xref: /linux/include/net/cfg80211.h (revision 50b359896fe55d0443ed550e1fabba71d242031a)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 #ifndef __NET_CFG80211_H
3 #define __NET_CFG80211_H
4 /*
5  * 802.11 device and configuration interface
6  *
7  * Copyright 2006-2010	Johannes Berg <johannes@sipsolutions.net>
8  * Copyright 2013-2014 Intel Mobile Communications GmbH
9  * Copyright 2015-2017	Intel Deutschland GmbH
10  * Copyright (C) 2018-2025 Intel Corporation
11  */
12 
13 #include <linux/ethtool.h>
14 #include <uapi/linux/rfkill.h>
15 #include <linux/netdevice.h>
16 #include <linux/debugfs.h>
17 #include <linux/list.h>
18 #include <linux/bug.h>
19 #include <linux/netlink.h>
20 #include <linux/skbuff.h>
21 #include <linux/nl80211.h>
22 #include <linux/if_ether.h>
23 #include <linux/ieee80211.h>
24 #include <linux/net.h>
25 #include <linux/rfkill.h>
26 #include <net/regulatory.h>
27 
28 /**
29  * DOC: Introduction
30  *
31  * cfg80211 is the configuration API for 802.11 devices in Linux. It bridges
32  * userspace and drivers, and offers some utility functionality associated
33  * with 802.11. cfg80211 must, directly or indirectly via mac80211, be used
34  * by all modern wireless drivers in Linux, so that they offer a consistent
35  * API through nl80211. For backward compatibility, cfg80211 also offers
36  * wireless extensions to userspace, but hides them from drivers completely.
37  *
38  * Additionally, cfg80211 contains code to help enforce regulatory spectrum
39  * use restrictions.
40  */
41 
42 
43 /**
44  * DOC: Device registration
45  *
46  * In order for a driver to use cfg80211, it must register the hardware device
47  * with cfg80211. This happens through a number of hardware capability structs
48  * described below.
49  *
50  * The fundamental structure for each device is the 'wiphy', of which each
51  * instance describes a physical wireless device connected to the system. Each
52  * such wiphy can have zero, one, or many virtual interfaces associated with
53  * it, which need to be identified as such by pointing the network interface's
54  * @ieee80211_ptr pointer to a &struct wireless_dev which further describes
55  * the wireless part of the interface. Normally this struct is embedded in the
56  * network interface's private data area. Drivers can optionally allow creating
57  * or destroying virtual interfaces on the fly, but without at least one or the
58  * ability to create some the wireless device isn't useful.
59  *
60  * Each wiphy structure contains device capability information, and also has
61  * a pointer to the various operations the driver offers. The definitions and
62  * structures here describe these capabilities in detail.
63  */
64 
65 struct wiphy;
66 
67 /*
68  * wireless hardware capability structures
69  */
70 
71 /**
72  * enum ieee80211_channel_flags - channel flags
73  *
74  * Channel flags set by the regulatory control code.
75  *
76  * @IEEE80211_CHAN_DISABLED: This channel is disabled.
77  * @IEEE80211_CHAN_NO_IR: do not initiate radiation, this includes
78  *	sending probe requests or beaconing.
79  * @IEEE80211_CHAN_PSD: Power spectral density (in dBm) is set for this
80  *	channel.
81  * @IEEE80211_CHAN_RADAR: Radar detection is required on this channel.
82  * @IEEE80211_CHAN_NO_HT40PLUS: extension channel above this channel
83  *	is not permitted.
84  * @IEEE80211_CHAN_NO_HT40MINUS: extension channel below this channel
85  *	is not permitted.
86  * @IEEE80211_CHAN_NO_OFDM: OFDM is not allowed on this channel.
87  * @IEEE80211_CHAN_NO_80MHZ: If the driver supports 80 MHz on the band,
88  *	this flag indicates that an 80 MHz channel cannot use this
89  *	channel as the control or any of the secondary channels.
90  *	This may be due to the driver or due to regulatory bandwidth
91  *	restrictions.
92  * @IEEE80211_CHAN_NO_160MHZ: If the driver supports 160 MHz on the band,
93  *	this flag indicates that an 160 MHz channel cannot use this
94  *	channel as the control or any of the secondary channels.
95  *	This may be due to the driver or due to regulatory bandwidth
96  *	restrictions.
97  * @IEEE80211_CHAN_INDOOR_ONLY: see %NL80211_FREQUENCY_ATTR_INDOOR_ONLY
98  * @IEEE80211_CHAN_IR_CONCURRENT: see %NL80211_FREQUENCY_ATTR_IR_CONCURRENT
99  * @IEEE80211_CHAN_NO_20MHZ: 20 MHz bandwidth is not permitted
100  *	on this channel.
101  * @IEEE80211_CHAN_NO_10MHZ: 10 MHz bandwidth is not permitted
102  *	on this channel.
103  * @IEEE80211_CHAN_NO_HE: HE operation is not permitted on this channel.
104  * @IEEE80211_CHAN_NO_320MHZ: If the driver supports 320 MHz on the band,
105  *	this flag indicates that a 320 MHz channel cannot use this
106  *	channel as the control or any of the secondary channels.
107  *	This may be due to the driver or due to regulatory bandwidth
108  *	restrictions.
109  * @IEEE80211_CHAN_NO_EHT: EHT operation is not permitted on this channel.
110  * @IEEE80211_CHAN_DFS_CONCURRENT: See %NL80211_RRF_DFS_CONCURRENT
111  * @IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT: Client connection with VLP AP
112  *	not permitted using this channel
113  * @IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT: Client connection with AFC AP
114  *	not permitted using this channel
115  * @IEEE80211_CHAN_CAN_MONITOR: This channel can be used for monitor
116  *	mode even in the presence of other (regulatory) restrictions,
117  *	even if it is otherwise disabled.
118  * @IEEE80211_CHAN_ALLOW_6GHZ_VLP_AP: Allow using this channel for AP operation
119  *	with very low power (VLP), even if otherwise set to NO_IR.
120  * @IEEE80211_CHAN_ALLOW_20MHZ_ACTIVITY: Allow activity on a 20 MHz channel,
121  *	even if otherwise set to NO_IR.
122  * @IEEE80211_CHAN_S1G_NO_PRIMARY: Prevents the channel for use as an S1G
123  *	primary channel. Does not prevent the wider operating channel
124  *	described by the chandef from being used. In order for a 2MHz primary
125  *	to be used, both 1MHz subchannels shall not contain this flag.
126  * @IEEE80211_CHAN_NO_4MHZ: 4 MHz bandwidth is not permitted on this channel.
127  * @IEEE80211_CHAN_NO_8MHZ: 8 MHz bandwidth is not permitted on this channel.
128  * @IEEE80211_CHAN_NO_16MHZ: 16 MHz bandwidth is not permitted on this channel.
129  */
130 enum ieee80211_channel_flags {
131 	IEEE80211_CHAN_DISABLED			= BIT(0),
132 	IEEE80211_CHAN_NO_IR			= BIT(1),
133 	IEEE80211_CHAN_PSD			= BIT(2),
134 	IEEE80211_CHAN_RADAR			= BIT(3),
135 	IEEE80211_CHAN_NO_HT40PLUS		= BIT(4),
136 	IEEE80211_CHAN_NO_HT40MINUS		= BIT(5),
137 	IEEE80211_CHAN_NO_OFDM			= BIT(6),
138 	IEEE80211_CHAN_NO_80MHZ			= BIT(7),
139 	IEEE80211_CHAN_NO_160MHZ		= BIT(8),
140 	IEEE80211_CHAN_INDOOR_ONLY		= BIT(9),
141 	IEEE80211_CHAN_IR_CONCURRENT		= BIT(10),
142 	IEEE80211_CHAN_NO_20MHZ			= BIT(11),
143 	IEEE80211_CHAN_NO_10MHZ			= BIT(12),
144 	IEEE80211_CHAN_NO_HE			= BIT(13),
145 	/* can use free bits here */
146 	IEEE80211_CHAN_NO_320MHZ		= BIT(19),
147 	IEEE80211_CHAN_NO_EHT			= BIT(20),
148 	IEEE80211_CHAN_DFS_CONCURRENT		= BIT(21),
149 	IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT	= BIT(22),
150 	IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT	= BIT(23),
151 	IEEE80211_CHAN_CAN_MONITOR		= BIT(24),
152 	IEEE80211_CHAN_ALLOW_6GHZ_VLP_AP	= BIT(25),
153 	IEEE80211_CHAN_ALLOW_20MHZ_ACTIVITY     = BIT(26),
154 	IEEE80211_CHAN_S1G_NO_PRIMARY		= BIT(27),
155 	IEEE80211_CHAN_NO_4MHZ			= BIT(28),
156 	IEEE80211_CHAN_NO_8MHZ			= BIT(29),
157 	IEEE80211_CHAN_NO_16MHZ			= BIT(30),
158 };
159 
160 #define IEEE80211_CHAN_NO_HT40 \
161 	(IEEE80211_CHAN_NO_HT40PLUS | IEEE80211_CHAN_NO_HT40MINUS)
162 
163 #define IEEE80211_DFS_MIN_CAC_TIME_MS		60000
164 #define IEEE80211_DFS_MIN_NOP_TIME_MS		(30 * 60 * 1000)
165 
166 /**
167  * struct ieee80211_channel - channel definition
168  *
169  * This structure describes a single channel for use
170  * with cfg80211.
171  *
172  * @center_freq: center frequency in MHz
173  * @freq_offset: offset from @center_freq, in KHz
174  * @hw_value: hardware-specific value for the channel
175  * @flags: channel flags from &enum ieee80211_channel_flags.
176  * @orig_flags: channel flags at registration time, used by regulatory
177  *	code to support devices with additional restrictions
178  * @band: band this channel belongs to.
179  * @max_antenna_gain: maximum antenna gain in dBi
180  * @max_power: maximum transmission power (in dBm)
181  * @max_reg_power: maximum regulatory transmission power (in dBm)
182  * @beacon_found: helper to regulatory code to indicate when a beacon
183  *	has been found on this channel. Use regulatory_hint_found_beacon()
184  *	to enable this, this is useful only on 5 GHz band.
185  * @orig_mag: internal use
186  * @orig_mpwr: internal use
187  * @dfs_state: current state of this channel. Only relevant if radar is required
188  *	on this channel.
189  * @dfs_state_entered: timestamp (jiffies) when the dfs state was entered.
190  * @dfs_cac_ms: DFS CAC time in milliseconds, this is valid for DFS channels.
191  * @psd: power spectral density (in dBm)
192  */
193 struct ieee80211_channel {
194 	enum nl80211_band band;
195 	u32 center_freq;
196 	u16 freq_offset;
197 	u16 hw_value;
198 	u32 flags;
199 	int max_antenna_gain;
200 	int max_power;
201 	int max_reg_power;
202 	bool beacon_found;
203 	u32 orig_flags;
204 	int orig_mag, orig_mpwr;
205 	enum nl80211_dfs_state dfs_state;
206 	unsigned long dfs_state_entered;
207 	unsigned int dfs_cac_ms;
208 	s8 psd;
209 };
210 
211 /**
212  * enum ieee80211_rate_flags - rate flags
213  *
214  * Hardware/specification flags for rates. These are structured
215  * in a way that allows using the same bitrate structure for
216  * different bands/PHY modes.
217  *
218  * @IEEE80211_RATE_SHORT_PREAMBLE: Hardware can send with short
219  *	preamble on this bitrate; only relevant in 2.4GHz band and
220  *	with CCK rates.
221  * @IEEE80211_RATE_MANDATORY_A: This bitrate is a mandatory rate
222  *	when used with 802.11a (on the 5 GHz band); filled by the
223  *	core code when registering the wiphy.
224  * @IEEE80211_RATE_MANDATORY_B: This bitrate is a mandatory rate
225  *	when used with 802.11b (on the 2.4 GHz band); filled by the
226  *	core code when registering the wiphy.
227  * @IEEE80211_RATE_MANDATORY_G: This bitrate is a mandatory rate
228  *	when used with 802.11g (on the 2.4 GHz band); filled by the
229  *	core code when registering the wiphy.
230  * @IEEE80211_RATE_ERP_G: This is an ERP rate in 802.11g mode.
231  * @IEEE80211_RATE_SUPPORTS_5MHZ: Rate can be used in 5 MHz mode
232  * @IEEE80211_RATE_SUPPORTS_10MHZ: Rate can be used in 10 MHz mode
233  */
234 enum ieee80211_rate_flags {
235 	IEEE80211_RATE_SHORT_PREAMBLE	= BIT(0),
236 	IEEE80211_RATE_MANDATORY_A	= BIT(1),
237 	IEEE80211_RATE_MANDATORY_B	= BIT(2),
238 	IEEE80211_RATE_MANDATORY_G	= BIT(3),
239 	IEEE80211_RATE_ERP_G		= BIT(4),
240 	IEEE80211_RATE_SUPPORTS_5MHZ	= BIT(5),
241 	IEEE80211_RATE_SUPPORTS_10MHZ	= BIT(6),
242 };
243 
244 /**
245  * enum ieee80211_bss_type - BSS type filter
246  *
247  * @IEEE80211_BSS_TYPE_ESS: Infrastructure BSS
248  * @IEEE80211_BSS_TYPE_PBSS: Personal BSS
249  * @IEEE80211_BSS_TYPE_IBSS: Independent BSS
250  * @IEEE80211_BSS_TYPE_MBSS: Mesh BSS
251  * @IEEE80211_BSS_TYPE_ANY: Wildcard value for matching any BSS type
252  */
253 enum ieee80211_bss_type {
254 	IEEE80211_BSS_TYPE_ESS,
255 	IEEE80211_BSS_TYPE_PBSS,
256 	IEEE80211_BSS_TYPE_IBSS,
257 	IEEE80211_BSS_TYPE_MBSS,
258 	IEEE80211_BSS_TYPE_ANY
259 };
260 
261 /**
262  * enum ieee80211_privacy - BSS privacy filter
263  *
264  * @IEEE80211_PRIVACY_ON: privacy bit set
265  * @IEEE80211_PRIVACY_OFF: privacy bit clear
266  * @IEEE80211_PRIVACY_ANY: Wildcard value for matching any privacy setting
267  */
268 enum ieee80211_privacy {
269 	IEEE80211_PRIVACY_ON,
270 	IEEE80211_PRIVACY_OFF,
271 	IEEE80211_PRIVACY_ANY
272 };
273 
274 #define IEEE80211_PRIVACY(x)	\
275 	((x) ? IEEE80211_PRIVACY_ON : IEEE80211_PRIVACY_OFF)
276 
277 /**
278  * struct ieee80211_rate - bitrate definition
279  *
280  * This structure describes a bitrate that an 802.11 PHY can
281  * operate with. The two values @hw_value and @hw_value_short
282  * are only for driver use when pointers to this structure are
283  * passed around.
284  *
285  * @flags: rate-specific flags from &enum ieee80211_rate_flags
286  * @bitrate: bitrate in units of 100 Kbps
287  * @hw_value: driver/hardware value for this rate
288  * @hw_value_short: driver/hardware value for this rate when
289  *	short preamble is used
290  */
291 struct ieee80211_rate {
292 	u32 flags;
293 	u16 bitrate;
294 	u16 hw_value, hw_value_short;
295 };
296 
297 /**
298  * struct ieee80211_he_obss_pd - AP settings for spatial reuse
299  *
300  * @enable: is the feature enabled.
301  * @sr_ctrl: The SR Control field of SRP element.
302  * @non_srg_max_offset: non-SRG maximum tx power offset
303  * @min_offset: minimal tx power offset an associated station shall use
304  * @max_offset: maximum tx power offset an associated station shall use
305  * @bss_color_bitmap: bitmap that indicates the BSS color values used by
306  *	members of the SRG
307  * @partial_bssid_bitmap: bitmap that indicates the partial BSSID values
308  *	used by members of the SRG
309  */
310 struct ieee80211_he_obss_pd {
311 	bool enable;
312 	u8 sr_ctrl;
313 	u8 non_srg_max_offset;
314 	u8 min_offset;
315 	u8 max_offset;
316 	u8 bss_color_bitmap[8];
317 	u8 partial_bssid_bitmap[8];
318 };
319 
320 /**
321  * struct cfg80211_he_bss_color - AP settings for BSS coloring
322  *
323  * @color: the current color.
324  * @enabled: HE BSS color is used
325  * @partial: define the AID equation.
326  */
327 struct cfg80211_he_bss_color {
328 	u8 color;
329 	bool enabled;
330 	bool partial;
331 };
332 
333 /**
334  * struct ieee80211_sta_ht_cap - STA's HT capabilities
335  *
336  * This structure describes most essential parameters needed
337  * to describe 802.11n HT capabilities for an STA.
338  *
339  * @ht_supported: is HT supported by the STA
340  * @cap: HT capabilities map as described in 802.11n spec
341  * @ampdu_factor: Maximum A-MPDU length factor
342  * @ampdu_density: Minimum A-MPDU spacing
343  * @mcs: Supported MCS rates
344  */
345 struct ieee80211_sta_ht_cap {
346 	u16 cap; /* use IEEE80211_HT_CAP_ */
347 	bool ht_supported;
348 	u8 ampdu_factor;
349 	u8 ampdu_density;
350 	struct ieee80211_mcs_info mcs;
351 };
352 
353 /**
354  * struct ieee80211_sta_vht_cap - STA's VHT capabilities
355  *
356  * This structure describes most essential parameters needed
357  * to describe 802.11ac VHT capabilities for an STA.
358  *
359  * @vht_supported: is VHT supported by the STA
360  * @cap: VHT capabilities map as described in 802.11ac spec
361  * @vht_mcs: Supported VHT MCS rates
362  */
363 struct ieee80211_sta_vht_cap {
364 	bool vht_supported;
365 	u32 cap; /* use IEEE80211_VHT_CAP_ */
366 	struct ieee80211_vht_mcs_info vht_mcs;
367 };
368 
369 #define IEEE80211_HE_PPE_THRES_MAX_LEN		25
370 
371 /**
372  * struct ieee80211_sta_he_cap - STA's HE capabilities
373  *
374  * This structure describes most essential parameters needed
375  * to describe 802.11ax HE capabilities for a STA.
376  *
377  * @has_he: true iff HE data is valid.
378  * @he_cap_elem: Fixed portion of the HE capabilities element.
379  * @he_mcs_nss_supp: The supported NSS/MCS combinations.
380  * @ppe_thres: Holds the PPE Thresholds data.
381  */
382 struct ieee80211_sta_he_cap {
383 	bool has_he;
384 	struct ieee80211_he_cap_elem he_cap_elem;
385 	struct ieee80211_he_mcs_nss_supp he_mcs_nss_supp;
386 	u8 ppe_thres[IEEE80211_HE_PPE_THRES_MAX_LEN];
387 };
388 
389 /**
390  * struct ieee80211_eht_mcs_nss_supp - EHT max supported NSS per MCS
391  *
392  * See P802.11be_D1.3 Table 9-401k - "Subfields of the Supported EHT-MCS
393  * and NSS Set field"
394  *
395  * @only_20mhz: MCS/NSS support for 20 MHz-only STA.
396  * @bw: MCS/NSS support for 80, 160 and 320 MHz
397  * @bw._80: MCS/NSS support for BW <= 80 MHz
398  * @bw._160: MCS/NSS support for BW = 160 MHz
399  * @bw._320: MCS/NSS support for BW = 320 MHz
400  */
401 struct ieee80211_eht_mcs_nss_supp {
402 	union {
403 		struct ieee80211_eht_mcs_nss_supp_20mhz_only only_20mhz;
404 		struct {
405 			struct ieee80211_eht_mcs_nss_supp_bw _80;
406 			struct ieee80211_eht_mcs_nss_supp_bw _160;
407 			struct ieee80211_eht_mcs_nss_supp_bw _320;
408 		} __packed bw;
409 	} __packed;
410 } __packed;
411 
412 #define IEEE80211_EHT_PPE_THRES_MAX_LEN		32
413 
414 /**
415  * struct ieee80211_sta_eht_cap - STA's EHT capabilities
416  *
417  * This structure describes most essential parameters needed
418  * to describe 802.11be EHT capabilities for a STA.
419  *
420  * @has_eht: true iff EHT data is valid.
421  * @eht_cap_elem: Fixed portion of the eht capabilities element.
422  * @eht_mcs_nss_supp: The supported NSS/MCS combinations.
423  * @eht_ppe_thres: Holds the PPE Thresholds data.
424  */
425 struct ieee80211_sta_eht_cap {
426 	bool has_eht;
427 	struct ieee80211_eht_cap_elem_fixed eht_cap_elem;
428 	struct ieee80211_eht_mcs_nss_supp eht_mcs_nss_supp;
429 	u8 eht_ppe_thres[IEEE80211_EHT_PPE_THRES_MAX_LEN];
430 };
431 
432 /* sparse defines __CHECKER__; see Documentation/dev-tools/sparse.rst */
433 #ifdef __CHECKER__
434 /*
435  * This is used to mark the sband->iftype_data pointer which is supposed
436  * to be an array with special access semantics (per iftype), but a lot
437  * of code got it wrong in the past, so with this marking sparse will be
438  * noisy when the pointer is used directly.
439  */
440 # define __iftd		__attribute__((noderef, address_space(__iftype_data)))
441 #else
442 # define __iftd
443 #endif /* __CHECKER__ */
444 
445 /**
446  * struct ieee80211_sband_iftype_data - sband data per interface type
447  *
448  * This structure encapsulates sband data that is relevant for the
449  * interface types defined in @types_mask.  Each type in the
450  * @types_mask must be unique across all instances of iftype_data.
451  *
452  * @types_mask: interface types mask
453  * @he_cap: holds the HE capabilities
454  * @he_6ghz_capa: HE 6 GHz capabilities, must be filled in for a
455  *	6 GHz band channel (and 0 may be valid value).
456  * @eht_cap: STA's EHT capabilities
457  * @vendor_elems: vendor element(s) to advertise
458  * @vendor_elems.data: vendor element(s) data
459  * @vendor_elems.len: vendor element(s) length
460  */
461 struct ieee80211_sband_iftype_data {
462 	u16 types_mask;
463 	struct ieee80211_sta_he_cap he_cap;
464 	struct ieee80211_he_6ghz_capa he_6ghz_capa;
465 	struct ieee80211_sta_eht_cap eht_cap;
466 	struct {
467 		const u8 *data;
468 		unsigned int len;
469 	} vendor_elems;
470 };
471 
472 /**
473  * enum ieee80211_edmg_bw_config - allowed channel bandwidth configurations
474  *
475  * @IEEE80211_EDMG_BW_CONFIG_4: 2.16GHz
476  * @IEEE80211_EDMG_BW_CONFIG_5: 2.16GHz and 4.32GHz
477  * @IEEE80211_EDMG_BW_CONFIG_6: 2.16GHz, 4.32GHz and 6.48GHz
478  * @IEEE80211_EDMG_BW_CONFIG_7: 2.16GHz, 4.32GHz, 6.48GHz and 8.64GHz
479  * @IEEE80211_EDMG_BW_CONFIG_8: 2.16GHz and 2.16GHz + 2.16GHz
480  * @IEEE80211_EDMG_BW_CONFIG_9: 2.16GHz, 4.32GHz and 2.16GHz + 2.16GHz
481  * @IEEE80211_EDMG_BW_CONFIG_10: 2.16GHz, 4.32GHz, 6.48GHz and 2.16GHz+2.16GHz
482  * @IEEE80211_EDMG_BW_CONFIG_11: 2.16GHz, 4.32GHz, 6.48GHz, 8.64GHz and
483  *	2.16GHz+2.16GHz
484  * @IEEE80211_EDMG_BW_CONFIG_12: 2.16GHz, 2.16GHz + 2.16GHz and
485  *	4.32GHz + 4.32GHz
486  * @IEEE80211_EDMG_BW_CONFIG_13: 2.16GHz, 4.32GHz, 2.16GHz + 2.16GHz and
487  *	4.32GHz + 4.32GHz
488  * @IEEE80211_EDMG_BW_CONFIG_14: 2.16GHz, 4.32GHz, 6.48GHz, 2.16GHz + 2.16GHz
489  *	and 4.32GHz + 4.32GHz
490  * @IEEE80211_EDMG_BW_CONFIG_15: 2.16GHz, 4.32GHz, 6.48GHz, 8.64GHz,
491  *	2.16GHz + 2.16GHz and 4.32GHz + 4.32GHz
492  */
493 enum ieee80211_edmg_bw_config {
494 	IEEE80211_EDMG_BW_CONFIG_4	= 4,
495 	IEEE80211_EDMG_BW_CONFIG_5	= 5,
496 	IEEE80211_EDMG_BW_CONFIG_6	= 6,
497 	IEEE80211_EDMG_BW_CONFIG_7	= 7,
498 	IEEE80211_EDMG_BW_CONFIG_8	= 8,
499 	IEEE80211_EDMG_BW_CONFIG_9	= 9,
500 	IEEE80211_EDMG_BW_CONFIG_10	= 10,
501 	IEEE80211_EDMG_BW_CONFIG_11	= 11,
502 	IEEE80211_EDMG_BW_CONFIG_12	= 12,
503 	IEEE80211_EDMG_BW_CONFIG_13	= 13,
504 	IEEE80211_EDMG_BW_CONFIG_14	= 14,
505 	IEEE80211_EDMG_BW_CONFIG_15	= 15,
506 };
507 
508 /**
509  * struct ieee80211_edmg - EDMG configuration
510  *
511  * This structure describes most essential parameters needed
512  * to describe 802.11ay EDMG configuration
513  *
514  * @channels: bitmap that indicates the 2.16 GHz channel(s)
515  *	that are allowed to be used for transmissions.
516  *	Bit 0 indicates channel 1, bit 1 indicates channel 2, etc.
517  *	Set to 0 indicate EDMG not supported.
518  * @bw_config: Channel BW Configuration subfield encodes
519  *	the allowed channel bandwidth configurations
520  */
521 struct ieee80211_edmg {
522 	u8 channels;
523 	enum ieee80211_edmg_bw_config bw_config;
524 };
525 
526 /**
527  * struct ieee80211_sta_s1g_cap - STA's S1G capabilities
528  *
529  * This structure describes most essential parameters needed
530  * to describe 802.11ah S1G capabilities for a STA.
531  *
532  * @s1g: is STA an S1G STA
533  * @cap: S1G capabilities information
534  * @nss_mcs: Supported NSS MCS set
535  */
536 struct ieee80211_sta_s1g_cap {
537 	bool s1g;
538 	u8 cap[10]; /* use S1G_CAPAB_ */
539 	u8 nss_mcs[5];
540 };
541 
542 /**
543  * struct ieee80211_supported_band - frequency band definition
544  *
545  * This structure describes a frequency band a wiphy
546  * is able to operate in.
547  *
548  * @channels: Array of channels the hardware can operate with
549  *	in this band.
550  * @band: the band this structure represents
551  * @n_channels: Number of channels in @channels
552  * @bitrates: Array of bitrates the hardware can operate with
553  *	in this band. Must be sorted to give a valid "supported
554  *	rates" IE, i.e. CCK rates first, then OFDM.
555  * @n_bitrates: Number of bitrates in @bitrates
556  * @ht_cap: HT capabilities in this band
557  * @vht_cap: VHT capabilities in this band
558  * @s1g_cap: S1G capabilities in this band
559  * @edmg_cap: EDMG capabilities in this band
560  * @s1g_cap: S1G capabilities in this band (S1G band only, of course)
561  * @n_iftype_data: number of iftype data entries
562  * @iftype_data: interface type data entries.  Note that the bits in
563  *	@types_mask inside this structure cannot overlap (i.e. only
564  *	one occurrence of each type is allowed across all instances of
565  *	iftype_data).
566  */
567 struct ieee80211_supported_band {
568 	struct ieee80211_channel *channels;
569 	struct ieee80211_rate *bitrates;
570 	enum nl80211_band band;
571 	int n_channels;
572 	int n_bitrates;
573 	struct ieee80211_sta_ht_cap ht_cap;
574 	struct ieee80211_sta_vht_cap vht_cap;
575 	struct ieee80211_sta_s1g_cap s1g_cap;
576 	struct ieee80211_edmg edmg_cap;
577 	u16 n_iftype_data;
578 	const struct ieee80211_sband_iftype_data __iftd *iftype_data;
579 };
580 
581 /**
582  * _ieee80211_set_sband_iftype_data - set sband iftype data array
583  * @sband: the sband to initialize
584  * @iftd: the iftype data array pointer
585  * @n_iftd: the length of the iftype data array
586  *
587  * Set the sband iftype data array; use this where the length cannot
588  * be derived from the ARRAY_SIZE() of the argument, but prefer
589  * ieee80211_set_sband_iftype_data() where it can be used.
590  */
591 static inline void
592 _ieee80211_set_sband_iftype_data(struct ieee80211_supported_band *sband,
593 				 const struct ieee80211_sband_iftype_data *iftd,
594 				 u16 n_iftd)
595 {
596 	sband->iftype_data = (const void __iftd __force *)iftd;
597 	sband->n_iftype_data = n_iftd;
598 }
599 
600 /**
601  * ieee80211_set_sband_iftype_data - set sband iftype data array
602  * @sband: the sband to initialize
603  * @iftd: the iftype data array
604  */
605 #define ieee80211_set_sband_iftype_data(sband, iftd)	\
606 	_ieee80211_set_sband_iftype_data(sband, iftd, ARRAY_SIZE(iftd))
607 
608 /**
609  * for_each_sband_iftype_data - iterate sband iftype data entries
610  * @sband: the sband whose iftype_data array to iterate
611  * @i: iterator counter
612  * @iftd: iftype data pointer to set
613  */
614 #define for_each_sband_iftype_data(sband, i, iftd)				\
615 	for (i = 0, iftd = (const void __force *)&(sband)->iftype_data[i];	\
616 	     i < (sband)->n_iftype_data;					\
617 	     i++, iftd = (const void __force *)&(sband)->iftype_data[i])
618 
619 /**
620  * ieee80211_get_sband_iftype_data - return sband data for a given iftype
621  * @sband: the sband to search for the STA on
622  * @iftype: enum nl80211_iftype
623  *
624  * Return: pointer to struct ieee80211_sband_iftype_data, or NULL is none found
625  */
626 static inline const struct ieee80211_sband_iftype_data *
627 ieee80211_get_sband_iftype_data(const struct ieee80211_supported_band *sband,
628 				u8 iftype)
629 {
630 	const struct ieee80211_sband_iftype_data *data;
631 	int i;
632 
633 	if (WARN_ON(iftype >= NUM_NL80211_IFTYPES))
634 		return NULL;
635 
636 	if (iftype == NL80211_IFTYPE_AP_VLAN)
637 		iftype = NL80211_IFTYPE_AP;
638 
639 	for_each_sband_iftype_data(sband, i, data) {
640 		if (data->types_mask & BIT(iftype))
641 			return data;
642 	}
643 
644 	return NULL;
645 }
646 
647 /**
648  * ieee80211_get_he_iftype_cap - return HE capabilities for an sband's iftype
649  * @sband: the sband to search for the iftype on
650  * @iftype: enum nl80211_iftype
651  *
652  * Return: pointer to the struct ieee80211_sta_he_cap, or NULL is none found
653  */
654 static inline const struct ieee80211_sta_he_cap *
655 ieee80211_get_he_iftype_cap(const struct ieee80211_supported_band *sband,
656 			    u8 iftype)
657 {
658 	const struct ieee80211_sband_iftype_data *data =
659 		ieee80211_get_sband_iftype_data(sband, iftype);
660 
661 	if (data && data->he_cap.has_he)
662 		return &data->he_cap;
663 
664 	return NULL;
665 }
666 
667 /**
668  * ieee80211_get_he_6ghz_capa - return HE 6 GHz capabilities
669  * @sband: the sband to search for the STA on
670  * @iftype: the iftype to search for
671  *
672  * Return: the 6GHz capabilities
673  */
674 static inline __le16
675 ieee80211_get_he_6ghz_capa(const struct ieee80211_supported_band *sband,
676 			   enum nl80211_iftype iftype)
677 {
678 	const struct ieee80211_sband_iftype_data *data =
679 		ieee80211_get_sband_iftype_data(sband, iftype);
680 
681 	if (WARN_ON(!data || !data->he_cap.has_he))
682 		return 0;
683 
684 	return data->he_6ghz_capa.capa;
685 }
686 
687 /**
688  * ieee80211_get_eht_iftype_cap - return EHT capabilities for an sband's iftype
689  * @sband: the sband to search for the iftype on
690  * @iftype: enum nl80211_iftype
691  *
692  * Return: pointer to the struct ieee80211_sta_eht_cap, or NULL is none found
693  */
694 static inline const struct ieee80211_sta_eht_cap *
695 ieee80211_get_eht_iftype_cap(const struct ieee80211_supported_band *sband,
696 			     enum nl80211_iftype iftype)
697 {
698 	const struct ieee80211_sband_iftype_data *data =
699 		ieee80211_get_sband_iftype_data(sband, iftype);
700 
701 	if (data && data->eht_cap.has_eht)
702 		return &data->eht_cap;
703 
704 	return NULL;
705 }
706 
707 /**
708  * wiphy_read_of_freq_limits - read frequency limits from device tree
709  *
710  * @wiphy: the wireless device to get extra limits for
711  *
712  * Some devices may have extra limitations specified in DT. This may be useful
713  * for chipsets that normally support more bands but are limited due to board
714  * design (e.g. by antennas or external power amplifier).
715  *
716  * This function reads info from DT and uses it to *modify* channels (disable
717  * unavailable ones). It's usually a *bad* idea to use it in drivers with
718  * shared channel data as DT limitations are device specific. You should make
719  * sure to call it only if channels in wiphy are copied and can be modified
720  * without affecting other devices.
721  *
722  * As this function access device node it has to be called after set_wiphy_dev.
723  * It also modifies channels so they have to be set first.
724  * If using this helper, call it before wiphy_register().
725  */
726 #ifdef CONFIG_OF
727 void wiphy_read_of_freq_limits(struct wiphy *wiphy);
728 #else /* CONFIG_OF */
729 static inline void wiphy_read_of_freq_limits(struct wiphy *wiphy)
730 {
731 }
732 #endif /* !CONFIG_OF */
733 
734 
735 /*
736  * Wireless hardware/device configuration structures and methods
737  */
738 
739 /**
740  * DOC: Actions and configuration
741  *
742  * Each wireless device and each virtual interface offer a set of configuration
743  * operations and other actions that are invoked by userspace. Each of these
744  * actions is described in the operations structure, and the parameters these
745  * operations use are described separately.
746  *
747  * Additionally, some operations are asynchronous and expect to get status
748  * information via some functions that drivers need to call.
749  *
750  * Scanning and BSS list handling with its associated functionality is described
751  * in a separate chapter.
752  */
753 
754 #define VHT_MUMIMO_GROUPS_DATA_LEN (WLAN_MEMBERSHIP_LEN +\
755 				    WLAN_USER_POSITION_LEN)
756 
757 /**
758  * struct vif_params - describes virtual interface parameters
759  * @flags: monitor interface flags, unchanged if 0, otherwise
760  *	%MONITOR_FLAG_CHANGED will be set
761  * @use_4addr: use 4-address frames
762  * @macaddr: address to use for this virtual interface.
763  *	If this parameter is set to zero address the driver may
764  *	determine the address as needed.
765  *	This feature is only fully supported by drivers that enable the
766  *	%NL80211_FEATURE_MAC_ON_CREATE flag.  Others may support creating
767  **	only p2p devices with specified MAC.
768  * @vht_mumimo_groups: MU-MIMO groupID, used for monitoring MU-MIMO packets
769  *	belonging to that MU-MIMO groupID; %NULL if not changed
770  * @vht_mumimo_follow_addr: MU-MIMO follow address, used for monitoring
771  *	MU-MIMO packets going to the specified station; %NULL if not changed
772  */
773 struct vif_params {
774 	u32 flags;
775 	int use_4addr;
776 	u8 macaddr[ETH_ALEN];
777 	const u8 *vht_mumimo_groups;
778 	const u8 *vht_mumimo_follow_addr;
779 };
780 
781 /**
782  * struct key_params - key information
783  *
784  * Information about a key
785  *
786  * @key: key material
787  * @key_len: length of key material
788  * @cipher: cipher suite selector
789  * @seq: sequence counter (IV/PN), must be in little endian,
790  *	length given by @seq_len.
791  * @seq_len: length of @seq.
792  * @vlan_id: vlan_id for VLAN group key (if nonzero)
793  * @mode: key install mode (RX_TX, NO_TX or SET_TX)
794  */
795 struct key_params {
796 	const u8 *key;
797 	const u8 *seq;
798 	int key_len;
799 	int seq_len;
800 	u16 vlan_id;
801 	u32 cipher;
802 	enum nl80211_key_mode mode;
803 };
804 
805 /**
806  * struct cfg80211_chan_def - channel definition
807  * @chan: the (control) channel
808  * @width: channel width
809  * @center_freq1: center frequency of first segment
810  * @center_freq2: center frequency of second segment
811  *	(only with 80+80 MHz)
812  * @edmg: define the EDMG channels configuration.
813  *	If edmg is requested (i.e. the .channels member is non-zero),
814  *	chan will define the primary channel and all other
815  *	parameters are ignored.
816  * @freq1_offset: offset from @center_freq1, in KHz
817  * @punctured: mask of the punctured 20 MHz subchannels, with
818  *	bits turned on being disabled (punctured); numbered
819  *	from lower to higher frequency (like in the spec)
820  * @s1g_primary_2mhz: Indicates if the control channel pointed to
821  *	by 'chan' exists as a 1MHz primary subchannel within an
822  *	S1G 2MHz primary channel.
823  */
824 struct cfg80211_chan_def {
825 	struct ieee80211_channel *chan;
826 	enum nl80211_chan_width width;
827 	u32 center_freq1;
828 	u32 center_freq2;
829 	struct ieee80211_edmg edmg;
830 	u16 freq1_offset;
831 	u16 punctured;
832 	bool s1g_primary_2mhz;
833 };
834 
835 /*
836  * cfg80211_bitrate_mask - masks for bitrate control
837  */
838 struct cfg80211_bitrate_mask {
839 	struct {
840 		u32 legacy;
841 		u8 ht_mcs[IEEE80211_HT_MCS_MASK_LEN];
842 		u16 vht_mcs[NL80211_VHT_NSS_MAX];
843 		u16 he_mcs[NL80211_HE_NSS_MAX];
844 		u16 eht_mcs[NL80211_EHT_NSS_MAX];
845 		enum nl80211_txrate_gi gi;
846 		enum nl80211_he_gi he_gi;
847 		enum nl80211_eht_gi eht_gi;
848 		enum nl80211_he_ltf he_ltf;
849 		enum nl80211_eht_ltf eht_ltf;
850 	} control[NUM_NL80211_BANDS];
851 };
852 
853 
854 /**
855  * struct cfg80211_tid_cfg - TID specific configuration
856  * @config_override: Flag to notify driver to reset TID configuration
857  *	of the peer.
858  * @tids: bitmap of TIDs to modify
859  * @mask: bitmap of attributes indicating which parameter changed,
860  *	similar to &nl80211_tid_config_supp.
861  * @noack: noack configuration value for the TID
862  * @retry_long: retry count value
863  * @retry_short: retry count value
864  * @ampdu: Enable/Disable MPDU aggregation
865  * @rtscts: Enable/Disable RTS/CTS
866  * @amsdu: Enable/Disable MSDU aggregation
867  * @txrate_type: Tx bitrate mask type
868  * @txrate_mask: Tx bitrate to be applied for the TID
869  */
870 struct cfg80211_tid_cfg {
871 	bool config_override;
872 	u8 tids;
873 	u64 mask;
874 	enum nl80211_tid_config noack;
875 	u8 retry_long, retry_short;
876 	enum nl80211_tid_config ampdu;
877 	enum nl80211_tid_config rtscts;
878 	enum nl80211_tid_config amsdu;
879 	enum nl80211_tx_rate_setting txrate_type;
880 	struct cfg80211_bitrate_mask txrate_mask;
881 };
882 
883 /**
884  * struct cfg80211_tid_config - TID configuration
885  * @peer: Station's MAC address
886  * @n_tid_conf: Number of TID specific configurations to be applied
887  * @tid_conf: Configuration change info
888  */
889 struct cfg80211_tid_config {
890 	const u8 *peer;
891 	u32 n_tid_conf;
892 	struct cfg80211_tid_cfg tid_conf[] __counted_by(n_tid_conf);
893 };
894 
895 /**
896  * struct cfg80211_fils_aad - FILS AAD data
897  * @macaddr: STA MAC address
898  * @kek: FILS KEK
899  * @kek_len: FILS KEK length
900  * @snonce: STA Nonce
901  * @anonce: AP Nonce
902  */
903 struct cfg80211_fils_aad {
904 	const u8 *macaddr;
905 	const u8 *kek;
906 	u8 kek_len;
907 	const u8 *snonce;
908 	const u8 *anonce;
909 };
910 
911 /**
912  * struct cfg80211_set_hw_timestamp - enable/disable HW timestamping
913  * @macaddr: peer MAC address. NULL to enable/disable HW timestamping for all
914  *	addresses.
915  * @enable: if set, enable HW timestamping for the specified MAC address.
916  *	Otherwise disable HW timestamping for the specified MAC address.
917  */
918 struct cfg80211_set_hw_timestamp {
919 	const u8 *macaddr;
920 	bool enable;
921 };
922 
923 /**
924  * cfg80211_get_chandef_type - return old channel type from chandef
925  * @chandef: the channel definition
926  *
927  * Return: The old channel type (NOHT, HT20, HT40+/-) from a given
928  * chandef, which must have a bandwidth allowing this conversion.
929  */
930 static inline enum nl80211_channel_type
931 cfg80211_get_chandef_type(const struct cfg80211_chan_def *chandef)
932 {
933 	switch (chandef->width) {
934 	case NL80211_CHAN_WIDTH_20_NOHT:
935 		return NL80211_CHAN_NO_HT;
936 	case NL80211_CHAN_WIDTH_20:
937 		return NL80211_CHAN_HT20;
938 	case NL80211_CHAN_WIDTH_40:
939 		if (chandef->center_freq1 > chandef->chan->center_freq)
940 			return NL80211_CHAN_HT40PLUS;
941 		return NL80211_CHAN_HT40MINUS;
942 	default:
943 		WARN_ON(1);
944 		return NL80211_CHAN_NO_HT;
945 	}
946 }
947 
948 /**
949  * cfg80211_chandef_create - create channel definition using channel type
950  * @chandef: the channel definition struct to fill
951  * @channel: the control channel
952  * @chantype: the channel type
953  *
954  * Given a channel type, create a channel definition.
955  */
956 void cfg80211_chandef_create(struct cfg80211_chan_def *chandef,
957 			     struct ieee80211_channel *channel,
958 			     enum nl80211_channel_type chantype);
959 
960 /**
961  * cfg80211_chandef_identical - check if two channel definitions are identical
962  * @chandef1: first channel definition
963  * @chandef2: second channel definition
964  *
965  * Return: %true if the channels defined by the channel definitions are
966  * identical, %false otherwise.
967  */
968 static inline bool
969 cfg80211_chandef_identical(const struct cfg80211_chan_def *chandef1,
970 			   const struct cfg80211_chan_def *chandef2)
971 {
972 	return (chandef1->chan == chandef2->chan &&
973 		chandef1->width == chandef2->width &&
974 		chandef1->center_freq1 == chandef2->center_freq1 &&
975 		chandef1->freq1_offset == chandef2->freq1_offset &&
976 		chandef1->center_freq2 == chandef2->center_freq2 &&
977 		chandef1->punctured == chandef2->punctured &&
978 		chandef1->s1g_primary_2mhz == chandef2->s1g_primary_2mhz);
979 }
980 
981 /**
982  * cfg80211_chandef_is_edmg - check if chandef represents an EDMG channel
983  *
984  * @chandef: the channel definition
985  *
986  * Return: %true if EDMG defined, %false otherwise.
987  */
988 static inline bool
989 cfg80211_chandef_is_edmg(const struct cfg80211_chan_def *chandef)
990 {
991 	return chandef->edmg.channels || chandef->edmg.bw_config;
992 }
993 
994 /**
995  * cfg80211_chandef_is_s1g - check if chandef represents an S1G channel
996  * @chandef: the channel definition
997  *
998  * Return: %true if S1G.
999  */
1000 static inline bool
1001 cfg80211_chandef_is_s1g(const struct cfg80211_chan_def *chandef)
1002 {
1003 	return chandef->chan->band == NL80211_BAND_S1GHZ;
1004 }
1005 
1006 /**
1007  * cfg80211_chandef_compatible - check if two channel definitions are compatible
1008  * @chandef1: first channel definition
1009  * @chandef2: second channel definition
1010  *
1011  * Return: %NULL if the given channel definitions are incompatible,
1012  * chandef1 or chandef2 otherwise.
1013  */
1014 const struct cfg80211_chan_def *
1015 cfg80211_chandef_compatible(const struct cfg80211_chan_def *chandef1,
1016 			    const struct cfg80211_chan_def *chandef2);
1017 
1018 
1019 /**
1020  * nl80211_chan_width_to_mhz - get the channel width in MHz
1021  * @chan_width: the channel width from &enum nl80211_chan_width
1022  *
1023  * Return: channel width in MHz if the chan_width from &enum nl80211_chan_width
1024  * is valid. -1 otherwise.
1025  */
1026 int nl80211_chan_width_to_mhz(enum nl80211_chan_width chan_width);
1027 
1028 /**
1029  * cfg80211_chandef_get_width - return chandef width in MHz
1030  * @c: chandef to return bandwidth for
1031  * Return: channel width in MHz for the given chandef; note that it returns
1032  *	80 for 80+80 configurations
1033  */
1034 static inline int cfg80211_chandef_get_width(const struct cfg80211_chan_def *c)
1035 {
1036 	return nl80211_chan_width_to_mhz(c->width);
1037 }
1038 
1039 /**
1040  * cfg80211_chandef_valid - check if a channel definition is valid
1041  * @chandef: the channel definition to check
1042  * Return: %true if the channel definition is valid. %false otherwise.
1043  */
1044 bool cfg80211_chandef_valid(const struct cfg80211_chan_def *chandef);
1045 
1046 /**
1047  * cfg80211_chandef_usable - check if secondary channels can be used
1048  * @wiphy: the wiphy to validate against
1049  * @chandef: the channel definition to check
1050  * @prohibited_flags: the regulatory channel flags that must not be set
1051  * Return: %true if secondary channels are usable. %false otherwise.
1052  */
1053 bool cfg80211_chandef_usable(struct wiphy *wiphy,
1054 			     const struct cfg80211_chan_def *chandef,
1055 			     u32 prohibited_flags);
1056 
1057 /**
1058  * cfg80211_chandef_dfs_required - checks if radar detection is required
1059  * @wiphy: the wiphy to validate against
1060  * @chandef: the channel definition to check
1061  * @iftype: the interface type as specified in &enum nl80211_iftype
1062  * Returns:
1063  *	1 if radar detection is required, 0 if it is not, < 0 on error
1064  */
1065 int cfg80211_chandef_dfs_required(struct wiphy *wiphy,
1066 				  const struct cfg80211_chan_def *chandef,
1067 				  enum nl80211_iftype iftype);
1068 
1069 /**
1070  * cfg80211_chandef_dfs_usable - checks if chandef is DFS usable and we
1071  *				 can/need start CAC on such channel
1072  * @wiphy: the wiphy to validate against
1073  * @chandef: the channel definition to check
1074  *
1075  * Return: true if all channels available and at least
1076  *	   one channel requires CAC (NL80211_DFS_USABLE)
1077  */
1078 bool cfg80211_chandef_dfs_usable(struct wiphy *wiphy,
1079 				 const struct cfg80211_chan_def *chandef);
1080 
1081 /**
1082  * cfg80211_chandef_dfs_cac_time - get the DFS CAC time (in ms) for given
1083  *				   channel definition
1084  * @wiphy: the wiphy to validate against
1085  * @chandef: the channel definition to check
1086  *
1087  * Returns: DFS CAC time (in ms) which applies for this channel definition
1088  */
1089 unsigned int
1090 cfg80211_chandef_dfs_cac_time(struct wiphy *wiphy,
1091 			      const struct cfg80211_chan_def *chandef);
1092 
1093 /**
1094  * cfg80211_chandef_primary - calculate primary 40/80/160 MHz freq
1095  * @chandef: chandef to calculate for
1096  * @primary_chan_width: primary channel width to calculate center for
1097  * @punctured: punctured sub-channel bitmap, will be recalculated
1098  *	according to the new bandwidth, can be %NULL
1099  *
1100  * Returns: the primary 40/80/160 MHz channel center frequency, or -1
1101  *	for errors, updating the punctured bitmap
1102  */
1103 int cfg80211_chandef_primary(const struct cfg80211_chan_def *chandef,
1104 			     enum nl80211_chan_width primary_chan_width,
1105 			     u16 *punctured);
1106 
1107 /**
1108  * nl80211_send_chandef - sends the channel definition.
1109  * @msg: the msg to send channel definition
1110  * @chandef: the channel definition to check
1111  *
1112  * Returns: 0 if sent the channel definition to msg, < 0 on error
1113  **/
1114 int nl80211_send_chandef(struct sk_buff *msg, const struct cfg80211_chan_def *chandef);
1115 
1116 /**
1117  * ieee80211_chandef_max_power - maximum transmission power for the chandef
1118  *
1119  * In some regulations, the transmit power may depend on the configured channel
1120  * bandwidth which may be defined as dBm/MHz. This function returns the actual
1121  * max_power for non-standard (20 MHz) channels.
1122  *
1123  * @chandef: channel definition for the channel
1124  *
1125  * Returns: maximum allowed transmission power in dBm for the chandef
1126  */
1127 static inline int
1128 ieee80211_chandef_max_power(struct cfg80211_chan_def *chandef)
1129 {
1130 	switch (chandef->width) {
1131 	case NL80211_CHAN_WIDTH_5:
1132 		return min(chandef->chan->max_reg_power - 6,
1133 			   chandef->chan->max_power);
1134 	case NL80211_CHAN_WIDTH_10:
1135 		return min(chandef->chan->max_reg_power - 3,
1136 			   chandef->chan->max_power);
1137 	default:
1138 		break;
1139 	}
1140 	return chandef->chan->max_power;
1141 }
1142 
1143 /**
1144  * cfg80211_any_usable_channels - check for usable channels
1145  * @wiphy: the wiphy to check for
1146  * @band_mask: which bands to check on
1147  * @prohibited_flags: which channels to not consider usable,
1148  *	%IEEE80211_CHAN_DISABLED is always taken into account
1149  *
1150  * Return: %true if usable channels found, %false otherwise
1151  */
1152 bool cfg80211_any_usable_channels(struct wiphy *wiphy,
1153 				  unsigned long band_mask,
1154 				  u32 prohibited_flags);
1155 
1156 /**
1157  * enum survey_info_flags - survey information flags
1158  *
1159  * @SURVEY_INFO_NOISE_DBM: noise (in dBm) was filled in
1160  * @SURVEY_INFO_IN_USE: channel is currently being used
1161  * @SURVEY_INFO_TIME: active time (in ms) was filled in
1162  * @SURVEY_INFO_TIME_BUSY: busy time was filled in
1163  * @SURVEY_INFO_TIME_EXT_BUSY: extension channel busy time was filled in
1164  * @SURVEY_INFO_TIME_RX: receive time was filled in
1165  * @SURVEY_INFO_TIME_TX: transmit time was filled in
1166  * @SURVEY_INFO_TIME_SCAN: scan time was filled in
1167  * @SURVEY_INFO_TIME_BSS_RX: local BSS receive time was filled in
1168  *
1169  * Used by the driver to indicate which info in &struct survey_info
1170  * it has filled in during the get_survey().
1171  */
1172 enum survey_info_flags {
1173 	SURVEY_INFO_NOISE_DBM		= BIT(0),
1174 	SURVEY_INFO_IN_USE		= BIT(1),
1175 	SURVEY_INFO_TIME		= BIT(2),
1176 	SURVEY_INFO_TIME_BUSY		= BIT(3),
1177 	SURVEY_INFO_TIME_EXT_BUSY	= BIT(4),
1178 	SURVEY_INFO_TIME_RX		= BIT(5),
1179 	SURVEY_INFO_TIME_TX		= BIT(6),
1180 	SURVEY_INFO_TIME_SCAN		= BIT(7),
1181 	SURVEY_INFO_TIME_BSS_RX		= BIT(8),
1182 };
1183 
1184 /**
1185  * struct survey_info - channel survey response
1186  *
1187  * @channel: the channel this survey record reports, may be %NULL for a single
1188  *	record to report global statistics
1189  * @filled: bitflag of flags from &enum survey_info_flags
1190  * @noise: channel noise in dBm. This and all following fields are
1191  *	optional
1192  * @time: amount of time in ms the radio was turn on (on the channel)
1193  * @time_busy: amount of time the primary channel was sensed busy
1194  * @time_ext_busy: amount of time the extension channel was sensed busy
1195  * @time_rx: amount of time the radio spent receiving data
1196  * @time_tx: amount of time the radio spent transmitting data
1197  * @time_scan: amount of time the radio spent for scanning
1198  * @time_bss_rx: amount of time the radio spent receiving data on a local BSS
1199  *
1200  * Used by dump_survey() to report back per-channel survey information.
1201  *
1202  * This structure can later be expanded with things like
1203  * channel duty cycle etc.
1204  */
1205 struct survey_info {
1206 	struct ieee80211_channel *channel;
1207 	u64 time;
1208 	u64 time_busy;
1209 	u64 time_ext_busy;
1210 	u64 time_rx;
1211 	u64 time_tx;
1212 	u64 time_scan;
1213 	u64 time_bss_rx;
1214 	u32 filled;
1215 	s8 noise;
1216 };
1217 
1218 #define CFG80211_MAX_NUM_AKM_SUITES	10
1219 
1220 /**
1221  * struct cfg80211_crypto_settings - Crypto settings
1222  * @wpa_versions: indicates which, if any, WPA versions are enabled
1223  *	(from enum nl80211_wpa_versions)
1224  * @cipher_group: group key cipher suite (or 0 if unset)
1225  * @n_ciphers_pairwise: number of AP supported unicast ciphers
1226  * @ciphers_pairwise: unicast key cipher suites
1227  * @n_akm_suites: number of AKM suites
1228  * @akm_suites: AKM suites
1229  * @control_port: Whether user space controls IEEE 802.1X port, i.e.,
1230  *	sets/clears %NL80211_STA_FLAG_AUTHORIZED. If true, the driver is
1231  *	required to assume that the port is unauthorized until authorized by
1232  *	user space. Otherwise, port is marked authorized by default.
1233  * @control_port_ethertype: the control port protocol that should be
1234  *	allowed through even on unauthorized ports
1235  * @control_port_no_encrypt: TRUE to prevent encryption of control port
1236  *	protocol frames.
1237  * @control_port_over_nl80211: TRUE if userspace expects to exchange control
1238  *	port frames over NL80211 instead of the network interface.
1239  * @control_port_no_preauth: disables pre-auth rx over the nl80211 control
1240  *	port for mac80211
1241  * @psk: PSK (for devices supporting 4-way-handshake offload)
1242  * @sae_pwd: password for SAE authentication (for devices supporting SAE
1243  *	offload)
1244  * @sae_pwd_len: length of SAE password (for devices supporting SAE offload)
1245  * @sae_pwe: The mechanisms allowed for SAE PWE derivation:
1246  *
1247  *	NL80211_SAE_PWE_UNSPECIFIED
1248  *	  Not-specified, used to indicate userspace did not specify any
1249  *	  preference. The driver should follow its internal policy in
1250  *	  such a scenario.
1251  *
1252  *	NL80211_SAE_PWE_HUNT_AND_PECK
1253  *	  Allow hunting-and-pecking loop only
1254  *
1255  *	NL80211_SAE_PWE_HASH_TO_ELEMENT
1256  *	  Allow hash-to-element only
1257  *
1258  *	NL80211_SAE_PWE_BOTH
1259  *	  Allow either hunting-and-pecking loop or hash-to-element
1260  */
1261 struct cfg80211_crypto_settings {
1262 	u32 wpa_versions;
1263 	u32 cipher_group;
1264 	int n_ciphers_pairwise;
1265 	u32 ciphers_pairwise[NL80211_MAX_NR_CIPHER_SUITES];
1266 	int n_akm_suites;
1267 	u32 akm_suites[CFG80211_MAX_NUM_AKM_SUITES];
1268 	bool control_port;
1269 	__be16 control_port_ethertype;
1270 	bool control_port_no_encrypt;
1271 	bool control_port_over_nl80211;
1272 	bool control_port_no_preauth;
1273 	const u8 *psk;
1274 	const u8 *sae_pwd;
1275 	u8 sae_pwd_len;
1276 	enum nl80211_sae_pwe_mechanism sae_pwe;
1277 };
1278 
1279 /**
1280  * struct cfg80211_mbssid_config - AP settings for multi bssid
1281  *
1282  * @tx_wdev: pointer to the transmitted interface in the MBSSID set
1283  * @tx_link_id: link ID of the transmitted profile in an MLD.
1284  * @index: index of this AP in the multi bssid group.
1285  * @ema: set to true if the beacons should be sent out in EMA mode.
1286  */
1287 struct cfg80211_mbssid_config {
1288 	struct wireless_dev *tx_wdev;
1289 	u8 tx_link_id;
1290 	u8 index;
1291 	bool ema;
1292 };
1293 
1294 /**
1295  * struct cfg80211_mbssid_elems - Multiple BSSID elements
1296  *
1297  * @cnt: Number of elements in array %elems.
1298  *
1299  * @elem: Array of multiple BSSID element(s) to be added into Beacon frames.
1300  * @elem.data: Data for multiple BSSID elements.
1301  * @elem.len: Length of data.
1302  */
1303 struct cfg80211_mbssid_elems {
1304 	u8 cnt;
1305 	struct {
1306 		const u8 *data;
1307 		size_t len;
1308 	} elem[] __counted_by(cnt);
1309 };
1310 
1311 /**
1312  * struct cfg80211_rnr_elems - Reduced neighbor report (RNR) elements
1313  *
1314  * @cnt: Number of elements in array %elems.
1315  *
1316  * @elem: Array of RNR element(s) to be added into Beacon frames.
1317  * @elem.data: Data for RNR elements.
1318  * @elem.len: Length of data.
1319  */
1320 struct cfg80211_rnr_elems {
1321 	u8 cnt;
1322 	struct {
1323 		const u8 *data;
1324 		size_t len;
1325 	} elem[] __counted_by(cnt);
1326 };
1327 
1328 /**
1329  * struct cfg80211_beacon_data - beacon data
1330  * @link_id: the link ID for the AP MLD link sending this beacon
1331  * @head: head portion of beacon (before TIM IE)
1332  *	or %NULL if not changed
1333  * @tail: tail portion of beacon (after TIM IE)
1334  *	or %NULL if not changed
1335  * @head_len: length of @head
1336  * @tail_len: length of @tail
1337  * @beacon_ies: extra information element(s) to add into Beacon frames or %NULL
1338  * @beacon_ies_len: length of beacon_ies in octets
1339  * @proberesp_ies: extra information element(s) to add into Probe Response
1340  *	frames or %NULL
1341  * @proberesp_ies_len: length of proberesp_ies in octets
1342  * @assocresp_ies: extra information element(s) to add into (Re)Association
1343  *	Response frames or %NULL
1344  * @assocresp_ies_len: length of assocresp_ies in octets
1345  * @probe_resp_len: length of probe response template (@probe_resp)
1346  * @probe_resp: probe response template (AP mode only)
1347  * @mbssid_ies: multiple BSSID elements
1348  * @rnr_ies: reduced neighbor report elements
1349  * @ftm_responder: enable FTM responder functionality; -1 for no change
1350  *	(which also implies no change in LCI/civic location data)
1351  * @lci: Measurement Report element content, starting with Measurement Token
1352  *	(measurement type 8)
1353  * @civicloc: Measurement Report element content, starting with Measurement
1354  *	Token (measurement type 11)
1355  * @lci_len: LCI data length
1356  * @civicloc_len: Civic location data length
1357  * @he_bss_color: BSS Color settings
1358  * @he_bss_color_valid: indicates whether bss color
1359  *	attribute is present in beacon data or not.
1360  */
1361 struct cfg80211_beacon_data {
1362 	unsigned int link_id;
1363 
1364 	const u8 *head, *tail;
1365 	const u8 *beacon_ies;
1366 	const u8 *proberesp_ies;
1367 	const u8 *assocresp_ies;
1368 	const u8 *probe_resp;
1369 	const u8 *lci;
1370 	const u8 *civicloc;
1371 	struct cfg80211_mbssid_elems *mbssid_ies;
1372 	struct cfg80211_rnr_elems *rnr_ies;
1373 	s8 ftm_responder;
1374 
1375 	size_t head_len, tail_len;
1376 	size_t beacon_ies_len;
1377 	size_t proberesp_ies_len;
1378 	size_t assocresp_ies_len;
1379 	size_t probe_resp_len;
1380 	size_t lci_len;
1381 	size_t civicloc_len;
1382 	struct cfg80211_he_bss_color he_bss_color;
1383 	bool he_bss_color_valid;
1384 };
1385 
1386 struct mac_address {
1387 	u8 addr[ETH_ALEN];
1388 };
1389 
1390 /**
1391  * struct cfg80211_acl_data - Access control list data
1392  *
1393  * @acl_policy: ACL policy to be applied on the station's
1394  *	entry specified by mac_addr
1395  * @n_acl_entries: Number of MAC address entries passed
1396  * @mac_addrs: List of MAC addresses of stations to be used for ACL
1397  */
1398 struct cfg80211_acl_data {
1399 	enum nl80211_acl_policy acl_policy;
1400 	int n_acl_entries;
1401 
1402 	/* Keep it last */
1403 	struct mac_address mac_addrs[] __counted_by(n_acl_entries);
1404 };
1405 
1406 /**
1407  * struct cfg80211_fils_discovery - FILS discovery parameters from
1408  * IEEE Std 802.11ai-2016, Annex C.3 MIB detail.
1409  *
1410  * @update: Set to true if the feature configuration should be updated.
1411  * @min_interval: Minimum packet interval in TUs (0 - 10000)
1412  * @max_interval: Maximum packet interval in TUs (0 - 10000)
1413  * @tmpl_len: Template length
1414  * @tmpl: Template data for FILS discovery frame including the action
1415  *	frame headers.
1416  */
1417 struct cfg80211_fils_discovery {
1418 	bool update;
1419 	u32 min_interval;
1420 	u32 max_interval;
1421 	size_t tmpl_len;
1422 	const u8 *tmpl;
1423 };
1424 
1425 /**
1426  * struct cfg80211_unsol_bcast_probe_resp - Unsolicited broadcast probe
1427  *	response parameters in 6GHz.
1428  *
1429  * @update: Set to true if the feature configuration should be updated.
1430  * @interval: Packet interval in TUs. Maximum allowed is 20 TU, as mentioned
1431  *	in IEEE P802.11ax/D6.0 26.17.2.3.2 - AP behavior for fast passive
1432  *	scanning
1433  * @tmpl_len: Template length
1434  * @tmpl: Template data for probe response
1435  */
1436 struct cfg80211_unsol_bcast_probe_resp {
1437 	bool update;
1438 	u32 interval;
1439 	size_t tmpl_len;
1440 	const u8 *tmpl;
1441 };
1442 
1443 /**
1444  * struct cfg80211_s1g_short_beacon - S1G short beacon data.
1445  *
1446  * @update: Set to true if the feature configuration should be updated.
1447  * @short_head: Short beacon head.
1448  * @short_tail: Short beacon tail.
1449  * @short_head_len: Short beacon head len.
1450  * @short_tail_len: Short beacon tail len.
1451  */
1452 struct cfg80211_s1g_short_beacon {
1453 	bool update;
1454 	const u8 *short_head;
1455 	const u8 *short_tail;
1456 	size_t short_head_len;
1457 	size_t short_tail_len;
1458 };
1459 
1460 /**
1461  * struct cfg80211_ap_settings - AP configuration
1462  *
1463  * Used to configure an AP interface.
1464  *
1465  * @chandef: defines the channel to use
1466  * @beacon: beacon data
1467  * @beacon_interval: beacon interval
1468  * @dtim_period: DTIM period
1469  * @ssid: SSID to be used in the BSS (note: may be %NULL if not provided from
1470  *	user space)
1471  * @ssid_len: length of @ssid
1472  * @hidden_ssid: whether to hide the SSID in Beacon/Probe Response frames
1473  * @crypto: crypto settings
1474  * @privacy: the BSS uses privacy
1475  * @auth_type: Authentication type (algorithm)
1476  * @inactivity_timeout: time in seconds to determine station's inactivity.
1477  * @p2p_ctwindow: P2P CT Window
1478  * @p2p_opp_ps: P2P opportunistic PS
1479  * @acl: ACL configuration used by the drivers which has support for
1480  *	MAC address based access control
1481  * @pbss: If set, start as a PCP instead of AP. Relevant for DMG
1482  *	networks.
1483  * @beacon_rate: bitrate to be used for beacons
1484  * @ht_cap: HT capabilities (or %NULL if HT isn't enabled)
1485  * @vht_cap: VHT capabilities (or %NULL if VHT isn't enabled)
1486  * @he_cap: HE capabilities (or %NULL if HE isn't enabled)
1487  * @eht_cap: EHT capabilities (or %NULL if EHT isn't enabled)
1488  * @eht_oper: EHT operation IE (or %NULL if EHT isn't enabled)
1489  * @ht_required: stations must support HT
1490  * @vht_required: stations must support VHT
1491  * @twt_responder: Enable Target Wait Time
1492  * @he_required: stations must support HE
1493  * @sae_h2e_required: stations must support direct H2E technique in SAE
1494  * @flags: flags, as defined in &enum nl80211_ap_settings_flags
1495  * @he_obss_pd: OBSS Packet Detection settings
1496  * @he_oper: HE operation IE (or %NULL if HE isn't enabled)
1497  * @fils_discovery: FILS discovery transmission parameters
1498  * @unsol_bcast_probe_resp: Unsolicited broadcast probe response parameters
1499  * @mbssid_config: AP settings for multiple bssid
1500  * @s1g_long_beacon_period: S1G long beacon period
1501  * @s1g_short_beacon: S1G short beacon data
1502  */
1503 struct cfg80211_ap_settings {
1504 	struct cfg80211_chan_def chandef;
1505 
1506 	struct cfg80211_beacon_data beacon;
1507 
1508 	int beacon_interval, dtim_period;
1509 	const u8 *ssid;
1510 	size_t ssid_len;
1511 	enum nl80211_hidden_ssid hidden_ssid;
1512 	struct cfg80211_crypto_settings crypto;
1513 	bool privacy;
1514 	enum nl80211_auth_type auth_type;
1515 	int inactivity_timeout;
1516 	u8 p2p_ctwindow;
1517 	bool p2p_opp_ps;
1518 	const struct cfg80211_acl_data *acl;
1519 	bool pbss;
1520 	struct cfg80211_bitrate_mask beacon_rate;
1521 
1522 	const struct ieee80211_ht_cap *ht_cap;
1523 	const struct ieee80211_vht_cap *vht_cap;
1524 	const struct ieee80211_he_cap_elem *he_cap;
1525 	const struct ieee80211_he_operation *he_oper;
1526 	const struct ieee80211_eht_cap_elem *eht_cap;
1527 	const struct ieee80211_eht_operation *eht_oper;
1528 	bool ht_required, vht_required, he_required, sae_h2e_required;
1529 	bool twt_responder;
1530 	u32 flags;
1531 	struct ieee80211_he_obss_pd he_obss_pd;
1532 	struct cfg80211_fils_discovery fils_discovery;
1533 	struct cfg80211_unsol_bcast_probe_resp unsol_bcast_probe_resp;
1534 	struct cfg80211_mbssid_config mbssid_config;
1535 	u8 s1g_long_beacon_period;
1536 	struct cfg80211_s1g_short_beacon s1g_short_beacon;
1537 };
1538 
1539 
1540 /**
1541  * struct cfg80211_ap_update - AP configuration update
1542  *
1543  * Subset of &struct cfg80211_ap_settings, for updating a running AP.
1544  *
1545  * @beacon: beacon data
1546  * @fils_discovery: FILS discovery transmission parameters
1547  * @unsol_bcast_probe_resp: Unsolicited broadcast probe response parameters
1548  * @s1g_short_beacon: S1G short beacon data
1549  */
1550 struct cfg80211_ap_update {
1551 	struct cfg80211_beacon_data beacon;
1552 	struct cfg80211_fils_discovery fils_discovery;
1553 	struct cfg80211_unsol_bcast_probe_resp unsol_bcast_probe_resp;
1554 	struct cfg80211_s1g_short_beacon s1g_short_beacon;
1555 };
1556 
1557 /**
1558  * struct cfg80211_csa_settings - channel switch settings
1559  *
1560  * Used for channel switch
1561  *
1562  * @chandef: defines the channel to use after the switch
1563  * @beacon_csa: beacon data while performing the switch
1564  * @counter_offsets_beacon: offsets of the counters within the beacon (tail)
1565  * @counter_offsets_presp: offsets of the counters within the probe response
1566  * @n_counter_offsets_beacon: number of csa counters the beacon (tail)
1567  * @n_counter_offsets_presp: number of csa counters in the probe response
1568  * @beacon_after: beacon data to be used on the new channel
1569  * @unsol_bcast_probe_resp: Unsolicited broadcast probe response parameters
1570  * @radar_required: whether radar detection is required on the new channel
1571  * @block_tx: whether transmissions should be blocked while changing
1572  * @count: number of beacons until switch
1573  * @link_id: defines the link on which channel switch is expected during
1574  *	MLO. 0 in case of non-MLO.
1575  */
1576 struct cfg80211_csa_settings {
1577 	struct cfg80211_chan_def chandef;
1578 	struct cfg80211_beacon_data beacon_csa;
1579 	const u16 *counter_offsets_beacon;
1580 	const u16 *counter_offsets_presp;
1581 	unsigned int n_counter_offsets_beacon;
1582 	unsigned int n_counter_offsets_presp;
1583 	struct cfg80211_beacon_data beacon_after;
1584 	struct cfg80211_unsol_bcast_probe_resp unsol_bcast_probe_resp;
1585 	bool radar_required;
1586 	bool block_tx;
1587 	u8 count;
1588 	u8 link_id;
1589 };
1590 
1591 /**
1592  * struct cfg80211_color_change_settings - color change settings
1593  *
1594  * Used for bss color change
1595  *
1596  * @beacon_color_change: beacon data while performing the color countdown
1597  * @counter_offset_beacon: offsets of the counters within the beacon (tail)
1598  * @counter_offset_presp: offsets of the counters within the probe response
1599  * @beacon_next: beacon data to be used after the color change
1600  * @unsol_bcast_probe_resp: Unsolicited broadcast probe response parameters
1601  * @count: number of beacons until the color change
1602  * @color: the color used after the change
1603  * @link_id: defines the link on which color change is expected during MLO.
1604  *	0 in case of non-MLO.
1605  */
1606 struct cfg80211_color_change_settings {
1607 	struct cfg80211_beacon_data beacon_color_change;
1608 	u16 counter_offset_beacon;
1609 	u16 counter_offset_presp;
1610 	struct cfg80211_beacon_data beacon_next;
1611 	struct cfg80211_unsol_bcast_probe_resp unsol_bcast_probe_resp;
1612 	u8 count;
1613 	u8 color;
1614 	u8 link_id;
1615 };
1616 
1617 /**
1618  * struct iface_combination_params - input parameters for interface combinations
1619  *
1620  * Used to pass interface combination parameters
1621  *
1622  * @radio_idx: wiphy radio index or -1 for global
1623  * @num_different_channels: the number of different channels we want
1624  *	to use for verification
1625  * @radar_detect: a bitmap where each bit corresponds to a channel
1626  *	width where radar detection is needed, as in the definition of
1627  *	&struct ieee80211_iface_combination.@radar_detect_widths
1628  * @iftype_num: array with the number of interfaces of each interface
1629  *	type.  The index is the interface type as specified in &enum
1630  *	nl80211_iftype.
1631  * @new_beacon_int: set this to the beacon interval of a new interface
1632  *	that's not operating yet, if such is to be checked as part of
1633  *	the verification
1634  */
1635 struct iface_combination_params {
1636 	int radio_idx;
1637 	int num_different_channels;
1638 	u8 radar_detect;
1639 	int iftype_num[NUM_NL80211_IFTYPES];
1640 	u32 new_beacon_int;
1641 };
1642 
1643 /**
1644  * enum station_parameters_apply_mask - station parameter values to apply
1645  * @STATION_PARAM_APPLY_UAPSD: apply new uAPSD parameters (uapsd_queues, max_sp)
1646  * @STATION_PARAM_APPLY_CAPABILITY: apply new capability
1647  * @STATION_PARAM_APPLY_PLINK_STATE: apply new plink state
1648  *
1649  * Not all station parameters have in-band "no change" signalling,
1650  * for those that don't these flags will are used.
1651  */
1652 enum station_parameters_apply_mask {
1653 	STATION_PARAM_APPLY_UAPSD = BIT(0),
1654 	STATION_PARAM_APPLY_CAPABILITY = BIT(1),
1655 	STATION_PARAM_APPLY_PLINK_STATE = BIT(2),
1656 };
1657 
1658 /**
1659  * struct sta_txpwr - station txpower configuration
1660  *
1661  * Used to configure txpower for station.
1662  *
1663  * @power: tx power (in dBm) to be used for sending data traffic. If tx power
1664  *	is not provided, the default per-interface tx power setting will be
1665  *	overriding. Driver should be picking up the lowest tx power, either tx
1666  *	power per-interface or per-station.
1667  * @type: In particular if TPC %type is NL80211_TX_POWER_LIMITED then tx power
1668  *	will be less than or equal to specified from userspace, whereas if TPC
1669  *	%type is NL80211_TX_POWER_AUTOMATIC then it indicates default tx power.
1670  *	NL80211_TX_POWER_FIXED is not a valid configuration option for
1671  *	per peer TPC.
1672  */
1673 struct sta_txpwr {
1674 	s16 power;
1675 	enum nl80211_tx_power_setting type;
1676 };
1677 
1678 /**
1679  * struct link_station_parameters - link station parameters
1680  *
1681  * Used to change and create a new link station.
1682  *
1683  * @mld_mac: MAC address of the station
1684  * @link_id: the link id (-1 for non-MLD station)
1685  * @link_mac: MAC address of the link
1686  * @supported_rates: supported rates in IEEE 802.11 format
1687  *	(or NULL for no change)
1688  * @supported_rates_len: number of supported rates
1689  * @ht_capa: HT capabilities of station
1690  * @vht_capa: VHT capabilities of station
1691  * @opmode_notif: operating mode field from Operating Mode Notification
1692  * @opmode_notif_used: information if operating mode field is used
1693  * @he_capa: HE capabilities of station
1694  * @he_capa_len: the length of the HE capabilities
1695  * @txpwr: transmit power for an associated station
1696  * @txpwr_set: txpwr field is set
1697  * @he_6ghz_capa: HE 6 GHz Band capabilities of station
1698  * @eht_capa: EHT capabilities of station
1699  * @eht_capa_len: the length of the EHT capabilities
1700  * @s1g_capa: S1G capabilities of station
1701  */
1702 struct link_station_parameters {
1703 	const u8 *mld_mac;
1704 	int link_id;
1705 	const u8 *link_mac;
1706 	const u8 *supported_rates;
1707 	u8 supported_rates_len;
1708 	const struct ieee80211_ht_cap *ht_capa;
1709 	const struct ieee80211_vht_cap *vht_capa;
1710 	u8 opmode_notif;
1711 	bool opmode_notif_used;
1712 	const struct ieee80211_he_cap_elem *he_capa;
1713 	u8 he_capa_len;
1714 	struct sta_txpwr txpwr;
1715 	bool txpwr_set;
1716 	const struct ieee80211_he_6ghz_capa *he_6ghz_capa;
1717 	const struct ieee80211_eht_cap_elem *eht_capa;
1718 	u8 eht_capa_len;
1719 	const struct ieee80211_s1g_cap *s1g_capa;
1720 };
1721 
1722 /**
1723  * struct link_station_del_parameters - link station deletion parameters
1724  *
1725  * Used to delete a link station entry (or all stations).
1726  *
1727  * @mld_mac: MAC address of the station
1728  * @link_id: the link id
1729  */
1730 struct link_station_del_parameters {
1731 	const u8 *mld_mac;
1732 	u32 link_id;
1733 };
1734 
1735 /**
1736  * struct cfg80211_ttlm_params: TID to link mapping parameters
1737  *
1738  * Used for setting a TID to link mapping.
1739  *
1740  * @dlink: Downlink TID to link mapping, as defined in section 9.4.2.314
1741  *     (TID-To-Link Mapping element) in Draft P802.11be_D4.0.
1742  * @ulink: Uplink TID to link mapping, as defined in section 9.4.2.314
1743  *     (TID-To-Link Mapping element) in Draft P802.11be_D4.0.
1744  */
1745 struct cfg80211_ttlm_params {
1746 	u16 dlink[8];
1747 	u16 ulink[8];
1748 };
1749 
1750 /**
1751  * struct station_parameters - station parameters
1752  *
1753  * Used to change and create a new station.
1754  *
1755  * @vlan: vlan interface station should belong to
1756  * @sta_flags_mask: station flags that changed
1757  *	(bitmask of BIT(%NL80211_STA_FLAG_...))
1758  * @sta_flags_set: station flags values
1759  *	(bitmask of BIT(%NL80211_STA_FLAG_...))
1760  * @listen_interval: listen interval or -1 for no change
1761  * @aid: AID or zero for no change
1762  * @vlan_id: VLAN ID for station (if nonzero)
1763  * @peer_aid: mesh peer AID or zero for no change
1764  * @plink_action: plink action to take
1765  * @plink_state: set the peer link state for a station
1766  * @uapsd_queues: bitmap of queues configured for uapsd. same format
1767  *	as the AC bitmap in the QoS info field
1768  * @max_sp: max Service Period. same format as the MAX_SP in the
1769  *	QoS info field (but already shifted down)
1770  * @sta_modify_mask: bitmap indicating which parameters changed
1771  *	(for those that don't have a natural "no change" value),
1772  *	see &enum station_parameters_apply_mask
1773  * @local_pm: local link-specific mesh power save mode (no change when set
1774  *	to unknown)
1775  * @capability: station capability
1776  * @ext_capab: extended capabilities of the station
1777  * @ext_capab_len: number of extended capabilities
1778  * @supported_channels: supported channels in IEEE 802.11 format
1779  * @supported_channels_len: number of supported channels
1780  * @supported_oper_classes: supported oper classes in IEEE 802.11 format
1781  * @supported_oper_classes_len: number of supported operating classes
1782  * @support_p2p_ps: information if station supports P2P PS mechanism
1783  * @airtime_weight: airtime scheduler weight for this station
1784  * @eml_cap_present: Specifies if EML capabilities field (@eml_cap) is
1785  *	present/updated
1786  * @eml_cap: EML capabilities of this station
1787  * @link_sta_params: link related params.
1788  */
1789 struct station_parameters {
1790 	struct net_device *vlan;
1791 	u32 sta_flags_mask, sta_flags_set;
1792 	u32 sta_modify_mask;
1793 	int listen_interval;
1794 	u16 aid;
1795 	u16 vlan_id;
1796 	u16 peer_aid;
1797 	u8 plink_action;
1798 	u8 plink_state;
1799 	u8 uapsd_queues;
1800 	u8 max_sp;
1801 	enum nl80211_mesh_power_mode local_pm;
1802 	u16 capability;
1803 	const u8 *ext_capab;
1804 	u8 ext_capab_len;
1805 	const u8 *supported_channels;
1806 	u8 supported_channels_len;
1807 	const u8 *supported_oper_classes;
1808 	u8 supported_oper_classes_len;
1809 	int support_p2p_ps;
1810 	u16 airtime_weight;
1811 	bool eml_cap_present;
1812 	u16 eml_cap;
1813 	struct link_station_parameters link_sta_params;
1814 };
1815 
1816 /**
1817  * struct station_del_parameters - station deletion parameters
1818  *
1819  * Used to delete a station entry (or all stations).
1820  *
1821  * @mac: MAC address of the station to remove or NULL to remove all stations
1822  * @subtype: Management frame subtype to use for indicating removal
1823  *	(10 = Disassociation, 12 = Deauthentication)
1824  * @reason_code: Reason code for the Disassociation/Deauthentication frame
1825  * @link_id: Link ID indicating a link that stations to be flushed must be
1826  *	using; valid only for MLO, but can also be -1 for MLO to really
1827  *	remove all stations.
1828  */
1829 struct station_del_parameters {
1830 	const u8 *mac;
1831 	u8 subtype;
1832 	u16 reason_code;
1833 	int link_id;
1834 };
1835 
1836 /**
1837  * enum cfg80211_station_type - the type of station being modified
1838  * @CFG80211_STA_AP_CLIENT: client of an AP interface
1839  * @CFG80211_STA_AP_CLIENT_UNASSOC: client of an AP interface that is still
1840  *	unassociated (update properties for this type of client is permitted)
1841  * @CFG80211_STA_AP_MLME_CLIENT: client of an AP interface that has
1842  *	the AP MLME in the device
1843  * @CFG80211_STA_AP_STA: AP station on managed interface
1844  * @CFG80211_STA_IBSS: IBSS station
1845  * @CFG80211_STA_TDLS_PEER_SETUP: TDLS peer on managed interface (dummy entry
1846  *	while TDLS setup is in progress, it moves out of this state when
1847  *	being marked authorized; use this only if TDLS with external setup is
1848  *	supported/used)
1849  * @CFG80211_STA_TDLS_PEER_ACTIVE: TDLS peer on managed interface (active
1850  *	entry that is operating, has been marked authorized by userspace)
1851  * @CFG80211_STA_MESH_PEER_KERNEL: peer on mesh interface (kernel managed)
1852  * @CFG80211_STA_MESH_PEER_USER: peer on mesh interface (user managed)
1853  */
1854 enum cfg80211_station_type {
1855 	CFG80211_STA_AP_CLIENT,
1856 	CFG80211_STA_AP_CLIENT_UNASSOC,
1857 	CFG80211_STA_AP_MLME_CLIENT,
1858 	CFG80211_STA_AP_STA,
1859 	CFG80211_STA_IBSS,
1860 	CFG80211_STA_TDLS_PEER_SETUP,
1861 	CFG80211_STA_TDLS_PEER_ACTIVE,
1862 	CFG80211_STA_MESH_PEER_KERNEL,
1863 	CFG80211_STA_MESH_PEER_USER,
1864 };
1865 
1866 /**
1867  * cfg80211_check_station_change - validate parameter changes
1868  * @wiphy: the wiphy this operates on
1869  * @params: the new parameters for a station
1870  * @statype: the type of station being modified
1871  *
1872  * Utility function for the @change_station driver method. Call this function
1873  * with the appropriate station type looking up the station (and checking that
1874  * it exists). It will verify whether the station change is acceptable.
1875  *
1876  * Return: 0 if the change is acceptable, otherwise an error code. Note that
1877  * it may modify the parameters for backward compatibility reasons, so don't
1878  * use them before calling this.
1879  */
1880 int cfg80211_check_station_change(struct wiphy *wiphy,
1881 				  struct station_parameters *params,
1882 				  enum cfg80211_station_type statype);
1883 
1884 /**
1885  * enum rate_info_flags - bitrate info flags
1886  *
1887  * Used by the driver to indicate the specific rate transmission
1888  * type for 802.11n transmissions.
1889  *
1890  * @RATE_INFO_FLAGS_MCS: mcs field filled with HT MCS
1891  * @RATE_INFO_FLAGS_VHT_MCS: mcs field filled with VHT MCS
1892  * @RATE_INFO_FLAGS_SHORT_GI: 400ns guard interval
1893  * @RATE_INFO_FLAGS_DMG: 60GHz MCS
1894  * @RATE_INFO_FLAGS_HE_MCS: HE MCS information
1895  * @RATE_INFO_FLAGS_EDMG: 60GHz MCS in EDMG mode
1896  * @RATE_INFO_FLAGS_EXTENDED_SC_DMG: 60GHz extended SC MCS
1897  * @RATE_INFO_FLAGS_EHT_MCS: EHT MCS information
1898  * @RATE_INFO_FLAGS_S1G_MCS: MCS field filled with S1G MCS
1899  */
1900 enum rate_info_flags {
1901 	RATE_INFO_FLAGS_MCS			= BIT(0),
1902 	RATE_INFO_FLAGS_VHT_MCS			= BIT(1),
1903 	RATE_INFO_FLAGS_SHORT_GI		= BIT(2),
1904 	RATE_INFO_FLAGS_DMG			= BIT(3),
1905 	RATE_INFO_FLAGS_HE_MCS			= BIT(4),
1906 	RATE_INFO_FLAGS_EDMG			= BIT(5),
1907 	RATE_INFO_FLAGS_EXTENDED_SC_DMG		= BIT(6),
1908 	RATE_INFO_FLAGS_EHT_MCS			= BIT(7),
1909 	RATE_INFO_FLAGS_S1G_MCS			= BIT(8),
1910 };
1911 
1912 /**
1913  * enum rate_info_bw - rate bandwidth information
1914  *
1915  * Used by the driver to indicate the rate bandwidth.
1916  *
1917  * @RATE_INFO_BW_5: 5 MHz bandwidth
1918  * @RATE_INFO_BW_10: 10 MHz bandwidth
1919  * @RATE_INFO_BW_20: 20 MHz bandwidth
1920  * @RATE_INFO_BW_40: 40 MHz bandwidth
1921  * @RATE_INFO_BW_80: 80 MHz bandwidth
1922  * @RATE_INFO_BW_160: 160 MHz bandwidth
1923  * @RATE_INFO_BW_HE_RU: bandwidth determined by HE RU allocation
1924  * @RATE_INFO_BW_320: 320 MHz bandwidth
1925  * @RATE_INFO_BW_EHT_RU: bandwidth determined by EHT RU allocation
1926  * @RATE_INFO_BW_1: 1 MHz bandwidth
1927  * @RATE_INFO_BW_2: 2 MHz bandwidth
1928  * @RATE_INFO_BW_4: 4 MHz bandwidth
1929  * @RATE_INFO_BW_8: 8 MHz bandwidth
1930  * @RATE_INFO_BW_16: 16 MHz bandwidth
1931  */
1932 enum rate_info_bw {
1933 	RATE_INFO_BW_20 = 0,
1934 	RATE_INFO_BW_5,
1935 	RATE_INFO_BW_10,
1936 	RATE_INFO_BW_40,
1937 	RATE_INFO_BW_80,
1938 	RATE_INFO_BW_160,
1939 	RATE_INFO_BW_HE_RU,
1940 	RATE_INFO_BW_320,
1941 	RATE_INFO_BW_EHT_RU,
1942 	RATE_INFO_BW_1,
1943 	RATE_INFO_BW_2,
1944 	RATE_INFO_BW_4,
1945 	RATE_INFO_BW_8,
1946 	RATE_INFO_BW_16,
1947 };
1948 
1949 /**
1950  * struct rate_info - bitrate information
1951  *
1952  * Information about a receiving or transmitting bitrate
1953  *
1954  * @flags: bitflag of flags from &enum rate_info_flags
1955  * @legacy: bitrate in 100kbit/s for 802.11abg
1956  * @mcs: mcs index if struct describes an HT/VHT/HE/EHT/S1G rate
1957  * @nss: number of streams (VHT & HE only)
1958  * @bw: bandwidth (from &enum rate_info_bw)
1959  * @he_gi: HE guard interval (from &enum nl80211_he_gi)
1960  * @he_dcm: HE DCM value
1961  * @he_ru_alloc: HE RU allocation (from &enum nl80211_he_ru_alloc,
1962  *	only valid if bw is %RATE_INFO_BW_HE_RU)
1963  * @n_bonded_ch: In case of EDMG the number of bonded channels (1-4)
1964  * @eht_gi: EHT guard interval (from &enum nl80211_eht_gi)
1965  * @eht_ru_alloc: EHT RU allocation (from &enum nl80211_eht_ru_alloc,
1966  *	only valid if bw is %RATE_INFO_BW_EHT_RU)
1967  */
1968 struct rate_info {
1969 	u16 flags;
1970 	u16 legacy;
1971 	u8 mcs;
1972 	u8 nss;
1973 	u8 bw;
1974 	u8 he_gi;
1975 	u8 he_dcm;
1976 	u8 he_ru_alloc;
1977 	u8 n_bonded_ch;
1978 	u8 eht_gi;
1979 	u8 eht_ru_alloc;
1980 };
1981 
1982 /**
1983  * enum bss_param_flags - bitrate info flags
1984  *
1985  * Used by the driver to indicate the specific rate transmission
1986  * type for 802.11n transmissions.
1987  *
1988  * @BSS_PARAM_FLAGS_CTS_PROT: whether CTS protection is enabled
1989  * @BSS_PARAM_FLAGS_SHORT_PREAMBLE: whether short preamble is enabled
1990  * @BSS_PARAM_FLAGS_SHORT_SLOT_TIME: whether short slot time is enabled
1991  */
1992 enum bss_param_flags {
1993 	BSS_PARAM_FLAGS_CTS_PROT	= BIT(0),
1994 	BSS_PARAM_FLAGS_SHORT_PREAMBLE	= BIT(1),
1995 	BSS_PARAM_FLAGS_SHORT_SLOT_TIME	= BIT(2),
1996 };
1997 
1998 /**
1999  * struct sta_bss_parameters - BSS parameters for the attached station
2000  *
2001  * Information about the currently associated BSS
2002  *
2003  * @flags: bitflag of flags from &enum bss_param_flags
2004  * @dtim_period: DTIM period for the BSS
2005  * @beacon_interval: beacon interval
2006  */
2007 struct sta_bss_parameters {
2008 	u8 flags;
2009 	u8 dtim_period;
2010 	u16 beacon_interval;
2011 };
2012 
2013 /**
2014  * struct cfg80211_txq_stats - TXQ statistics for this TID
2015  * @filled: bitmap of flags using the bits of &enum nl80211_txq_stats to
2016  *	indicate the relevant values in this struct are filled
2017  * @backlog_bytes: total number of bytes currently backlogged
2018  * @backlog_packets: total number of packets currently backlogged
2019  * @flows: number of new flows seen
2020  * @drops: total number of packets dropped
2021  * @ecn_marks: total number of packets marked with ECN CE
2022  * @overlimit: number of drops due to queue space overflow
2023  * @overmemory: number of drops due to memory limit overflow
2024  * @collisions: number of hash collisions
2025  * @tx_bytes: total number of bytes dequeued
2026  * @tx_packets: total number of packets dequeued
2027  * @max_flows: maximum number of flows supported
2028  */
2029 struct cfg80211_txq_stats {
2030 	u32 filled;
2031 	u32 backlog_bytes;
2032 	u32 backlog_packets;
2033 	u32 flows;
2034 	u32 drops;
2035 	u32 ecn_marks;
2036 	u32 overlimit;
2037 	u32 overmemory;
2038 	u32 collisions;
2039 	u32 tx_bytes;
2040 	u32 tx_packets;
2041 	u32 max_flows;
2042 };
2043 
2044 /**
2045  * struct cfg80211_tid_stats - per-TID statistics
2046  * @filled: bitmap of flags using the bits of &enum nl80211_tid_stats to
2047  *	indicate the relevant values in this struct are filled
2048  * @rx_msdu: number of received MSDUs
2049  * @tx_msdu: number of (attempted) transmitted MSDUs
2050  * @tx_msdu_retries: number of retries (not counting the first) for
2051  *	transmitted MSDUs
2052  * @tx_msdu_failed: number of failed transmitted MSDUs
2053  * @txq_stats: TXQ statistics
2054  */
2055 struct cfg80211_tid_stats {
2056 	u32 filled;
2057 	u64 rx_msdu;
2058 	u64 tx_msdu;
2059 	u64 tx_msdu_retries;
2060 	u64 tx_msdu_failed;
2061 	struct cfg80211_txq_stats txq_stats;
2062 };
2063 
2064 #define IEEE80211_MAX_CHAINS	4
2065 
2066 /**
2067  * struct link_station_info - link station information
2068  *
2069  * Link station information filled by driver for get_station() and
2070  *	dump_station().
2071  * @filled: bit flag of flags using the bits of &enum nl80211_sta_info to
2072  *	indicate the relevant values in this struct for them
2073  * @connected_time: time(in secs) since a link of station is last connected
2074  * @inactive_time: time since last activity for link station(tx/rx)
2075  *	in milliseconds
2076  * @assoc_at: bootime (ns) of the last association of link of station
2077  * @rx_bytes: bytes (size of MPDUs) received from this link of station
2078  * @tx_bytes: bytes (size of MPDUs) transmitted to this link of station
2079  * @signal: The signal strength, type depends on the wiphy's signal_type.
2080  *	For CFG80211_SIGNAL_TYPE_MBM, value is expressed in _dBm_.
2081  * @signal_avg: Average signal strength, type depends on the wiphy's
2082  *	signal_type. For CFG80211_SIGNAL_TYPE_MBM, value is expressed in _dBm_
2083  * @chains: bitmask for filled values in @chain_signal, @chain_signal_avg
2084  * @chain_signal: per-chain signal strength of last received packet in dBm
2085  * @chain_signal_avg: per-chain signal strength average in dBm
2086  * @txrate: current unicast bitrate from this link of station
2087  * @rxrate: current unicast bitrate to this link of station
2088  * @rx_packets: packets (MSDUs & MMPDUs) received from this link of station
2089  * @tx_packets: packets (MSDUs & MMPDUs) transmitted to this link of station
2090  * @tx_retries: cumulative retry counts (MPDUs) for this link of station
2091  * @tx_failed: number of failed transmissions (MPDUs) (retries exceeded, no ACK)
2092  * @rx_dropped_misc:  Dropped for un-specified reason.
2093  * @bss_param: current BSS parameters
2094  * @beacon_loss_count: Number of times beacon loss event has triggered.
2095  * @expected_throughput: expected throughput in kbps (including 802.11 headers)
2096  *	towards this station.
2097  * @rx_beacon: number of beacons received from this peer
2098  * @rx_beacon_signal_avg: signal strength average (in dBm) for beacons received
2099  *	from this peer
2100  * @rx_duration: aggregate PPDU duration(usecs) for all the frames from a peer
2101  * @tx_duration: aggregate PPDU duration(usecs) for all the frames to a peer
2102  * @airtime_weight: current airtime scheduling weight
2103  * @pertid: per-TID statistics, see &struct cfg80211_tid_stats, using the last
2104  *	(IEEE80211_NUM_TIDS) index for MSDUs not encapsulated in QoS-MPDUs.
2105  *	Note that this doesn't use the @filled bit, but is used if non-NULL.
2106  * @ack_signal: signal strength (in dBm) of the last ACK frame.
2107  * @avg_ack_signal: average rssi value of ack packet for the no of msdu's has
2108  *	been sent.
2109  * @rx_mpdu_count: number of MPDUs received from this station
2110  * @fcs_err_count: number of packets (MPDUs) received from this station with
2111  *	an FCS error. This counter should be incremented only when TA of the
2112  *	received packet with an FCS error matches the peer MAC address.
2113  * @addr: For MLO STA connection, filled with address of the link of station.
2114  */
2115 struct link_station_info {
2116 	u64 filled;
2117 	u32 connected_time;
2118 	u32 inactive_time;
2119 	u64 assoc_at;
2120 	u64 rx_bytes;
2121 	u64 tx_bytes;
2122 	s8 signal;
2123 	s8 signal_avg;
2124 
2125 	u8 chains;
2126 	s8 chain_signal[IEEE80211_MAX_CHAINS];
2127 	s8 chain_signal_avg[IEEE80211_MAX_CHAINS];
2128 
2129 	struct rate_info txrate;
2130 	struct rate_info rxrate;
2131 	u32 rx_packets;
2132 	u32 tx_packets;
2133 	u32 tx_retries;
2134 	u32 tx_failed;
2135 	u32 rx_dropped_misc;
2136 	struct sta_bss_parameters bss_param;
2137 
2138 	u32 beacon_loss_count;
2139 
2140 	u32 expected_throughput;
2141 
2142 	u64 tx_duration;
2143 	u64 rx_duration;
2144 	u64 rx_beacon;
2145 	u8 rx_beacon_signal_avg;
2146 
2147 	u16 airtime_weight;
2148 
2149 	s8 ack_signal;
2150 	s8 avg_ack_signal;
2151 	struct cfg80211_tid_stats *pertid;
2152 
2153 	u32 rx_mpdu_count;
2154 	u32 fcs_err_count;
2155 
2156 	u8 addr[ETH_ALEN] __aligned(2);
2157 };
2158 
2159 /**
2160  * struct station_info - station information
2161  *
2162  * Station information filled by driver for get_station() and dump_station.
2163  *
2164  * @filled: bitflag of flags using the bits of &enum nl80211_sta_info to
2165  *	indicate the relevant values in this struct for them
2166  * @connected_time: time(in secs) since a station is last connected
2167  * @inactive_time: time since last station activity (tx/rx) in milliseconds
2168  * @assoc_at: bootime (ns) of the last association
2169  * @rx_bytes: bytes (size of MPDUs) received from this station
2170  * @tx_bytes: bytes (size of MPDUs) transmitted to this station
2171  * @signal: The signal strength, type depends on the wiphy's signal_type.
2172  *	For CFG80211_SIGNAL_TYPE_MBM, value is expressed in _dBm_.
2173  * @signal_avg: Average signal strength, type depends on the wiphy's signal_type.
2174  *	For CFG80211_SIGNAL_TYPE_MBM, value is expressed in _dBm_.
2175  * @chains: bitmask for filled values in @chain_signal, @chain_signal_avg
2176  * @chain_signal: per-chain signal strength of last received packet in dBm
2177  * @chain_signal_avg: per-chain signal strength average in dBm
2178  * @txrate: current unicast bitrate from this station
2179  * @rxrate: current unicast bitrate to this station
2180  * @rx_packets: packets (MSDUs & MMPDUs) received from this station
2181  * @tx_packets: packets (MSDUs & MMPDUs) transmitted to this station
2182  * @tx_retries: cumulative retry counts (MPDUs)
2183  * @tx_failed: number of failed transmissions (MPDUs) (retries exceeded, no ACK)
2184  * @rx_dropped_misc:  Dropped for un-specified reason.
2185  * @bss_param: current BSS parameters
2186  * @generation: generation number for nl80211 dumps.
2187  *	This number should increase every time the list of stations
2188  *	changes, i.e. when a station is added or removed, so that
2189  *	userspace can tell whether it got a consistent snapshot.
2190  * @beacon_loss_count: Number of times beacon loss event has triggered.
2191  * @assoc_req_ies: IEs from (Re)Association Request.
2192  *	This is used only when in AP mode with drivers that do not use
2193  *	user space MLME/SME implementation. The information is provided for
2194  *	the cfg80211_new_sta() calls to notify user space of the IEs.
2195  * @assoc_req_ies_len: Length of assoc_req_ies buffer in octets.
2196  * @sta_flags: station flags mask & values
2197  * @t_offset: Time offset of the station relative to this host.
2198  * @llid: mesh local link id
2199  * @plid: mesh peer link id
2200  * @plink_state: mesh peer link state
2201  * @connected_to_gate: true if mesh STA has a path to mesh gate
2202  * @connected_to_as: true if mesh STA has a path to authentication server
2203  * @airtime_link_metric: mesh airtime link metric.
2204  * @local_pm: local mesh STA power save mode
2205  * @peer_pm: peer mesh STA power save mode
2206  * @nonpeer_pm: non-peer mesh STA power save mode
2207  * @expected_throughput: expected throughput in kbps (including 802.11 headers)
2208  *	towards this station.
2209  * @rx_beacon: number of beacons received from this peer
2210  * @rx_beacon_signal_avg: signal strength average (in dBm) for beacons received
2211  *	from this peer
2212  * @rx_duration: aggregate PPDU duration(usecs) for all the frames from a peer
2213  * @tx_duration: aggregate PPDU duration(usecs) for all the frames to a peer
2214  * @airtime_weight: current airtime scheduling weight
2215  * @pertid: per-TID statistics, see &struct cfg80211_tid_stats, using the last
2216  *	(IEEE80211_NUM_TIDS) index for MSDUs not encapsulated in QoS-MPDUs.
2217  *	Note that this doesn't use the @filled bit, but is used if non-NULL.
2218  * @ack_signal: signal strength (in dBm) of the last ACK frame.
2219  * @avg_ack_signal: average rssi value of ack packet for the no of msdu's has
2220  *	been sent.
2221  * @rx_mpdu_count: number of MPDUs received from this station
2222  * @fcs_err_count: number of packets (MPDUs) received from this station with
2223  *	an FCS error. This counter should be incremented only when TA of the
2224  *	received packet with an FCS error matches the peer MAC address.
2225  * @mlo_params_valid: Indicates @assoc_link_id and @mld_addr fields are filled
2226  *	by driver. Drivers use this only in cfg80211_new_sta() calls when AP
2227  *	MLD's MLME/SME is offload to driver. Drivers won't fill this
2228  *	information in cfg80211_del_sta_sinfo(), get_station() and
2229  *	dump_station() callbacks.
2230  * @assoc_link_id: Indicates MLO link ID of the AP, with which the station
2231  *	completed (re)association. This information filled for both MLO
2232  *	and non-MLO STA connections when the AP affiliated with an MLD.
2233  * @mld_addr: For MLO STA connection, filled with MLD address of the station.
2234  *	For non-MLO STA connection, filled with all zeros.
2235  * @assoc_resp_ies: IEs from (Re)Association Response.
2236  *	This is used only when in AP mode with drivers that do not use user
2237  *	space MLME/SME implementation. The information is provided only for the
2238  *	cfg80211_new_sta() calls to notify user space of the IEs. Drivers won't
2239  *	fill this information in cfg80211_del_sta_sinfo(), get_station() and
2240  *	dump_station() callbacks. User space needs this information to determine
2241  *	the accepted and rejected affiliated links of the connected station.
2242  * @assoc_resp_ies_len: Length of @assoc_resp_ies buffer in octets.
2243  * @valid_links: bitmap of valid links, or 0 for non-MLO. Drivers fill this
2244  *	information in cfg80211_new_sta(), cfg80211_del_sta_sinfo(),
2245  *	get_station() and dump_station() callbacks.
2246  * @links: reference to Link sta entries for MLO STA, all link specific
2247  *	information is accessed through links[link_id].
2248  */
2249 struct station_info {
2250 	u64 filled;
2251 	u32 connected_time;
2252 	u32 inactive_time;
2253 	u64 assoc_at;
2254 	u64 rx_bytes;
2255 	u64 tx_bytes;
2256 	s8 signal;
2257 	s8 signal_avg;
2258 
2259 	u8 chains;
2260 	s8 chain_signal[IEEE80211_MAX_CHAINS];
2261 	s8 chain_signal_avg[IEEE80211_MAX_CHAINS];
2262 
2263 	struct rate_info txrate;
2264 	struct rate_info rxrate;
2265 	u32 rx_packets;
2266 	u32 tx_packets;
2267 	u32 tx_retries;
2268 	u32 tx_failed;
2269 	u32 rx_dropped_misc;
2270 	struct sta_bss_parameters bss_param;
2271 	struct nl80211_sta_flag_update sta_flags;
2272 
2273 	int generation;
2274 
2275 	u32 beacon_loss_count;
2276 
2277 	const u8 *assoc_req_ies;
2278 	size_t assoc_req_ies_len;
2279 
2280 	s64 t_offset;
2281 	u16 llid;
2282 	u16 plid;
2283 	u8 plink_state;
2284 	u8 connected_to_gate;
2285 	u8 connected_to_as;
2286 	u32 airtime_link_metric;
2287 	enum nl80211_mesh_power_mode local_pm;
2288 	enum nl80211_mesh_power_mode peer_pm;
2289 	enum nl80211_mesh_power_mode nonpeer_pm;
2290 
2291 	u32 expected_throughput;
2292 
2293 	u16 airtime_weight;
2294 
2295 	s8 ack_signal;
2296 	s8 avg_ack_signal;
2297 	struct cfg80211_tid_stats *pertid;
2298 
2299 	u64 tx_duration;
2300 	u64 rx_duration;
2301 	u64 rx_beacon;
2302 	u8 rx_beacon_signal_avg;
2303 
2304 	u32 rx_mpdu_count;
2305 	u32 fcs_err_count;
2306 
2307 	bool mlo_params_valid;
2308 	u8 assoc_link_id;
2309 	u8 mld_addr[ETH_ALEN] __aligned(2);
2310 	const u8 *assoc_resp_ies;
2311 	size_t assoc_resp_ies_len;
2312 
2313 	u16 valid_links;
2314 	struct link_station_info *links[IEEE80211_MLD_MAX_NUM_LINKS];
2315 };
2316 
2317 /**
2318  * struct cfg80211_sar_sub_specs - sub specs limit
2319  * @power: power limitation in 0.25dbm
2320  * @freq_range_index: index the power limitation applies to
2321  */
2322 struct cfg80211_sar_sub_specs {
2323 	s32 power;
2324 	u32 freq_range_index;
2325 };
2326 
2327 /**
2328  * struct cfg80211_sar_specs - sar limit specs
2329  * @type: it's set with power in 0.25dbm or other types
2330  * @num_sub_specs: number of sar sub specs
2331  * @sub_specs: memory to hold the sar sub specs
2332  */
2333 struct cfg80211_sar_specs {
2334 	enum nl80211_sar_type type;
2335 	u32 num_sub_specs;
2336 	struct cfg80211_sar_sub_specs sub_specs[] __counted_by(num_sub_specs);
2337 };
2338 
2339 
2340 /**
2341  * struct cfg80211_sar_freq_ranges - sar frequency ranges
2342  * @start_freq:  start range edge frequency
2343  * @end_freq:    end range edge frequency
2344  */
2345 struct cfg80211_sar_freq_ranges {
2346 	u32 start_freq;
2347 	u32 end_freq;
2348 };
2349 
2350 /**
2351  * struct cfg80211_sar_capa - sar limit capability
2352  * @type: it's set via power in 0.25dbm or other types
2353  * @num_freq_ranges: number of frequency ranges
2354  * @freq_ranges: memory to hold the freq ranges.
2355  *
2356  * Note: WLAN driver may append new ranges or split an existing
2357  * range to small ones and then append them.
2358  */
2359 struct cfg80211_sar_capa {
2360 	enum nl80211_sar_type type;
2361 	u32 num_freq_ranges;
2362 	const struct cfg80211_sar_freq_ranges *freq_ranges;
2363 };
2364 
2365 #if IS_ENABLED(CONFIG_CFG80211)
2366 /**
2367  * cfg80211_get_station - retrieve information about a given station
2368  * @dev: the device where the station is supposed to be connected to
2369  * @mac_addr: the mac address of the station of interest
2370  * @sinfo: pointer to the structure to fill with the information
2371  *
2372  * Return: 0 on success and sinfo is filled with the available information
2373  * otherwise returns a negative error code and the content of sinfo has to be
2374  * considered undefined.
2375  */
2376 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
2377 			 struct station_info *sinfo);
2378 #else
2379 static inline int cfg80211_get_station(struct net_device *dev,
2380 				       const u8 *mac_addr,
2381 				       struct station_info *sinfo)
2382 {
2383 	return -ENOENT;
2384 }
2385 #endif
2386 
2387 /**
2388  * enum monitor_flags - monitor flags
2389  *
2390  * Monitor interface configuration flags. Note that these must be the bits
2391  * according to the nl80211 flags.
2392  *
2393  * @MONITOR_FLAG_CHANGED: set if the flags were changed
2394  * @MONITOR_FLAG_FCSFAIL: pass frames with bad FCS
2395  * @MONITOR_FLAG_PLCPFAIL: pass frames with bad PLCP
2396  * @MONITOR_FLAG_CONTROL: pass control frames
2397  * @MONITOR_FLAG_OTHER_BSS: disable BSSID filtering
2398  * @MONITOR_FLAG_COOK_FRAMES: deprecated, will unconditionally be refused
2399  * @MONITOR_FLAG_ACTIVE: active monitor, ACKs frames on its MAC address
2400  * @MONITOR_FLAG_SKIP_TX: do not pass locally transmitted frames
2401  */
2402 enum monitor_flags {
2403 	MONITOR_FLAG_CHANGED		= BIT(__NL80211_MNTR_FLAG_INVALID),
2404 	MONITOR_FLAG_FCSFAIL		= BIT(NL80211_MNTR_FLAG_FCSFAIL),
2405 	MONITOR_FLAG_PLCPFAIL		= BIT(NL80211_MNTR_FLAG_PLCPFAIL),
2406 	MONITOR_FLAG_CONTROL		= BIT(NL80211_MNTR_FLAG_CONTROL),
2407 	MONITOR_FLAG_OTHER_BSS		= BIT(NL80211_MNTR_FLAG_OTHER_BSS),
2408 	MONITOR_FLAG_COOK_FRAMES	= BIT(NL80211_MNTR_FLAG_COOK_FRAMES),
2409 	MONITOR_FLAG_ACTIVE		= BIT(NL80211_MNTR_FLAG_ACTIVE),
2410 	MONITOR_FLAG_SKIP_TX		= BIT(NL80211_MNTR_FLAG_SKIP_TX),
2411 };
2412 
2413 /**
2414  * enum mpath_info_flags -  mesh path information flags
2415  *
2416  * Used by the driver to indicate which info in &struct mpath_info it has filled
2417  * in during get_station() or dump_station().
2418  *
2419  * @MPATH_INFO_FRAME_QLEN: @frame_qlen filled
2420  * @MPATH_INFO_SN: @sn filled
2421  * @MPATH_INFO_METRIC: @metric filled
2422  * @MPATH_INFO_EXPTIME: @exptime filled
2423  * @MPATH_INFO_DISCOVERY_TIMEOUT: @discovery_timeout filled
2424  * @MPATH_INFO_DISCOVERY_RETRIES: @discovery_retries filled
2425  * @MPATH_INFO_FLAGS: @flags filled
2426  * @MPATH_INFO_HOP_COUNT: @hop_count filled
2427  * @MPATH_INFO_PATH_CHANGE: @path_change_count filled
2428  */
2429 enum mpath_info_flags {
2430 	MPATH_INFO_FRAME_QLEN		= BIT(0),
2431 	MPATH_INFO_SN			= BIT(1),
2432 	MPATH_INFO_METRIC		= BIT(2),
2433 	MPATH_INFO_EXPTIME		= BIT(3),
2434 	MPATH_INFO_DISCOVERY_TIMEOUT	= BIT(4),
2435 	MPATH_INFO_DISCOVERY_RETRIES	= BIT(5),
2436 	MPATH_INFO_FLAGS		= BIT(6),
2437 	MPATH_INFO_HOP_COUNT		= BIT(7),
2438 	MPATH_INFO_PATH_CHANGE		= BIT(8),
2439 };
2440 
2441 /**
2442  * struct mpath_info - mesh path information
2443  *
2444  * Mesh path information filled by driver for get_mpath() and dump_mpath().
2445  *
2446  * @filled: bitfield of flags from &enum mpath_info_flags
2447  * @frame_qlen: number of queued frames for this destination
2448  * @sn: target sequence number
2449  * @metric: metric (cost) of this mesh path
2450  * @exptime: expiration time for the mesh path from now, in msecs
2451  * @flags: mesh path flags from &enum mesh_path_flags
2452  * @discovery_timeout: total mesh path discovery timeout, in msecs
2453  * @discovery_retries: mesh path discovery retries
2454  * @generation: generation number for nl80211 dumps.
2455  *	This number should increase every time the list of mesh paths
2456  *	changes, i.e. when a station is added or removed, so that
2457  *	userspace can tell whether it got a consistent snapshot.
2458  * @hop_count: hops to destination
2459  * @path_change_count: total number of path changes to destination
2460  */
2461 struct mpath_info {
2462 	u32 filled;
2463 	u32 frame_qlen;
2464 	u32 sn;
2465 	u32 metric;
2466 	u32 exptime;
2467 	u32 discovery_timeout;
2468 	u8 discovery_retries;
2469 	u8 flags;
2470 	u8 hop_count;
2471 	u32 path_change_count;
2472 
2473 	int generation;
2474 };
2475 
2476 /**
2477  * enum wiphy_bss_param_flags - bit positions for supported bss parameters.
2478  *
2479  * @WIPHY_BSS_PARAM_CTS_PROT: support changing CTS protection.
2480  * @WIPHY_BSS_PARAM_SHORT_PREAMBLE: support changing short preamble usage.
2481  * @WIPHY_BSS_PARAM_SHORT_SLOT_TIME: support changing short slot time usage.
2482  * @WIPHY_BSS_PARAM_BASIC_RATES: support reconfiguring basic rates.
2483  * @WIPHY_BSS_PARAM_AP_ISOLATE: support changing AP isolation.
2484  * @WIPHY_BSS_PARAM_HT_OPMODE: support changing HT operating mode.
2485  * @WIPHY_BSS_PARAM_P2P_CTWINDOW: support reconfiguring ctwindow.
2486  * @WIPHY_BSS_PARAM_P2P_OPPPS: support changing P2P opportunistic power-save.
2487  */
2488 enum wiphy_bss_param_flags {
2489 	WIPHY_BSS_PARAM_CTS_PROT = BIT(0),
2490 	WIPHY_BSS_PARAM_SHORT_PREAMBLE = BIT(1),
2491 	WIPHY_BSS_PARAM_SHORT_SLOT_TIME = BIT(2),
2492 	WIPHY_BSS_PARAM_BASIC_RATES = BIT(3),
2493 	WIPHY_BSS_PARAM_AP_ISOLATE = BIT(4),
2494 	WIPHY_BSS_PARAM_HT_OPMODE = BIT(5),
2495 	WIPHY_BSS_PARAM_P2P_CTWINDOW = BIT(6),
2496 	WIPHY_BSS_PARAM_P2P_OPPPS = BIT(7),
2497 };
2498 
2499 /**
2500  * struct bss_parameters - BSS parameters
2501  *
2502  * Used to change BSS parameters (mainly for AP mode).
2503  *
2504  * @link_id: link_id or -1 for non-MLD
2505  * @use_cts_prot: Whether to use CTS protection
2506  *	(0 = no, 1 = yes, -1 = do not change)
2507  * @use_short_preamble: Whether the use of short preambles is allowed
2508  *	(0 = no, 1 = yes, -1 = do not change)
2509  * @use_short_slot_time: Whether the use of short slot time is allowed
2510  *	(0 = no, 1 = yes, -1 = do not change)
2511  * @basic_rates: basic rates in IEEE 802.11 format
2512  *	(or NULL for no change)
2513  * @basic_rates_len: number of basic rates
2514  * @ap_isolate: do not forward packets between connected stations
2515  *	(0 = no, 1 = yes, -1 = do not change)
2516  * @ht_opmode: HT Operation mode
2517  *	(u16 = opmode, -1 = do not change)
2518  * @p2p_ctwindow: P2P CT Window (-1 = no change)
2519  * @p2p_opp_ps: P2P opportunistic PS (-1 = no change)
2520  */
2521 struct bss_parameters {
2522 	int link_id;
2523 	int use_cts_prot;
2524 	int use_short_preamble;
2525 	int use_short_slot_time;
2526 	const u8 *basic_rates;
2527 	u8 basic_rates_len;
2528 	int ap_isolate;
2529 	int ht_opmode;
2530 	s8 p2p_ctwindow, p2p_opp_ps;
2531 };
2532 
2533 /**
2534  * struct mesh_config - 802.11s mesh configuration
2535  *
2536  * These parameters can be changed while the mesh is active.
2537  *
2538  * @dot11MeshRetryTimeout: the initial retry timeout in millisecond units used
2539  *	by the Mesh Peering Open message
2540  * @dot11MeshConfirmTimeout: the initial retry timeout in millisecond units
2541  *	used by the Mesh Peering Open message
2542  * @dot11MeshHoldingTimeout: the confirm timeout in millisecond units used by
2543  *	the mesh peering management to close a mesh peering
2544  * @dot11MeshMaxPeerLinks: the maximum number of peer links allowed on this
2545  *	mesh interface
2546  * @dot11MeshMaxRetries: the maximum number of peer link open retries that can
2547  *	be sent to establish a new peer link instance in a mesh
2548  * @dot11MeshTTL: the value of TTL field set at a source mesh STA
2549  * @element_ttl: the value of TTL field set at a mesh STA for path selection
2550  *	elements
2551  * @auto_open_plinks: whether we should automatically open peer links when we
2552  *	detect compatible mesh peers
2553  * @dot11MeshNbrOffsetMaxNeighbor: the maximum number of neighbors to
2554  *	synchronize to for 11s default synchronization method
2555  * @dot11MeshHWMPmaxPREQretries: the number of action frames containing a PREQ
2556  *	that an originator mesh STA can send to a particular path target
2557  * @path_refresh_time: how frequently to refresh mesh paths in milliseconds
2558  * @min_discovery_timeout: the minimum length of time to wait until giving up on
2559  *	a path discovery in milliseconds
2560  * @dot11MeshHWMPactivePathTimeout: the time (in TUs) for which mesh STAs
2561  *	receiving a PREQ shall consider the forwarding information from the
2562  *	root to be valid. (TU = time unit)
2563  * @dot11MeshHWMPpreqMinInterval: the minimum interval of time (in TUs) during
2564  *	which a mesh STA can send only one action frame containing a PREQ
2565  *	element
2566  * @dot11MeshHWMPperrMinInterval: the minimum interval of time (in TUs) during
2567  *	which a mesh STA can send only one Action frame containing a PERR
2568  *	element
2569  * @dot11MeshHWMPnetDiameterTraversalTime: the interval of time (in TUs) that
2570  *	it takes for an HWMP information element to propagate across the mesh
2571  * @dot11MeshHWMPRootMode: the configuration of a mesh STA as root mesh STA
2572  * @dot11MeshHWMPRannInterval: the interval of time (in TUs) between root
2573  *	announcements are transmitted
2574  * @dot11MeshGateAnnouncementProtocol: whether to advertise that this mesh
2575  *	station has access to a broader network beyond the MBSS. (This is
2576  *	missnamed in draft 12.0: dot11MeshGateAnnouncementProtocol set to true
2577  *	only means that the station will announce others it's a mesh gate, but
2578  *	not necessarily using the gate announcement protocol. Still keeping the
2579  *	same nomenclature to be in sync with the spec)
2580  * @dot11MeshForwarding: whether the Mesh STA is forwarding or non-forwarding
2581  *	entity (default is TRUE - forwarding entity)
2582  * @rssi_threshold: the threshold for average signal strength of candidate
2583  *	station to establish a peer link
2584  * @ht_opmode: mesh HT protection mode
2585  *
2586  * @dot11MeshHWMPactivePathToRootTimeout: The time (in TUs) for which mesh STAs
2587  *	receiving a proactive PREQ shall consider the forwarding information to
2588  *	the root mesh STA to be valid.
2589  *
2590  * @dot11MeshHWMProotInterval: The interval of time (in TUs) between proactive
2591  *	PREQs are transmitted.
2592  * @dot11MeshHWMPconfirmationInterval: The minimum interval of time (in TUs)
2593  *	during which a mesh STA can send only one Action frame containing
2594  *	a PREQ element for root path confirmation.
2595  * @power_mode: The default mesh power save mode which will be the initial
2596  *	setting for new peer links.
2597  * @dot11MeshAwakeWindowDuration: The duration in TUs the STA will remain awake
2598  *	after transmitting its beacon.
2599  * @plink_timeout: If no tx activity is seen from a STA we've established
2600  *	peering with for longer than this time (in seconds), then remove it
2601  *	from the STA's list of peers.  Default is 30 minutes.
2602  * @dot11MeshConnectedToAuthServer: if set to true then this mesh STA
2603  *	will advertise that it is connected to a authentication server
2604  *	in the mesh formation field.
2605  * @dot11MeshConnectedToMeshGate: if set to true, advertise that this STA is
2606  *      connected to a mesh gate in mesh formation info.  If false, the
2607  *      value in mesh formation is determined by the presence of root paths
2608  *      in the mesh path table
2609  * @dot11MeshNolearn: Try to avoid multi-hop path discovery (e.g. PREQ/PREP
2610  *      for HWMP) if the destination is a direct neighbor. Note that this might
2611  *      not be the optimal decision as a multi-hop route might be better. So
2612  *      if using this setting you will likely also want to disable
2613  *      dot11MeshForwarding and use another mesh routing protocol on top.
2614  */
2615 struct mesh_config {
2616 	u16 dot11MeshRetryTimeout;
2617 	u16 dot11MeshConfirmTimeout;
2618 	u16 dot11MeshHoldingTimeout;
2619 	u16 dot11MeshMaxPeerLinks;
2620 	u8 dot11MeshMaxRetries;
2621 	u8 dot11MeshTTL;
2622 	u8 element_ttl;
2623 	bool auto_open_plinks;
2624 	u32 dot11MeshNbrOffsetMaxNeighbor;
2625 	u8 dot11MeshHWMPmaxPREQretries;
2626 	u32 path_refresh_time;
2627 	u16 min_discovery_timeout;
2628 	u32 dot11MeshHWMPactivePathTimeout;
2629 	u16 dot11MeshHWMPpreqMinInterval;
2630 	u16 dot11MeshHWMPperrMinInterval;
2631 	u16 dot11MeshHWMPnetDiameterTraversalTime;
2632 	u8 dot11MeshHWMPRootMode;
2633 	bool dot11MeshConnectedToMeshGate;
2634 	bool dot11MeshConnectedToAuthServer;
2635 	u16 dot11MeshHWMPRannInterval;
2636 	bool dot11MeshGateAnnouncementProtocol;
2637 	bool dot11MeshForwarding;
2638 	s32 rssi_threshold;
2639 	u16 ht_opmode;
2640 	u32 dot11MeshHWMPactivePathToRootTimeout;
2641 	u16 dot11MeshHWMProotInterval;
2642 	u16 dot11MeshHWMPconfirmationInterval;
2643 	enum nl80211_mesh_power_mode power_mode;
2644 	u16 dot11MeshAwakeWindowDuration;
2645 	u32 plink_timeout;
2646 	bool dot11MeshNolearn;
2647 };
2648 
2649 /**
2650  * struct mesh_setup - 802.11s mesh setup configuration
2651  * @chandef: defines the channel to use
2652  * @mesh_id: the mesh ID
2653  * @mesh_id_len: length of the mesh ID, at least 1 and at most 32 bytes
2654  * @sync_method: which synchronization method to use
2655  * @path_sel_proto: which path selection protocol to use
2656  * @path_metric: which metric to use
2657  * @auth_id: which authentication method this mesh is using
2658  * @ie: vendor information elements (optional)
2659  * @ie_len: length of vendor information elements
2660  * @is_authenticated: this mesh requires authentication
2661  * @is_secure: this mesh uses security
2662  * @user_mpm: userspace handles all MPM functions
2663  * @dtim_period: DTIM period to use
2664  * @beacon_interval: beacon interval to use
2665  * @mcast_rate: multicast rate for Mesh Node [6Mbps is the default for 802.11a]
2666  * @basic_rates: basic rates to use when creating the mesh
2667  * @beacon_rate: bitrate to be used for beacons
2668  * @userspace_handles_dfs: whether user space controls DFS operation, i.e.
2669  *	changes the channel when a radar is detected. This is required
2670  *	to operate on DFS channels.
2671  * @control_port_over_nl80211: TRUE if userspace expects to exchange control
2672  *	port frames over NL80211 instead of the network interface.
2673  *
2674  * These parameters are fixed when the mesh is created.
2675  */
2676 struct mesh_setup {
2677 	struct cfg80211_chan_def chandef;
2678 	const u8 *mesh_id;
2679 	u8 mesh_id_len;
2680 	u8 sync_method;
2681 	u8 path_sel_proto;
2682 	u8 path_metric;
2683 	u8 auth_id;
2684 	const u8 *ie;
2685 	u8 ie_len;
2686 	bool is_authenticated;
2687 	bool is_secure;
2688 	bool user_mpm;
2689 	u8 dtim_period;
2690 	u16 beacon_interval;
2691 	int mcast_rate[NUM_NL80211_BANDS];
2692 	u32 basic_rates;
2693 	struct cfg80211_bitrate_mask beacon_rate;
2694 	bool userspace_handles_dfs;
2695 	bool control_port_over_nl80211;
2696 };
2697 
2698 /**
2699  * struct ocb_setup - 802.11p OCB mode setup configuration
2700  * @chandef: defines the channel to use
2701  *
2702  * These parameters are fixed when connecting to the network
2703  */
2704 struct ocb_setup {
2705 	struct cfg80211_chan_def chandef;
2706 };
2707 
2708 /**
2709  * struct ieee80211_txq_params - TX queue parameters
2710  * @ac: AC identifier
2711  * @txop: Maximum burst time in units of 32 usecs, 0 meaning disabled
2712  * @cwmin: Minimum contention window [a value of the form 2^n-1 in the range
2713  *	1..32767]
2714  * @cwmax: Maximum contention window [a value of the form 2^n-1 in the range
2715  *	1..32767]
2716  * @aifs: Arbitration interframe space [0..255]
2717  * @link_id: link_id or -1 for non-MLD
2718  */
2719 struct ieee80211_txq_params {
2720 	enum nl80211_ac ac;
2721 	u16 txop;
2722 	u16 cwmin;
2723 	u16 cwmax;
2724 	u8 aifs;
2725 	int link_id;
2726 };
2727 
2728 /**
2729  * DOC: Scanning and BSS list handling
2730  *
2731  * The scanning process itself is fairly simple, but cfg80211 offers quite
2732  * a bit of helper functionality. To start a scan, the scan operation will
2733  * be invoked with a scan definition. This scan definition contains the
2734  * channels to scan, and the SSIDs to send probe requests for (including the
2735  * wildcard, if desired). A passive scan is indicated by having no SSIDs to
2736  * probe. Additionally, a scan request may contain extra information elements
2737  * that should be added to the probe request. The IEs are guaranteed to be
2738  * well-formed, and will not exceed the maximum length the driver advertised
2739  * in the wiphy structure.
2740  *
2741  * When scanning finds a BSS, cfg80211 needs to be notified of that, because
2742  * it is responsible for maintaining the BSS list; the driver should not
2743  * maintain a list itself. For this notification, various functions exist.
2744  *
2745  * Since drivers do not maintain a BSS list, there are also a number of
2746  * functions to search for a BSS and obtain information about it from the
2747  * BSS structure cfg80211 maintains. The BSS list is also made available
2748  * to userspace.
2749  */
2750 
2751 /**
2752  * struct cfg80211_ssid - SSID description
2753  * @ssid: the SSID
2754  * @ssid_len: length of the ssid
2755  */
2756 struct cfg80211_ssid {
2757 	u8 ssid[IEEE80211_MAX_SSID_LEN];
2758 	u8 ssid_len;
2759 };
2760 
2761 /**
2762  * struct cfg80211_scan_info - information about completed scan
2763  * @scan_start_tsf: scan start time in terms of the TSF of the BSS that the
2764  *	wireless device that requested the scan is connected to. If this
2765  *	information is not available, this field is left zero.
2766  * @tsf_bssid: the BSSID according to which %scan_start_tsf is set.
2767  * @aborted: set to true if the scan was aborted for any reason,
2768  *	userspace will be notified of that
2769  */
2770 struct cfg80211_scan_info {
2771 	u64 scan_start_tsf;
2772 	u8 tsf_bssid[ETH_ALEN] __aligned(2);
2773 	bool aborted;
2774 };
2775 
2776 /**
2777  * struct cfg80211_scan_6ghz_params - relevant for 6 GHz only
2778  *
2779  * @short_ssid: short ssid to scan for
2780  * @bssid: bssid to scan for
2781  * @channel_idx: idx of the channel in the channel array in the scan request
2782  *	 which the above info is relevant to
2783  * @unsolicited_probe: the AP transmits unsolicited probe response every 20 TU
2784  * @short_ssid_valid: @short_ssid is valid and can be used
2785  * @psc_no_listen: when set, and the channel is a PSC channel, no need to wait
2786  *       20 TUs before starting to send probe requests.
2787  * @psd_20: The AP's 20 MHz PSD value.
2788  */
2789 struct cfg80211_scan_6ghz_params {
2790 	u32 short_ssid;
2791 	u32 channel_idx;
2792 	u8 bssid[ETH_ALEN];
2793 	bool unsolicited_probe;
2794 	bool short_ssid_valid;
2795 	bool psc_no_listen;
2796 	s8 psd_20;
2797 };
2798 
2799 /**
2800  * struct cfg80211_scan_request - scan request description
2801  *
2802  * @ssids: SSIDs to scan for (active scan only)
2803  * @n_ssids: number of SSIDs
2804  * @channels: channels to scan on.
2805  * @n_channels: total number of channels to scan
2806  * @ie: optional information element(s) to add into Probe Request or %NULL
2807  * @ie_len: length of ie in octets
2808  * @duration: how long to listen on each channel, in TUs. If
2809  *	%duration_mandatory is not set, this is the maximum dwell time and
2810  *	the actual dwell time may be shorter.
2811  * @duration_mandatory: if set, the scan duration must be as specified by the
2812  *	%duration field.
2813  * @flags: control flags from &enum nl80211_scan_flags
2814  * @rates: bitmap of rates to advertise for each band
2815  * @wiphy: the wiphy this was for
2816  * @scan_start: time (in jiffies) when the scan started
2817  * @wdev: the wireless device to scan for
2818  * @no_cck: used to send probe requests at non CCK rate in 2GHz band
2819  * @mac_addr: MAC address used with randomisation
2820  * @mac_addr_mask: MAC address mask used with randomisation, bits that
2821  *	are 0 in the mask should be randomised, bits that are 1 should
2822  *	be taken from the @mac_addr
2823  * @scan_6ghz: relevant for split scan request only,
2824  *	true if this is a 6 GHz scan request
2825  * @first_part: %true if this is the first part of a split scan request or a
2826  *	scan that was not split. May be %true for a @scan_6ghz scan if no other
2827  *	channels were requested
2828  * @n_6ghz_params: number of 6 GHz params
2829  * @scan_6ghz_params: 6 GHz params
2830  * @bssid: BSSID to scan for (most commonly, the wildcard BSSID)
2831  * @tsf_report_link_id: for MLO, indicates the link ID of the BSS that should be
2832  *      used for TSF reporting. Can be set to -1 to indicate no preference.
2833  */
2834 struct cfg80211_scan_request {
2835 	struct cfg80211_ssid *ssids;
2836 	int n_ssids;
2837 	u32 n_channels;
2838 	const u8 *ie;
2839 	size_t ie_len;
2840 	u16 duration;
2841 	bool duration_mandatory;
2842 	u32 flags;
2843 
2844 	u32 rates[NUM_NL80211_BANDS];
2845 
2846 	struct wireless_dev *wdev;
2847 
2848 	u8 mac_addr[ETH_ALEN] __aligned(2);
2849 	u8 mac_addr_mask[ETH_ALEN] __aligned(2);
2850 	u8 bssid[ETH_ALEN] __aligned(2);
2851 	struct wiphy *wiphy;
2852 	unsigned long scan_start;
2853 	bool no_cck;
2854 	bool scan_6ghz;
2855 	bool first_part;
2856 	u32 n_6ghz_params;
2857 	struct cfg80211_scan_6ghz_params *scan_6ghz_params;
2858 	s8 tsf_report_link_id;
2859 
2860 	/* keep last */
2861 	struct ieee80211_channel *channels[];
2862 };
2863 
2864 static inline void get_random_mask_addr(u8 *buf, const u8 *addr, const u8 *mask)
2865 {
2866 	int i;
2867 
2868 	get_random_bytes(buf, ETH_ALEN);
2869 	for (i = 0; i < ETH_ALEN; i++) {
2870 		buf[i] &= ~mask[i];
2871 		buf[i] |= addr[i] & mask[i];
2872 	}
2873 }
2874 
2875 /**
2876  * struct cfg80211_match_set - sets of attributes to match
2877  *
2878  * @ssid: SSID to be matched; may be zero-length in case of BSSID match
2879  *	or no match (RSSI only)
2880  * @bssid: BSSID to be matched; may be all-zero BSSID in case of SSID match
2881  *	or no match (RSSI only)
2882  * @rssi_thold: don't report scan results below this threshold (in s32 dBm)
2883  */
2884 struct cfg80211_match_set {
2885 	struct cfg80211_ssid ssid;
2886 	u8 bssid[ETH_ALEN];
2887 	s32 rssi_thold;
2888 };
2889 
2890 /**
2891  * struct cfg80211_sched_scan_plan - scan plan for scheduled scan
2892  *
2893  * @interval: interval between scheduled scan iterations. In seconds.
2894  * @iterations: number of scan iterations in this scan plan. Zero means
2895  *	infinite loop.
2896  *	The last scan plan will always have this parameter set to zero,
2897  *	all other scan plans will have a finite number of iterations.
2898  */
2899 struct cfg80211_sched_scan_plan {
2900 	u32 interval;
2901 	u32 iterations;
2902 };
2903 
2904 /**
2905  * struct cfg80211_bss_select_adjust - BSS selection with RSSI adjustment.
2906  *
2907  * @band: band of BSS which should match for RSSI level adjustment.
2908  * @delta: value of RSSI level adjustment.
2909  */
2910 struct cfg80211_bss_select_adjust {
2911 	enum nl80211_band band;
2912 	s8 delta;
2913 };
2914 
2915 /**
2916  * struct cfg80211_sched_scan_request - scheduled scan request description
2917  *
2918  * @reqid: identifies this request.
2919  * @ssids: SSIDs to scan for (passed in the probe_reqs in active scans)
2920  * @n_ssids: number of SSIDs
2921  * @n_channels: total number of channels to scan
2922  * @ie: optional information element(s) to add into Probe Request or %NULL
2923  * @ie_len: length of ie in octets
2924  * @flags: control flags from &enum nl80211_scan_flags
2925  * @match_sets: sets of parameters to be matched for a scan result
2926  *	entry to be considered valid and to be passed to the host
2927  *	(others are filtered out).
2928  *	If omitted, all results are passed.
2929  * @n_match_sets: number of match sets
2930  * @report_results: indicates that results were reported for this request
2931  * @wiphy: the wiphy this was for
2932  * @dev: the interface
2933  * @scan_start: start time of the scheduled scan
2934  * @channels: channels to scan
2935  * @min_rssi_thold: for drivers only supporting a single threshold, this
2936  *	contains the minimum over all matchsets
2937  * @mac_addr: MAC address used with randomisation
2938  * @mac_addr_mask: MAC address mask used with randomisation, bits that
2939  *	are 0 in the mask should be randomised, bits that are 1 should
2940  *	be taken from the @mac_addr
2941  * @scan_plans: scan plans to be executed in this scheduled scan. Lowest
2942  *	index must be executed first.
2943  * @n_scan_plans: number of scan plans, at least 1.
2944  * @rcu_head: RCU callback used to free the struct
2945  * @owner_nlportid: netlink portid of owner (if this should is a request
2946  *	owned by a particular socket)
2947  * @nl_owner_dead: netlink owner socket was closed - this request be freed
2948  * @list: for keeping list of requests.
2949  * @delay: delay in seconds to use before starting the first scan
2950  *	cycle.  The driver may ignore this parameter and start
2951  *	immediately (or at any other time), if this feature is not
2952  *	supported.
2953  * @relative_rssi_set: Indicates whether @relative_rssi is set or not.
2954  * @relative_rssi: Relative RSSI threshold in dB to restrict scan result
2955  *	reporting in connected state to cases where a matching BSS is determined
2956  *	to have better or slightly worse RSSI than the current connected BSS.
2957  *	The relative RSSI threshold values are ignored in disconnected state.
2958  * @rssi_adjust: delta dB of RSSI preference to be given to the BSSs that belong
2959  *	to the specified band while deciding whether a better BSS is reported
2960  *	using @relative_rssi. If delta is a negative number, the BSSs that
2961  *	belong to the specified band will be penalized by delta dB in relative
2962  *	comparisons.
2963  */
2964 struct cfg80211_sched_scan_request {
2965 	u64 reqid;
2966 	struct cfg80211_ssid *ssids;
2967 	int n_ssids;
2968 	u32 n_channels;
2969 	const u8 *ie;
2970 	size_t ie_len;
2971 	u32 flags;
2972 	struct cfg80211_match_set *match_sets;
2973 	int n_match_sets;
2974 	s32 min_rssi_thold;
2975 	u32 delay;
2976 	struct cfg80211_sched_scan_plan *scan_plans;
2977 	int n_scan_plans;
2978 
2979 	u8 mac_addr[ETH_ALEN] __aligned(2);
2980 	u8 mac_addr_mask[ETH_ALEN] __aligned(2);
2981 
2982 	bool relative_rssi_set;
2983 	s8 relative_rssi;
2984 	struct cfg80211_bss_select_adjust rssi_adjust;
2985 
2986 	/* internal */
2987 	struct wiphy *wiphy;
2988 	struct net_device *dev;
2989 	unsigned long scan_start;
2990 	bool report_results;
2991 	struct rcu_head rcu_head;
2992 	u32 owner_nlportid;
2993 	bool nl_owner_dead;
2994 	struct list_head list;
2995 
2996 	/* keep last */
2997 	struct ieee80211_channel *channels[] __counted_by(n_channels);
2998 };
2999 
3000 /**
3001  * enum cfg80211_signal_type - signal type
3002  *
3003  * @CFG80211_SIGNAL_TYPE_NONE: no signal strength information available
3004  * @CFG80211_SIGNAL_TYPE_MBM: signal strength in mBm (100*dBm)
3005  * @CFG80211_SIGNAL_TYPE_UNSPEC: signal strength, increasing from 0 through 100
3006  */
3007 enum cfg80211_signal_type {
3008 	CFG80211_SIGNAL_TYPE_NONE,
3009 	CFG80211_SIGNAL_TYPE_MBM,
3010 	CFG80211_SIGNAL_TYPE_UNSPEC,
3011 };
3012 
3013 /**
3014  * struct cfg80211_inform_bss - BSS inform data
3015  * @chan: channel the frame was received on
3016  * @signal: signal strength value, according to the wiphy's
3017  *	signal type
3018  * @boottime_ns: timestamp (CLOCK_BOOTTIME) when the information was
3019  *	received; should match the time when the frame was actually
3020  *	received by the device (not just by the host, in case it was
3021  *	buffered on the device) and be accurate to about 10ms.
3022  *	If the frame isn't buffered, just passing the return value of
3023  *	ktime_get_boottime_ns() is likely appropriate.
3024  * @parent_tsf: the time at the start of reception of the first octet of the
3025  *	timestamp field of the frame. The time is the TSF of the BSS specified
3026  *	by %parent_bssid.
3027  * @parent_bssid: the BSS according to which %parent_tsf is set. This is set to
3028  *	the BSS that requested the scan in which the beacon/probe was received.
3029  * @chains: bitmask for filled values in @chain_signal.
3030  * @chain_signal: per-chain signal strength of last received BSS in dBm.
3031  * @restrict_use: restrict usage, if not set, assume @use_for is
3032  *	%NL80211_BSS_USE_FOR_NORMAL.
3033  * @use_for: bitmap of possible usage for this BSS, see
3034  *	&enum nl80211_bss_use_for
3035  * @cannot_use_reasons: the reasons (bitmap) for not being able to connect,
3036  *	if @restrict_use is set and @use_for is zero (empty); may be 0 for
3037  *	unspecified reasons; see &enum nl80211_bss_cannot_use_reasons
3038  * @drv_data: Data to be passed through to @inform_bss
3039  */
3040 struct cfg80211_inform_bss {
3041 	struct ieee80211_channel *chan;
3042 	s32 signal;
3043 	u64 boottime_ns;
3044 	u64 parent_tsf;
3045 	u8 parent_bssid[ETH_ALEN] __aligned(2);
3046 	u8 chains;
3047 	s8 chain_signal[IEEE80211_MAX_CHAINS];
3048 
3049 	u8 restrict_use:1, use_for:7;
3050 	u8 cannot_use_reasons;
3051 
3052 	void *drv_data;
3053 };
3054 
3055 /**
3056  * struct cfg80211_bss_ies - BSS entry IE data
3057  * @tsf: TSF contained in the frame that carried these IEs
3058  * @rcu_head: internal use, for freeing
3059  * @len: length of the IEs
3060  * @from_beacon: these IEs are known to come from a beacon
3061  * @data: IE data
3062  */
3063 struct cfg80211_bss_ies {
3064 	u64 tsf;
3065 	struct rcu_head rcu_head;
3066 	int len;
3067 	bool from_beacon;
3068 	u8 data[];
3069 };
3070 
3071 /**
3072  * struct cfg80211_bss - BSS description
3073  *
3074  * This structure describes a BSS (which may also be a mesh network)
3075  * for use in scan results and similar.
3076  *
3077  * @channel: channel this BSS is on
3078  * @bssid: BSSID of the BSS
3079  * @beacon_interval: the beacon interval as from the frame
3080  * @capability: the capability field in host byte order
3081  * @ies: the information elements (Note that there is no guarantee that these
3082  *	are well-formed!); this is a pointer to either the beacon_ies or
3083  *	proberesp_ies depending on whether Probe Response frame has been
3084  *	received. It is always non-%NULL.
3085  * @beacon_ies: the information elements from the last Beacon frame
3086  *	(implementation note: if @hidden_beacon_bss is set this struct doesn't
3087  *	own the beacon_ies, but they're just pointers to the ones from the
3088  *	@hidden_beacon_bss struct)
3089  * @proberesp_ies: the information elements from the last Probe Response frame
3090  * @proberesp_ecsa_stuck: ECSA element is stuck in the Probe Response frame,
3091  *	cannot rely on it having valid data
3092  * @hidden_beacon_bss: in case this BSS struct represents a probe response from
3093  *	a BSS that hides the SSID in its beacon, this points to the BSS struct
3094  *	that holds the beacon data. @beacon_ies is still valid, of course, and
3095  *	points to the same data as hidden_beacon_bss->beacon_ies in that case.
3096  * @transmitted_bss: pointer to the transmitted BSS, if this is a
3097  *	non-transmitted one (multi-BSSID support)
3098  * @nontrans_list: list of non-transmitted BSS, if this is a transmitted one
3099  *	(multi-BSSID support)
3100  * @signal: signal strength value (type depends on the wiphy's signal_type)
3101  * @ts_boottime: timestamp of the last BSS update in nanoseconds since boot
3102  * @chains: bitmask for filled values in @chain_signal.
3103  * @chain_signal: per-chain signal strength of last received BSS in dBm.
3104  * @bssid_index: index in the multiple BSS set
3105  * @max_bssid_indicator: max number of members in the BSS set
3106  * @use_for: bitmap of possible usage for this BSS, see
3107  *	&enum nl80211_bss_use_for
3108  * @cannot_use_reasons: the reasons (bitmap) for not being able to connect,
3109  *	if @restrict_use is set and @use_for is zero (empty); may be 0 for
3110  *	unspecified reasons; see &enum nl80211_bss_cannot_use_reasons
3111  * @priv: private area for driver use, has at least wiphy->bss_priv_size bytes
3112  */
3113 struct cfg80211_bss {
3114 	struct ieee80211_channel *channel;
3115 
3116 	const struct cfg80211_bss_ies __rcu *ies;
3117 	const struct cfg80211_bss_ies __rcu *beacon_ies;
3118 	const struct cfg80211_bss_ies __rcu *proberesp_ies;
3119 
3120 	struct cfg80211_bss *hidden_beacon_bss;
3121 	struct cfg80211_bss *transmitted_bss;
3122 	struct list_head nontrans_list;
3123 
3124 	s32 signal;
3125 
3126 	u64 ts_boottime;
3127 
3128 	u16 beacon_interval;
3129 	u16 capability;
3130 
3131 	u8 bssid[ETH_ALEN];
3132 	u8 chains;
3133 	s8 chain_signal[IEEE80211_MAX_CHAINS];
3134 
3135 	u8 proberesp_ecsa_stuck:1;
3136 
3137 	u8 bssid_index;
3138 	u8 max_bssid_indicator;
3139 
3140 	u8 use_for;
3141 	u8 cannot_use_reasons;
3142 
3143 	u8 priv[] __aligned(sizeof(void *));
3144 };
3145 
3146 /**
3147  * ieee80211_bss_get_elem - find element with given ID
3148  * @bss: the bss to search
3149  * @id: the element ID
3150  *
3151  * Note that the return value is an RCU-protected pointer, so
3152  * rcu_read_lock() must be held when calling this function.
3153  * Return: %NULL if not found.
3154  */
3155 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id);
3156 
3157 /**
3158  * ieee80211_bss_get_ie - find IE with given ID
3159  * @bss: the bss to search
3160  * @id: the element ID
3161  *
3162  * Note that the return value is an RCU-protected pointer, so
3163  * rcu_read_lock() must be held when calling this function.
3164  * Return: %NULL if not found.
3165  */
3166 static inline const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 id)
3167 {
3168 	return (const void *)ieee80211_bss_get_elem(bss, id);
3169 }
3170 
3171 
3172 /**
3173  * struct cfg80211_auth_request - Authentication request data
3174  *
3175  * This structure provides information needed to complete IEEE 802.11
3176  * authentication.
3177  *
3178  * @bss: The BSS to authenticate with, the callee must obtain a reference
3179  *	to it if it needs to keep it.
3180  * @supported_selectors: List of selectors that should be assumed to be
3181  *	supported by the station.
3182  *	SAE_H2E must be assumed supported if set to %NULL.
3183  * @supported_selectors_len: Length of supported_selectors in octets.
3184  * @auth_type: Authentication type (algorithm)
3185  * @ie: Extra IEs to add to Authentication frame or %NULL
3186  * @ie_len: Length of ie buffer in octets
3187  * @key_len: length of WEP key for shared key authentication
3188  * @key_idx: index of WEP key for shared key authentication
3189  * @key: WEP key for shared key authentication
3190  * @auth_data: Fields and elements in Authentication frames. This contains
3191  *	the authentication frame body (non-IE and IE data), excluding the
3192  *	Authentication algorithm number, i.e., starting at the Authentication
3193  *	transaction sequence number field.
3194  * @auth_data_len: Length of auth_data buffer in octets
3195  * @link_id: if >= 0, indicates authentication should be done as an MLD,
3196  *	the interface address is included as the MLD address and the
3197  *	necessary link (with the given link_id) will be created (and
3198  *	given an MLD address) by the driver
3199  * @ap_mld_addr: AP MLD address in case of authentication request with
3200  *	an AP MLD, valid iff @link_id >= 0
3201  */
3202 struct cfg80211_auth_request {
3203 	struct cfg80211_bss *bss;
3204 	const u8 *ie;
3205 	size_t ie_len;
3206 	const u8 *supported_selectors;
3207 	u8 supported_selectors_len;
3208 	enum nl80211_auth_type auth_type;
3209 	const u8 *key;
3210 	u8 key_len;
3211 	s8 key_idx;
3212 	const u8 *auth_data;
3213 	size_t auth_data_len;
3214 	s8 link_id;
3215 	const u8 *ap_mld_addr;
3216 };
3217 
3218 /**
3219  * struct cfg80211_assoc_link - per-link information for MLO association
3220  * @bss: the BSS pointer, see also &struct cfg80211_assoc_request::bss;
3221  *	if this is %NULL for a link, that link is not requested
3222  * @elems: extra elements for the per-STA profile for this link
3223  * @elems_len: length of the elements
3224  * @error: per-link error code, must be <= 0. If there is an error, then the
3225  *	operation as a whole must fail.
3226  */
3227 struct cfg80211_assoc_link {
3228 	struct cfg80211_bss *bss;
3229 	const u8 *elems;
3230 	size_t elems_len;
3231 	int error;
3232 };
3233 
3234 /**
3235  * struct cfg80211_ml_reconf_req - MLO link reconfiguration request
3236  * @add_links: data for links to add, see &struct cfg80211_assoc_link
3237  * @rem_links: bitmap of links to remove
3238  * @ext_mld_capa_ops: extended MLD capabilities and operations set by
3239  *	userspace for the ML reconfiguration action frame
3240  */
3241 struct cfg80211_ml_reconf_req {
3242 	struct cfg80211_assoc_link add_links[IEEE80211_MLD_MAX_NUM_LINKS];
3243 	u16 rem_links;
3244 	u16 ext_mld_capa_ops;
3245 };
3246 
3247 /**
3248  * enum cfg80211_assoc_req_flags - Over-ride default behaviour in association.
3249  *
3250  * @ASSOC_REQ_DISABLE_HT:  Disable HT (802.11n)
3251  * @ASSOC_REQ_DISABLE_VHT:  Disable VHT
3252  * @ASSOC_REQ_USE_RRM: Declare RRM capability in this association
3253  * @CONNECT_REQ_EXTERNAL_AUTH_SUPPORT: User space indicates external
3254  *	authentication capability. Drivers can offload authentication to
3255  *	userspace if this flag is set. Only applicable for cfg80211_connect()
3256  *	request (connect callback).
3257  * @ASSOC_REQ_DISABLE_HE:  Disable HE
3258  * @ASSOC_REQ_DISABLE_EHT:  Disable EHT
3259  * @CONNECT_REQ_MLO_SUPPORT: Userspace indicates support for handling MLD links.
3260  *	Drivers shall disable MLO features for the current association if this
3261  *	flag is not set.
3262  * @ASSOC_REQ_SPP_AMSDU: SPP A-MSDUs will be used on this connection (if any)
3263  */
3264 enum cfg80211_assoc_req_flags {
3265 	ASSOC_REQ_DISABLE_HT			= BIT(0),
3266 	ASSOC_REQ_DISABLE_VHT			= BIT(1),
3267 	ASSOC_REQ_USE_RRM			= BIT(2),
3268 	CONNECT_REQ_EXTERNAL_AUTH_SUPPORT	= BIT(3),
3269 	ASSOC_REQ_DISABLE_HE			= BIT(4),
3270 	ASSOC_REQ_DISABLE_EHT			= BIT(5),
3271 	CONNECT_REQ_MLO_SUPPORT			= BIT(6),
3272 	ASSOC_REQ_SPP_AMSDU			= BIT(7),
3273 };
3274 
3275 /**
3276  * struct cfg80211_assoc_request - (Re)Association request data
3277  *
3278  * This structure provides information needed to complete IEEE 802.11
3279  * (re)association.
3280  * @bss: The BSS to associate with. If the call is successful the driver is
3281  *	given a reference that it must give back to cfg80211_send_rx_assoc()
3282  *	or to cfg80211_assoc_timeout(). To ensure proper refcounting, new
3283  *	association requests while already associating must be rejected.
3284  *	This also applies to the @links.bss parameter, which is used instead
3285  *	of this one (it is %NULL) for MLO associations.
3286  * @ie: Extra IEs to add to (Re)Association Request frame or %NULL
3287  * @ie_len: Length of ie buffer in octets
3288  * @use_mfp: Use management frame protection (IEEE 802.11w) in this association
3289  * @crypto: crypto settings
3290  * @prev_bssid: previous BSSID, if not %NULL use reassociate frame. This is used
3291  *	to indicate a request to reassociate within the ESS instead of a request
3292  *	do the initial association with the ESS. When included, this is set to
3293  *	the BSSID of the current association, i.e., to the value that is
3294  *	included in the Current AP address field of the Reassociation Request
3295  *	frame.
3296  * @flags:  See &enum cfg80211_assoc_req_flags
3297  * @supported_selectors: supported BSS selectors in IEEE 802.11 format
3298  *	(or %NULL for no change).
3299  *	If %NULL, then support for SAE_H2E should be assumed.
3300  * @supported_selectors_len: number of supported BSS selectors
3301  * @ht_capa:  HT Capabilities over-rides.  Values set in ht_capa_mask
3302  *	will be used in ht_capa.  Un-supported values will be ignored.
3303  * @ht_capa_mask:  The bits of ht_capa which are to be used.
3304  * @vht_capa: VHT capability override
3305  * @vht_capa_mask: VHT capability mask indicating which fields to use
3306  * @fils_kek: FILS KEK for protecting (Re)Association Request/Response frame or
3307  *	%NULL if FILS is not used.
3308  * @fils_kek_len: Length of fils_kek in octets
3309  * @fils_nonces: FILS nonces (part of AAD) for protecting (Re)Association
3310  *	Request/Response frame or %NULL if FILS is not used. This field starts
3311  *	with 16 octets of STA Nonce followed by 16 octets of AP Nonce.
3312  * @s1g_capa: S1G capability override
3313  * @s1g_capa_mask: S1G capability override mask
3314  * @links: per-link information for MLO connections
3315  * @link_id: >= 0 for MLO connections, where links are given, and indicates
3316  *	the link on which the association request should be sent
3317  * @ap_mld_addr: AP MLD address in case of MLO association request,
3318  *	valid iff @link_id >= 0
3319  * @ext_mld_capa_ops: extended MLD capabilities and operations set by
3320  *	userspace for the association
3321  */
3322 struct cfg80211_assoc_request {
3323 	struct cfg80211_bss *bss;
3324 	const u8 *ie, *prev_bssid;
3325 	size_t ie_len;
3326 	struct cfg80211_crypto_settings crypto;
3327 	bool use_mfp;
3328 	u32 flags;
3329 	const u8 *supported_selectors;
3330 	u8 supported_selectors_len;
3331 	struct ieee80211_ht_cap ht_capa;
3332 	struct ieee80211_ht_cap ht_capa_mask;
3333 	struct ieee80211_vht_cap vht_capa, vht_capa_mask;
3334 	const u8 *fils_kek;
3335 	size_t fils_kek_len;
3336 	const u8 *fils_nonces;
3337 	struct ieee80211_s1g_cap s1g_capa, s1g_capa_mask;
3338 	struct cfg80211_assoc_link links[IEEE80211_MLD_MAX_NUM_LINKS];
3339 	const u8 *ap_mld_addr;
3340 	s8 link_id;
3341 	u16 ext_mld_capa_ops;
3342 };
3343 
3344 /**
3345  * struct cfg80211_deauth_request - Deauthentication request data
3346  *
3347  * This structure provides information needed to complete IEEE 802.11
3348  * deauthentication.
3349  *
3350  * @bssid: the BSSID or AP MLD address to deauthenticate from
3351  * @ie: Extra IEs to add to Deauthentication frame or %NULL
3352  * @ie_len: Length of ie buffer in octets
3353  * @reason_code: The reason code for the deauthentication
3354  * @local_state_change: if set, change local state only and
3355  *	do not set a deauth frame
3356  */
3357 struct cfg80211_deauth_request {
3358 	const u8 *bssid;
3359 	const u8 *ie;
3360 	size_t ie_len;
3361 	u16 reason_code;
3362 	bool local_state_change;
3363 };
3364 
3365 /**
3366  * struct cfg80211_disassoc_request - Disassociation request data
3367  *
3368  * This structure provides information needed to complete IEEE 802.11
3369  * disassociation.
3370  *
3371  * @ap_addr: the BSSID or AP MLD address to disassociate from
3372  * @ie: Extra IEs to add to Disassociation frame or %NULL
3373  * @ie_len: Length of ie buffer in octets
3374  * @reason_code: The reason code for the disassociation
3375  * @local_state_change: This is a request for a local state only, i.e., no
3376  *	Disassociation frame is to be transmitted.
3377  */
3378 struct cfg80211_disassoc_request {
3379 	const u8 *ap_addr;
3380 	const u8 *ie;
3381 	size_t ie_len;
3382 	u16 reason_code;
3383 	bool local_state_change;
3384 };
3385 
3386 /**
3387  * struct cfg80211_ibss_params - IBSS parameters
3388  *
3389  * This structure defines the IBSS parameters for the join_ibss()
3390  * method.
3391  *
3392  * @ssid: The SSID, will always be non-null.
3393  * @ssid_len: The length of the SSID, will always be non-zero.
3394  * @bssid: Fixed BSSID requested, maybe be %NULL, if set do not
3395  *	search for IBSSs with a different BSSID.
3396  * @chandef: defines the channel to use if no other IBSS to join can be found
3397  * @channel_fixed: The channel should be fixed -- do not search for
3398  *	IBSSs to join on other channels.
3399  * @ie: information element(s) to include in the beacon
3400  * @ie_len: length of that
3401  * @beacon_interval: beacon interval to use
3402  * @privacy: this is a protected network, keys will be configured
3403  *	after joining
3404  * @control_port: whether user space controls IEEE 802.1X port, i.e.,
3405  *	sets/clears %NL80211_STA_FLAG_AUTHORIZED. If true, the driver is
3406  *	required to assume that the port is unauthorized until authorized by
3407  *	user space. Otherwise, port is marked authorized by default.
3408  * @control_port_over_nl80211: TRUE if userspace expects to exchange control
3409  *	port frames over NL80211 instead of the network interface.
3410  * @userspace_handles_dfs: whether user space controls DFS operation, i.e.
3411  *	changes the channel when a radar is detected. This is required
3412  *	to operate on DFS channels.
3413  * @basic_rates: bitmap of basic rates to use when creating the IBSS
3414  * @mcast_rate: per-band multicast rate index + 1 (0: disabled)
3415  * @ht_capa:  HT Capabilities over-rides.  Values set in ht_capa_mask
3416  *	will be used in ht_capa.  Un-supported values will be ignored.
3417  * @ht_capa_mask:  The bits of ht_capa which are to be used.
3418  * @wep_keys: static WEP keys, if not NULL points to an array of
3419  *	CFG80211_MAX_WEP_KEYS WEP keys
3420  * @wep_tx_key: key index (0..3) of the default TX static WEP key
3421  */
3422 struct cfg80211_ibss_params {
3423 	const u8 *ssid;
3424 	const u8 *bssid;
3425 	struct cfg80211_chan_def chandef;
3426 	const u8 *ie;
3427 	u8 ssid_len, ie_len;
3428 	u16 beacon_interval;
3429 	u32 basic_rates;
3430 	bool channel_fixed;
3431 	bool privacy;
3432 	bool control_port;
3433 	bool control_port_over_nl80211;
3434 	bool userspace_handles_dfs;
3435 	int mcast_rate[NUM_NL80211_BANDS];
3436 	struct ieee80211_ht_cap ht_capa;
3437 	struct ieee80211_ht_cap ht_capa_mask;
3438 	struct key_params *wep_keys;
3439 	int wep_tx_key;
3440 };
3441 
3442 /**
3443  * struct cfg80211_bss_selection - connection parameters for BSS selection.
3444  *
3445  * @behaviour: requested BSS selection behaviour.
3446  * @param: parameters for requestion behaviour.
3447  * @param.band_pref: preferred band for %NL80211_BSS_SELECT_ATTR_BAND_PREF.
3448  * @param.adjust: parameters for %NL80211_BSS_SELECT_ATTR_RSSI_ADJUST.
3449  */
3450 struct cfg80211_bss_selection {
3451 	enum nl80211_bss_select_attr behaviour;
3452 	union {
3453 		enum nl80211_band band_pref;
3454 		struct cfg80211_bss_select_adjust adjust;
3455 	} param;
3456 };
3457 
3458 /**
3459  * struct cfg80211_connect_params - Connection parameters
3460  *
3461  * This structure provides information needed to complete IEEE 802.11
3462  * authentication and association.
3463  *
3464  * @channel: The channel to use or %NULL if not specified (auto-select based
3465  *	on scan results)
3466  * @channel_hint: The channel of the recommended BSS for initial connection or
3467  *	%NULL if not specified
3468  * @bssid: The AP BSSID or %NULL if not specified (auto-select based on scan
3469  *	results)
3470  * @bssid_hint: The recommended AP BSSID for initial connection to the BSS or
3471  *	%NULL if not specified. Unlike the @bssid parameter, the driver is
3472  *	allowed to ignore this @bssid_hint if it has knowledge of a better BSS
3473  *	to use.
3474  * @ssid: SSID
3475  * @ssid_len: Length of ssid in octets
3476  * @auth_type: Authentication type (algorithm)
3477  * @ie: IEs for association request
3478  * @ie_len: Length of assoc_ie in octets
3479  * @privacy: indicates whether privacy-enabled APs should be used
3480  * @mfp: indicate whether management frame protection is used
3481  * @crypto: crypto settings
3482  * @key_len: length of WEP key for shared key authentication
3483  * @key_idx: index of WEP key for shared key authentication
3484  * @key: WEP key for shared key authentication
3485  * @flags:  See &enum cfg80211_assoc_req_flags
3486  * @bg_scan_period:  Background scan period in seconds
3487  *	or -1 to indicate that default value is to be used.
3488  * @ht_capa:  HT Capabilities over-rides.  Values set in ht_capa_mask
3489  *	will be used in ht_capa.  Un-supported values will be ignored.
3490  * @ht_capa_mask:  The bits of ht_capa which are to be used.
3491  * @vht_capa:  VHT Capability overrides
3492  * @vht_capa_mask: The bits of vht_capa which are to be used.
3493  * @pbss: if set, connect to a PCP instead of AP. Valid for DMG
3494  *	networks.
3495  * @bss_select: criteria to be used for BSS selection.
3496  * @prev_bssid: previous BSSID, if not %NULL use reassociate frame. This is used
3497  *	to indicate a request to reassociate within the ESS instead of a request
3498  *	do the initial association with the ESS. When included, this is set to
3499  *	the BSSID of the current association, i.e., to the value that is
3500  *	included in the Current AP address field of the Reassociation Request
3501  *	frame.
3502  * @fils_erp_username: EAP re-authentication protocol (ERP) username part of the
3503  *	NAI or %NULL if not specified. This is used to construct FILS wrapped
3504  *	data IE.
3505  * @fils_erp_username_len: Length of @fils_erp_username in octets.
3506  * @fils_erp_realm: EAP re-authentication protocol (ERP) realm part of NAI or
3507  *	%NULL if not specified. This specifies the domain name of ER server and
3508  *	is used to construct FILS wrapped data IE.
3509  * @fils_erp_realm_len: Length of @fils_erp_realm in octets.
3510  * @fils_erp_next_seq_num: The next sequence number to use in the FILS ERP
3511  *	messages. This is also used to construct FILS wrapped data IE.
3512  * @fils_erp_rrk: ERP re-authentication Root Key (rRK) used to derive additional
3513  *	keys in FILS or %NULL if not specified.
3514  * @fils_erp_rrk_len: Length of @fils_erp_rrk in octets.
3515  * @want_1x: indicates user-space supports and wants to use 802.1X driver
3516  *	offload of 4-way handshake.
3517  * @edmg: define the EDMG channels.
3518  *	This may specify multiple channels and bonding options for the driver
3519  *	to choose from, based on BSS configuration.
3520  */
3521 struct cfg80211_connect_params {
3522 	struct ieee80211_channel *channel;
3523 	struct ieee80211_channel *channel_hint;
3524 	const u8 *bssid;
3525 	const u8 *bssid_hint;
3526 	const u8 *ssid;
3527 	size_t ssid_len;
3528 	enum nl80211_auth_type auth_type;
3529 	const u8 *ie;
3530 	size_t ie_len;
3531 	bool privacy;
3532 	enum nl80211_mfp mfp;
3533 	struct cfg80211_crypto_settings crypto;
3534 	const u8 *key;
3535 	u8 key_len, key_idx;
3536 	u32 flags;
3537 	int bg_scan_period;
3538 	struct ieee80211_ht_cap ht_capa;
3539 	struct ieee80211_ht_cap ht_capa_mask;
3540 	struct ieee80211_vht_cap vht_capa;
3541 	struct ieee80211_vht_cap vht_capa_mask;
3542 	bool pbss;
3543 	struct cfg80211_bss_selection bss_select;
3544 	const u8 *prev_bssid;
3545 	const u8 *fils_erp_username;
3546 	size_t fils_erp_username_len;
3547 	const u8 *fils_erp_realm;
3548 	size_t fils_erp_realm_len;
3549 	u16 fils_erp_next_seq_num;
3550 	const u8 *fils_erp_rrk;
3551 	size_t fils_erp_rrk_len;
3552 	bool want_1x;
3553 	struct ieee80211_edmg edmg;
3554 };
3555 
3556 /**
3557  * enum cfg80211_connect_params_changed - Connection parameters being updated
3558  *
3559  * This enum provides information of all connect parameters that
3560  * have to be updated as part of update_connect_params() call.
3561  *
3562  * @UPDATE_ASSOC_IES: Indicates whether association request IEs are updated
3563  * @UPDATE_FILS_ERP_INFO: Indicates that FILS connection parameters (realm,
3564  *	username, erp sequence number and rrk) are updated
3565  * @UPDATE_AUTH_TYPE: Indicates that authentication type is updated
3566  */
3567 enum cfg80211_connect_params_changed {
3568 	UPDATE_ASSOC_IES		= BIT(0),
3569 	UPDATE_FILS_ERP_INFO		= BIT(1),
3570 	UPDATE_AUTH_TYPE		= BIT(2),
3571 };
3572 
3573 /**
3574  * enum wiphy_params_flags - set_wiphy_params bitfield values
3575  * @WIPHY_PARAM_RETRY_SHORT: wiphy->retry_short has changed
3576  * @WIPHY_PARAM_RETRY_LONG: wiphy->retry_long has changed
3577  * @WIPHY_PARAM_FRAG_THRESHOLD: wiphy->frag_threshold has changed
3578  * @WIPHY_PARAM_RTS_THRESHOLD: wiphy->rts_threshold has changed
3579  * @WIPHY_PARAM_COVERAGE_CLASS: coverage class changed
3580  * @WIPHY_PARAM_DYN_ACK: dynack has been enabled
3581  * @WIPHY_PARAM_TXQ_LIMIT: TXQ packet limit has been changed
3582  * @WIPHY_PARAM_TXQ_MEMORY_LIMIT: TXQ memory limit has been changed
3583  * @WIPHY_PARAM_TXQ_QUANTUM: TXQ scheduler quantum
3584  */
3585 enum wiphy_params_flags {
3586 	WIPHY_PARAM_RETRY_SHORT		= BIT(0),
3587 	WIPHY_PARAM_RETRY_LONG		= BIT(1),
3588 	WIPHY_PARAM_FRAG_THRESHOLD	= BIT(2),
3589 	WIPHY_PARAM_RTS_THRESHOLD	= BIT(3),
3590 	WIPHY_PARAM_COVERAGE_CLASS	= BIT(4),
3591 	WIPHY_PARAM_DYN_ACK		= BIT(5),
3592 	WIPHY_PARAM_TXQ_LIMIT		= BIT(6),
3593 	WIPHY_PARAM_TXQ_MEMORY_LIMIT	= BIT(7),
3594 	WIPHY_PARAM_TXQ_QUANTUM		= BIT(8),
3595 };
3596 
3597 #define IEEE80211_DEFAULT_AIRTIME_WEIGHT	256
3598 
3599 /* The per TXQ device queue limit in airtime */
3600 #define IEEE80211_DEFAULT_AQL_TXQ_LIMIT_L	5000
3601 #define IEEE80211_DEFAULT_AQL_TXQ_LIMIT_H	12000
3602 
3603 /* The per interface airtime threshold to switch to lower queue limit */
3604 #define IEEE80211_AQL_THRESHOLD			24000
3605 
3606 /**
3607  * struct cfg80211_pmksa - PMK Security Association
3608  *
3609  * This structure is passed to the set/del_pmksa() method for PMKSA
3610  * caching.
3611  *
3612  * @bssid: The AP's BSSID (may be %NULL).
3613  * @pmkid: The identifier to refer a PMKSA.
3614  * @pmk: The PMK for the PMKSA identified by @pmkid. This is used for key
3615  *	derivation by a FILS STA. Otherwise, %NULL.
3616  * @pmk_len: Length of the @pmk. The length of @pmk can differ depending on
3617  *	the hash algorithm used to generate this.
3618  * @ssid: SSID to specify the ESS within which a PMKSA is valid when using FILS
3619  *	cache identifier (may be %NULL).
3620  * @ssid_len: Length of the @ssid in octets.
3621  * @cache_id: 2-octet cache identifier advertized by a FILS AP identifying the
3622  *	scope of PMKSA. This is valid only if @ssid_len is non-zero (may be
3623  *	%NULL).
3624  * @pmk_lifetime: Maximum lifetime for PMKSA in seconds
3625  *	(dot11RSNAConfigPMKLifetime) or 0 if not specified.
3626  *	The configured PMKSA must not be used for PMKSA caching after
3627  *	expiration and any keys derived from this PMK become invalid on
3628  *	expiration, i.e., the current association must be dropped if the PMK
3629  *	used for it expires.
3630  * @pmk_reauth_threshold: Threshold time for reauthentication (percentage of
3631  *	PMK lifetime, dot11RSNAConfigPMKReauthThreshold) or 0 if not specified.
3632  *	Drivers are expected to trigger a full authentication instead of using
3633  *	this PMKSA for caching when reassociating to a new BSS after this
3634  *	threshold to generate a new PMK before the current one expires.
3635  */
3636 struct cfg80211_pmksa {
3637 	const u8 *bssid;
3638 	const u8 *pmkid;
3639 	const u8 *pmk;
3640 	size_t pmk_len;
3641 	const u8 *ssid;
3642 	size_t ssid_len;
3643 	const u8 *cache_id;
3644 	u32 pmk_lifetime;
3645 	u8 pmk_reauth_threshold;
3646 };
3647 
3648 /**
3649  * struct cfg80211_pkt_pattern - packet pattern
3650  * @mask: bitmask where to match pattern and where to ignore bytes,
3651  *	one bit per byte, in same format as nl80211
3652  * @pattern: bytes to match where bitmask is 1
3653  * @pattern_len: length of pattern (in bytes)
3654  * @pkt_offset: packet offset (in bytes)
3655  *
3656  * Internal note: @mask and @pattern are allocated in one chunk of
3657  * memory, free @mask only!
3658  */
3659 struct cfg80211_pkt_pattern {
3660 	const u8 *mask, *pattern;
3661 	int pattern_len;
3662 	int pkt_offset;
3663 };
3664 
3665 /**
3666  * struct cfg80211_wowlan_tcp - TCP connection parameters
3667  *
3668  * @sock: (internal) socket for source port allocation
3669  * @src: source IP address
3670  * @dst: destination IP address
3671  * @dst_mac: destination MAC address
3672  * @src_port: source port
3673  * @dst_port: destination port
3674  * @payload_len: data payload length
3675  * @payload: data payload buffer
3676  * @payload_seq: payload sequence stamping configuration
3677  * @data_interval: interval at which to send data packets
3678  * @wake_len: wakeup payload match length
3679  * @wake_data: wakeup payload match data
3680  * @wake_mask: wakeup payload match mask
3681  * @tokens_size: length of the tokens buffer
3682  * @payload_tok: payload token usage configuration
3683  */
3684 struct cfg80211_wowlan_tcp {
3685 	struct socket *sock;
3686 	__be32 src, dst;
3687 	u16 src_port, dst_port;
3688 	u8 dst_mac[ETH_ALEN];
3689 	int payload_len;
3690 	const u8 *payload;
3691 	struct nl80211_wowlan_tcp_data_seq payload_seq;
3692 	u32 data_interval;
3693 	u32 wake_len;
3694 	const u8 *wake_data, *wake_mask;
3695 	u32 tokens_size;
3696 	/* must be last, variable member */
3697 	struct nl80211_wowlan_tcp_data_token payload_tok;
3698 };
3699 
3700 /**
3701  * struct cfg80211_wowlan - Wake on Wireless-LAN support info
3702  *
3703  * This structure defines the enabled WoWLAN triggers for the device.
3704  * @any: wake up on any activity -- special trigger if device continues
3705  *	operating as normal during suspend
3706  * @disconnect: wake up if getting disconnected
3707  * @magic_pkt: wake up on receiving magic packet
3708  * @patterns: wake up on receiving packet matching a pattern
3709  * @n_patterns: number of patterns
3710  * @gtk_rekey_failure: wake up on GTK rekey failure
3711  * @eap_identity_req: wake up on EAP identity request packet
3712  * @four_way_handshake: wake up on 4-way handshake
3713  * @rfkill_release: wake up when rfkill is released
3714  * @tcp: TCP connection establishment/wakeup parameters, see nl80211.h.
3715  *	NULL if not configured.
3716  * @nd_config: configuration for the scan to be used for net detect wake.
3717  */
3718 struct cfg80211_wowlan {
3719 	bool any, disconnect, magic_pkt, gtk_rekey_failure,
3720 	     eap_identity_req, four_way_handshake,
3721 	     rfkill_release;
3722 	struct cfg80211_pkt_pattern *patterns;
3723 	struct cfg80211_wowlan_tcp *tcp;
3724 	int n_patterns;
3725 	struct cfg80211_sched_scan_request *nd_config;
3726 };
3727 
3728 /**
3729  * struct cfg80211_coalesce_rules - Coalesce rule parameters
3730  *
3731  * This structure defines coalesce rule for the device.
3732  * @delay: maximum coalescing delay in msecs.
3733  * @condition: condition for packet coalescence.
3734  *	see &enum nl80211_coalesce_condition.
3735  * @patterns: array of packet patterns
3736  * @n_patterns: number of patterns
3737  */
3738 struct cfg80211_coalesce_rules {
3739 	int delay;
3740 	enum nl80211_coalesce_condition condition;
3741 	struct cfg80211_pkt_pattern *patterns;
3742 	int n_patterns;
3743 };
3744 
3745 /**
3746  * struct cfg80211_coalesce - Packet coalescing settings
3747  *
3748  * This structure defines coalescing settings.
3749  * @rules: array of coalesce rules
3750  * @n_rules: number of rules
3751  */
3752 struct cfg80211_coalesce {
3753 	int n_rules;
3754 	struct cfg80211_coalesce_rules rules[] __counted_by(n_rules);
3755 };
3756 
3757 /**
3758  * struct cfg80211_wowlan_nd_match - information about the match
3759  *
3760  * @ssid: SSID of the match that triggered the wake up
3761  * @n_channels: Number of channels where the match occurred.  This
3762  *	value may be zero if the driver can't report the channels.
3763  * @channels: center frequencies of the channels where a match
3764  *	occurred (in MHz)
3765  */
3766 struct cfg80211_wowlan_nd_match {
3767 	struct cfg80211_ssid ssid;
3768 	int n_channels;
3769 	u32 channels[] __counted_by(n_channels);
3770 };
3771 
3772 /**
3773  * struct cfg80211_wowlan_nd_info - net detect wake up information
3774  *
3775  * @n_matches: Number of match information instances provided in
3776  *	@matches.  This value may be zero if the driver can't provide
3777  *	match information.
3778  * @matches: Array of pointers to matches containing information about
3779  *	the matches that triggered the wake up.
3780  */
3781 struct cfg80211_wowlan_nd_info {
3782 	int n_matches;
3783 	struct cfg80211_wowlan_nd_match *matches[] __counted_by(n_matches);
3784 };
3785 
3786 /**
3787  * struct cfg80211_wowlan_wakeup - wakeup report
3788  * @disconnect: woke up by getting disconnected
3789  * @magic_pkt: woke up by receiving magic packet
3790  * @gtk_rekey_failure: woke up by GTK rekey failure
3791  * @eap_identity_req: woke up by EAP identity request packet
3792  * @four_way_handshake: woke up by 4-way handshake
3793  * @rfkill_release: woke up by rfkill being released
3794  * @pattern_idx: pattern that caused wakeup, -1 if not due to pattern
3795  * @packet_present_len: copied wakeup packet data
3796  * @packet_len: original wakeup packet length
3797  * @packet: The packet causing the wakeup, if any.
3798  * @packet_80211:  For pattern match, magic packet and other data
3799  *	frame triggers an 802.3 frame should be reported, for
3800  *	disconnect due to deauth 802.11 frame. This indicates which
3801  *	it is.
3802  * @tcp_match: TCP wakeup packet received
3803  * @tcp_connlost: TCP connection lost or failed to establish
3804  * @tcp_nomoretokens: TCP data ran out of tokens
3805  * @net_detect: if not %NULL, woke up because of net detect
3806  * @unprot_deauth_disassoc: woke up due to unprotected deauth or
3807  *	disassoc frame (in MFP).
3808  */
3809 struct cfg80211_wowlan_wakeup {
3810 	bool disconnect, magic_pkt, gtk_rekey_failure,
3811 	     eap_identity_req, four_way_handshake,
3812 	     rfkill_release, packet_80211,
3813 	     tcp_match, tcp_connlost, tcp_nomoretokens,
3814 	     unprot_deauth_disassoc;
3815 	s32 pattern_idx;
3816 	u32 packet_present_len, packet_len;
3817 	const void *packet;
3818 	struct cfg80211_wowlan_nd_info *net_detect;
3819 };
3820 
3821 /**
3822  * struct cfg80211_gtk_rekey_data - rekey data
3823  * @kek: key encryption key (@kek_len bytes)
3824  * @kck: key confirmation key (@kck_len bytes)
3825  * @replay_ctr: replay counter (NL80211_REPLAY_CTR_LEN bytes)
3826  * @kek_len: length of kek
3827  * @kck_len: length of kck
3828  * @akm: akm (oui, id)
3829  */
3830 struct cfg80211_gtk_rekey_data {
3831 	const u8 *kek, *kck, *replay_ctr;
3832 	u32 akm;
3833 	u8 kek_len, kck_len;
3834 };
3835 
3836 /**
3837  * struct cfg80211_update_ft_ies_params - FT IE Information
3838  *
3839  * This structure provides information needed to update the fast transition IE
3840  *
3841  * @md: The Mobility Domain ID, 2 Octet value
3842  * @ie: Fast Transition IEs
3843  * @ie_len: Length of ft_ie in octets
3844  */
3845 struct cfg80211_update_ft_ies_params {
3846 	u16 md;
3847 	const u8 *ie;
3848 	size_t ie_len;
3849 };
3850 
3851 /**
3852  * struct cfg80211_mgmt_tx_params - mgmt tx parameters
3853  *
3854  * This structure provides information needed to transmit a mgmt frame
3855  *
3856  * @chan: channel to use
3857  * @offchan: indicates whether off channel operation is required
3858  * @wait: duration for ROC
3859  * @buf: buffer to transmit
3860  * @len: buffer length
3861  * @no_cck: don't use cck rates for this frame
3862  * @dont_wait_for_ack: tells the low level not to wait for an ack
3863  * @n_csa_offsets: length of csa_offsets array
3864  * @csa_offsets: array of all the csa offsets in the frame
3865  * @link_id: for MLO, the link ID to transmit on, -1 if not given; note
3866  *	that the link ID isn't validated (much), it's in range but the
3867  *	link might not exist (or be used by the receiver STA)
3868  */
3869 struct cfg80211_mgmt_tx_params {
3870 	struct ieee80211_channel *chan;
3871 	bool offchan;
3872 	unsigned int wait;
3873 	const u8 *buf;
3874 	size_t len;
3875 	bool no_cck;
3876 	bool dont_wait_for_ack;
3877 	int n_csa_offsets;
3878 	const u16 *csa_offsets;
3879 	int link_id;
3880 };
3881 
3882 /**
3883  * struct cfg80211_dscp_exception - DSCP exception
3884  *
3885  * @dscp: DSCP value that does not adhere to the user priority range definition
3886  * @up: user priority value to which the corresponding DSCP value belongs
3887  */
3888 struct cfg80211_dscp_exception {
3889 	u8 dscp;
3890 	u8 up;
3891 };
3892 
3893 /**
3894  * struct cfg80211_dscp_range - DSCP range definition for user priority
3895  *
3896  * @low: lowest DSCP value of this user priority range, inclusive
3897  * @high: highest DSCP value of this user priority range, inclusive
3898  */
3899 struct cfg80211_dscp_range {
3900 	u8 low;
3901 	u8 high;
3902 };
3903 
3904 /* QoS Map Set element length defined in IEEE Std 802.11-2012, 8.4.2.97 */
3905 #define IEEE80211_QOS_MAP_MAX_EX	21
3906 #define IEEE80211_QOS_MAP_LEN_MIN	16
3907 #define IEEE80211_QOS_MAP_LEN_MAX \
3908 	(IEEE80211_QOS_MAP_LEN_MIN + 2 * IEEE80211_QOS_MAP_MAX_EX)
3909 
3910 /**
3911  * struct cfg80211_qos_map - QoS Map Information
3912  *
3913  * This struct defines the Interworking QoS map setting for DSCP values
3914  *
3915  * @num_des: number of DSCP exceptions (0..21)
3916  * @dscp_exception: optionally up to maximum of 21 DSCP exceptions from
3917  *	the user priority DSCP range definition
3918  * @up: DSCP range definition for a particular user priority
3919  */
3920 struct cfg80211_qos_map {
3921 	u8 num_des;
3922 	struct cfg80211_dscp_exception dscp_exception[IEEE80211_QOS_MAP_MAX_EX];
3923 	struct cfg80211_dscp_range up[8];
3924 };
3925 
3926 /**
3927  * struct cfg80211_nan_band_config - NAN band specific configuration
3928  *
3929  * @chan: Pointer to the IEEE 802.11 channel structure. The channel to be used
3930  *	for NAN operations on this band. For 2.4 GHz band, this is always
3931  *	channel 6. For 5 GHz band, the channel is either 44 or 149, according
3932  *	to the regulatory constraints. If chan pointer is NULL the entire band
3933  *	configuration entry is considered invalid and should not be used.
3934  * @rssi_close: RSSI close threshold used for NAN state transition algorithm
3935  *	as described in chapters 3.3.6 and 3.3.7 "NAN Device Role and State
3936  *	Transition" of Wi-Fi Aware Specification v4.0. If not
3937  *	specified (set to 0), default device value is used. The value should
3938  *	be greater than -60 dBm.
3939  * @rssi_middle: RSSI middle threshold used for NAN state transition algorithm.
3940  *	as described in chapters 3.3.6 and 3.3.7 "NAN Device Role and State
3941  *	Transition" of Wi-Fi Aware Specification v4.0. If not
3942  *	specified (set to 0), default device value is used. The value should be
3943  *	greater than -75 dBm and less than rssi_close.
3944  * @awake_dw_interval: Committed DW interval. Valid values range: 0-5. 0
3945  *	indicates no wakeup for DW and can't be used on 2.4GHz band, otherwise
3946  *	2^(n-1).
3947  * @disable_scan: If true, the device will not scan this band for cluster
3948  *	 merge. Disabling scan on 2.4 GHz band is not allowed.
3949  */
3950 struct cfg80211_nan_band_config {
3951 	struct ieee80211_channel *chan;
3952 	s8 rssi_close;
3953 	s8 rssi_middle;
3954 	u8 awake_dw_interval;
3955 	bool disable_scan;
3956 };
3957 
3958 /**
3959  * struct cfg80211_nan_conf - NAN configuration
3960  *
3961  * This struct defines NAN configuration parameters
3962  *
3963  * @master_pref: master preference (1 - 255)
3964  * @bands: operating bands, a bitmap of &enum nl80211_band values.
3965  *	For instance, for NL80211_BAND_2GHZ, bit 0 would be set
3966  *	(i.e. BIT(NL80211_BAND_2GHZ)).
3967  * @cluster_id: cluster ID used for NAN synchronization. This is a MAC address
3968  *	that can take a value from 50-6F-9A-01-00-00 to 50-6F-9A-01-FF-FF.
3969  *	If NULL, the device will pick a random Cluster ID.
3970  * @scan_period: period (in seconds) between NAN scans.
3971  * @scan_dwell_time: dwell time (in milliseconds) for NAN scans.
3972  * @discovery_beacon_interval: interval (in TUs) for discovery beacons.
3973  * @enable_dw_notification: flag to enable/disable discovery window
3974  *	notifications.
3975  * @band_cfgs: array of band specific configurations, indexed by
3976  *	&enum nl80211_band values.
3977  * @extra_nan_attrs: pointer to additional NAN attributes.
3978  * @extra_nan_attrs_len: length of the additional NAN attributes.
3979  * @vendor_elems: pointer to vendor-specific elements.
3980  * @vendor_elems_len: length of the vendor-specific elements.
3981  */
3982 struct cfg80211_nan_conf {
3983 	u8 master_pref;
3984 	u8 bands;
3985 	const u8 *cluster_id;
3986 	u16 scan_period;
3987 	u16 scan_dwell_time;
3988 	u8 discovery_beacon_interval;
3989 	bool enable_dw_notification;
3990 	struct cfg80211_nan_band_config band_cfgs[NUM_NL80211_BANDS];
3991 	const u8 *extra_nan_attrs;
3992 	u16 extra_nan_attrs_len;
3993 	const u8 *vendor_elems;
3994 	u16 vendor_elems_len;
3995 };
3996 
3997 /**
3998  * enum cfg80211_nan_conf_changes - indicates changed fields in NAN
3999  * configuration
4000  *
4001  * @CFG80211_NAN_CONF_CHANGED_PREF: master preference
4002  * @CFG80211_NAN_CONF_CHANGED_BANDS: operating bands
4003  * @CFG80211_NAN_CONF_CHANGED_CONFIG: changed additional configuration.
4004  *	When this flag is set, it indicates that some additional attribute(s)
4005  *	(other then master_pref and bands) have been changed. In this case,
4006  *	all the unchanged attributes will be properly configured to their
4007  *	previous values. The driver doesn't need to store any
4008  *	previous configuration besides master_pref and bands.
4009  */
4010 enum cfg80211_nan_conf_changes {
4011 	CFG80211_NAN_CONF_CHANGED_PREF = BIT(0),
4012 	CFG80211_NAN_CONF_CHANGED_BANDS = BIT(1),
4013 	CFG80211_NAN_CONF_CHANGED_CONFIG = BIT(2),
4014 };
4015 
4016 /**
4017  * struct cfg80211_nan_func_filter - a NAN function Rx / Tx filter
4018  *
4019  * @filter: the content of the filter
4020  * @len: the length of the filter
4021  */
4022 struct cfg80211_nan_func_filter {
4023 	const u8 *filter;
4024 	u8 len;
4025 };
4026 
4027 /**
4028  * struct cfg80211_nan_func - a NAN function
4029  *
4030  * @type: &enum nl80211_nan_function_type
4031  * @service_id: the service ID of the function
4032  * @publish_type: &nl80211_nan_publish_type
4033  * @close_range: if true, the range should be limited. Threshold is
4034  *	implementation specific.
4035  * @publish_bcast: if true, the solicited publish should be broadcasted
4036  * @subscribe_active: if true, the subscribe is active
4037  * @followup_id: the instance ID for follow up
4038  * @followup_reqid: the requester instance ID for follow up
4039  * @followup_dest: MAC address of the recipient of the follow up
4040  * @ttl: time to live counter in DW.
4041  * @serv_spec_info: Service Specific Info
4042  * @serv_spec_info_len: Service Specific Info length
4043  * @srf_include: if true, SRF is inclusive
4044  * @srf_bf: Bloom Filter
4045  * @srf_bf_len: Bloom Filter length
4046  * @srf_bf_idx: Bloom Filter index
4047  * @srf_macs: SRF MAC addresses
4048  * @srf_num_macs: number of MAC addresses in SRF
4049  * @rx_filters: rx filters that are matched with corresponding peer's tx_filter
4050  * @tx_filters: filters that should be transmitted in the SDF.
4051  * @num_rx_filters: length of &rx_filters.
4052  * @num_tx_filters: length of &tx_filters.
4053  * @instance_id: driver allocated id of the function.
4054  * @cookie: unique NAN function identifier.
4055  */
4056 struct cfg80211_nan_func {
4057 	enum nl80211_nan_function_type type;
4058 	u8 service_id[NL80211_NAN_FUNC_SERVICE_ID_LEN];
4059 	u8 publish_type;
4060 	bool close_range;
4061 	bool publish_bcast;
4062 	bool subscribe_active;
4063 	u8 followup_id;
4064 	u8 followup_reqid;
4065 	struct mac_address followup_dest;
4066 	u32 ttl;
4067 	const u8 *serv_spec_info;
4068 	u8 serv_spec_info_len;
4069 	bool srf_include;
4070 	const u8 *srf_bf;
4071 	u8 srf_bf_len;
4072 	u8 srf_bf_idx;
4073 	struct mac_address *srf_macs;
4074 	int srf_num_macs;
4075 	struct cfg80211_nan_func_filter *rx_filters;
4076 	struct cfg80211_nan_func_filter *tx_filters;
4077 	u8 num_tx_filters;
4078 	u8 num_rx_filters;
4079 	u8 instance_id;
4080 	u64 cookie;
4081 };
4082 
4083 /**
4084  * struct cfg80211_pmk_conf - PMK configuration
4085  *
4086  * @aa: authenticator address
4087  * @pmk_len: PMK length in bytes.
4088  * @pmk: the PMK material
4089  * @pmk_r0_name: PMK-R0 Name. NULL if not applicable (i.e., the PMK
4090  *	is not PMK-R0). When pmk_r0_name is not NULL, the pmk field
4091  *	holds PMK-R0.
4092  */
4093 struct cfg80211_pmk_conf {
4094 	const u8 *aa;
4095 	u8 pmk_len;
4096 	const u8 *pmk;
4097 	const u8 *pmk_r0_name;
4098 };
4099 
4100 /**
4101  * struct cfg80211_external_auth_params - Trigger External authentication.
4102  *
4103  * Commonly used across the external auth request and event interfaces.
4104  *
4105  * @action: action type / trigger for external authentication. Only significant
4106  *	for the authentication request event interface (driver to user space).
4107  * @bssid: BSSID of the peer with which the authentication has
4108  *	to happen. Used by both the authentication request event and
4109  *	authentication response command interface.
4110  * @ssid: SSID of the AP.  Used by both the authentication request event and
4111  *	authentication response command interface.
4112  * @key_mgmt_suite: AKM suite of the respective authentication. Used by the
4113  *	authentication request event interface.
4114  * @status: status code, %WLAN_STATUS_SUCCESS for successful authentication,
4115  *	use %WLAN_STATUS_UNSPECIFIED_FAILURE if user space cannot give you
4116  *	the real status code for failures. Used only for the authentication
4117  *	response command interface (user space to driver).
4118  * @pmkid: The identifier to refer a PMKSA.
4119  * @mld_addr: MLD address of the peer. Used by the authentication request event
4120  *	interface. Driver indicates this to enable MLO during the authentication
4121  *	offload to user space. Driver shall look at %NL80211_ATTR_MLO_SUPPORT
4122  *	flag capability in NL80211_CMD_CONNECT to know whether the user space
4123  *	supports enabling MLO during the authentication offload.
4124  *	User space should use the address of the interface (on which the
4125  *	authentication request event reported) as self MLD address. User space
4126  *	and driver should use MLD addresses in RA, TA and BSSID fields of
4127  *	authentication frames sent or received via cfg80211. The driver
4128  *	translates the MLD addresses to/from link addresses based on the link
4129  *	chosen for the authentication.
4130  */
4131 struct cfg80211_external_auth_params {
4132 	enum nl80211_external_auth_action action;
4133 	u8 bssid[ETH_ALEN] __aligned(2);
4134 	struct cfg80211_ssid ssid;
4135 	unsigned int key_mgmt_suite;
4136 	u16 status;
4137 	const u8 *pmkid;
4138 	u8 mld_addr[ETH_ALEN] __aligned(2);
4139 };
4140 
4141 /**
4142  * struct cfg80211_ftm_responder_stats - FTM responder statistics
4143  *
4144  * @filled: bitflag of flags using the bits of &enum nl80211_ftm_stats to
4145  *	indicate the relevant values in this struct for them
4146  * @success_num: number of FTM sessions in which all frames were successfully
4147  *	answered
4148  * @partial_num: number of FTM sessions in which part of frames were
4149  *	successfully answered
4150  * @failed_num: number of failed FTM sessions
4151  * @asap_num: number of ASAP FTM sessions
4152  * @non_asap_num: number of  non-ASAP FTM sessions
4153  * @total_duration_ms: total sessions durations - gives an indication
4154  *	of how much time the responder was busy
4155  * @unknown_triggers_num: number of unknown FTM triggers - triggers from
4156  *	initiators that didn't finish successfully the negotiation phase with
4157  *	the responder
4158  * @reschedule_requests_num: number of FTM reschedule requests - initiator asks
4159  *	for a new scheduling although it already has scheduled FTM slot
4160  * @out_of_window_triggers_num: total FTM triggers out of scheduled window
4161  */
4162 struct cfg80211_ftm_responder_stats {
4163 	u32 filled;
4164 	u32 success_num;
4165 	u32 partial_num;
4166 	u32 failed_num;
4167 	u32 asap_num;
4168 	u32 non_asap_num;
4169 	u64 total_duration_ms;
4170 	u32 unknown_triggers_num;
4171 	u32 reschedule_requests_num;
4172 	u32 out_of_window_triggers_num;
4173 };
4174 
4175 /**
4176  * struct cfg80211_pmsr_ftm_result - FTM result
4177  * @failure_reason: if this measurement failed (PMSR status is
4178  *	%NL80211_PMSR_STATUS_FAILURE), this gives a more precise
4179  *	reason than just "failure"
4180  * @burst_index: if reporting partial results, this is the index
4181  *	in [0 .. num_bursts-1] of the burst that's being reported
4182  * @num_ftmr_attempts: number of FTM request frames transmitted
4183  * @num_ftmr_successes: number of FTM request frames acked
4184  * @busy_retry_time: if failure_reason is %NL80211_PMSR_FTM_FAILURE_PEER_BUSY,
4185  *	fill this to indicate in how many seconds a retry is deemed possible
4186  *	by the responder
4187  * @num_bursts_exp: actual number of bursts exponent negotiated
4188  * @burst_duration: actual burst duration negotiated
4189  * @ftms_per_burst: actual FTMs per burst negotiated
4190  * @lci_len: length of LCI information (if present)
4191  * @civicloc_len: length of civic location information (if present)
4192  * @lci: LCI data (may be %NULL)
4193  * @civicloc: civic location data (may be %NULL)
4194  * @rssi_avg: average RSSI over FTM action frames reported
4195  * @rssi_spread: spread of the RSSI over FTM action frames reported
4196  * @tx_rate: bitrate for transmitted FTM action frame response
4197  * @rx_rate: bitrate of received FTM action frame
4198  * @rtt_avg: average of RTTs measured (must have either this or @dist_avg)
4199  * @rtt_variance: variance of RTTs measured (note that standard deviation is
4200  *	the square root of the variance)
4201  * @rtt_spread: spread of the RTTs measured
4202  * @dist_avg: average of distances (mm) measured
4203  *	(must have either this or @rtt_avg)
4204  * @dist_variance: variance of distances measured (see also @rtt_variance)
4205  * @dist_spread: spread of distances measured (see also @rtt_spread)
4206  * @num_ftmr_attempts_valid: @num_ftmr_attempts is valid
4207  * @num_ftmr_successes_valid: @num_ftmr_successes is valid
4208  * @rssi_avg_valid: @rssi_avg is valid
4209  * @rssi_spread_valid: @rssi_spread is valid
4210  * @tx_rate_valid: @tx_rate is valid
4211  * @rx_rate_valid: @rx_rate is valid
4212  * @rtt_avg_valid: @rtt_avg is valid
4213  * @rtt_variance_valid: @rtt_variance is valid
4214  * @rtt_spread_valid: @rtt_spread is valid
4215  * @dist_avg_valid: @dist_avg is valid
4216  * @dist_variance_valid: @dist_variance is valid
4217  * @dist_spread_valid: @dist_spread is valid
4218  */
4219 struct cfg80211_pmsr_ftm_result {
4220 	const u8 *lci;
4221 	const u8 *civicloc;
4222 	unsigned int lci_len;
4223 	unsigned int civicloc_len;
4224 	enum nl80211_peer_measurement_ftm_failure_reasons failure_reason;
4225 	u32 num_ftmr_attempts, num_ftmr_successes;
4226 	s16 burst_index;
4227 	u8 busy_retry_time;
4228 	u8 num_bursts_exp;
4229 	u8 burst_duration;
4230 	u8 ftms_per_burst;
4231 	s32 rssi_avg;
4232 	s32 rssi_spread;
4233 	struct rate_info tx_rate, rx_rate;
4234 	s64 rtt_avg;
4235 	s64 rtt_variance;
4236 	s64 rtt_spread;
4237 	s64 dist_avg;
4238 	s64 dist_variance;
4239 	s64 dist_spread;
4240 
4241 	u16 num_ftmr_attempts_valid:1,
4242 	    num_ftmr_successes_valid:1,
4243 	    rssi_avg_valid:1,
4244 	    rssi_spread_valid:1,
4245 	    tx_rate_valid:1,
4246 	    rx_rate_valid:1,
4247 	    rtt_avg_valid:1,
4248 	    rtt_variance_valid:1,
4249 	    rtt_spread_valid:1,
4250 	    dist_avg_valid:1,
4251 	    dist_variance_valid:1,
4252 	    dist_spread_valid:1;
4253 };
4254 
4255 /**
4256  * struct cfg80211_pmsr_result - peer measurement result
4257  * @addr: address of the peer
4258  * @host_time: host time (use ktime_get_boottime() adjust to the time when the
4259  *	measurement was made)
4260  * @ap_tsf: AP's TSF at measurement time
4261  * @status: status of the measurement
4262  * @final: if reporting partial results, mark this as the last one; if not
4263  *	reporting partial results always set this flag
4264  * @ap_tsf_valid: indicates the @ap_tsf value is valid
4265  * @type: type of the measurement reported, note that we only support reporting
4266  *	one type at a time, but you can report multiple results separately and
4267  *	they're all aggregated for userspace.
4268  * @ftm: FTM result
4269  */
4270 struct cfg80211_pmsr_result {
4271 	u64 host_time, ap_tsf;
4272 	enum nl80211_peer_measurement_status status;
4273 
4274 	u8 addr[ETH_ALEN];
4275 
4276 	u8 final:1,
4277 	   ap_tsf_valid:1;
4278 
4279 	enum nl80211_peer_measurement_type type;
4280 
4281 	union {
4282 		struct cfg80211_pmsr_ftm_result ftm;
4283 	};
4284 };
4285 
4286 /**
4287  * struct cfg80211_pmsr_ftm_request_peer - FTM request data
4288  * @requested: indicates FTM is requested
4289  * @preamble: frame preamble to use
4290  * @burst_period: burst period to use
4291  * @asap: indicates to use ASAP mode
4292  * @num_bursts_exp: number of bursts exponent
4293  * @burst_duration: burst duration
4294  * @ftms_per_burst: number of FTMs per burst
4295  * @ftmr_retries: number of retries for FTM request
4296  * @request_lci: request LCI information
4297  * @request_civicloc: request civic location information
4298  * @trigger_based: use trigger based ranging for the measurement
4299  *		 If neither @trigger_based nor @non_trigger_based is set,
4300  *		 EDCA based ranging will be used.
4301  * @non_trigger_based: use non trigger based ranging for the measurement
4302  *		 If neither @trigger_based nor @non_trigger_based is set,
4303  *		 EDCA based ranging will be used.
4304  * @lmr_feedback: negotiate for I2R LMR feedback. Only valid if either
4305  *		 @trigger_based or @non_trigger_based is set.
4306  * @bss_color: the bss color of the responder. Optional. Set to zero to
4307  *	indicate the driver should set the BSS color. Only valid if
4308  *	@non_trigger_based or @trigger_based is set.
4309  *
4310  * See also nl80211 for the respective attribute documentation.
4311  */
4312 struct cfg80211_pmsr_ftm_request_peer {
4313 	enum nl80211_preamble preamble;
4314 	u16 burst_period;
4315 	u8 requested:1,
4316 	   asap:1,
4317 	   request_lci:1,
4318 	   request_civicloc:1,
4319 	   trigger_based:1,
4320 	   non_trigger_based:1,
4321 	   lmr_feedback:1;
4322 	u8 num_bursts_exp;
4323 	u8 burst_duration;
4324 	u8 ftms_per_burst;
4325 	u8 ftmr_retries;
4326 	u8 bss_color;
4327 };
4328 
4329 /**
4330  * struct cfg80211_pmsr_request_peer - peer data for a peer measurement request
4331  * @addr: MAC address
4332  * @chandef: channel to use
4333  * @report_ap_tsf: report the associated AP's TSF
4334  * @ftm: FTM data, see &struct cfg80211_pmsr_ftm_request_peer
4335  */
4336 struct cfg80211_pmsr_request_peer {
4337 	u8 addr[ETH_ALEN];
4338 	struct cfg80211_chan_def chandef;
4339 	u8 report_ap_tsf:1;
4340 	struct cfg80211_pmsr_ftm_request_peer ftm;
4341 };
4342 
4343 /**
4344  * struct cfg80211_pmsr_request - peer measurement request
4345  * @cookie: cookie, set by cfg80211
4346  * @nl_portid: netlink portid - used by cfg80211
4347  * @drv_data: driver data for this request, if required for aborting,
4348  *	not otherwise freed or anything by cfg80211
4349  * @mac_addr: MAC address used for (randomised) request
4350  * @mac_addr_mask: MAC address mask used for randomisation, bits that
4351  *	are 0 in the mask should be randomised, bits that are 1 should
4352  *	be taken from the @mac_addr
4353  * @list: used by cfg80211 to hold on to the request
4354  * @timeout: timeout (in milliseconds) for the whole operation, if
4355  *	zero it means there's no timeout
4356  * @n_peers: number of peers to do measurements with
4357  * @peers: per-peer measurement request data
4358  */
4359 struct cfg80211_pmsr_request {
4360 	u64 cookie;
4361 	void *drv_data;
4362 	u32 n_peers;
4363 	u32 nl_portid;
4364 
4365 	u32 timeout;
4366 
4367 	u8 mac_addr[ETH_ALEN] __aligned(2);
4368 	u8 mac_addr_mask[ETH_ALEN] __aligned(2);
4369 
4370 	struct list_head list;
4371 
4372 	struct cfg80211_pmsr_request_peer peers[] __counted_by(n_peers);
4373 };
4374 
4375 /**
4376  * struct cfg80211_update_owe_info - OWE Information
4377  *
4378  * This structure provides information needed for the drivers to offload OWE
4379  * (Opportunistic Wireless Encryption) processing to the user space.
4380  *
4381  * Commonly used across update_owe_info request and event interfaces.
4382  *
4383  * @peer: MAC address of the peer device for which the OWE processing
4384  *	has to be done.
4385  * @status: status code, %WLAN_STATUS_SUCCESS for successful OWE info
4386  *	processing, use %WLAN_STATUS_UNSPECIFIED_FAILURE if user space
4387  *	cannot give you the real status code for failures. Used only for
4388  *	OWE update request command interface (user space to driver).
4389  * @ie: IEs obtained from the peer or constructed by the user space. These are
4390  *	the IEs of the remote peer in the event from the host driver and
4391  *	the constructed IEs by the user space in the request interface.
4392  * @ie_len: Length of IEs in octets.
4393  * @assoc_link_id: MLO link ID of the AP, with which (re)association requested
4394  *	by peer. This will be filled by driver for both MLO and non-MLO station
4395  *	connections when the AP affiliated with an MLD. For non-MLD AP mode, it
4396  *	will be -1. Used only with OWE update event (driver to user space).
4397  * @peer_mld_addr: For MLO connection, MLD address of the peer. For non-MLO
4398  *	connection, it will be all zeros. This is applicable only when
4399  *	@assoc_link_id is not -1, i.e., the AP affiliated with an MLD. Used only
4400  *	with OWE update event (driver to user space).
4401  */
4402 struct cfg80211_update_owe_info {
4403 	u8 peer[ETH_ALEN] __aligned(2);
4404 	u16 status;
4405 	const u8 *ie;
4406 	size_t ie_len;
4407 	int assoc_link_id;
4408 	u8 peer_mld_addr[ETH_ALEN] __aligned(2);
4409 };
4410 
4411 /**
4412  * struct mgmt_frame_regs - management frame registrations data
4413  * @global_stypes: bitmap of management frame subtypes registered
4414  *	for the entire device
4415  * @interface_stypes: bitmap of management frame subtypes registered
4416  *	for the given interface
4417  * @global_mcast_stypes: mcast RX is needed globally for these subtypes
4418  * @interface_mcast_stypes: mcast RX is needed on this interface
4419  *	for these subtypes
4420  */
4421 struct mgmt_frame_regs {
4422 	u32 global_stypes, interface_stypes;
4423 	u32 global_mcast_stypes, interface_mcast_stypes;
4424 };
4425 
4426 /**
4427  * struct cfg80211_ops - backend description for wireless configuration
4428  *
4429  * This struct is registered by fullmac card drivers and/or wireless stacks
4430  * in order to handle configuration requests on their interfaces.
4431  *
4432  * All callbacks except where otherwise noted should return 0
4433  * on success or a negative error code.
4434  *
4435  * All operations are invoked with the wiphy mutex held. The RTNL may be
4436  * held in addition (due to wireless extensions) but this cannot be relied
4437  * upon except in cases where documented below. Note that due to ordering,
4438  * the RTNL also cannot be acquired in any handlers.
4439  *
4440  * @suspend: wiphy device needs to be suspended. The variable @wow will
4441  *	be %NULL or contain the enabled Wake-on-Wireless triggers that are
4442  *	configured for the device.
4443  * @resume: wiphy device needs to be resumed
4444  * @set_wakeup: Called when WoWLAN is enabled/disabled, use this callback
4445  *	to call device_set_wakeup_enable() to enable/disable wakeup from
4446  *	the device.
4447  *
4448  * @add_virtual_intf: create a new virtual interface with the given name,
4449  *	must set the struct wireless_dev's iftype. Beware: You must create
4450  *	the new netdev in the wiphy's network namespace! Returns the struct
4451  *	wireless_dev, or an ERR_PTR. For P2P device wdevs, the driver must
4452  *	also set the address member in the wdev.
4453  *	This additionally holds the RTNL to be able to do netdev changes.
4454  *
4455  * @del_virtual_intf: remove the virtual interface
4456  *	This additionally holds the RTNL to be able to do netdev changes.
4457  *
4458  * @change_virtual_intf: change type/configuration of virtual interface,
4459  *	keep the struct wireless_dev's iftype updated.
4460  *	This additionally holds the RTNL to be able to do netdev changes.
4461  *
4462  * @add_intf_link: Add a new MLO link to the given interface. Note that
4463  *	the wdev->link[] data structure has been updated, so the new link
4464  *	address is available.
4465  * @del_intf_link: Remove an MLO link from the given interface.
4466  *
4467  * @add_key: add a key with the given parameters. @mac_addr will be %NULL
4468  *	when adding a group key. @link_id will be -1 for non-MLO connection.
4469  *	For MLO connection, @link_id will be >= 0 for group key and -1 for
4470  *	pairwise key, @mac_addr will be peer's MLD address for MLO pairwise key.
4471  *
4472  * @get_key: get information about the key with the given parameters.
4473  *	@mac_addr will be %NULL when requesting information for a group
4474  *	key. All pointers given to the @callback function need not be valid
4475  *	after it returns. This function should return an error if it is
4476  *	not possible to retrieve the key, -ENOENT if it doesn't exist.
4477  *	@link_id will be -1 for non-MLO connection. For MLO connection,
4478  *	@link_id will be >= 0 for group key and -1 for pairwise key, @mac_addr
4479  *	will be peer's MLD address for MLO pairwise key.
4480  *
4481  * @del_key: remove a key given the @mac_addr (%NULL for a group key)
4482  *	and @key_index, return -ENOENT if the key doesn't exist. @link_id will
4483  *	be -1 for non-MLO connection. For MLO connection, @link_id will be >= 0
4484  *	for group key and -1 for pairwise key, @mac_addr will be peer's MLD
4485  *	address for MLO pairwise key.
4486  *
4487  * @set_default_key: set the default key on an interface. @link_id will be >= 0
4488  *	for MLO connection and -1 for non-MLO connection.
4489  *
4490  * @set_default_mgmt_key: set the default management frame key on an interface.
4491  *	@link_id will be >= 0 for MLO connection and -1 for non-MLO connection.
4492  *
4493  * @set_default_beacon_key: set the default Beacon frame key on an interface.
4494  *	@link_id will be >= 0 for MLO connection and -1 for non-MLO connection.
4495  *
4496  * @set_rekey_data: give the data necessary for GTK rekeying to the driver
4497  *
4498  * @start_ap: Start acting in AP mode defined by the parameters.
4499  * @change_beacon: Change the beacon parameters for an access point mode
4500  *	interface. This should reject the call when AP mode wasn't started.
4501  * @stop_ap: Stop being an AP, including stopping beaconing.
4502  *
4503  * @add_station: Add a new station.
4504  * @del_station: Remove a station
4505  * @change_station: Modify a given station. Note that flags changes are not much
4506  *	validated in cfg80211, in particular the auth/assoc/authorized flags
4507  *	might come to the driver in invalid combinations -- make sure to check
4508  *	them, also against the existing state! Drivers must call
4509  *	cfg80211_check_station_change() to validate the information.
4510  * @get_station: get station information for the station identified by @mac
4511  * @dump_station: dump station callback -- resume dump at index @idx
4512  *
4513  * @add_mpath: add a fixed mesh path
4514  * @del_mpath: delete a given mesh path
4515  * @change_mpath: change a given mesh path
4516  * @get_mpath: get a mesh path for the given parameters
4517  * @dump_mpath: dump mesh path callback -- resume dump at index @idx
4518  * @get_mpp: get a mesh proxy path for the given parameters
4519  * @dump_mpp: dump mesh proxy path callback -- resume dump at index @idx
4520  * @join_mesh: join the mesh network with the specified parameters
4521  *	(invoked with the wireless_dev mutex held)
4522  * @leave_mesh: leave the current mesh network
4523  *	(invoked with the wireless_dev mutex held)
4524  *
4525  * @get_mesh_config: Get the current mesh configuration
4526  *
4527  * @update_mesh_config: Update mesh parameters on a running mesh.
4528  *	The mask is a bitfield which tells us which parameters to
4529  *	set, and which to leave alone.
4530  *
4531  * @change_bss: Modify parameters for a given BSS.
4532  *
4533  * @inform_bss: Called by cfg80211 while being informed about new BSS data
4534  *	for every BSS found within the reported data or frame. This is called
4535  *	from within the cfg8011 inform_bss handlers while holding the bss_lock.
4536  *	The data parameter is passed through from drv_data inside
4537  *	struct cfg80211_inform_bss.
4538  *	The new IE data for the BSS is explicitly passed.
4539  *
4540  * @set_txq_params: Set TX queue parameters
4541  *
4542  * @libertas_set_mesh_channel: Only for backward compatibility for libertas,
4543  *	as it doesn't implement join_mesh and needs to set the channel to
4544  *	join the mesh instead.
4545  *
4546  * @set_monitor_channel: Set the monitor mode channel for the device. If other
4547  *	interfaces are active this callback should reject the configuration.
4548  *	If no interfaces are active or the device is down, the channel should
4549  *	be stored for when a monitor interface becomes active.
4550  *
4551  * @scan: Request to do a scan. If returning zero, the scan request is given
4552  *	the driver, and will be valid until passed to cfg80211_scan_done().
4553  *	For scan results, call cfg80211_inform_bss(); you can call this outside
4554  *	the scan/scan_done bracket too.
4555  * @abort_scan: Tell the driver to abort an ongoing scan. The driver shall
4556  *	indicate the status of the scan through cfg80211_scan_done().
4557  *
4558  * @auth: Request to authenticate with the specified peer
4559  *	(invoked with the wireless_dev mutex held)
4560  * @assoc: Request to (re)associate with the specified peer
4561  *	(invoked with the wireless_dev mutex held)
4562  * @deauth: Request to deauthenticate from the specified peer
4563  *	(invoked with the wireless_dev mutex held)
4564  * @disassoc: Request to disassociate from the specified peer
4565  *	(invoked with the wireless_dev mutex held)
4566  *
4567  * @connect: Connect to the ESS with the specified parameters. When connected,
4568  *	call cfg80211_connect_result()/cfg80211_connect_bss() with status code
4569  *	%WLAN_STATUS_SUCCESS. If the connection fails for some reason, call
4570  *	cfg80211_connect_result()/cfg80211_connect_bss() with the status code
4571  *	from the AP or cfg80211_connect_timeout() if no frame with status code
4572  *	was received.
4573  *	The driver is allowed to roam to other BSSes within the ESS when the
4574  *	other BSS matches the connect parameters. When such roaming is initiated
4575  *	by the driver, the driver is expected to verify that the target matches
4576  *	the configured security parameters and to use Reassociation Request
4577  *	frame instead of Association Request frame.
4578  *	The connect function can also be used to request the driver to perform a
4579  *	specific roam when connected to an ESS. In that case, the prev_bssid
4580  *	parameter is set to the BSSID of the currently associated BSS as an
4581  *	indication of requesting reassociation.
4582  *	In both the driver-initiated and new connect() call initiated roaming
4583  *	cases, the result of roaming is indicated with a call to
4584  *	cfg80211_roamed(). (invoked with the wireless_dev mutex held)
4585  * @update_connect_params: Update the connect parameters while connected to a
4586  *	BSS. The updated parameters can be used by driver/firmware for
4587  *	subsequent BSS selection (roaming) decisions and to form the
4588  *	Authentication/(Re)Association Request frames. This call does not
4589  *	request an immediate disassociation or reassociation with the current
4590  *	BSS, i.e., this impacts only subsequent (re)associations. The bits in
4591  *	changed are defined in &enum cfg80211_connect_params_changed.
4592  *	(invoked with the wireless_dev mutex held)
4593  * @disconnect: Disconnect from the BSS/ESS or stop connection attempts if
4594  *      connection is in progress. Once done, call cfg80211_disconnected() in
4595  *      case connection was already established (invoked with the
4596  *      wireless_dev mutex held), otherwise call cfg80211_connect_timeout().
4597  *
4598  * @join_ibss: Join the specified IBSS (or create if necessary). Once done, call
4599  *	cfg80211_ibss_joined(), also call that function when changing BSSID due
4600  *	to a merge.
4601  *	(invoked with the wireless_dev mutex held)
4602  * @leave_ibss: Leave the IBSS.
4603  *	(invoked with the wireless_dev mutex held)
4604  *
4605  * @set_mcast_rate: Set the specified multicast rate (only if vif is in ADHOC or
4606  *	MESH mode)
4607  *
4608  * @set_wiphy_params: Notify that wiphy parameters have changed;
4609  *	@changed bitfield (see &enum wiphy_params_flags) describes which values
4610  *	have changed. The actual parameter values are available in
4611  *	struct wiphy. If returning an error, no value should be changed.
4612  *
4613  * @set_tx_power: set the transmit power according to the parameters,
4614  *	the power passed is in mBm, to get dBm use MBM_TO_DBM(). The
4615  *	wdev may be %NULL if power was set for the wiphy, and will
4616  *	always be %NULL unless the driver supports per-vif TX power
4617  *	(as advertised by the nl80211 feature flag.)
4618  * @get_tx_power: store the current TX power into the dbm variable;
4619  *	return 0 if successful
4620  *
4621  * @rfkill_poll: polls the hw rfkill line, use cfg80211 reporting
4622  *	functions to adjust rfkill hw state
4623  *
4624  * @dump_survey: get site survey information.
4625  *
4626  * @remain_on_channel: Request the driver to remain awake on the specified
4627  *	channel for the specified duration to complete an off-channel
4628  *	operation (e.g., public action frame exchange). When the driver is
4629  *	ready on the requested channel, it must indicate this with an event
4630  *	notification by calling cfg80211_ready_on_channel().
4631  * @cancel_remain_on_channel: Cancel an on-going remain-on-channel operation.
4632  *	This allows the operation to be terminated prior to timeout based on
4633  *	the duration value.
4634  * @mgmt_tx: Transmit a management frame.
4635  * @mgmt_tx_cancel_wait: Cancel the wait time from transmitting a management
4636  *	frame on another channel
4637  *
4638  * @testmode_cmd: run a test mode command; @wdev may be %NULL
4639  * @testmode_dump: Implement a test mode dump. The cb->args[2] and up may be
4640  *	used by the function, but 0 and 1 must not be touched. Additionally,
4641  *	return error codes other than -ENOBUFS and -ENOENT will terminate the
4642  *	dump and return to userspace with an error, so be careful. If any data
4643  *	was passed in from userspace then the data/len arguments will be present
4644  *	and point to the data contained in %NL80211_ATTR_TESTDATA.
4645  *
4646  * @set_bitrate_mask: set the bitrate mask configuration
4647  *
4648  * @set_pmksa: Cache a PMKID for a BSSID. This is mostly useful for fullmac
4649  *	devices running firmwares capable of generating the (re) association
4650  *	RSN IE. It allows for faster roaming between WPA2 BSSIDs.
4651  * @del_pmksa: Delete a cached PMKID.
4652  * @flush_pmksa: Flush all cached PMKIDs.
4653  * @set_power_mgmt: Configure WLAN power management. A timeout value of -1
4654  *	allows the driver to adjust the dynamic ps timeout value.
4655  * @set_cqm_rssi_config: Configure connection quality monitor RSSI threshold.
4656  *	After configuration, the driver should (soon) send an event indicating
4657  *	the current level is above/below the configured threshold; this may
4658  *	need some care when the configuration is changed (without first being
4659  *	disabled.)
4660  * @set_cqm_rssi_range_config: Configure two RSSI thresholds in the
4661  *	connection quality monitor.  An event is to be sent only when the
4662  *	signal level is found to be outside the two values.  The driver should
4663  *	set %NL80211_EXT_FEATURE_CQM_RSSI_LIST if this method is implemented.
4664  *	If it is provided then there's no point providing @set_cqm_rssi_config.
4665  * @set_cqm_txe_config: Configure connection quality monitor TX error
4666  *	thresholds.
4667  * @sched_scan_start: Tell the driver to start a scheduled scan.
4668  * @sched_scan_stop: Tell the driver to stop an ongoing scheduled scan with
4669  *	given request id. This call must stop the scheduled scan and be ready
4670  *	for starting a new one before it returns, i.e. @sched_scan_start may be
4671  *	called immediately after that again and should not fail in that case.
4672  *	The driver should not call cfg80211_sched_scan_stopped() for a requested
4673  *	stop (when this method returns 0).
4674  *
4675  * @update_mgmt_frame_registrations: Notify the driver that management frame
4676  *	registrations were updated. The callback is allowed to sleep.
4677  *
4678  * @set_antenna: Set antenna configuration (tx_ant, rx_ant) on the device.
4679  *	Parameters are bitmaps of allowed antennas to use for TX/RX. Drivers may
4680  *	reject TX/RX mask combinations they cannot support by returning -EINVAL
4681  *	(also see nl80211.h @NL80211_ATTR_WIPHY_ANTENNA_TX).
4682  *
4683  * @get_antenna: Get current antenna configuration from device (tx_ant, rx_ant).
4684  *
4685  * @tdls_mgmt: Transmit a TDLS management frame.
4686  * @tdls_oper: Perform a high-level TDLS operation (e.g. TDLS link setup).
4687  *
4688  * @probe_client: probe an associated client, must return a cookie that it
4689  *	later passes to cfg80211_probe_status().
4690  *
4691  * @set_noack_map: Set the NoAck Map for the TIDs.
4692  *
4693  * @get_channel: Get the current operating channel for the virtual interface.
4694  *	For monitor interfaces, it should return %NULL unless there's a single
4695  *	current monitoring channel.
4696  *
4697  * @start_p2p_device: Start the given P2P device.
4698  * @stop_p2p_device: Stop the given P2P device.
4699  *
4700  * @set_mac_acl: Sets MAC address control list in AP and P2P GO mode.
4701  *	Parameters include ACL policy, an array of MAC address of stations
4702  *	and the number of MAC addresses. If there is already a list in driver
4703  *	this new list replaces the existing one. Driver has to clear its ACL
4704  *	when number of MAC addresses entries is passed as 0. Drivers which
4705  *	advertise the support for MAC based ACL have to implement this callback.
4706  *
4707  * @start_radar_detection: Start radar detection in the driver.
4708  *
4709  * @end_cac: End running CAC, probably because a related CAC
4710  *	was finished on another phy.
4711  *
4712  * @update_ft_ies: Provide updated Fast BSS Transition information to the
4713  *	driver. If the SME is in the driver/firmware, this information can be
4714  *	used in building Authentication and Reassociation Request frames.
4715  *
4716  * @crit_proto_start: Indicates a critical protocol needs more link reliability
4717  *	for a given duration (milliseconds). The protocol is provided so the
4718  *	driver can take the most appropriate actions.
4719  * @crit_proto_stop: Indicates critical protocol no longer needs increased link
4720  *	reliability. This operation can not fail.
4721  * @set_coalesce: Set coalesce parameters.
4722  *
4723  * @channel_switch: initiate channel-switch procedure (with CSA). Driver is
4724  *	responsible for veryfing if the switch is possible. Since this is
4725  *	inherently tricky driver may decide to disconnect an interface later
4726  *	with cfg80211_stop_iface(). This doesn't mean driver can accept
4727  *	everything. It should do it's best to verify requests and reject them
4728  *	as soon as possible.
4729  *
4730  * @set_qos_map: Set QoS mapping information to the driver
4731  *
4732  * @set_ap_chanwidth: Set the AP (including P2P GO) mode channel width for the
4733  *	given interface This is used e.g. for dynamic HT 20/40 MHz channel width
4734  *	changes during the lifetime of the BSS.
4735  *
4736  * @add_tx_ts: validate (if admitted_time is 0) or add a TX TS to the device
4737  *	with the given parameters; action frame exchange has been handled by
4738  *	userspace so this just has to modify the TX path to take the TS into
4739  *	account.
4740  *	If the admitted time is 0 just validate the parameters to make sure
4741  *	the session can be created at all; it is valid to just always return
4742  *	success for that but that may result in inefficient behaviour (handshake
4743  *	with the peer followed by immediate teardown when the addition is later
4744  *	rejected)
4745  * @del_tx_ts: remove an existing TX TS
4746  *
4747  * @join_ocb: join the OCB network with the specified parameters
4748  *	(invoked with the wireless_dev mutex held)
4749  * @leave_ocb: leave the current OCB network
4750  *	(invoked with the wireless_dev mutex held)
4751  *
4752  * @tdls_channel_switch: Start channel-switching with a TDLS peer. The driver
4753  *	is responsible for continually initiating channel-switching operations
4754  *	and returning to the base channel for communication with the AP.
4755  * @tdls_cancel_channel_switch: Stop channel-switching with a TDLS peer. Both
4756  *	peers must be on the base channel when the call completes.
4757  * @start_nan: Start the NAN interface.
4758  * @stop_nan: Stop the NAN interface.
4759  * @add_nan_func: Add a NAN function. Returns negative value on failure.
4760  *	On success @nan_func ownership is transferred to the driver and
4761  *	it may access it outside of the scope of this function. The driver
4762  *	should free the @nan_func when no longer needed by calling
4763  *	cfg80211_free_nan_func().
4764  *	On success the driver should assign an instance_id in the
4765  *	provided @nan_func.
4766  * @del_nan_func: Delete a NAN function.
4767  * @nan_change_conf: changes NAN configuration. The changed parameters must
4768  *	be specified in @changes (using &enum cfg80211_nan_conf_changes);
4769  *	All other parameters must be ignored.
4770  *
4771  * @set_multicast_to_unicast: configure multicast to unicast conversion for BSS
4772  *
4773  * @get_txq_stats: Get TXQ stats for interface or phy. If wdev is %NULL, this
4774  *      function should return phy stats, and interface stats otherwise.
4775  *
4776  * @set_pmk: configure the PMK to be used for offloaded 802.1X 4-Way handshake.
4777  *	If not deleted through @del_pmk the PMK remains valid until disconnect
4778  *	upon which the driver should clear it.
4779  *	(invoked with the wireless_dev mutex held)
4780  * @del_pmk: delete the previously configured PMK for the given authenticator.
4781  *	(invoked with the wireless_dev mutex held)
4782  *
4783  * @external_auth: indicates result of offloaded authentication processing from
4784  *     user space
4785  *
4786  * @tx_control_port: TX a control port frame (EAPoL).  The noencrypt parameter
4787  *	tells the driver that the frame should not be encrypted.
4788  *
4789  * @get_ftm_responder_stats: Retrieve FTM responder statistics, if available.
4790  *	Statistics should be cumulative, currently no way to reset is provided.
4791  * @start_pmsr: start peer measurement (e.g. FTM)
4792  * @abort_pmsr: abort peer measurement
4793  *
4794  * @update_owe_info: Provide updated OWE info to driver. Driver implementing SME
4795  *	but offloading OWE processing to the user space will get the updated
4796  *	DH IE through this interface.
4797  *
4798  * @probe_mesh_link: Probe direct Mesh peer's link quality by sending data frame
4799  *	and overrule HWMP path selection algorithm.
4800  * @set_tid_config: TID specific configuration, this can be peer or BSS specific
4801  *	This callback may sleep.
4802  * @reset_tid_config: Reset TID specific configuration for the peer, for the
4803  *	given TIDs. This callback may sleep.
4804  *
4805  * @set_sar_specs: Update the SAR (TX power) settings.
4806  *
4807  * @color_change: Initiate a color change.
4808  *
4809  * @set_fils_aad: Set FILS AAD data to the AP driver so that the driver can use
4810  *	those to decrypt (Re)Association Request and encrypt (Re)Association
4811  *	Response frame.
4812  *
4813  * @set_radar_background: Configure dedicated offchannel chain available for
4814  *	radar/CAC detection on some hw. This chain can't be used to transmit
4815  *	or receive frames and it is bounded to a running wdev.
4816  *	Background radar/CAC detection allows to avoid the CAC downtime
4817  *	switching to a different channel during CAC detection on the selected
4818  *	radar channel.
4819  *	The caller is expected to set chandef pointer to NULL in order to
4820  *	disable background CAC/radar detection.
4821  * @add_link_station: Add a link to a station.
4822  * @mod_link_station: Modify a link of a station.
4823  * @del_link_station: Remove a link of a station.
4824  *
4825  * @set_hw_timestamp: Enable/disable HW timestamping of TM/FTM frames.
4826  * @set_ttlm: set the TID to link mapping.
4827  * @set_epcs: Enable/Disable EPCS for station mode.
4828  * @get_radio_mask: get bitmask of radios in use.
4829  *	(invoked with the wiphy mutex held)
4830  * @assoc_ml_reconf: Request a non-AP MLO connection to perform ML
4831  *	reconfiguration, i.e., add and/or remove links to/from the
4832  *	association using ML reconfiguration action frames. Successfully added
4833  *	links will be added to the set of valid links. Successfully removed
4834  *	links will be removed from the set of valid links. The driver must
4835  *	indicate removed links by calling cfg80211_links_removed() and added
4836  *	links by calling cfg80211_mlo_reconf_add_done(). When calling
4837  *	cfg80211_mlo_reconf_add_done() the bss pointer must be given for each
4838  *	link for which MLO reconfiguration 'add' operation was requested.
4839  */
4840 struct cfg80211_ops {
4841 	int	(*suspend)(struct wiphy *wiphy, struct cfg80211_wowlan *wow);
4842 	int	(*resume)(struct wiphy *wiphy);
4843 	void	(*set_wakeup)(struct wiphy *wiphy, bool enabled);
4844 
4845 	struct wireless_dev * (*add_virtual_intf)(struct wiphy *wiphy,
4846 						  const char *name,
4847 						  unsigned char name_assign_type,
4848 						  enum nl80211_iftype type,
4849 						  struct vif_params *params);
4850 	int	(*del_virtual_intf)(struct wiphy *wiphy,
4851 				    struct wireless_dev *wdev);
4852 	int	(*change_virtual_intf)(struct wiphy *wiphy,
4853 				       struct net_device *dev,
4854 				       enum nl80211_iftype type,
4855 				       struct vif_params *params);
4856 
4857 	int	(*add_intf_link)(struct wiphy *wiphy,
4858 				 struct wireless_dev *wdev,
4859 				 unsigned int link_id);
4860 	void	(*del_intf_link)(struct wiphy *wiphy,
4861 				 struct wireless_dev *wdev,
4862 				 unsigned int link_id);
4863 
4864 	int	(*add_key)(struct wiphy *wiphy, struct net_device *netdev,
4865 			   int link_id, u8 key_index, bool pairwise,
4866 			   const u8 *mac_addr, struct key_params *params);
4867 	int	(*get_key)(struct wiphy *wiphy, struct net_device *netdev,
4868 			   int link_id, u8 key_index, bool pairwise,
4869 			   const u8 *mac_addr, void *cookie,
4870 			   void (*callback)(void *cookie, struct key_params*));
4871 	int	(*del_key)(struct wiphy *wiphy, struct net_device *netdev,
4872 			   int link_id, u8 key_index, bool pairwise,
4873 			   const u8 *mac_addr);
4874 	int	(*set_default_key)(struct wiphy *wiphy,
4875 				   struct net_device *netdev, int link_id,
4876 				   u8 key_index, bool unicast, bool multicast);
4877 	int	(*set_default_mgmt_key)(struct wiphy *wiphy,
4878 					struct net_device *netdev, int link_id,
4879 					u8 key_index);
4880 	int	(*set_default_beacon_key)(struct wiphy *wiphy,
4881 					  struct net_device *netdev,
4882 					  int link_id,
4883 					  u8 key_index);
4884 
4885 	int	(*start_ap)(struct wiphy *wiphy, struct net_device *dev,
4886 			    struct cfg80211_ap_settings *settings);
4887 	int	(*change_beacon)(struct wiphy *wiphy, struct net_device *dev,
4888 				 struct cfg80211_ap_update *info);
4889 	int	(*stop_ap)(struct wiphy *wiphy, struct net_device *dev,
4890 			   unsigned int link_id);
4891 
4892 
4893 	int	(*add_station)(struct wiphy *wiphy, struct net_device *dev,
4894 			       const u8 *mac,
4895 			       struct station_parameters *params);
4896 	int	(*del_station)(struct wiphy *wiphy, struct net_device *dev,
4897 			       struct station_del_parameters *params);
4898 	int	(*change_station)(struct wiphy *wiphy, struct net_device *dev,
4899 				  const u8 *mac,
4900 				  struct station_parameters *params);
4901 	int	(*get_station)(struct wiphy *wiphy, struct net_device *dev,
4902 			       const u8 *mac, struct station_info *sinfo);
4903 	int	(*dump_station)(struct wiphy *wiphy, struct net_device *dev,
4904 				int idx, u8 *mac, struct station_info *sinfo);
4905 
4906 	int	(*add_mpath)(struct wiphy *wiphy, struct net_device *dev,
4907 			       const u8 *dst, const u8 *next_hop);
4908 	int	(*del_mpath)(struct wiphy *wiphy, struct net_device *dev,
4909 			       const u8 *dst);
4910 	int	(*change_mpath)(struct wiphy *wiphy, struct net_device *dev,
4911 				  const u8 *dst, const u8 *next_hop);
4912 	int	(*get_mpath)(struct wiphy *wiphy, struct net_device *dev,
4913 			     u8 *dst, u8 *next_hop, struct mpath_info *pinfo);
4914 	int	(*dump_mpath)(struct wiphy *wiphy, struct net_device *dev,
4915 			      int idx, u8 *dst, u8 *next_hop,
4916 			      struct mpath_info *pinfo);
4917 	int	(*get_mpp)(struct wiphy *wiphy, struct net_device *dev,
4918 			   u8 *dst, u8 *mpp, struct mpath_info *pinfo);
4919 	int	(*dump_mpp)(struct wiphy *wiphy, struct net_device *dev,
4920 			    int idx, u8 *dst, u8 *mpp,
4921 			    struct mpath_info *pinfo);
4922 	int	(*get_mesh_config)(struct wiphy *wiphy,
4923 				struct net_device *dev,
4924 				struct mesh_config *conf);
4925 	int	(*update_mesh_config)(struct wiphy *wiphy,
4926 				      struct net_device *dev, u32 mask,
4927 				      const struct mesh_config *nconf);
4928 	int	(*join_mesh)(struct wiphy *wiphy, struct net_device *dev,
4929 			     const struct mesh_config *conf,
4930 			     const struct mesh_setup *setup);
4931 	int	(*leave_mesh)(struct wiphy *wiphy, struct net_device *dev);
4932 
4933 	int	(*join_ocb)(struct wiphy *wiphy, struct net_device *dev,
4934 			    struct ocb_setup *setup);
4935 	int	(*leave_ocb)(struct wiphy *wiphy, struct net_device *dev);
4936 
4937 	int	(*change_bss)(struct wiphy *wiphy, struct net_device *dev,
4938 			      struct bss_parameters *params);
4939 
4940 	void	(*inform_bss)(struct wiphy *wiphy, struct cfg80211_bss *bss,
4941 			      const struct cfg80211_bss_ies *ies, void *data);
4942 
4943 	int	(*set_txq_params)(struct wiphy *wiphy, struct net_device *dev,
4944 				  struct ieee80211_txq_params *params);
4945 
4946 	int	(*libertas_set_mesh_channel)(struct wiphy *wiphy,
4947 					     struct net_device *dev,
4948 					     struct ieee80211_channel *chan);
4949 
4950 	int	(*set_monitor_channel)(struct wiphy *wiphy,
4951 				       struct net_device *dev,
4952 				       struct cfg80211_chan_def *chandef);
4953 
4954 	int	(*scan)(struct wiphy *wiphy,
4955 			struct cfg80211_scan_request *request);
4956 	void	(*abort_scan)(struct wiphy *wiphy, struct wireless_dev *wdev);
4957 
4958 	int	(*auth)(struct wiphy *wiphy, struct net_device *dev,
4959 			struct cfg80211_auth_request *req);
4960 	int	(*assoc)(struct wiphy *wiphy, struct net_device *dev,
4961 			 struct cfg80211_assoc_request *req);
4962 	int	(*deauth)(struct wiphy *wiphy, struct net_device *dev,
4963 			  struct cfg80211_deauth_request *req);
4964 	int	(*disassoc)(struct wiphy *wiphy, struct net_device *dev,
4965 			    struct cfg80211_disassoc_request *req);
4966 
4967 	int	(*connect)(struct wiphy *wiphy, struct net_device *dev,
4968 			   struct cfg80211_connect_params *sme);
4969 	int	(*update_connect_params)(struct wiphy *wiphy,
4970 					 struct net_device *dev,
4971 					 struct cfg80211_connect_params *sme,
4972 					 u32 changed);
4973 	int	(*disconnect)(struct wiphy *wiphy, struct net_device *dev,
4974 			      u16 reason_code);
4975 
4976 	int	(*join_ibss)(struct wiphy *wiphy, struct net_device *dev,
4977 			     struct cfg80211_ibss_params *params);
4978 	int	(*leave_ibss)(struct wiphy *wiphy, struct net_device *dev);
4979 
4980 	int	(*set_mcast_rate)(struct wiphy *wiphy, struct net_device *dev,
4981 				  int rate[NUM_NL80211_BANDS]);
4982 
4983 	int	(*set_wiphy_params)(struct wiphy *wiphy, int radio_idx,
4984 				    u32 changed);
4985 
4986 	int	(*set_tx_power)(struct wiphy *wiphy, struct wireless_dev *wdev,
4987 				int radio_idx,
4988 				enum nl80211_tx_power_setting type, int mbm);
4989 	int	(*get_tx_power)(struct wiphy *wiphy, struct wireless_dev *wdev,
4990 				int radio_idx, unsigned int link_id, int *dbm);
4991 
4992 	void	(*rfkill_poll)(struct wiphy *wiphy);
4993 
4994 #ifdef CONFIG_NL80211_TESTMODE
4995 	int	(*testmode_cmd)(struct wiphy *wiphy, struct wireless_dev *wdev,
4996 				void *data, int len);
4997 	int	(*testmode_dump)(struct wiphy *wiphy, struct sk_buff *skb,
4998 				 struct netlink_callback *cb,
4999 				 void *data, int len);
5000 #endif
5001 
5002 	int	(*set_bitrate_mask)(struct wiphy *wiphy,
5003 				    struct net_device *dev,
5004 				    unsigned int link_id,
5005 				    const u8 *peer,
5006 				    const struct cfg80211_bitrate_mask *mask);
5007 
5008 	int	(*dump_survey)(struct wiphy *wiphy, struct net_device *netdev,
5009 			int idx, struct survey_info *info);
5010 
5011 	int	(*set_pmksa)(struct wiphy *wiphy, struct net_device *netdev,
5012 			     struct cfg80211_pmksa *pmksa);
5013 	int	(*del_pmksa)(struct wiphy *wiphy, struct net_device *netdev,
5014 			     struct cfg80211_pmksa *pmksa);
5015 	int	(*flush_pmksa)(struct wiphy *wiphy, struct net_device *netdev);
5016 
5017 	int	(*remain_on_channel)(struct wiphy *wiphy,
5018 				     struct wireless_dev *wdev,
5019 				     struct ieee80211_channel *chan,
5020 				     unsigned int duration,
5021 				     u64 *cookie);
5022 	int	(*cancel_remain_on_channel)(struct wiphy *wiphy,
5023 					    struct wireless_dev *wdev,
5024 					    u64 cookie);
5025 
5026 	int	(*mgmt_tx)(struct wiphy *wiphy, struct wireless_dev *wdev,
5027 			   struct cfg80211_mgmt_tx_params *params,
5028 			   u64 *cookie);
5029 	int	(*mgmt_tx_cancel_wait)(struct wiphy *wiphy,
5030 				       struct wireless_dev *wdev,
5031 				       u64 cookie);
5032 
5033 	int	(*set_power_mgmt)(struct wiphy *wiphy, struct net_device *dev,
5034 				  bool enabled, int timeout);
5035 
5036 	int	(*set_cqm_rssi_config)(struct wiphy *wiphy,
5037 				       struct net_device *dev,
5038 				       s32 rssi_thold, u32 rssi_hyst);
5039 
5040 	int	(*set_cqm_rssi_range_config)(struct wiphy *wiphy,
5041 					     struct net_device *dev,
5042 					     s32 rssi_low, s32 rssi_high);
5043 
5044 	int	(*set_cqm_txe_config)(struct wiphy *wiphy,
5045 				      struct net_device *dev,
5046 				      u32 rate, u32 pkts, u32 intvl);
5047 
5048 	void	(*update_mgmt_frame_registrations)(struct wiphy *wiphy,
5049 						   struct wireless_dev *wdev,
5050 						   struct mgmt_frame_regs *upd);
5051 
5052 	int	(*set_antenna)(struct wiphy *wiphy, int radio_idx,
5053 			       u32 tx_ant, u32 rx_ant);
5054 	int	(*get_antenna)(struct wiphy *wiphy, int radio_idx,
5055 			       u32 *tx_ant, u32 *rx_ant);
5056 
5057 	int	(*sched_scan_start)(struct wiphy *wiphy,
5058 				struct net_device *dev,
5059 				struct cfg80211_sched_scan_request *request);
5060 	int	(*sched_scan_stop)(struct wiphy *wiphy, struct net_device *dev,
5061 				   u64 reqid);
5062 
5063 	int	(*set_rekey_data)(struct wiphy *wiphy, struct net_device *dev,
5064 				  struct cfg80211_gtk_rekey_data *data);
5065 
5066 	int	(*tdls_mgmt)(struct wiphy *wiphy, struct net_device *dev,
5067 			     const u8 *peer, int link_id,
5068 			     u8 action_code, u8 dialog_token, u16 status_code,
5069 			     u32 peer_capability, bool initiator,
5070 			     const u8 *buf, size_t len);
5071 	int	(*tdls_oper)(struct wiphy *wiphy, struct net_device *dev,
5072 			     const u8 *peer, enum nl80211_tdls_operation oper);
5073 
5074 	int	(*probe_client)(struct wiphy *wiphy, struct net_device *dev,
5075 				const u8 *peer, u64 *cookie);
5076 
5077 	int	(*set_noack_map)(struct wiphy *wiphy,
5078 				  struct net_device *dev,
5079 				  u16 noack_map);
5080 
5081 	int	(*get_channel)(struct wiphy *wiphy,
5082 			       struct wireless_dev *wdev,
5083 			       unsigned int link_id,
5084 			       struct cfg80211_chan_def *chandef);
5085 
5086 	int	(*start_p2p_device)(struct wiphy *wiphy,
5087 				    struct wireless_dev *wdev);
5088 	void	(*stop_p2p_device)(struct wiphy *wiphy,
5089 				   struct wireless_dev *wdev);
5090 
5091 	int	(*set_mac_acl)(struct wiphy *wiphy, struct net_device *dev,
5092 			       const struct cfg80211_acl_data *params);
5093 
5094 	int	(*start_radar_detection)(struct wiphy *wiphy,
5095 					 struct net_device *dev,
5096 					 struct cfg80211_chan_def *chandef,
5097 					 u32 cac_time_ms, int link_id);
5098 	void	(*end_cac)(struct wiphy *wiphy,
5099 			   struct net_device *dev, unsigned int link_id);
5100 	int	(*update_ft_ies)(struct wiphy *wiphy, struct net_device *dev,
5101 				 struct cfg80211_update_ft_ies_params *ftie);
5102 	int	(*crit_proto_start)(struct wiphy *wiphy,
5103 				    struct wireless_dev *wdev,
5104 				    enum nl80211_crit_proto_id protocol,
5105 				    u16 duration);
5106 	void	(*crit_proto_stop)(struct wiphy *wiphy,
5107 				   struct wireless_dev *wdev);
5108 	int	(*set_coalesce)(struct wiphy *wiphy,
5109 				struct cfg80211_coalesce *coalesce);
5110 
5111 	int	(*channel_switch)(struct wiphy *wiphy,
5112 				  struct net_device *dev,
5113 				  struct cfg80211_csa_settings *params);
5114 
5115 	int     (*set_qos_map)(struct wiphy *wiphy,
5116 			       struct net_device *dev,
5117 			       struct cfg80211_qos_map *qos_map);
5118 
5119 	int	(*set_ap_chanwidth)(struct wiphy *wiphy, struct net_device *dev,
5120 				    unsigned int link_id,
5121 				    struct cfg80211_chan_def *chandef);
5122 
5123 	int	(*add_tx_ts)(struct wiphy *wiphy, struct net_device *dev,
5124 			     u8 tsid, const u8 *peer, u8 user_prio,
5125 			     u16 admitted_time);
5126 	int	(*del_tx_ts)(struct wiphy *wiphy, struct net_device *dev,
5127 			     u8 tsid, const u8 *peer);
5128 
5129 	int	(*tdls_channel_switch)(struct wiphy *wiphy,
5130 				       struct net_device *dev,
5131 				       const u8 *addr, u8 oper_class,
5132 				       struct cfg80211_chan_def *chandef);
5133 	void	(*tdls_cancel_channel_switch)(struct wiphy *wiphy,
5134 					      struct net_device *dev,
5135 					      const u8 *addr);
5136 	int	(*start_nan)(struct wiphy *wiphy, struct wireless_dev *wdev,
5137 			     struct cfg80211_nan_conf *conf);
5138 	void	(*stop_nan)(struct wiphy *wiphy, struct wireless_dev *wdev);
5139 	int	(*add_nan_func)(struct wiphy *wiphy, struct wireless_dev *wdev,
5140 				struct cfg80211_nan_func *nan_func);
5141 	void	(*del_nan_func)(struct wiphy *wiphy, struct wireless_dev *wdev,
5142 			       u64 cookie);
5143 	int	(*nan_change_conf)(struct wiphy *wiphy,
5144 				   struct wireless_dev *wdev,
5145 				   struct cfg80211_nan_conf *conf,
5146 				   u32 changes);
5147 
5148 	int	(*set_multicast_to_unicast)(struct wiphy *wiphy,
5149 					    struct net_device *dev,
5150 					    const bool enabled);
5151 
5152 	int	(*get_txq_stats)(struct wiphy *wiphy,
5153 				 struct wireless_dev *wdev,
5154 				 struct cfg80211_txq_stats *txqstats);
5155 
5156 	int	(*set_pmk)(struct wiphy *wiphy, struct net_device *dev,
5157 			   const struct cfg80211_pmk_conf *conf);
5158 	int	(*del_pmk)(struct wiphy *wiphy, struct net_device *dev,
5159 			   const u8 *aa);
5160 	int     (*external_auth)(struct wiphy *wiphy, struct net_device *dev,
5161 				 struct cfg80211_external_auth_params *params);
5162 
5163 	int	(*tx_control_port)(struct wiphy *wiphy,
5164 				   struct net_device *dev,
5165 				   const u8 *buf, size_t len,
5166 				   const u8 *dest, const __be16 proto,
5167 				   const bool noencrypt, int link_id,
5168 				   u64 *cookie);
5169 
5170 	int	(*get_ftm_responder_stats)(struct wiphy *wiphy,
5171 				struct net_device *dev,
5172 				struct cfg80211_ftm_responder_stats *ftm_stats);
5173 
5174 	int	(*start_pmsr)(struct wiphy *wiphy, struct wireless_dev *wdev,
5175 			      struct cfg80211_pmsr_request *request);
5176 	void	(*abort_pmsr)(struct wiphy *wiphy, struct wireless_dev *wdev,
5177 			      struct cfg80211_pmsr_request *request);
5178 	int	(*update_owe_info)(struct wiphy *wiphy, struct net_device *dev,
5179 				   struct cfg80211_update_owe_info *owe_info);
5180 	int	(*probe_mesh_link)(struct wiphy *wiphy, struct net_device *dev,
5181 				   const u8 *buf, size_t len);
5182 	int     (*set_tid_config)(struct wiphy *wiphy, struct net_device *dev,
5183 				  struct cfg80211_tid_config *tid_conf);
5184 	int	(*reset_tid_config)(struct wiphy *wiphy, struct net_device *dev,
5185 				    const u8 *peer, u8 tids);
5186 	int	(*set_sar_specs)(struct wiphy *wiphy,
5187 				 struct cfg80211_sar_specs *sar);
5188 	int	(*color_change)(struct wiphy *wiphy,
5189 				struct net_device *dev,
5190 				struct cfg80211_color_change_settings *params);
5191 	int     (*set_fils_aad)(struct wiphy *wiphy, struct net_device *dev,
5192 				struct cfg80211_fils_aad *fils_aad);
5193 	int	(*set_radar_background)(struct wiphy *wiphy,
5194 					struct cfg80211_chan_def *chandef);
5195 	int	(*add_link_station)(struct wiphy *wiphy, struct net_device *dev,
5196 				    struct link_station_parameters *params);
5197 	int	(*mod_link_station)(struct wiphy *wiphy, struct net_device *dev,
5198 				    struct link_station_parameters *params);
5199 	int	(*del_link_station)(struct wiphy *wiphy, struct net_device *dev,
5200 				    struct link_station_del_parameters *params);
5201 	int	(*set_hw_timestamp)(struct wiphy *wiphy, struct net_device *dev,
5202 				    struct cfg80211_set_hw_timestamp *hwts);
5203 	int	(*set_ttlm)(struct wiphy *wiphy, struct net_device *dev,
5204 			    struct cfg80211_ttlm_params *params);
5205 	u32	(*get_radio_mask)(struct wiphy *wiphy, struct net_device *dev);
5206 	int     (*assoc_ml_reconf)(struct wiphy *wiphy, struct net_device *dev,
5207 				   struct cfg80211_ml_reconf_req *req);
5208 	int	(*set_epcs)(struct wiphy *wiphy, struct net_device *dev,
5209 			    bool val);
5210 };
5211 
5212 /*
5213  * wireless hardware and networking interfaces structures
5214  * and registration/helper functions
5215  */
5216 
5217 /**
5218  * enum wiphy_flags - wiphy capability flags
5219  *
5220  * @WIPHY_FLAG_SPLIT_SCAN_6GHZ: if set to true, the scan request will be split
5221  *	 into two, first for legacy bands and second for 6 GHz.
5222  * @WIPHY_FLAG_NETNS_OK: if not set, do not allow changing the netns of this
5223  *	wiphy at all
5224  * @WIPHY_FLAG_PS_ON_BY_DEFAULT: if set to true, powersave will be enabled
5225  *	by default -- this flag will be set depending on the kernel's default
5226  *	on wiphy_new(), but can be changed by the driver if it has a good
5227  *	reason to override the default
5228  * @WIPHY_FLAG_4ADDR_AP: supports 4addr mode even on AP (with a single station
5229  *	on a VLAN interface). This flag also serves an extra purpose of
5230  *	supporting 4ADDR AP mode on devices which do not support AP/VLAN iftype.
5231  * @WIPHY_FLAG_4ADDR_STATION: supports 4addr mode even as a station
5232  * @WIPHY_FLAG_CONTROL_PORT_PROTOCOL: This device supports setting the
5233  *	control port protocol ethertype. The device also honours the
5234  *	control_port_no_encrypt flag.
5235  * @WIPHY_FLAG_IBSS_RSN: The device supports IBSS RSN.
5236  * @WIPHY_FLAG_MESH_AUTH: The device supports mesh authentication by routing
5237  *	auth frames to userspace. See @NL80211_MESH_SETUP_USERSPACE_AUTH.
5238  * @WIPHY_FLAG_SUPPORTS_FW_ROAM: The device supports roaming feature in the
5239  *	firmware.
5240  * @WIPHY_FLAG_AP_UAPSD: The device supports uapsd on AP.
5241  * @WIPHY_FLAG_SUPPORTS_TDLS: The device supports TDLS (802.11z) operation.
5242  * @WIPHY_FLAG_TDLS_EXTERNAL_SETUP: The device does not handle TDLS (802.11z)
5243  *	link setup/discovery operations internally. Setup, discovery and
5244  *	teardown packets should be sent through the @NL80211_CMD_TDLS_MGMT
5245  *	command. When this flag is not set, @NL80211_CMD_TDLS_OPER should be
5246  *	used for asking the driver/firmware to perform a TDLS operation.
5247  * @WIPHY_FLAG_HAVE_AP_SME: device integrates AP SME
5248  * @WIPHY_FLAG_REPORTS_OBSS: the device will report beacons from other BSSes
5249  *	when there are virtual interfaces in AP mode by calling
5250  *	cfg80211_report_obss_beacon().
5251  * @WIPHY_FLAG_AP_PROBE_RESP_OFFLOAD: When operating as an AP, the device
5252  *	responds to probe-requests in hardware.
5253  * @WIPHY_FLAG_OFFCHAN_TX: Device supports direct off-channel TX.
5254  * @WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL: Device supports remain-on-channel call.
5255  * @WIPHY_FLAG_SUPPORTS_5_10_MHZ: Device supports 5 MHz and 10 MHz channels.
5256  * @WIPHY_FLAG_HAS_CHANNEL_SWITCH: Device supports channel switch in
5257  *	beaconing mode (AP, IBSS, Mesh, ...).
5258  * @WIPHY_FLAG_SUPPORTS_EXT_KEK_KCK: The device supports bigger kek and kck keys
5259  * @WIPHY_FLAG_SUPPORTS_MLO: This is a temporary flag gating the MLO APIs,
5260  *	in order to not have them reachable in normal drivers, until we have
5261  *	complete feature/interface combinations/etc. advertisement. No driver
5262  *	should set this flag for now.
5263  * @WIPHY_FLAG_SUPPORTS_EXT_KCK_32: The device supports 32-byte KCK keys.
5264  * @WIPHY_FLAG_NOTIFY_REGDOM_BY_DRIVER: The device could handle reg notify for
5265  *	NL80211_REGDOM_SET_BY_DRIVER.
5266  * @WIPHY_FLAG_CHANNEL_CHANGE_ON_BEACON: reg_call_notifier() is called if driver
5267  *	set this flag to update channels on beacon hints.
5268  * @WIPHY_FLAG_SUPPORTS_NSTR_NONPRIMARY: support connection to non-primary link
5269  *	of an NSTR mobile AP MLD.
5270  * @WIPHY_FLAG_DISABLE_WEXT: disable wireless extensions for this device
5271  */
5272 enum wiphy_flags {
5273 	WIPHY_FLAG_SUPPORTS_EXT_KEK_KCK		= BIT(0),
5274 	WIPHY_FLAG_SUPPORTS_MLO			= BIT(1),
5275 	WIPHY_FLAG_SPLIT_SCAN_6GHZ		= BIT(2),
5276 	WIPHY_FLAG_NETNS_OK			= BIT(3),
5277 	WIPHY_FLAG_PS_ON_BY_DEFAULT		= BIT(4),
5278 	WIPHY_FLAG_4ADDR_AP			= BIT(5),
5279 	WIPHY_FLAG_4ADDR_STATION		= BIT(6),
5280 	WIPHY_FLAG_CONTROL_PORT_PROTOCOL	= BIT(7),
5281 	WIPHY_FLAG_IBSS_RSN			= BIT(8),
5282 	WIPHY_FLAG_DISABLE_WEXT			= BIT(9),
5283 	WIPHY_FLAG_MESH_AUTH			= BIT(10),
5284 	WIPHY_FLAG_SUPPORTS_EXT_KCK_32          = BIT(11),
5285 	WIPHY_FLAG_SUPPORTS_NSTR_NONPRIMARY	= BIT(12),
5286 	WIPHY_FLAG_SUPPORTS_FW_ROAM		= BIT(13),
5287 	WIPHY_FLAG_AP_UAPSD			= BIT(14),
5288 	WIPHY_FLAG_SUPPORTS_TDLS		= BIT(15),
5289 	WIPHY_FLAG_TDLS_EXTERNAL_SETUP		= BIT(16),
5290 	WIPHY_FLAG_HAVE_AP_SME			= BIT(17),
5291 	WIPHY_FLAG_REPORTS_OBSS			= BIT(18),
5292 	WIPHY_FLAG_AP_PROBE_RESP_OFFLOAD	= BIT(19),
5293 	WIPHY_FLAG_OFFCHAN_TX			= BIT(20),
5294 	WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL	= BIT(21),
5295 	WIPHY_FLAG_SUPPORTS_5_10_MHZ		= BIT(22),
5296 	WIPHY_FLAG_HAS_CHANNEL_SWITCH		= BIT(23),
5297 	WIPHY_FLAG_NOTIFY_REGDOM_BY_DRIVER	= BIT(24),
5298 	WIPHY_FLAG_CHANNEL_CHANGE_ON_BEACON     = BIT(25),
5299 };
5300 
5301 /**
5302  * struct ieee80211_iface_limit - limit on certain interface types
5303  * @max: maximum number of interfaces of these types
5304  * @types: interface types (bits)
5305  */
5306 struct ieee80211_iface_limit {
5307 	u16 max;
5308 	u16 types;
5309 };
5310 
5311 /**
5312  * struct ieee80211_iface_combination - possible interface combination
5313  *
5314  * With this structure the driver can describe which interface
5315  * combinations it supports concurrently. When set in a struct wiphy_radio,
5316  * the combinations refer to combinations of interfaces currently active on
5317  * that radio.
5318  *
5319  * Examples:
5320  *
5321  * 1. Allow #STA <= 1, #AP <= 1, matching BI, channels = 1, 2 total:
5322  *
5323  *    .. code-block:: c
5324  *
5325  *	struct ieee80211_iface_limit limits1[] = {
5326  *		{ .max = 1, .types = BIT(NL80211_IFTYPE_STATION), },
5327  *		{ .max = 1, .types = BIT(NL80211_IFTYPE_AP), },
5328  *	};
5329  *	struct ieee80211_iface_combination combination1 = {
5330  *		.limits = limits1,
5331  *		.n_limits = ARRAY_SIZE(limits1),
5332  *		.max_interfaces = 2,
5333  *		.beacon_int_infra_match = true,
5334  *	};
5335  *
5336  *
5337  * 2. Allow #{AP, P2P-GO} <= 8, channels = 1, 8 total:
5338  *
5339  *    .. code-block:: c
5340  *
5341  *	struct ieee80211_iface_limit limits2[] = {
5342  *		{ .max = 8, .types = BIT(NL80211_IFTYPE_AP) |
5343  *				     BIT(NL80211_IFTYPE_P2P_GO), },
5344  *	};
5345  *	struct ieee80211_iface_combination combination2 = {
5346  *		.limits = limits2,
5347  *		.n_limits = ARRAY_SIZE(limits2),
5348  *		.max_interfaces = 8,
5349  *		.num_different_channels = 1,
5350  *	};
5351  *
5352  *
5353  * 3. Allow #STA <= 1, #{P2P-client,P2P-GO} <= 3 on two channels, 4 total.
5354  *
5355  *    This allows for an infrastructure connection and three P2P connections.
5356  *
5357  *    .. code-block:: c
5358  *
5359  *	struct ieee80211_iface_limit limits3[] = {
5360  *		{ .max = 1, .types = BIT(NL80211_IFTYPE_STATION), },
5361  *		{ .max = 3, .types = BIT(NL80211_IFTYPE_P2P_GO) |
5362  *				     BIT(NL80211_IFTYPE_P2P_CLIENT), },
5363  *	};
5364  *	struct ieee80211_iface_combination combination3 = {
5365  *		.limits = limits3,
5366  *		.n_limits = ARRAY_SIZE(limits3),
5367  *		.max_interfaces = 4,
5368  *		.num_different_channels = 2,
5369  *	};
5370  *
5371  */
5372 struct ieee80211_iface_combination {
5373 	/**
5374 	 * @limits:
5375 	 * limits for the given interface types
5376 	 */
5377 	const struct ieee80211_iface_limit *limits;
5378 
5379 	/**
5380 	 * @num_different_channels:
5381 	 * can use up to this many different channels
5382 	 */
5383 	u32 num_different_channels;
5384 
5385 	/**
5386 	 * @max_interfaces:
5387 	 * maximum number of interfaces in total allowed in this group
5388 	 */
5389 	u16 max_interfaces;
5390 
5391 	/**
5392 	 * @n_limits:
5393 	 * number of limitations
5394 	 */
5395 	u8 n_limits;
5396 
5397 	/**
5398 	 * @beacon_int_infra_match:
5399 	 * In this combination, the beacon intervals between infrastructure
5400 	 * and AP types must match. This is required only in special cases.
5401 	 */
5402 	bool beacon_int_infra_match;
5403 
5404 	/**
5405 	 * @radar_detect_widths:
5406 	 * bitmap of channel widths supported for radar detection
5407 	 */
5408 	u8 radar_detect_widths;
5409 
5410 	/**
5411 	 * @radar_detect_regions:
5412 	 * bitmap of regions supported for radar detection
5413 	 */
5414 	u8 radar_detect_regions;
5415 
5416 	/**
5417 	 * @beacon_int_min_gcd:
5418 	 * This interface combination supports different beacon intervals.
5419 	 *
5420 	 * = 0
5421 	 *   all beacon intervals for different interface must be same.
5422 	 * > 0
5423 	 *   any beacon interval for the interface part of this combination AND
5424 	 *   GCD of all beacon intervals from beaconing interfaces of this
5425 	 *   combination must be greater or equal to this value.
5426 	 */
5427 	u32 beacon_int_min_gcd;
5428 };
5429 
5430 struct ieee80211_txrx_stypes {
5431 	u16 tx, rx;
5432 };
5433 
5434 /**
5435  * enum wiphy_wowlan_support_flags - WoWLAN support flags
5436  * @WIPHY_WOWLAN_ANY: supports wakeup for the special "any"
5437  *	trigger that keeps the device operating as-is and
5438  *	wakes up the host on any activity, for example a
5439  *	received packet that passed filtering; note that the
5440  *	packet should be preserved in that case
5441  * @WIPHY_WOWLAN_MAGIC_PKT: supports wakeup on magic packet
5442  *	(see nl80211.h)
5443  * @WIPHY_WOWLAN_DISCONNECT: supports wakeup on disconnect
5444  * @WIPHY_WOWLAN_SUPPORTS_GTK_REKEY: supports GTK rekeying while asleep
5445  * @WIPHY_WOWLAN_GTK_REKEY_FAILURE: supports wakeup on GTK rekey failure
5446  * @WIPHY_WOWLAN_EAP_IDENTITY_REQ: supports wakeup on EAP identity request
5447  * @WIPHY_WOWLAN_4WAY_HANDSHAKE: supports wakeup on 4-way handshake failure
5448  * @WIPHY_WOWLAN_RFKILL_RELEASE: supports wakeup on RF-kill release
5449  * @WIPHY_WOWLAN_NET_DETECT: supports wakeup on network detection
5450  */
5451 enum wiphy_wowlan_support_flags {
5452 	WIPHY_WOWLAN_ANY		= BIT(0),
5453 	WIPHY_WOWLAN_MAGIC_PKT		= BIT(1),
5454 	WIPHY_WOWLAN_DISCONNECT		= BIT(2),
5455 	WIPHY_WOWLAN_SUPPORTS_GTK_REKEY	= BIT(3),
5456 	WIPHY_WOWLAN_GTK_REKEY_FAILURE	= BIT(4),
5457 	WIPHY_WOWLAN_EAP_IDENTITY_REQ	= BIT(5),
5458 	WIPHY_WOWLAN_4WAY_HANDSHAKE	= BIT(6),
5459 	WIPHY_WOWLAN_RFKILL_RELEASE	= BIT(7),
5460 	WIPHY_WOWLAN_NET_DETECT		= BIT(8),
5461 };
5462 
5463 struct wiphy_wowlan_tcp_support {
5464 	const struct nl80211_wowlan_tcp_data_token_feature *tok;
5465 	u32 data_payload_max;
5466 	u32 data_interval_max;
5467 	u32 wake_payload_max;
5468 	bool seq;
5469 };
5470 
5471 /**
5472  * struct wiphy_wowlan_support - WoWLAN support data
5473  * @flags: see &enum wiphy_wowlan_support_flags
5474  * @n_patterns: number of supported wakeup patterns
5475  *	(see nl80211.h for the pattern definition)
5476  * @pattern_max_len: maximum length of each pattern
5477  * @pattern_min_len: minimum length of each pattern
5478  * @max_pkt_offset: maximum Rx packet offset
5479  * @max_nd_match_sets: maximum number of matchsets for net-detect,
5480  *	similar, but not necessarily identical, to max_match_sets for
5481  *	scheduled scans.
5482  *	See &struct cfg80211_sched_scan_request.@match_sets for more
5483  *	details.
5484  * @tcp: TCP wakeup support information
5485  */
5486 struct wiphy_wowlan_support {
5487 	u32 flags;
5488 	int n_patterns;
5489 	int pattern_max_len;
5490 	int pattern_min_len;
5491 	int max_pkt_offset;
5492 	int max_nd_match_sets;
5493 	const struct wiphy_wowlan_tcp_support *tcp;
5494 };
5495 
5496 /**
5497  * struct wiphy_coalesce_support - coalesce support data
5498  * @n_rules: maximum number of coalesce rules
5499  * @max_delay: maximum supported coalescing delay in msecs
5500  * @n_patterns: number of supported patterns in a rule
5501  *	(see nl80211.h for the pattern definition)
5502  * @pattern_max_len: maximum length of each pattern
5503  * @pattern_min_len: minimum length of each pattern
5504  * @max_pkt_offset: maximum Rx packet offset
5505  */
5506 struct wiphy_coalesce_support {
5507 	int n_rules;
5508 	int max_delay;
5509 	int n_patterns;
5510 	int pattern_max_len;
5511 	int pattern_min_len;
5512 	int max_pkt_offset;
5513 };
5514 
5515 /**
5516  * enum wiphy_vendor_command_flags - validation flags for vendor commands
5517  * @WIPHY_VENDOR_CMD_NEED_WDEV: vendor command requires wdev
5518  * @WIPHY_VENDOR_CMD_NEED_NETDEV: vendor command requires netdev
5519  * @WIPHY_VENDOR_CMD_NEED_RUNNING: interface/wdev must be up & running
5520  *	(must be combined with %_WDEV or %_NETDEV)
5521  */
5522 enum wiphy_vendor_command_flags {
5523 	WIPHY_VENDOR_CMD_NEED_WDEV = BIT(0),
5524 	WIPHY_VENDOR_CMD_NEED_NETDEV = BIT(1),
5525 	WIPHY_VENDOR_CMD_NEED_RUNNING = BIT(2),
5526 };
5527 
5528 /**
5529  * enum wiphy_opmode_flag - Station's ht/vht operation mode information flags
5530  *
5531  * @STA_OPMODE_MAX_BW_CHANGED: Max Bandwidth changed
5532  * @STA_OPMODE_SMPS_MODE_CHANGED: SMPS mode changed
5533  * @STA_OPMODE_N_SS_CHANGED: max N_SS (number of spatial streams) changed
5534  *
5535  */
5536 enum wiphy_opmode_flag {
5537 	STA_OPMODE_MAX_BW_CHANGED	= BIT(0),
5538 	STA_OPMODE_SMPS_MODE_CHANGED	= BIT(1),
5539 	STA_OPMODE_N_SS_CHANGED		= BIT(2),
5540 };
5541 
5542 /**
5543  * struct sta_opmode_info - Station's ht/vht operation mode information
5544  * @changed: contains value from &enum wiphy_opmode_flag
5545  * @smps_mode: New SMPS mode value from &enum nl80211_smps_mode of a station
5546  * @bw: new max bandwidth value from &enum nl80211_chan_width of a station
5547  * @rx_nss: new rx_nss value of a station
5548  */
5549 
5550 struct sta_opmode_info {
5551 	u32 changed;
5552 	enum nl80211_smps_mode smps_mode;
5553 	enum nl80211_chan_width bw;
5554 	u8 rx_nss;
5555 };
5556 
5557 #define VENDOR_CMD_RAW_DATA ((const struct nla_policy *)(long)(-ENODATA))
5558 
5559 /**
5560  * struct wiphy_vendor_command - vendor command definition
5561  * @info: vendor command identifying information, as used in nl80211
5562  * @flags: flags, see &enum wiphy_vendor_command_flags
5563  * @doit: callback for the operation, note that wdev is %NULL if the
5564  *	flags didn't ask for a wdev and non-%NULL otherwise; the data
5565  *	pointer may be %NULL if userspace provided no data at all
5566  * @dumpit: dump callback, for transferring bigger/multiple items. The
5567  *	@storage points to cb->args[5], ie. is preserved over the multiple
5568  *	dumpit calls.
5569  * @policy: policy pointer for attributes within %NL80211_ATTR_VENDOR_DATA.
5570  *	Set this to %VENDOR_CMD_RAW_DATA if no policy can be given and the
5571  *	attribute is just raw data (e.g. a firmware command).
5572  * @maxattr: highest attribute number in policy
5573  * It's recommended to not have the same sub command with both @doit and
5574  * @dumpit, so that userspace can assume certain ones are get and others
5575  * are used with dump requests.
5576  */
5577 struct wiphy_vendor_command {
5578 	struct nl80211_vendor_cmd_info info;
5579 	u32 flags;
5580 	int (*doit)(struct wiphy *wiphy, struct wireless_dev *wdev,
5581 		    const void *data, int data_len);
5582 	int (*dumpit)(struct wiphy *wiphy, struct wireless_dev *wdev,
5583 		      struct sk_buff *skb, const void *data, int data_len,
5584 		      unsigned long *storage);
5585 	const struct nla_policy *policy;
5586 	unsigned int maxattr;
5587 };
5588 
5589 /**
5590  * struct wiphy_iftype_ext_capab - extended capabilities per interface type
5591  * @iftype: interface type
5592  * @extended_capabilities: extended capabilities supported by the driver,
5593  *	additional capabilities might be supported by userspace; these are the
5594  *	802.11 extended capabilities ("Extended Capabilities element") and are
5595  *	in the same format as in the information element. See IEEE Std
5596  *	802.11-2012 8.4.2.29 for the defined fields.
5597  * @extended_capabilities_mask: mask of the valid values
5598  * @extended_capabilities_len: length of the extended capabilities
5599  * @eml_capabilities: EML capabilities (for MLO)
5600  * @mld_capa_and_ops: MLD capabilities and operations (for MLO)
5601  */
5602 struct wiphy_iftype_ext_capab {
5603 	enum nl80211_iftype iftype;
5604 	const u8 *extended_capabilities;
5605 	const u8 *extended_capabilities_mask;
5606 	u8 extended_capabilities_len;
5607 	u16 eml_capabilities;
5608 	u16 mld_capa_and_ops;
5609 };
5610 
5611 /**
5612  * cfg80211_get_iftype_ext_capa - lookup interface type extended capability
5613  * @wiphy: the wiphy to look up from
5614  * @type: the interface type to look up
5615  *
5616  * Return: The extended capability for the given interface @type, may be %NULL
5617  */
5618 const struct wiphy_iftype_ext_capab *
5619 cfg80211_get_iftype_ext_capa(struct wiphy *wiphy, enum nl80211_iftype type);
5620 
5621 /**
5622  * struct cfg80211_pmsr_capabilities - cfg80211 peer measurement capabilities
5623  * @max_peers: maximum number of peers in a single measurement
5624  * @report_ap_tsf: can report assoc AP's TSF for radio resource measurement
5625  * @randomize_mac_addr: can randomize MAC address for measurement
5626  * @ftm: FTM measurement data
5627  * @ftm.supported: FTM measurement is supported
5628  * @ftm.asap: ASAP-mode is supported
5629  * @ftm.non_asap: non-ASAP-mode is supported
5630  * @ftm.request_lci: can request LCI data
5631  * @ftm.request_civicloc: can request civic location data
5632  * @ftm.preambles: bitmap of preambles supported (&enum nl80211_preamble)
5633  * @ftm.bandwidths: bitmap of bandwidths supported (&enum nl80211_chan_width)
5634  * @ftm.max_bursts_exponent: maximum burst exponent supported
5635  *	(set to -1 if not limited; note that setting this will necessarily
5636  *	forbid using the value 15 to let the responder pick)
5637  * @ftm.max_ftms_per_burst: maximum FTMs per burst supported (set to 0 if
5638  *	not limited)
5639  * @ftm.trigger_based: trigger based ranging measurement is supported
5640  * @ftm.non_trigger_based: non trigger based ranging measurement is supported
5641  */
5642 struct cfg80211_pmsr_capabilities {
5643 	unsigned int max_peers;
5644 	u8 report_ap_tsf:1,
5645 	   randomize_mac_addr:1;
5646 
5647 	struct {
5648 		u32 preambles;
5649 		u32 bandwidths;
5650 		s8 max_bursts_exponent;
5651 		u8 max_ftms_per_burst;
5652 		u8 supported:1,
5653 		   asap:1,
5654 		   non_asap:1,
5655 		   request_lci:1,
5656 		   request_civicloc:1,
5657 		   trigger_based:1,
5658 		   non_trigger_based:1;
5659 	} ftm;
5660 };
5661 
5662 /**
5663  * struct wiphy_iftype_akm_suites - This structure encapsulates supported akm
5664  * suites for interface types defined in @iftypes_mask. Each type in the
5665  * @iftypes_mask must be unique across all instances of iftype_akm_suites.
5666  *
5667  * @iftypes_mask: bitmask of interfaces types
5668  * @akm_suites: points to an array of supported akm suites
5669  * @n_akm_suites: number of supported AKM suites
5670  */
5671 struct wiphy_iftype_akm_suites {
5672 	u16 iftypes_mask;
5673 	const u32 *akm_suites;
5674 	int n_akm_suites;
5675 };
5676 
5677 /**
5678  * struct wiphy_radio_cfg - physical radio config of a wiphy
5679  * This structure describes the configurations of a physical radio in a
5680  * wiphy. It is used to denote per-radio attributes belonging to a wiphy.
5681  *
5682  * @rts_threshold: RTS threshold (dot11RTSThreshold);
5683  *	-1 (default) = RTS/CTS disabled
5684  * @radio_debugfsdir: Pointer to debugfs directory containing the radio-
5685  *	specific parameters.
5686  *	NULL (default) = Debugfs directory not created
5687  */
5688 struct wiphy_radio_cfg {
5689 	u32 rts_threshold;
5690 	struct dentry *radio_debugfsdir;
5691 };
5692 
5693 /**
5694  * struct wiphy_radio_freq_range - wiphy frequency range
5695  * @start_freq:  start range edge frequency (kHz)
5696  * @end_freq:    end range edge frequency (kHz)
5697  */
5698 struct wiphy_radio_freq_range {
5699 	u32 start_freq;
5700 	u32 end_freq;
5701 };
5702 
5703 
5704 /**
5705  * struct wiphy_radio - physical radio of a wiphy
5706  * This structure describes a physical radio belonging to a wiphy.
5707  * It is used to describe concurrent-channel capabilities. Only one channel
5708  * can be active on the radio described by struct wiphy_radio.
5709  *
5710  * @freq_range: frequency range that the radio can operate on.
5711  * @n_freq_range: number of elements in @freq_range
5712  *
5713  * @iface_combinations: Valid interface combinations array, should not
5714  *	list single interface types.
5715  * @n_iface_combinations: number of entries in @iface_combinations array.
5716  *
5717  * @antenna_mask: bitmask of antennas connected to this radio.
5718  */
5719 struct wiphy_radio {
5720 	const struct wiphy_radio_freq_range *freq_range;
5721 	int n_freq_range;
5722 
5723 	const struct ieee80211_iface_combination *iface_combinations;
5724 	int n_iface_combinations;
5725 
5726 	u32 antenna_mask;
5727 };
5728 
5729 /**
5730  * enum wiphy_nan_flags - NAN capabilities
5731  *
5732  * @WIPHY_NAN_FLAGS_CONFIGURABLE_SYNC: Device supports NAN configurable
5733  *     synchronization.
5734  * @WIPHY_NAN_FLAGS_USERSPACE_DE: Device doesn't support DE offload.
5735  */
5736 enum wiphy_nan_flags {
5737 	WIPHY_NAN_FLAGS_CONFIGURABLE_SYNC = BIT(0),
5738 	WIPHY_NAN_FLAGS_USERSPACE_DE   = BIT(1),
5739 };
5740 
5741 /**
5742  * struct wiphy_nan_capa - NAN capabilities
5743  *
5744  * This structure describes the NAN capabilities of a wiphy.
5745  *
5746  * @flags: NAN capabilities flags, see &enum wiphy_nan_flags
5747  * @op_mode: NAN operation mode, as defined in Wi-Fi Aware (TM) specification
5748  *     Table 81.
5749  * @n_antennas: number of antennas supported by the device for Tx/Rx. Lower
5750  *     nibble indicates the number of TX antennas and upper nibble indicates the
5751  *     number of RX antennas. Value 0 indicates the information is not
5752  *     available.
5753  * @max_channel_switch_time: maximum channel switch time in milliseconds.
5754  * @dev_capabilities: NAN device capabilities as defined in Wi-Fi Aware (TM)
5755  *     specification Table 79 (Capabilities field).
5756  */
5757 struct wiphy_nan_capa {
5758 	u32 flags;
5759 	u8 op_mode;
5760 	u8 n_antennas;
5761 	u16 max_channel_switch_time;
5762 	u8 dev_capabilities;
5763 };
5764 
5765 #define CFG80211_HW_TIMESTAMP_ALL_PEERS	0xffff
5766 
5767 /**
5768  * struct wiphy - wireless hardware description
5769  * @mtx: mutex for the data (structures) of this device
5770  * @reg_notifier: the driver's regulatory notification callback,
5771  *	note that if your driver uses wiphy_apply_custom_regulatory()
5772  *	the reg_notifier's request can be passed as NULL
5773  * @regd: the driver's regulatory domain, if one was requested via
5774  *	the regulatory_hint() API. This can be used by the driver
5775  *	on the reg_notifier() if it chooses to ignore future
5776  *	regulatory domain changes caused by other drivers.
5777  * @signal_type: signal type reported in &struct cfg80211_bss.
5778  * @cipher_suites: supported cipher suites
5779  * @n_cipher_suites: number of supported cipher suites
5780  * @akm_suites: supported AKM suites. These are the default AKMs supported if
5781  *	the supported AKMs not advertized for a specific interface type in
5782  *	iftype_akm_suites.
5783  * @n_akm_suites: number of supported AKM suites
5784  * @iftype_akm_suites: array of supported akm suites info per interface type.
5785  *	Note that the bits in @iftypes_mask inside this structure cannot
5786  *	overlap (i.e. only one occurrence of each type is allowed across all
5787  *	instances of iftype_akm_suites).
5788  * @num_iftype_akm_suites: number of interface types for which supported akm
5789  *	suites are specified separately.
5790  * @retry_short: Retry limit for short frames (dot11ShortRetryLimit)
5791  * @retry_long: Retry limit for long frames (dot11LongRetryLimit)
5792  * @frag_threshold: Fragmentation threshold (dot11FragmentationThreshold);
5793  *	-1 = fragmentation disabled, only odd values >= 256 used
5794  * @rts_threshold: RTS threshold (dot11RTSThreshold); -1 = RTS/CTS disabled
5795  * @_net: the network namespace this wiphy currently lives in
5796  * @perm_addr: permanent MAC address of this device
5797  * @addr_mask: If the device supports multiple MAC addresses by masking,
5798  *	set this to a mask with variable bits set to 1, e.g. if the last
5799  *	four bits are variable then set it to 00-00-00-00-00-0f. The actual
5800  *	variable bits shall be determined by the interfaces added, with
5801  *	interfaces not matching the mask being rejected to be brought up.
5802  * @n_addresses: number of addresses in @addresses.
5803  * @addresses: If the device has more than one address, set this pointer
5804  *	to a list of addresses (6 bytes each). The first one will be used
5805  *	by default for perm_addr. In this case, the mask should be set to
5806  *	all-zeroes. In this case it is assumed that the device can handle
5807  *	the same number of arbitrary MAC addresses.
5808  * @registered: protects ->resume and ->suspend sysfs callbacks against
5809  *	unregister hardware
5810  * @debugfsdir: debugfs directory used for this wiphy (ieee80211/<wiphyname>).
5811  *	It will be renamed automatically on wiphy renames
5812  * @dev: (virtual) struct device for this wiphy. The item in
5813  *	/sys/class/ieee80211/ points to this. You need use set_wiphy_dev()
5814  *	(see below).
5815  * @wext: wireless extension handlers
5816  * @priv: driver private data (sized according to wiphy_new() parameter)
5817  * @interface_modes: bitmask of interfaces types valid for this wiphy,
5818  *	must be set by driver
5819  * @iface_combinations: Valid interface combinations array, should not
5820  *	list single interface types.
5821  * @n_iface_combinations: number of entries in @iface_combinations array.
5822  * @software_iftypes: bitmask of software interface types, these are not
5823  *	subject to any restrictions since they are purely managed in SW.
5824  * @flags: wiphy flags, see &enum wiphy_flags
5825  * @regulatory_flags: wiphy regulatory flags, see
5826  *	&enum ieee80211_regulatory_flags
5827  * @features: features advertised to nl80211, see &enum nl80211_feature_flags.
5828  * @ext_features: extended features advertised to nl80211, see
5829  *	&enum nl80211_ext_feature_index.
5830  * @bss_priv_size: each BSS struct has private data allocated with it,
5831  *	this variable determines its size
5832  * @max_scan_ssids: maximum number of SSIDs the device can scan for in
5833  *	any given scan
5834  * @max_sched_scan_reqs: maximum number of scheduled scan requests that
5835  *	the device can run concurrently.
5836  * @max_sched_scan_ssids: maximum number of SSIDs the device can scan
5837  *	for in any given scheduled scan
5838  * @max_match_sets: maximum number of match sets the device can handle
5839  *	when performing a scheduled scan, 0 if filtering is not
5840  *	supported.
5841  * @max_scan_ie_len: maximum length of user-controlled IEs device can
5842  *	add to probe request frames transmitted during a scan, must not
5843  *	include fixed IEs like supported rates
5844  * @max_sched_scan_ie_len: same as max_scan_ie_len, but for scheduled
5845  *	scans
5846  * @max_sched_scan_plans: maximum number of scan plans (scan interval and number
5847  *	of iterations) for scheduled scan supported by the device.
5848  * @max_sched_scan_plan_interval: maximum interval (in seconds) for a
5849  *	single scan plan supported by the device.
5850  * @max_sched_scan_plan_iterations: maximum number of iterations for a single
5851  *	scan plan supported by the device.
5852  * @coverage_class: current coverage class
5853  * @fw_version: firmware version for ethtool reporting
5854  * @hw_version: hardware version for ethtool reporting
5855  * @max_num_pmkids: maximum number of PMKIDs supported by device
5856  * @privid: a pointer that drivers can use to identify if an arbitrary
5857  *	wiphy is theirs, e.g. in global notifiers
5858  * @bands: information about bands/channels supported by this device
5859  *
5860  * @mgmt_stypes: bitmasks of frame subtypes that can be subscribed to or
5861  *	transmitted through nl80211, points to an array indexed by interface
5862  *	type
5863  *
5864  * @available_antennas_tx: bitmap of antennas which are available to be
5865  *	configured as TX antennas. Antenna configuration commands will be
5866  *	rejected unless this or @available_antennas_rx is set.
5867  *
5868  * @available_antennas_rx: bitmap of antennas which are available to be
5869  *	configured as RX antennas. Antenna configuration commands will be
5870  *	rejected unless this or @available_antennas_tx is set.
5871  *
5872  * @probe_resp_offload:
5873  *	 Bitmap of supported protocols for probe response offloading.
5874  *	 See &enum nl80211_probe_resp_offload_support_attr. Only valid
5875  *	 when the wiphy flag @WIPHY_FLAG_AP_PROBE_RESP_OFFLOAD is set.
5876  *
5877  * @max_remain_on_channel_duration: Maximum time a remain-on-channel operation
5878  *	may request, if implemented.
5879  *
5880  * @wowlan: WoWLAN support information
5881  * @wowlan_config: current WoWLAN configuration; this should usually not be
5882  *	used since access to it is necessarily racy, use the parameter passed
5883  *	to the suspend() operation instead.
5884  *
5885  * @ap_sme_capa: AP SME capabilities, flags from &enum nl80211_ap_sme_features.
5886  * @ht_capa_mod_mask:  Specify what ht_cap values can be over-ridden.
5887  *	If null, then none can be over-ridden.
5888  * @vht_capa_mod_mask:  Specify what VHT capabilities can be over-ridden.
5889  *	If null, then none can be over-ridden.
5890  *
5891  * @wdev_list: the list of associated (virtual) interfaces; this list must
5892  *	not be modified by the driver, but can be read with RTNL/RCU protection.
5893  *
5894  * @max_acl_mac_addrs: Maximum number of MAC addresses that the device
5895  *	supports for ACL.
5896  *
5897  * @extended_capabilities: extended capabilities supported by the driver,
5898  *	additional capabilities might be supported by userspace; these are
5899  *	the 802.11 extended capabilities ("Extended Capabilities element")
5900  *	and are in the same format as in the information element. See
5901  *	802.11-2012 8.4.2.29 for the defined fields. These are the default
5902  *	extended capabilities to be used if the capabilities are not specified
5903  *	for a specific interface type in iftype_ext_capab.
5904  * @extended_capabilities_mask: mask of the valid values
5905  * @extended_capabilities_len: length of the extended capabilities
5906  * @iftype_ext_capab: array of extended capabilities per interface type
5907  * @num_iftype_ext_capab: number of interface types for which extended
5908  *	capabilities are specified separately.
5909  * @coalesce: packet coalescing support information
5910  *
5911  * @vendor_commands: array of vendor commands supported by the hardware
5912  * @n_vendor_commands: number of vendor commands
5913  * @vendor_events: array of vendor events supported by the hardware
5914  * @n_vendor_events: number of vendor events
5915  *
5916  * @max_ap_assoc_sta: maximum number of associated stations supported in AP mode
5917  *	(including P2P GO) or 0 to indicate no such limit is advertised. The
5918  *	driver is allowed to advertise a theoretical limit that it can reach in
5919  *	some cases, but may not always reach.
5920  *
5921  * @max_num_csa_counters: Number of supported csa_counters in beacons
5922  *	and probe responses.  This value should be set if the driver
5923  *	wishes to limit the number of csa counters. Default (0) means
5924  *	infinite.
5925  * @bss_param_support: bitmask indicating which bss_parameters as defined in
5926  *	&struct bss_parameters the driver can actually handle in the
5927  *	.change_bss() callback. The bit positions are defined in &enum
5928  *	wiphy_bss_param_flags.
5929  *
5930  * @bss_select_support: bitmask indicating the BSS selection criteria supported
5931  *	by the driver in the .connect() callback. The bit position maps to the
5932  *	attribute indices defined in &enum nl80211_bss_select_attr.
5933  *
5934  * @nan_supported_bands: bands supported by the device in NAN mode, a
5935  *	bitmap of &enum nl80211_band values.  For instance, for
5936  *	NL80211_BAND_2GHZ, bit 0 would be set
5937  *	(i.e. BIT(NL80211_BAND_2GHZ)).
5938  * @nan_capa: NAN capabilities
5939  *
5940  * @txq_limit: configuration of internal TX queue frame limit
5941  * @txq_memory_limit: configuration internal TX queue memory limit
5942  * @txq_quantum: configuration of internal TX queue scheduler quantum
5943  *
5944  * @tx_queue_len: allow setting transmit queue len for drivers not using
5945  *	wake_tx_queue
5946  *
5947  * @support_mbssid: can HW support association with nontransmitted AP
5948  * @support_only_he_mbssid: don't parse MBSSID elements if it is not
5949  *	HE AP, in order to avoid compatibility issues.
5950  *	@support_mbssid must be set for this to have any effect.
5951  *
5952  * @pmsr_capa: peer measurement capabilities
5953  *
5954  * @tid_config_support: describes the per-TID config support that the
5955  *	device has
5956  * @tid_config_support.vif: bitmap of attributes (configurations)
5957  *	supported by the driver for each vif
5958  * @tid_config_support.peer: bitmap of attributes (configurations)
5959  *	supported by the driver for each peer
5960  * @tid_config_support.max_retry: maximum supported retry count for
5961  *	long/short retry configuration
5962  *
5963  * @max_data_retry_count: maximum supported per TID retry count for
5964  *	configuration through the %NL80211_TID_CONFIG_ATTR_RETRY_SHORT and
5965  *	%NL80211_TID_CONFIG_ATTR_RETRY_LONG attributes
5966  * @sar_capa: SAR control capabilities
5967  * @rfkill: a pointer to the rfkill structure
5968  *
5969  * @mbssid_max_interfaces: maximum number of interfaces supported by the driver
5970  *	in a multiple BSSID set. This field must be set to a non-zero value
5971  *	by the driver to advertise MBSSID support.
5972  * @ema_max_profile_periodicity: maximum profile periodicity supported by
5973  *	the driver. Setting this field to a non-zero value indicates that the
5974  *	driver supports enhanced multi-BSSID advertisements (EMA AP).
5975  * @max_num_akm_suites: maximum number of AKM suites allowed for
5976  *	configuration through %NL80211_CMD_CONNECT, %NL80211_CMD_ASSOCIATE and
5977  *	%NL80211_CMD_START_AP. Set to NL80211_MAX_NR_AKM_SUITES if not set by
5978  *	driver. If set by driver minimum allowed value is
5979  *	NL80211_MAX_NR_AKM_SUITES in order to avoid compatibility issues with
5980  *	legacy userspace and maximum allowed value is
5981  *	CFG80211_MAX_NUM_AKM_SUITES.
5982  *
5983  * @hw_timestamp_max_peers: maximum number of peers that the driver supports
5984  *	enabling HW timestamping for concurrently. Setting this field to a
5985  *	non-zero value indicates that the driver supports HW timestamping.
5986  *	A value of %CFG80211_HW_TIMESTAMP_ALL_PEERS indicates the driver
5987  *	supports enabling HW timestamping for all peers (i.e. no need to
5988  *	specify a mac address).
5989  *
5990  * @radio_cfg: configuration of radios belonging to a muli-radio wiphy. This
5991  *	struct contains a list of all radio specific attributes and should be
5992  *	used only for multi-radio wiphy.
5993  *
5994  * @radio: radios belonging to this wiphy
5995  * @n_radio: number of radios
5996  */
5997 struct wiphy {
5998 	struct mutex mtx;
5999 
6000 	/* assign these fields before you register the wiphy */
6001 
6002 	u8 perm_addr[ETH_ALEN];
6003 	u8 addr_mask[ETH_ALEN];
6004 
6005 	struct mac_address *addresses;
6006 
6007 	const struct ieee80211_txrx_stypes *mgmt_stypes;
6008 
6009 	const struct ieee80211_iface_combination *iface_combinations;
6010 	int n_iface_combinations;
6011 	u16 software_iftypes;
6012 
6013 	u16 n_addresses;
6014 
6015 	/* Supported interface modes, OR together BIT(NL80211_IFTYPE_...) */
6016 	u16 interface_modes;
6017 
6018 	u16 max_acl_mac_addrs;
6019 
6020 	u32 flags, regulatory_flags, features;
6021 	u8 ext_features[DIV_ROUND_UP(NUM_NL80211_EXT_FEATURES, 8)];
6022 
6023 	u32 ap_sme_capa;
6024 
6025 	enum cfg80211_signal_type signal_type;
6026 
6027 	int bss_priv_size;
6028 	u8 max_scan_ssids;
6029 	u8 max_sched_scan_reqs;
6030 	u8 max_sched_scan_ssids;
6031 	u8 max_match_sets;
6032 	u16 max_scan_ie_len;
6033 	u16 max_sched_scan_ie_len;
6034 	u32 max_sched_scan_plans;
6035 	u32 max_sched_scan_plan_interval;
6036 	u32 max_sched_scan_plan_iterations;
6037 
6038 	int n_cipher_suites;
6039 	const u32 *cipher_suites;
6040 
6041 	int n_akm_suites;
6042 	const u32 *akm_suites;
6043 
6044 	const struct wiphy_iftype_akm_suites *iftype_akm_suites;
6045 	unsigned int num_iftype_akm_suites;
6046 
6047 	u8 retry_short;
6048 	u8 retry_long;
6049 	u32 frag_threshold;
6050 	u32 rts_threshold;
6051 	u8 coverage_class;
6052 
6053 	char fw_version[ETHTOOL_FWVERS_LEN];
6054 	u32 hw_version;
6055 
6056 #ifdef CONFIG_PM
6057 	const struct wiphy_wowlan_support *wowlan;
6058 	struct cfg80211_wowlan *wowlan_config;
6059 #endif
6060 
6061 	u16 max_remain_on_channel_duration;
6062 
6063 	u8 max_num_pmkids;
6064 
6065 	u32 available_antennas_tx;
6066 	u32 available_antennas_rx;
6067 
6068 	u32 probe_resp_offload;
6069 
6070 	const u8 *extended_capabilities, *extended_capabilities_mask;
6071 	u8 extended_capabilities_len;
6072 
6073 	const struct wiphy_iftype_ext_capab *iftype_ext_capab;
6074 	unsigned int num_iftype_ext_capab;
6075 
6076 	const void *privid;
6077 
6078 	struct ieee80211_supported_band *bands[NUM_NL80211_BANDS];
6079 
6080 	void (*reg_notifier)(struct wiphy *wiphy,
6081 			     struct regulatory_request *request);
6082 
6083 	struct wiphy_radio_cfg *radio_cfg;
6084 
6085 	/* fields below are read-only, assigned by cfg80211 */
6086 
6087 	const struct ieee80211_regdomain __rcu *regd;
6088 
6089 	struct device dev;
6090 
6091 	bool registered;
6092 
6093 	struct dentry *debugfsdir;
6094 
6095 	const struct ieee80211_ht_cap *ht_capa_mod_mask;
6096 	const struct ieee80211_vht_cap *vht_capa_mod_mask;
6097 
6098 	struct list_head wdev_list;
6099 
6100 	possible_net_t _net;
6101 
6102 #ifdef CONFIG_CFG80211_WEXT
6103 	const struct iw_handler_def *wext;
6104 #endif
6105 
6106 	const struct wiphy_coalesce_support *coalesce;
6107 
6108 	const struct wiphy_vendor_command *vendor_commands;
6109 	const struct nl80211_vendor_cmd_info *vendor_events;
6110 	int n_vendor_commands, n_vendor_events;
6111 
6112 	u16 max_ap_assoc_sta;
6113 
6114 	u8 max_num_csa_counters;
6115 
6116 	u32 bss_param_support;
6117 	u32 bss_select_support;
6118 
6119 	u8 nan_supported_bands;
6120 	struct wiphy_nan_capa nan_capa;
6121 
6122 	u32 txq_limit;
6123 	u32 txq_memory_limit;
6124 	u32 txq_quantum;
6125 
6126 	unsigned long tx_queue_len;
6127 
6128 	u8 support_mbssid:1,
6129 	   support_only_he_mbssid:1;
6130 
6131 	const struct cfg80211_pmsr_capabilities *pmsr_capa;
6132 
6133 	struct {
6134 		u64 peer, vif;
6135 		u8 max_retry;
6136 	} tid_config_support;
6137 
6138 	u8 max_data_retry_count;
6139 
6140 	const struct cfg80211_sar_capa *sar_capa;
6141 
6142 	struct rfkill *rfkill;
6143 
6144 	u8 mbssid_max_interfaces;
6145 	u8 ema_max_profile_periodicity;
6146 	u16 max_num_akm_suites;
6147 
6148 	u16 hw_timestamp_max_peers;
6149 
6150 	int n_radio;
6151 	const struct wiphy_radio *radio;
6152 
6153 	char priv[] __aligned(NETDEV_ALIGN);
6154 };
6155 
6156 static inline struct net *wiphy_net(struct wiphy *wiphy)
6157 {
6158 	return read_pnet(&wiphy->_net);
6159 }
6160 
6161 static inline void wiphy_net_set(struct wiphy *wiphy, struct net *net)
6162 {
6163 	write_pnet(&wiphy->_net, net);
6164 }
6165 
6166 /**
6167  * wiphy_priv - return priv from wiphy
6168  *
6169  * @wiphy: the wiphy whose priv pointer to return
6170  * Return: The priv of @wiphy.
6171  */
6172 static inline void *wiphy_priv(struct wiphy *wiphy)
6173 {
6174 	BUG_ON(!wiphy);
6175 	return &wiphy->priv;
6176 }
6177 
6178 /**
6179  * priv_to_wiphy - return the wiphy containing the priv
6180  *
6181  * @priv: a pointer previously returned by wiphy_priv
6182  * Return: The wiphy of @priv.
6183  */
6184 static inline struct wiphy *priv_to_wiphy(void *priv)
6185 {
6186 	BUG_ON(!priv);
6187 	return container_of(priv, struct wiphy, priv);
6188 }
6189 
6190 /**
6191  * set_wiphy_dev - set device pointer for wiphy
6192  *
6193  * @wiphy: The wiphy whose device to bind
6194  * @dev: The device to parent it to
6195  */
6196 static inline void set_wiphy_dev(struct wiphy *wiphy, struct device *dev)
6197 {
6198 	wiphy->dev.parent = dev;
6199 }
6200 
6201 /**
6202  * wiphy_dev - get wiphy dev pointer
6203  *
6204  * @wiphy: The wiphy whose device struct to look up
6205  * Return: The dev of @wiphy.
6206  */
6207 static inline struct device *wiphy_dev(struct wiphy *wiphy)
6208 {
6209 	return wiphy->dev.parent;
6210 }
6211 
6212 /**
6213  * wiphy_name - get wiphy name
6214  *
6215  * @wiphy: The wiphy whose name to return
6216  * Return: The name of @wiphy.
6217  */
6218 static inline const char *wiphy_name(const struct wiphy *wiphy)
6219 {
6220 	return dev_name(&wiphy->dev);
6221 }
6222 
6223 /**
6224  * wiphy_new_nm - create a new wiphy for use with cfg80211
6225  *
6226  * @ops: The configuration operations for this device
6227  * @sizeof_priv: The size of the private area to allocate
6228  * @requested_name: Request a particular name.
6229  *	NULL is valid value, and means use the default phy%d naming.
6230  *
6231  * Create a new wiphy and associate the given operations with it.
6232  * @sizeof_priv bytes are allocated for private use.
6233  *
6234  * Return: A pointer to the new wiphy. This pointer must be
6235  * assigned to each netdev's ieee80211_ptr for proper operation.
6236  */
6237 struct wiphy *wiphy_new_nm(const struct cfg80211_ops *ops, int sizeof_priv,
6238 			   const char *requested_name);
6239 
6240 /**
6241  * wiphy_new - create a new wiphy for use with cfg80211
6242  *
6243  * @ops: The configuration operations for this device
6244  * @sizeof_priv: The size of the private area to allocate
6245  *
6246  * Create a new wiphy and associate the given operations with it.
6247  * @sizeof_priv bytes are allocated for private use.
6248  *
6249  * Return: A pointer to the new wiphy. This pointer must be
6250  * assigned to each netdev's ieee80211_ptr for proper operation.
6251  */
6252 static inline struct wiphy *wiphy_new(const struct cfg80211_ops *ops,
6253 				      int sizeof_priv)
6254 {
6255 	return wiphy_new_nm(ops, sizeof_priv, NULL);
6256 }
6257 
6258 /**
6259  * wiphy_register - register a wiphy with cfg80211
6260  *
6261  * @wiphy: The wiphy to register.
6262  *
6263  * Return: A non-negative wiphy index or a negative error code.
6264  */
6265 int wiphy_register(struct wiphy *wiphy);
6266 
6267 /* this is a define for better error reporting (file/line) */
6268 #define lockdep_assert_wiphy(wiphy) lockdep_assert_held(&(wiphy)->mtx)
6269 
6270 /**
6271  * rcu_dereference_wiphy - rcu_dereference with debug checking
6272  * @wiphy: the wiphy to check the locking on
6273  * @p: The pointer to read, prior to dereferencing
6274  *
6275  * Do an rcu_dereference(p), but check caller either holds rcu_read_lock()
6276  * or RTNL. Note: Please prefer wiphy_dereference() or rcu_dereference().
6277  */
6278 #define rcu_dereference_wiphy(wiphy, p)				\
6279         rcu_dereference_check(p, lockdep_is_held(&wiphy->mtx))
6280 
6281 /**
6282  * wiphy_dereference - fetch RCU pointer when updates are prevented by wiphy mtx
6283  * @wiphy: the wiphy to check the locking on
6284  * @p: The pointer to read, prior to dereferencing
6285  *
6286  * Return: the value of the specified RCU-protected pointer, but omit the
6287  * READ_ONCE(), because caller holds the wiphy mutex used for updates.
6288  */
6289 #define wiphy_dereference(wiphy, p)				\
6290         rcu_dereference_protected(p, lockdep_is_held(&wiphy->mtx))
6291 
6292 /**
6293  * get_wiphy_regdom - get custom regdomain for the given wiphy
6294  * @wiphy: the wiphy to get the regdomain from
6295  *
6296  * Context: Requires any of RTNL, wiphy mutex or RCU protection.
6297  *
6298  * Return: pointer to the regulatory domain associated with the wiphy
6299  */
6300 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy);
6301 
6302 /**
6303  * wiphy_unregister - deregister a wiphy from cfg80211
6304  *
6305  * @wiphy: The wiphy to unregister.
6306  *
6307  * After this call, no more requests can be made with this priv
6308  * pointer, but the call may sleep to wait for an outstanding
6309  * request that is being handled.
6310  */
6311 void wiphy_unregister(struct wiphy *wiphy);
6312 
6313 /**
6314  * wiphy_free - free wiphy
6315  *
6316  * @wiphy: The wiphy to free
6317  */
6318 void wiphy_free(struct wiphy *wiphy);
6319 
6320 /* internal structs */
6321 struct cfg80211_conn;
6322 struct cfg80211_internal_bss;
6323 struct cfg80211_cached_keys;
6324 struct cfg80211_cqm_config;
6325 
6326 /**
6327  * wiphy_lock - lock the wiphy
6328  * @wiphy: the wiphy to lock
6329  *
6330  * This is needed around registering and unregistering netdevs that
6331  * aren't created through cfg80211 calls, since that requires locking
6332  * in cfg80211 when the notifiers is called, but that cannot
6333  * differentiate which way it's called.
6334  *
6335  * It can also be used by drivers for their own purposes.
6336  *
6337  * When cfg80211 ops are called, the wiphy is already locked.
6338  *
6339  * Note that this makes sure that no workers that have been queued
6340  * with wiphy_queue_work() are running.
6341  */
6342 static inline void wiphy_lock(struct wiphy *wiphy)
6343 	__acquires(&wiphy->mtx)
6344 {
6345 	mutex_lock(&wiphy->mtx);
6346 	__acquire(&wiphy->mtx);
6347 }
6348 
6349 /**
6350  * wiphy_unlock - unlock the wiphy again
6351  * @wiphy: the wiphy to unlock
6352  */
6353 static inline void wiphy_unlock(struct wiphy *wiphy)
6354 	__releases(&wiphy->mtx)
6355 {
6356 	__release(&wiphy->mtx);
6357 	mutex_unlock(&wiphy->mtx);
6358 }
6359 
6360 DEFINE_GUARD(wiphy, struct wiphy *,
6361 	     mutex_lock(&_T->mtx),
6362 	     mutex_unlock(&_T->mtx))
6363 
6364 struct wiphy_work;
6365 typedef void (*wiphy_work_func_t)(struct wiphy *, struct wiphy_work *);
6366 
6367 struct wiphy_work {
6368 	struct list_head entry;
6369 	wiphy_work_func_t func;
6370 };
6371 
6372 static inline void wiphy_work_init(struct wiphy_work *work,
6373 				   wiphy_work_func_t func)
6374 {
6375 	INIT_LIST_HEAD(&work->entry);
6376 	work->func = func;
6377 }
6378 
6379 /**
6380  * wiphy_work_queue - queue work for the wiphy
6381  * @wiphy: the wiphy to queue for
6382  * @work: the work item
6383  *
6384  * This is useful for work that must be done asynchronously, and work
6385  * queued here has the special property that the wiphy mutex will be
6386  * held as if wiphy_lock() was called, and that it cannot be running
6387  * after wiphy_lock() was called. Therefore, wiphy_cancel_work() can
6388  * use just cancel_work() instead of cancel_work_sync(), it requires
6389  * being in a section protected by wiphy_lock().
6390  */
6391 void wiphy_work_queue(struct wiphy *wiphy, struct wiphy_work *work);
6392 
6393 /**
6394  * wiphy_work_cancel - cancel previously queued work
6395  * @wiphy: the wiphy, for debug purposes
6396  * @work: the work to cancel
6397  *
6398  * Cancel the work *without* waiting for it, this assumes being
6399  * called under the wiphy mutex acquired by wiphy_lock().
6400  */
6401 void wiphy_work_cancel(struct wiphy *wiphy, struct wiphy_work *work);
6402 
6403 /**
6404  * wiphy_work_flush - flush previously queued work
6405  * @wiphy: the wiphy, for debug purposes
6406  * @work: the work to flush, this can be %NULL to flush all work
6407  *
6408  * Flush the work (i.e. run it if pending). This must be called
6409  * under the wiphy mutex acquired by wiphy_lock().
6410  */
6411 void wiphy_work_flush(struct wiphy *wiphy, struct wiphy_work *work);
6412 
6413 struct wiphy_delayed_work {
6414 	struct wiphy_work work;
6415 	struct wiphy *wiphy;
6416 	struct timer_list timer;
6417 };
6418 
6419 void wiphy_delayed_work_timer(struct timer_list *t);
6420 
6421 static inline void wiphy_delayed_work_init(struct wiphy_delayed_work *dwork,
6422 					   wiphy_work_func_t func)
6423 {
6424 	timer_setup(&dwork->timer, wiphy_delayed_work_timer, 0);
6425 	wiphy_work_init(&dwork->work, func);
6426 }
6427 
6428 /**
6429  * wiphy_delayed_work_queue - queue delayed work for the wiphy
6430  * @wiphy: the wiphy to queue for
6431  * @dwork: the delayable worker
6432  * @delay: number of jiffies to wait before queueing
6433  *
6434  * This is useful for work that must be done asynchronously, and work
6435  * queued here has the special property that the wiphy mutex will be
6436  * held as if wiphy_lock() was called, and that it cannot be running
6437  * after wiphy_lock() was called. Therefore, wiphy_cancel_work() can
6438  * use just cancel_work() instead of cancel_work_sync(), it requires
6439  * being in a section protected by wiphy_lock().
6440  *
6441  * Note that these are scheduled with a timer where the accuracy
6442  * becomes less the longer in the future the scheduled timer is. Use
6443  * wiphy_hrtimer_work_queue() if the timer must be not be late by more
6444  * than approximately 10 percent.
6445  */
6446 void wiphy_delayed_work_queue(struct wiphy *wiphy,
6447 			      struct wiphy_delayed_work *dwork,
6448 			      unsigned long delay);
6449 
6450 /**
6451  * wiphy_delayed_work_cancel - cancel previously queued delayed work
6452  * @wiphy: the wiphy, for debug purposes
6453  * @dwork: the delayed work to cancel
6454  *
6455  * Cancel the work *without* waiting for it, this assumes being
6456  * called under the wiphy mutex acquired by wiphy_lock().
6457  */
6458 void wiphy_delayed_work_cancel(struct wiphy *wiphy,
6459 			       struct wiphy_delayed_work *dwork);
6460 
6461 /**
6462  * wiphy_delayed_work_flush - flush previously queued delayed work
6463  * @wiphy: the wiphy, for debug purposes
6464  * @dwork: the delayed work to flush
6465  *
6466  * Flush the work (i.e. run it if pending). This must be called
6467  * under the wiphy mutex acquired by wiphy_lock().
6468  */
6469 void wiphy_delayed_work_flush(struct wiphy *wiphy,
6470 			      struct wiphy_delayed_work *dwork);
6471 
6472 /**
6473  * wiphy_delayed_work_pending - Find out whether a wiphy delayable
6474  * work item is currently pending.
6475  *
6476  * @wiphy: the wiphy, for debug purposes
6477  * @dwork: the delayed work in question
6478  *
6479  * Return: true if timer is pending, false otherwise
6480  *
6481  * How wiphy_delayed_work_queue() works is by setting a timer which
6482  * when it expires calls wiphy_work_queue() to queue the wiphy work.
6483  * Because wiphy_delayed_work_queue() uses mod_timer(), if it is
6484  * called twice and the second call happens before the first call
6485  * deadline, the work will rescheduled for the second deadline and
6486  * won't run before that.
6487  *
6488  * wiphy_delayed_work_pending() can be used to detect if calling
6489  * wiphy_work_delayed_work_queue() would start a new work schedule
6490  * or delayed a previous one. As seen below it cannot be used to
6491  * detect precisely if the work has finished to execute nor if it
6492  * is currently executing.
6493  *
6494  *      CPU0                                CPU1
6495  * wiphy_delayed_work_queue(wk)
6496  *  mod_timer(wk->timer)
6497  *                                     wiphy_delayed_work_pending(wk) -> true
6498  *
6499  * [...]
6500  * expire_timers(wk->timer)
6501  *  detach_timer(wk->timer)
6502  *                                     wiphy_delayed_work_pending(wk) -> false
6503  *  wk->timer->function()                          |
6504  *   wiphy_work_queue(wk)                          | delayed work pending
6505  *    list_add_tail()                              | returns false but
6506  *    queue_work(cfg80211_wiphy_work)              | wk->func() has not
6507  *                                                 | been run yet
6508  * [...]                                           |
6509  *  cfg80211_wiphy_work()                          |
6510  *   wk->func()                                    V
6511  *
6512  */
6513 bool wiphy_delayed_work_pending(struct wiphy *wiphy,
6514 				struct wiphy_delayed_work *dwork);
6515 
6516 struct wiphy_hrtimer_work {
6517 	struct wiphy_work work;
6518 	struct wiphy *wiphy;
6519 	struct hrtimer timer;
6520 };
6521 
6522 enum hrtimer_restart wiphy_hrtimer_work_timer(struct hrtimer *t);
6523 
6524 static inline void wiphy_hrtimer_work_init(struct wiphy_hrtimer_work *hrwork,
6525 					   wiphy_work_func_t func)
6526 {
6527 	hrtimer_setup(&hrwork->timer, wiphy_hrtimer_work_timer,
6528 		      CLOCK_BOOTTIME, HRTIMER_MODE_REL);
6529 	wiphy_work_init(&hrwork->work, func);
6530 }
6531 
6532 /**
6533  * wiphy_hrtimer_work_queue - queue hrtimer work for the wiphy
6534  * @wiphy: the wiphy to queue for
6535  * @hrwork: the high resolution timer worker
6536  * @delay: the delay given as a ktime_t
6537  *
6538  * Please refer to wiphy_delayed_work_queue(). The difference is that
6539  * the hrtimer work uses a high resolution timer for scheduling. This
6540  * may be needed if timeouts might be scheduled further in the future
6541  * and the accuracy of the normal timer is not sufficient.
6542  *
6543  * Expect a delay of a few milliseconds as the timer is scheduled
6544  * with some slack and some more time may pass between queueing the
6545  * work and its start.
6546  */
6547 void wiphy_hrtimer_work_queue(struct wiphy *wiphy,
6548 			      struct wiphy_hrtimer_work *hrwork,
6549 			      ktime_t delay);
6550 
6551 /**
6552  * wiphy_hrtimer_work_cancel - cancel previously queued hrtimer work
6553  * @wiphy: the wiphy, for debug purposes
6554  * @hrtimer: the hrtimer work to cancel
6555  *
6556  * Cancel the work *without* waiting for it, this assumes being
6557  * called under the wiphy mutex acquired by wiphy_lock().
6558  */
6559 void wiphy_hrtimer_work_cancel(struct wiphy *wiphy,
6560 			       struct wiphy_hrtimer_work *hrtimer);
6561 
6562 /**
6563  * wiphy_hrtimer_work_flush - flush previously queued hrtimer work
6564  * @wiphy: the wiphy, for debug purposes
6565  * @hrwork: the hrtimer work to flush
6566  *
6567  * Flush the work (i.e. run it if pending). This must be called
6568  * under the wiphy mutex acquired by wiphy_lock().
6569  */
6570 void wiphy_hrtimer_work_flush(struct wiphy *wiphy,
6571 			      struct wiphy_hrtimer_work *hrwork);
6572 
6573 /**
6574  * wiphy_hrtimer_work_pending - Find out whether a wiphy hrtimer
6575  * work item is currently pending.
6576  *
6577  * @wiphy: the wiphy, for debug purposes
6578  * @hrwork: the hrtimer work in question
6579  *
6580  * Return: true if timer is pending, false otherwise
6581  *
6582  * Please refer to the wiphy_delayed_work_pending() documentation as
6583  * this is the equivalent function for hrtimer based delayed work
6584  * items.
6585  */
6586 bool wiphy_hrtimer_work_pending(struct wiphy *wiphy,
6587 				struct wiphy_hrtimer_work *hrwork);
6588 
6589 /**
6590  * enum ieee80211_ap_reg_power - regulatory power for an Access Point
6591  *
6592  * @IEEE80211_REG_UNSET_AP: Access Point has no regulatory power mode
6593  * @IEEE80211_REG_LPI_AP: Indoor Access Point
6594  * @IEEE80211_REG_SP_AP: Standard power Access Point
6595  * @IEEE80211_REG_VLP_AP: Very low power Access Point
6596  */
6597 enum ieee80211_ap_reg_power {
6598 	IEEE80211_REG_UNSET_AP,
6599 	IEEE80211_REG_LPI_AP,
6600 	IEEE80211_REG_SP_AP,
6601 	IEEE80211_REG_VLP_AP,
6602 };
6603 
6604 /**
6605  * struct wireless_dev - wireless device state
6606  *
6607  * For netdevs, this structure must be allocated by the driver
6608  * that uses the ieee80211_ptr field in struct net_device (this
6609  * is intentional so it can be allocated along with the netdev.)
6610  * It need not be registered then as netdev registration will
6611  * be intercepted by cfg80211 to see the new wireless device,
6612  * however, drivers must lock the wiphy before registering or
6613  * unregistering netdevs if they pre-create any netdevs (in ops
6614  * called from cfg80211, the wiphy is already locked.)
6615  *
6616  * For non-netdev uses, it must also be allocated by the driver
6617  * in response to the cfg80211 callbacks that require it, as
6618  * there's no netdev registration in that case it may not be
6619  * allocated outside of callback operations that return it.
6620  *
6621  * @wiphy: pointer to hardware description
6622  * @iftype: interface type
6623  * @registered: is this wdev already registered with cfg80211
6624  * @registering: indicates we're doing registration under wiphy lock
6625  *	for the notifier
6626  * @list: (private) Used to collect the interfaces
6627  * @netdev: (private) Used to reference back to the netdev, may be %NULL
6628  * @identifier: (private) Identifier used in nl80211 to identify this
6629  *	wireless device if it has no netdev
6630  * @u: union containing data specific to @iftype
6631  * @connected: indicates if connected or not (STA mode)
6632  * @wext: (private) Used by the internal wireless extensions compat code
6633  * @wext.ibss: (private) IBSS data part of wext handling
6634  * @wext.connect: (private) connection handling data
6635  * @wext.keys: (private) (WEP) key data
6636  * @wext.ie: (private) extra elements for association
6637  * @wext.ie_len: (private) length of extra elements
6638  * @wext.bssid: (private) selected network BSSID
6639  * @wext.ssid: (private) selected network SSID
6640  * @wext.default_key: (private) selected default key index
6641  * @wext.default_mgmt_key: (private) selected default management key index
6642  * @wext.prev_bssid: (private) previous BSSID for reassociation
6643  * @wext.prev_bssid_valid: (private) previous BSSID validity
6644  * @use_4addr: indicates 4addr mode is used on this interface, must be
6645  *	set by driver (if supported) on add_interface BEFORE registering the
6646  *	netdev and may otherwise be used by driver read-only, will be update
6647  *	by cfg80211 on change_interface
6648  * @mgmt_registrations: list of registrations for management frames
6649  * @mgmt_registrations_need_update: mgmt registrations were updated,
6650  *	need to propagate the update to the driver
6651  * @address: The address for this device, valid only if @netdev is %NULL
6652  * @is_running: true if this is a non-netdev device that has been started, e.g.
6653  *	the P2P Device.
6654  * @ps: powersave mode is enabled
6655  * @ps_timeout: dynamic powersave timeout
6656  * @ap_unexpected_nlportid: (private) netlink port ID of application
6657  *	registered for unexpected class 3 frames (AP mode)
6658  * @conn: (private) cfg80211 software SME connection state machine data
6659  * @connect_keys: (private) keys to set after connection is established
6660  * @conn_bss_type: connecting/connected BSS type
6661  * @conn_owner_nlportid: (private) connection owner socket port ID
6662  * @disconnect_wk: (private) auto-disconnect work
6663  * @disconnect_bssid: (private) the BSSID to use for auto-disconnect
6664  * @event_list: (private) list for internal event processing
6665  * @event_lock: (private) lock for event list
6666  * @owner_nlportid: (private) owner socket port ID
6667  * @nl_owner_dead: (private) owner socket went away
6668  * @cqm_rssi_work: (private) CQM RSSI reporting work
6669  * @cqm_config: (private) nl80211 RSSI monitor state
6670  * @pmsr_list: (private) peer measurement requests
6671  * @pmsr_lock: (private) peer measurements requests/results lock
6672  * @pmsr_free_wk: (private) peer measurements cleanup work
6673  * @unprot_beacon_reported: (private) timestamp of last
6674  *	unprotected beacon report
6675  * @links: array of %IEEE80211_MLD_MAX_NUM_LINKS elements containing @addr
6676  *	@ap and @client for each link
6677  * @links.cac_started: true if DFS channel availability check has been
6678  *	started
6679  * @links.cac_start_time: timestamp (jiffies) when the dfs state was
6680  *	entered.
6681  * @links.cac_time_ms: CAC time in ms
6682  * @valid_links: bitmap describing what elements of @links are valid
6683  * @radio_mask: Bitmask of radios that this interface is allowed to operate on.
6684  */
6685 struct wireless_dev {
6686 	struct wiphy *wiphy;
6687 	enum nl80211_iftype iftype;
6688 
6689 	/* the remainder of this struct should be private to cfg80211 */
6690 	struct list_head list;
6691 	struct net_device *netdev;
6692 
6693 	u32 identifier;
6694 
6695 	struct list_head mgmt_registrations;
6696 	u8 mgmt_registrations_need_update:1;
6697 
6698 	bool use_4addr, is_running, registered, registering;
6699 
6700 	u8 address[ETH_ALEN] __aligned(sizeof(u16));
6701 
6702 	/* currently used for IBSS and SME - might be rearranged later */
6703 	struct cfg80211_conn *conn;
6704 	struct cfg80211_cached_keys *connect_keys;
6705 	enum ieee80211_bss_type conn_bss_type;
6706 	u32 conn_owner_nlportid;
6707 
6708 	struct work_struct disconnect_wk;
6709 	u8 disconnect_bssid[ETH_ALEN];
6710 
6711 	struct list_head event_list;
6712 	spinlock_t event_lock;
6713 
6714 	u8 connected:1;
6715 
6716 	bool ps;
6717 	int ps_timeout;
6718 
6719 	u32 ap_unexpected_nlportid;
6720 
6721 	u32 owner_nlportid;
6722 	bool nl_owner_dead;
6723 
6724 #ifdef CONFIG_CFG80211_WEXT
6725 	/* wext data */
6726 	struct {
6727 		struct cfg80211_ibss_params ibss;
6728 		struct cfg80211_connect_params connect;
6729 		struct cfg80211_cached_keys *keys;
6730 		const u8 *ie;
6731 		size_t ie_len;
6732 		u8 bssid[ETH_ALEN];
6733 		u8 prev_bssid[ETH_ALEN];
6734 		u8 ssid[IEEE80211_MAX_SSID_LEN];
6735 		s8 default_key, default_mgmt_key;
6736 		bool prev_bssid_valid;
6737 	} wext;
6738 #endif
6739 
6740 	struct wiphy_work cqm_rssi_work;
6741 	struct cfg80211_cqm_config __rcu *cqm_config;
6742 
6743 	struct list_head pmsr_list;
6744 	spinlock_t pmsr_lock;
6745 	struct work_struct pmsr_free_wk;
6746 
6747 	unsigned long unprot_beacon_reported;
6748 
6749 	union {
6750 		struct {
6751 			u8 connected_addr[ETH_ALEN] __aligned(2);
6752 			u8 ssid[IEEE80211_MAX_SSID_LEN];
6753 			u8 ssid_len;
6754 		} client;
6755 		struct {
6756 			int beacon_interval;
6757 			struct cfg80211_chan_def preset_chandef;
6758 			struct cfg80211_chan_def chandef;
6759 			u8 id[IEEE80211_MAX_MESH_ID_LEN];
6760 			u8 id_len, id_up_len;
6761 		} mesh;
6762 		struct {
6763 			struct cfg80211_chan_def preset_chandef;
6764 			u8 ssid[IEEE80211_MAX_SSID_LEN];
6765 			u8 ssid_len;
6766 		} ap;
6767 		struct {
6768 			struct cfg80211_internal_bss *current_bss;
6769 			struct cfg80211_chan_def chandef;
6770 			int beacon_interval;
6771 			u8 ssid[IEEE80211_MAX_SSID_LEN];
6772 			u8 ssid_len;
6773 		} ibss;
6774 		struct {
6775 			struct cfg80211_chan_def chandef;
6776 		} ocb;
6777 		struct {
6778 			u8 cluster_id[ETH_ALEN] __aligned(2);
6779 		} nan;
6780 	} u;
6781 
6782 	struct {
6783 		u8 addr[ETH_ALEN] __aligned(2);
6784 		union {
6785 			struct {
6786 				unsigned int beacon_interval;
6787 				struct cfg80211_chan_def chandef;
6788 			} ap;
6789 			struct {
6790 				struct cfg80211_internal_bss *current_bss;
6791 			} client;
6792 		};
6793 
6794 		bool cac_started;
6795 		unsigned long cac_start_time;
6796 		unsigned int cac_time_ms;
6797 	} links[IEEE80211_MLD_MAX_NUM_LINKS];
6798 	u16 valid_links;
6799 
6800 	u32 radio_mask;
6801 };
6802 
6803 static inline const u8 *wdev_address(struct wireless_dev *wdev)
6804 {
6805 	if (wdev->netdev)
6806 		return wdev->netdev->dev_addr;
6807 	return wdev->address;
6808 }
6809 
6810 static inline bool wdev_running(struct wireless_dev *wdev)
6811 {
6812 	if (wdev->netdev)
6813 		return netif_running(wdev->netdev);
6814 	return wdev->is_running;
6815 }
6816 
6817 /**
6818  * wdev_priv - return wiphy priv from wireless_dev
6819  *
6820  * @wdev: The wireless device whose wiphy's priv pointer to return
6821  * Return: The wiphy priv of @wdev.
6822  */
6823 static inline void *wdev_priv(struct wireless_dev *wdev)
6824 {
6825 	BUG_ON(!wdev);
6826 	return wiphy_priv(wdev->wiphy);
6827 }
6828 
6829 /**
6830  * wdev_chandef - return chandef pointer from wireless_dev
6831  * @wdev: the wdev
6832  * @link_id: the link ID for MLO
6833  *
6834  * Return: The chandef depending on the mode, or %NULL.
6835  */
6836 struct cfg80211_chan_def *wdev_chandef(struct wireless_dev *wdev,
6837 				       unsigned int link_id);
6838 
6839 static inline void WARN_INVALID_LINK_ID(struct wireless_dev *wdev,
6840 					unsigned int link_id)
6841 {
6842 	WARN_ON(link_id && !wdev->valid_links);
6843 	WARN_ON(wdev->valid_links &&
6844 		!(wdev->valid_links & BIT(link_id)));
6845 }
6846 
6847 #define for_each_valid_link(link_info, link_id)			\
6848 	for (link_id = 0;					\
6849 	     link_id < ((link_info)->valid_links ?		\
6850 			ARRAY_SIZE((link_info)->links) : 1);	\
6851 	     link_id++)						\
6852 		if (!(link_info)->valid_links ||		\
6853 		    ((link_info)->valid_links & BIT(link_id)))
6854 
6855 /**
6856  * DOC: Utility functions
6857  *
6858  * cfg80211 offers a number of utility functions that can be useful.
6859  */
6860 
6861 /**
6862  * ieee80211_channel_equal - compare two struct ieee80211_channel
6863  *
6864  * @a: 1st struct ieee80211_channel
6865  * @b: 2nd struct ieee80211_channel
6866  * Return: true if center frequency of @a == @b
6867  */
6868 static inline bool
6869 ieee80211_channel_equal(struct ieee80211_channel *a,
6870 			struct ieee80211_channel *b)
6871 {
6872 	return (a->center_freq == b->center_freq &&
6873 		a->freq_offset == b->freq_offset);
6874 }
6875 
6876 /**
6877  * ieee80211_channel_to_khz - convert ieee80211_channel to frequency in KHz
6878  * @chan: struct ieee80211_channel to convert
6879  * Return: The corresponding frequency (in KHz)
6880  */
6881 static inline u32
6882 ieee80211_channel_to_khz(const struct ieee80211_channel *chan)
6883 {
6884 	return MHZ_TO_KHZ(chan->center_freq) + chan->freq_offset;
6885 }
6886 
6887 /**
6888  * ieee80211_channel_to_freq_khz - convert channel number to frequency
6889  * @chan: channel number
6890  * @band: band, necessary due to channel number overlap
6891  * Return: The corresponding frequency (in KHz), or 0 if the conversion failed.
6892  */
6893 u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band);
6894 
6895 /**
6896  * ieee80211_channel_to_frequency - convert channel number to frequency
6897  * @chan: channel number
6898  * @band: band, necessary due to channel number overlap
6899  * Return: The corresponding frequency (in MHz), or 0 if the conversion failed.
6900  */
6901 static inline int
6902 ieee80211_channel_to_frequency(int chan, enum nl80211_band band)
6903 {
6904 	return KHZ_TO_MHZ(ieee80211_channel_to_freq_khz(chan, band));
6905 }
6906 
6907 /**
6908  * ieee80211_freq_khz_to_channel - convert frequency to channel number
6909  * @freq: center frequency in KHz
6910  * Return: The corresponding channel, or 0 if the conversion failed.
6911  */
6912 int ieee80211_freq_khz_to_channel(u32 freq);
6913 
6914 /**
6915  * ieee80211_frequency_to_channel - convert frequency to channel number
6916  * @freq: center frequency in MHz
6917  * Return: The corresponding channel, or 0 if the conversion failed.
6918  */
6919 static inline int
6920 ieee80211_frequency_to_channel(int freq)
6921 {
6922 	return ieee80211_freq_khz_to_channel(MHZ_TO_KHZ(freq));
6923 }
6924 
6925 /**
6926  * ieee80211_get_channel_khz - get channel struct from wiphy for specified
6927  * frequency
6928  * @wiphy: the struct wiphy to get the channel for
6929  * @freq: the center frequency (in KHz) of the channel
6930  * Return: The channel struct from @wiphy at @freq.
6931  */
6932 struct ieee80211_channel *
6933 ieee80211_get_channel_khz(struct wiphy *wiphy, u32 freq);
6934 
6935 /**
6936  * ieee80211_get_channel - get channel struct from wiphy for specified frequency
6937  *
6938  * @wiphy: the struct wiphy to get the channel for
6939  * @freq: the center frequency (in MHz) of the channel
6940  * Return: The channel struct from @wiphy at @freq.
6941  */
6942 static inline struct ieee80211_channel *
6943 ieee80211_get_channel(struct wiphy *wiphy, int freq)
6944 {
6945 	return ieee80211_get_channel_khz(wiphy, MHZ_TO_KHZ(freq));
6946 }
6947 
6948 /**
6949  * cfg80211_channel_is_psc - Check if the channel is a 6 GHz PSC
6950  * @chan: control channel to check
6951  *
6952  * The Preferred Scanning Channels (PSC) are defined in
6953  * Draft IEEE P802.11ax/D5.0, 26.17.2.3.3
6954  *
6955  * Return: %true if channel is a PSC, %false otherwise
6956  */
6957 static inline bool cfg80211_channel_is_psc(struct ieee80211_channel *chan)
6958 {
6959 	if (chan->band != NL80211_BAND_6GHZ)
6960 		return false;
6961 
6962 	return ieee80211_frequency_to_channel(chan->center_freq) % 16 == 5;
6963 }
6964 
6965 /**
6966  * ieee80211_radio_freq_range_valid - Check if the radio supports the
6967  * specified frequency range
6968  *
6969  * @radio: wiphy radio
6970  * @freq: the frequency (in KHz) to be queried
6971  * @width: the bandwidth (in KHz) to be queried
6972  *
6973  * Return: whether or not the given frequency range is valid for the given radio
6974  */
6975 bool ieee80211_radio_freq_range_valid(const struct wiphy_radio *radio,
6976 				      u32 freq, u32 width);
6977 
6978 /**
6979  * cfg80211_radio_chandef_valid - Check if the radio supports the chandef
6980  *
6981  * @radio: wiphy radio
6982  * @chandef: chandef for current channel
6983  *
6984  * Return: whether or not the given chandef is valid for the given radio
6985  */
6986 bool cfg80211_radio_chandef_valid(const struct wiphy_radio *radio,
6987 				  const struct cfg80211_chan_def *chandef);
6988 
6989 /**
6990  * cfg80211_wdev_channel_allowed - Check if the wdev may use the channel
6991  *
6992  * @wdev: the wireless device
6993  * @chan: channel to check
6994  *
6995  * Return: whether or not the wdev may use the channel
6996  */
6997 bool cfg80211_wdev_channel_allowed(struct wireless_dev *wdev,
6998 				   struct ieee80211_channel *chan);
6999 
7000 /**
7001  * ieee80211_get_response_rate - get basic rate for a given rate
7002  *
7003  * @sband: the band to look for rates in
7004  * @basic_rates: bitmap of basic rates
7005  * @bitrate: the bitrate for which to find the basic rate
7006  *
7007  * Return: The basic rate corresponding to a given bitrate, that
7008  * is the next lower bitrate contained in the basic rate map,
7009  * which is, for this function, given as a bitmap of indices of
7010  * rates in the band's bitrate table.
7011  */
7012 const struct ieee80211_rate *
7013 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
7014 			    u32 basic_rates, int bitrate);
7015 
7016 /**
7017  * ieee80211_mandatory_rates - get mandatory rates for a given band
7018  * @sband: the band to look for rates in
7019  *
7020  * Return: a bitmap of the mandatory rates for the given band, bits
7021  * are set according to the rate position in the bitrates array.
7022  */
7023 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband);
7024 
7025 /*
7026  * Radiotap parsing functions -- for controlled injection support
7027  *
7028  * Implemented in net/wireless/radiotap.c
7029  * Documentation in Documentation/networking/radiotap-headers.rst
7030  */
7031 
7032 struct radiotap_align_size {
7033 	uint8_t align:4, size:4;
7034 };
7035 
7036 struct ieee80211_radiotap_namespace {
7037 	const struct radiotap_align_size *align_size;
7038 	int n_bits;
7039 	uint32_t oui;
7040 	uint8_t subns;
7041 };
7042 
7043 struct ieee80211_radiotap_vendor_namespaces {
7044 	const struct ieee80211_radiotap_namespace *ns;
7045 	int n_ns;
7046 };
7047 
7048 /**
7049  * struct ieee80211_radiotap_iterator - tracks walk thru present radiotap args
7050  * @this_arg_index: index of current arg, valid after each successful call
7051  *	to ieee80211_radiotap_iterator_next()
7052  * @this_arg: pointer to current radiotap arg; it is valid after each
7053  *	call to ieee80211_radiotap_iterator_next() but also after
7054  *	ieee80211_radiotap_iterator_init() where it will point to
7055  *	the beginning of the actual data portion
7056  * @this_arg_size: length of the current arg, for convenience
7057  * @current_namespace: pointer to the current namespace definition
7058  *	(or internally %NULL if the current namespace is unknown)
7059  * @is_radiotap_ns: indicates whether the current namespace is the default
7060  *	radiotap namespace or not
7061  *
7062  * @_rtheader: pointer to the radiotap header we are walking through
7063  * @_max_length: length of radiotap header in cpu byte ordering
7064  * @_arg_index: next argument index
7065  * @_arg: next argument pointer
7066  * @_next_bitmap: internal pointer to next present u32
7067  * @_bitmap_shifter: internal shifter for curr u32 bitmap, b0 set == arg present
7068  * @_vns: vendor namespace definitions
7069  * @_next_ns_data: beginning of the next namespace's data
7070  * @_reset_on_ext: internal; reset the arg index to 0 when going to the
7071  *	next bitmap word
7072  *
7073  * Describes the radiotap parser state. Fields prefixed with an underscore
7074  * must not be used by users of the parser, only by the parser internally.
7075  */
7076 
7077 struct ieee80211_radiotap_iterator {
7078 	struct ieee80211_radiotap_header *_rtheader;
7079 	const struct ieee80211_radiotap_vendor_namespaces *_vns;
7080 	const struct ieee80211_radiotap_namespace *current_namespace;
7081 
7082 	unsigned char *_arg, *_next_ns_data;
7083 	__le32 *_next_bitmap;
7084 
7085 	unsigned char *this_arg;
7086 	int this_arg_index;
7087 	int this_arg_size;
7088 
7089 	int is_radiotap_ns;
7090 
7091 	int _max_length;
7092 	int _arg_index;
7093 	uint32_t _bitmap_shifter;
7094 	int _reset_on_ext;
7095 };
7096 
7097 int
7098 ieee80211_radiotap_iterator_init(struct ieee80211_radiotap_iterator *iterator,
7099 				 struct ieee80211_radiotap_header *radiotap_header,
7100 				 int max_length,
7101 				 const struct ieee80211_radiotap_vendor_namespaces *vns);
7102 
7103 int
7104 ieee80211_radiotap_iterator_next(struct ieee80211_radiotap_iterator *iterator);
7105 
7106 
7107 extern const unsigned char rfc1042_header[6];
7108 extern const unsigned char bridge_tunnel_header[6];
7109 
7110 /**
7111  * ieee80211_get_hdrlen_from_skb - get header length from data
7112  *
7113  * @skb: the frame
7114  *
7115  * Given an skb with a raw 802.11 header at the data pointer this function
7116  * returns the 802.11 header length.
7117  *
7118  * Return: The 802.11 header length in bytes (not including encryption
7119  * headers). Or 0 if the data in the sk_buff is too short to contain a valid
7120  * 802.11 header.
7121  */
7122 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb);
7123 
7124 /**
7125  * ieee80211_hdrlen - get header length in bytes from frame control
7126  * @fc: frame control field in little-endian format
7127  * Return: The header length in bytes.
7128  */
7129 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc);
7130 
7131 /**
7132  * ieee80211_get_mesh_hdrlen - get mesh extension header length
7133  * @meshhdr: the mesh extension header, only the flags field
7134  *	(first byte) will be accessed
7135  * Return: The length of the extension header, which is always at
7136  * least 6 bytes and at most 18 if address 5 and 6 are present.
7137  */
7138 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr);
7139 
7140 /**
7141  * DOC: Data path helpers
7142  *
7143  * In addition to generic utilities, cfg80211 also offers
7144  * functions that help implement the data path for devices
7145  * that do not do the 802.11/802.3 conversion on the device.
7146  */
7147 
7148 /**
7149  * ieee80211_data_to_8023_exthdr - convert an 802.11 data frame to 802.3
7150  * @skb: the 802.11 data frame
7151  * @ehdr: pointer to a &struct ethhdr that will get the header, instead
7152  *	of it being pushed into the SKB
7153  * @addr: the device MAC address
7154  * @iftype: the virtual interface type
7155  * @data_offset: offset of payload after the 802.11 header
7156  * @is_amsdu: true if the 802.11 header is A-MSDU
7157  * Return: 0 on success. Non-zero on error.
7158  */
7159 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
7160 				  const u8 *addr, enum nl80211_iftype iftype,
7161 				  u8 data_offset, bool is_amsdu);
7162 
7163 /**
7164  * ieee80211_data_to_8023 - convert an 802.11 data frame to 802.3
7165  * @skb: the 802.11 data frame
7166  * @addr: the device MAC address
7167  * @iftype: the virtual interface type
7168  * Return: 0 on success. Non-zero on error.
7169  */
7170 static inline int ieee80211_data_to_8023(struct sk_buff *skb, const u8 *addr,
7171 					 enum nl80211_iftype iftype)
7172 {
7173 	return ieee80211_data_to_8023_exthdr(skb, NULL, addr, iftype, 0, false);
7174 }
7175 
7176 /**
7177  * ieee80211_is_valid_amsdu - check if subframe lengths of an A-MSDU are valid
7178  *
7179  * This is used to detect non-standard A-MSDU frames, e.g. the ones generated
7180  * by ath10k and ath11k, where the subframe length includes the length of the
7181  * mesh control field.
7182  *
7183  * @skb: The input A-MSDU frame without any headers.
7184  * @mesh_hdr: the type of mesh header to test
7185  *	0: non-mesh A-MSDU length field
7186  *	1: big-endian mesh A-MSDU length field
7187  *	2: little-endian mesh A-MSDU length field
7188  * Returns: true if subframe header lengths are valid for the @mesh_hdr mode
7189  */
7190 bool ieee80211_is_valid_amsdu(struct sk_buff *skb, u8 mesh_hdr);
7191 
7192 /**
7193  * ieee80211_amsdu_to_8023s - decode an IEEE 802.11n A-MSDU frame
7194  *
7195  * Decode an IEEE 802.11 A-MSDU and convert it to a list of 802.3 frames.
7196  * The @list will be empty if the decode fails. The @skb must be fully
7197  * header-less before being passed in here; it is freed in this function.
7198  *
7199  * @skb: The input A-MSDU frame without any headers.
7200  * @list: The output list of 802.3 frames. It must be allocated and
7201  *	initialized by the caller.
7202  * @addr: The device MAC address.
7203  * @iftype: The device interface type.
7204  * @extra_headroom: The hardware extra headroom for SKBs in the @list.
7205  * @check_da: DA to check in the inner ethernet header, or NULL
7206  * @check_sa: SA to check in the inner ethernet header, or NULL
7207  * @mesh_control: see mesh_hdr in ieee80211_is_valid_amsdu
7208  */
7209 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
7210 			      const u8 *addr, enum nl80211_iftype iftype,
7211 			      const unsigned int extra_headroom,
7212 			      const u8 *check_da, const u8 *check_sa,
7213 			      u8 mesh_control);
7214 
7215 /**
7216  * ieee80211_get_8023_tunnel_proto - get RFC1042 or bridge tunnel encap protocol
7217  *
7218  * Check for RFC1042 or bridge tunnel header and fetch the encapsulated
7219  * protocol.
7220  *
7221  * @hdr: pointer to the MSDU payload
7222  * @proto: destination pointer to store the protocol
7223  * Return: true if encapsulation was found
7224  */
7225 bool ieee80211_get_8023_tunnel_proto(const void *hdr, __be16 *proto);
7226 
7227 /**
7228  * ieee80211_strip_8023_mesh_hdr - strip mesh header from converted 802.3 frames
7229  *
7230  * Strip the mesh header, which was left in by ieee80211_data_to_8023 as part
7231  * of the MSDU data. Also move any source/destination addresses from the mesh
7232  * header to the ethernet header (if present).
7233  *
7234  * @skb: The 802.3 frame with embedded mesh header
7235  *
7236  * Return: 0 on success. Non-zero on error.
7237  */
7238 int ieee80211_strip_8023_mesh_hdr(struct sk_buff *skb);
7239 
7240 /**
7241  * cfg80211_classify8021d - determine the 802.1p/1d tag for a data frame
7242  * @skb: the data frame
7243  * @qos_map: Interworking QoS mapping or %NULL if not in use
7244  * Return: The 802.1p/1d tag.
7245  */
7246 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
7247 				    struct cfg80211_qos_map *qos_map);
7248 
7249 /**
7250  * cfg80211_find_elem_match - match information element and byte array in data
7251  *
7252  * @eid: element ID
7253  * @ies: data consisting of IEs
7254  * @len: length of data
7255  * @match: byte array to match
7256  * @match_len: number of bytes in the match array
7257  * @match_offset: offset in the IE data where the byte array should match.
7258  *	Note the difference to cfg80211_find_ie_match() which considers
7259  *	the offset to start from the element ID byte, but here we take
7260  *	the data portion instead.
7261  *
7262  * Return: %NULL if the element ID could not be found or if
7263  * the element is invalid (claims to be longer than the given
7264  * data) or if the byte array doesn't match; otherwise return the
7265  * requested element struct.
7266  *
7267  * Note: There are no checks on the element length other than
7268  * having to fit into the given data and being large enough for the
7269  * byte array to match.
7270  */
7271 const struct element *
7272 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
7273 			 const u8 *match, unsigned int match_len,
7274 			 unsigned int match_offset);
7275 
7276 /**
7277  * cfg80211_find_ie_match - match information element and byte array in data
7278  *
7279  * @eid: element ID
7280  * @ies: data consisting of IEs
7281  * @len: length of data
7282  * @match: byte array to match
7283  * @match_len: number of bytes in the match array
7284  * @match_offset: offset in the IE where the byte array should match.
7285  *	If match_len is zero, this must also be set to zero.
7286  *	Otherwise this must be set to 2 or more, because the first
7287  *	byte is the element id, which is already compared to eid, and
7288  *	the second byte is the IE length.
7289  *
7290  * Return: %NULL if the element ID could not be found or if
7291  * the element is invalid (claims to be longer than the given
7292  * data) or if the byte array doesn't match, or a pointer to the first
7293  * byte of the requested element, that is the byte containing the
7294  * element ID.
7295  *
7296  * Note: There are no checks on the element length other than
7297  * having to fit into the given data and being large enough for the
7298  * byte array to match.
7299  */
7300 static inline const u8 *
7301 cfg80211_find_ie_match(u8 eid, const u8 *ies, unsigned int len,
7302 		       const u8 *match, unsigned int match_len,
7303 		       unsigned int match_offset)
7304 {
7305 	/* match_offset can't be smaller than 2, unless match_len is
7306 	 * zero, in which case match_offset must be zero as well.
7307 	 */
7308 	if (WARN_ON((match_len && match_offset < 2) ||
7309 		    (!match_len && match_offset)))
7310 		return NULL;
7311 
7312 	return (const void *)cfg80211_find_elem_match(eid, ies, len,
7313 						      match, match_len,
7314 						      match_offset ?
7315 							match_offset - 2 : 0);
7316 }
7317 
7318 /**
7319  * cfg80211_find_elem - find information element in data
7320  *
7321  * @eid: element ID
7322  * @ies: data consisting of IEs
7323  * @len: length of data
7324  *
7325  * Return: %NULL if the element ID could not be found or if
7326  * the element is invalid (claims to be longer than the given
7327  * data) or if the byte array doesn't match; otherwise return the
7328  * requested element struct.
7329  *
7330  * Note: There are no checks on the element length other than
7331  * having to fit into the given data.
7332  */
7333 static inline const struct element *
7334 cfg80211_find_elem(u8 eid, const u8 *ies, int len)
7335 {
7336 	return cfg80211_find_elem_match(eid, ies, len, NULL, 0, 0);
7337 }
7338 
7339 /**
7340  * cfg80211_find_ie - find information element in data
7341  *
7342  * @eid: element ID
7343  * @ies: data consisting of IEs
7344  * @len: length of data
7345  *
7346  * Return: %NULL if the element ID could not be found or if
7347  * the element is invalid (claims to be longer than the given
7348  * data), or a pointer to the first byte of the requested
7349  * element, that is the byte containing the element ID.
7350  *
7351  * Note: There are no checks on the element length other than
7352  * having to fit into the given data.
7353  */
7354 static inline const u8 *cfg80211_find_ie(u8 eid, const u8 *ies, int len)
7355 {
7356 	return cfg80211_find_ie_match(eid, ies, len, NULL, 0, 0);
7357 }
7358 
7359 /**
7360  * cfg80211_find_ext_elem - find information element with EID Extension in data
7361  *
7362  * @ext_eid: element ID Extension
7363  * @ies: data consisting of IEs
7364  * @len: length of data
7365  *
7366  * Return: %NULL if the extended element could not be found or if
7367  * the element is invalid (claims to be longer than the given
7368  * data) or if the byte array doesn't match; otherwise return the
7369  * requested element struct.
7370  *
7371  * Note: There are no checks on the element length other than
7372  * having to fit into the given data.
7373  */
7374 static inline const struct element *
7375 cfg80211_find_ext_elem(u8 ext_eid, const u8 *ies, int len)
7376 {
7377 	return cfg80211_find_elem_match(WLAN_EID_EXTENSION, ies, len,
7378 					&ext_eid, 1, 0);
7379 }
7380 
7381 /**
7382  * cfg80211_find_ext_ie - find information element with EID Extension in data
7383  *
7384  * @ext_eid: element ID Extension
7385  * @ies: data consisting of IEs
7386  * @len: length of data
7387  *
7388  * Return: %NULL if the extended element ID could not be found or if
7389  * the element is invalid (claims to be longer than the given
7390  * data), or a pointer to the first byte of the requested
7391  * element, that is the byte containing the element ID.
7392  *
7393  * Note: There are no checks on the element length other than
7394  * having to fit into the given data.
7395  */
7396 static inline const u8 *cfg80211_find_ext_ie(u8 ext_eid, const u8 *ies, int len)
7397 {
7398 	return cfg80211_find_ie_match(WLAN_EID_EXTENSION, ies, len,
7399 				      &ext_eid, 1, 2);
7400 }
7401 
7402 /**
7403  * cfg80211_find_vendor_elem - find vendor specific information element in data
7404  *
7405  * @oui: vendor OUI
7406  * @oui_type: vendor-specific OUI type (must be < 0xff), negative means any
7407  * @ies: data consisting of IEs
7408  * @len: length of data
7409  *
7410  * Return: %NULL if the vendor specific element ID could not be found or if the
7411  * element is invalid (claims to be longer than the given data); otherwise
7412  * return the element structure for the requested element.
7413  *
7414  * Note: There are no checks on the element length other than having to fit into
7415  * the given data.
7416  */
7417 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
7418 						const u8 *ies,
7419 						unsigned int len);
7420 
7421 /**
7422  * cfg80211_find_vendor_ie - find vendor specific information element in data
7423  *
7424  * @oui: vendor OUI
7425  * @oui_type: vendor-specific OUI type (must be < 0xff), negative means any
7426  * @ies: data consisting of IEs
7427  * @len: length of data
7428  *
7429  * Return: %NULL if the vendor specific element ID could not be found or if the
7430  * element is invalid (claims to be longer than the given data), or a pointer to
7431  * the first byte of the requested element, that is the byte containing the
7432  * element ID.
7433  *
7434  * Note: There are no checks on the element length other than having to fit into
7435  * the given data.
7436  */
7437 static inline const u8 *
7438 cfg80211_find_vendor_ie(unsigned int oui, int oui_type,
7439 			const u8 *ies, unsigned int len)
7440 {
7441 	return (const void *)cfg80211_find_vendor_elem(oui, oui_type, ies, len);
7442 }
7443 
7444 /**
7445  * enum cfg80211_rnr_iter_ret - reduced neighbor report iteration state
7446  * @RNR_ITER_CONTINUE: continue iterating with the next entry
7447  * @RNR_ITER_BREAK: break iteration and return success
7448  * @RNR_ITER_ERROR: break iteration and return error
7449  */
7450 enum cfg80211_rnr_iter_ret {
7451 	RNR_ITER_CONTINUE,
7452 	RNR_ITER_BREAK,
7453 	RNR_ITER_ERROR,
7454 };
7455 
7456 /**
7457  * cfg80211_iter_rnr - iterate reduced neighbor report entries
7458  * @elems: the frame elements to iterate RNR elements and then
7459  *	their entries in
7460  * @elems_len: length of the elements
7461  * @iter: iteration function, see also &enum cfg80211_rnr_iter_ret
7462  *	for the return value
7463  * @iter_data: additional data passed to the iteration function
7464  * Return: %true on success (after successfully iterating all entries
7465  *	or if the iteration function returned %RNR_ITER_BREAK),
7466  *	%false on error (iteration function returned %RNR_ITER_ERROR
7467  *	or elements were malformed.)
7468  */
7469 bool cfg80211_iter_rnr(const u8 *elems, size_t elems_len,
7470 		       enum cfg80211_rnr_iter_ret
7471 		       (*iter)(void *data, u8 type,
7472 			       const struct ieee80211_neighbor_ap_info *info,
7473 			       const u8 *tbtt_info, u8 tbtt_info_len),
7474 		       void *iter_data);
7475 
7476 /**
7477  * cfg80211_defragment_element - Defrag the given element data into a buffer
7478  *
7479  * @elem: the element to defragment
7480  * @ies: elements where @elem is contained
7481  * @ieslen: length of @ies
7482  * @data: buffer to store element data, or %NULL to just determine size
7483  * @data_len: length of @data, or 0
7484  * @frag_id: the element ID of fragments
7485  *
7486  * Return: length of @data, or -EINVAL on error
7487  *
7488  * Copy out all data from an element that may be fragmented into @data, while
7489  * skipping all headers.
7490  *
7491  * The function uses memmove() internally. It is acceptable to defragment an
7492  * element in-place.
7493  */
7494 ssize_t cfg80211_defragment_element(const struct element *elem, const u8 *ies,
7495 				    size_t ieslen, u8 *data, size_t data_len,
7496 				    u8 frag_id);
7497 
7498 /**
7499  * cfg80211_send_layer2_update - send layer 2 update frame
7500  *
7501  * @dev: network device
7502  * @addr: STA MAC address
7503  *
7504  * Wireless drivers can use this function to update forwarding tables in bridge
7505  * devices upon STA association.
7506  */
7507 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr);
7508 
7509 /**
7510  * DOC: Regulatory enforcement infrastructure
7511  *
7512  * TODO
7513  */
7514 
7515 /**
7516  * regulatory_hint - driver hint to the wireless core a regulatory domain
7517  * @wiphy: the wireless device giving the hint (used only for reporting
7518  *	conflicts)
7519  * @alpha2: the ISO/IEC 3166 alpha2 the driver claims its regulatory domain
7520  *	should be in. If @rd is set this should be NULL. Note that if you
7521  *	set this to NULL you should still set rd->alpha2 to some accepted
7522  *	alpha2.
7523  *
7524  * Wireless drivers can use this function to hint to the wireless core
7525  * what it believes should be the current regulatory domain by
7526  * giving it an ISO/IEC 3166 alpha2 country code it knows its regulatory
7527  * domain should be in or by providing a completely build regulatory domain.
7528  * If the driver provides an ISO/IEC 3166 alpha2 userspace will be queried
7529  * for a regulatory domain structure for the respective country.
7530  *
7531  * The wiphy must have been registered to cfg80211 prior to this call.
7532  * For cfg80211 drivers this means you must first use wiphy_register(),
7533  * for mac80211 drivers you must first use ieee80211_register_hw().
7534  *
7535  * Drivers should check the return value, its possible you can get
7536  * an -ENOMEM.
7537  *
7538  * Return: 0 on success. -ENOMEM.
7539  */
7540 int regulatory_hint(struct wiphy *wiphy, const char *alpha2);
7541 
7542 /**
7543  * regulatory_set_wiphy_regd - set regdom info for self managed drivers
7544  * @wiphy: the wireless device we want to process the regulatory domain on
7545  * @rd: the regulatory domain information to use for this wiphy
7546  *
7547  * Set the regulatory domain information for self-managed wiphys, only they
7548  * may use this function. See %REGULATORY_WIPHY_SELF_MANAGED for more
7549  * information.
7550  *
7551  * Return: 0 on success. -EINVAL, -EPERM
7552  */
7553 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
7554 			      struct ieee80211_regdomain *rd);
7555 
7556 /**
7557  * regulatory_set_wiphy_regd_sync - set regdom for self-managed drivers
7558  * @wiphy: the wireless device we want to process the regulatory domain on
7559  * @rd: the regulatory domain information to use for this wiphy
7560  *
7561  * This functions requires the RTNL and the wiphy mutex to be held and
7562  * applies the new regdomain synchronously to this wiphy. For more details
7563  * see regulatory_set_wiphy_regd().
7564  *
7565  * Return: 0 on success. -EINVAL, -EPERM
7566  */
7567 int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy,
7568 				   struct ieee80211_regdomain *rd);
7569 
7570 /**
7571  * wiphy_apply_custom_regulatory - apply a custom driver regulatory domain
7572  * @wiphy: the wireless device we want to process the regulatory domain on
7573  * @regd: the custom regulatory domain to use for this wiphy
7574  *
7575  * Drivers can sometimes have custom regulatory domains which do not apply
7576  * to a specific country. Drivers can use this to apply such custom regulatory
7577  * domains. This routine must be called prior to wiphy registration. The
7578  * custom regulatory domain will be trusted completely and as such previous
7579  * default channel settings will be disregarded. If no rule is found for a
7580  * channel on the regulatory domain the channel will be disabled.
7581  * Drivers using this for a wiphy should also set the wiphy flag
7582  * REGULATORY_CUSTOM_REG or cfg80211 will set it for the wiphy
7583  * that called this helper.
7584  */
7585 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
7586 				   const struct ieee80211_regdomain *regd);
7587 
7588 /**
7589  * freq_reg_info - get regulatory information for the given frequency
7590  * @wiphy: the wiphy for which we want to process this rule for
7591  * @center_freq: Frequency in KHz for which we want regulatory information for
7592  *
7593  * Use this function to get the regulatory rule for a specific frequency on
7594  * a given wireless device. If the device has a specific regulatory domain
7595  * it wants to follow we respect that unless a country IE has been received
7596  * and processed already.
7597  *
7598  * Return: A valid pointer, or, when an error occurs, for example if no rule
7599  * can be found, the return value is encoded using ERR_PTR(). Use IS_ERR() to
7600  * check and PTR_ERR() to obtain the numeric return value. The numeric return
7601  * value will be -ERANGE if we determine the given center_freq does not even
7602  * have a regulatory rule for a frequency range in the center_freq's band.
7603  * See freq_in_rule_band() for our current definition of a band -- this is
7604  * purely subjective and right now it's 802.11 specific.
7605  */
7606 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
7607 					       u32 center_freq);
7608 
7609 /**
7610  * reg_initiator_name - map regulatory request initiator enum to name
7611  * @initiator: the regulatory request initiator
7612  *
7613  * You can use this to map the regulatory request initiator enum to a
7614  * proper string representation.
7615  *
7616  * Return: pointer to string representation of the initiator
7617  */
7618 const char *reg_initiator_name(enum nl80211_reg_initiator initiator);
7619 
7620 /**
7621  * regulatory_pre_cac_allowed - check if pre-CAC allowed in the current regdom
7622  * @wiphy: wiphy for which pre-CAC capability is checked.
7623  *
7624  * Pre-CAC is allowed only in some regdomains (notable ETSI).
7625  *
7626  * Return: %true if allowed, %false otherwise
7627  */
7628 bool regulatory_pre_cac_allowed(struct wiphy *wiphy);
7629 
7630 /**
7631  * DOC: Internal regulatory db functions
7632  *
7633  */
7634 
7635 /**
7636  * reg_query_regdb_wmm -  Query internal regulatory db for wmm rule
7637  * Regulatory self-managed driver can use it to proactively
7638  *
7639  * @alpha2: the ISO/IEC 3166 alpha2 wmm rule to be queried.
7640  * @freq: the frequency (in MHz) to be queried.
7641  * @rule: pointer to store the wmm rule from the regulatory db.
7642  *
7643  * Self-managed wireless drivers can use this function to  query
7644  * the internal regulatory database to check whether the given
7645  * ISO/IEC 3166 alpha2 country and freq have wmm rule limitations.
7646  *
7647  * Drivers should check the return value, its possible you can get
7648  * an -ENODATA.
7649  *
7650  * Return: 0 on success. -ENODATA.
7651  */
7652 int reg_query_regdb_wmm(char *alpha2, int freq,
7653 			struct ieee80211_reg_rule *rule);
7654 
7655 /*
7656  * callbacks for asynchronous cfg80211 methods, notification
7657  * functions and BSS handling helpers
7658  */
7659 
7660 /**
7661  * cfg80211_scan_done - notify that scan finished
7662  *
7663  * @request: the corresponding scan request
7664  * @info: information about the completed scan
7665  */
7666 void cfg80211_scan_done(struct cfg80211_scan_request *request,
7667 			struct cfg80211_scan_info *info);
7668 
7669 /**
7670  * cfg80211_sched_scan_results - notify that new scan results are available
7671  *
7672  * @wiphy: the wiphy which got scheduled scan results
7673  * @reqid: identifier for the related scheduled scan request
7674  */
7675 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid);
7676 
7677 /**
7678  * cfg80211_sched_scan_stopped - notify that the scheduled scan has stopped
7679  *
7680  * @wiphy: the wiphy on which the scheduled scan stopped
7681  * @reqid: identifier for the related scheduled scan request
7682  *
7683  * The driver can call this function to inform cfg80211 that the
7684  * scheduled scan had to be stopped, for whatever reason.  The driver
7685  * is then called back via the sched_scan_stop operation when done.
7686  */
7687 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid);
7688 
7689 /**
7690  * cfg80211_sched_scan_stopped_locked - notify that the scheduled scan has stopped
7691  *
7692  * @wiphy: the wiphy on which the scheduled scan stopped
7693  * @reqid: identifier for the related scheduled scan request
7694  *
7695  * The driver can call this function to inform cfg80211 that the
7696  * scheduled scan had to be stopped, for whatever reason.  The driver
7697  * is then called back via the sched_scan_stop operation when done.
7698  * This function should be called with the wiphy mutex held.
7699  */
7700 void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid);
7701 
7702 /**
7703  * cfg80211_inform_bss_frame_data - inform cfg80211 of a received BSS frame
7704  * @wiphy: the wiphy reporting the BSS
7705  * @data: the BSS metadata
7706  * @mgmt: the management frame (probe response or beacon)
7707  * @len: length of the management frame
7708  * @gfp: context flags
7709  *
7710  * This informs cfg80211 that BSS information was found and
7711  * the BSS should be updated/added.
7712  *
7713  * Return: A referenced struct, must be released with cfg80211_put_bss()!
7714  * Or %NULL on error.
7715  */
7716 struct cfg80211_bss * __must_check
7717 cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
7718 			       struct cfg80211_inform_bss *data,
7719 			       struct ieee80211_mgmt *mgmt, size_t len,
7720 			       gfp_t gfp);
7721 
7722 static inline struct cfg80211_bss * __must_check
7723 cfg80211_inform_bss_frame(struct wiphy *wiphy,
7724 			  struct ieee80211_channel *rx_channel,
7725 			  struct ieee80211_mgmt *mgmt, size_t len,
7726 			  s32 signal, gfp_t gfp)
7727 {
7728 	struct cfg80211_inform_bss data = {
7729 		.chan = rx_channel,
7730 		.signal = signal,
7731 	};
7732 
7733 	return cfg80211_inform_bss_frame_data(wiphy, &data, mgmt, len, gfp);
7734 }
7735 
7736 /**
7737  * cfg80211_gen_new_bssid - generate a nontransmitted BSSID for multi-BSSID
7738  * @bssid: transmitter BSSID
7739  * @max_bssid: max BSSID indicator, taken from Multiple BSSID element
7740  * @mbssid_index: BSSID index, taken from Multiple BSSID index element
7741  * @new_bssid: calculated nontransmitted BSSID
7742  */
7743 static inline void cfg80211_gen_new_bssid(const u8 *bssid, u8 max_bssid,
7744 					  u8 mbssid_index, u8 *new_bssid)
7745 {
7746 	u64 bssid_u64 = ether_addr_to_u64(bssid);
7747 	u64 mask = GENMASK_ULL(max_bssid - 1, 0);
7748 	u64 new_bssid_u64;
7749 
7750 	new_bssid_u64 = bssid_u64 & ~mask;
7751 
7752 	new_bssid_u64 |= ((bssid_u64 & mask) + mbssid_index) & mask;
7753 
7754 	u64_to_ether_addr(new_bssid_u64, new_bssid);
7755 }
7756 
7757 /**
7758  * cfg80211_is_element_inherited - returns if element ID should be inherited
7759  * @element: element to check
7760  * @non_inherit_element: non inheritance element
7761  *
7762  * Return: %true if should be inherited, %false otherwise
7763  */
7764 bool cfg80211_is_element_inherited(const struct element *element,
7765 				   const struct element *non_inherit_element);
7766 
7767 /**
7768  * cfg80211_merge_profile - merges a MBSSID profile if it is split between IEs
7769  * @ie: ies
7770  * @ielen: length of IEs
7771  * @mbssid_elem: current MBSSID element
7772  * @sub_elem: current MBSSID subelement (profile)
7773  * @merged_ie: location of the merged profile
7774  * @max_copy_len: max merged profile length
7775  *
7776  * Return: the number of bytes merged
7777  */
7778 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
7779 			      const struct element *mbssid_elem,
7780 			      const struct element *sub_elem,
7781 			      u8 *merged_ie, size_t max_copy_len);
7782 
7783 /**
7784  * enum cfg80211_bss_frame_type - frame type that the BSS data came from
7785  * @CFG80211_BSS_FTYPE_UNKNOWN: driver doesn't know whether the data is
7786  *	from a beacon or probe response
7787  * @CFG80211_BSS_FTYPE_BEACON: data comes from a beacon
7788  * @CFG80211_BSS_FTYPE_PRESP: data comes from a probe response
7789  * @CFG80211_BSS_FTYPE_S1G_BEACON: data comes from an S1G beacon
7790  */
7791 enum cfg80211_bss_frame_type {
7792 	CFG80211_BSS_FTYPE_UNKNOWN,
7793 	CFG80211_BSS_FTYPE_BEACON,
7794 	CFG80211_BSS_FTYPE_PRESP,
7795 	CFG80211_BSS_FTYPE_S1G_BEACON,
7796 };
7797 
7798 /**
7799  * cfg80211_get_ies_channel_number - returns the channel number from ies
7800  * @ie: IEs
7801  * @ielen: length of IEs
7802  * @band: enum nl80211_band of the channel
7803  *
7804  * Return: the channel number, or -1 if none could be determined.
7805  */
7806 int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen,
7807 				    enum nl80211_band band);
7808 
7809 /**
7810  * cfg80211_ssid_eq - compare two SSIDs
7811  * @a: first SSID
7812  * @b: second SSID
7813  *
7814  * Return: %true if SSIDs are equal, %false otherwise.
7815  */
7816 static inline bool
7817 cfg80211_ssid_eq(struct cfg80211_ssid *a, struct cfg80211_ssid *b)
7818 {
7819 	if (WARN_ON(!a || !b))
7820 		return false;
7821 	if (a->ssid_len != b->ssid_len)
7822 		return false;
7823 	return memcmp(a->ssid, b->ssid, a->ssid_len) ? false : true;
7824 }
7825 
7826 /**
7827  * cfg80211_inform_bss_data - inform cfg80211 of a new BSS
7828  *
7829  * @wiphy: the wiphy reporting the BSS
7830  * @data: the BSS metadata
7831  * @ftype: frame type (if known)
7832  * @bssid: the BSSID of the BSS
7833  * @tsf: the TSF sent by the peer in the beacon/probe response (or 0)
7834  * @capability: the capability field sent by the peer
7835  * @beacon_interval: the beacon interval announced by the peer
7836  * @ie: additional IEs sent by the peer
7837  * @ielen: length of the additional IEs
7838  * @gfp: context flags
7839  *
7840  * This informs cfg80211 that BSS information was found and
7841  * the BSS should be updated/added.
7842  *
7843  * Return: A referenced struct, must be released with cfg80211_put_bss()!
7844  * Or %NULL on error.
7845  */
7846 struct cfg80211_bss * __must_check
7847 cfg80211_inform_bss_data(struct wiphy *wiphy,
7848 			 struct cfg80211_inform_bss *data,
7849 			 enum cfg80211_bss_frame_type ftype,
7850 			 const u8 *bssid, u64 tsf, u16 capability,
7851 			 u16 beacon_interval, const u8 *ie, size_t ielen,
7852 			 gfp_t gfp);
7853 
7854 static inline struct cfg80211_bss * __must_check
7855 cfg80211_inform_bss(struct wiphy *wiphy,
7856 		    struct ieee80211_channel *rx_channel,
7857 		    enum cfg80211_bss_frame_type ftype,
7858 		    const u8 *bssid, u64 tsf, u16 capability,
7859 		    u16 beacon_interval, const u8 *ie, size_t ielen,
7860 		    s32 signal, gfp_t gfp)
7861 {
7862 	struct cfg80211_inform_bss data = {
7863 		.chan = rx_channel,
7864 		.signal = signal,
7865 	};
7866 
7867 	return cfg80211_inform_bss_data(wiphy, &data, ftype, bssid, tsf,
7868 					capability, beacon_interval, ie, ielen,
7869 					gfp);
7870 }
7871 
7872 /**
7873  * __cfg80211_get_bss - get a BSS reference
7874  * @wiphy: the wiphy this BSS struct belongs to
7875  * @channel: the channel to search on (or %NULL)
7876  * @bssid: the desired BSSID (or %NULL)
7877  * @ssid: the desired SSID (or %NULL)
7878  * @ssid_len: length of the SSID (or 0)
7879  * @bss_type: type of BSS, see &enum ieee80211_bss_type
7880  * @privacy: privacy filter, see &enum ieee80211_privacy
7881  * @use_for: indicates which use is intended
7882  *
7883  * Return: Reference-counted BSS on success. %NULL on error.
7884  */
7885 struct cfg80211_bss *__cfg80211_get_bss(struct wiphy *wiphy,
7886 					struct ieee80211_channel *channel,
7887 					const u8 *bssid,
7888 					const u8 *ssid, size_t ssid_len,
7889 					enum ieee80211_bss_type bss_type,
7890 					enum ieee80211_privacy privacy,
7891 					u32 use_for);
7892 
7893 /**
7894  * cfg80211_get_bss - get a BSS reference
7895  * @wiphy: the wiphy this BSS struct belongs to
7896  * @channel: the channel to search on (or %NULL)
7897  * @bssid: the desired BSSID (or %NULL)
7898  * @ssid: the desired SSID (or %NULL)
7899  * @ssid_len: length of the SSID (or 0)
7900  * @bss_type: type of BSS, see &enum ieee80211_bss_type
7901  * @privacy: privacy filter, see &enum ieee80211_privacy
7902  *
7903  * This version implies regular usage, %NL80211_BSS_USE_FOR_NORMAL.
7904  *
7905  * Return: Reference-counted BSS on success. %NULL on error.
7906  */
7907 static inline struct cfg80211_bss *
7908 cfg80211_get_bss(struct wiphy *wiphy, struct ieee80211_channel *channel,
7909 		 const u8 *bssid, const u8 *ssid, size_t ssid_len,
7910 		 enum ieee80211_bss_type bss_type,
7911 		 enum ieee80211_privacy privacy)
7912 {
7913 	return __cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len,
7914 				  bss_type, privacy,
7915 				  NL80211_BSS_USE_FOR_NORMAL);
7916 }
7917 
7918 static inline struct cfg80211_bss *
7919 cfg80211_get_ibss(struct wiphy *wiphy,
7920 		  struct ieee80211_channel *channel,
7921 		  const u8 *ssid, size_t ssid_len)
7922 {
7923 	return cfg80211_get_bss(wiphy, channel, NULL, ssid, ssid_len,
7924 				IEEE80211_BSS_TYPE_IBSS,
7925 				IEEE80211_PRIVACY_ANY);
7926 }
7927 
7928 /**
7929  * cfg80211_ref_bss - reference BSS struct
7930  * @wiphy: the wiphy this BSS struct belongs to
7931  * @bss: the BSS struct to reference
7932  *
7933  * Increments the refcount of the given BSS struct.
7934  */
7935 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *bss);
7936 
7937 /**
7938  * cfg80211_put_bss - unref BSS struct
7939  * @wiphy: the wiphy this BSS struct belongs to
7940  * @bss: the BSS struct
7941  *
7942  * Decrements the refcount of the given BSS struct.
7943  */
7944 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *bss);
7945 
7946 /**
7947  * cfg80211_unlink_bss - unlink BSS from internal data structures
7948  * @wiphy: the wiphy
7949  * @bss: the bss to remove
7950  *
7951  * This function removes the given BSS from the internal data structures
7952  * thereby making it no longer show up in scan results etc. Use this
7953  * function when you detect a BSS is gone. Normally BSSes will also time
7954  * out, so it is not necessary to use this function at all.
7955  */
7956 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *bss);
7957 
7958 /**
7959  * cfg80211_bss_iter - iterate all BSS entries
7960  *
7961  * This function iterates over the BSS entries associated with the given wiphy
7962  * and calls the callback for the iterated BSS. The iterator function is not
7963  * allowed to call functions that might modify the internal state of the BSS DB.
7964  *
7965  * @wiphy: the wiphy
7966  * @chandef: if given, the iterator function will be called only if the channel
7967  *     of the currently iterated BSS is a subset of the given channel.
7968  * @iter: the iterator function to call
7969  * @iter_data: an argument to the iterator function
7970  */
7971 void cfg80211_bss_iter(struct wiphy *wiphy,
7972 		       struct cfg80211_chan_def *chandef,
7973 		       void (*iter)(struct wiphy *wiphy,
7974 				    struct cfg80211_bss *bss,
7975 				    void *data),
7976 		       void *iter_data);
7977 
7978 /**
7979  * cfg80211_rx_mlme_mgmt - notification of processed MLME management frame
7980  * @dev: network device
7981  * @buf: authentication frame (header + body)
7982  * @len: length of the frame data
7983  *
7984  * This function is called whenever an authentication, disassociation or
7985  * deauthentication frame has been received and processed in station mode.
7986  * After being asked to authenticate via cfg80211_ops::auth() the driver must
7987  * call either this function or cfg80211_auth_timeout().
7988  * After being asked to associate via cfg80211_ops::assoc() the driver must
7989  * call either this function or cfg80211_auth_timeout().
7990  * While connected, the driver must calls this for received and processed
7991  * disassociation and deauthentication frames. If the frame couldn't be used
7992  * because it was unprotected, the driver must call the function
7993  * cfg80211_rx_unprot_mlme_mgmt() instead.
7994  *
7995  * This function may sleep. The caller must hold the corresponding wdev's mutex.
7996  */
7997 void cfg80211_rx_mlme_mgmt(struct net_device *dev, const u8 *buf, size_t len);
7998 
7999 /**
8000  * cfg80211_auth_timeout - notification of timed out authentication
8001  * @dev: network device
8002  * @addr: The MAC address of the device with which the authentication timed out
8003  *
8004  * This function may sleep. The caller must hold the corresponding wdev's
8005  * mutex.
8006  */
8007 void cfg80211_auth_timeout(struct net_device *dev, const u8 *addr);
8008 
8009 /**
8010  * struct cfg80211_rx_assoc_resp_data - association response data
8011  * @buf: (Re)Association Response frame (header + body)
8012  * @len: length of the frame data
8013  * @uapsd_queues: bitmap of queues configured for uapsd. Same format
8014  *	as the AC bitmap in the QoS info field
8015  * @req_ies: information elements from the (Re)Association Request frame
8016  * @req_ies_len: length of req_ies data
8017  * @ap_mld_addr: AP MLD address (in case of MLO)
8018  * @links: per-link information indexed by link ID, use links[0] for
8019  *	non-MLO connections
8020  * @links.bss: the BSS that association was requested with, ownership of the
8021  *      pointer moves to cfg80211 in the call to cfg80211_rx_assoc_resp()
8022  * @links.status: Set this (along with a BSS pointer) for links that
8023  *	were rejected by the AP.
8024  */
8025 struct cfg80211_rx_assoc_resp_data {
8026 	const u8 *buf;
8027 	size_t len;
8028 	const u8 *req_ies;
8029 	size_t req_ies_len;
8030 	int uapsd_queues;
8031 	const u8 *ap_mld_addr;
8032 	struct {
8033 		u8 addr[ETH_ALEN] __aligned(2);
8034 		struct cfg80211_bss *bss;
8035 		u16 status;
8036 	} links[IEEE80211_MLD_MAX_NUM_LINKS];
8037 };
8038 
8039 /**
8040  * cfg80211_rx_assoc_resp - notification of processed association response
8041  * @dev: network device
8042  * @data: association response data, &struct cfg80211_rx_assoc_resp_data
8043  *
8044  * After being asked to associate via cfg80211_ops::assoc() the driver must
8045  * call either this function or cfg80211_auth_timeout().
8046  *
8047  * This function may sleep. The caller must hold the corresponding wdev's mutex.
8048  */
8049 void cfg80211_rx_assoc_resp(struct net_device *dev,
8050 			    const struct cfg80211_rx_assoc_resp_data *data);
8051 
8052 /**
8053  * struct cfg80211_assoc_failure - association failure data
8054  * @ap_mld_addr: AP MLD address, or %NULL
8055  * @bss: list of BSSes, must use entry 0 for non-MLO connections
8056  *	(@ap_mld_addr is %NULL)
8057  * @timeout: indicates the association failed due to timeout, otherwise
8058  *	the association was abandoned for a reason reported through some
8059  *	other API (e.g. deauth RX)
8060  */
8061 struct cfg80211_assoc_failure {
8062 	const u8 *ap_mld_addr;
8063 	struct cfg80211_bss *bss[IEEE80211_MLD_MAX_NUM_LINKS];
8064 	bool timeout;
8065 };
8066 
8067 /**
8068  * cfg80211_assoc_failure - notification of association failure
8069  * @dev: network device
8070  * @data: data describing the association failure
8071  *
8072  * This function may sleep. The caller must hold the corresponding wdev's mutex.
8073  */
8074 void cfg80211_assoc_failure(struct net_device *dev,
8075 			    struct cfg80211_assoc_failure *data);
8076 
8077 /**
8078  * cfg80211_tx_mlme_mgmt - notification of transmitted deauth/disassoc frame
8079  * @dev: network device
8080  * @buf: 802.11 frame (header + body)
8081  * @len: length of the frame data
8082  * @reconnect: immediate reconnect is desired (include the nl80211 attribute)
8083  *
8084  * This function is called whenever deauthentication has been processed in
8085  * station mode. This includes both received deauthentication frames and
8086  * locally generated ones. This function may sleep. The caller must hold the
8087  * corresponding wdev's mutex.
8088  */
8089 void cfg80211_tx_mlme_mgmt(struct net_device *dev, const u8 *buf, size_t len,
8090 			   bool reconnect);
8091 
8092 /**
8093  * cfg80211_rx_unprot_mlme_mgmt - notification of unprotected mlme mgmt frame
8094  * @dev: network device
8095  * @buf: received management frame (header + body)
8096  * @len: length of the frame data
8097  *
8098  * This function is called whenever a received deauthentication or dissassoc
8099  * frame has been dropped in station mode because of MFP being used but the
8100  * frame was not protected. This is also used to notify reception of a Beacon
8101  * frame that was dropped because it did not include a valid MME MIC while
8102  * beacon protection was enabled (BIGTK configured in station mode).
8103  *
8104  * This function may sleep.
8105  */
8106 void cfg80211_rx_unprot_mlme_mgmt(struct net_device *dev,
8107 				  const u8 *buf, size_t len);
8108 
8109 /**
8110  * cfg80211_michael_mic_failure - notification of Michael MIC failure (TKIP)
8111  * @dev: network device
8112  * @addr: The source MAC address of the frame
8113  * @key_type: The key type that the received frame used
8114  * @key_id: Key identifier (0..3). Can be -1 if missing.
8115  * @tsc: The TSC value of the frame that generated the MIC failure (6 octets)
8116  * @gfp: allocation flags
8117  *
8118  * This function is called whenever the local MAC detects a MIC failure in a
8119  * received frame. This matches with MLME-MICHAELMICFAILURE.indication()
8120  * primitive.
8121  */
8122 void cfg80211_michael_mic_failure(struct net_device *dev, const u8 *addr,
8123 				  enum nl80211_key_type key_type, int key_id,
8124 				  const u8 *tsc, gfp_t gfp);
8125 
8126 /**
8127  * cfg80211_ibss_joined - notify cfg80211 that device joined an IBSS
8128  *
8129  * @dev: network device
8130  * @bssid: the BSSID of the IBSS joined
8131  * @channel: the channel of the IBSS joined
8132  * @gfp: allocation flags
8133  *
8134  * This function notifies cfg80211 that the device joined an IBSS or
8135  * switched to a different BSSID. Before this function can be called,
8136  * either a beacon has to have been received from the IBSS, or one of
8137  * the cfg80211_inform_bss{,_frame} functions must have been called
8138  * with the locally generated beacon -- this guarantees that there is
8139  * always a scan result for this IBSS. cfg80211 will handle the rest.
8140  */
8141 void cfg80211_ibss_joined(struct net_device *dev, const u8 *bssid,
8142 			  struct ieee80211_channel *channel, gfp_t gfp);
8143 
8144 /**
8145  * cfg80211_notify_new_peer_candidate - notify cfg80211 of a new mesh peer
8146  * 					candidate
8147  *
8148  * @dev: network device
8149  * @macaddr: the MAC address of the new candidate
8150  * @ie: information elements advertised by the peer candidate
8151  * @ie_len: length of the information elements buffer
8152  * @sig_dbm: signal level in dBm
8153  * @gfp: allocation flags
8154  *
8155  * This function notifies cfg80211 that the mesh peer candidate has been
8156  * detected, most likely via a beacon or, less likely, via a probe response.
8157  * cfg80211 then sends a notification to userspace.
8158  */
8159 void cfg80211_notify_new_peer_candidate(struct net_device *dev,
8160 		const u8 *macaddr, const u8 *ie, u8 ie_len,
8161 		int sig_dbm, gfp_t gfp);
8162 
8163 /**
8164  * DOC: RFkill integration
8165  *
8166  * RFkill integration in cfg80211 is almost invisible to drivers,
8167  * as cfg80211 automatically registers an rfkill instance for each
8168  * wireless device it knows about. Soft kill is also translated
8169  * into disconnecting and turning all interfaces off. Drivers are
8170  * expected to turn off the device when all interfaces are down.
8171  *
8172  * However, devices may have a hard RFkill line, in which case they
8173  * also need to interact with the rfkill subsystem, via cfg80211.
8174  * They can do this with a few helper functions documented here.
8175  */
8176 
8177 /**
8178  * wiphy_rfkill_set_hw_state_reason - notify cfg80211 about hw block state
8179  * @wiphy: the wiphy
8180  * @blocked: block status
8181  * @reason: one of reasons in &enum rfkill_hard_block_reasons
8182  */
8183 void wiphy_rfkill_set_hw_state_reason(struct wiphy *wiphy, bool blocked,
8184 				      enum rfkill_hard_block_reasons reason);
8185 
8186 static inline void wiphy_rfkill_set_hw_state(struct wiphy *wiphy, bool blocked)
8187 {
8188 	wiphy_rfkill_set_hw_state_reason(wiphy, blocked,
8189 					 RFKILL_HARD_BLOCK_SIGNAL);
8190 }
8191 
8192 /**
8193  * wiphy_rfkill_start_polling - start polling rfkill
8194  * @wiphy: the wiphy
8195  */
8196 void wiphy_rfkill_start_polling(struct wiphy *wiphy);
8197 
8198 /**
8199  * wiphy_rfkill_stop_polling - stop polling rfkill
8200  * @wiphy: the wiphy
8201  */
8202 static inline void wiphy_rfkill_stop_polling(struct wiphy *wiphy)
8203 {
8204 	rfkill_pause_polling(wiphy->rfkill);
8205 }
8206 
8207 /**
8208  * DOC: Vendor commands
8209  *
8210  * Occasionally, there are special protocol or firmware features that
8211  * can't be implemented very openly. For this and similar cases, the
8212  * vendor command functionality allows implementing the features with
8213  * (typically closed-source) userspace and firmware, using nl80211 as
8214  * the configuration mechanism.
8215  *
8216  * A driver supporting vendor commands must register them as an array
8217  * in struct wiphy, with handlers for each one. Each command has an
8218  * OUI and sub command ID to identify it.
8219  *
8220  * Note that this feature should not be (ab)used to implement protocol
8221  * features that could openly be shared across drivers. In particular,
8222  * it must never be required to use vendor commands to implement any
8223  * "normal" functionality that higher-level userspace like connection
8224  * managers etc. need.
8225  */
8226 
8227 struct sk_buff *__cfg80211_alloc_reply_skb(struct wiphy *wiphy,
8228 					   enum nl80211_commands cmd,
8229 					   enum nl80211_attrs attr,
8230 					   int approxlen);
8231 
8232 struct sk_buff *__cfg80211_alloc_event_skb(struct wiphy *wiphy,
8233 					   struct wireless_dev *wdev,
8234 					   enum nl80211_commands cmd,
8235 					   enum nl80211_attrs attr,
8236 					   unsigned int portid,
8237 					   int vendor_event_idx,
8238 					   int approxlen, gfp_t gfp);
8239 
8240 void __cfg80211_send_event_skb(struct sk_buff *skb, gfp_t gfp);
8241 
8242 /**
8243  * cfg80211_vendor_cmd_alloc_reply_skb - allocate vendor command reply
8244  * @wiphy: the wiphy
8245  * @approxlen: an upper bound of the length of the data that will
8246  *	be put into the skb
8247  *
8248  * This function allocates and pre-fills an skb for a reply to
8249  * a vendor command. Since it is intended for a reply, calling
8250  * it outside of a vendor command's doit() operation is invalid.
8251  *
8252  * The returned skb is pre-filled with some identifying data in
8253  * a way that any data that is put into the skb (with skb_put(),
8254  * nla_put() or similar) will end up being within the
8255  * %NL80211_ATTR_VENDOR_DATA attribute, so all that needs to be done
8256  * with the skb is adding data for the corresponding userspace tool
8257  * which can then read that data out of the vendor data attribute.
8258  * You must not modify the skb in any other way.
8259  *
8260  * When done, call cfg80211_vendor_cmd_reply() with the skb and return
8261  * its error code as the result of the doit() operation.
8262  *
8263  * Return: An allocated and pre-filled skb. %NULL if any errors happen.
8264  */
8265 static inline struct sk_buff *
8266 cfg80211_vendor_cmd_alloc_reply_skb(struct wiphy *wiphy, int approxlen)
8267 {
8268 	return __cfg80211_alloc_reply_skb(wiphy, NL80211_CMD_VENDOR,
8269 					  NL80211_ATTR_VENDOR_DATA, approxlen);
8270 }
8271 
8272 /**
8273  * cfg80211_vendor_cmd_reply - send the reply skb
8274  * @skb: The skb, must have been allocated with
8275  *	cfg80211_vendor_cmd_alloc_reply_skb()
8276  *
8277  * Since calling this function will usually be the last thing
8278  * before returning from the vendor command doit() you should
8279  * return the error code.  Note that this function consumes the
8280  * skb regardless of the return value.
8281  *
8282  * Return: An error code or 0 on success.
8283  */
8284 int cfg80211_vendor_cmd_reply(struct sk_buff *skb);
8285 
8286 /**
8287  * cfg80211_vendor_cmd_get_sender - get the current sender netlink ID
8288  * @wiphy: the wiphy
8289  *
8290  * Return: the current netlink port ID in a vendor command handler.
8291  *
8292  * Context: May only be called from a vendor command handler
8293  */
8294 unsigned int cfg80211_vendor_cmd_get_sender(struct wiphy *wiphy);
8295 
8296 /**
8297  * cfg80211_vendor_event_alloc - allocate vendor-specific event skb
8298  * @wiphy: the wiphy
8299  * @wdev: the wireless device
8300  * @event_idx: index of the vendor event in the wiphy's vendor_events
8301  * @approxlen: an upper bound of the length of the data that will
8302  *	be put into the skb
8303  * @gfp: allocation flags
8304  *
8305  * This function allocates and pre-fills an skb for an event on the
8306  * vendor-specific multicast group.
8307  *
8308  * If wdev != NULL, both the ifindex and identifier of the specified
8309  * wireless device are added to the event message before the vendor data
8310  * attribute.
8311  *
8312  * When done filling the skb, call cfg80211_vendor_event() with the
8313  * skb to send the event.
8314  *
8315  * Return: An allocated and pre-filled skb. %NULL if any errors happen.
8316  */
8317 static inline struct sk_buff *
8318 cfg80211_vendor_event_alloc(struct wiphy *wiphy, struct wireless_dev *wdev,
8319 			     int approxlen, int event_idx, gfp_t gfp)
8320 {
8321 	return __cfg80211_alloc_event_skb(wiphy, wdev, NL80211_CMD_VENDOR,
8322 					  NL80211_ATTR_VENDOR_DATA,
8323 					  0, event_idx, approxlen, gfp);
8324 }
8325 
8326 /**
8327  * cfg80211_vendor_event_alloc_ucast - alloc unicast vendor-specific event skb
8328  * @wiphy: the wiphy
8329  * @wdev: the wireless device
8330  * @event_idx: index of the vendor event in the wiphy's vendor_events
8331  * @portid: port ID of the receiver
8332  * @approxlen: an upper bound of the length of the data that will
8333  *	be put into the skb
8334  * @gfp: allocation flags
8335  *
8336  * This function allocates and pre-fills an skb for an event to send to
8337  * a specific (userland) socket. This socket would previously have been
8338  * obtained by cfg80211_vendor_cmd_get_sender(), and the caller MUST take
8339  * care to register a netlink notifier to see when the socket closes.
8340  *
8341  * If wdev != NULL, both the ifindex and identifier of the specified
8342  * wireless device are added to the event message before the vendor data
8343  * attribute.
8344  *
8345  * When done filling the skb, call cfg80211_vendor_event() with the
8346  * skb to send the event.
8347  *
8348  * Return: An allocated and pre-filled skb. %NULL if any errors happen.
8349  */
8350 static inline struct sk_buff *
8351 cfg80211_vendor_event_alloc_ucast(struct wiphy *wiphy,
8352 				  struct wireless_dev *wdev,
8353 				  unsigned int portid, int approxlen,
8354 				  int event_idx, gfp_t gfp)
8355 {
8356 	return __cfg80211_alloc_event_skb(wiphy, wdev, NL80211_CMD_VENDOR,
8357 					  NL80211_ATTR_VENDOR_DATA,
8358 					  portid, event_idx, approxlen, gfp);
8359 }
8360 
8361 /**
8362  * cfg80211_vendor_event - send the event
8363  * @skb: The skb, must have been allocated with cfg80211_vendor_event_alloc()
8364  * @gfp: allocation flags
8365  *
8366  * This function sends the given @skb, which must have been allocated
8367  * by cfg80211_vendor_event_alloc(), as an event. It always consumes it.
8368  */
8369 static inline void cfg80211_vendor_event(struct sk_buff *skb, gfp_t gfp)
8370 {
8371 	__cfg80211_send_event_skb(skb, gfp);
8372 }
8373 
8374 #ifdef CONFIG_NL80211_TESTMODE
8375 /**
8376  * DOC: Test mode
8377  *
8378  * Test mode is a set of utility functions to allow drivers to
8379  * interact with driver-specific tools to aid, for instance,
8380  * factory programming.
8381  *
8382  * This chapter describes how drivers interact with it. For more
8383  * information see the nl80211 book's chapter on it.
8384  */
8385 
8386 /**
8387  * cfg80211_testmode_alloc_reply_skb - allocate testmode reply
8388  * @wiphy: the wiphy
8389  * @approxlen: an upper bound of the length of the data that will
8390  *	be put into the skb
8391  *
8392  * This function allocates and pre-fills an skb for a reply to
8393  * the testmode command. Since it is intended for a reply, calling
8394  * it outside of the @testmode_cmd operation is invalid.
8395  *
8396  * The returned skb is pre-filled with the wiphy index and set up in
8397  * a way that any data that is put into the skb (with skb_put(),
8398  * nla_put() or similar) will end up being within the
8399  * %NL80211_ATTR_TESTDATA attribute, so all that needs to be done
8400  * with the skb is adding data for the corresponding userspace tool
8401  * which can then read that data out of the testdata attribute. You
8402  * must not modify the skb in any other way.
8403  *
8404  * When done, call cfg80211_testmode_reply() with the skb and return
8405  * its error code as the result of the @testmode_cmd operation.
8406  *
8407  * Return: An allocated and pre-filled skb. %NULL if any errors happen.
8408  */
8409 static inline struct sk_buff *
8410 cfg80211_testmode_alloc_reply_skb(struct wiphy *wiphy, int approxlen)
8411 {
8412 	return __cfg80211_alloc_reply_skb(wiphy, NL80211_CMD_TESTMODE,
8413 					  NL80211_ATTR_TESTDATA, approxlen);
8414 }
8415 
8416 /**
8417  * cfg80211_testmode_reply - send the reply skb
8418  * @skb: The skb, must have been allocated with
8419  *	cfg80211_testmode_alloc_reply_skb()
8420  *
8421  * Since calling this function will usually be the last thing
8422  * before returning from the @testmode_cmd you should return
8423  * the error code.  Note that this function consumes the skb
8424  * regardless of the return value.
8425  *
8426  * Return: An error code or 0 on success.
8427  */
8428 static inline int cfg80211_testmode_reply(struct sk_buff *skb)
8429 {
8430 	return cfg80211_vendor_cmd_reply(skb);
8431 }
8432 
8433 /**
8434  * cfg80211_testmode_alloc_event_skb - allocate testmode event
8435  * @wiphy: the wiphy
8436  * @approxlen: an upper bound of the length of the data that will
8437  *	be put into the skb
8438  * @gfp: allocation flags
8439  *
8440  * This function allocates and pre-fills an skb for an event on the
8441  * testmode multicast group.
8442  *
8443  * The returned skb is set up in the same way as with
8444  * cfg80211_testmode_alloc_reply_skb() but prepared for an event. As
8445  * there, you should simply add data to it that will then end up in the
8446  * %NL80211_ATTR_TESTDATA attribute. Again, you must not modify the skb
8447  * in any other way.
8448  *
8449  * When done filling the skb, call cfg80211_testmode_event() with the
8450  * skb to send the event.
8451  *
8452  * Return: An allocated and pre-filled skb. %NULL if any errors happen.
8453  */
8454 static inline struct sk_buff *
8455 cfg80211_testmode_alloc_event_skb(struct wiphy *wiphy, int approxlen, gfp_t gfp)
8456 {
8457 	return __cfg80211_alloc_event_skb(wiphy, NULL, NL80211_CMD_TESTMODE,
8458 					  NL80211_ATTR_TESTDATA, 0, -1,
8459 					  approxlen, gfp);
8460 }
8461 
8462 /**
8463  * cfg80211_testmode_event - send the event
8464  * @skb: The skb, must have been allocated with
8465  *	cfg80211_testmode_alloc_event_skb()
8466  * @gfp: allocation flags
8467  *
8468  * This function sends the given @skb, which must have been allocated
8469  * by cfg80211_testmode_alloc_event_skb(), as an event. It always
8470  * consumes it.
8471  */
8472 static inline void cfg80211_testmode_event(struct sk_buff *skb, gfp_t gfp)
8473 {
8474 	__cfg80211_send_event_skb(skb, gfp);
8475 }
8476 
8477 #define CFG80211_TESTMODE_CMD(cmd)	.testmode_cmd = (cmd),
8478 #define CFG80211_TESTMODE_DUMP(cmd)	.testmode_dump = (cmd),
8479 #else
8480 #define CFG80211_TESTMODE_CMD(cmd)
8481 #define CFG80211_TESTMODE_DUMP(cmd)
8482 #endif
8483 
8484 /**
8485  * struct cfg80211_fils_resp_params - FILS connection response params
8486  * @kek: KEK derived from a successful FILS connection (may be %NULL)
8487  * @kek_len: Length of @fils_kek in octets
8488  * @update_erp_next_seq_num: Boolean value to specify whether the value in
8489  *	@erp_next_seq_num is valid.
8490  * @erp_next_seq_num: The next sequence number to use in ERP message in
8491  *	FILS Authentication. This value should be specified irrespective of the
8492  *	status for a FILS connection.
8493  * @pmk: A new PMK if derived from a successful FILS connection (may be %NULL).
8494  * @pmk_len: Length of @pmk in octets
8495  * @pmkid: A new PMKID if derived from a successful FILS connection or the PMKID
8496  *	used for this FILS connection (may be %NULL).
8497  */
8498 struct cfg80211_fils_resp_params {
8499 	const u8 *kek;
8500 	size_t kek_len;
8501 	bool update_erp_next_seq_num;
8502 	u16 erp_next_seq_num;
8503 	const u8 *pmk;
8504 	size_t pmk_len;
8505 	const u8 *pmkid;
8506 };
8507 
8508 /**
8509  * struct cfg80211_connect_resp_params - Connection response params
8510  * @status: Status code, %WLAN_STATUS_SUCCESS for successful connection, use
8511  *	%WLAN_STATUS_UNSPECIFIED_FAILURE if your device cannot give you
8512  *	the real status code for failures. If this call is used to report a
8513  *	failure due to a timeout (e.g., not receiving an Authentication frame
8514  *	from the AP) instead of an explicit rejection by the AP, -1 is used to
8515  *	indicate that this is a failure, but without a status code.
8516  *	@timeout_reason is used to report the reason for the timeout in that
8517  *	case.
8518  * @req_ie: Association request IEs (may be %NULL)
8519  * @req_ie_len: Association request IEs length
8520  * @resp_ie: Association response IEs (may be %NULL)
8521  * @resp_ie_len: Association response IEs length
8522  * @fils: FILS connection response parameters.
8523  * @timeout_reason: Reason for connection timeout. This is used when the
8524  *	connection fails due to a timeout instead of an explicit rejection from
8525  *	the AP. %NL80211_TIMEOUT_UNSPECIFIED is used when the timeout reason is
8526  *	not known. This value is used only if @status < 0 to indicate that the
8527  *	failure is due to a timeout and not due to explicit rejection by the AP.
8528  *	This value is ignored in other cases (@status >= 0).
8529  * @valid_links: For MLO connection, BIT mask of the valid link ids. Otherwise
8530  *	zero.
8531  * @ap_mld_addr: For MLO connection, MLD address of the AP. Otherwise %NULL.
8532  * @links : For MLO connection, contains link info for the valid links indicated
8533  *	using @valid_links. For non-MLO connection, links[0] contains the
8534  *	connected AP info.
8535  * @links.addr: For MLO connection, MAC address of the STA link. Otherwise
8536  *	%NULL.
8537  * @links.bssid: For MLO connection, MAC address of the AP link. For non-MLO
8538  *	connection, links[0].bssid points to the BSSID of the AP (may be %NULL).
8539  * @links.bss: For MLO connection, entry of bss to which STA link is connected.
8540  *	For non-MLO connection, links[0].bss points to entry of bss to which STA
8541  *	is connected. It can be obtained through cfg80211_get_bss() (may be
8542  *	%NULL). It is recommended to store the bss from the connect_request and
8543  *	hold a reference to it and return through this param to avoid a warning
8544  *	if the bss is expired during the connection, esp. for those drivers
8545  *	implementing connect op. Only one parameter among @bssid and @bss needs
8546  *	to be specified.
8547  * @links.status: per-link status code, to report a status code that's not
8548  *	%WLAN_STATUS_SUCCESS for a given link, it must also be in the
8549  *	@valid_links bitmap and may have a BSS pointer (which is then released)
8550  */
8551 struct cfg80211_connect_resp_params {
8552 	int status;
8553 	const u8 *req_ie;
8554 	size_t req_ie_len;
8555 	const u8 *resp_ie;
8556 	size_t resp_ie_len;
8557 	struct cfg80211_fils_resp_params fils;
8558 	enum nl80211_timeout_reason timeout_reason;
8559 
8560 	const u8 *ap_mld_addr;
8561 	u16 valid_links;
8562 	struct {
8563 		const u8 *addr;
8564 		const u8 *bssid;
8565 		struct cfg80211_bss *bss;
8566 		u16 status;
8567 	} links[IEEE80211_MLD_MAX_NUM_LINKS];
8568 };
8569 
8570 /**
8571  * cfg80211_connect_done - notify cfg80211 of connection result
8572  *
8573  * @dev: network device
8574  * @params: connection response parameters
8575  * @gfp: allocation flags
8576  *
8577  * It should be called by the underlying driver once execution of the connection
8578  * request from connect() has been completed. This is similar to
8579  * cfg80211_connect_bss(), but takes a structure pointer for connection response
8580  * parameters. Only one of the functions among cfg80211_connect_bss(),
8581  * cfg80211_connect_result(), cfg80211_connect_timeout(),
8582  * and cfg80211_connect_done() should be called.
8583  */
8584 void cfg80211_connect_done(struct net_device *dev,
8585 			   struct cfg80211_connect_resp_params *params,
8586 			   gfp_t gfp);
8587 
8588 /**
8589  * cfg80211_connect_bss - notify cfg80211 of connection result
8590  *
8591  * @dev: network device
8592  * @bssid: the BSSID of the AP
8593  * @bss: Entry of bss to which STA got connected to, can be obtained through
8594  *	cfg80211_get_bss() (may be %NULL). But it is recommended to store the
8595  *	bss from the connect_request and hold a reference to it and return
8596  *	through this param to avoid a warning if the bss is expired during the
8597  *	connection, esp. for those drivers implementing connect op.
8598  *	Only one parameter among @bssid and @bss needs to be specified.
8599  * @req_ie: association request IEs (maybe be %NULL)
8600  * @req_ie_len: association request IEs length
8601  * @resp_ie: association response IEs (may be %NULL)
8602  * @resp_ie_len: assoc response IEs length
8603  * @status: status code, %WLAN_STATUS_SUCCESS for successful connection, use
8604  *	%WLAN_STATUS_UNSPECIFIED_FAILURE if your device cannot give you
8605  *	the real status code for failures. If this call is used to report a
8606  *	failure due to a timeout (e.g., not receiving an Authentication frame
8607  *	from the AP) instead of an explicit rejection by the AP, -1 is used to
8608  *	indicate that this is a failure, but without a status code.
8609  *	@timeout_reason is used to report the reason for the timeout in that
8610  *	case.
8611  * @gfp: allocation flags
8612  * @timeout_reason: reason for connection timeout. This is used when the
8613  *	connection fails due to a timeout instead of an explicit rejection from
8614  *	the AP. %NL80211_TIMEOUT_UNSPECIFIED is used when the timeout reason is
8615  *	not known. This value is used only if @status < 0 to indicate that the
8616  *	failure is due to a timeout and not due to explicit rejection by the AP.
8617  *	This value is ignored in other cases (@status >= 0).
8618  *
8619  * It should be called by the underlying driver once execution of the connection
8620  * request from connect() has been completed. This is similar to
8621  * cfg80211_connect_result(), but with the option of identifying the exact bss
8622  * entry for the connection. Only one of the functions among
8623  * cfg80211_connect_bss(), cfg80211_connect_result(),
8624  * cfg80211_connect_timeout(), and cfg80211_connect_done() should be called.
8625  */
8626 static inline void
8627 cfg80211_connect_bss(struct net_device *dev, const u8 *bssid,
8628 		     struct cfg80211_bss *bss, const u8 *req_ie,
8629 		     size_t req_ie_len, const u8 *resp_ie,
8630 		     size_t resp_ie_len, int status, gfp_t gfp,
8631 		     enum nl80211_timeout_reason timeout_reason)
8632 {
8633 	struct cfg80211_connect_resp_params params;
8634 
8635 	memset(&params, 0, sizeof(params));
8636 	params.status = status;
8637 	params.links[0].bssid = bssid;
8638 	params.links[0].bss = bss;
8639 	params.req_ie = req_ie;
8640 	params.req_ie_len = req_ie_len;
8641 	params.resp_ie = resp_ie;
8642 	params.resp_ie_len = resp_ie_len;
8643 	params.timeout_reason = timeout_reason;
8644 
8645 	cfg80211_connect_done(dev, &params, gfp);
8646 }
8647 
8648 /**
8649  * cfg80211_connect_result - notify cfg80211 of connection result
8650  *
8651  * @dev: network device
8652  * @bssid: the BSSID of the AP
8653  * @req_ie: association request IEs (maybe be %NULL)
8654  * @req_ie_len: association request IEs length
8655  * @resp_ie: association response IEs (may be %NULL)
8656  * @resp_ie_len: assoc response IEs length
8657  * @status: status code, %WLAN_STATUS_SUCCESS for successful connection, use
8658  *	%WLAN_STATUS_UNSPECIFIED_FAILURE if your device cannot give you
8659  *	the real status code for failures.
8660  * @gfp: allocation flags
8661  *
8662  * It should be called by the underlying driver once execution of the connection
8663  * request from connect() has been completed. This is similar to
8664  * cfg80211_connect_bss() which allows the exact bss entry to be specified. Only
8665  * one of the functions among cfg80211_connect_bss(), cfg80211_connect_result(),
8666  * cfg80211_connect_timeout(), and cfg80211_connect_done() should be called.
8667  */
8668 static inline void
8669 cfg80211_connect_result(struct net_device *dev, const u8 *bssid,
8670 			const u8 *req_ie, size_t req_ie_len,
8671 			const u8 *resp_ie, size_t resp_ie_len,
8672 			u16 status, gfp_t gfp)
8673 {
8674 	cfg80211_connect_bss(dev, bssid, NULL, req_ie, req_ie_len, resp_ie,
8675 			     resp_ie_len, status, gfp,
8676 			     NL80211_TIMEOUT_UNSPECIFIED);
8677 }
8678 
8679 /**
8680  * cfg80211_connect_timeout - notify cfg80211 of connection timeout
8681  *
8682  * @dev: network device
8683  * @bssid: the BSSID of the AP
8684  * @req_ie: association request IEs (maybe be %NULL)
8685  * @req_ie_len: association request IEs length
8686  * @gfp: allocation flags
8687  * @timeout_reason: reason for connection timeout.
8688  *
8689  * It should be called by the underlying driver whenever connect() has failed
8690  * in a sequence where no explicit authentication/association rejection was
8691  * received from the AP. This could happen, e.g., due to not being able to send
8692  * out the Authentication or Association Request frame or timing out while
8693  * waiting for the response. Only one of the functions among
8694  * cfg80211_connect_bss(), cfg80211_connect_result(),
8695  * cfg80211_connect_timeout(), and cfg80211_connect_done() should be called.
8696  */
8697 static inline void
8698 cfg80211_connect_timeout(struct net_device *dev, const u8 *bssid,
8699 			 const u8 *req_ie, size_t req_ie_len, gfp_t gfp,
8700 			 enum nl80211_timeout_reason timeout_reason)
8701 {
8702 	cfg80211_connect_bss(dev, bssid, NULL, req_ie, req_ie_len, NULL, 0, -1,
8703 			     gfp, timeout_reason);
8704 }
8705 
8706 /**
8707  * struct cfg80211_roam_info - driver initiated roaming information
8708  *
8709  * @req_ie: association request IEs (maybe be %NULL)
8710  * @req_ie_len: association request IEs length
8711  * @resp_ie: association response IEs (may be %NULL)
8712  * @resp_ie_len: assoc response IEs length
8713  * @fils: FILS related roaming information.
8714  * @valid_links: For MLO roaming, BIT mask of the new valid links is set.
8715  *	Otherwise zero.
8716  * @ap_mld_addr: For MLO roaming, MLD address of the new AP. Otherwise %NULL.
8717  * @links : For MLO roaming, contains new link info for the valid links set in
8718  *	@valid_links. For non-MLO roaming, links[0] contains the new AP info.
8719  * @links.addr: For MLO roaming, MAC address of the STA link. Otherwise %NULL.
8720  * @links.bssid: For MLO roaming, MAC address of the new AP link. For non-MLO
8721  *	roaming, links[0].bssid points to the BSSID of the new AP. May be
8722  *	%NULL if %links.bss is set.
8723  * @links.channel: the channel of the new AP.
8724  * @links.bss: For MLO roaming, entry of new bss to which STA link got
8725  *	roamed. For non-MLO roaming, links[0].bss points to entry of bss to
8726  *	which STA got roamed (may be %NULL if %links.bssid is set)
8727  */
8728 struct cfg80211_roam_info {
8729 	const u8 *req_ie;
8730 	size_t req_ie_len;
8731 	const u8 *resp_ie;
8732 	size_t resp_ie_len;
8733 	struct cfg80211_fils_resp_params fils;
8734 
8735 	const u8 *ap_mld_addr;
8736 	u16 valid_links;
8737 	struct {
8738 		const u8 *addr;
8739 		const u8 *bssid;
8740 		struct ieee80211_channel *channel;
8741 		struct cfg80211_bss *bss;
8742 	} links[IEEE80211_MLD_MAX_NUM_LINKS];
8743 };
8744 
8745 /**
8746  * cfg80211_roamed - notify cfg80211 of roaming
8747  *
8748  * @dev: network device
8749  * @info: information about the new BSS. struct &cfg80211_roam_info.
8750  * @gfp: allocation flags
8751  *
8752  * This function may be called with the driver passing either the BSSID of the
8753  * new AP or passing the bss entry to avoid a race in timeout of the bss entry.
8754  * It should be called by the underlying driver whenever it roamed from one AP
8755  * to another while connected. Drivers which have roaming implemented in
8756  * firmware should pass the bss entry to avoid a race in bss entry timeout where
8757  * the bss entry of the new AP is seen in the driver, but gets timed out by the
8758  * time it is accessed in __cfg80211_roamed() due to delay in scheduling
8759  * rdev->event_work. In case of any failures, the reference is released
8760  * either in cfg80211_roamed() or in __cfg80211_romed(), Otherwise, it will be
8761  * released while disconnecting from the current bss.
8762  */
8763 void cfg80211_roamed(struct net_device *dev, struct cfg80211_roam_info *info,
8764 		     gfp_t gfp);
8765 
8766 /**
8767  * cfg80211_port_authorized - notify cfg80211 of successful security association
8768  *
8769  * @dev: network device
8770  * @peer_addr: BSSID of the AP/P2P GO in case of STA/GC or STA/GC MAC address
8771  *	in case of AP/P2P GO
8772  * @td_bitmap: transition disable policy
8773  * @td_bitmap_len: Length of transition disable policy
8774  * @gfp: allocation flags
8775  *
8776  * This function should be called by a driver that supports 4 way handshake
8777  * offload after a security association was successfully established (i.e.,
8778  * the 4 way handshake was completed successfully). The call to this function
8779  * should be preceded with a call to cfg80211_connect_result(),
8780  * cfg80211_connect_done(), cfg80211_connect_bss() or cfg80211_roamed() to
8781  * indicate the 802.11 association.
8782  * This function can also be called by AP/P2P GO driver that supports
8783  * authentication offload. In this case the peer_mac passed is that of
8784  * associated STA/GC.
8785  */
8786 void cfg80211_port_authorized(struct net_device *dev, const u8 *peer_addr,
8787 			      const u8* td_bitmap, u8 td_bitmap_len, gfp_t gfp);
8788 
8789 /**
8790  * cfg80211_disconnected - notify cfg80211 that connection was dropped
8791  *
8792  * @dev: network device
8793  * @ie: information elements of the deauth/disassoc frame (may be %NULL)
8794  * @ie_len: length of IEs
8795  * @reason: reason code for the disconnection, set it to 0 if unknown
8796  * @locally_generated: disconnection was requested locally
8797  * @gfp: allocation flags
8798  *
8799  * After it calls this function, the driver should enter an idle state
8800  * and not try to connect to any AP any more.
8801  */
8802 void cfg80211_disconnected(struct net_device *dev, u16 reason,
8803 			   const u8 *ie, size_t ie_len,
8804 			   bool locally_generated, gfp_t gfp);
8805 
8806 /**
8807  * cfg80211_ready_on_channel - notification of remain_on_channel start
8808  * @wdev: wireless device
8809  * @cookie: the request cookie
8810  * @chan: The current channel (from remain_on_channel request)
8811  * @duration: Duration in milliseconds that the driver intents to remain on the
8812  *	channel
8813  * @gfp: allocation flags
8814  */
8815 void cfg80211_ready_on_channel(struct wireless_dev *wdev, u64 cookie,
8816 			       struct ieee80211_channel *chan,
8817 			       unsigned int duration, gfp_t gfp);
8818 
8819 /**
8820  * cfg80211_remain_on_channel_expired - remain_on_channel duration expired
8821  * @wdev: wireless device
8822  * @cookie: the request cookie
8823  * @chan: The current channel (from remain_on_channel request)
8824  * @gfp: allocation flags
8825  */
8826 void cfg80211_remain_on_channel_expired(struct wireless_dev *wdev, u64 cookie,
8827 					struct ieee80211_channel *chan,
8828 					gfp_t gfp);
8829 
8830 /**
8831  * cfg80211_tx_mgmt_expired - tx_mgmt duration expired
8832  * @wdev: wireless device
8833  * @cookie: the requested cookie
8834  * @chan: The current channel (from tx_mgmt request)
8835  * @gfp: allocation flags
8836  */
8837 void cfg80211_tx_mgmt_expired(struct wireless_dev *wdev, u64 cookie,
8838 			      struct ieee80211_channel *chan, gfp_t gfp);
8839 
8840 /**
8841  * cfg80211_sinfo_alloc_tid_stats - allocate per-tid statistics.
8842  *
8843  * @sinfo: the station information
8844  * @gfp: allocation flags
8845  *
8846  * Return: 0 on success. Non-zero on error.
8847  */
8848 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp);
8849 
8850 /**
8851  * cfg80211_link_sinfo_alloc_tid_stats - allocate per-tid statistics.
8852  *
8853  * @link_sinfo: the link station information
8854  * @gfp: allocation flags
8855  *
8856  * Return: 0 on success. Non-zero on error.
8857  */
8858 int cfg80211_link_sinfo_alloc_tid_stats(struct link_station_info *link_sinfo,
8859 					gfp_t gfp);
8860 
8861 /**
8862  * cfg80211_sinfo_release_content - release contents of station info
8863  * @sinfo: the station information
8864  *
8865  * Releases any potentially allocated sub-information of the station
8866  * information, but not the struct itself (since it's typically on
8867  * the stack.)
8868  */
8869 static inline void cfg80211_sinfo_release_content(struct station_info *sinfo)
8870 {
8871 	kfree(sinfo->pertid);
8872 
8873 	for (int link_id = 0; link_id < ARRAY_SIZE(sinfo->links); link_id++) {
8874 		if (sinfo->links[link_id]) {
8875 			kfree(sinfo->links[link_id]->pertid);
8876 			kfree(sinfo->links[link_id]);
8877 		}
8878 	}
8879 }
8880 
8881 /**
8882  * cfg80211_new_sta - notify userspace about station
8883  *
8884  * @dev: the netdev
8885  * @mac_addr: the station's address
8886  * @sinfo: the station information
8887  * @gfp: allocation flags
8888  */
8889 void cfg80211_new_sta(struct net_device *dev, const u8 *mac_addr,
8890 		      struct station_info *sinfo, gfp_t gfp);
8891 
8892 /**
8893  * cfg80211_del_sta_sinfo - notify userspace about deletion of a station
8894  * @dev: the netdev
8895  * @mac_addr: the station's address. For MLD station, MLD address is used.
8896  * @sinfo: the station information/statistics
8897  * @gfp: allocation flags
8898  */
8899 void cfg80211_del_sta_sinfo(struct net_device *dev, const u8 *mac_addr,
8900 			    struct station_info *sinfo, gfp_t gfp);
8901 
8902 /**
8903  * cfg80211_del_sta - notify userspace about deletion of a station
8904  *
8905  * @dev: the netdev
8906  * @mac_addr: the station's address. For MLD station, MLD address is used.
8907  * @gfp: allocation flags
8908  */
8909 static inline void cfg80211_del_sta(struct net_device *dev,
8910 				    const u8 *mac_addr, gfp_t gfp)
8911 {
8912 	cfg80211_del_sta_sinfo(dev, mac_addr, NULL, gfp);
8913 }
8914 
8915 /**
8916  * cfg80211_conn_failed - connection request failed notification
8917  *
8918  * @dev: the netdev
8919  * @mac_addr: the station's address
8920  * @reason: the reason for connection failure
8921  * @gfp: allocation flags
8922  *
8923  * Whenever a station tries to connect to an AP and if the station
8924  * could not connect to the AP as the AP has rejected the connection
8925  * for some reasons, this function is called.
8926  *
8927  * The reason for connection failure can be any of the value from
8928  * nl80211_connect_failed_reason enum
8929  */
8930 void cfg80211_conn_failed(struct net_device *dev, const u8 *mac_addr,
8931 			  enum nl80211_connect_failed_reason reason,
8932 			  gfp_t gfp);
8933 
8934 /**
8935  * struct cfg80211_rx_info - received management frame info
8936  *
8937  * @freq: Frequency on which the frame was received in kHz
8938  * @sig_dbm: signal strength in dBm, or 0 if unknown
8939  * @have_link_id: indicates the frame was received on a link of
8940  *	an MLD, i.e. the @link_id field is valid
8941  * @link_id: the ID of the link the frame was received	on
8942  * @buf: Management frame (header + body)
8943  * @len: length of the frame data
8944  * @flags: flags, as defined in &enum nl80211_rxmgmt_flags
8945  * @rx_tstamp: Hardware timestamp of frame RX in nanoseconds
8946  * @ack_tstamp: Hardware timestamp of ack TX in nanoseconds
8947  */
8948 struct cfg80211_rx_info {
8949 	int freq;
8950 	int sig_dbm;
8951 	bool have_link_id;
8952 	u8 link_id;
8953 	const u8 *buf;
8954 	size_t len;
8955 	u32 flags;
8956 	u64 rx_tstamp;
8957 	u64 ack_tstamp;
8958 };
8959 
8960 /**
8961  * cfg80211_rx_mgmt_ext - management frame notification with extended info
8962  * @wdev: wireless device receiving the frame
8963  * @info: RX info as defined in struct cfg80211_rx_info
8964  *
8965  * This function is called whenever an Action frame is received for a station
8966  * mode interface, but is not processed in kernel.
8967  *
8968  * Return: %true if a user space application has registered for this frame.
8969  * For action frames, that makes it responsible for rejecting unrecognized
8970  * action frames; %false otherwise, in which case for action frames the
8971  * driver is responsible for rejecting the frame.
8972  */
8973 bool cfg80211_rx_mgmt_ext(struct wireless_dev *wdev,
8974 			  struct cfg80211_rx_info *info);
8975 
8976 /**
8977  * cfg80211_rx_mgmt_khz - notification of received, unprocessed management frame
8978  * @wdev: wireless device receiving the frame
8979  * @freq: Frequency on which the frame was received in KHz
8980  * @sig_dbm: signal strength in dBm, or 0 if unknown
8981  * @buf: Management frame (header + body)
8982  * @len: length of the frame data
8983  * @flags: flags, as defined in enum nl80211_rxmgmt_flags
8984  *
8985  * This function is called whenever an Action frame is received for a station
8986  * mode interface, but is not processed in kernel.
8987  *
8988  * Return: %true if a user space application has registered for this frame.
8989  * For action frames, that makes it responsible for rejecting unrecognized
8990  * action frames; %false otherwise, in which case for action frames the
8991  * driver is responsible for rejecting the frame.
8992  */
8993 static inline bool cfg80211_rx_mgmt_khz(struct wireless_dev *wdev, int freq,
8994 					int sig_dbm, const u8 *buf, size_t len,
8995 					u32 flags)
8996 {
8997 	struct cfg80211_rx_info info = {
8998 		.freq = freq,
8999 		.sig_dbm = sig_dbm,
9000 		.buf = buf,
9001 		.len = len,
9002 		.flags = flags
9003 	};
9004 
9005 	return cfg80211_rx_mgmt_ext(wdev, &info);
9006 }
9007 
9008 /**
9009  * cfg80211_rx_mgmt - notification of received, unprocessed management frame
9010  * @wdev: wireless device receiving the frame
9011  * @freq: Frequency on which the frame was received in MHz
9012  * @sig_dbm: signal strength in dBm, or 0 if unknown
9013  * @buf: Management frame (header + body)
9014  * @len: length of the frame data
9015  * @flags: flags, as defined in enum nl80211_rxmgmt_flags
9016  *
9017  * This function is called whenever an Action frame is received for a station
9018  * mode interface, but is not processed in kernel.
9019  *
9020  * Return: %true if a user space application has registered for this frame.
9021  * For action frames, that makes it responsible for rejecting unrecognized
9022  * action frames; %false otherwise, in which case for action frames the
9023  * driver is responsible for rejecting the frame.
9024  */
9025 static inline bool cfg80211_rx_mgmt(struct wireless_dev *wdev, int freq,
9026 				    int sig_dbm, const u8 *buf, size_t len,
9027 				    u32 flags)
9028 {
9029 	struct cfg80211_rx_info info = {
9030 		.freq = MHZ_TO_KHZ(freq),
9031 		.sig_dbm = sig_dbm,
9032 		.buf = buf,
9033 		.len = len,
9034 		.flags = flags
9035 	};
9036 
9037 	return cfg80211_rx_mgmt_ext(wdev, &info);
9038 }
9039 
9040 /**
9041  * struct cfg80211_tx_status - TX status for management frame information
9042  *
9043  * @cookie: Cookie returned by cfg80211_ops::mgmt_tx()
9044  * @tx_tstamp: hardware TX timestamp in nanoseconds
9045  * @ack_tstamp: hardware ack RX timestamp in nanoseconds
9046  * @buf: Management frame (header + body)
9047  * @len: length of the frame data
9048  * @ack: Whether frame was acknowledged
9049  */
9050 struct cfg80211_tx_status {
9051 	u64 cookie;
9052 	u64 tx_tstamp;
9053 	u64 ack_tstamp;
9054 	const u8 *buf;
9055 	size_t len;
9056 	bool ack;
9057 };
9058 
9059 /**
9060  * cfg80211_mgmt_tx_status_ext - TX status notification with extended info
9061  * @wdev: wireless device receiving the frame
9062  * @status: TX status data
9063  * @gfp: context flags
9064  *
9065  * This function is called whenever a management frame was requested to be
9066  * transmitted with cfg80211_ops::mgmt_tx() to report the TX status of the
9067  * transmission attempt with extended info.
9068  */
9069 void cfg80211_mgmt_tx_status_ext(struct wireless_dev *wdev,
9070 				 struct cfg80211_tx_status *status, gfp_t gfp);
9071 
9072 /**
9073  * cfg80211_mgmt_tx_status - notification of TX status for management frame
9074  * @wdev: wireless device receiving the frame
9075  * @cookie: Cookie returned by cfg80211_ops::mgmt_tx()
9076  * @buf: Management frame (header + body)
9077  * @len: length of the frame data
9078  * @ack: Whether frame was acknowledged
9079  * @gfp: context flags
9080  *
9081  * This function is called whenever a management frame was requested to be
9082  * transmitted with cfg80211_ops::mgmt_tx() to report the TX status of the
9083  * transmission attempt.
9084  */
9085 static inline void cfg80211_mgmt_tx_status(struct wireless_dev *wdev,
9086 					   u64 cookie, const u8 *buf,
9087 					   size_t len, bool ack, gfp_t gfp)
9088 {
9089 	struct cfg80211_tx_status status = {
9090 		.cookie = cookie,
9091 		.buf = buf,
9092 		.len = len,
9093 		.ack = ack
9094 	};
9095 
9096 	cfg80211_mgmt_tx_status_ext(wdev, &status, gfp);
9097 }
9098 
9099 /**
9100  * cfg80211_control_port_tx_status - notification of TX status for control
9101  *                                   port frames
9102  * @wdev: wireless device receiving the frame
9103  * @cookie: Cookie returned by cfg80211_ops::tx_control_port()
9104  * @buf: Data frame (header + body)
9105  * @len: length of the frame data
9106  * @ack: Whether frame was acknowledged
9107  * @gfp: context flags
9108  *
9109  * This function is called whenever a control port frame was requested to be
9110  * transmitted with cfg80211_ops::tx_control_port() to report the TX status of
9111  * the transmission attempt.
9112  */
9113 void cfg80211_control_port_tx_status(struct wireless_dev *wdev, u64 cookie,
9114 				     const u8 *buf, size_t len, bool ack,
9115 				     gfp_t gfp);
9116 
9117 /**
9118  * cfg80211_rx_control_port - notification about a received control port frame
9119  * @dev: The device the frame matched to
9120  * @skb: The skbuf with the control port frame.  It is assumed that the skbuf
9121  *	is 802.3 formatted (with 802.3 header).  The skb can be non-linear.
9122  *	This function does not take ownership of the skb, so the caller is
9123  *	responsible for any cleanup.  The caller must also ensure that
9124  *	skb->protocol is set appropriately.
9125  * @unencrypted: Whether the frame was received unencrypted
9126  * @link_id: the link the frame was received on, -1 if not applicable or unknown
9127  *
9128  * This function is used to inform userspace about a received control port
9129  * frame.  It should only be used if userspace indicated it wants to receive
9130  * control port frames over nl80211.
9131  *
9132  * The frame is the data portion of the 802.3 or 802.11 data frame with all
9133  * network layer headers removed (e.g. the raw EAPoL frame).
9134  *
9135  * Return: %true if the frame was passed to userspace
9136  */
9137 bool cfg80211_rx_control_port(struct net_device *dev, struct sk_buff *skb,
9138 			      bool unencrypted, int link_id);
9139 
9140 /**
9141  * cfg80211_cqm_rssi_notify - connection quality monitoring rssi event
9142  * @dev: network device
9143  * @rssi_event: the triggered RSSI event
9144  * @rssi_level: new RSSI level value or 0 if not available
9145  * @gfp: context flags
9146  *
9147  * This function is called when a configured connection quality monitoring
9148  * rssi threshold reached event occurs.
9149  */
9150 void cfg80211_cqm_rssi_notify(struct net_device *dev,
9151 			      enum nl80211_cqm_rssi_threshold_event rssi_event,
9152 			      s32 rssi_level, gfp_t gfp);
9153 
9154 /**
9155  * cfg80211_cqm_pktloss_notify - notify userspace about packetloss to peer
9156  * @dev: network device
9157  * @peer: peer's MAC address
9158  * @num_packets: how many packets were lost -- should be a fixed threshold
9159  *	but probably no less than maybe 50, or maybe a throughput dependent
9160  *	threshold (to account for temporary interference)
9161  * @gfp: context flags
9162  */
9163 void cfg80211_cqm_pktloss_notify(struct net_device *dev,
9164 				 const u8 *peer, u32 num_packets, gfp_t gfp);
9165 
9166 /**
9167  * cfg80211_cqm_txe_notify - TX error rate event
9168  * @dev: network device
9169  * @peer: peer's MAC address
9170  * @num_packets: how many packets were lost
9171  * @rate: % of packets which failed transmission
9172  * @intvl: interval (in s) over which the TX failure threshold was breached.
9173  * @gfp: context flags
9174  *
9175  * Notify userspace when configured % TX failures over number of packets in a
9176  * given interval is exceeded.
9177  */
9178 void cfg80211_cqm_txe_notify(struct net_device *dev, const u8 *peer,
9179 			     u32 num_packets, u32 rate, u32 intvl, gfp_t gfp);
9180 
9181 /**
9182  * cfg80211_cqm_beacon_loss_notify - beacon loss event
9183  * @dev: network device
9184  * @gfp: context flags
9185  *
9186  * Notify userspace about beacon loss from the connected AP.
9187  */
9188 void cfg80211_cqm_beacon_loss_notify(struct net_device *dev, gfp_t gfp);
9189 
9190 /**
9191  * __cfg80211_radar_event - radar detection event
9192  * @wiphy: the wiphy
9193  * @chandef: chandef for the current channel
9194  * @offchan: the radar has been detected on the offchannel chain
9195  * @gfp: context flags
9196  *
9197  * This function is called when a radar is detected on the current chanenl.
9198  */
9199 void __cfg80211_radar_event(struct wiphy *wiphy,
9200 			    struct cfg80211_chan_def *chandef,
9201 			    bool offchan, gfp_t gfp);
9202 
9203 static inline void
9204 cfg80211_radar_event(struct wiphy *wiphy,
9205 		     struct cfg80211_chan_def *chandef,
9206 		     gfp_t gfp)
9207 {
9208 	__cfg80211_radar_event(wiphy, chandef, false, gfp);
9209 }
9210 
9211 static inline void
9212 cfg80211_background_radar_event(struct wiphy *wiphy,
9213 				struct cfg80211_chan_def *chandef,
9214 				gfp_t gfp)
9215 {
9216 	__cfg80211_radar_event(wiphy, chandef, true, gfp);
9217 }
9218 
9219 /**
9220  * cfg80211_sta_opmode_change_notify - STA's ht/vht operation mode change event
9221  * @dev: network device
9222  * @mac: MAC address of a station which opmode got modified
9223  * @sta_opmode: station's current opmode value
9224  * @gfp: context flags
9225  *
9226  * Driver should call this function when station's opmode modified via action
9227  * frame.
9228  */
9229 void cfg80211_sta_opmode_change_notify(struct net_device *dev, const u8 *mac,
9230 				       struct sta_opmode_info *sta_opmode,
9231 				       gfp_t gfp);
9232 
9233 /**
9234  * cfg80211_cac_event - Channel availability check (CAC) event
9235  * @netdev: network device
9236  * @chandef: chandef for the current channel
9237  * @event: type of event
9238  * @gfp: context flags
9239  * @link_id: valid link_id for MLO operation or 0 otherwise.
9240  *
9241  * This function is called when a Channel availability check (CAC) is finished
9242  * or aborted. This must be called to notify the completion of a CAC process,
9243  * also by full-MAC drivers.
9244  */
9245 void cfg80211_cac_event(struct net_device *netdev,
9246 			const struct cfg80211_chan_def *chandef,
9247 			enum nl80211_radar_event event, gfp_t gfp,
9248 			unsigned int link_id);
9249 
9250 /**
9251  * cfg80211_background_cac_abort - Channel Availability Check offchan abort event
9252  * @wiphy: the wiphy
9253  *
9254  * This function is called by the driver when a Channel Availability Check
9255  * (CAC) is aborted by a offchannel dedicated chain.
9256  */
9257 void cfg80211_background_cac_abort(struct wiphy *wiphy);
9258 
9259 /**
9260  * cfg80211_gtk_rekey_notify - notify userspace about driver rekeying
9261  * @dev: network device
9262  * @bssid: BSSID of AP (to avoid races)
9263  * @replay_ctr: new replay counter
9264  * @gfp: allocation flags
9265  */
9266 void cfg80211_gtk_rekey_notify(struct net_device *dev, const u8 *bssid,
9267 			       const u8 *replay_ctr, gfp_t gfp);
9268 
9269 /**
9270  * cfg80211_pmksa_candidate_notify - notify about PMKSA caching candidate
9271  * @dev: network device
9272  * @index: candidate index (the smaller the index, the higher the priority)
9273  * @bssid: BSSID of AP
9274  * @preauth: Whether AP advertises support for RSN pre-authentication
9275  * @gfp: allocation flags
9276  */
9277 void cfg80211_pmksa_candidate_notify(struct net_device *dev, int index,
9278 				     const u8 *bssid, bool preauth, gfp_t gfp);
9279 
9280 /**
9281  * cfg80211_rx_spurious_frame - inform userspace about a spurious frame
9282  * @dev: The device the frame matched to
9283  * @link_id: the link the frame was received on, -1 if not applicable or unknown
9284  * @addr: the transmitter address
9285  * @gfp: context flags
9286  *
9287  * This function is used in AP mode (only!) to inform userspace that
9288  * a spurious class 3 frame was received, to be able to deauth the
9289  * sender.
9290  * Return: %true if the frame was passed to userspace (or this failed
9291  * for a reason other than not having a subscription.)
9292  */
9293 bool cfg80211_rx_spurious_frame(struct net_device *dev, const u8 *addr,
9294 				int link_id, gfp_t gfp);
9295 
9296 /**
9297  * cfg80211_rx_unexpected_4addr_frame - inform about unexpected WDS frame
9298  * @dev: The device the frame matched to
9299  * @addr: the transmitter address
9300  * @link_id: the link the frame was received on, -1 if not applicable or unknown
9301  * @gfp: context flags
9302  *
9303  * This function is used in AP mode (only!) to inform userspace that
9304  * an associated station sent a 4addr frame but that wasn't expected.
9305  * It is allowed and desirable to send this event only once for each
9306  * station to avoid event flooding.
9307  * Return: %true if the frame was passed to userspace (or this failed
9308  * for a reason other than not having a subscription.)
9309  */
9310 bool cfg80211_rx_unexpected_4addr_frame(struct net_device *dev, const u8 *addr,
9311 					int link_id, gfp_t gfp);
9312 
9313 /**
9314  * cfg80211_probe_status - notify userspace about probe status
9315  * @dev: the device the probe was sent on
9316  * @addr: the address of the peer
9317  * @cookie: the cookie filled in @probe_client previously
9318  * @acked: indicates whether probe was acked or not
9319  * @ack_signal: signal strength (in dBm) of the ACK frame.
9320  * @is_valid_ack_signal: indicates the ack_signal is valid or not.
9321  * @gfp: allocation flags
9322  */
9323 void cfg80211_probe_status(struct net_device *dev, const u8 *addr,
9324 			   u64 cookie, bool acked, s32 ack_signal,
9325 			   bool is_valid_ack_signal, gfp_t gfp);
9326 
9327 /**
9328  * cfg80211_report_obss_beacon_khz - report beacon from other APs
9329  * @wiphy: The wiphy that received the beacon
9330  * @frame: the frame
9331  * @len: length of the frame
9332  * @freq: frequency the frame was received on in KHz
9333  * @sig_dbm: signal strength in dBm, or 0 if unknown
9334  *
9335  * Use this function to report to userspace when a beacon was
9336  * received. It is not useful to call this when there is no
9337  * netdev that is in AP/GO mode.
9338  */
9339 void cfg80211_report_obss_beacon_khz(struct wiphy *wiphy, const u8 *frame,
9340 				     size_t len, int freq, int sig_dbm);
9341 
9342 /**
9343  * cfg80211_report_obss_beacon - report beacon from other APs
9344  * @wiphy: The wiphy that received the beacon
9345  * @frame: the frame
9346  * @len: length of the frame
9347  * @freq: frequency the frame was received on
9348  * @sig_dbm: signal strength in dBm, or 0 if unknown
9349  *
9350  * Use this function to report to userspace when a beacon was
9351  * received. It is not useful to call this when there is no
9352  * netdev that is in AP/GO mode.
9353  */
9354 static inline void cfg80211_report_obss_beacon(struct wiphy *wiphy,
9355 					       const u8 *frame, size_t len,
9356 					       int freq, int sig_dbm)
9357 {
9358 	cfg80211_report_obss_beacon_khz(wiphy, frame, len, MHZ_TO_KHZ(freq),
9359 					sig_dbm);
9360 }
9361 
9362 /**
9363  * struct cfg80211_beaconing_check_config - beacon check configuration
9364  * @iftype: the interface type to check for
9365  * @relax: allow IR-relaxation conditions to apply (e.g. another
9366  *	interface connected already on the same channel)
9367  *	NOTE: If this is set, wiphy mutex must be held.
9368  * @reg_power: &enum ieee80211_ap_reg_power value indicating the
9369  *	advertised/used 6 GHz regulatory power setting
9370  */
9371 struct cfg80211_beaconing_check_config {
9372 	enum nl80211_iftype iftype;
9373 	enum ieee80211_ap_reg_power reg_power;
9374 	bool relax;
9375 };
9376 
9377 /**
9378  * cfg80211_reg_check_beaconing - check if beaconing is allowed
9379  * @wiphy: the wiphy
9380  * @chandef: the channel definition
9381  * @cfg: additional parameters for the checking
9382  *
9383  * Return: %true if there is no secondary channel or the secondary channel(s)
9384  * can be used for beaconing (i.e. is not a radar channel etc.)
9385  */
9386 bool cfg80211_reg_check_beaconing(struct wiphy *wiphy,
9387 				  struct cfg80211_chan_def *chandef,
9388 				  struct cfg80211_beaconing_check_config *cfg);
9389 
9390 /**
9391  * cfg80211_reg_can_beacon - check if beaconing is allowed
9392  * @wiphy: the wiphy
9393  * @chandef: the channel definition
9394  * @iftype: interface type
9395  *
9396  * Return: %true if there is no secondary channel or the secondary channel(s)
9397  * can be used for beaconing (i.e. is not a radar channel etc.)
9398  */
9399 static inline bool
9400 cfg80211_reg_can_beacon(struct wiphy *wiphy,
9401 			struct cfg80211_chan_def *chandef,
9402 			enum nl80211_iftype iftype)
9403 {
9404 	struct cfg80211_beaconing_check_config config = {
9405 		.iftype = iftype,
9406 	};
9407 
9408 	return cfg80211_reg_check_beaconing(wiphy, chandef, &config);
9409 }
9410 
9411 /**
9412  * cfg80211_reg_can_beacon_relax - check if beaconing is allowed with relaxation
9413  * @wiphy: the wiphy
9414  * @chandef: the channel definition
9415  * @iftype: interface type
9416  *
9417  * Return: %true if there is no secondary channel or the secondary channel(s)
9418  * can be used for beaconing (i.e. is not a radar channel etc.). This version
9419  * also checks if IR-relaxation conditions apply, to allow beaconing under
9420  * more permissive conditions.
9421  *
9422  * Context: Requires the wiphy mutex to be held.
9423  */
9424 static inline bool
9425 cfg80211_reg_can_beacon_relax(struct wiphy *wiphy,
9426 			      struct cfg80211_chan_def *chandef,
9427 			      enum nl80211_iftype iftype)
9428 {
9429 	struct cfg80211_beaconing_check_config config = {
9430 		.iftype = iftype,
9431 		.relax = true,
9432 	};
9433 
9434 	return cfg80211_reg_check_beaconing(wiphy, chandef, &config);
9435 }
9436 
9437 /**
9438  * cfg80211_ch_switch_notify - update wdev channel and notify userspace
9439  * @dev: the device which switched channels
9440  * @chandef: the new channel definition
9441  * @link_id: the link ID for MLO, must be 0 for non-MLO
9442  *
9443  * Caller must hold wiphy mutex, therefore must only be called from sleepable
9444  * driver context!
9445  */
9446 void cfg80211_ch_switch_notify(struct net_device *dev,
9447 			       struct cfg80211_chan_def *chandef,
9448 			       unsigned int link_id);
9449 
9450 /**
9451  * cfg80211_ch_switch_started_notify - notify channel switch start
9452  * @dev: the device on which the channel switch started
9453  * @chandef: the future channel definition
9454  * @link_id: the link ID for MLO, must be 0 for non-MLO
9455  * @count: the number of TBTTs until the channel switch happens
9456  * @quiet: whether or not immediate quiet was requested by the AP
9457  *
9458  * Inform the userspace about the channel switch that has just
9459  * started, so that it can take appropriate actions (eg. starting
9460  * channel switch on other vifs), if necessary.
9461  */
9462 void cfg80211_ch_switch_started_notify(struct net_device *dev,
9463 				       struct cfg80211_chan_def *chandef,
9464 				       unsigned int link_id, u8 count,
9465 				       bool quiet);
9466 
9467 /**
9468  * ieee80211_operating_class_to_band - convert operating class to band
9469  *
9470  * @operating_class: the operating class to convert
9471  * @band: band pointer to fill
9472  *
9473  * Return: %true if the conversion was successful, %false otherwise.
9474  */
9475 bool ieee80211_operating_class_to_band(u8 operating_class,
9476 				       enum nl80211_band *band);
9477 
9478 /**
9479  * ieee80211_operating_class_to_chandef - convert operating class to chandef
9480  *
9481  * @operating_class: the operating class to convert
9482  * @chan: the ieee80211_channel to convert
9483  * @chandef: a pointer to the resulting chandef
9484  *
9485  * Return: %true if the conversion was successful, %false otherwise.
9486  */
9487 bool ieee80211_operating_class_to_chandef(u8 operating_class,
9488 					  struct ieee80211_channel *chan,
9489 					  struct cfg80211_chan_def *chandef);
9490 
9491 /**
9492  * ieee80211_chandef_to_operating_class - convert chandef to operation class
9493  *
9494  * @chandef: the chandef to convert
9495  * @op_class: a pointer to the resulting operating class
9496  *
9497  * Return: %true if the conversion was successful, %false otherwise.
9498  */
9499 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
9500 					  u8 *op_class);
9501 
9502 /**
9503  * ieee80211_chandef_to_khz - convert chandef to frequency in KHz
9504  *
9505  * @chandef: the chandef to convert
9506  *
9507  * Return: the center frequency of chandef (1st segment) in KHz.
9508  */
9509 static inline u32
9510 ieee80211_chandef_to_khz(const struct cfg80211_chan_def *chandef)
9511 {
9512 	return MHZ_TO_KHZ(chandef->center_freq1) + chandef->freq1_offset;
9513 }
9514 
9515 /**
9516  * cfg80211_tdls_oper_request - request userspace to perform TDLS operation
9517  * @dev: the device on which the operation is requested
9518  * @peer: the MAC address of the peer device
9519  * @oper: the requested TDLS operation (NL80211_TDLS_SETUP or
9520  *	NL80211_TDLS_TEARDOWN)
9521  * @reason_code: the reason code for teardown request
9522  * @gfp: allocation flags
9523  *
9524  * This function is used to request userspace to perform TDLS operation that
9525  * requires knowledge of keys, i.e., link setup or teardown when the AP
9526  * connection uses encryption. This is optional mechanism for the driver to use
9527  * if it can automatically determine when a TDLS link could be useful (e.g.,
9528  * based on traffic and signal strength for a peer).
9529  */
9530 void cfg80211_tdls_oper_request(struct net_device *dev, const u8 *peer,
9531 				enum nl80211_tdls_operation oper,
9532 				u16 reason_code, gfp_t gfp);
9533 
9534 /**
9535  * cfg80211_calculate_bitrate - calculate actual bitrate (in 100Kbps units)
9536  * @rate: given rate_info to calculate bitrate from
9537  *
9538  * Return: calculated bitrate
9539  */
9540 u32 cfg80211_calculate_bitrate(struct rate_info *rate);
9541 
9542 /**
9543  * cfg80211_unregister_wdev - remove the given wdev
9544  * @wdev: struct wireless_dev to remove
9545  *
9546  * This function removes the device so it can no longer be used. It is necessary
9547  * to call this function even when cfg80211 requests the removal of the device
9548  * by calling the del_virtual_intf() callback. The function must also be called
9549  * when the driver wishes to unregister the wdev, e.g. when the hardware device
9550  * is unbound from the driver.
9551  *
9552  * Context: Requires the RTNL and wiphy mutex to be held.
9553  */
9554 void cfg80211_unregister_wdev(struct wireless_dev *wdev);
9555 
9556 /**
9557  * cfg80211_register_netdevice - register the given netdev
9558  * @dev: the netdev to register
9559  *
9560  * Note: In contexts coming from cfg80211 callbacks, you must call this rather
9561  * than register_netdevice(), unregister_netdev() is impossible as the RTNL is
9562  * held. Otherwise, both register_netdevice() and register_netdev() are usable
9563  * instead as well.
9564  *
9565  * Context: Requires the RTNL and wiphy mutex to be held.
9566  *
9567  * Return: 0 on success. Non-zero on error.
9568  */
9569 int cfg80211_register_netdevice(struct net_device *dev);
9570 
9571 /**
9572  * cfg80211_unregister_netdevice - unregister the given netdev
9573  * @dev: the netdev to register
9574  *
9575  * Note: In contexts coming from cfg80211 callbacks, you must call this rather
9576  * than unregister_netdevice(), unregister_netdev() is impossible as the RTNL
9577  * is held. Otherwise, both unregister_netdevice() and unregister_netdev() are
9578  * usable instead as well.
9579  *
9580  * Context: Requires the RTNL and wiphy mutex to be held.
9581  */
9582 static inline void cfg80211_unregister_netdevice(struct net_device *dev)
9583 {
9584 #if IS_ENABLED(CONFIG_CFG80211)
9585 	cfg80211_unregister_wdev(dev->ieee80211_ptr);
9586 #endif
9587 }
9588 
9589 /**
9590  * struct cfg80211_ft_event_params - FT Information Elements
9591  * @ies: FT IEs
9592  * @ies_len: length of the FT IE in bytes
9593  * @target_ap: target AP's MAC address
9594  * @ric_ies: RIC IE
9595  * @ric_ies_len: length of the RIC IE in bytes
9596  */
9597 struct cfg80211_ft_event_params {
9598 	const u8 *ies;
9599 	size_t ies_len;
9600 	const u8 *target_ap;
9601 	const u8 *ric_ies;
9602 	size_t ric_ies_len;
9603 };
9604 
9605 /**
9606  * cfg80211_ft_event - notify userspace about FT IE and RIC IE
9607  * @netdev: network device
9608  * @ft_event: IE information
9609  */
9610 void cfg80211_ft_event(struct net_device *netdev,
9611 		       struct cfg80211_ft_event_params *ft_event);
9612 
9613 /**
9614  * cfg80211_get_p2p_attr - find and copy a P2P attribute from IE buffer
9615  * @ies: the input IE buffer
9616  * @len: the input length
9617  * @attr: the attribute ID to find
9618  * @buf: output buffer, can be %NULL if the data isn't needed, e.g.
9619  *	if the function is only called to get the needed buffer size
9620  * @bufsize: size of the output buffer
9621  *
9622  * The function finds a given P2P attribute in the (vendor) IEs and
9623  * copies its contents to the given buffer.
9624  *
9625  * Return: A negative error code (-%EILSEQ or -%ENOENT) if the data is
9626  * malformed or the attribute can't be found (respectively), or the
9627  * length of the found attribute (which can be zero).
9628  */
9629 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
9630 			  enum ieee80211_p2p_attr_id attr,
9631 			  u8 *buf, unsigned int bufsize);
9632 
9633 /**
9634  * ieee80211_ie_split_ric - split an IE buffer according to ordering (with RIC)
9635  * @ies: the IE buffer
9636  * @ielen: the length of the IE buffer
9637  * @ids: an array with element IDs that are allowed before
9638  *	the split. A WLAN_EID_EXTENSION value means that the next
9639  *	EID in the list is a sub-element of the EXTENSION IE.
9640  * @n_ids: the size of the element ID array
9641  * @after_ric: array IE types that come after the RIC element
9642  * @n_after_ric: size of the @after_ric array
9643  * @offset: offset where to start splitting in the buffer
9644  *
9645  * This function splits an IE buffer by updating the @offset
9646  * variable to point to the location where the buffer should be
9647  * split.
9648  *
9649  * It assumes that the given IE buffer is well-formed, this
9650  * has to be guaranteed by the caller!
9651  *
9652  * It also assumes that the IEs in the buffer are ordered
9653  * correctly, if not the result of using this function will not
9654  * be ordered correctly either, i.e. it does no reordering.
9655  *
9656  * Return: The offset where the next part of the buffer starts, which
9657  * may be @ielen if the entire (remainder) of the buffer should be
9658  * used.
9659  */
9660 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
9661 			      const u8 *ids, int n_ids,
9662 			      const u8 *after_ric, int n_after_ric,
9663 			      size_t offset);
9664 
9665 /**
9666  * ieee80211_ie_split - split an IE buffer according to ordering
9667  * @ies: the IE buffer
9668  * @ielen: the length of the IE buffer
9669  * @ids: an array with element IDs that are allowed before
9670  *	the split. A WLAN_EID_EXTENSION value means that the next
9671  *	EID in the list is a sub-element of the EXTENSION IE.
9672  * @n_ids: the size of the element ID array
9673  * @offset: offset where to start splitting in the buffer
9674  *
9675  * This function splits an IE buffer by updating the @offset
9676  * variable to point to the location where the buffer should be
9677  * split.
9678  *
9679  * It assumes that the given IE buffer is well-formed, this
9680  * has to be guaranteed by the caller!
9681  *
9682  * It also assumes that the IEs in the buffer are ordered
9683  * correctly, if not the result of using this function will not
9684  * be ordered correctly either, i.e. it does no reordering.
9685  *
9686  * Return: The offset where the next part of the buffer starts, which
9687  * may be @ielen if the entire (remainder) of the buffer should be
9688  * used.
9689  */
9690 static inline size_t ieee80211_ie_split(const u8 *ies, size_t ielen,
9691 					const u8 *ids, int n_ids, size_t offset)
9692 {
9693 	return ieee80211_ie_split_ric(ies, ielen, ids, n_ids, NULL, 0, offset);
9694 }
9695 
9696 /**
9697  * ieee80211_fragment_element - fragment the last element in skb
9698  * @skb: The skbuf that the element was added to
9699  * @len_pos: Pointer to length of the element to fragment
9700  * @frag_id: The element ID to use for fragments
9701  *
9702  * This function fragments all data after @len_pos, adding fragmentation
9703  * elements with the given ID as appropriate. The SKB will grow in size
9704  * accordingly.
9705  */
9706 void ieee80211_fragment_element(struct sk_buff *skb, u8 *len_pos, u8 frag_id);
9707 
9708 /**
9709  * cfg80211_report_wowlan_wakeup - report wakeup from WoWLAN
9710  * @wdev: the wireless device reporting the wakeup
9711  * @wakeup: the wakeup report
9712  * @gfp: allocation flags
9713  *
9714  * This function reports that the given device woke up. If it
9715  * caused the wakeup, report the reason(s), otherwise you may
9716  * pass %NULL as the @wakeup parameter to advertise that something
9717  * else caused the wakeup.
9718  */
9719 void cfg80211_report_wowlan_wakeup(struct wireless_dev *wdev,
9720 				   struct cfg80211_wowlan_wakeup *wakeup,
9721 				   gfp_t gfp);
9722 
9723 /**
9724  * cfg80211_crit_proto_stopped() - indicate critical protocol stopped by driver.
9725  *
9726  * @wdev: the wireless device for which critical protocol is stopped.
9727  * @gfp: allocation flags
9728  *
9729  * This function can be called by the driver to indicate it has reverted
9730  * operation back to normal. One reason could be that the duration given
9731  * by .crit_proto_start() has expired.
9732  */
9733 void cfg80211_crit_proto_stopped(struct wireless_dev *wdev, gfp_t gfp);
9734 
9735 /**
9736  * ieee80211_get_num_supported_channels - get number of channels device has
9737  * @wiphy: the wiphy
9738  *
9739  * Return: the number of channels supported by the device.
9740  */
9741 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy);
9742 
9743 /**
9744  * cfg80211_check_combinations - check interface combinations
9745  *
9746  * @wiphy: the wiphy
9747  * @params: the interface combinations parameter
9748  *
9749  * This function can be called by the driver to check whether a
9750  * combination of interfaces and their types are allowed according to
9751  * the interface combinations.
9752  *
9753  * Return: 0 if combinations are allowed. Non-zero on error.
9754  */
9755 int cfg80211_check_combinations(struct wiphy *wiphy,
9756 				struct iface_combination_params *params);
9757 
9758 /**
9759  * cfg80211_iter_combinations - iterate over matching combinations
9760  *
9761  * @wiphy: the wiphy
9762  * @params: the interface combinations parameter
9763  * @iter: function to call for each matching combination
9764  * @data: pointer to pass to iter function
9765  *
9766  * This function can be called by the driver to check what possible
9767  * combinations it fits in at a given moment, e.g. for channel switching
9768  * purposes.
9769  *
9770  * Return: 0 on success. Non-zero on error.
9771  */
9772 int cfg80211_iter_combinations(struct wiphy *wiphy,
9773 			       struct iface_combination_params *params,
9774 			       void (*iter)(const struct ieee80211_iface_combination *c,
9775 					    void *data),
9776 			       void *data);
9777 /**
9778  * cfg80211_get_radio_idx_by_chan - get the radio index by the channel
9779  *
9780  * @wiphy: the wiphy
9781  * @chan: channel for which the supported radio index is required
9782  *
9783  * Return: radio index on success or -EINVAL otherwise
9784  */
9785 int cfg80211_get_radio_idx_by_chan(struct wiphy *wiphy,
9786 				   const struct ieee80211_channel *chan);
9787 
9788 
9789 /**
9790  * cfg80211_stop_iface - trigger interface disconnection
9791  *
9792  * @wiphy: the wiphy
9793  * @wdev: wireless device
9794  * @gfp: context flags
9795  *
9796  * Trigger interface to be stopped as if AP was stopped, IBSS/mesh left, STA
9797  * disconnected.
9798  *
9799  * Note: This doesn't need any locks and is asynchronous.
9800  */
9801 void cfg80211_stop_iface(struct wiphy *wiphy, struct wireless_dev *wdev,
9802 			 gfp_t gfp);
9803 
9804 /**
9805  * cfg80211_shutdown_all_interfaces - shut down all interfaces for a wiphy
9806  * @wiphy: the wiphy to shut down
9807  *
9808  * This function shuts down all interfaces belonging to this wiphy by
9809  * calling dev_close() (and treating non-netdev interfaces as needed).
9810  * It shouldn't really be used unless there are some fatal device errors
9811  * that really can't be recovered in any other way.
9812  *
9813  * Callers must hold the RTNL and be able to deal with callbacks into
9814  * the driver while the function is running.
9815  */
9816 void cfg80211_shutdown_all_interfaces(struct wiphy *wiphy);
9817 
9818 /**
9819  * wiphy_ext_feature_set - set the extended feature flag
9820  *
9821  * @wiphy: the wiphy to modify.
9822  * @ftidx: extended feature bit index.
9823  *
9824  * The extended features are flagged in multiple bytes (see
9825  * &struct wiphy.@ext_features)
9826  */
9827 static inline void wiphy_ext_feature_set(struct wiphy *wiphy,
9828 					 enum nl80211_ext_feature_index ftidx)
9829 {
9830 	u8 *ft_byte;
9831 
9832 	ft_byte = &wiphy->ext_features[ftidx / 8];
9833 	*ft_byte |= BIT(ftidx % 8);
9834 }
9835 
9836 /**
9837  * wiphy_ext_feature_isset - check the extended feature flag
9838  *
9839  * @wiphy: the wiphy to modify.
9840  * @ftidx: extended feature bit index.
9841  *
9842  * The extended features are flagged in multiple bytes (see
9843  * &struct wiphy.@ext_features)
9844  *
9845  * Return: %true if extended feature flag is set, %false otherwise
9846  */
9847 static inline bool
9848 wiphy_ext_feature_isset(struct wiphy *wiphy,
9849 			enum nl80211_ext_feature_index ftidx)
9850 {
9851 	u8 ft_byte;
9852 
9853 	ft_byte = wiphy->ext_features[ftidx / 8];
9854 	return (ft_byte & BIT(ftidx % 8)) != 0;
9855 }
9856 
9857 /**
9858  * cfg80211_free_nan_func - free NAN function
9859  * @f: NAN function that should be freed
9860  *
9861  * Frees all the NAN function and all it's allocated members.
9862  */
9863 void cfg80211_free_nan_func(struct cfg80211_nan_func *f);
9864 
9865 /**
9866  * struct cfg80211_nan_match_params - NAN match parameters
9867  * @type: the type of the function that triggered a match. If it is
9868  *	 %NL80211_NAN_FUNC_SUBSCRIBE it means that we replied to a subscriber.
9869  *	 If it is %NL80211_NAN_FUNC_PUBLISH, it means that we got a discovery
9870  *	 result.
9871  *	 If it is %NL80211_NAN_FUNC_FOLLOW_UP, we received a follow up.
9872  * @inst_id: the local instance id
9873  * @peer_inst_id: the instance id of the peer's function
9874  * @addr: the MAC address of the peer
9875  * @info_len: the length of the &info
9876  * @info: the Service Specific Info from the peer (if any)
9877  * @cookie: unique identifier of the corresponding function
9878  */
9879 struct cfg80211_nan_match_params {
9880 	enum nl80211_nan_function_type type;
9881 	u8 inst_id;
9882 	u8 peer_inst_id;
9883 	const u8 *addr;
9884 	u8 info_len;
9885 	const u8 *info;
9886 	u64 cookie;
9887 };
9888 
9889 /**
9890  * cfg80211_nan_match - report a match for a NAN function.
9891  * @wdev: the wireless device reporting the match
9892  * @match: match notification parameters
9893  * @gfp: allocation flags
9894  *
9895  * This function reports that the a NAN function had a match. This
9896  * can be a subscribe that had a match or a solicited publish that
9897  * was sent. It can also be a follow up that was received.
9898  */
9899 void cfg80211_nan_match(struct wireless_dev *wdev,
9900 			struct cfg80211_nan_match_params *match, gfp_t gfp);
9901 
9902 /**
9903  * cfg80211_nan_func_terminated - notify about NAN function termination.
9904  *
9905  * @wdev: the wireless device reporting the match
9906  * @inst_id: the local instance id
9907  * @reason: termination reason (one of the NL80211_NAN_FUNC_TERM_REASON_*)
9908  * @cookie: unique NAN function identifier
9909  * @gfp: allocation flags
9910  *
9911  * This function reports that the a NAN function is terminated.
9912  */
9913 void cfg80211_nan_func_terminated(struct wireless_dev *wdev,
9914 				  u8 inst_id,
9915 				  enum nl80211_nan_func_term_reason reason,
9916 				  u64 cookie, gfp_t gfp);
9917 
9918 /* ethtool helper */
9919 void cfg80211_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info);
9920 
9921 /**
9922  * cfg80211_external_auth_request - userspace request for authentication
9923  * @netdev: network device
9924  * @params: External authentication parameters
9925  * @gfp: allocation flags
9926  * Returns: 0 on success, < 0 on error
9927  */
9928 int cfg80211_external_auth_request(struct net_device *netdev,
9929 				   struct cfg80211_external_auth_params *params,
9930 				   gfp_t gfp);
9931 
9932 /**
9933  * cfg80211_pmsr_report - report peer measurement result data
9934  * @wdev: the wireless device reporting the measurement
9935  * @req: the original measurement request
9936  * @result: the result data
9937  * @gfp: allocation flags
9938  */
9939 void cfg80211_pmsr_report(struct wireless_dev *wdev,
9940 			  struct cfg80211_pmsr_request *req,
9941 			  struct cfg80211_pmsr_result *result,
9942 			  gfp_t gfp);
9943 
9944 /**
9945  * cfg80211_pmsr_complete - report peer measurement completed
9946  * @wdev: the wireless device reporting the measurement
9947  * @req: the original measurement request
9948  * @gfp: allocation flags
9949  *
9950  * Report that the entire measurement completed, after this
9951  * the request pointer will no longer be valid.
9952  */
9953 void cfg80211_pmsr_complete(struct wireless_dev *wdev,
9954 			    struct cfg80211_pmsr_request *req,
9955 			    gfp_t gfp);
9956 
9957 /**
9958  * cfg80211_iftype_allowed - check whether the interface can be allowed
9959  * @wiphy: the wiphy
9960  * @iftype: interface type
9961  * @is_4addr: use_4addr flag, must be '0' when check_swif is '1'
9962  * @check_swif: check iftype against software interfaces
9963  *
9964  * Check whether the interface is allowed to operate; additionally, this API
9965  * can be used to check iftype against the software interfaces when
9966  * check_swif is '1'.
9967  *
9968  * Return: %true if allowed, %false otherwise
9969  */
9970 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
9971 			     bool is_4addr, u8 check_swif);
9972 
9973 
9974 /**
9975  * cfg80211_assoc_comeback - notification of association that was
9976  * temporarily rejected with a comeback
9977  * @netdev: network device
9978  * @ap_addr: AP (MLD) address that rejected the association
9979  * @timeout: timeout interval value TUs.
9980  *
9981  * this function may sleep. the caller must hold the corresponding wdev's mutex.
9982  */
9983 void cfg80211_assoc_comeback(struct net_device *netdev,
9984 			     const u8 *ap_addr, u32 timeout);
9985 
9986 /* Logging, debugging and troubleshooting/diagnostic helpers. */
9987 
9988 /* wiphy_printk helpers, similar to dev_printk */
9989 
9990 #define wiphy_printk(level, wiphy, format, args...)		\
9991 	dev_printk(level, &(wiphy)->dev, format, ##args)
9992 #define wiphy_emerg(wiphy, format, args...)			\
9993 	dev_emerg(&(wiphy)->dev, format, ##args)
9994 #define wiphy_alert(wiphy, format, args...)			\
9995 	dev_alert(&(wiphy)->dev, format, ##args)
9996 #define wiphy_crit(wiphy, format, args...)			\
9997 	dev_crit(&(wiphy)->dev, format, ##args)
9998 #define wiphy_err(wiphy, format, args...)			\
9999 	dev_err(&(wiphy)->dev, format, ##args)
10000 #define wiphy_warn(wiphy, format, args...)			\
10001 	dev_warn(&(wiphy)->dev, format, ##args)
10002 #define wiphy_notice(wiphy, format, args...)			\
10003 	dev_notice(&(wiphy)->dev, format, ##args)
10004 #define wiphy_info(wiphy, format, args...)			\
10005 	dev_info(&(wiphy)->dev, format, ##args)
10006 #define wiphy_info_once(wiphy, format, args...)			\
10007 	dev_info_once(&(wiphy)->dev, format, ##args)
10008 
10009 #define wiphy_err_ratelimited(wiphy, format, args...)		\
10010 	dev_err_ratelimited(&(wiphy)->dev, format, ##args)
10011 #define wiphy_warn_ratelimited(wiphy, format, args...)		\
10012 	dev_warn_ratelimited(&(wiphy)->dev, format, ##args)
10013 
10014 #define wiphy_debug(wiphy, format, args...)			\
10015 	wiphy_printk(KERN_DEBUG, wiphy, format, ##args)
10016 
10017 #define wiphy_dbg(wiphy, format, args...)			\
10018 	dev_dbg(&(wiphy)->dev, format, ##args)
10019 
10020 #if defined(VERBOSE_DEBUG)
10021 #define wiphy_vdbg	wiphy_dbg
10022 #else
10023 #define wiphy_vdbg(wiphy, format, args...)				\
10024 ({									\
10025 	if (0)								\
10026 		wiphy_printk(KERN_DEBUG, wiphy, format, ##args);	\
10027 	0;								\
10028 })
10029 #endif
10030 
10031 /*
10032  * wiphy_WARN() acts like wiphy_printk(), but with the key difference
10033  * of using a WARN/WARN_ON to get the message out, including the
10034  * file/line information and a backtrace.
10035  */
10036 #define wiphy_WARN(wiphy, format, args...)			\
10037 	WARN(1, "wiphy: %s\n" format, wiphy_name(wiphy), ##args);
10038 
10039 /**
10040  * cfg80211_update_owe_info_event - Notify the peer's OWE info to user space
10041  * @netdev: network device
10042  * @owe_info: peer's owe info
10043  * @gfp: allocation flags
10044  */
10045 void cfg80211_update_owe_info_event(struct net_device *netdev,
10046 				    struct cfg80211_update_owe_info *owe_info,
10047 				    gfp_t gfp);
10048 
10049 /**
10050  * cfg80211_bss_flush - resets all the scan entries
10051  * @wiphy: the wiphy
10052  */
10053 void cfg80211_bss_flush(struct wiphy *wiphy);
10054 
10055 /**
10056  * cfg80211_bss_color_notify - notify about bss color event
10057  * @dev: network device
10058  * @cmd: the actual event we want to notify
10059  * @count: the number of TBTTs until the color change happens
10060  * @color_bitmap: representations of the colors that the local BSS is aware of
10061  * @link_id: valid link_id in case of MLO or 0 for non-MLO.
10062  *
10063  * Return: 0 on success. Non-zero on error.
10064  */
10065 int cfg80211_bss_color_notify(struct net_device *dev,
10066 			      enum nl80211_commands cmd, u8 count,
10067 			      u64 color_bitmap, u8 link_id);
10068 
10069 /**
10070  * cfg80211_obss_color_collision_notify - notify about bss color collision
10071  * @dev: network device
10072  * @color_bitmap: representations of the colors that the local BSS is aware of
10073  * @link_id: valid link_id in case of MLO or 0 for non-MLO.
10074  *
10075  * Return: 0 on success. Non-zero on error.
10076  */
10077 static inline int cfg80211_obss_color_collision_notify(struct net_device *dev,
10078 						       u64 color_bitmap,
10079 						       u8 link_id)
10080 {
10081 	return cfg80211_bss_color_notify(dev, NL80211_CMD_OBSS_COLOR_COLLISION,
10082 					 0, color_bitmap, link_id);
10083 }
10084 
10085 /**
10086  * cfg80211_color_change_started_notify - notify color change start
10087  * @dev: the device on which the color is switched
10088  * @count: the number of TBTTs until the color change happens
10089  * @link_id: valid link_id in case of MLO or 0 for non-MLO.
10090  *
10091  * Inform the userspace about the color change that has started.
10092  *
10093  * Return: 0 on success. Non-zero on error.
10094  */
10095 static inline int cfg80211_color_change_started_notify(struct net_device *dev,
10096 						       u8 count, u8 link_id)
10097 {
10098 	return cfg80211_bss_color_notify(dev, NL80211_CMD_COLOR_CHANGE_STARTED,
10099 					 count, 0, link_id);
10100 }
10101 
10102 /**
10103  * cfg80211_color_change_aborted_notify - notify color change abort
10104  * @dev: the device on which the color is switched
10105  * @link_id: valid link_id in case of MLO or 0 for non-MLO.
10106  *
10107  * Inform the userspace about the color change that has aborted.
10108  *
10109  * Return: 0 on success. Non-zero on error.
10110  */
10111 static inline int cfg80211_color_change_aborted_notify(struct net_device *dev,
10112 						       u8 link_id)
10113 {
10114 	return cfg80211_bss_color_notify(dev, NL80211_CMD_COLOR_CHANGE_ABORTED,
10115 					 0, 0, link_id);
10116 }
10117 
10118 /**
10119  * cfg80211_color_change_notify - notify color change completion
10120  * @dev: the device on which the color was switched
10121  * @link_id: valid link_id in case of MLO or 0 for non-MLO.
10122  *
10123  * Inform the userspace about the color change that has completed.
10124  *
10125  * Return: 0 on success. Non-zero on error.
10126  */
10127 static inline int cfg80211_color_change_notify(struct net_device *dev,
10128 					       u8 link_id)
10129 {
10130 	return cfg80211_bss_color_notify(dev,
10131 					 NL80211_CMD_COLOR_CHANGE_COMPLETED,
10132 					 0, 0, link_id);
10133 }
10134 
10135 /**
10136  * cfg80211_6ghz_power_type - determine AP regulatory power type
10137  * @control: control flags
10138  * @client_flags: &enum ieee80211_channel_flags for station mode to enable
10139  *	SP to LPI fallback, zero otherwise.
10140  *
10141  * Return: regulatory power type from &enum ieee80211_ap_reg_power
10142  */
10143 static inline enum ieee80211_ap_reg_power
10144 cfg80211_6ghz_power_type(u8 control, u32 client_flags)
10145 {
10146 	switch (u8_get_bits(control, IEEE80211_HE_6GHZ_OPER_CTRL_REG_INFO)) {
10147 	case IEEE80211_6GHZ_CTRL_REG_LPI_AP:
10148 	case IEEE80211_6GHZ_CTRL_REG_INDOOR_LPI_AP:
10149 	case IEEE80211_6GHZ_CTRL_REG_AP_ROLE_NOT_RELEVANT:
10150 		return IEEE80211_REG_LPI_AP;
10151 	case IEEE80211_6GHZ_CTRL_REG_SP_AP:
10152 	case IEEE80211_6GHZ_CTRL_REG_INDOOR_SP_AP_OLD:
10153 		return IEEE80211_REG_SP_AP;
10154 	case IEEE80211_6GHZ_CTRL_REG_VLP_AP:
10155 		return IEEE80211_REG_VLP_AP;
10156 	case IEEE80211_6GHZ_CTRL_REG_INDOOR_SP_AP:
10157 		if (client_flags & IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT)
10158 			return IEEE80211_REG_LPI_AP;
10159 		return IEEE80211_REG_SP_AP;
10160 	default:
10161 		return IEEE80211_REG_UNSET_AP;
10162 	}
10163 }
10164 
10165 /**
10166  * cfg80211_links_removed - Notify about removed STA MLD setup links.
10167  * @dev: network device.
10168  * @link_mask: BIT mask of removed STA MLD setup link IDs.
10169  *
10170  * Inform cfg80211 and the userspace about removed STA MLD setup links due to
10171  * AP MLD removing the corresponding affiliated APs with Multi-Link
10172  * reconfiguration. Note that it's not valid to remove all links, in this
10173  * case disconnect instead.
10174  * Also note that the wdev mutex must be held.
10175  */
10176 void cfg80211_links_removed(struct net_device *dev, u16 link_mask);
10177 
10178 /**
10179  * struct cfg80211_mlo_reconf_done_data - MLO reconfiguration data
10180  * @buf: MLO Reconfiguration Response frame (header + body)
10181  * @len: length of the frame data
10182  * @driver_initiated: Indicates whether the add links request is initiated by
10183  *	driver. This is set to true when the link reconfiguration request
10184  *	initiated by driver due to AP link recommendation requests
10185  *	(Ex: BTM (BSS Transition Management) request) handling offloaded to
10186  *	driver.
10187  * @added_links: BIT mask of links successfully added to the association
10188  * @links: per-link information indexed by link ID
10189  * @links.bss: the BSS that MLO reconfiguration was requested for, ownership of
10190  *      the pointer moves to cfg80211 in the call to
10191  *      cfg80211_mlo_reconf_add_done().
10192  *
10193  * The BSS pointer must be set for each link for which 'add' operation was
10194  * requested in the assoc_ml_reconf callback.
10195  */
10196 struct cfg80211_mlo_reconf_done_data {
10197 	const u8 *buf;
10198 	size_t len;
10199 	bool driver_initiated;
10200 	u16 added_links;
10201 	struct {
10202 		struct cfg80211_bss *bss;
10203 		u8 *addr;
10204 	} links[IEEE80211_MLD_MAX_NUM_LINKS];
10205 };
10206 
10207 /**
10208  * cfg80211_mlo_reconf_add_done - Notify about MLO reconfiguration result
10209  * @dev: network device.
10210  * @data: MLO reconfiguration done data, &struct cfg80211_mlo_reconf_done_data
10211  *
10212  * Inform cfg80211 and the userspace that processing of ML reconfiguration
10213  * request to add links to the association is done.
10214  */
10215 void cfg80211_mlo_reconf_add_done(struct net_device *dev,
10216 				  struct cfg80211_mlo_reconf_done_data *data);
10217 
10218 /**
10219  * cfg80211_schedule_channels_check - schedule regulatory check if needed
10220  * @wdev: the wireless device to check
10221  *
10222  * In case the device supports NO_IR or DFS relaxations, schedule regulatory
10223  * channels check, as previous concurrent operation conditions may not
10224  * hold anymore.
10225  */
10226 void cfg80211_schedule_channels_check(struct wireless_dev *wdev);
10227 
10228 /**
10229  * cfg80211_epcs_changed - Notify about a change in EPCS state
10230  * @netdev: the wireless device whose EPCS state changed
10231  * @enabled: set to true if EPCS was enabled, otherwise set to false.
10232  */
10233 void cfg80211_epcs_changed(struct net_device *netdev, bool enabled);
10234 
10235 /**
10236  * cfg80211_next_nan_dw_notif - Notify about the next NAN Discovery Window (DW)
10237  * @wdev: Pointer to the wireless device structure
10238  * @chan: DW channel (6, 44 or 149)
10239  * @gfp: Memory allocation flags
10240  */
10241 void cfg80211_next_nan_dw_notif(struct wireless_dev *wdev,
10242 				struct ieee80211_channel *chan, gfp_t gfp);
10243 
10244 /**
10245  * cfg80211_nan_cluster_joined - Notify about NAN cluster join
10246  * @wdev: Pointer to the wireless device structure
10247  * @cluster_id: Cluster ID of the NAN cluster that was joined or started
10248  * @new_cluster: Indicates if this is a new cluster or an existing one
10249  * @gfp: Memory allocation flags
10250  *
10251  * This function is used to notify user space when a NAN cluster has been
10252  * joined, providing the cluster ID and a flag whether it is a new cluster.
10253  */
10254 void cfg80211_nan_cluster_joined(struct wireless_dev *wdev,
10255 				 const u8 *cluster_id, bool new_cluster,
10256 				 gfp_t gfp);
10257 
10258 #ifdef CONFIG_CFG80211_DEBUGFS
10259 /**
10260  * wiphy_locked_debugfs_read - do a locked read in debugfs
10261  * @wiphy: the wiphy to use
10262  * @file: the file being read
10263  * @buf: the buffer to fill and then read from
10264  * @bufsize: size of the buffer
10265  * @userbuf: the user buffer to copy to
10266  * @count: read count
10267  * @ppos: read position
10268  * @handler: the read handler to call (under wiphy lock)
10269  * @data: additional data to pass to the read handler
10270  *
10271  * Return: the number of characters read, or a negative errno
10272  */
10273 ssize_t wiphy_locked_debugfs_read(struct wiphy *wiphy, struct file *file,
10274 				  char *buf, size_t bufsize,
10275 				  char __user *userbuf, size_t count,
10276 				  loff_t *ppos,
10277 				  ssize_t (*handler)(struct wiphy *wiphy,
10278 						     struct file *file,
10279 						     char *buf,
10280 						     size_t bufsize,
10281 						     void *data),
10282 				  void *data);
10283 
10284 /**
10285  * wiphy_locked_debugfs_write - do a locked write in debugfs
10286  * @wiphy: the wiphy to use
10287  * @file: the file being written to
10288  * @buf: the buffer to copy the user data to
10289  * @bufsize: size of the buffer
10290  * @userbuf: the user buffer to copy from
10291  * @count: read count
10292  * @handler: the write handler to call (under wiphy lock)
10293  * @data: additional data to pass to the write handler
10294  *
10295  * Return: the number of characters written, or a negative errno
10296  */
10297 ssize_t wiphy_locked_debugfs_write(struct wiphy *wiphy, struct file *file,
10298 				   char *buf, size_t bufsize,
10299 				   const char __user *userbuf, size_t count,
10300 				   ssize_t (*handler)(struct wiphy *wiphy,
10301 						      struct file *file,
10302 						      char *buf,
10303 						      size_t count,
10304 						      void *data),
10305 				   void *data);
10306 #endif
10307 
10308 /**
10309  * cfg80211_s1g_get_start_freq_khz - get S1G chandef start frequency
10310  * @chandef: the chandef to use
10311  *
10312  * Return: the chandefs starting frequency in KHz
10313  */
10314 static inline u32
10315 cfg80211_s1g_get_start_freq_khz(const struct cfg80211_chan_def *chandef)
10316 {
10317 	u32 bw_mhz = cfg80211_chandef_get_width(chandef);
10318 	u32 center_khz =
10319 		MHZ_TO_KHZ(chandef->center_freq1) + chandef->freq1_offset;
10320 	return center_khz - bw_mhz * 500 + 500;
10321 }
10322 
10323 /**
10324  * cfg80211_s1g_get_end_freq_khz - get S1G chandef end frequency
10325  * @chandef: the chandef to use
10326  *
10327  * Return: the chandefs ending frequency in KHz
10328  */
10329 static inline u32
10330 cfg80211_s1g_get_end_freq_khz(const struct cfg80211_chan_def *chandef)
10331 {
10332 	u32 bw_mhz = cfg80211_chandef_get_width(chandef);
10333 	u32 center_khz =
10334 		MHZ_TO_KHZ(chandef->center_freq1) + chandef->freq1_offset;
10335 	return center_khz + bw_mhz * 500 - 500;
10336 }
10337 
10338 /**
10339  * cfg80211_s1g_get_primary_sibling - retrieve the sibling 1MHz subchannel
10340  *	for an S1G chandef using a 2MHz primary channel.
10341  * @wiphy: wiphy the channel belongs to
10342  * @chandef: the chandef to use
10343  *
10344  * When chandef::s1g_primary_2mhz is set to true, we are operating on a 2MHz
10345  * primary channel. The 1MHz subchannel designated by the primary channel
10346  * location exists within chandef::chan, whilst the 'sibling' is denoted as
10347  * being the other 1MHz subchannel that make up the 2MHz primary channel.
10348  *
10349  * Returns: the sibling 1MHz &struct ieee80211_channel, or %NULL on failure.
10350  */
10351 static inline struct ieee80211_channel *
10352 cfg80211_s1g_get_primary_sibling(struct wiphy *wiphy,
10353 				 const struct cfg80211_chan_def *chandef)
10354 {
10355 	int width_mhz = cfg80211_chandef_get_width(chandef);
10356 	u32 pri_1mhz_khz, sibling_1mhz_khz, op_low_1mhz_khz, pri_index;
10357 
10358 	if (!chandef->s1g_primary_2mhz || width_mhz < 2)
10359 		return NULL;
10360 
10361 	pri_1mhz_khz = ieee80211_channel_to_khz(chandef->chan);
10362 	op_low_1mhz_khz = cfg80211_s1g_get_start_freq_khz(chandef);
10363 
10364 	/*
10365 	 * Compute the index of the primary 1 MHz subchannel within the
10366 	 * operating channel, relative to the lowest 1 MHz center frequency.
10367 	 * Flip the least significant bit to select the even/odd sibling,
10368 	 * then translate that index back into a channel frequency.
10369 	 */
10370 	pri_index = (pri_1mhz_khz - op_low_1mhz_khz) / 1000;
10371 	sibling_1mhz_khz = op_low_1mhz_khz + ((pri_index ^ 1) * 1000);
10372 
10373 	return ieee80211_get_channel_khz(wiphy, sibling_1mhz_khz);
10374 }
10375 
10376 #endif /* __NET_CFG80211_H */
10377