xref: /linux/tools/testing/selftests/kvm/arm64/set_id_regs.c (revision c1ead4b4dfe0f643cfc66571ca7d2fa332eddd35)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * set_id_regs - Test for setting ID register from usersapce.
4  *
5  * Copyright (c) 2023 Google LLC.
6  *
7  *
8  * Test that KVM supports setting ID registers from userspace and handles the
9  * feature set correctly.
10  */
11 
12 #include <stdint.h>
13 #include "kvm_util.h"
14 #include "processor.h"
15 #include "test_util.h"
16 #include <linux/bitfield.h>
17 
18 enum ftr_type {
19 	FTR_EXACT,			/* Use a predefined safe value */
20 	FTR_LOWER_SAFE,			/* Smaller value is safe */
21 	FTR_HIGHER_SAFE,		/* Bigger value is safe */
22 	FTR_HIGHER_OR_ZERO_SAFE,	/* Bigger value is safe, but 0 is biggest */
23 	FTR_END,			/* Mark the last ftr bits */
24 };
25 
26 #define FTR_SIGNED	true	/* Value should be treated as signed */
27 #define FTR_UNSIGNED	false	/* Value should be treated as unsigned */
28 
29 struct reg_ftr_bits {
30 	char *name;
31 	bool sign;
32 	enum ftr_type type;
33 	uint8_t shift;
34 	uint64_t mask;
35 	/*
36 	 * For FTR_EXACT, safe_val is used as the exact safe value.
37 	 * For FTR_LOWER_SAFE, safe_val is used as the minimal safe value.
38 	 */
39 	int64_t safe_val;
40 };
41 
42 struct test_feature_reg {
43 	uint32_t reg;
44 	const struct reg_ftr_bits *ftr_bits;
45 };
46 
47 #define __REG_FTR_BITS(NAME, SIGNED, TYPE, SHIFT, MASK, SAFE_VAL)	\
48 	{								\
49 		.name = #NAME,						\
50 		.sign = SIGNED,						\
51 		.type = TYPE,						\
52 		.shift = SHIFT,						\
53 		.mask = MASK,						\
54 		.safe_val = SAFE_VAL,					\
55 	}
56 
57 #define REG_FTR_BITS(type, reg, field, safe_val) \
58 	__REG_FTR_BITS(reg##_##field, FTR_UNSIGNED, type, reg##_##field##_SHIFT, \
59 		       reg##_##field##_MASK, safe_val)
60 
61 #define S_REG_FTR_BITS(type, reg, field, safe_val) \
62 	__REG_FTR_BITS(reg##_##field, FTR_SIGNED, type, reg##_##field##_SHIFT, \
63 		       reg##_##field##_MASK, safe_val)
64 
65 #define REG_FTR_END					\
66 	{						\
67 		.type = FTR_END,			\
68 	}
69 
70 static const struct reg_ftr_bits ftr_id_aa64dfr0_el1[] = {
71 	S_REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64DFR0_EL1, DoubleLock, 0),
72 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64DFR0_EL1, WRPs, 0),
73 	S_REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64DFR0_EL1, PMUVer, 0),
74 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64DFR0_EL1, DebugVer, ID_AA64DFR0_EL1_DebugVer_IMP),
75 	REG_FTR_END,
76 };
77 
78 static const struct reg_ftr_bits ftr_id_dfr0_el1[] = {
79 	S_REG_FTR_BITS(FTR_LOWER_SAFE, ID_DFR0_EL1, PerfMon, ID_DFR0_EL1_PerfMon_PMUv3),
80 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_DFR0_EL1, CopDbg, ID_DFR0_EL1_CopDbg_Armv8),
81 	REG_FTR_END,
82 };
83 
84 static const struct reg_ftr_bits ftr_id_aa64isar0_el1[] = {
85 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, RNDR, 0),
86 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, TLB, 0),
87 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, TS, 0),
88 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, FHM, 0),
89 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, DP, 0),
90 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, SM4, 0),
91 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, SM3, 0),
92 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, SHA3, 0),
93 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, RDM, 0),
94 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, TME, 0),
95 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, ATOMIC, 0),
96 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, CRC32, 0),
97 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, SHA2, 0),
98 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, SHA1, 0),
99 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, AES, 0),
100 	REG_FTR_END,
101 };
102 
103 static const struct reg_ftr_bits ftr_id_aa64isar1_el1[] = {
104 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, LS64, 0),
105 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, XS, 0),
106 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, I8MM, 0),
107 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, DGH, 0),
108 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, BF16, 0),
109 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, SPECRES, 0),
110 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, SB, 0),
111 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, FRINTTS, 0),
112 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, LRCPC, 0),
113 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, FCMA, 0),
114 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, JSCVT, 0),
115 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, DPB, 0),
116 	REG_FTR_END,
117 };
118 
119 static const struct reg_ftr_bits ftr_id_aa64isar2_el1[] = {
120 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR2_EL1, BC, 0),
121 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR2_EL1, RPRES, 0),
122 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR2_EL1, WFxT, 0),
123 	REG_FTR_END,
124 };
125 
126 static const struct reg_ftr_bits ftr_id_aa64isar3_el1[] = {
127 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR3_EL1, FPRCVT, 0),
128 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR3_EL1, LSFE, 0),
129 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR3_EL1, FAMINMAX, 0),
130 	REG_FTR_END,
131 };
132 
133 static const struct reg_ftr_bits ftr_id_aa64pfr0_el1[] = {
134 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, CSV3, 0),
135 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, CSV2, 0),
136 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, DIT, 0),
137 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, SEL2, 0),
138 	REG_FTR_BITS(FTR_EXACT, ID_AA64PFR0_EL1, GIC, 0),
139 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, EL3, 1),
140 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, EL2, 1),
141 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, EL1, 1),
142 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, EL0, 1),
143 	REG_FTR_END,
144 };
145 
146 static const struct reg_ftr_bits ftr_id_aa64pfr1_el1[] = {
147 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR1_EL1, DF2, 0),
148 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR1_EL1, CSV2_frac, 0),
149 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR1_EL1, SSBS, ID_AA64PFR1_EL1_SSBS_NI),
150 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR1_EL1, BT, 0),
151 	REG_FTR_END,
152 };
153 
154 static const struct reg_ftr_bits ftr_id_aa64mmfr0_el1[] = {
155 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, ECV, 0),
156 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, EXS, 0),
157 	REG_FTR_BITS(FTR_EXACT, ID_AA64MMFR0_EL1, TGRAN4_2, 1),
158 	REG_FTR_BITS(FTR_EXACT, ID_AA64MMFR0_EL1, TGRAN64_2, 1),
159 	REG_FTR_BITS(FTR_EXACT, ID_AA64MMFR0_EL1, TGRAN16_2, 1),
160 	S_REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, TGRAN4, 0),
161 	S_REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, TGRAN64, 0),
162 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, TGRAN16, 0),
163 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, BIGENDEL0, 0),
164 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, SNSMEM, 0),
165 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, BIGEND, 0),
166 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, PARANGE, 0),
167 	REG_FTR_END,
168 };
169 
170 static const struct reg_ftr_bits ftr_id_aa64mmfr1_el1[] = {
171 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, TIDCP1, 0),
172 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, AFP, 0),
173 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, HCX, 0),
174 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, ETS, 0),
175 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, TWED, 0),
176 	REG_FTR_BITS(FTR_HIGHER_SAFE, ID_AA64MMFR1_EL1, SpecSEI, 0),
177 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, PAN, 0),
178 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, LO, 0),
179 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, HPDS, 0),
180 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, HAFDBS, 0),
181 	REG_FTR_END,
182 };
183 
184 static const struct reg_ftr_bits ftr_id_aa64mmfr2_el1[] = {
185 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, E0PD, 0),
186 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, BBM, 0),
187 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, TTL, 0),
188 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, AT, 0),
189 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, ST, 0),
190 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, VARange, 0),
191 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, IESB, 0),
192 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, LSM, 0),
193 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, UAO, 0),
194 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, CnP, 0),
195 	REG_FTR_END,
196 };
197 
198 static const struct reg_ftr_bits ftr_id_aa64mmfr3_el1[] = {
199 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR3_EL1, S1POE, 0),
200 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR3_EL1, S1PIE, 0),
201 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR3_EL1, SCTLRX, 0),
202 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR3_EL1, TCRX, 0),
203 	REG_FTR_END,
204 };
205 
206 static const struct reg_ftr_bits ftr_id_aa64zfr0_el1[] = {
207 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, F64MM, 0),
208 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, F32MM, 0),
209 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, I8MM, 0),
210 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, SM4, 0),
211 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, SHA3, 0),
212 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, BF16, 0),
213 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, BitPerm, 0),
214 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, AES, 0),
215 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, SVEver, 0),
216 	REG_FTR_END,
217 };
218 
219 #define TEST_REG(id, table)			\
220 	{					\
221 		.reg = id,			\
222 		.ftr_bits = &((table)[0]),	\
223 	}
224 
225 static struct test_feature_reg test_regs[] = {
226 	TEST_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0_el1),
227 	TEST_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0_el1),
228 	TEST_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0_el1),
229 	TEST_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1_el1),
230 	TEST_REG(SYS_ID_AA64ISAR2_EL1, ftr_id_aa64isar2_el1),
231 	TEST_REG(SYS_ID_AA64ISAR3_EL1, ftr_id_aa64isar3_el1),
232 	TEST_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0_el1),
233 	TEST_REG(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1_el1),
234 	TEST_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0_el1),
235 	TEST_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1_el1),
236 	TEST_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2_el1),
237 	TEST_REG(SYS_ID_AA64MMFR3_EL1, ftr_id_aa64mmfr3_el1),
238 	TEST_REG(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0_el1),
239 };
240 
241 #define GUEST_REG_SYNC(id) GUEST_SYNC_ARGS(0, id, read_sysreg_s(id), 0, 0);
242 
guest_code(void)243 static void guest_code(void)
244 {
245 	GUEST_REG_SYNC(SYS_ID_AA64DFR0_EL1);
246 	GUEST_REG_SYNC(SYS_ID_DFR0_EL1);
247 	GUEST_REG_SYNC(SYS_ID_AA64ISAR0_EL1);
248 	GUEST_REG_SYNC(SYS_ID_AA64ISAR1_EL1);
249 	GUEST_REG_SYNC(SYS_ID_AA64ISAR2_EL1);
250 	GUEST_REG_SYNC(SYS_ID_AA64ISAR3_EL1);
251 	GUEST_REG_SYNC(SYS_ID_AA64PFR0_EL1);
252 	GUEST_REG_SYNC(SYS_ID_AA64MMFR0_EL1);
253 	GUEST_REG_SYNC(SYS_ID_AA64MMFR1_EL1);
254 	GUEST_REG_SYNC(SYS_ID_AA64MMFR2_EL1);
255 	GUEST_REG_SYNC(SYS_ID_AA64MMFR3_EL1);
256 	GUEST_REG_SYNC(SYS_ID_AA64ZFR0_EL1);
257 	GUEST_REG_SYNC(SYS_CTR_EL0);
258 	GUEST_REG_SYNC(SYS_MIDR_EL1);
259 	GUEST_REG_SYNC(SYS_REVIDR_EL1);
260 	GUEST_REG_SYNC(SYS_AIDR_EL1);
261 
262 	GUEST_DONE();
263 }
264 
265 /* Return a safe value to a given ftr_bits an ftr value */
get_safe_value(const struct reg_ftr_bits * ftr_bits,uint64_t ftr)266 uint64_t get_safe_value(const struct reg_ftr_bits *ftr_bits, uint64_t ftr)
267 {
268 	uint64_t ftr_max = GENMASK_ULL(ARM64_FEATURE_FIELD_BITS - 1, 0);
269 
270 	if (ftr_bits->sign == FTR_UNSIGNED) {
271 		switch (ftr_bits->type) {
272 		case FTR_EXACT:
273 			ftr = ftr_bits->safe_val;
274 			break;
275 		case FTR_LOWER_SAFE:
276 			if (ftr > ftr_bits->safe_val)
277 				ftr--;
278 			break;
279 		case FTR_HIGHER_SAFE:
280 			if (ftr < ftr_max)
281 				ftr++;
282 			break;
283 		case FTR_HIGHER_OR_ZERO_SAFE:
284 			if (ftr == ftr_max)
285 				ftr = 0;
286 			else if (ftr != 0)
287 				ftr++;
288 			break;
289 		default:
290 			break;
291 		}
292 	} else if (ftr != ftr_max) {
293 		switch (ftr_bits->type) {
294 		case FTR_EXACT:
295 			ftr = ftr_bits->safe_val;
296 			break;
297 		case FTR_LOWER_SAFE:
298 			if (ftr > ftr_bits->safe_val)
299 				ftr--;
300 			break;
301 		case FTR_HIGHER_SAFE:
302 			if (ftr < ftr_max - 1)
303 				ftr++;
304 			break;
305 		case FTR_HIGHER_OR_ZERO_SAFE:
306 			if (ftr != 0 && ftr != ftr_max - 1)
307 				ftr++;
308 			break;
309 		default:
310 			break;
311 		}
312 	}
313 
314 	return ftr;
315 }
316 
317 /* Return an invalid value to a given ftr_bits an ftr value */
get_invalid_value(const struct reg_ftr_bits * ftr_bits,uint64_t ftr)318 uint64_t get_invalid_value(const struct reg_ftr_bits *ftr_bits, uint64_t ftr)
319 {
320 	uint64_t ftr_max = GENMASK_ULL(ARM64_FEATURE_FIELD_BITS - 1, 0);
321 
322 	if (ftr_bits->sign == FTR_UNSIGNED) {
323 		switch (ftr_bits->type) {
324 		case FTR_EXACT:
325 			ftr = max((uint64_t)ftr_bits->safe_val + 1, ftr + 1);
326 			break;
327 		case FTR_LOWER_SAFE:
328 			ftr++;
329 			break;
330 		case FTR_HIGHER_SAFE:
331 			ftr--;
332 			break;
333 		case FTR_HIGHER_OR_ZERO_SAFE:
334 			if (ftr == 0)
335 				ftr = ftr_max;
336 			else
337 				ftr--;
338 			break;
339 		default:
340 			break;
341 		}
342 	} else if (ftr != ftr_max) {
343 		switch (ftr_bits->type) {
344 		case FTR_EXACT:
345 			ftr = max((uint64_t)ftr_bits->safe_val + 1, ftr + 1);
346 			break;
347 		case FTR_LOWER_SAFE:
348 			ftr++;
349 			break;
350 		case FTR_HIGHER_SAFE:
351 			ftr--;
352 			break;
353 		case FTR_HIGHER_OR_ZERO_SAFE:
354 			if (ftr == 0)
355 				ftr = ftr_max - 1;
356 			else
357 				ftr--;
358 			break;
359 		default:
360 			break;
361 		}
362 	} else {
363 		ftr = 0;
364 	}
365 
366 	return ftr;
367 }
368 
test_reg_set_success(struct kvm_vcpu * vcpu,uint64_t reg,const struct reg_ftr_bits * ftr_bits)369 static uint64_t test_reg_set_success(struct kvm_vcpu *vcpu, uint64_t reg,
370 				     const struct reg_ftr_bits *ftr_bits)
371 {
372 	uint8_t shift = ftr_bits->shift;
373 	uint64_t mask = ftr_bits->mask;
374 	uint64_t val, new_val, ftr;
375 
376 	val = vcpu_get_reg(vcpu, reg);
377 	ftr = (val & mask) >> shift;
378 
379 	ftr = get_safe_value(ftr_bits, ftr);
380 
381 	ftr <<= shift;
382 	val &= ~mask;
383 	val |= ftr;
384 
385 	vcpu_set_reg(vcpu, reg, val);
386 	new_val = vcpu_get_reg(vcpu, reg);
387 	TEST_ASSERT_EQ(new_val, val);
388 
389 	return new_val;
390 }
391 
test_reg_set_fail(struct kvm_vcpu * vcpu,uint64_t reg,const struct reg_ftr_bits * ftr_bits)392 static void test_reg_set_fail(struct kvm_vcpu *vcpu, uint64_t reg,
393 			      const struct reg_ftr_bits *ftr_bits)
394 {
395 	uint8_t shift = ftr_bits->shift;
396 	uint64_t mask = ftr_bits->mask;
397 	uint64_t val, old_val, ftr;
398 	int r;
399 
400 	val = vcpu_get_reg(vcpu, reg);
401 	ftr = (val & mask) >> shift;
402 
403 	ftr = get_invalid_value(ftr_bits, ftr);
404 
405 	old_val = val;
406 	ftr <<= shift;
407 	val &= ~mask;
408 	val |= ftr;
409 
410 	r = __vcpu_set_reg(vcpu, reg, val);
411 	TEST_ASSERT(r < 0 && errno == EINVAL,
412 		    "Unexpected KVM_SET_ONE_REG error: r=%d, errno=%d", r, errno);
413 
414 	val = vcpu_get_reg(vcpu, reg);
415 	TEST_ASSERT_EQ(val, old_val);
416 }
417 
418 static uint64_t test_reg_vals[KVM_ARM_FEATURE_ID_RANGE_SIZE];
419 
420 #define encoding_to_range_idx(encoding)							\
421 	KVM_ARM_FEATURE_ID_RANGE_IDX(sys_reg_Op0(encoding), sys_reg_Op1(encoding),	\
422 				     sys_reg_CRn(encoding), sys_reg_CRm(encoding),	\
423 				     sys_reg_Op2(encoding))
424 
425 
test_vm_ftr_id_regs(struct kvm_vcpu * vcpu,bool aarch64_only)426 static void test_vm_ftr_id_regs(struct kvm_vcpu *vcpu, bool aarch64_only)
427 {
428 	uint64_t masks[KVM_ARM_FEATURE_ID_RANGE_SIZE];
429 	struct reg_mask_range range = {
430 		.addr = (__u64)masks,
431 	};
432 	int ret;
433 
434 	/* KVM should return error when reserved field is not zero */
435 	range.reserved[0] = 1;
436 	ret = __vm_ioctl(vcpu->vm, KVM_ARM_GET_REG_WRITABLE_MASKS, &range);
437 	TEST_ASSERT(ret, "KVM doesn't check invalid parameters.");
438 
439 	/* Get writable masks for feature ID registers */
440 	memset(range.reserved, 0, sizeof(range.reserved));
441 	vm_ioctl(vcpu->vm, KVM_ARM_GET_REG_WRITABLE_MASKS, &range);
442 
443 	for (int i = 0; i < ARRAY_SIZE(test_regs); i++) {
444 		const struct reg_ftr_bits *ftr_bits = test_regs[i].ftr_bits;
445 		uint32_t reg_id = test_regs[i].reg;
446 		uint64_t reg = KVM_ARM64_SYS_REG(reg_id);
447 		int idx;
448 
449 		/* Get the index to masks array for the idreg */
450 		idx = encoding_to_range_idx(reg_id);
451 
452 		for (int j = 0;  ftr_bits[j].type != FTR_END; j++) {
453 			/* Skip aarch32 reg on aarch64 only system, since they are RAZ/WI. */
454 			if (aarch64_only && sys_reg_CRm(reg_id) < 4) {
455 				ksft_test_result_skip("%s on AARCH64 only system\n",
456 						      ftr_bits[j].name);
457 				continue;
458 			}
459 
460 			/* Make sure the feature field is writable */
461 			TEST_ASSERT_EQ(masks[idx] & ftr_bits[j].mask, ftr_bits[j].mask);
462 
463 			test_reg_set_fail(vcpu, reg, &ftr_bits[j]);
464 
465 			test_reg_vals[idx] = test_reg_set_success(vcpu, reg,
466 								  &ftr_bits[j]);
467 
468 			ksft_test_result_pass("%s\n", ftr_bits[j].name);
469 		}
470 	}
471 }
472 
473 #define MPAM_IDREG_TEST	6
test_user_set_mpam_reg(struct kvm_vcpu * vcpu)474 static void test_user_set_mpam_reg(struct kvm_vcpu *vcpu)
475 {
476 	uint64_t masks[KVM_ARM_FEATURE_ID_RANGE_SIZE];
477 	struct reg_mask_range range = {
478 		.addr = (__u64)masks,
479 	};
480 	uint64_t val;
481 	int idx, err;
482 
483 	/*
484 	 * If ID_AA64PFR0.MPAM is _not_ officially modifiable and is zero,
485 	 * check that if it can be set to 1, (i.e. it is supported by the
486 	 * hardware), that it can't be set to other values.
487 	 */
488 
489 	/* Get writable masks for feature ID registers */
490 	memset(range.reserved, 0, sizeof(range.reserved));
491 	vm_ioctl(vcpu->vm, KVM_ARM_GET_REG_WRITABLE_MASKS, &range);
492 
493 	/* Writeable? Nothing to test! */
494 	idx = encoding_to_range_idx(SYS_ID_AA64PFR0_EL1);
495 	if ((masks[idx] & ID_AA64PFR0_EL1_MPAM_MASK) == ID_AA64PFR0_EL1_MPAM_MASK) {
496 		ksft_test_result_skip("ID_AA64PFR0_EL1.MPAM is officially writable, nothing to test\n");
497 		return;
498 	}
499 
500 	/* Get the id register value */
501 	val = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR0_EL1));
502 
503 	/* Try to set MPAM=0. This should always be possible. */
504 	val &= ~ID_AA64PFR0_EL1_MPAM_MASK;
505 	val |= FIELD_PREP(ID_AA64PFR0_EL1_MPAM_MASK, 0);
506 	err = __vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR0_EL1), val);
507 	if (err)
508 		ksft_test_result_fail("ID_AA64PFR0_EL1.MPAM=0 was not accepted\n");
509 	else
510 		ksft_test_result_pass("ID_AA64PFR0_EL1.MPAM=0 worked\n");
511 
512 	/* Try to set MPAM=1 */
513 	val &= ~ID_AA64PFR0_EL1_MPAM_MASK;
514 	val |= FIELD_PREP(ID_AA64PFR0_EL1_MPAM_MASK, 1);
515 	err = __vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR0_EL1), val);
516 	if (err)
517 		ksft_test_result_skip("ID_AA64PFR0_EL1.MPAM is not writable, nothing to test\n");
518 	else
519 		ksft_test_result_pass("ID_AA64PFR0_EL1.MPAM=1 was writable\n");
520 
521 	/* Try to set MPAM=2 */
522 	val &= ~ID_AA64PFR0_EL1_MPAM_MASK;
523 	val |= FIELD_PREP(ID_AA64PFR0_EL1_MPAM_MASK, 2);
524 	err = __vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR0_EL1), val);
525 	if (err)
526 		ksft_test_result_pass("ID_AA64PFR0_EL1.MPAM not arbitrarily modifiable\n");
527 	else
528 		ksft_test_result_fail("ID_AA64PFR0_EL1.MPAM value should not be ignored\n");
529 
530 	/* And again for ID_AA64PFR1_EL1.MPAM_frac */
531 	idx = encoding_to_range_idx(SYS_ID_AA64PFR1_EL1);
532 	if ((masks[idx] & ID_AA64PFR1_EL1_MPAM_frac_MASK) == ID_AA64PFR1_EL1_MPAM_frac_MASK) {
533 		ksft_test_result_skip("ID_AA64PFR1_EL1.MPAM_frac is officially writable, nothing to test\n");
534 		return;
535 	}
536 
537 	/* Get the id register value */
538 	val = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR1_EL1));
539 
540 	/* Try to set MPAM_frac=0. This should always be possible. */
541 	val &= ~ID_AA64PFR1_EL1_MPAM_frac_MASK;
542 	val |= FIELD_PREP(ID_AA64PFR1_EL1_MPAM_frac_MASK, 0);
543 	err = __vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR1_EL1), val);
544 	if (err)
545 		ksft_test_result_fail("ID_AA64PFR0_EL1.MPAM_frac=0 was not accepted\n");
546 	else
547 		ksft_test_result_pass("ID_AA64PFR0_EL1.MPAM_frac=0 worked\n");
548 
549 	/* Try to set MPAM_frac=1 */
550 	val &= ~ID_AA64PFR1_EL1_MPAM_frac_MASK;
551 	val |= FIELD_PREP(ID_AA64PFR1_EL1_MPAM_frac_MASK, 1);
552 	err = __vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR1_EL1), val);
553 	if (err)
554 		ksft_test_result_skip("ID_AA64PFR1_EL1.MPAM_frac is not writable, nothing to test\n");
555 	else
556 		ksft_test_result_pass("ID_AA64PFR0_EL1.MPAM_frac=1 was writable\n");
557 
558 	/* Try to set MPAM_frac=2 */
559 	val &= ~ID_AA64PFR1_EL1_MPAM_frac_MASK;
560 	val |= FIELD_PREP(ID_AA64PFR1_EL1_MPAM_frac_MASK, 2);
561 	err = __vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR1_EL1), val);
562 	if (err)
563 		ksft_test_result_pass("ID_AA64PFR1_EL1.MPAM_frac not arbitrarily modifiable\n");
564 	else
565 		ksft_test_result_fail("ID_AA64PFR1_EL1.MPAM_frac value should not be ignored\n");
566 }
567 
568 #define MTE_IDREG_TEST 1
test_user_set_mte_reg(struct kvm_vcpu * vcpu)569 static void test_user_set_mte_reg(struct kvm_vcpu *vcpu)
570 {
571 	uint64_t masks[KVM_ARM_FEATURE_ID_RANGE_SIZE];
572 	struct reg_mask_range range = {
573 		.addr = (__u64)masks,
574 	};
575 	uint64_t val;
576 	uint64_t mte;
577 	uint64_t mte_frac;
578 	int idx, err;
579 
580 	val = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR1_EL1));
581 	mte = FIELD_GET(ID_AA64PFR1_EL1_MTE, val);
582 	if (!mte) {
583 		ksft_test_result_skip("MTE capability not supported, nothing to test\n");
584 		return;
585 	}
586 
587 	/* Get writable masks for feature ID registers */
588 	memset(range.reserved, 0, sizeof(range.reserved));
589 	vm_ioctl(vcpu->vm, KVM_ARM_GET_REG_WRITABLE_MASKS, &range);
590 
591 	idx = encoding_to_range_idx(SYS_ID_AA64PFR1_EL1);
592 	if ((masks[idx] & ID_AA64PFR1_EL1_MTE_frac_MASK) == ID_AA64PFR1_EL1_MTE_frac_MASK) {
593 		ksft_test_result_skip("ID_AA64PFR1_EL1.MTE_frac is officially writable, nothing to test\n");
594 		return;
595 	}
596 
597 	/*
598 	 * When MTE is supported but MTE_ASYMM is not (ID_AA64PFR1_EL1.MTE == 2)
599 	 * ID_AA64PFR1_EL1.MTE_frac == 0xF indicates MTE_ASYNC is unsupported
600 	 * and MTE_frac == 0 indicates it is supported.
601 	 *
602 	 * As MTE_frac was previously unconditionally read as 0, check
603 	 * that the set to 0 succeeds but does not change MTE_frac
604 	 * from unsupported (0xF) to supported (0).
605 	 *
606 	 */
607 	mte_frac = FIELD_GET(ID_AA64PFR1_EL1_MTE_frac, val);
608 	if (mte != ID_AA64PFR1_EL1_MTE_MTE2 ||
609 	    mte_frac != ID_AA64PFR1_EL1_MTE_frac_NI) {
610 		ksft_test_result_skip("MTE_ASYNC or MTE_ASYMM are supported, nothing to test\n");
611 		return;
612 	}
613 
614 	/* Try to set MTE_frac=0. */
615 	val &= ~ID_AA64PFR1_EL1_MTE_frac_MASK;
616 	val |= FIELD_PREP(ID_AA64PFR1_EL1_MTE_frac_MASK, 0);
617 	err = __vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR1_EL1), val);
618 	if (err) {
619 		ksft_test_result_fail("ID_AA64PFR1_EL1.MTE_frac=0 was not accepted\n");
620 		return;
621 	}
622 
623 	val = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR1_EL1));
624 	mte_frac = FIELD_GET(ID_AA64PFR1_EL1_MTE_frac, val);
625 	if (mte_frac == ID_AA64PFR1_EL1_MTE_frac_NI)
626 		ksft_test_result_pass("ID_AA64PFR1_EL1.MTE_frac=0 accepted and still 0xF\n");
627 	else
628 		ksft_test_result_pass("ID_AA64PFR1_EL1.MTE_frac no longer 0xF\n");
629 }
630 
test_guest_reg_read(struct kvm_vcpu * vcpu)631 static void test_guest_reg_read(struct kvm_vcpu *vcpu)
632 {
633 	bool done = false;
634 	struct ucall uc;
635 
636 	while (!done) {
637 		vcpu_run(vcpu);
638 
639 		switch (get_ucall(vcpu, &uc)) {
640 		case UCALL_ABORT:
641 			REPORT_GUEST_ASSERT(uc);
642 			break;
643 		case UCALL_SYNC:
644 			/* Make sure the written values are seen by guest */
645 			TEST_ASSERT_EQ(test_reg_vals[encoding_to_range_idx(uc.args[2])],
646 				       uc.args[3]);
647 			break;
648 		case UCALL_DONE:
649 			done = true;
650 			break;
651 		default:
652 			TEST_FAIL("Unexpected ucall: %lu", uc.cmd);
653 		}
654 	}
655 }
656 
657 /* Politely lifted from arch/arm64/include/asm/cache.h */
658 /* Ctypen, bits[3(n - 1) + 2 : 3(n - 1)], for n = 1 to 7 */
659 #define CLIDR_CTYPE_SHIFT(level)	(3 * (level - 1))
660 #define CLIDR_CTYPE_MASK(level)		(7 << CLIDR_CTYPE_SHIFT(level))
661 #define CLIDR_CTYPE(clidr, level)	\
662 	(((clidr) & CLIDR_CTYPE_MASK(level)) >> CLIDR_CTYPE_SHIFT(level))
663 
test_clidr(struct kvm_vcpu * vcpu)664 static void test_clidr(struct kvm_vcpu *vcpu)
665 {
666 	uint64_t clidr;
667 	int level;
668 
669 	clidr = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_CLIDR_EL1));
670 
671 	/* find the first empty level in the cache hierarchy */
672 	for (level = 1; level < 7; level++) {
673 		if (!CLIDR_CTYPE(clidr, level))
674 			break;
675 	}
676 
677 	/*
678 	 * If you have a mind-boggling 7 levels of cache, congratulations, you
679 	 * get to fix this.
680 	 */
681 	TEST_ASSERT(level <= 7, "can't find an empty level in cache hierarchy");
682 
683 	/* stick in a unified cache level */
684 	clidr |= BIT(2) << CLIDR_CTYPE_SHIFT(level);
685 
686 	vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_CLIDR_EL1), clidr);
687 	test_reg_vals[encoding_to_range_idx(SYS_CLIDR_EL1)] = clidr;
688 }
689 
test_ctr(struct kvm_vcpu * vcpu)690 static void test_ctr(struct kvm_vcpu *vcpu)
691 {
692 	u64 ctr;
693 
694 	ctr = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_CTR_EL0));
695 	ctr &= ~CTR_EL0_DIC_MASK;
696 	if (ctr & CTR_EL0_IminLine_MASK)
697 		ctr--;
698 
699 	vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_CTR_EL0), ctr);
700 	test_reg_vals[encoding_to_range_idx(SYS_CTR_EL0)] = ctr;
701 }
702 
test_id_reg(struct kvm_vcpu * vcpu,u32 id)703 static void test_id_reg(struct kvm_vcpu *vcpu, u32 id)
704 {
705 	u64 val;
706 
707 	val = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(id));
708 	val++;
709 	vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(id), val);
710 	test_reg_vals[encoding_to_range_idx(id)] = val;
711 }
712 
test_vcpu_ftr_id_regs(struct kvm_vcpu * vcpu)713 static void test_vcpu_ftr_id_regs(struct kvm_vcpu *vcpu)
714 {
715 	test_clidr(vcpu);
716 	test_ctr(vcpu);
717 
718 	test_id_reg(vcpu, SYS_MPIDR_EL1);
719 	ksft_test_result_pass("%s\n", __func__);
720 }
721 
test_vcpu_non_ftr_id_regs(struct kvm_vcpu * vcpu)722 static void test_vcpu_non_ftr_id_regs(struct kvm_vcpu *vcpu)
723 {
724 	test_id_reg(vcpu, SYS_MIDR_EL1);
725 	test_id_reg(vcpu, SYS_REVIDR_EL1);
726 	test_id_reg(vcpu, SYS_AIDR_EL1);
727 
728 	ksft_test_result_pass("%s\n", __func__);
729 }
730 
test_assert_id_reg_unchanged(struct kvm_vcpu * vcpu,uint32_t encoding)731 static void test_assert_id_reg_unchanged(struct kvm_vcpu *vcpu, uint32_t encoding)
732 {
733 	size_t idx = encoding_to_range_idx(encoding);
734 	uint64_t observed;
735 
736 	observed = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(encoding));
737 	TEST_ASSERT_EQ(test_reg_vals[idx], observed);
738 }
739 
test_reset_preserves_id_regs(struct kvm_vcpu * vcpu)740 static void test_reset_preserves_id_regs(struct kvm_vcpu *vcpu)
741 {
742 	/*
743 	 * Calls KVM_ARM_VCPU_INIT behind the scenes, which will do an
744 	 * architectural reset of the vCPU.
745 	 */
746 	aarch64_vcpu_setup(vcpu, NULL);
747 
748 	for (int i = 0; i < ARRAY_SIZE(test_regs); i++)
749 		test_assert_id_reg_unchanged(vcpu, test_regs[i].reg);
750 
751 	test_assert_id_reg_unchanged(vcpu, SYS_MPIDR_EL1);
752 	test_assert_id_reg_unchanged(vcpu, SYS_CLIDR_EL1);
753 	test_assert_id_reg_unchanged(vcpu, SYS_CTR_EL0);
754 	test_assert_id_reg_unchanged(vcpu, SYS_MIDR_EL1);
755 	test_assert_id_reg_unchanged(vcpu, SYS_REVIDR_EL1);
756 	test_assert_id_reg_unchanged(vcpu, SYS_AIDR_EL1);
757 
758 	ksft_test_result_pass("%s\n", __func__);
759 }
760 
main(void)761 int main(void)
762 {
763 	struct kvm_vcpu *vcpu;
764 	struct kvm_vm *vm;
765 	bool aarch64_only;
766 	uint64_t val, el0;
767 	int test_cnt, i, j;
768 
769 	TEST_REQUIRE(kvm_has_cap(KVM_CAP_ARM_SUPPORTED_REG_MASK_RANGES));
770 	TEST_REQUIRE(kvm_has_cap(KVM_CAP_ARM_WRITABLE_IMP_ID_REGS));
771 
772 	test_wants_mte();
773 
774 	vm = vm_create(1);
775 	vm_enable_cap(vm, KVM_CAP_ARM_WRITABLE_IMP_ID_REGS, 0);
776 	vcpu = vm_vcpu_add(vm, 0, guest_code);
777 	kvm_arch_vm_finalize_vcpus(vm);
778 
779 	/* Check for AARCH64 only system */
780 	val = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR0_EL1));
781 	el0 = FIELD_GET(ID_AA64PFR0_EL1_EL0, val);
782 	aarch64_only = (el0 == ID_AA64PFR0_EL1_EL0_IMP);
783 
784 	ksft_print_header();
785 
786 	test_cnt = 3 + MPAM_IDREG_TEST + MTE_IDREG_TEST;
787 	for (i = 0; i < ARRAY_SIZE(test_regs); i++)
788 		for (j = 0; test_regs[i].ftr_bits[j].type != FTR_END; j++)
789 			test_cnt++;
790 
791 	ksft_set_plan(test_cnt);
792 
793 	test_vm_ftr_id_regs(vcpu, aarch64_only);
794 	test_vcpu_ftr_id_regs(vcpu);
795 	test_vcpu_non_ftr_id_regs(vcpu);
796 	test_user_set_mpam_reg(vcpu);
797 	test_user_set_mte_reg(vcpu);
798 
799 	test_guest_reg_read(vcpu);
800 
801 	test_reset_preserves_id_regs(vcpu);
802 
803 	kvm_vm_free(vm);
804 
805 	ksft_finished();
806 }
807