm);
10669 }
10670 rseq_set_notify_resume(t);
10671 }
10672
sched_mm_cid_fork(struct task_struct * t)10673 void sched_mm_cid_fork(struct task_struct *t)
10674 {
10675 WARN_ON_ONCE(!t->mm || t->mm_cid != -1);
10676 t->mm_cid_active = 1;
10677 }
10678 #endif
10679
10680 #ifdef CONFIG_SCHED_CLASS_EXT
sched_deq_and_put_task(struct task_struct * p,int queue_flags,struct sched_enq_and_set_ctx * ctx)10681 void sched_deq_and_put_task(struct task_struct *p, int queue_flags,
10682 struct sched_enq_and_set_ctx *ctx)
10683 {
10684 struct rq *rq = task_rq(p);
10685
10686 lockdep_assert_rq_held(rq);
10687
10688 *ctx = (struct sched_enq_and_set_ctx){
10689 .p = p,
10690 .queue_flags = queue_flags,
10691 .queued = task_on_rq_queued(p),
10692 .running = task_current(rq, p),
10693 };
10694
10695 update_rq_clock(rq);
10696 if (ctx->queued)
10697 dequeue_task(rq, p, queue_flags | DEQUEUE_NOCLOCK);
10698 if (ctx->running)
10699 put_prev_task(rq, p);
10700 }
10701
sched_enq_and_set_task(struct sched_enq_and_set_ctx * ctx)10702 void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx)
10703 {
10704 struct rq *rq = task_rq(ctx->p);
10705
10706 lockdep_assert_rq_held(rq);
10707
10708 if (ctx->queued)
10709 enqueue_task(rq, ctx->p, ctx->queue_flags | ENQUEUE_NOCLOCK);
10710 if (ctx->running)
10711 set_next_task(rq, ctx->p);
10712 }
10713 #endif /* CONFIG_SCHED_CLASS_EXT */
10714