1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
4 * Copyright (C) 2016-2017 Milan Broz
5 * Copyright (C) 2016-2017 Mikulas Patocka
6 *
7 * This file is released under the GPL.
8 */
9
10 #include "dm-bio-record.h"
11
12 #include <linux/compiler.h>
13 #include <linux/module.h>
14 #include <linux/device-mapper.h>
15 #include <linux/dm-io.h>
16 #include <linux/vmalloc.h>
17 #include <linux/sort.h>
18 #include <linux/rbtree.h>
19 #include <linux/delay.h>
20 #include <linux/random.h>
21 #include <linux/reboot.h>
22 #include <crypto/hash.h>
23 #include <crypto/skcipher.h>
24 #include <crypto/utils.h>
25 #include <linux/async_tx.h>
26 #include <linux/dm-bufio.h>
27
28 #include "dm-audit.h"
29
30 #define DM_MSG_PREFIX "integrity"
31
32 #define DEFAULT_INTERLEAVE_SECTORS 32768
33 #define DEFAULT_JOURNAL_SIZE_FACTOR 7
34 #define DEFAULT_SECTORS_PER_BITMAP_BIT 32768
35 #define DEFAULT_BUFFER_SECTORS 128
36 #define DEFAULT_JOURNAL_WATERMARK 50
37 #define DEFAULT_SYNC_MSEC 10000
38 #define DEFAULT_MAX_JOURNAL_SECTORS (IS_ENABLED(CONFIG_64BIT) ? 131072 : 8192)
39 #define MIN_LOG2_INTERLEAVE_SECTORS 3
40 #define MAX_LOG2_INTERLEAVE_SECTORS 31
41 #define METADATA_WORKQUEUE_MAX_ACTIVE 16
42 #define RECALC_SECTORS (IS_ENABLED(CONFIG_64BIT) ? 32768 : 2048)
43 #define RECALC_WRITE_SUPER 16
44 #define BITMAP_BLOCK_SIZE 4096 /* don't change it */
45 #define BITMAP_FLUSH_INTERVAL (10 * HZ)
46 #define DISCARD_FILLER 0xf6
47 #define SALT_SIZE 16
48 #define RECHECK_POOL_SIZE 256
49
50 /*
51 * Warning - DEBUG_PRINT prints security-sensitive data to the log,
52 * so it should not be enabled in the official kernel
53 */
54 //#define DEBUG_PRINT
55 //#define INTERNAL_VERIFY
56
57 /*
58 * On disk structures
59 */
60
61 #define SB_MAGIC "integrt"
62 #define SB_VERSION_1 1
63 #define SB_VERSION_2 2
64 #define SB_VERSION_3 3
65 #define SB_VERSION_4 4
66 #define SB_VERSION_5 5
67 #define SB_VERSION_6 6
68 #define SB_SECTORS 8
69 #define MAX_SECTORS_PER_BLOCK 8
70
71 struct superblock {
72 __u8 magic[8];
73 __u8 version;
74 __u8 log2_interleave_sectors;
75 __le16 integrity_tag_size;
76 __le32 journal_sections;
77 __le64 provided_data_sectors; /* userspace uses this value */
78 __le32 flags;
79 __u8 log2_sectors_per_block;
80 __u8 log2_blocks_per_bitmap_bit;
81 __u8 pad[2];
82 __le64 recalc_sector;
83 __u8 pad2[8];
84 __u8 salt[SALT_SIZE];
85 };
86
87 #define SB_FLAG_HAVE_JOURNAL_MAC 0x1
88 #define SB_FLAG_RECALCULATING 0x2
89 #define SB_FLAG_DIRTY_BITMAP 0x4
90 #define SB_FLAG_FIXED_PADDING 0x8
91 #define SB_FLAG_FIXED_HMAC 0x10
92 #define SB_FLAG_INLINE 0x20
93
94 #define JOURNAL_ENTRY_ROUNDUP 8
95
96 typedef __le64 commit_id_t;
97 #define JOURNAL_MAC_PER_SECTOR 8
98
99 struct journal_entry {
100 union {
101 struct {
102 __le32 sector_lo;
103 __le32 sector_hi;
104 } s;
105 __le64 sector;
106 } u;
107 commit_id_t last_bytes[];
108 /* __u8 tag[0]; */
109 };
110
111 #define journal_entry_tag(ic, je) ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
112
113 #if BITS_PER_LONG == 64
114 #define journal_entry_set_sector(je, x) do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
115 #else
116 #define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
117 #endif
118 #define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector)
119 #define journal_entry_is_unused(je) ((je)->u.s.sector_hi == cpu_to_le32(-1))
120 #define journal_entry_set_unused(je) ((je)->u.s.sector_hi = cpu_to_le32(-1))
121 #define journal_entry_is_inprogress(je) ((je)->u.s.sector_hi == cpu_to_le32(-2))
122 #define journal_entry_set_inprogress(je) ((je)->u.s.sector_hi = cpu_to_le32(-2))
123
124 #define JOURNAL_BLOCK_SECTORS 8
125 #define JOURNAL_SECTOR_DATA ((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
126 #define JOURNAL_MAC_SIZE (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
127
128 struct journal_sector {
129 struct_group(sectors,
130 __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
131 __u8 mac[JOURNAL_MAC_PER_SECTOR];
132 );
133 commit_id_t commit_id;
134 };
135
136 #define MAX_TAG_SIZE (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
137
138 #define METADATA_PADDING_SECTORS 8
139
140 #define N_COMMIT_IDS 4
141
prev_commit_seq(unsigned char seq)142 static unsigned char prev_commit_seq(unsigned char seq)
143 {
144 return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
145 }
146
next_commit_seq(unsigned char seq)147 static unsigned char next_commit_seq(unsigned char seq)
148 {
149 return (seq + 1) % N_COMMIT_IDS;
150 }
151
152 /*
153 * In-memory structures
154 */
155
156 struct journal_node {
157 struct rb_node node;
158 sector_t sector;
159 };
160
161 struct alg_spec {
162 char *alg_string;
163 char *key_string;
164 __u8 *key;
165 unsigned int key_size;
166 };
167
168 struct dm_integrity_c {
169 struct dm_dev *dev;
170 struct dm_dev *meta_dev;
171 unsigned int tag_size;
172 __s8 log2_tag_size;
173 unsigned int tuple_size;
174 sector_t start;
175 mempool_t journal_io_mempool;
176 struct dm_io_client *io;
177 struct dm_bufio_client *bufio;
178 struct workqueue_struct *metadata_wq;
179 struct superblock *sb;
180 unsigned int journal_pages;
181 unsigned int n_bitmap_blocks;
182
183 struct page_list *journal;
184 struct page_list *journal_io;
185 struct page_list *journal_xor;
186 struct page_list *recalc_bitmap;
187 struct page_list *may_write_bitmap;
188 struct bitmap_block_status *bbs;
189 unsigned int bitmap_flush_interval;
190 int synchronous_mode;
191 struct bio_list synchronous_bios;
192 struct delayed_work bitmap_flush_work;
193
194 struct crypto_skcipher *journal_crypt;
195 struct scatterlist **journal_scatterlist;
196 struct scatterlist **journal_io_scatterlist;
197 struct skcipher_request **sk_requests;
198
199 struct crypto_shash *journal_mac;
200
201 struct journal_node *journal_tree;
202 struct rb_root journal_tree_root;
203
204 sector_t provided_data_sectors;
205
206 unsigned short journal_entry_size;
207 unsigned char journal_entries_per_sector;
208 unsigned char journal_section_entries;
209 unsigned short journal_section_sectors;
210 unsigned int journal_sections;
211 unsigned int journal_entries;
212 sector_t data_device_sectors;
213 sector_t meta_device_sectors;
214 unsigned int initial_sectors;
215 unsigned int metadata_run;
216 __s8 log2_metadata_run;
217 __u8 log2_buffer_sectors;
218 __u8 sectors_per_block;
219 __u8 log2_blocks_per_bitmap_bit;
220
221 unsigned char mode;
222
223 int failed;
224
225 struct crypto_shash *internal_hash;
226
227 struct dm_target *ti;
228
229 /* these variables are locked with endio_wait.lock */
230 struct rb_root in_progress;
231 struct list_head wait_list;
232 wait_queue_head_t endio_wait;
233 struct workqueue_struct *wait_wq;
234 struct workqueue_struct *offload_wq;
235
236 unsigned char commit_seq;
237 commit_id_t commit_ids[N_COMMIT_IDS];
238
239 unsigned int committed_section;
240 unsigned int n_committed_sections;
241
242 unsigned int uncommitted_section;
243 unsigned int n_uncommitted_sections;
244
245 unsigned int free_section;
246 unsigned char free_section_entry;
247 unsigned int free_sectors;
248
249 unsigned int free_sectors_threshold;
250
251 struct workqueue_struct *commit_wq;
252 struct work_struct commit_work;
253
254 struct workqueue_struct *writer_wq;
255 struct work_struct writer_work;
256
257 struct workqueue_struct *recalc_wq;
258 struct work_struct recalc_work;
259
260 struct bio_list flush_bio_list;
261
262 unsigned long autocommit_jiffies;
263 struct timer_list autocommit_timer;
264 unsigned int autocommit_msec;
265
266 wait_queue_head_t copy_to_journal_wait;
267
268 struct completion crypto_backoff;
269
270 bool wrote_to_journal;
271 bool journal_uptodate;
272 bool just_formatted;
273 bool recalculate_flag;
274 bool reset_recalculate_flag;
275 bool discard;
276 bool fix_padding;
277 bool fix_hmac;
278 bool legacy_recalculate;
279
280 struct alg_spec internal_hash_alg;
281 struct alg_spec journal_crypt_alg;
282 struct alg_spec journal_mac_alg;
283
284 atomic64_t number_of_mismatches;
285
286 mempool_t recheck_pool;
287 struct bio_set recheck_bios;
288 struct bio_set recalc_bios;
289
290 struct notifier_block reboot_notifier;
291 };
292
293 struct dm_integrity_range {
294 sector_t logical_sector;
295 sector_t n_sectors;
296 bool waiting;
297 union {
298 struct rb_node node;
299 struct {
300 struct task_struct *task;
301 struct list_head wait_entry;
302 };
303 };
304 };
305
306 struct dm_integrity_io {
307 struct work_struct work;
308
309 struct dm_integrity_c *ic;
310 enum req_op op;
311 bool fua;
312
313 struct dm_integrity_range range;
314
315 sector_t metadata_block;
316 unsigned int metadata_offset;
317
318 atomic_t in_flight;
319 blk_status_t bi_status;
320
321 struct completion *completion;
322
323 struct dm_bio_details bio_details;
324
325 char *integrity_payload;
326 unsigned payload_len;
327 bool integrity_payload_from_mempool;
328 bool integrity_range_locked;
329 };
330
331 struct journal_completion {
332 struct dm_integrity_c *ic;
333 atomic_t in_flight;
334 struct completion comp;
335 };
336
337 struct journal_io {
338 struct dm_integrity_range range;
339 struct journal_completion *comp;
340 };
341
342 struct bitmap_block_status {
343 struct work_struct work;
344 struct dm_integrity_c *ic;
345 unsigned int idx;
346 unsigned long *bitmap;
347 struct bio_list bio_queue;
348 spinlock_t bio_queue_lock;
349
350 };
351
352 static struct kmem_cache *journal_io_cache;
353
354 #define JOURNAL_IO_MEMPOOL 32
355
356 #ifdef DEBUG_PRINT
357 #define DEBUG_print(x, ...) printk(KERN_DEBUG x, ##__VA_ARGS__)
358 #define DEBUG_bytes(bytes, len, msg, ...) printk(KERN_DEBUG msg "%s%*ph\n", ##__VA_ARGS__, \
359 len ? ": " : "", len, bytes)
360 #else
361 #define DEBUG_print(x, ...) do { } while (0)
362 #define DEBUG_bytes(bytes, len, msg, ...) do { } while (0)
363 #endif
364
365 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
366 static int dm_integrity_map_inline(struct dm_integrity_io *dio, bool from_map);
367 static void integrity_bio_wait(struct work_struct *w);
368 static void dm_integrity_dtr(struct dm_target *ti);
369
dm_integrity_io_error(struct dm_integrity_c * ic,const char * msg,int err)370 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
371 {
372 if (err == -EILSEQ)
373 atomic64_inc(&ic->number_of_mismatches);
374 if (!cmpxchg(&ic->failed, 0, err))
375 DMERR("Error on %s: %d", msg, err);
376 }
377
dm_integrity_failed(struct dm_integrity_c * ic)378 static int dm_integrity_failed(struct dm_integrity_c *ic)
379 {
380 return READ_ONCE(ic->failed);
381 }
382
dm_integrity_disable_recalculate(struct dm_integrity_c * ic)383 static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic)
384 {
385 if (ic->legacy_recalculate)
386 return false;
387 if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) ?
388 ic->internal_hash_alg.key || ic->journal_mac_alg.key :
389 ic->internal_hash_alg.key && !ic->journal_mac_alg.key)
390 return true;
391 return false;
392 }
393
dm_integrity_commit_id(struct dm_integrity_c * ic,unsigned int i,unsigned int j,unsigned char seq)394 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned int i,
395 unsigned int j, unsigned char seq)
396 {
397 /*
398 * Xor the number with section and sector, so that if a piece of
399 * journal is written at wrong place, it is detected.
400 */
401 return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
402 }
403
get_area_and_offset(struct dm_integrity_c * ic,sector_t data_sector,sector_t * area,sector_t * offset)404 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
405 sector_t *area, sector_t *offset)
406 {
407 if (!ic->meta_dev) {
408 __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
409 *area = data_sector >> log2_interleave_sectors;
410 *offset = (unsigned int)data_sector & ((1U << log2_interleave_sectors) - 1);
411 } else {
412 *area = 0;
413 *offset = data_sector;
414 }
415 }
416
417 #define sector_to_block(ic, n) \
418 do { \
419 BUG_ON((n) & (unsigned int)((ic)->sectors_per_block - 1)); \
420 (n) >>= (ic)->sb->log2_sectors_per_block; \
421 } while (0)
422
get_metadata_sector_and_offset(struct dm_integrity_c * ic,sector_t area,sector_t offset,unsigned int * metadata_offset)423 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
424 sector_t offset, unsigned int *metadata_offset)
425 {
426 __u64 ms;
427 unsigned int mo;
428
429 ms = area << ic->sb->log2_interleave_sectors;
430 if (likely(ic->log2_metadata_run >= 0))
431 ms += area << ic->log2_metadata_run;
432 else
433 ms += area * ic->metadata_run;
434 ms >>= ic->log2_buffer_sectors;
435
436 sector_to_block(ic, offset);
437
438 if (likely(ic->log2_tag_size >= 0)) {
439 ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
440 mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
441 } else {
442 ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
443 mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
444 }
445 *metadata_offset = mo;
446 return ms;
447 }
448
get_data_sector(struct dm_integrity_c * ic,sector_t area,sector_t offset)449 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
450 {
451 sector_t result;
452
453 if (ic->meta_dev)
454 return offset;
455
456 result = area << ic->sb->log2_interleave_sectors;
457 if (likely(ic->log2_metadata_run >= 0))
458 result += (area + 1) << ic->log2_metadata_run;
459 else
460 result += (area + 1) * ic->metadata_run;
461
462 result += (sector_t)ic->initial_sectors + offset;
463 result += ic->start;
464
465 return result;
466 }
467
wraparound_section(struct dm_integrity_c * ic,unsigned int * sec_ptr)468 static void wraparound_section(struct dm_integrity_c *ic, unsigned int *sec_ptr)
469 {
470 if (unlikely(*sec_ptr >= ic->journal_sections))
471 *sec_ptr -= ic->journal_sections;
472 }
473
sb_set_version(struct dm_integrity_c * ic)474 static void sb_set_version(struct dm_integrity_c *ic)
475 {
476 if (ic->sb->flags & cpu_to_le32(SB_FLAG_INLINE))
477 ic->sb->version = SB_VERSION_6;
478 else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC))
479 ic->sb->version = SB_VERSION_5;
480 else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING))
481 ic->sb->version = SB_VERSION_4;
482 else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP))
483 ic->sb->version = SB_VERSION_3;
484 else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
485 ic->sb->version = SB_VERSION_2;
486 else
487 ic->sb->version = SB_VERSION_1;
488 }
489
sb_mac(struct dm_integrity_c * ic,bool wr)490 static int sb_mac(struct dm_integrity_c *ic, bool wr)
491 {
492 SHASH_DESC_ON_STACK(desc, ic->journal_mac);
493 int r;
494 unsigned int mac_size = crypto_shash_digestsize(ic->journal_mac);
495 __u8 *sb = (__u8 *)ic->sb;
496 __u8 *mac = sb + (1 << SECTOR_SHIFT) - mac_size;
497
498 if (sizeof(struct superblock) + mac_size > 1 << SECTOR_SHIFT ||
499 mac_size > HASH_MAX_DIGESTSIZE) {
500 dm_integrity_io_error(ic, "digest is too long", -EINVAL);
501 return -EINVAL;
502 }
503
504 desc->tfm = ic->journal_mac;
505
506 if (likely(wr)) {
507 r = crypto_shash_digest(desc, sb, mac - sb, mac);
508 if (unlikely(r < 0)) {
509 dm_integrity_io_error(ic, "crypto_shash_digest", r);
510 return r;
511 }
512 } else {
513 __u8 actual_mac[HASH_MAX_DIGESTSIZE];
514
515 r = crypto_shash_digest(desc, sb, mac - sb, actual_mac);
516 if (unlikely(r < 0)) {
517 dm_integrity_io_error(ic, "crypto_shash_digest", r);
518 return r;
519 }
520 if (crypto_memneq(mac, actual_mac, mac_size)) {
521 dm_integrity_io_error(ic, "superblock mac", -EILSEQ);
522 dm_audit_log_target(DM_MSG_PREFIX, "mac-superblock", ic->ti, 0);
523 return -EILSEQ;
524 }
525 }
526
527 return 0;
528 }
529
sync_rw_sb(struct dm_integrity_c * ic,blk_opf_t opf)530 static int sync_rw_sb(struct dm_integrity_c *ic, blk_opf_t opf)
531 {
532 struct dm_io_request io_req;
533 struct dm_io_region io_loc;
534 const enum req_op op = opf & REQ_OP_MASK;
535 int r;
536
537 io_req.bi_opf = opf;
538 io_req.mem.type = DM_IO_KMEM;
539 io_req.mem.ptr.addr = ic->sb;
540 io_req.notify.fn = NULL;
541 io_req.client = ic->io;
542 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
543 io_loc.sector = ic->start;
544 io_loc.count = SB_SECTORS;
545
546 if (op == REQ_OP_WRITE) {
547 sb_set_version(ic);
548 if (ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
549 r = sb_mac(ic, true);
550 if (unlikely(r))
551 return r;
552 }
553 }
554
555 r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
556 if (unlikely(r))
557 return r;
558
559 if (op == REQ_OP_READ) {
560 if (ic->mode != 'R' && ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
561 r = sb_mac(ic, false);
562 if (unlikely(r))
563 return r;
564 }
565 }
566
567 return 0;
568 }
569
570 #define BITMAP_OP_TEST_ALL_SET 0
571 #define BITMAP_OP_TEST_ALL_CLEAR 1
572 #define BITMAP_OP_SET 2
573 #define BITMAP_OP_CLEAR 3
574
block_bitmap_op(struct dm_integrity_c * ic,struct page_list * bitmap,sector_t sector,sector_t n_sectors,int mode)575 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap,
576 sector_t sector, sector_t n_sectors, int mode)
577 {
578 unsigned long bit, end_bit, this_end_bit, page, end_page;
579 unsigned long *data;
580
581 if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) {
582 DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
583 sector,
584 n_sectors,
585 ic->sb->log2_sectors_per_block,
586 ic->log2_blocks_per_bitmap_bit,
587 mode);
588 BUG();
589 }
590
591 if (unlikely(!n_sectors))
592 return true;
593
594 bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
595 end_bit = (sector + n_sectors - 1) >>
596 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
597
598 page = bit / (PAGE_SIZE * 8);
599 bit %= PAGE_SIZE * 8;
600
601 end_page = end_bit / (PAGE_SIZE * 8);
602 end_bit %= PAGE_SIZE * 8;
603
604 repeat:
605 if (page < end_page)
606 this_end_bit = PAGE_SIZE * 8 - 1;
607 else
608 this_end_bit = end_bit;
609
610 data = lowmem_page_address(bitmap[page].page);
611
612 if (mode == BITMAP_OP_TEST_ALL_SET) {
613 while (bit <= this_end_bit) {
614 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
615 do {
616 if (data[bit / BITS_PER_LONG] != -1)
617 return false;
618 bit += BITS_PER_LONG;
619 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
620 continue;
621 }
622 if (!test_bit(bit, data))
623 return false;
624 bit++;
625 }
626 } else if (mode == BITMAP_OP_TEST_ALL_CLEAR) {
627 while (bit <= this_end_bit) {
628 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
629 do {
630 if (data[bit / BITS_PER_LONG] != 0)
631 return false;
632 bit += BITS_PER_LONG;
633 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
634 continue;
635 }
636 if (test_bit(bit, data))
637 return false;
638 bit++;
639 }
640 } else if (mode == BITMAP_OP_SET) {
641 while (bit <= this_end_bit) {
642 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
643 do {
644 data[bit / BITS_PER_LONG] = -1;
645 bit += BITS_PER_LONG;
646 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
647 continue;
648 }
649 __set_bit(bit, data);
650 bit++;
651 }
652 } else if (mode == BITMAP_OP_CLEAR) {
653 if (!bit && this_end_bit == PAGE_SIZE * 8 - 1)
654 clear_page(data);
655 else {
656 while (bit <= this_end_bit) {
657 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
658 do {
659 data[bit / BITS_PER_LONG] = 0;
660 bit += BITS_PER_LONG;
661 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
662 continue;
663 }
664 __clear_bit(bit, data);
665 bit++;
666 }
667 }
668 } else {
669 BUG();
670 }
671
672 if (unlikely(page < end_page)) {
673 bit = 0;
674 page++;
675 goto repeat;
676 }
677
678 return true;
679 }
680
block_bitmap_copy(struct dm_integrity_c * ic,struct page_list * dst,struct page_list * src)681 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src)
682 {
683 unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
684 unsigned int i;
685
686 for (i = 0; i < n_bitmap_pages; i++) {
687 unsigned long *dst_data = lowmem_page_address(dst[i].page);
688 unsigned long *src_data = lowmem_page_address(src[i].page);
689
690 copy_page(dst_data, src_data);
691 }
692 }
693
sector_to_bitmap_block(struct dm_integrity_c * ic,sector_t sector)694 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector)
695 {
696 unsigned int bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
697 unsigned int bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8);
698
699 BUG_ON(bitmap_block >= ic->n_bitmap_blocks);
700 return &ic->bbs[bitmap_block];
701 }
702
access_journal_check(struct dm_integrity_c * ic,unsigned int section,unsigned int offset,bool e,const char * function)703 static void access_journal_check(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
704 bool e, const char *function)
705 {
706 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
707 unsigned int limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
708
709 if (unlikely(section >= ic->journal_sections) ||
710 unlikely(offset >= limit)) {
711 DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
712 function, section, offset, ic->journal_sections, limit);
713 BUG();
714 }
715 #endif
716 }
717
page_list_location(struct dm_integrity_c * ic,unsigned int section,unsigned int offset,unsigned int * pl_index,unsigned int * pl_offset)718 static void page_list_location(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
719 unsigned int *pl_index, unsigned int *pl_offset)
720 {
721 unsigned int sector;
722
723 access_journal_check(ic, section, offset, false, "page_list_location");
724
725 sector = section * ic->journal_section_sectors + offset;
726
727 *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
728 *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
729 }
730
access_page_list(struct dm_integrity_c * ic,struct page_list * pl,unsigned int section,unsigned int offset,unsigned int * n_sectors)731 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
732 unsigned int section, unsigned int offset, unsigned int *n_sectors)
733 {
734 unsigned int pl_index, pl_offset;
735 char *va;
736
737 page_list_location(ic, section, offset, &pl_index, &pl_offset);
738
739 if (n_sectors)
740 *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
741
742 va = lowmem_page_address(pl[pl_index].page);
743
744 return (struct journal_sector *)(va + pl_offset);
745 }
746
access_journal(struct dm_integrity_c * ic,unsigned int section,unsigned int offset)747 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset)
748 {
749 return access_page_list(ic, ic->journal, section, offset, NULL);
750 }
751
access_journal_entry(struct dm_integrity_c * ic,unsigned int section,unsigned int n)752 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
753 {
754 unsigned int rel_sector, offset;
755 struct journal_sector *js;
756
757 access_journal_check(ic, section, n, true, "access_journal_entry");
758
759 rel_sector = n % JOURNAL_BLOCK_SECTORS;
760 offset = n / JOURNAL_BLOCK_SECTORS;
761
762 js = access_journal(ic, section, rel_sector);
763 return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
764 }
765
access_journal_data(struct dm_integrity_c * ic,unsigned int section,unsigned int n)766 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
767 {
768 n <<= ic->sb->log2_sectors_per_block;
769
770 n += JOURNAL_BLOCK_SECTORS;
771
772 access_journal_check(ic, section, n, false, "access_journal_data");
773
774 return access_journal(ic, section, n);
775 }
776
section_mac(struct dm_integrity_c * ic,unsigned int section,__u8 result[JOURNAL_MAC_SIZE])777 static void section_mac(struct dm_integrity_c *ic, unsigned int section, __u8 result[JOURNAL_MAC_SIZE])
778 {
779 SHASH_DESC_ON_STACK(desc, ic->journal_mac);
780 int r;
781 unsigned int j, size;
782
783 desc->tfm = ic->journal_mac;
784
785 r = crypto_shash_init(desc);
786 if (unlikely(r < 0)) {
787 dm_integrity_io_error(ic, "crypto_shash_init", r);
788 goto err;
789 }
790
791 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
792 __le64 section_le;
793
794 r = crypto_shash_update(desc, (__u8 *)&ic->sb->salt, SALT_SIZE);
795 if (unlikely(r < 0)) {
796 dm_integrity_io_error(ic, "crypto_shash_update", r);
797 goto err;
798 }
799
800 section_le = cpu_to_le64(section);
801 r = crypto_shash_update(desc, (__u8 *)§ion_le, sizeof(section_le));
802 if (unlikely(r < 0)) {
803 dm_integrity_io_error(ic, "crypto_shash_update", r);
804 goto err;
805 }
806 }
807
808 for (j = 0; j < ic->journal_section_entries; j++) {
809 struct journal_entry *je = access_journal_entry(ic, section, j);
810
811 r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof(je->u.sector));
812 if (unlikely(r < 0)) {
813 dm_integrity_io_error(ic, "crypto_shash_update", r);
814 goto err;
815 }
816 }
817
818 size = crypto_shash_digestsize(ic->journal_mac);
819
820 if (likely(size <= JOURNAL_MAC_SIZE)) {
821 r = crypto_shash_final(desc, result);
822 if (unlikely(r < 0)) {
823 dm_integrity_io_error(ic, "crypto_shash_final", r);
824 goto err;
825 }
826 memset(result + size, 0, JOURNAL_MAC_SIZE - size);
827 } else {
828 __u8 digest[HASH_MAX_DIGESTSIZE];
829
830 if (WARN_ON(size > sizeof(digest))) {
831 dm_integrity_io_error(ic, "digest_size", -EINVAL);
832 goto err;
833 }
834 r = crypto_shash_final(desc, digest);
835 if (unlikely(r < 0)) {
836 dm_integrity_io_error(ic, "crypto_shash_final", r);
837 goto err;
838 }
839 memcpy(result, digest, JOURNAL_MAC_SIZE);
840 }
841
842 return;
843 err:
844 memset(result, 0, JOURNAL_MAC_SIZE);
845 }
846
rw_section_mac(struct dm_integrity_c * ic,unsigned int section,bool wr)847 static void rw_section_mac(struct dm_integrity_c *ic, unsigned int section, bool wr)
848 {
849 __u8 result[JOURNAL_MAC_SIZE];
850 unsigned int j;
851
852 if (!ic->journal_mac)
853 return;
854
855 section_mac(ic, section, result);
856
857 for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
858 struct journal_sector *js = access_journal(ic, section, j);
859
860 if (likely(wr))
861 memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
862 else {
863 if (crypto_memneq(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR)) {
864 dm_integrity_io_error(ic, "journal mac", -EILSEQ);
865 dm_audit_log_target(DM_MSG_PREFIX, "mac-journal", ic->ti, 0);
866 }
867 }
868 }
869 }
870
complete_journal_op(void * context)871 static void complete_journal_op(void *context)
872 {
873 struct journal_completion *comp = context;
874
875 BUG_ON(!atomic_read(&comp->in_flight));
876 if (likely(atomic_dec_and_test(&comp->in_flight)))
877 complete(&comp->comp);
878 }
879
xor_journal(struct dm_integrity_c * ic,bool encrypt,unsigned int section,unsigned int n_sections,struct journal_completion * comp)880 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
881 unsigned int n_sections, struct journal_completion *comp)
882 {
883 struct async_submit_ctl submit;
884 size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
885 unsigned int pl_index, pl_offset, section_index;
886 struct page_list *source_pl, *target_pl;
887
888 if (likely(encrypt)) {
889 source_pl = ic->journal;
890 target_pl = ic->journal_io;
891 } else {
892 source_pl = ic->journal_io;
893 target_pl = ic->journal;
894 }
895
896 page_list_location(ic, section, 0, &pl_index, &pl_offset);
897
898 atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
899
900 init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
901
902 section_index = pl_index;
903
904 do {
905 size_t this_step;
906 struct page *src_pages[2];
907 struct page *dst_page;
908
909 while (unlikely(pl_index == section_index)) {
910 unsigned int dummy;
911
912 if (likely(encrypt))
913 rw_section_mac(ic, section, true);
914 section++;
915 n_sections--;
916 if (!n_sections)
917 break;
918 page_list_location(ic, section, 0, §ion_index, &dummy);
919 }
920
921 this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
922 dst_page = target_pl[pl_index].page;
923 src_pages[0] = source_pl[pl_index].page;
924 src_pages[1] = ic->journal_xor[pl_index].page;
925
926 async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
927
928 pl_index++;
929 pl_offset = 0;
930 n_bytes -= this_step;
931 } while (n_bytes);
932
933 BUG_ON(n_sections);
934
935 async_tx_issue_pending_all();
936 }
937
complete_journal_encrypt(void * data,int err)938 static void complete_journal_encrypt(void *data, int err)
939 {
940 struct journal_completion *comp = data;
941
942 if (unlikely(err)) {
943 if (likely(err == -EINPROGRESS)) {
944 complete(&comp->ic->crypto_backoff);
945 return;
946 }
947 dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
948 }
949 complete_journal_op(comp);
950 }
951
do_crypt(bool encrypt,struct skcipher_request * req,struct journal_completion * comp)952 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
953 {
954 int r;
955
956 skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
957 complete_journal_encrypt, comp);
958 if (likely(encrypt))
959 r = crypto_skcipher_encrypt(req);
960 else
961 r = crypto_skcipher_decrypt(req);
962 if (likely(!r))
963 return false;
964 if (likely(r == -EINPROGRESS))
965 return true;
966 if (likely(r == -EBUSY)) {
967 wait_for_completion(&comp->ic->crypto_backoff);
968 reinit_completion(&comp->ic->crypto_backoff);
969 return true;
970 }
971 dm_integrity_io_error(comp->ic, "encrypt", r);
972 return false;
973 }
974
crypt_journal(struct dm_integrity_c * ic,bool encrypt,unsigned int section,unsigned int n_sections,struct journal_completion * comp)975 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
976 unsigned int n_sections, struct journal_completion *comp)
977 {
978 struct scatterlist **source_sg;
979 struct scatterlist **target_sg;
980
981 atomic_add(2, &comp->in_flight);
982
983 if (likely(encrypt)) {
984 source_sg = ic->journal_scatterlist;
985 target_sg = ic->journal_io_scatterlist;
986 } else {
987 source_sg = ic->journal_io_scatterlist;
988 target_sg = ic->journal_scatterlist;
989 }
990
991 do {
992 struct skcipher_request *req;
993 unsigned int ivsize;
994 char *iv;
995
996 if (likely(encrypt))
997 rw_section_mac(ic, section, true);
998
999 req = ic->sk_requests[section];
1000 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
1001 iv = req->iv;
1002
1003 memcpy(iv, iv + ivsize, ivsize);
1004
1005 req->src = source_sg[section];
1006 req->dst = target_sg[section];
1007
1008 if (unlikely(do_crypt(encrypt, req, comp)))
1009 atomic_inc(&comp->in_flight);
1010
1011 section++;
1012 n_sections--;
1013 } while (n_sections);
1014
1015 atomic_dec(&comp->in_flight);
1016 complete_journal_op(comp);
1017 }
1018
encrypt_journal(struct dm_integrity_c * ic,bool encrypt,unsigned int section,unsigned int n_sections,struct journal_completion * comp)1019 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
1020 unsigned int n_sections, struct journal_completion *comp)
1021 {
1022 if (ic->journal_xor)
1023 return xor_journal(ic, encrypt, section, n_sections, comp);
1024 else
1025 return crypt_journal(ic, encrypt, section, n_sections, comp);
1026 }
1027
complete_journal_io(unsigned long error,void * context)1028 static void complete_journal_io(unsigned long error, void *context)
1029 {
1030 struct journal_completion *comp = context;
1031
1032 if (unlikely(error != 0))
1033 dm_integrity_io_error(comp->ic, "writing journal", -EIO);
1034 complete_journal_op(comp);
1035 }
1036
rw_journal_sectors(struct dm_integrity_c * ic,blk_opf_t opf,unsigned int sector,unsigned int n_sectors,struct journal_completion * comp)1037 static void rw_journal_sectors(struct dm_integrity_c *ic, blk_opf_t opf,
1038 unsigned int sector, unsigned int n_sectors,
1039 struct journal_completion *comp)
1040 {
1041 struct dm_io_request io_req;
1042 struct dm_io_region io_loc;
1043 unsigned int pl_index, pl_offset;
1044 int r;
1045
1046 if (unlikely(dm_integrity_failed(ic))) {
1047 if (comp)
1048 complete_journal_io(-1UL, comp);
1049 return;
1050 }
1051
1052 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1053 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1054
1055 io_req.bi_opf = opf;
1056 io_req.mem.type = DM_IO_PAGE_LIST;
1057 if (ic->journal_io)
1058 io_req.mem.ptr.pl = &ic->journal_io[pl_index];
1059 else
1060 io_req.mem.ptr.pl = &ic->journal[pl_index];
1061 io_req.mem.offset = pl_offset;
1062 if (likely(comp != NULL)) {
1063 io_req.notify.fn = complete_journal_io;
1064 io_req.notify.context = comp;
1065 } else {
1066 io_req.notify.fn = NULL;
1067 }
1068 io_req.client = ic->io;
1069 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
1070 io_loc.sector = ic->start + SB_SECTORS + sector;
1071 io_loc.count = n_sectors;
1072
1073 r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
1074 if (unlikely(r)) {
1075 dm_integrity_io_error(ic, (opf & REQ_OP_MASK) == REQ_OP_READ ?
1076 "reading journal" : "writing journal", r);
1077 if (comp) {
1078 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1079 complete_journal_io(-1UL, comp);
1080 }
1081 }
1082 }
1083
rw_journal(struct dm_integrity_c * ic,blk_opf_t opf,unsigned int section,unsigned int n_sections,struct journal_completion * comp)1084 static void rw_journal(struct dm_integrity_c *ic, blk_opf_t opf,
1085 unsigned int section, unsigned int n_sections,
1086 struct journal_completion *comp)
1087 {
1088 unsigned int sector, n_sectors;
1089
1090 sector = section * ic->journal_section_sectors;
1091 n_sectors = n_sections * ic->journal_section_sectors;
1092
1093 rw_journal_sectors(ic, opf, sector, n_sectors, comp);
1094 }
1095
write_journal(struct dm_integrity_c * ic,unsigned int commit_start,unsigned int commit_sections)1096 static void write_journal(struct dm_integrity_c *ic, unsigned int commit_start, unsigned int commit_sections)
1097 {
1098 struct journal_completion io_comp;
1099 struct journal_completion crypt_comp_1;
1100 struct journal_completion crypt_comp_2;
1101 unsigned int i;
1102
1103 io_comp.ic = ic;
1104 init_completion(&io_comp.comp);
1105
1106 if (commit_start + commit_sections <= ic->journal_sections) {
1107 io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1108 if (ic->journal_io) {
1109 crypt_comp_1.ic = ic;
1110 init_completion(&crypt_comp_1.comp);
1111 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1112 encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
1113 wait_for_completion_io(&crypt_comp_1.comp);
1114 } else {
1115 for (i = 0; i < commit_sections; i++)
1116 rw_section_mac(ic, commit_start + i, true);
1117 }
1118 rw_journal(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, commit_start,
1119 commit_sections, &io_comp);
1120 } else {
1121 unsigned int to_end;
1122
1123 io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
1124 to_end = ic->journal_sections - commit_start;
1125 if (ic->journal_io) {
1126 crypt_comp_1.ic = ic;
1127 init_completion(&crypt_comp_1.comp);
1128 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1129 encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
1130 if (try_wait_for_completion(&crypt_comp_1.comp)) {
1131 rw_journal(ic, REQ_OP_WRITE | REQ_FUA,
1132 commit_start, to_end, &io_comp);
1133 reinit_completion(&crypt_comp_1.comp);
1134 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1135 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
1136 wait_for_completion_io(&crypt_comp_1.comp);
1137 } else {
1138 crypt_comp_2.ic = ic;
1139 init_completion(&crypt_comp_2.comp);
1140 crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
1141 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
1142 wait_for_completion_io(&crypt_comp_1.comp);
1143 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
1144 wait_for_completion_io(&crypt_comp_2.comp);
1145 }
1146 } else {
1147 for (i = 0; i < to_end; i++)
1148 rw_section_mac(ic, commit_start + i, true);
1149 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
1150 for (i = 0; i < commit_sections - to_end; i++)
1151 rw_section_mac(ic, i, true);
1152 }
1153 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, 0, commit_sections - to_end, &io_comp);
1154 }
1155
1156 wait_for_completion_io(&io_comp.comp);
1157 }
1158
copy_from_journal(struct dm_integrity_c * ic,unsigned int section,unsigned int offset,unsigned int n_sectors,sector_t target,io_notify_fn fn,void * data)1159 static void copy_from_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
1160 unsigned int n_sectors, sector_t target, io_notify_fn fn, void *data)
1161 {
1162 struct dm_io_request io_req;
1163 struct dm_io_region io_loc;
1164 int r;
1165 unsigned int sector, pl_index, pl_offset;
1166
1167 BUG_ON((target | n_sectors | offset) & (unsigned int)(ic->sectors_per_block - 1));
1168
1169 if (unlikely(dm_integrity_failed(ic))) {
1170 fn(-1UL, data);
1171 return;
1172 }
1173
1174 sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
1175
1176 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1177 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1178
1179 io_req.bi_opf = REQ_OP_WRITE;
1180 io_req.mem.type = DM_IO_PAGE_LIST;
1181 io_req.mem.ptr.pl = &ic->journal[pl_index];
1182 io_req.mem.offset = pl_offset;
1183 io_req.notify.fn = fn;
1184 io_req.notify.context = data;
1185 io_req.client = ic->io;
1186 io_loc.bdev = ic->dev->bdev;
1187 io_loc.sector = target;
1188 io_loc.count = n_sectors;
1189
1190 r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
1191 if (unlikely(r)) {
1192 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1193 fn(-1UL, data);
1194 }
1195 }
1196
ranges_overlap(struct dm_integrity_range * range1,struct dm_integrity_range * range2)1197 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
1198 {
1199 return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
1200 range1->logical_sector + range1->n_sectors > range2->logical_sector;
1201 }
1202
add_new_range(struct dm_integrity_c * ic,struct dm_integrity_range * new_range,bool check_waiting)1203 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
1204 {
1205 struct rb_node **n = &ic->in_progress.rb_node;
1206 struct rb_node *parent;
1207
1208 BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned int)(ic->sectors_per_block - 1));
1209
1210 if (likely(check_waiting)) {
1211 struct dm_integrity_range *range;
1212
1213 list_for_each_entry(range, &ic->wait_list, wait_entry) {
1214 if (unlikely(ranges_overlap(range, new_range)))
1215 return false;
1216 }
1217 }
1218
1219 parent = NULL;
1220
1221 while (*n) {
1222 struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
1223
1224 parent = *n;
1225 if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector)
1226 n = &range->node.rb_left;
1227 else if (new_range->logical_sector >= range->logical_sector + range->n_sectors)
1228 n = &range->node.rb_right;
1229 else
1230 return false;
1231 }
1232
1233 rb_link_node(&new_range->node, parent, n);
1234 rb_insert_color(&new_range->node, &ic->in_progress);
1235
1236 return true;
1237 }
1238
remove_range_unlocked(struct dm_integrity_c * ic,struct dm_integrity_range * range)1239 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1240 {
1241 rb_erase(&range->node, &ic->in_progress);
1242 while (unlikely(!list_empty(&ic->wait_list))) {
1243 struct dm_integrity_range *last_range =
1244 list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
1245 struct task_struct *last_range_task;
1246
1247 last_range_task = last_range->task;
1248 list_del(&last_range->wait_entry);
1249 if (!add_new_range(ic, last_range, false)) {
1250 last_range->task = last_range_task;
1251 list_add(&last_range->wait_entry, &ic->wait_list);
1252 break;
1253 }
1254 last_range->waiting = false;
1255 wake_up_process(last_range_task);
1256 }
1257 }
1258
remove_range(struct dm_integrity_c * ic,struct dm_integrity_range * range)1259 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1260 {
1261 unsigned long flags;
1262
1263 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1264 remove_range_unlocked(ic, range);
1265 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1266 }
1267
wait_and_add_new_range(struct dm_integrity_c * ic,struct dm_integrity_range * new_range)1268 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1269 {
1270 new_range->waiting = true;
1271 list_add_tail(&new_range->wait_entry, &ic->wait_list);
1272 new_range->task = current;
1273 do {
1274 __set_current_state(TASK_UNINTERRUPTIBLE);
1275 spin_unlock_irq(&ic->endio_wait.lock);
1276 io_schedule();
1277 spin_lock_irq(&ic->endio_wait.lock);
1278 } while (unlikely(new_range->waiting));
1279 }
1280
add_new_range_and_wait(struct dm_integrity_c * ic,struct dm_integrity_range * new_range)1281 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1282 {
1283 if (unlikely(!add_new_range(ic, new_range, true)))
1284 wait_and_add_new_range(ic, new_range);
1285 }
1286
init_journal_node(struct journal_node * node)1287 static void init_journal_node(struct journal_node *node)
1288 {
1289 RB_CLEAR_NODE(&node->node);
1290 node->sector = (sector_t)-1;
1291 }
1292
add_journal_node(struct dm_integrity_c * ic,struct journal_node * node,sector_t sector)1293 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1294 {
1295 struct rb_node **link;
1296 struct rb_node *parent;
1297
1298 node->sector = sector;
1299 BUG_ON(!RB_EMPTY_NODE(&node->node));
1300
1301 link = &ic->journal_tree_root.rb_node;
1302 parent = NULL;
1303
1304 while (*link) {
1305 struct journal_node *j;
1306
1307 parent = *link;
1308 j = container_of(parent, struct journal_node, node);
1309 if (sector < j->sector)
1310 link = &j->node.rb_left;
1311 else
1312 link = &j->node.rb_right;
1313 }
1314
1315 rb_link_node(&node->node, parent, link);
1316 rb_insert_color(&node->node, &ic->journal_tree_root);
1317 }
1318
remove_journal_node(struct dm_integrity_c * ic,struct journal_node * node)1319 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1320 {
1321 BUG_ON(RB_EMPTY_NODE(&node->node));
1322 rb_erase(&node->node, &ic->journal_tree_root);
1323 init_journal_node(node);
1324 }
1325
1326 #define NOT_FOUND (-1U)
1327
find_journal_node(struct dm_integrity_c * ic,sector_t sector,sector_t * next_sector)1328 static unsigned int find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1329 {
1330 struct rb_node *n = ic->journal_tree_root.rb_node;
1331 unsigned int found = NOT_FOUND;
1332
1333 *next_sector = (sector_t)-1;
1334 while (n) {
1335 struct journal_node *j = container_of(n, struct journal_node, node);
1336
1337 if (sector == j->sector)
1338 found = j - ic->journal_tree;
1339
1340 if (sector < j->sector) {
1341 *next_sector = j->sector;
1342 n = j->node.rb_left;
1343 } else
1344 n = j->node.rb_right;
1345 }
1346
1347 return found;
1348 }
1349
test_journal_node(struct dm_integrity_c * ic,unsigned int pos,sector_t sector)1350 static bool test_journal_node(struct dm_integrity_c *ic, unsigned int pos, sector_t sector)
1351 {
1352 struct journal_node *node, *next_node;
1353 struct rb_node *next;
1354
1355 if (unlikely(pos >= ic->journal_entries))
1356 return false;
1357 node = &ic->journal_tree[pos];
1358 if (unlikely(RB_EMPTY_NODE(&node->node)))
1359 return false;
1360 if (unlikely(node->sector != sector))
1361 return false;
1362
1363 next = rb_next(&node->node);
1364 if (unlikely(!next))
1365 return true;
1366
1367 next_node = container_of(next, struct journal_node, node);
1368 return next_node->sector != sector;
1369 }
1370
find_newer_committed_node(struct dm_integrity_c * ic,struct journal_node * node)1371 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1372 {
1373 struct rb_node *next;
1374 struct journal_node *next_node;
1375 unsigned int next_section;
1376
1377 BUG_ON(RB_EMPTY_NODE(&node->node));
1378
1379 next = rb_next(&node->node);
1380 if (unlikely(!next))
1381 return false;
1382
1383 next_node = container_of(next, struct journal_node, node);
1384
1385 if (next_node->sector != node->sector)
1386 return false;
1387
1388 next_section = (unsigned int)(next_node - ic->journal_tree) / ic->journal_section_entries;
1389 if (next_section >= ic->committed_section &&
1390 next_section < ic->committed_section + ic->n_committed_sections)
1391 return true;
1392 if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1393 return true;
1394
1395 return false;
1396 }
1397
1398 #define TAG_READ 0
1399 #define TAG_WRITE 1
1400 #define TAG_CMP 2
1401
dm_integrity_rw_tag(struct dm_integrity_c * ic,unsigned char * tag,sector_t * metadata_block,unsigned int * metadata_offset,unsigned int total_size,int op)1402 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1403 unsigned int *metadata_offset, unsigned int total_size, int op)
1404 {
1405 unsigned int hash_offset = 0;
1406 unsigned char mismatch_hash = 0;
1407 unsigned char mismatch_filler = !ic->discard;
1408
1409 do {
1410 unsigned char *data, *dp;
1411 struct dm_buffer *b;
1412 unsigned int to_copy;
1413 int r;
1414
1415 r = dm_integrity_failed(ic);
1416 if (unlikely(r))
1417 return r;
1418
1419 data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1420 if (IS_ERR(data))
1421 return PTR_ERR(data);
1422
1423 to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1424 dp = data + *metadata_offset;
1425 if (op == TAG_READ) {
1426 memcpy(tag, dp, to_copy);
1427 } else if (op == TAG_WRITE) {
1428 if (crypto_memneq(dp, tag, to_copy)) {
1429 memcpy(dp, tag, to_copy);
1430 dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1431 }
1432 } else {
1433 /* e.g.: op == TAG_CMP */
1434
1435 if (likely(is_power_of_2(ic->tag_size))) {
1436 if (unlikely(crypto_memneq(dp, tag, to_copy)))
1437 goto thorough_test;
1438 } else {
1439 unsigned int i, ts;
1440 thorough_test:
1441 ts = total_size;
1442
1443 for (i = 0; i < to_copy; i++, ts--) {
1444 /*
1445 * Warning: the control flow must not be
1446 * dependent on match/mismatch of
1447 * individual bytes.
1448 */
1449 mismatch_hash |= dp[i] ^ tag[i];
1450 mismatch_filler |= dp[i] ^ DISCARD_FILLER;
1451 hash_offset++;
1452 if (unlikely(hash_offset == ic->tag_size)) {
1453 if (unlikely(mismatch_hash) && unlikely(mismatch_filler)) {
1454 dm_bufio_release(b);
1455 return ts;
1456 }
1457 hash_offset = 0;
1458 mismatch_hash = 0;
1459 mismatch_filler = !ic->discard;
1460 }
1461 }
1462 }
1463 }
1464 dm_bufio_release(b);
1465
1466 tag += to_copy;
1467 *metadata_offset += to_copy;
1468 if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1469 (*metadata_block)++;
1470 *metadata_offset = 0;
1471 }
1472
1473 if (unlikely(!is_power_of_2(ic->tag_size)))
1474 hash_offset = (hash_offset + to_copy) % ic->tag_size;
1475
1476 total_size -= to_copy;
1477 } while (unlikely(total_size));
1478
1479 return 0;
1480 }
1481
1482 struct flush_request {
1483 struct dm_io_request io_req;
1484 struct dm_io_region io_reg;
1485 struct dm_integrity_c *ic;
1486 struct completion comp;
1487 };
1488
flush_notify(unsigned long error,void * fr_)1489 static void flush_notify(unsigned long error, void *fr_)
1490 {
1491 struct flush_request *fr = fr_;
1492
1493 if (unlikely(error != 0))
1494 dm_integrity_io_error(fr->ic, "flushing disk cache", -EIO);
1495 complete(&fr->comp);
1496 }
1497
dm_integrity_flush_buffers(struct dm_integrity_c * ic,bool flush_data)1498 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data)
1499 {
1500 int r;
1501 struct flush_request fr;
1502
1503 if (!ic->meta_dev)
1504 flush_data = false;
1505 if (flush_data) {
1506 fr.io_req.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1507 fr.io_req.mem.type = DM_IO_KMEM;
1508 fr.io_req.mem.ptr.addr = NULL;
1509 fr.io_req.notify.fn = flush_notify;
1510 fr.io_req.notify.context = &fr;
1511 fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio);
1512 fr.io_reg.bdev = ic->dev->bdev;
1513 fr.io_reg.sector = 0;
1514 fr.io_reg.count = 0;
1515 fr.ic = ic;
1516 init_completion(&fr.comp);
1517 r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL, IOPRIO_DEFAULT);
1518 BUG_ON(r);
1519 }
1520
1521 r = dm_bufio_write_dirty_buffers(ic->bufio);
1522 if (unlikely(r))
1523 dm_integrity_io_error(ic, "writing tags", r);
1524
1525 if (flush_data)
1526 wait_for_completion(&fr.comp);
1527 }
1528
sleep_on_endio_wait(struct dm_integrity_c * ic)1529 static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1530 {
1531 DECLARE_WAITQUEUE(wait, current);
1532
1533 __add_wait_queue(&ic->endio_wait, &wait);
1534 __set_current_state(TASK_UNINTERRUPTIBLE);
1535 spin_unlock_irq(&ic->endio_wait.lock);
1536 io_schedule();
1537 spin_lock_irq(&ic->endio_wait.lock);
1538 __remove_wait_queue(&ic->endio_wait, &wait);
1539 }
1540
autocommit_fn(struct timer_list * t)1541 static void autocommit_fn(struct timer_list *t)
1542 {
1543 struct dm_integrity_c *ic = timer_container_of(ic, t,
1544 autocommit_timer);
1545
1546 if (likely(!dm_integrity_failed(ic)))
1547 queue_work(ic->commit_wq, &ic->commit_work);
1548 }
1549
schedule_autocommit(struct dm_integrity_c * ic)1550 static void schedule_autocommit(struct dm_integrity_c *ic)
1551 {
1552 if (!timer_pending(&ic->autocommit_timer))
1553 mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1554 }
1555
submit_flush_bio(struct dm_integrity_c * ic,struct dm_integrity_io * dio)1556 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1557 {
1558 struct bio *bio;
1559 unsigned long flags;
1560
1561 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1562 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1563 bio_list_add(&ic->flush_bio_list, bio);
1564 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1565
1566 queue_work(ic->commit_wq, &ic->commit_work);
1567 }
1568
do_endio(struct dm_integrity_c * ic,struct bio * bio)1569 static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1570 {
1571 int r;
1572
1573 r = dm_integrity_failed(ic);
1574 if (unlikely(r) && !bio->bi_status)
1575 bio->bi_status = errno_to_blk_status(r);
1576 if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) {
1577 unsigned long flags;
1578
1579 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1580 bio_list_add(&ic->synchronous_bios, bio);
1581 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
1582 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1583 return;
1584 }
1585 bio_endio(bio);
1586 }
1587
do_endio_flush(struct dm_integrity_c * ic,struct dm_integrity_io * dio)1588 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1589 {
1590 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1591
1592 if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1593 submit_flush_bio(ic, dio);
1594 else
1595 do_endio(ic, bio);
1596 }
1597
dec_in_flight(struct dm_integrity_io * dio)1598 static void dec_in_flight(struct dm_integrity_io *dio)
1599 {
1600 if (atomic_dec_and_test(&dio->in_flight)) {
1601 struct dm_integrity_c *ic = dio->ic;
1602 struct bio *bio;
1603
1604 remove_range(ic, &dio->range);
1605
1606 if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))
1607 schedule_autocommit(ic);
1608
1609 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1610 if (unlikely(dio->bi_status) && !bio->bi_status)
1611 bio->bi_status = dio->bi_status;
1612 if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1613 dio->range.logical_sector += dio->range.n_sectors;
1614 bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1615 INIT_WORK(&dio->work, integrity_bio_wait);
1616 queue_work(ic->offload_wq, &dio->work);
1617 return;
1618 }
1619 do_endio_flush(ic, dio);
1620 }
1621 }
1622
integrity_end_io(struct bio * bio)1623 static void integrity_end_io(struct bio *bio)
1624 {
1625 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1626
1627 dm_bio_restore(&dio->bio_details, bio);
1628 if (bio->bi_integrity)
1629 bio->bi_opf |= REQ_INTEGRITY;
1630
1631 if (dio->completion)
1632 complete(dio->completion);
1633
1634 dec_in_flight(dio);
1635 }
1636
integrity_sector_checksum(struct dm_integrity_c * ic,sector_t sector,const char * data,char * result)1637 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1638 const char *data, char *result)
1639 {
1640 __le64 sector_le = cpu_to_le64(sector);
1641 SHASH_DESC_ON_STACK(req, ic->internal_hash);
1642 int r;
1643 unsigned int digest_size;
1644
1645 req->tfm = ic->internal_hash;
1646
1647 r = crypto_shash_init(req);
1648 if (unlikely(r < 0)) {
1649 dm_integrity_io_error(ic, "crypto_shash_init", r);
1650 goto failed;
1651 }
1652
1653 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
1654 r = crypto_shash_update(req, (__u8 *)&ic->sb->salt, SALT_SIZE);
1655 if (unlikely(r < 0)) {
1656 dm_integrity_io_error(ic, "crypto_shash_update", r);
1657 goto failed;
1658 }
1659 }
1660
1661 r = crypto_shash_update(req, (const __u8 *)§or_le, sizeof(sector_le));
1662 if (unlikely(r < 0)) {
1663 dm_integrity_io_error(ic, "crypto_shash_update", r);
1664 goto failed;
1665 }
1666
1667 r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1668 if (unlikely(r < 0)) {
1669 dm_integrity_io_error(ic, "crypto_shash_update", r);
1670 goto failed;
1671 }
1672
1673 r = crypto_shash_final(req, result);
1674 if (unlikely(r < 0)) {
1675 dm_integrity_io_error(ic, "crypto_shash_final", r);
1676 goto failed;
1677 }
1678
1679 digest_size = crypto_shash_digestsize(ic->internal_hash);
1680 if (unlikely(digest_size < ic->tag_size))
1681 memset(result + digest_size, 0, ic->tag_size - digest_size);
1682
1683 return;
1684
1685 failed:
1686 /* this shouldn't happen anyway, the hash functions have no reason to fail */
1687 get_random_bytes(result, ic->tag_size);
1688 }
1689
integrity_recheck(struct dm_integrity_io * dio,char * checksum)1690 static noinline void integrity_recheck(struct dm_integrity_io *dio, char *checksum)
1691 {
1692 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1693 struct dm_integrity_c *ic = dio->ic;
1694 struct bvec_iter iter;
1695 struct bio_vec bv;
1696 sector_t sector, logical_sector, area, offset;
1697 struct page *page;
1698
1699 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1700 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset,
1701 &dio->metadata_offset);
1702 sector = get_data_sector(ic, area, offset);
1703 logical_sector = dio->range.logical_sector;
1704
1705 page = mempool_alloc(&ic->recheck_pool, GFP_NOIO);
1706
1707 __bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1708 unsigned pos = 0;
1709
1710 do {
1711 sector_t alignment;
1712 char *mem;
1713 char *buffer = page_to_virt(page);
1714 int r;
1715 struct dm_io_request io_req;
1716 struct dm_io_region io_loc;
1717 io_req.bi_opf = REQ_OP_READ;
1718 io_req.mem.type = DM_IO_KMEM;
1719 io_req.mem.ptr.addr = buffer;
1720 io_req.notify.fn = NULL;
1721 io_req.client = ic->io;
1722 io_loc.bdev = ic->dev->bdev;
1723 io_loc.sector = sector;
1724 io_loc.count = ic->sectors_per_block;
1725
1726 /* Align the bio to logical block size */
1727 alignment = dio->range.logical_sector | bio_sectors(bio) | (PAGE_SIZE >> SECTOR_SHIFT);
1728 alignment &= -alignment;
1729 io_loc.sector = round_down(io_loc.sector, alignment);
1730 io_loc.count += sector - io_loc.sector;
1731 buffer += (sector - io_loc.sector) << SECTOR_SHIFT;
1732 io_loc.count = round_up(io_loc.count, alignment);
1733
1734 r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
1735 if (unlikely(r)) {
1736 dio->bi_status = errno_to_blk_status(r);
1737 goto free_ret;
1738 }
1739
1740 integrity_sector_checksum(ic, logical_sector, buffer, checksum);
1741 r = dm_integrity_rw_tag(ic, checksum, &dio->metadata_block,
1742 &dio->metadata_offset, ic->tag_size, TAG_CMP);
1743 if (r) {
1744 if (r > 0) {
1745 DMERR_LIMIT("%pg: Checksum failed at sector 0x%llx",
1746 bio->bi_bdev, logical_sector);
1747 atomic64_inc(&ic->number_of_mismatches);
1748 dm_audit_log_bio(DM_MSG_PREFIX, "integrity-checksum",
1749 bio, logical_sector, 0);
1750 r = -EILSEQ;
1751 }
1752 dio->bi_status = errno_to_blk_status(r);
1753 goto free_ret;
1754 }
1755
1756 mem = bvec_kmap_local(&bv);
1757 memcpy(mem + pos, buffer, ic->sectors_per_block << SECTOR_SHIFT);
1758 kunmap_local(mem);
1759
1760 pos += ic->sectors_per_block << SECTOR_SHIFT;
1761 sector += ic->sectors_per_block;
1762 logical_sector += ic->sectors_per_block;
1763 } while (pos < bv.bv_len);
1764 }
1765 free_ret:
1766 mempool_free(page, &ic->recheck_pool);
1767 }
1768
integrity_metadata(struct work_struct * w)1769 static void integrity_metadata(struct work_struct *w)
1770 {
1771 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1772 struct dm_integrity_c *ic = dio->ic;
1773
1774 int r;
1775
1776 if (ic->internal_hash) {
1777 struct bvec_iter iter;
1778 struct bio_vec bv;
1779 unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash);
1780 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1781 char *checksums;
1782 unsigned int extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1783 char checksums_onstack[MAX_T(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1784 sector_t sector;
1785 unsigned int sectors_to_process;
1786
1787 if (unlikely(ic->mode == 'R'))
1788 goto skip_io;
1789
1790 if (likely(dio->op != REQ_OP_DISCARD))
1791 checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1792 GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1793 else
1794 checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1795 if (!checksums) {
1796 checksums = checksums_onstack;
1797 if (WARN_ON(extra_space &&
1798 digest_size > sizeof(checksums_onstack))) {
1799 r = -EINVAL;
1800 goto error;
1801 }
1802 }
1803
1804 if (unlikely(dio->op == REQ_OP_DISCARD)) {
1805 unsigned int bi_size = dio->bio_details.bi_iter.bi_size;
1806 unsigned int max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE;
1807 unsigned int max_blocks = max_size / ic->tag_size;
1808
1809 memset(checksums, DISCARD_FILLER, max_size);
1810
1811 while (bi_size) {
1812 unsigned int this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1813
1814 this_step_blocks = min(this_step_blocks, max_blocks);
1815 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1816 this_step_blocks * ic->tag_size, TAG_WRITE);
1817 if (unlikely(r)) {
1818 if (likely(checksums != checksums_onstack))
1819 kfree(checksums);
1820 goto error;
1821 }
1822
1823 bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1824 }
1825
1826 if (likely(checksums != checksums_onstack))
1827 kfree(checksums);
1828 goto skip_io;
1829 }
1830
1831 sector = dio->range.logical_sector;
1832 sectors_to_process = dio->range.n_sectors;
1833
1834 __bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1835 struct bio_vec bv_copy = bv;
1836 unsigned int pos;
1837 char *mem, *checksums_ptr;
1838
1839 again:
1840 mem = bvec_kmap_local(&bv_copy);
1841 pos = 0;
1842 checksums_ptr = checksums;
1843 do {
1844 integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1845 checksums_ptr += ic->tag_size;
1846 sectors_to_process -= ic->sectors_per_block;
1847 pos += ic->sectors_per_block << SECTOR_SHIFT;
1848 sector += ic->sectors_per_block;
1849 } while (pos < bv_copy.bv_len && sectors_to_process && checksums != checksums_onstack);
1850 kunmap_local(mem);
1851
1852 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1853 checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE);
1854 if (unlikely(r)) {
1855 if (likely(checksums != checksums_onstack))
1856 kfree(checksums);
1857 if (r > 0) {
1858 integrity_recheck(dio, checksums_onstack);
1859 goto skip_io;
1860 }
1861 goto error;
1862 }
1863
1864 if (!sectors_to_process)
1865 break;
1866
1867 if (unlikely(pos < bv_copy.bv_len)) {
1868 bv_copy.bv_offset += pos;
1869 bv_copy.bv_len -= pos;
1870 goto again;
1871 }
1872 }
1873
1874 if (likely(checksums != checksums_onstack))
1875 kfree(checksums);
1876 } else {
1877 struct bio_integrity_payload *bip = dio->bio_details.bi_integrity;
1878
1879 if (bip) {
1880 struct bio_vec biv;
1881 struct bvec_iter iter;
1882 unsigned int data_to_process = dio->range.n_sectors;
1883
1884 sector_to_block(ic, data_to_process);
1885 data_to_process *= ic->tag_size;
1886
1887 bip_for_each_vec(biv, bip, iter) {
1888 unsigned char *tag;
1889 unsigned int this_len;
1890
1891 BUG_ON(PageHighMem(biv.bv_page));
1892 tag = bvec_virt(&biv);
1893 this_len = min(biv.bv_len, data_to_process);
1894 r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1895 this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE);
1896 if (unlikely(r))
1897 goto error;
1898 data_to_process -= this_len;
1899 if (!data_to_process)
1900 break;
1901 }
1902 }
1903 }
1904 skip_io:
1905 dec_in_flight(dio);
1906 return;
1907 error:
1908 dio->bi_status = errno_to_blk_status(r);
1909 dec_in_flight(dio);
1910 }
1911
dm_integrity_check_limits(struct dm_integrity_c * ic,sector_t logical_sector,struct bio * bio)1912 static inline bool dm_integrity_check_limits(struct dm_integrity_c *ic, sector_t logical_sector, struct bio *bio)
1913 {
1914 if (unlikely(logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1915 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1916 logical_sector, bio_sectors(bio),
1917 ic->provided_data_sectors);
1918 return false;
1919 }
1920 if (unlikely((logical_sector | bio_sectors(bio)) & (unsigned int)(ic->sectors_per_block - 1))) {
1921 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1922 ic->sectors_per_block,
1923 logical_sector, bio_sectors(bio));
1924 return false;
1925 }
1926 if (ic->sectors_per_block > 1 && likely(bio_op(bio) != REQ_OP_DISCARD)) {
1927 struct bvec_iter iter;
1928 struct bio_vec bv;
1929
1930 bio_for_each_segment(bv, bio, iter) {
1931 if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1932 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1933 bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1934 return false;
1935 }
1936 }
1937 }
1938 return true;
1939 }
1940
dm_integrity_map(struct dm_target * ti,struct bio * bio)1941 static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1942 {
1943 struct dm_integrity_c *ic = ti->private;
1944 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1945 struct bio_integrity_payload *bip;
1946
1947 sector_t area, offset;
1948
1949 dio->ic = ic;
1950 dio->bi_status = 0;
1951 dio->op = bio_op(bio);
1952
1953 if (ic->mode == 'I') {
1954 bio->bi_iter.bi_sector = dm_target_offset(ic->ti, bio->bi_iter.bi_sector);
1955 dio->integrity_payload = NULL;
1956 dio->integrity_payload_from_mempool = false;
1957 dio->integrity_range_locked = false;
1958 return dm_integrity_map_inline(dio, true);
1959 }
1960
1961 if (unlikely(dio->op == REQ_OP_DISCARD)) {
1962 if (ti->max_io_len) {
1963 sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector);
1964 unsigned int log2_max_io_len = __fls(ti->max_io_len);
1965 sector_t start_boundary = sec >> log2_max_io_len;
1966 sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len;
1967
1968 if (start_boundary < end_boundary) {
1969 sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1));
1970
1971 dm_accept_partial_bio(bio, len);
1972 }
1973 }
1974 }
1975
1976 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1977 submit_flush_bio(ic, dio);
1978 return DM_MAPIO_SUBMITTED;
1979 }
1980
1981 dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1982 dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA;
1983 if (unlikely(dio->fua)) {
1984 /*
1985 * Don't pass down the FUA flag because we have to flush
1986 * disk cache anyway.
1987 */
1988 bio->bi_opf &= ~REQ_FUA;
1989 }
1990 if (unlikely(!dm_integrity_check_limits(ic, dio->range.logical_sector, bio)))
1991 return DM_MAPIO_KILL;
1992
1993 bip = bio_integrity(bio);
1994 if (!ic->internal_hash) {
1995 if (bip) {
1996 unsigned int wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1997
1998 if (ic->log2_tag_size >= 0)
1999 wanted_tag_size <<= ic->log2_tag_size;
2000 else
2001 wanted_tag_size *= ic->tag_size;
2002 if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
2003 DMERR("Invalid integrity data size %u, expected %u",
2004 bip->bip_iter.bi_size, wanted_tag_size);
2005 return DM_MAPIO_KILL;
2006 }
2007 }
2008 } else {
2009 if (unlikely(bip != NULL)) {
2010 DMERR("Unexpected integrity data when using internal hash");
2011 return DM_MAPIO_KILL;
2012 }
2013 }
2014
2015 if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ))
2016 return DM_MAPIO_KILL;
2017
2018 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
2019 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
2020 bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
2021
2022 dm_integrity_map_continue(dio, true);
2023 return DM_MAPIO_SUBMITTED;
2024 }
2025
__journal_read_write(struct dm_integrity_io * dio,struct bio * bio,unsigned int journal_section,unsigned int journal_entry)2026 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
2027 unsigned int journal_section, unsigned int journal_entry)
2028 {
2029 struct dm_integrity_c *ic = dio->ic;
2030 sector_t logical_sector;
2031 unsigned int n_sectors;
2032
2033 logical_sector = dio->range.logical_sector;
2034 n_sectors = dio->range.n_sectors;
2035 do {
2036 struct bio_vec bv = bio_iovec(bio);
2037 char *mem;
2038
2039 if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
2040 bv.bv_len = n_sectors << SECTOR_SHIFT;
2041 n_sectors -= bv.bv_len >> SECTOR_SHIFT;
2042 bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
2043 retry_kmap:
2044 mem = kmap_local_page(bv.bv_page);
2045 if (likely(dio->op == REQ_OP_WRITE))
2046 flush_dcache_page(bv.bv_page);
2047
2048 do {
2049 struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
2050
2051 if (unlikely(dio->op == REQ_OP_READ)) {
2052 struct journal_sector *js;
2053 char *mem_ptr;
2054 unsigned int s;
2055
2056 if (unlikely(journal_entry_is_inprogress(je))) {
2057 flush_dcache_page(bv.bv_page);
2058 kunmap_local(mem);
2059
2060 __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2061 goto retry_kmap;
2062 }
2063 smp_rmb();
2064 BUG_ON(journal_entry_get_sector(je) != logical_sector);
2065 js = access_journal_data(ic, journal_section, journal_entry);
2066 mem_ptr = mem + bv.bv_offset;
2067 s = 0;
2068 do {
2069 memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
2070 *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
2071 js++;
2072 mem_ptr += 1 << SECTOR_SHIFT;
2073 } while (++s < ic->sectors_per_block);
2074 #ifdef INTERNAL_VERIFY
2075 if (ic->internal_hash) {
2076 char checksums_onstack[MAX_T(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2077
2078 integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
2079 if (unlikely(crypto_memneq(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
2080 DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
2081 logical_sector);
2082 dm_audit_log_bio(DM_MSG_PREFIX, "journal-checksum",
2083 bio, logical_sector, 0);
2084 }
2085 }
2086 #endif
2087 }
2088
2089 if (!ic->internal_hash) {
2090 struct bio_integrity_payload *bip = bio_integrity(bio);
2091 unsigned int tag_todo = ic->tag_size;
2092 char *tag_ptr = journal_entry_tag(ic, je);
2093
2094 if (bip) {
2095 do {
2096 struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
2097 unsigned int tag_now = min(biv.bv_len, tag_todo);
2098 char *tag_addr;
2099
2100 BUG_ON(PageHighMem(biv.bv_page));
2101 tag_addr = bvec_virt(&biv);
2102 if (likely(dio->op == REQ_OP_WRITE))
2103 memcpy(tag_ptr, tag_addr, tag_now);
2104 else
2105 memcpy(tag_addr, tag_ptr, tag_now);
2106 bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
2107 tag_ptr += tag_now;
2108 tag_todo -= tag_now;
2109 } while (unlikely(tag_todo));
2110 } else if (likely(dio->op == REQ_OP_WRITE))
2111 memset(tag_ptr, 0, tag_todo);
2112 }
2113
2114 if (likely(dio->op == REQ_OP_WRITE)) {
2115 struct journal_sector *js;
2116 unsigned int s;
2117
2118 js = access_journal_data(ic, journal_section, journal_entry);
2119 memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
2120
2121 s = 0;
2122 do {
2123 je->last_bytes[s] = js[s].commit_id;
2124 } while (++s < ic->sectors_per_block);
2125
2126 if (ic->internal_hash) {
2127 unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash);
2128
2129 if (unlikely(digest_size > ic->tag_size)) {
2130 char checksums_onstack[HASH_MAX_DIGESTSIZE];
2131
2132 integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
2133 memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
2134 } else
2135 integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
2136 }
2137
2138 journal_entry_set_sector(je, logical_sector);
2139 }
2140 logical_sector += ic->sectors_per_block;
2141
2142 journal_entry++;
2143 if (unlikely(journal_entry == ic->journal_section_entries)) {
2144 journal_entry = 0;
2145 journal_section++;
2146 wraparound_section(ic, &journal_section);
2147 }
2148
2149 bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
2150 } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
2151
2152 if (unlikely(dio->op == REQ_OP_READ))
2153 flush_dcache_page(bv.bv_page);
2154 kunmap_local(mem);
2155 } while (n_sectors);
2156
2157 if (likely(dio->op == REQ_OP_WRITE)) {
2158 smp_mb();
2159 if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
2160 wake_up(&ic->copy_to_journal_wait);
2161 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2162 queue_work(ic->commit_wq, &ic->commit_work);
2163 else
2164 schedule_autocommit(ic);
2165 } else
2166 remove_range(ic, &dio->range);
2167
2168 if (unlikely(bio->bi_iter.bi_size)) {
2169 sector_t area, offset;
2170
2171 dio->range.logical_sector = logical_sector;
2172 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
2173 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
2174 return true;
2175 }
2176
2177 return false;
2178 }
2179
dm_integrity_map_continue(struct dm_integrity_io * dio,bool from_map)2180 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
2181 {
2182 struct dm_integrity_c *ic = dio->ic;
2183 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2184 unsigned int journal_section, journal_entry;
2185 unsigned int journal_read_pos;
2186 sector_t recalc_sector;
2187 struct completion read_comp;
2188 bool discard_retried = false;
2189 bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ;
2190
2191 if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D')
2192 need_sync_io = true;
2193
2194 if (need_sync_io && from_map) {
2195 INIT_WORK(&dio->work, integrity_bio_wait);
2196 queue_work(ic->offload_wq, &dio->work);
2197 return;
2198 }
2199
2200 lock_retry:
2201 spin_lock_irq(&ic->endio_wait.lock);
2202 retry:
2203 if (unlikely(dm_integrity_failed(ic))) {
2204 spin_unlock_irq(&ic->endio_wait.lock);
2205 do_endio(ic, bio);
2206 return;
2207 }
2208 dio->range.n_sectors = bio_sectors(bio);
2209 journal_read_pos = NOT_FOUND;
2210 if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) {
2211 if (dio->op == REQ_OP_WRITE) {
2212 unsigned int next_entry, i, pos;
2213 unsigned int ws, we, range_sectors;
2214
2215 dio->range.n_sectors = min(dio->range.n_sectors,
2216 (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block);
2217 if (unlikely(!dio->range.n_sectors)) {
2218 if (from_map)
2219 goto offload_to_thread;
2220 sleep_on_endio_wait(ic);
2221 goto retry;
2222 }
2223 range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
2224 ic->free_sectors -= range_sectors;
2225 journal_section = ic->free_section;
2226 journal_entry = ic->free_section_entry;
2227
2228 next_entry = ic->free_section_entry + range_sectors;
2229 ic->free_section_entry = next_entry % ic->journal_section_entries;
2230 ic->free_section += next_entry / ic->journal_section_entries;
2231 ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
2232 wraparound_section(ic, &ic->free_section);
2233
2234 pos = journal_section * ic->journal_section_entries + journal_entry;
2235 ws = journal_section;
2236 we = journal_entry;
2237 i = 0;
2238 do {
2239 struct journal_entry *je;
2240
2241 add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
2242 pos++;
2243 if (unlikely(pos >= ic->journal_entries))
2244 pos = 0;
2245
2246 je = access_journal_entry(ic, ws, we);
2247 BUG_ON(!journal_entry_is_unused(je));
2248 journal_entry_set_inprogress(je);
2249 we++;
2250 if (unlikely(we == ic->journal_section_entries)) {
2251 we = 0;
2252 ws++;
2253 wraparound_section(ic, &ws);
2254 }
2255 } while ((i += ic->sectors_per_block) < dio->range.n_sectors);
2256
2257 spin_unlock_irq(&ic->endio_wait.lock);
2258 goto journal_read_write;
2259 } else {
2260 sector_t next_sector;
2261
2262 journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2263 if (likely(journal_read_pos == NOT_FOUND)) {
2264 if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
2265 dio->range.n_sectors = next_sector - dio->range.logical_sector;
2266 } else {
2267 unsigned int i;
2268 unsigned int jp = journal_read_pos + 1;
2269
2270 for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
2271 if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
2272 break;
2273 }
2274 dio->range.n_sectors = i;
2275 }
2276 }
2277 }
2278 if (unlikely(!add_new_range(ic, &dio->range, true))) {
2279 /*
2280 * We must not sleep in the request routine because it could
2281 * stall bios on current->bio_list.
2282 * So, we offload the bio to a workqueue if we have to sleep.
2283 */
2284 if (from_map) {
2285 offload_to_thread:
2286 spin_unlock_irq(&ic->endio_wait.lock);
2287 INIT_WORK(&dio->work, integrity_bio_wait);
2288 queue_work(ic->wait_wq, &dio->work);
2289 return;
2290 }
2291 if (journal_read_pos != NOT_FOUND)
2292 dio->range.n_sectors = ic->sectors_per_block;
2293 wait_and_add_new_range(ic, &dio->range);
2294 /*
2295 * wait_and_add_new_range drops the spinlock, so the journal
2296 * may have been changed arbitrarily. We need to recheck.
2297 * To simplify the code, we restrict I/O size to just one block.
2298 */
2299 if (journal_read_pos != NOT_FOUND) {
2300 sector_t next_sector;
2301 unsigned int new_pos;
2302
2303 new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2304 if (unlikely(new_pos != journal_read_pos)) {
2305 remove_range_unlocked(ic, &dio->range);
2306 goto retry;
2307 }
2308 }
2309 }
2310 if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) {
2311 sector_t next_sector;
2312 unsigned int new_pos;
2313
2314 new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2315 if (unlikely(new_pos != NOT_FOUND) ||
2316 unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) {
2317 remove_range_unlocked(ic, &dio->range);
2318 spin_unlock_irq(&ic->endio_wait.lock);
2319 queue_work(ic->commit_wq, &ic->commit_work);
2320 flush_workqueue(ic->commit_wq);
2321 queue_work(ic->writer_wq, &ic->writer_work);
2322 flush_workqueue(ic->writer_wq);
2323 discard_retried = true;
2324 goto lock_retry;
2325 }
2326 }
2327 recalc_sector = le64_to_cpu(ic->sb->recalc_sector);
2328 spin_unlock_irq(&ic->endio_wait.lock);
2329
2330 if (unlikely(journal_read_pos != NOT_FOUND)) {
2331 journal_section = journal_read_pos / ic->journal_section_entries;
2332 journal_entry = journal_read_pos % ic->journal_section_entries;
2333 goto journal_read_write;
2334 }
2335
2336 if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) {
2337 if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2338 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2339 struct bitmap_block_status *bbs;
2340
2341 bbs = sector_to_bitmap_block(ic, dio->range.logical_sector);
2342 spin_lock(&bbs->bio_queue_lock);
2343 bio_list_add(&bbs->bio_queue, bio);
2344 spin_unlock(&bbs->bio_queue_lock);
2345 queue_work(ic->writer_wq, &bbs->work);
2346 return;
2347 }
2348 }
2349
2350 dio->in_flight = (atomic_t)ATOMIC_INIT(2);
2351
2352 if (need_sync_io) {
2353 init_completion(&read_comp);
2354 dio->completion = &read_comp;
2355 } else
2356 dio->completion = NULL;
2357
2358 dm_bio_record(&dio->bio_details, bio);
2359 bio_set_dev(bio, ic->dev->bdev);
2360 bio->bi_integrity = NULL;
2361 bio->bi_opf &= ~REQ_INTEGRITY;
2362 bio->bi_end_io = integrity_end_io;
2363 bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
2364
2365 if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) {
2366 integrity_metadata(&dio->work);
2367 dm_integrity_flush_buffers(ic, false);
2368
2369 dio->in_flight = (atomic_t)ATOMIC_INIT(1);
2370 dio->completion = NULL;
2371
2372 submit_bio_noacct(bio);
2373
2374 return;
2375 }
2376
2377 submit_bio_noacct(bio);
2378
2379 if (need_sync_io) {
2380 wait_for_completion_io(&read_comp);
2381 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2382 dio->range.logical_sector + dio->range.n_sectors > recalc_sector)
2383 goto skip_check;
2384 if (ic->mode == 'B') {
2385 if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector,
2386 dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2387 goto skip_check;
2388 }
2389
2390 if (likely(!bio->bi_status))
2391 integrity_metadata(&dio->work);
2392 else
2393 skip_check:
2394 dec_in_flight(dio);
2395 } else {
2396 INIT_WORK(&dio->work, integrity_metadata);
2397 queue_work(ic->metadata_wq, &dio->work);
2398 }
2399
2400 return;
2401
2402 journal_read_write:
2403 if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
2404 goto lock_retry;
2405
2406 do_endio_flush(ic, dio);
2407 }
2408
dm_integrity_map_inline(struct dm_integrity_io * dio,bool from_map)2409 static int dm_integrity_map_inline(struct dm_integrity_io *dio, bool from_map)
2410 {
2411 struct dm_integrity_c *ic = dio->ic;
2412 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2413 struct bio_integrity_payload *bip;
2414 unsigned ret;
2415 sector_t recalc_sector;
2416
2417 if (unlikely(bio_integrity(bio))) {
2418 bio->bi_status = BLK_STS_NOTSUPP;
2419 bio_endio(bio);
2420 return DM_MAPIO_SUBMITTED;
2421 }
2422
2423 bio_set_dev(bio, ic->dev->bdev);
2424 if (unlikely((bio->bi_opf & REQ_PREFLUSH) != 0))
2425 return DM_MAPIO_REMAPPED;
2426
2427 retry:
2428 if (!dio->integrity_payload) {
2429 unsigned digest_size, extra_size;
2430 dio->payload_len = ic->tuple_size * (bio_sectors(bio) >> ic->sb->log2_sectors_per_block);
2431 digest_size = crypto_shash_digestsize(ic->internal_hash);
2432 extra_size = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
2433 dio->payload_len += extra_size;
2434 dio->integrity_payload = kmalloc(dio->payload_len, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
2435 if (unlikely(!dio->integrity_payload)) {
2436 const unsigned x_size = PAGE_SIZE << 1;
2437 if (dio->payload_len > x_size) {
2438 unsigned sectors = ((x_size - extra_size) / ic->tuple_size) << ic->sb->log2_sectors_per_block;
2439 if (WARN_ON(!sectors || sectors >= bio_sectors(bio))) {
2440 bio->bi_status = BLK_STS_NOTSUPP;
2441 bio_endio(bio);
2442 return DM_MAPIO_SUBMITTED;
2443 }
2444 dm_accept_partial_bio(bio, sectors);
2445 goto retry;
2446 }
2447 }
2448 }
2449
2450 dio->range.logical_sector = bio->bi_iter.bi_sector;
2451 dio->range.n_sectors = bio_sectors(bio);
2452
2453 if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)))
2454 goto skip_spinlock;
2455 #ifdef CONFIG_64BIT
2456 /*
2457 * On 64-bit CPUs we can optimize the lock away (so that it won't cause
2458 * cache line bouncing) and use acquire/release barriers instead.
2459 *
2460 * Paired with smp_store_release in integrity_recalc_inline.
2461 */
2462 recalc_sector = le64_to_cpu(smp_load_acquire(&ic->sb->recalc_sector));
2463 if (likely(dio->range.logical_sector + dio->range.n_sectors <= recalc_sector))
2464 goto skip_spinlock;
2465 #endif
2466 spin_lock_irq(&ic->endio_wait.lock);
2467 recalc_sector = le64_to_cpu(ic->sb->recalc_sector);
2468 if (dio->range.logical_sector + dio->range.n_sectors <= recalc_sector)
2469 goto skip_unlock;
2470 if (unlikely(!add_new_range(ic, &dio->range, true))) {
2471 if (from_map) {
2472 spin_unlock_irq(&ic->endio_wait.lock);
2473 INIT_WORK(&dio->work, integrity_bio_wait);
2474 queue_work(ic->wait_wq, &dio->work);
2475 return DM_MAPIO_SUBMITTED;
2476 }
2477 wait_and_add_new_range(ic, &dio->range);
2478 }
2479 dio->integrity_range_locked = true;
2480 skip_unlock:
2481 spin_unlock_irq(&ic->endio_wait.lock);
2482 skip_spinlock:
2483
2484 if (unlikely(!dio->integrity_payload)) {
2485 dio->integrity_payload = page_to_virt((struct page *)mempool_alloc(&ic->recheck_pool, GFP_NOIO));
2486 dio->integrity_payload_from_mempool = true;
2487 }
2488
2489 dio->bio_details.bi_iter = bio->bi_iter;
2490
2491 if (unlikely(!dm_integrity_check_limits(ic, bio->bi_iter.bi_sector, bio))) {
2492 return DM_MAPIO_KILL;
2493 }
2494
2495 bio->bi_iter.bi_sector += ic->start + SB_SECTORS;
2496
2497 bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
2498 if (IS_ERR(bip)) {
2499 bio->bi_status = errno_to_blk_status(PTR_ERR(bip));
2500 bio_endio(bio);
2501 return DM_MAPIO_SUBMITTED;
2502 }
2503
2504 if (dio->op == REQ_OP_WRITE) {
2505 unsigned pos = 0;
2506 while (dio->bio_details.bi_iter.bi_size) {
2507 struct bio_vec bv = bio_iter_iovec(bio, dio->bio_details.bi_iter);
2508 const char *mem = bvec_kmap_local(&bv);
2509 if (ic->tag_size < ic->tuple_size)
2510 memset(dio->integrity_payload + pos + ic->tag_size, 0, ic->tuple_size - ic->tuple_size);
2511 integrity_sector_checksum(ic, dio->bio_details.bi_iter.bi_sector, mem, dio->integrity_payload + pos);
2512 kunmap_local(mem);
2513 pos += ic->tuple_size;
2514 bio_advance_iter_single(bio, &dio->bio_details.bi_iter, ic->sectors_per_block << SECTOR_SHIFT);
2515 }
2516 }
2517
2518 ret = bio_integrity_add_page(bio, virt_to_page(dio->integrity_payload),
2519 dio->payload_len, offset_in_page(dio->integrity_payload));
2520 if (unlikely(ret != dio->payload_len)) {
2521 bio->bi_status = BLK_STS_RESOURCE;
2522 bio_endio(bio);
2523 return DM_MAPIO_SUBMITTED;
2524 }
2525
2526 return DM_MAPIO_REMAPPED;
2527 }
2528
dm_integrity_free_payload(struct dm_integrity_io * dio)2529 static inline void dm_integrity_free_payload(struct dm_integrity_io *dio)
2530 {
2531 struct dm_integrity_c *ic = dio->ic;
2532 if (unlikely(dio->integrity_payload_from_mempool))
2533 mempool_free(virt_to_page(dio->integrity_payload), &ic->recheck_pool);
2534 else
2535 kfree(dio->integrity_payload);
2536 dio->integrity_payload = NULL;
2537 dio->integrity_payload_from_mempool = false;
2538 }
2539
dm_integrity_inline_recheck(struct work_struct * w)2540 static void dm_integrity_inline_recheck(struct work_struct *w)
2541 {
2542 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2543 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2544 struct dm_integrity_c *ic = dio->ic;
2545 struct bio *outgoing_bio;
2546 void *outgoing_data;
2547
2548 dio->integrity_payload = page_to_virt((struct page *)mempool_alloc(&ic->recheck_pool, GFP_NOIO));
2549 dio->integrity_payload_from_mempool = true;
2550
2551 outgoing_data = dio->integrity_payload + PAGE_SIZE;
2552
2553 while (dio->bio_details.bi_iter.bi_size) {
2554 char digest[HASH_MAX_DIGESTSIZE];
2555 int r;
2556 struct bio_integrity_payload *bip;
2557 struct bio_vec bv;
2558 char *mem;
2559
2560 outgoing_bio = bio_alloc_bioset(ic->dev->bdev, 1, REQ_OP_READ, GFP_NOIO, &ic->recheck_bios);
2561 bio_add_virt_nofail(outgoing_bio, outgoing_data,
2562 ic->sectors_per_block << SECTOR_SHIFT);
2563
2564 bip = bio_integrity_alloc(outgoing_bio, GFP_NOIO, 1);
2565 if (IS_ERR(bip)) {
2566 bio_put(outgoing_bio);
2567 bio->bi_status = errno_to_blk_status(PTR_ERR(bip));
2568 bio_endio(bio);
2569 return;
2570 }
2571
2572 r = bio_integrity_add_page(outgoing_bio, virt_to_page(dio->integrity_payload), ic->tuple_size, 0);
2573 if (unlikely(r != ic->tuple_size)) {
2574 bio_put(outgoing_bio);
2575 bio->bi_status = BLK_STS_RESOURCE;
2576 bio_endio(bio);
2577 return;
2578 }
2579
2580 outgoing_bio->bi_iter.bi_sector = dio->bio_details.bi_iter.bi_sector + ic->start + SB_SECTORS;
2581
2582 r = submit_bio_wait(outgoing_bio);
2583 if (unlikely(r != 0)) {
2584 bio_put(outgoing_bio);
2585 bio->bi_status = errno_to_blk_status(r);
2586 bio_endio(bio);
2587 return;
2588 }
2589 bio_put(outgoing_bio);
2590
2591 integrity_sector_checksum(ic, dio->bio_details.bi_iter.bi_sector, outgoing_data, digest);
2592 if (unlikely(crypto_memneq(digest, dio->integrity_payload, min(crypto_shash_digestsize(ic->internal_hash), ic->tag_size)))) {
2593 DMERR_LIMIT("%pg: Checksum failed at sector 0x%llx",
2594 ic->dev->bdev, dio->bio_details.bi_iter.bi_sector);
2595 atomic64_inc(&ic->number_of_mismatches);
2596 dm_audit_log_bio(DM_MSG_PREFIX, "integrity-checksum",
2597 bio, dio->bio_details.bi_iter.bi_sector, 0);
2598
2599 bio->bi_status = BLK_STS_PROTECTION;
2600 bio_endio(bio);
2601 return;
2602 }
2603
2604 bv = bio_iter_iovec(bio, dio->bio_details.bi_iter);
2605 mem = bvec_kmap_local(&bv);
2606 memcpy(mem, outgoing_data, ic->sectors_per_block << SECTOR_SHIFT);
2607 kunmap_local(mem);
2608
2609 bio_advance_iter_single(bio, &dio->bio_details.bi_iter, ic->sectors_per_block << SECTOR_SHIFT);
2610 }
2611
2612 bio_endio(bio);
2613 }
2614
dm_integrity_end_io(struct dm_target * ti,struct bio * bio,blk_status_t * status)2615 static int dm_integrity_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *status)
2616 {
2617 struct dm_integrity_c *ic = ti->private;
2618 if (ic->mode == 'I') {
2619 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2620 if (dio->op == REQ_OP_READ && likely(*status == BLK_STS_OK)) {
2621 unsigned pos = 0;
2622 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2623 unlikely(dio->integrity_range_locked))
2624 goto skip_check;
2625 while (dio->bio_details.bi_iter.bi_size) {
2626 char digest[HASH_MAX_DIGESTSIZE];
2627 struct bio_vec bv = bio_iter_iovec(bio, dio->bio_details.bi_iter);
2628 char *mem = bvec_kmap_local(&bv);
2629 //memset(mem, 0xff, ic->sectors_per_block << SECTOR_SHIFT);
2630 integrity_sector_checksum(ic, dio->bio_details.bi_iter.bi_sector, mem, digest);
2631 if (unlikely(crypto_memneq(digest, dio->integrity_payload + pos,
2632 min(crypto_shash_digestsize(ic->internal_hash), ic->tag_size)))) {
2633 kunmap_local(mem);
2634 dm_integrity_free_payload(dio);
2635 INIT_WORK(&dio->work, dm_integrity_inline_recheck);
2636 queue_work(ic->offload_wq, &dio->work);
2637 return DM_ENDIO_INCOMPLETE;
2638 }
2639 kunmap_local(mem);
2640 pos += ic->tuple_size;
2641 bio_advance_iter_single(bio, &dio->bio_details.bi_iter, ic->sectors_per_block << SECTOR_SHIFT);
2642 }
2643 }
2644 skip_check:
2645 dm_integrity_free_payload(dio);
2646 if (unlikely(dio->integrity_range_locked))
2647 remove_range(ic, &dio->range);
2648 }
2649 return DM_ENDIO_DONE;
2650 }
2651
integrity_bio_wait(struct work_struct * w)2652 static void integrity_bio_wait(struct work_struct *w)
2653 {
2654 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2655 struct dm_integrity_c *ic = dio->ic;
2656
2657 if (ic->mode == 'I') {
2658 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2659 int r = dm_integrity_map_inline(dio, false);
2660 switch (r) {
2661 case DM_MAPIO_KILL:
2662 bio->bi_status = BLK_STS_IOERR;
2663 fallthrough;
2664 case DM_MAPIO_REMAPPED:
2665 submit_bio_noacct(bio);
2666 fallthrough;
2667 case DM_MAPIO_SUBMITTED:
2668 return;
2669 default:
2670 BUG();
2671 }
2672 } else {
2673 dm_integrity_map_continue(dio, false);
2674 }
2675 }
2676
pad_uncommitted(struct dm_integrity_c * ic)2677 static void pad_uncommitted(struct dm_integrity_c *ic)
2678 {
2679 if (ic->free_section_entry) {
2680 ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
2681 ic->free_section_entry = 0;
2682 ic->free_section++;
2683 wraparound_section(ic, &ic->free_section);
2684 ic->n_uncommitted_sections++;
2685 }
2686 if (WARN_ON(ic->journal_sections * ic->journal_section_entries !=
2687 (ic->n_uncommitted_sections + ic->n_committed_sections) *
2688 ic->journal_section_entries + ic->free_sectors)) {
2689 DMCRIT("journal_sections %u, journal_section_entries %u, "
2690 "n_uncommitted_sections %u, n_committed_sections %u, "
2691 "journal_section_entries %u, free_sectors %u",
2692 ic->journal_sections, ic->journal_section_entries,
2693 ic->n_uncommitted_sections, ic->n_committed_sections,
2694 ic->journal_section_entries, ic->free_sectors);
2695 }
2696 }
2697
integrity_commit(struct work_struct * w)2698 static void integrity_commit(struct work_struct *w)
2699 {
2700 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
2701 unsigned int commit_start, commit_sections;
2702 unsigned int i, j, n;
2703 struct bio *flushes;
2704
2705 timer_delete(&ic->autocommit_timer);
2706
2707 if (ic->mode == 'I')
2708 return;
2709
2710 spin_lock_irq(&ic->endio_wait.lock);
2711 flushes = bio_list_get(&ic->flush_bio_list);
2712 if (unlikely(ic->mode != 'J')) {
2713 spin_unlock_irq(&ic->endio_wait.lock);
2714 dm_integrity_flush_buffers(ic, true);
2715 goto release_flush_bios;
2716 }
2717
2718 pad_uncommitted(ic);
2719 commit_start = ic->uncommitted_section;
2720 commit_sections = ic->n_uncommitted_sections;
2721 spin_unlock_irq(&ic->endio_wait.lock);
2722
2723 if (!commit_sections)
2724 goto release_flush_bios;
2725
2726 ic->wrote_to_journal = true;
2727
2728 i = commit_start;
2729 for (n = 0; n < commit_sections; n++) {
2730 for (j = 0; j < ic->journal_section_entries; j++) {
2731 struct journal_entry *je;
2732
2733 je = access_journal_entry(ic, i, j);
2734 io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2735 }
2736 for (j = 0; j < ic->journal_section_sectors; j++) {
2737 struct journal_sector *js;
2738
2739 js = access_journal(ic, i, j);
2740 js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
2741 }
2742 i++;
2743 if (unlikely(i >= ic->journal_sections))
2744 ic->commit_seq = next_commit_seq(ic->commit_seq);
2745 wraparound_section(ic, &i);
2746 }
2747 smp_rmb();
2748
2749 write_journal(ic, commit_start, commit_sections);
2750
2751 spin_lock_irq(&ic->endio_wait.lock);
2752 ic->uncommitted_section += commit_sections;
2753 wraparound_section(ic, &ic->uncommitted_section);
2754 ic->n_uncommitted_sections -= commit_sections;
2755 ic->n_committed_sections += commit_sections;
2756 spin_unlock_irq(&ic->endio_wait.lock);
2757
2758 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2759 queue_work(ic->writer_wq, &ic->writer_work);
2760
2761 release_flush_bios:
2762 while (flushes) {
2763 struct bio *next = flushes->bi_next;
2764
2765 flushes->bi_next = NULL;
2766 do_endio(ic, flushes);
2767 flushes = next;
2768 }
2769 }
2770
complete_copy_from_journal(unsigned long error,void * context)2771 static void complete_copy_from_journal(unsigned long error, void *context)
2772 {
2773 struct journal_io *io = context;
2774 struct journal_completion *comp = io->comp;
2775 struct dm_integrity_c *ic = comp->ic;
2776
2777 remove_range(ic, &io->range);
2778 mempool_free(io, &ic->journal_io_mempool);
2779 if (unlikely(error != 0))
2780 dm_integrity_io_error(ic, "copying from journal", -EIO);
2781 complete_journal_op(comp);
2782 }
2783
restore_last_bytes(struct dm_integrity_c * ic,struct journal_sector * js,struct journal_entry * je)2784 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
2785 struct journal_entry *je)
2786 {
2787 unsigned int s = 0;
2788
2789 do {
2790 js->commit_id = je->last_bytes[s];
2791 js++;
2792 } while (++s < ic->sectors_per_block);
2793 }
2794
do_journal_write(struct dm_integrity_c * ic,unsigned int write_start,unsigned int write_sections,bool from_replay)2795 static void do_journal_write(struct dm_integrity_c *ic, unsigned int write_start,
2796 unsigned int write_sections, bool from_replay)
2797 {
2798 unsigned int i, j, n;
2799 struct journal_completion comp;
2800 struct blk_plug plug;
2801
2802 blk_start_plug(&plug);
2803
2804 comp.ic = ic;
2805 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2806 init_completion(&comp.comp);
2807
2808 i = write_start;
2809 for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
2810 #ifndef INTERNAL_VERIFY
2811 if (unlikely(from_replay))
2812 #endif
2813 rw_section_mac(ic, i, false);
2814 for (j = 0; j < ic->journal_section_entries; j++) {
2815 struct journal_entry *je = access_journal_entry(ic, i, j);
2816 sector_t sec, area, offset;
2817 unsigned int k, l, next_loop;
2818 sector_t metadata_block;
2819 unsigned int metadata_offset;
2820 struct journal_io *io;
2821
2822 if (journal_entry_is_unused(je))
2823 continue;
2824 BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
2825 sec = journal_entry_get_sector(je);
2826 if (unlikely(from_replay)) {
2827 if (unlikely(sec & (unsigned int)(ic->sectors_per_block - 1))) {
2828 dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
2829 sec &= ~(sector_t)(ic->sectors_per_block - 1);
2830 }
2831 if (unlikely(sec >= ic->provided_data_sectors)) {
2832 journal_entry_set_unused(je);
2833 continue;
2834 }
2835 }
2836 get_area_and_offset(ic, sec, &area, &offset);
2837 restore_last_bytes(ic, access_journal_data(ic, i, j), je);
2838 for (k = j + 1; k < ic->journal_section_entries; k++) {
2839 struct journal_entry *je2 = access_journal_entry(ic, i, k);
2840 sector_t sec2, area2, offset2;
2841
2842 if (journal_entry_is_unused(je2))
2843 break;
2844 BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
2845 sec2 = journal_entry_get_sector(je2);
2846 if (unlikely(sec2 >= ic->provided_data_sectors))
2847 break;
2848 get_area_and_offset(ic, sec2, &area2, &offset2);
2849 if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
2850 break;
2851 restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
2852 }
2853 next_loop = k - 1;
2854
2855 io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
2856 io->comp = ∁
2857 io->range.logical_sector = sec;
2858 io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
2859
2860 spin_lock_irq(&ic->endio_wait.lock);
2861 add_new_range_and_wait(ic, &io->range);
2862
2863 if (likely(!from_replay)) {
2864 struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
2865
2866 /* don't write if there is newer committed sector */
2867 while (j < k && find_newer_committed_node(ic, §ion_node[j])) {
2868 struct journal_entry *je2 = access_journal_entry(ic, i, j);
2869
2870 journal_entry_set_unused(je2);
2871 remove_journal_node(ic, §ion_node[j]);
2872 j++;
2873 sec += ic->sectors_per_block;
2874 offset += ic->sectors_per_block;
2875 }
2876 while (j < k && find_newer_committed_node(ic, §ion_node[k - 1])) {
2877 struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
2878
2879 journal_entry_set_unused(je2);
2880 remove_journal_node(ic, §ion_node[k - 1]);
2881 k--;
2882 }
2883 if (j == k) {
2884 remove_range_unlocked(ic, &io->range);
2885 spin_unlock_irq(&ic->endio_wait.lock);
2886 mempool_free(io, &ic->journal_io_mempool);
2887 goto skip_io;
2888 }
2889 for (l = j; l < k; l++)
2890 remove_journal_node(ic, §ion_node[l]);
2891 }
2892 spin_unlock_irq(&ic->endio_wait.lock);
2893
2894 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2895 for (l = j; l < k; l++) {
2896 int r;
2897 struct journal_entry *je2 = access_journal_entry(ic, i, l);
2898
2899 if (
2900 #ifndef INTERNAL_VERIFY
2901 unlikely(from_replay) &&
2902 #endif
2903 ic->internal_hash) {
2904 char test_tag[MAX_T(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2905
2906 integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
2907 (char *)access_journal_data(ic, i, l), test_tag);
2908 if (unlikely(crypto_memneq(test_tag, journal_entry_tag(ic, je2), ic->tag_size))) {
2909 dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
2910 dm_audit_log_target(DM_MSG_PREFIX, "integrity-replay-journal", ic->ti, 0);
2911 }
2912 }
2913
2914 journal_entry_set_unused(je2);
2915 r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
2916 ic->tag_size, TAG_WRITE);
2917 if (unlikely(r))
2918 dm_integrity_io_error(ic, "reading tags", r);
2919 }
2920
2921 atomic_inc(&comp.in_flight);
2922 copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
2923 (k - j) << ic->sb->log2_sectors_per_block,
2924 get_data_sector(ic, area, offset),
2925 complete_copy_from_journal, io);
2926 skip_io:
2927 j = next_loop;
2928 }
2929 }
2930
2931 dm_bufio_write_dirty_buffers_async(ic->bufio);
2932
2933 blk_finish_plug(&plug);
2934
2935 complete_journal_op(&comp);
2936 wait_for_completion_io(&comp.comp);
2937
2938 dm_integrity_flush_buffers(ic, true);
2939 }
2940
integrity_writer(struct work_struct * w)2941 static void integrity_writer(struct work_struct *w)
2942 {
2943 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2944 unsigned int write_start, write_sections;
2945 unsigned int prev_free_sectors;
2946
2947 spin_lock_irq(&ic->endio_wait.lock);
2948 write_start = ic->committed_section;
2949 write_sections = ic->n_committed_sections;
2950 spin_unlock_irq(&ic->endio_wait.lock);
2951
2952 if (!write_sections)
2953 return;
2954
2955 do_journal_write(ic, write_start, write_sections, false);
2956
2957 spin_lock_irq(&ic->endio_wait.lock);
2958
2959 ic->committed_section += write_sections;
2960 wraparound_section(ic, &ic->committed_section);
2961 ic->n_committed_sections -= write_sections;
2962
2963 prev_free_sectors = ic->free_sectors;
2964 ic->free_sectors += write_sections * ic->journal_section_entries;
2965 if (unlikely(!prev_free_sectors))
2966 wake_up_locked(&ic->endio_wait);
2967
2968 spin_unlock_irq(&ic->endio_wait.lock);
2969 }
2970
recalc_write_super(struct dm_integrity_c * ic)2971 static void recalc_write_super(struct dm_integrity_c *ic)
2972 {
2973 int r;
2974
2975 dm_integrity_flush_buffers(ic, false);
2976 if (dm_integrity_failed(ic))
2977 return;
2978
2979 r = sync_rw_sb(ic, REQ_OP_WRITE);
2980 if (unlikely(r))
2981 dm_integrity_io_error(ic, "writing superblock", r);
2982 }
2983
integrity_recalc(struct work_struct * w)2984 static void integrity_recalc(struct work_struct *w)
2985 {
2986 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
2987 size_t recalc_tags_size;
2988 u8 *recalc_buffer = NULL;
2989 u8 *recalc_tags = NULL;
2990 struct dm_integrity_range range;
2991 struct dm_io_request io_req;
2992 struct dm_io_region io_loc;
2993 sector_t area, offset;
2994 sector_t metadata_block;
2995 unsigned int metadata_offset;
2996 sector_t logical_sector, n_sectors;
2997 __u8 *t;
2998 unsigned int i;
2999 int r;
3000 unsigned int super_counter = 0;
3001 unsigned recalc_sectors = RECALC_SECTORS;
3002
3003 retry:
3004 recalc_buffer = __vmalloc(recalc_sectors << SECTOR_SHIFT, GFP_NOIO);
3005 if (!recalc_buffer) {
3006 oom:
3007 recalc_sectors >>= 1;
3008 if (recalc_sectors >= 1U << ic->sb->log2_sectors_per_block)
3009 goto retry;
3010 DMCRIT("out of memory for recalculate buffer - recalculation disabled");
3011 goto free_ret;
3012 }
3013 recalc_tags_size = (recalc_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
3014 if (crypto_shash_digestsize(ic->internal_hash) > ic->tag_size)
3015 recalc_tags_size += crypto_shash_digestsize(ic->internal_hash) - ic->tag_size;
3016 recalc_tags = kvmalloc(recalc_tags_size, GFP_NOIO);
3017 if (!recalc_tags) {
3018 vfree(recalc_buffer);
3019 recalc_buffer = NULL;
3020 goto oom;
3021 }
3022
3023 DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector));
3024
3025 spin_lock_irq(&ic->endio_wait.lock);
3026
3027 next_chunk:
3028
3029 if (unlikely(dm_post_suspending(ic->ti)))
3030 goto unlock_ret;
3031
3032 range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
3033 if (unlikely(range.logical_sector >= ic->provided_data_sectors)) {
3034 if (ic->mode == 'B') {
3035 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3036 DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
3037 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
3038 }
3039 goto unlock_ret;
3040 }
3041
3042 get_area_and_offset(ic, range.logical_sector, &area, &offset);
3043 range.n_sectors = min((sector_t)recalc_sectors, ic->provided_data_sectors - range.logical_sector);
3044 if (!ic->meta_dev)
3045 range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned int)offset);
3046
3047 add_new_range_and_wait(ic, &range);
3048 spin_unlock_irq(&ic->endio_wait.lock);
3049 logical_sector = range.logical_sector;
3050 n_sectors = range.n_sectors;
3051
3052 if (ic->mode == 'B') {
3053 if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
3054 goto advance_and_next;
3055
3056 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector,
3057 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
3058 logical_sector += ic->sectors_per_block;
3059 n_sectors -= ic->sectors_per_block;
3060 cond_resched();
3061 }
3062 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block,
3063 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
3064 n_sectors -= ic->sectors_per_block;
3065 cond_resched();
3066 }
3067 get_area_and_offset(ic, logical_sector, &area, &offset);
3068 }
3069
3070 DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors);
3071
3072 if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
3073 recalc_write_super(ic);
3074 if (ic->mode == 'B')
3075 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
3076
3077 super_counter = 0;
3078 }
3079
3080 if (unlikely(dm_integrity_failed(ic)))
3081 goto err;
3082
3083 io_req.bi_opf = REQ_OP_READ;
3084 io_req.mem.type = DM_IO_VMA;
3085 io_req.mem.ptr.addr = recalc_buffer;
3086 io_req.notify.fn = NULL;
3087 io_req.client = ic->io;
3088 io_loc.bdev = ic->dev->bdev;
3089 io_loc.sector = get_data_sector(ic, area, offset);
3090 io_loc.count = n_sectors;
3091
3092 r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
3093 if (unlikely(r)) {
3094 dm_integrity_io_error(ic, "reading data", r);
3095 goto err;
3096 }
3097
3098 t = recalc_tags;
3099 for (i = 0; i < n_sectors; i += ic->sectors_per_block) {
3100 integrity_sector_checksum(ic, logical_sector + i, recalc_buffer + (i << SECTOR_SHIFT), t);
3101 t += ic->tag_size;
3102 }
3103
3104 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
3105
3106 r = dm_integrity_rw_tag(ic, recalc_tags, &metadata_block, &metadata_offset, t - recalc_tags, TAG_WRITE);
3107 if (unlikely(r)) {
3108 dm_integrity_io_error(ic, "writing tags", r);
3109 goto err;
3110 }
3111
3112 if (ic->mode == 'B') {
3113 sector_t start, end;
3114
3115 start = (range.logical_sector >>
3116 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
3117 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
3118 end = ((range.logical_sector + range.n_sectors) >>
3119 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
3120 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
3121 block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR);
3122 }
3123
3124 advance_and_next:
3125 cond_resched();
3126
3127 spin_lock_irq(&ic->endio_wait.lock);
3128 remove_range_unlocked(ic, &range);
3129 ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
3130 goto next_chunk;
3131
3132 err:
3133 remove_range(ic, &range);
3134 goto free_ret;
3135
3136 unlock_ret:
3137 spin_unlock_irq(&ic->endio_wait.lock);
3138
3139 recalc_write_super(ic);
3140
3141 free_ret:
3142 vfree(recalc_buffer);
3143 kvfree(recalc_tags);
3144 }
3145
integrity_recalc_inline(struct work_struct * w)3146 static void integrity_recalc_inline(struct work_struct *w)
3147 {
3148 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
3149 size_t recalc_tags_size;
3150 u8 *recalc_buffer = NULL;
3151 u8 *recalc_tags = NULL;
3152 struct dm_integrity_range range;
3153 struct bio *bio;
3154 struct bio_integrity_payload *bip;
3155 __u8 *t;
3156 unsigned int i;
3157 int r;
3158 unsigned ret;
3159 unsigned int super_counter = 0;
3160 unsigned recalc_sectors = RECALC_SECTORS;
3161
3162 retry:
3163 recalc_buffer = kmalloc(recalc_sectors << SECTOR_SHIFT, GFP_NOIO | __GFP_NOWARN);
3164 if (!recalc_buffer) {
3165 oom:
3166 recalc_sectors >>= 1;
3167 if (recalc_sectors >= 1U << ic->sb->log2_sectors_per_block)
3168 goto retry;
3169 DMCRIT("out of memory for recalculate buffer - recalculation disabled");
3170 goto free_ret;
3171 }
3172
3173 recalc_tags_size = (recalc_sectors >> ic->sb->log2_sectors_per_block) * ic->tuple_size;
3174 if (crypto_shash_digestsize(ic->internal_hash) > ic->tuple_size)
3175 recalc_tags_size += crypto_shash_digestsize(ic->internal_hash) - ic->tuple_size;
3176 recalc_tags = kmalloc(recalc_tags_size, GFP_NOIO | __GFP_NOWARN);
3177 if (!recalc_tags) {
3178 kfree(recalc_buffer);
3179 recalc_buffer = NULL;
3180 goto oom;
3181 }
3182
3183 spin_lock_irq(&ic->endio_wait.lock);
3184
3185 next_chunk:
3186 if (unlikely(dm_post_suspending(ic->ti)))
3187 goto unlock_ret;
3188
3189 range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
3190 if (unlikely(range.logical_sector >= ic->provided_data_sectors))
3191 goto unlock_ret;
3192 range.n_sectors = min((sector_t)recalc_sectors, ic->provided_data_sectors - range.logical_sector);
3193
3194 add_new_range_and_wait(ic, &range);
3195 spin_unlock_irq(&ic->endio_wait.lock);
3196
3197 if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
3198 recalc_write_super(ic);
3199 super_counter = 0;
3200 }
3201
3202 if (unlikely(dm_integrity_failed(ic)))
3203 goto err;
3204
3205 DEBUG_print("recalculating: %llx - %llx\n", range.logical_sector, range.n_sectors);
3206
3207 bio = bio_alloc_bioset(ic->dev->bdev, 1, REQ_OP_READ, GFP_NOIO, &ic->recalc_bios);
3208 bio->bi_iter.bi_sector = ic->start + SB_SECTORS + range.logical_sector;
3209 bio_add_virt_nofail(bio, recalc_buffer,
3210 range.n_sectors << SECTOR_SHIFT);
3211 r = submit_bio_wait(bio);
3212 bio_put(bio);
3213 if (unlikely(r)) {
3214 dm_integrity_io_error(ic, "reading data", r);
3215 goto err;
3216 }
3217
3218 t = recalc_tags;
3219 for (i = 0; i < range.n_sectors; i += ic->sectors_per_block) {
3220 memset(t, 0, ic->tuple_size);
3221 integrity_sector_checksum(ic, range.logical_sector + i, recalc_buffer + (i << SECTOR_SHIFT), t);
3222 t += ic->tuple_size;
3223 }
3224
3225 bio = bio_alloc_bioset(ic->dev->bdev, 1, REQ_OP_WRITE, GFP_NOIO, &ic->recalc_bios);
3226 bio->bi_iter.bi_sector = ic->start + SB_SECTORS + range.logical_sector;
3227 bio_add_virt_nofail(bio, recalc_buffer,
3228 range.n_sectors << SECTOR_SHIFT);
3229
3230 bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
3231 if (unlikely(IS_ERR(bip))) {
3232 bio_put(bio);
3233 DMCRIT("out of memory for bio integrity payload - recalculation disabled");
3234 goto err;
3235 }
3236 ret = bio_integrity_add_page(bio, virt_to_page(recalc_tags), t - recalc_tags, offset_in_page(recalc_tags));
3237 if (unlikely(ret != t - recalc_tags)) {
3238 bio_put(bio);
3239 dm_integrity_io_error(ic, "attaching integrity tags", -ENOMEM);
3240 goto err;
3241 }
3242
3243 r = submit_bio_wait(bio);
3244 bio_put(bio);
3245 if (unlikely(r)) {
3246 dm_integrity_io_error(ic, "writing data", r);
3247 goto err;
3248 }
3249
3250 cond_resched();
3251 spin_lock_irq(&ic->endio_wait.lock);
3252 remove_range_unlocked(ic, &range);
3253 #ifdef CONFIG_64BIT
3254 /* Paired with smp_load_acquire in dm_integrity_map_inline. */
3255 smp_store_release(&ic->sb->recalc_sector, cpu_to_le64(range.logical_sector + range.n_sectors));
3256 #else
3257 ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
3258 #endif
3259 goto next_chunk;
3260
3261 err:
3262 remove_range(ic, &range);
3263 goto free_ret;
3264
3265 unlock_ret:
3266 spin_unlock_irq(&ic->endio_wait.lock);
3267
3268 recalc_write_super(ic);
3269
3270 free_ret:
3271 kfree(recalc_buffer);
3272 kfree(recalc_tags);
3273 }
3274
bitmap_block_work(struct work_struct * w)3275 static void bitmap_block_work(struct work_struct *w)
3276 {
3277 struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work);
3278 struct dm_integrity_c *ic = bbs->ic;
3279 struct bio *bio;
3280 struct bio_list bio_queue;
3281 struct bio_list waiting;
3282
3283 bio_list_init(&waiting);
3284
3285 spin_lock(&bbs->bio_queue_lock);
3286 bio_queue = bbs->bio_queue;
3287 bio_list_init(&bbs->bio_queue);
3288 spin_unlock(&bbs->bio_queue_lock);
3289
3290 while ((bio = bio_list_pop(&bio_queue))) {
3291 struct dm_integrity_io *dio;
3292
3293 dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
3294
3295 if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
3296 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
3297 remove_range(ic, &dio->range);
3298 INIT_WORK(&dio->work, integrity_bio_wait);
3299 queue_work(ic->offload_wq, &dio->work);
3300 } else {
3301 block_bitmap_op(ic, ic->journal, dio->range.logical_sector,
3302 dio->range.n_sectors, BITMAP_OP_SET);
3303 bio_list_add(&waiting, bio);
3304 }
3305 }
3306
3307 if (bio_list_empty(&waiting))
3308 return;
3309
3310 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC,
3311 bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT),
3312 BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL);
3313
3314 while ((bio = bio_list_pop(&waiting))) {
3315 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
3316
3317 block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
3318 dio->range.n_sectors, BITMAP_OP_SET);
3319
3320 remove_range(ic, &dio->range);
3321 INIT_WORK(&dio->work, integrity_bio_wait);
3322 queue_work(ic->offload_wq, &dio->work);
3323 }
3324
3325 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
3326 }
3327
bitmap_flush_work(struct work_struct * work)3328 static void bitmap_flush_work(struct work_struct *work)
3329 {
3330 struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work);
3331 struct dm_integrity_range range;
3332 unsigned long limit;
3333 struct bio *bio;
3334
3335 dm_integrity_flush_buffers(ic, false);
3336
3337 range.logical_sector = 0;
3338 range.n_sectors = ic->provided_data_sectors;
3339
3340 spin_lock_irq(&ic->endio_wait.lock);
3341 add_new_range_and_wait(ic, &range);
3342 spin_unlock_irq(&ic->endio_wait.lock);
3343
3344 dm_integrity_flush_buffers(ic, true);
3345
3346 limit = ic->provided_data_sectors;
3347 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
3348 limit = le64_to_cpu(ic->sb->recalc_sector)
3349 >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)
3350 << (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
3351 }
3352 /*DEBUG_print("zeroing journal\n");*/
3353 block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR);
3354 block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR);
3355
3356 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3357 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3358
3359 spin_lock_irq(&ic->endio_wait.lock);
3360 remove_range_unlocked(ic, &range);
3361 while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) {
3362 bio_endio(bio);
3363 spin_unlock_irq(&ic->endio_wait.lock);
3364 spin_lock_irq(&ic->endio_wait.lock);
3365 }
3366 spin_unlock_irq(&ic->endio_wait.lock);
3367 }
3368
3369
init_journal(struct dm_integrity_c * ic,unsigned int start_section,unsigned int n_sections,unsigned char commit_seq)3370 static void init_journal(struct dm_integrity_c *ic, unsigned int start_section,
3371 unsigned int n_sections, unsigned char commit_seq)
3372 {
3373 unsigned int i, j, n;
3374
3375 if (!n_sections)
3376 return;
3377
3378 for (n = 0; n < n_sections; n++) {
3379 i = start_section + n;
3380 wraparound_section(ic, &i);
3381 for (j = 0; j < ic->journal_section_sectors; j++) {
3382 struct journal_sector *js = access_journal(ic, i, j);
3383
3384 BUILD_BUG_ON(sizeof(js->sectors) != JOURNAL_SECTOR_DATA);
3385 memset(&js->sectors, 0, sizeof(js->sectors));
3386 js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
3387 }
3388 for (j = 0; j < ic->journal_section_entries; j++) {
3389 struct journal_entry *je = access_journal_entry(ic, i, j);
3390
3391 journal_entry_set_unused(je);
3392 }
3393 }
3394
3395 write_journal(ic, start_section, n_sections);
3396 }
3397
find_commit_seq(struct dm_integrity_c * ic,unsigned int i,unsigned int j,commit_id_t id)3398 static int find_commit_seq(struct dm_integrity_c *ic, unsigned int i, unsigned int j, commit_id_t id)
3399 {
3400 unsigned char k;
3401
3402 for (k = 0; k < N_COMMIT_IDS; k++) {
3403 if (dm_integrity_commit_id(ic, i, j, k) == id)
3404 return k;
3405 }
3406 dm_integrity_io_error(ic, "journal commit id", -EIO);
3407 return -EIO;
3408 }
3409
replay_journal(struct dm_integrity_c * ic)3410 static void replay_journal(struct dm_integrity_c *ic)
3411 {
3412 unsigned int i, j;
3413 bool used_commit_ids[N_COMMIT_IDS];
3414 unsigned int max_commit_id_sections[N_COMMIT_IDS];
3415 unsigned int write_start, write_sections;
3416 unsigned int continue_section;
3417 bool journal_empty;
3418 unsigned char unused, last_used, want_commit_seq;
3419
3420 if (ic->mode == 'R')
3421 return;
3422
3423 if (ic->journal_uptodate)
3424 return;
3425
3426 last_used = 0;
3427 write_start = 0;
3428
3429 if (!ic->just_formatted) {
3430 DEBUG_print("reading journal\n");
3431 rw_journal(ic, REQ_OP_READ, 0, ic->journal_sections, NULL);
3432 if (ic->journal_io)
3433 DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
3434 if (ic->journal_io) {
3435 struct journal_completion crypt_comp;
3436
3437 crypt_comp.ic = ic;
3438 init_completion(&crypt_comp.comp);
3439 crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
3440 encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
3441 wait_for_completion(&crypt_comp.comp);
3442 }
3443 DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
3444 }
3445
3446 if (dm_integrity_failed(ic))
3447 goto clear_journal;
3448
3449 journal_empty = true;
3450 memset(used_commit_ids, 0, sizeof(used_commit_ids));
3451 memset(max_commit_id_sections, 0, sizeof(max_commit_id_sections));
3452 for (i = 0; i < ic->journal_sections; i++) {
3453 for (j = 0; j < ic->journal_section_sectors; j++) {
3454 int k;
3455 struct journal_sector *js = access_journal(ic, i, j);
3456
3457 k = find_commit_seq(ic, i, j, js->commit_id);
3458 if (k < 0)
3459 goto clear_journal;
3460 used_commit_ids[k] = true;
3461 max_commit_id_sections[k] = i;
3462 }
3463 if (journal_empty) {
3464 for (j = 0; j < ic->journal_section_entries; j++) {
3465 struct journal_entry *je = access_journal_entry(ic, i, j);
3466
3467 if (!journal_entry_is_unused(je)) {
3468 journal_empty = false;
3469 break;
3470 }
3471 }
3472 }
3473 }
3474
3475 if (!used_commit_ids[N_COMMIT_IDS - 1]) {
3476 unused = N_COMMIT_IDS - 1;
3477 while (unused && !used_commit_ids[unused - 1])
3478 unused--;
3479 } else {
3480 for (unused = 0; unused < N_COMMIT_IDS; unused++)
3481 if (!used_commit_ids[unused])
3482 break;
3483 if (unused == N_COMMIT_IDS) {
3484 dm_integrity_io_error(ic, "journal commit ids", -EIO);
3485 goto clear_journal;
3486 }
3487 }
3488 DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
3489 unused, used_commit_ids[0], used_commit_ids[1],
3490 used_commit_ids[2], used_commit_ids[3]);
3491
3492 last_used = prev_commit_seq(unused);
3493 want_commit_seq = prev_commit_seq(last_used);
3494
3495 if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
3496 journal_empty = true;
3497
3498 write_start = max_commit_id_sections[last_used] + 1;
3499 if (unlikely(write_start >= ic->journal_sections))
3500 want_commit_seq = next_commit_seq(want_commit_seq);
3501 wraparound_section(ic, &write_start);
3502
3503 i = write_start;
3504 for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
3505 for (j = 0; j < ic->journal_section_sectors; j++) {
3506 struct journal_sector *js = access_journal(ic, i, j);
3507
3508 if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
3509 /*
3510 * This could be caused by crash during writing.
3511 * We won't replay the inconsistent part of the
3512 * journal.
3513 */
3514 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
3515 i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
3516 goto brk;
3517 }
3518 }
3519 i++;
3520 if (unlikely(i >= ic->journal_sections))
3521 want_commit_seq = next_commit_seq(want_commit_seq);
3522 wraparound_section(ic, &i);
3523 }
3524 brk:
3525
3526 if (!journal_empty) {
3527 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
3528 write_sections, write_start, want_commit_seq);
3529 do_journal_write(ic, write_start, write_sections, true);
3530 }
3531
3532 if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
3533 continue_section = write_start;
3534 ic->commit_seq = want_commit_seq;
3535 DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
3536 } else {
3537 unsigned int s;
3538 unsigned char erase_seq;
3539
3540 clear_journal:
3541 DEBUG_print("clearing journal\n");
3542
3543 erase_seq = prev_commit_seq(prev_commit_seq(last_used));
3544 s = write_start;
3545 init_journal(ic, s, 1, erase_seq);
3546 s++;
3547 wraparound_section(ic, &s);
3548 if (ic->journal_sections >= 2) {
3549 init_journal(ic, s, ic->journal_sections - 2, erase_seq);
3550 s += ic->journal_sections - 2;
3551 wraparound_section(ic, &s);
3552 init_journal(ic, s, 1, erase_seq);
3553 }
3554
3555 continue_section = 0;
3556 ic->commit_seq = next_commit_seq(erase_seq);
3557 }
3558
3559 ic->committed_section = continue_section;
3560 ic->n_committed_sections = 0;
3561
3562 ic->uncommitted_section = continue_section;
3563 ic->n_uncommitted_sections = 0;
3564
3565 ic->free_section = continue_section;
3566 ic->free_section_entry = 0;
3567 ic->free_sectors = ic->journal_entries;
3568
3569 ic->journal_tree_root = RB_ROOT;
3570 for (i = 0; i < ic->journal_entries; i++)
3571 init_journal_node(&ic->journal_tree[i]);
3572 }
3573
dm_integrity_enter_synchronous_mode(struct dm_integrity_c * ic)3574 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic)
3575 {
3576 DEBUG_print("%s\n", __func__);
3577
3578 if (ic->mode == 'B') {
3579 ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1;
3580 ic->synchronous_mode = 1;
3581
3582 cancel_delayed_work_sync(&ic->bitmap_flush_work);
3583 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
3584 flush_workqueue(ic->commit_wq);
3585 }
3586 }
3587
dm_integrity_reboot(struct notifier_block * n,unsigned long code,void * x)3588 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x)
3589 {
3590 struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier);
3591
3592 DEBUG_print("%s\n", __func__);
3593
3594 dm_integrity_enter_synchronous_mode(ic);
3595
3596 return NOTIFY_DONE;
3597 }
3598
dm_integrity_postsuspend(struct dm_target * ti)3599 static void dm_integrity_postsuspend(struct dm_target *ti)
3600 {
3601 struct dm_integrity_c *ic = ti->private;
3602 int r;
3603
3604 WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier));
3605
3606 timer_delete_sync(&ic->autocommit_timer);
3607
3608 if (ic->recalc_wq)
3609 drain_workqueue(ic->recalc_wq);
3610
3611 if (ic->mode == 'B')
3612 cancel_delayed_work_sync(&ic->bitmap_flush_work);
3613
3614 queue_work(ic->commit_wq, &ic->commit_work);
3615 drain_workqueue(ic->commit_wq);
3616
3617 if (ic->mode == 'J') {
3618 queue_work(ic->writer_wq, &ic->writer_work);
3619 drain_workqueue(ic->writer_wq);
3620 dm_integrity_flush_buffers(ic, true);
3621 if (ic->wrote_to_journal) {
3622 init_journal(ic, ic->free_section,
3623 ic->journal_sections - ic->free_section, ic->commit_seq);
3624 if (ic->free_section) {
3625 init_journal(ic, 0, ic->free_section,
3626 next_commit_seq(ic->commit_seq));
3627 }
3628 }
3629 }
3630
3631 if (ic->mode == 'B') {
3632 dm_integrity_flush_buffers(ic, true);
3633 #if 1
3634 /* set to 0 to test bitmap replay code */
3635 init_journal(ic, 0, ic->journal_sections, 0);
3636 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3637 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3638 if (unlikely(r))
3639 dm_integrity_io_error(ic, "writing superblock", r);
3640 #endif
3641 }
3642
3643 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
3644
3645 ic->journal_uptodate = true;
3646 }
3647
dm_integrity_resume(struct dm_target * ti)3648 static void dm_integrity_resume(struct dm_target *ti)
3649 {
3650 struct dm_integrity_c *ic = ti->private;
3651 __u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3652 int r;
3653
3654 DEBUG_print("resume\n");
3655
3656 ic->wrote_to_journal = false;
3657
3658 if (ic->provided_data_sectors != old_provided_data_sectors) {
3659 if (ic->provided_data_sectors > old_provided_data_sectors &&
3660 ic->mode == 'B' &&
3661 ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
3662 rw_journal_sectors(ic, REQ_OP_READ, 0,
3663 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3664 block_bitmap_op(ic, ic->journal, old_provided_data_sectors,
3665 ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET);
3666 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3667 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3668 }
3669
3670 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3671 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3672 if (unlikely(r))
3673 dm_integrity_io_error(ic, "writing superblock", r);
3674 }
3675
3676 if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) {
3677 DEBUG_print("resume dirty_bitmap\n");
3678 rw_journal_sectors(ic, REQ_OP_READ, 0,
3679 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3680 if (ic->mode == 'B') {
3681 if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3682 !ic->reset_recalculate_flag) {
3683 block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal);
3684 block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal);
3685 if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors,
3686 BITMAP_OP_TEST_ALL_CLEAR)) {
3687 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3688 ic->sb->recalc_sector = cpu_to_le64(0);
3689 }
3690 } else {
3691 DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
3692 ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit);
3693 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3694 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3695 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3696 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3697 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3698 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3699 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3700 ic->sb->recalc_sector = cpu_to_le64(0);
3701 }
3702 } else {
3703 if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3704 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR)) ||
3705 ic->reset_recalculate_flag) {
3706 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3707 ic->sb->recalc_sector = cpu_to_le64(0);
3708 }
3709 init_journal(ic, 0, ic->journal_sections, 0);
3710 replay_journal(ic);
3711 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3712 }
3713 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3714 if (unlikely(r))
3715 dm_integrity_io_error(ic, "writing superblock", r);
3716 } else {
3717 replay_journal(ic);
3718 if (ic->reset_recalculate_flag) {
3719 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3720 ic->sb->recalc_sector = cpu_to_le64(0);
3721 }
3722 if (ic->mode == 'B') {
3723 ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3724 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3725 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3726 if (unlikely(r))
3727 dm_integrity_io_error(ic, "writing superblock", r);
3728
3729 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3730 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3731 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3732 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
3733 le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) {
3734 block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector),
3735 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3736 block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3737 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3738 block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3739 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3740 }
3741 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3742 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3743 }
3744 }
3745
3746 DEBUG_print("testing recalc: %x\n", ic->sb->flags);
3747 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
3748 __u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
3749
3750 DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors);
3751 if (recalc_pos < ic->provided_data_sectors) {
3752 queue_work(ic->recalc_wq, &ic->recalc_work);
3753 } else if (recalc_pos > ic->provided_data_sectors) {
3754 ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
3755 recalc_write_super(ic);
3756 }
3757 }
3758
3759 ic->reboot_notifier.notifier_call = dm_integrity_reboot;
3760 ic->reboot_notifier.next = NULL;
3761 ic->reboot_notifier.priority = INT_MAX - 1; /* be notified after md and before hardware drivers */
3762 WARN_ON(register_reboot_notifier(&ic->reboot_notifier));
3763
3764 #if 0
3765 /* set to 1 to stress test synchronous mode */
3766 dm_integrity_enter_synchronous_mode(ic);
3767 #endif
3768 }
3769
dm_integrity_status(struct dm_target * ti,status_type_t type,unsigned int status_flags,char * result,unsigned int maxlen)3770 static void dm_integrity_status(struct dm_target *ti, status_type_t type,
3771 unsigned int status_flags, char *result, unsigned int maxlen)
3772 {
3773 struct dm_integrity_c *ic = ti->private;
3774 unsigned int arg_count;
3775 size_t sz = 0;
3776
3777 switch (type) {
3778 case STATUSTYPE_INFO:
3779 DMEMIT("%llu %llu",
3780 (unsigned long long)atomic64_read(&ic->number_of_mismatches),
3781 ic->provided_data_sectors);
3782 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3783 DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector));
3784 else
3785 DMEMIT(" -");
3786 break;
3787
3788 case STATUSTYPE_TABLE: {
3789 arg_count = 1; /* buffer_sectors */
3790 arg_count += !!ic->meta_dev;
3791 arg_count += ic->sectors_per_block != 1;
3792 arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
3793 arg_count += ic->reset_recalculate_flag;
3794 arg_count += ic->discard;
3795 arg_count += ic->mode != 'I'; /* interleave_sectors */
3796 arg_count += ic->mode == 'J'; /* journal_sectors */
3797 arg_count += ic->mode == 'J'; /* journal_watermark */
3798 arg_count += ic->mode == 'J'; /* commit_time */
3799 arg_count += ic->mode == 'B'; /* sectors_per_bit */
3800 arg_count += ic->mode == 'B'; /* bitmap_flush_interval */
3801 arg_count += !!ic->internal_hash_alg.alg_string;
3802 arg_count += !!ic->journal_crypt_alg.alg_string;
3803 arg_count += !!ic->journal_mac_alg.alg_string;
3804 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0;
3805 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0;
3806 arg_count += ic->legacy_recalculate;
3807 DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start,
3808 ic->tag_size, ic->mode, arg_count);
3809 if (ic->meta_dev)
3810 DMEMIT(" meta_device:%s", ic->meta_dev->name);
3811 if (ic->sectors_per_block != 1)
3812 DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
3813 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3814 DMEMIT(" recalculate");
3815 if (ic->reset_recalculate_flag)
3816 DMEMIT(" reset_recalculate");
3817 if (ic->discard)
3818 DMEMIT(" allow_discards");
3819 if (ic->mode != 'I')
3820 DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
3821 DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
3822 if (ic->mode == 'J') {
3823 __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
3824
3825 watermark_percentage += ic->journal_entries / 2;
3826 do_div(watermark_percentage, ic->journal_entries);
3827 DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
3828 DMEMIT(" journal_watermark:%u", (unsigned int)watermark_percentage);
3829 DMEMIT(" commit_time:%u", ic->autocommit_msec);
3830 }
3831 if (ic->mode == 'B') {
3832 DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit);
3833 DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval));
3834 }
3835 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0)
3836 DMEMIT(" fix_padding");
3837 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0)
3838 DMEMIT(" fix_hmac");
3839 if (ic->legacy_recalculate)
3840 DMEMIT(" legacy_recalculate");
3841
3842 #define EMIT_ALG(a, n) \
3843 do { \
3844 if (ic->a.alg_string) { \
3845 DMEMIT(" %s:%s", n, ic->a.alg_string); \
3846 if (ic->a.key_string) \
3847 DMEMIT(":%s", ic->a.key_string);\
3848 } \
3849 } while (0)
3850 EMIT_ALG(internal_hash_alg, "internal_hash");
3851 EMIT_ALG(journal_crypt_alg, "journal_crypt");
3852 EMIT_ALG(journal_mac_alg, "journal_mac");
3853 break;
3854 }
3855 case STATUSTYPE_IMA:
3856 DMEMIT_TARGET_NAME_VERSION(ti->type);
3857 DMEMIT(",dev_name=%s,start=%llu,tag_size=%u,mode=%c",
3858 ic->dev->name, ic->start, ic->tag_size, ic->mode);
3859
3860 if (ic->meta_dev)
3861 DMEMIT(",meta_device=%s", ic->meta_dev->name);
3862 if (ic->sectors_per_block != 1)
3863 DMEMIT(",block_size=%u", ic->sectors_per_block << SECTOR_SHIFT);
3864
3865 DMEMIT(",recalculate=%c", (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) ?
3866 'y' : 'n');
3867 DMEMIT(",allow_discards=%c", ic->discard ? 'y' : 'n');
3868 DMEMIT(",fix_padding=%c",
3869 ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) ? 'y' : 'n');
3870 DMEMIT(",fix_hmac=%c",
3871 ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) ? 'y' : 'n');
3872 DMEMIT(",legacy_recalculate=%c", ic->legacy_recalculate ? 'y' : 'n');
3873
3874 DMEMIT(",journal_sectors=%u", ic->initial_sectors - SB_SECTORS);
3875 DMEMIT(",interleave_sectors=%u", 1U << ic->sb->log2_interleave_sectors);
3876 DMEMIT(",buffer_sectors=%u", 1U << ic->log2_buffer_sectors);
3877 DMEMIT(";");
3878 break;
3879 }
3880 }
3881
dm_integrity_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)3882 static int dm_integrity_iterate_devices(struct dm_target *ti,
3883 iterate_devices_callout_fn fn, void *data)
3884 {
3885 struct dm_integrity_c *ic = ti->private;
3886
3887 if (!ic->meta_dev)
3888 return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
3889 else
3890 return fn(ti, ic->dev, 0, ti->len, data);
3891 }
3892
dm_integrity_io_hints(struct dm_target * ti,struct queue_limits * limits)3893 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
3894 {
3895 struct dm_integrity_c *ic = ti->private;
3896
3897 if (ic->sectors_per_block > 1) {
3898 limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3899 limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3900 limits->io_min = ic->sectors_per_block << SECTOR_SHIFT;
3901 limits->dma_alignment = limits->logical_block_size - 1;
3902 limits->discard_granularity = ic->sectors_per_block << SECTOR_SHIFT;
3903 }
3904
3905 if (!ic->internal_hash) {
3906 struct blk_integrity *bi = &limits->integrity;
3907
3908 memset(bi, 0, sizeof(*bi));
3909 bi->tuple_size = ic->tag_size;
3910 bi->tag_size = bi->tuple_size;
3911 bi->interval_exp =
3912 ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
3913 }
3914
3915 limits->max_integrity_segments = USHRT_MAX;
3916 }
3917
calculate_journal_section_size(struct dm_integrity_c * ic)3918 static void calculate_journal_section_size(struct dm_integrity_c *ic)
3919 {
3920 unsigned int sector_space = JOURNAL_SECTOR_DATA;
3921
3922 ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
3923 ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
3924 JOURNAL_ENTRY_ROUNDUP);
3925
3926 if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
3927 sector_space -= JOURNAL_MAC_PER_SECTOR;
3928 ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
3929 ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
3930 ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
3931 ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
3932 }
3933
calculate_device_limits(struct dm_integrity_c * ic)3934 static int calculate_device_limits(struct dm_integrity_c *ic)
3935 {
3936 __u64 initial_sectors;
3937
3938 calculate_journal_section_size(ic);
3939 initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
3940 if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
3941 return -EINVAL;
3942 ic->initial_sectors = initial_sectors;
3943
3944 if (ic->mode == 'I') {
3945 if (ic->initial_sectors + ic->provided_data_sectors > ic->meta_device_sectors)
3946 return -EINVAL;
3947 } else if (!ic->meta_dev) {
3948 sector_t last_sector, last_area, last_offset;
3949
3950 /* we have to maintain excessive padding for compatibility with existing volumes */
3951 __u64 metadata_run_padding =
3952 ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ?
3953 (__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) :
3954 (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS);
3955
3956 ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
3957 metadata_run_padding) >> SECTOR_SHIFT;
3958 if (!(ic->metadata_run & (ic->metadata_run - 1)))
3959 ic->log2_metadata_run = __ffs(ic->metadata_run);
3960 else
3961 ic->log2_metadata_run = -1;
3962
3963 get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
3964 last_sector = get_data_sector(ic, last_area, last_offset);
3965 if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
3966 return -EINVAL;
3967 } else {
3968 __u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
3969
3970 meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
3971 >> (ic->log2_buffer_sectors + SECTOR_SHIFT);
3972 meta_size <<= ic->log2_buffer_sectors;
3973 if (ic->initial_sectors + meta_size < ic->initial_sectors ||
3974 ic->initial_sectors + meta_size > ic->meta_device_sectors)
3975 return -EINVAL;
3976 ic->metadata_run = 1;
3977 ic->log2_metadata_run = 0;
3978 }
3979
3980 return 0;
3981 }
3982
get_provided_data_sectors(struct dm_integrity_c * ic)3983 static void get_provided_data_sectors(struct dm_integrity_c *ic)
3984 {
3985 if (!ic->meta_dev) {
3986 int test_bit;
3987
3988 ic->provided_data_sectors = 0;
3989 for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
3990 __u64 prev_data_sectors = ic->provided_data_sectors;
3991
3992 ic->provided_data_sectors |= (sector_t)1 << test_bit;
3993 if (calculate_device_limits(ic))
3994 ic->provided_data_sectors = prev_data_sectors;
3995 }
3996 } else {
3997 ic->provided_data_sectors = ic->data_device_sectors;
3998 ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
3999 }
4000 }
4001
initialize_superblock(struct dm_integrity_c * ic,unsigned int journal_sectors,unsigned int interleave_sectors)4002 static int initialize_superblock(struct dm_integrity_c *ic,
4003 unsigned int journal_sectors, unsigned int interleave_sectors)
4004 {
4005 unsigned int journal_sections;
4006 int test_bit;
4007
4008 memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
4009 memcpy(ic->sb->magic, SB_MAGIC, 8);
4010 if (ic->mode == 'I')
4011 ic->sb->flags |= cpu_to_le32(SB_FLAG_INLINE);
4012 ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
4013 ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
4014 if (ic->journal_mac_alg.alg_string)
4015 ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
4016
4017 calculate_journal_section_size(ic);
4018 journal_sections = journal_sectors / ic->journal_section_sectors;
4019 if (!journal_sections)
4020 journal_sections = 1;
4021 if (ic->mode == 'I')
4022 journal_sections = 0;
4023
4024 if (ic->fix_hmac && (ic->internal_hash_alg.alg_string || ic->journal_mac_alg.alg_string)) {
4025 ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_HMAC);
4026 get_random_bytes(ic->sb->salt, SALT_SIZE);
4027 }
4028
4029 if (!ic->meta_dev) {
4030 if (ic->fix_padding)
4031 ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING);
4032 ic->sb->journal_sections = cpu_to_le32(journal_sections);
4033 if (!interleave_sectors)
4034 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
4035 ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
4036 ic->sb->log2_interleave_sectors = max_t(__u8, MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
4037 ic->sb->log2_interleave_sectors = min_t(__u8, MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
4038
4039 get_provided_data_sectors(ic);
4040 if (!ic->provided_data_sectors)
4041 return -EINVAL;
4042 } else {
4043 ic->sb->log2_interleave_sectors = 0;
4044
4045 get_provided_data_sectors(ic);
4046 if (!ic->provided_data_sectors)
4047 return -EINVAL;
4048
4049 try_smaller_buffer:
4050 ic->sb->journal_sections = cpu_to_le32(0);
4051 for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
4052 __u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
4053 __u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
4054
4055 if (test_journal_sections > journal_sections)
4056 continue;
4057 ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
4058 if (calculate_device_limits(ic))
4059 ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
4060
4061 }
4062 if (!le32_to_cpu(ic->sb->journal_sections)) {
4063 if (ic->log2_buffer_sectors > 3) {
4064 ic->log2_buffer_sectors--;
4065 goto try_smaller_buffer;
4066 }
4067 return -EINVAL;
4068 }
4069 }
4070
4071 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
4072
4073 sb_set_version(ic);
4074
4075 return 0;
4076 }
4077
dm_integrity_free_page_list(struct page_list * pl)4078 static void dm_integrity_free_page_list(struct page_list *pl)
4079 {
4080 unsigned int i;
4081
4082 if (!pl)
4083 return;
4084 for (i = 0; pl[i].page; i++)
4085 __free_page(pl[i].page);
4086 kvfree(pl);
4087 }
4088
dm_integrity_alloc_page_list(unsigned int n_pages)4089 static struct page_list *dm_integrity_alloc_page_list(unsigned int n_pages)
4090 {
4091 struct page_list *pl;
4092 unsigned int i;
4093
4094 pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO);
4095 if (!pl)
4096 return NULL;
4097
4098 for (i = 0; i < n_pages; i++) {
4099 pl[i].page = alloc_page(GFP_KERNEL);
4100 if (!pl[i].page) {
4101 dm_integrity_free_page_list(pl);
4102 return NULL;
4103 }
4104 if (i)
4105 pl[i - 1].next = &pl[i];
4106 }
4107 pl[i].page = NULL;
4108 pl[i].next = NULL;
4109
4110 return pl;
4111 }
4112
dm_integrity_free_journal_scatterlist(struct dm_integrity_c * ic,struct scatterlist ** sl)4113 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
4114 {
4115 unsigned int i;
4116
4117 for (i = 0; i < ic->journal_sections; i++)
4118 kvfree(sl[i]);
4119 kvfree(sl);
4120 }
4121
dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c * ic,struct page_list * pl)4122 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic,
4123 struct page_list *pl)
4124 {
4125 struct scatterlist **sl;
4126 unsigned int i;
4127
4128 sl = kvmalloc_array(ic->journal_sections,
4129 sizeof(struct scatterlist *),
4130 GFP_KERNEL | __GFP_ZERO);
4131 if (!sl)
4132 return NULL;
4133
4134 for (i = 0; i < ic->journal_sections; i++) {
4135 struct scatterlist *s;
4136 unsigned int start_index, start_offset;
4137 unsigned int end_index, end_offset;
4138 unsigned int n_pages;
4139 unsigned int idx;
4140
4141 page_list_location(ic, i, 0, &start_index, &start_offset);
4142 page_list_location(ic, i, ic->journal_section_sectors - 1,
4143 &end_index, &end_offset);
4144
4145 n_pages = (end_index - start_index + 1);
4146
4147 s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
4148 GFP_KERNEL);
4149 if (!s) {
4150 dm_integrity_free_journal_scatterlist(ic, sl);
4151 return NULL;
4152 }
4153
4154 sg_init_table(s, n_pages);
4155 for (idx = start_index; idx <= end_index; idx++) {
4156 char *va = lowmem_page_address(pl[idx].page);
4157 unsigned int start = 0, end = PAGE_SIZE;
4158
4159 if (idx == start_index)
4160 start = start_offset;
4161 if (idx == end_index)
4162 end = end_offset + (1 << SECTOR_SHIFT);
4163 sg_set_buf(&s[idx - start_index], va + start, end - start);
4164 }
4165
4166 sl[i] = s;
4167 }
4168
4169 return sl;
4170 }
4171
free_alg(struct alg_spec * a)4172 static void free_alg(struct alg_spec *a)
4173 {
4174 kfree_sensitive(a->alg_string);
4175 kfree_sensitive(a->key);
4176 memset(a, 0, sizeof(*a));
4177 }
4178
get_alg_and_key(const char * arg,struct alg_spec * a,char ** error,char * error_inval)4179 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
4180 {
4181 char *k;
4182
4183 free_alg(a);
4184
4185 a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
4186 if (!a->alg_string)
4187 goto nomem;
4188
4189 k = strchr(a->alg_string, ':');
4190 if (k) {
4191 *k = 0;
4192 a->key_string = k + 1;
4193 if (strlen(a->key_string) & 1)
4194 goto inval;
4195
4196 a->key_size = strlen(a->key_string) / 2;
4197 a->key = kmalloc(a->key_size, GFP_KERNEL);
4198 if (!a->key)
4199 goto nomem;
4200 if (hex2bin(a->key, a->key_string, a->key_size))
4201 goto inval;
4202 }
4203
4204 return 0;
4205 inval:
4206 *error = error_inval;
4207 return -EINVAL;
4208 nomem:
4209 *error = "Out of memory for an argument";
4210 return -ENOMEM;
4211 }
4212
get_mac(struct crypto_shash ** hash,struct alg_spec * a,char ** error,char * error_alg,char * error_key)4213 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
4214 char *error_alg, char *error_key)
4215 {
4216 int r;
4217
4218 if (a->alg_string) {
4219 *hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
4220 if (IS_ERR(*hash)) {
4221 *error = error_alg;
4222 r = PTR_ERR(*hash);
4223 *hash = NULL;
4224 return r;
4225 }
4226
4227 if (a->key) {
4228 r = crypto_shash_setkey(*hash, a->key, a->key_size);
4229 if (r) {
4230 *error = error_key;
4231 return r;
4232 }
4233 } else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
4234 *error = error_key;
4235 return -ENOKEY;
4236 }
4237 }
4238
4239 return 0;
4240 }
4241
create_journal(struct dm_integrity_c * ic,char ** error)4242 static int create_journal(struct dm_integrity_c *ic, char **error)
4243 {
4244 int r = 0;
4245 unsigned int i;
4246 __u64 journal_pages, journal_desc_size, journal_tree_size;
4247 unsigned char *crypt_data = NULL, *crypt_iv = NULL;
4248 struct skcipher_request *req = NULL;
4249
4250 ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
4251 ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
4252 ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
4253 ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
4254
4255 journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
4256 PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
4257 journal_desc_size = journal_pages * sizeof(struct page_list);
4258 if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
4259 *error = "Journal doesn't fit into memory";
4260 r = -ENOMEM;
4261 goto bad;
4262 }
4263 ic->journal_pages = journal_pages;
4264
4265 ic->journal = dm_integrity_alloc_page_list(ic->journal_pages);
4266 if (!ic->journal) {
4267 *error = "Could not allocate memory for journal";
4268 r = -ENOMEM;
4269 goto bad;
4270 }
4271 if (ic->journal_crypt_alg.alg_string) {
4272 unsigned int ivsize, blocksize;
4273 struct journal_completion comp;
4274
4275 comp.ic = ic;
4276 ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
4277 if (IS_ERR(ic->journal_crypt)) {
4278 *error = "Invalid journal cipher";
4279 r = PTR_ERR(ic->journal_crypt);
4280 ic->journal_crypt = NULL;
4281 goto bad;
4282 }
4283 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
4284 blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
4285
4286 if (ic->journal_crypt_alg.key) {
4287 r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
4288 ic->journal_crypt_alg.key_size);
4289 if (r) {
4290 *error = "Error setting encryption key";
4291 goto bad;
4292 }
4293 }
4294 DEBUG_print("cipher %s, block size %u iv size %u\n",
4295 ic->journal_crypt_alg.alg_string, blocksize, ivsize);
4296
4297 ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages);
4298 if (!ic->journal_io) {
4299 *error = "Could not allocate memory for journal io";
4300 r = -ENOMEM;
4301 goto bad;
4302 }
4303
4304 if (blocksize == 1) {
4305 struct scatterlist *sg;
4306
4307 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
4308 if (!req) {
4309 *error = "Could not allocate crypt request";
4310 r = -ENOMEM;
4311 goto bad;
4312 }
4313
4314 crypt_iv = kzalloc(ivsize, GFP_KERNEL);
4315 if (!crypt_iv) {
4316 *error = "Could not allocate iv";
4317 r = -ENOMEM;
4318 goto bad;
4319 }
4320
4321 ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages);
4322 if (!ic->journal_xor) {
4323 *error = "Could not allocate memory for journal xor";
4324 r = -ENOMEM;
4325 goto bad;
4326 }
4327
4328 sg = kvmalloc_array(ic->journal_pages + 1,
4329 sizeof(struct scatterlist),
4330 GFP_KERNEL);
4331 if (!sg) {
4332 *error = "Unable to allocate sg list";
4333 r = -ENOMEM;
4334 goto bad;
4335 }
4336 sg_init_table(sg, ic->journal_pages + 1);
4337 for (i = 0; i < ic->journal_pages; i++) {
4338 char *va = lowmem_page_address(ic->journal_xor[i].page);
4339
4340 clear_page(va);
4341 sg_set_buf(&sg[i], va, PAGE_SIZE);
4342 }
4343 sg_set_buf(&sg[i], &ic->commit_ids, sizeof(ic->commit_ids));
4344
4345 skcipher_request_set_crypt(req, sg, sg,
4346 PAGE_SIZE * ic->journal_pages + sizeof(ic->commit_ids), crypt_iv);
4347 init_completion(&comp.comp);
4348 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
4349 if (do_crypt(true, req, &comp))
4350 wait_for_completion(&comp.comp);
4351 kvfree(sg);
4352 r = dm_integrity_failed(ic);
4353 if (r) {
4354 *error = "Unable to encrypt journal";
4355 goto bad;
4356 }
4357 DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
4358
4359 crypto_free_skcipher(ic->journal_crypt);
4360 ic->journal_crypt = NULL;
4361 } else {
4362 unsigned int crypt_len = roundup(ivsize, blocksize);
4363
4364 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
4365 if (!req) {
4366 *error = "Could not allocate crypt request";
4367 r = -ENOMEM;
4368 goto bad;
4369 }
4370
4371 crypt_iv = kmalloc(ivsize, GFP_KERNEL);
4372 if (!crypt_iv) {
4373 *error = "Could not allocate iv";
4374 r = -ENOMEM;
4375 goto bad;
4376 }
4377
4378 crypt_data = kmalloc(crypt_len, GFP_KERNEL);
4379 if (!crypt_data) {
4380 *error = "Unable to allocate crypt data";
4381 r = -ENOMEM;
4382 goto bad;
4383 }
4384
4385 ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
4386 if (!ic->journal_scatterlist) {
4387 *error = "Unable to allocate sg list";
4388 r = -ENOMEM;
4389 goto bad;
4390 }
4391 ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
4392 if (!ic->journal_io_scatterlist) {
4393 *error = "Unable to allocate sg list";
4394 r = -ENOMEM;
4395 goto bad;
4396 }
4397 ic->sk_requests = kvmalloc_array(ic->journal_sections,
4398 sizeof(struct skcipher_request *),
4399 GFP_KERNEL | __GFP_ZERO);
4400 if (!ic->sk_requests) {
4401 *error = "Unable to allocate sk requests";
4402 r = -ENOMEM;
4403 goto bad;
4404 }
4405 for (i = 0; i < ic->journal_sections; i++) {
4406 struct scatterlist sg;
4407 struct skcipher_request *section_req;
4408 __le32 section_le = cpu_to_le32(i);
4409
4410 memset(crypt_iv, 0x00, ivsize);
4411 memset(crypt_data, 0x00, crypt_len);
4412 memcpy(crypt_data, §ion_le, min_t(size_t, crypt_len, sizeof(section_le)));
4413
4414 sg_init_one(&sg, crypt_data, crypt_len);
4415 skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
4416 init_completion(&comp.comp);
4417 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
4418 if (do_crypt(true, req, &comp))
4419 wait_for_completion(&comp.comp);
4420
4421 r = dm_integrity_failed(ic);
4422 if (r) {
4423 *error = "Unable to generate iv";
4424 goto bad;
4425 }
4426
4427 section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
4428 if (!section_req) {
4429 *error = "Unable to allocate crypt request";
4430 r = -ENOMEM;
4431 goto bad;
4432 }
4433 section_req->iv = kmalloc_array(ivsize, 2,
4434 GFP_KERNEL);
4435 if (!section_req->iv) {
4436 skcipher_request_free(section_req);
4437 *error = "Unable to allocate iv";
4438 r = -ENOMEM;
4439 goto bad;
4440 }
4441 memcpy(section_req->iv + ivsize, crypt_data, ivsize);
4442 section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
4443 ic->sk_requests[i] = section_req;
4444 DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
4445 }
4446 }
4447 }
4448
4449 for (i = 0; i < N_COMMIT_IDS; i++) {
4450 unsigned int j;
4451
4452 retest_commit_id:
4453 for (j = 0; j < i; j++) {
4454 if (ic->commit_ids[j] == ic->commit_ids[i]) {
4455 ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
4456 goto retest_commit_id;
4457 }
4458 }
4459 DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
4460 }
4461
4462 journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
4463 if (journal_tree_size > ULONG_MAX) {
4464 *error = "Journal doesn't fit into memory";
4465 r = -ENOMEM;
4466 goto bad;
4467 }
4468 ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
4469 if (!ic->journal_tree) {
4470 *error = "Could not allocate memory for journal tree";
4471 r = -ENOMEM;
4472 }
4473 bad:
4474 kfree(crypt_data);
4475 kfree(crypt_iv);
4476 skcipher_request_free(req);
4477
4478 return r;
4479 }
4480
4481 /*
4482 * Construct a integrity mapping
4483 *
4484 * Arguments:
4485 * device
4486 * offset from the start of the device
4487 * tag size
4488 * D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
4489 * number of optional arguments
4490 * optional arguments:
4491 * journal_sectors
4492 * interleave_sectors
4493 * buffer_sectors
4494 * journal_watermark
4495 * commit_time
4496 * meta_device
4497 * block_size
4498 * sectors_per_bit
4499 * bitmap_flush_interval
4500 * internal_hash
4501 * journal_crypt
4502 * journal_mac
4503 * recalculate
4504 */
dm_integrity_ctr(struct dm_target * ti,unsigned int argc,char ** argv)4505 static int dm_integrity_ctr(struct dm_target *ti, unsigned int argc, char **argv)
4506 {
4507 struct dm_integrity_c *ic;
4508 char dummy;
4509 int r;
4510 unsigned int extra_args;
4511 struct dm_arg_set as;
4512 static const struct dm_arg _args[] = {
4513 {0, 18, "Invalid number of feature args"},
4514 };
4515 unsigned int journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
4516 bool should_write_sb;
4517 __u64 threshold;
4518 unsigned long long start;
4519 __s8 log2_sectors_per_bitmap_bit = -1;
4520 __s8 log2_blocks_per_bitmap_bit;
4521 __u64 bits_in_journal;
4522 __u64 n_bitmap_bits;
4523
4524 #define DIRECT_ARGUMENTS 4
4525
4526 if (argc <= DIRECT_ARGUMENTS) {
4527 ti->error = "Invalid argument count";
4528 return -EINVAL;
4529 }
4530
4531 ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
4532 if (!ic) {
4533 ti->error = "Cannot allocate integrity context";
4534 return -ENOMEM;
4535 }
4536 ti->private = ic;
4537 ti->per_io_data_size = sizeof(struct dm_integrity_io);
4538 ic->ti = ti;
4539
4540 ic->in_progress = RB_ROOT;
4541 INIT_LIST_HEAD(&ic->wait_list);
4542 init_waitqueue_head(&ic->endio_wait);
4543 bio_list_init(&ic->flush_bio_list);
4544 init_waitqueue_head(&ic->copy_to_journal_wait);
4545 init_completion(&ic->crypto_backoff);
4546 atomic64_set(&ic->number_of_mismatches, 0);
4547 ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL;
4548
4549 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
4550 if (r) {
4551 ti->error = "Device lookup failed";
4552 goto bad;
4553 }
4554
4555 if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
4556 ti->error = "Invalid starting offset";
4557 r = -EINVAL;
4558 goto bad;
4559 }
4560 ic->start = start;
4561
4562 if (strcmp(argv[2], "-")) {
4563 if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
4564 ti->error = "Invalid tag size";
4565 r = -EINVAL;
4566 goto bad;
4567 }
4568 }
4569
4570 if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") ||
4571 !strcmp(argv[3], "D") || !strcmp(argv[3], "R") ||
4572 !strcmp(argv[3], "I")) {
4573 ic->mode = argv[3][0];
4574 } else {
4575 ti->error = "Invalid mode (expecting J, B, D, R, I)";
4576 r = -EINVAL;
4577 goto bad;
4578 }
4579
4580 journal_sectors = 0;
4581 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
4582 buffer_sectors = DEFAULT_BUFFER_SECTORS;
4583 journal_watermark = DEFAULT_JOURNAL_WATERMARK;
4584 sync_msec = DEFAULT_SYNC_MSEC;
4585 ic->sectors_per_block = 1;
4586
4587 as.argc = argc - DIRECT_ARGUMENTS;
4588 as.argv = argv + DIRECT_ARGUMENTS;
4589 r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
4590 if (r)
4591 goto bad;
4592
4593 while (extra_args--) {
4594 const char *opt_string;
4595 unsigned int val;
4596 unsigned long long llval;
4597
4598 opt_string = dm_shift_arg(&as);
4599 if (!opt_string) {
4600 r = -EINVAL;
4601 ti->error = "Not enough feature arguments";
4602 goto bad;
4603 }
4604 if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
4605 journal_sectors = val ? val : 1;
4606 else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
4607 interleave_sectors = val;
4608 else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
4609 buffer_sectors = val;
4610 else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
4611 journal_watermark = val;
4612 else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
4613 sync_msec = val;
4614 else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
4615 if (ic->meta_dev) {
4616 dm_put_device(ti, ic->meta_dev);
4617 ic->meta_dev = NULL;
4618 }
4619 r = dm_get_device(ti, strchr(opt_string, ':') + 1,
4620 dm_table_get_mode(ti->table), &ic->meta_dev);
4621 if (r) {
4622 ti->error = "Device lookup failed";
4623 goto bad;
4624 }
4625 } else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
4626 if (val < 1 << SECTOR_SHIFT ||
4627 val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
4628 (val & (val - 1))) {
4629 r = -EINVAL;
4630 ti->error = "Invalid block_size argument";
4631 goto bad;
4632 }
4633 ic->sectors_per_block = val >> SECTOR_SHIFT;
4634 } else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) {
4635 log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval);
4636 } else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) {
4637 if ((uint64_t)val >= (uint64_t)UINT_MAX * 1000 / HZ) {
4638 r = -EINVAL;
4639 ti->error = "Invalid bitmap_flush_interval argument";
4640 goto bad;
4641 }
4642 ic->bitmap_flush_interval = msecs_to_jiffies(val);
4643 } else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
4644 r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
4645 "Invalid internal_hash argument");
4646 if (r)
4647 goto bad;
4648 } else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
4649 r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
4650 "Invalid journal_crypt argument");
4651 if (r)
4652 goto bad;
4653 } else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
4654 r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error,
4655 "Invalid journal_mac argument");
4656 if (r)
4657 goto bad;
4658 } else if (!strcmp(opt_string, "recalculate")) {
4659 ic->recalculate_flag = true;
4660 } else if (!strcmp(opt_string, "reset_recalculate")) {
4661 ic->recalculate_flag = true;
4662 ic->reset_recalculate_flag = true;
4663 } else if (!strcmp(opt_string, "allow_discards")) {
4664 ic->discard = true;
4665 } else if (!strcmp(opt_string, "fix_padding")) {
4666 ic->fix_padding = true;
4667 } else if (!strcmp(opt_string, "fix_hmac")) {
4668 ic->fix_hmac = true;
4669 } else if (!strcmp(opt_string, "legacy_recalculate")) {
4670 ic->legacy_recalculate = true;
4671 } else {
4672 r = -EINVAL;
4673 ti->error = "Invalid argument";
4674 goto bad;
4675 }
4676 }
4677
4678 ic->data_device_sectors = bdev_nr_sectors(ic->dev->bdev);
4679 if (!ic->meta_dev)
4680 ic->meta_device_sectors = ic->data_device_sectors;
4681 else
4682 ic->meta_device_sectors = bdev_nr_sectors(ic->meta_dev->bdev);
4683
4684 if (!journal_sectors) {
4685 journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
4686 ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
4687 }
4688
4689 if (!buffer_sectors)
4690 buffer_sectors = 1;
4691 ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
4692
4693 r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
4694 "Invalid internal hash", "Error setting internal hash key");
4695 if (r)
4696 goto bad;
4697
4698 r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
4699 "Invalid journal mac", "Error setting journal mac key");
4700 if (r)
4701 goto bad;
4702
4703 if (!ic->tag_size) {
4704 if (!ic->internal_hash) {
4705 ti->error = "Unknown tag size";
4706 r = -EINVAL;
4707 goto bad;
4708 }
4709 ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
4710 }
4711 if (ic->tag_size > MAX_TAG_SIZE) {
4712 ti->error = "Too big tag size";
4713 r = -EINVAL;
4714 goto bad;
4715 }
4716 if (!(ic->tag_size & (ic->tag_size - 1)))
4717 ic->log2_tag_size = __ffs(ic->tag_size);
4718 else
4719 ic->log2_tag_size = -1;
4720
4721 if (ic->mode == 'I') {
4722 struct blk_integrity *bi;
4723 if (ic->meta_dev) {
4724 r = -EINVAL;
4725 ti->error = "Metadata device not supported in inline mode";
4726 goto bad;
4727 }
4728 if (!ic->internal_hash_alg.alg_string) {
4729 r = -EINVAL;
4730 ti->error = "Internal hash not set in inline mode";
4731 goto bad;
4732 }
4733 if (ic->journal_crypt_alg.alg_string || ic->journal_mac_alg.alg_string) {
4734 r = -EINVAL;
4735 ti->error = "Journal crypt not supported in inline mode";
4736 goto bad;
4737 }
4738 if (ic->discard) {
4739 r = -EINVAL;
4740 ti->error = "Discards not supported in inline mode";
4741 goto bad;
4742 }
4743 bi = blk_get_integrity(ic->dev->bdev->bd_disk);
4744 if (!bi || bi->csum_type != BLK_INTEGRITY_CSUM_NONE) {
4745 r = -EINVAL;
4746 ti->error = "Integrity profile not supported";
4747 goto bad;
4748 }
4749 /*printk("tag_size: %u, tuple_size: %u\n", bi->tag_size, bi->tuple_size);*/
4750 if (bi->tuple_size < ic->tag_size) {
4751 r = -EINVAL;
4752 ti->error = "The integrity profile is smaller than tag size";
4753 goto bad;
4754 }
4755 if ((unsigned long)bi->tuple_size > PAGE_SIZE / 2) {
4756 r = -EINVAL;
4757 ti->error = "Too big tuple size";
4758 goto bad;
4759 }
4760 ic->tuple_size = bi->tuple_size;
4761 if (1 << bi->interval_exp != ic->sectors_per_block << SECTOR_SHIFT) {
4762 r = -EINVAL;
4763 ti->error = "Integrity profile sector size mismatch";
4764 goto bad;
4765 }
4766 }
4767
4768 if (ic->mode == 'B' && !ic->internal_hash) {
4769 r = -EINVAL;
4770 ti->error = "Bitmap mode can be only used with internal hash";
4771 goto bad;
4772 }
4773
4774 if (ic->discard && !ic->internal_hash) {
4775 r = -EINVAL;
4776 ti->error = "Discard can be only used with internal hash";
4777 goto bad;
4778 }
4779
4780 ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
4781 ic->autocommit_msec = sync_msec;
4782 timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
4783
4784 ic->io = dm_io_client_create();
4785 if (IS_ERR(ic->io)) {
4786 r = PTR_ERR(ic->io);
4787 ic->io = NULL;
4788 ti->error = "Cannot allocate dm io";
4789 goto bad;
4790 }
4791
4792 r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
4793 if (r) {
4794 ti->error = "Cannot allocate mempool";
4795 goto bad;
4796 }
4797
4798 r = mempool_init_page_pool(&ic->recheck_pool, 1, ic->mode == 'I' ? 1 : 0);
4799 if (r) {
4800 ti->error = "Cannot allocate mempool";
4801 goto bad;
4802 }
4803
4804 if (ic->mode == 'I') {
4805 r = bioset_init(&ic->recheck_bios, RECHECK_POOL_SIZE, 0, BIOSET_NEED_BVECS);
4806 if (r) {
4807 ti->error = "Cannot allocate bio set";
4808 goto bad;
4809 }
4810 r = bioset_init(&ic->recalc_bios, 1, 0, BIOSET_NEED_BVECS);
4811 if (r) {
4812 ti->error = "Cannot allocate bio set";
4813 goto bad;
4814 }
4815 }
4816
4817 ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
4818 WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
4819 if (!ic->metadata_wq) {
4820 ti->error = "Cannot allocate workqueue";
4821 r = -ENOMEM;
4822 goto bad;
4823 }
4824
4825 /*
4826 * If this workqueue weren't ordered, it would cause bio reordering
4827 * and reduced performance.
4828 */
4829 ic->wait_wq = alloc_ordered_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM);
4830 if (!ic->wait_wq) {
4831 ti->error = "Cannot allocate workqueue";
4832 r = -ENOMEM;
4833 goto bad;
4834 }
4835
4836 ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM,
4837 METADATA_WORKQUEUE_MAX_ACTIVE);
4838 if (!ic->offload_wq) {
4839 ti->error = "Cannot allocate workqueue";
4840 r = -ENOMEM;
4841 goto bad;
4842 }
4843
4844 ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
4845 if (!ic->commit_wq) {
4846 ti->error = "Cannot allocate workqueue";
4847 r = -ENOMEM;
4848 goto bad;
4849 }
4850 INIT_WORK(&ic->commit_work, integrity_commit);
4851
4852 if (ic->mode == 'J' || ic->mode == 'B') {
4853 ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
4854 if (!ic->writer_wq) {
4855 ti->error = "Cannot allocate workqueue";
4856 r = -ENOMEM;
4857 goto bad;
4858 }
4859 INIT_WORK(&ic->writer_work, integrity_writer);
4860 }
4861
4862 ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
4863 if (!ic->sb) {
4864 r = -ENOMEM;
4865 ti->error = "Cannot allocate superblock area";
4866 goto bad;
4867 }
4868
4869 r = sync_rw_sb(ic, REQ_OP_READ);
4870 if (r) {
4871 ti->error = "Error reading superblock";
4872 goto bad;
4873 }
4874 should_write_sb = false;
4875 if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
4876 if (ic->mode != 'R') {
4877 if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
4878 r = -EINVAL;
4879 ti->error = "The device is not initialized";
4880 goto bad;
4881 }
4882 }
4883
4884 r = initialize_superblock(ic, journal_sectors, interleave_sectors);
4885 if (r) {
4886 ti->error = "Could not initialize superblock";
4887 goto bad;
4888 }
4889 if (ic->mode != 'R')
4890 should_write_sb = true;
4891 }
4892
4893 if (!ic->sb->version || ic->sb->version > SB_VERSION_6) {
4894 r = -EINVAL;
4895 ti->error = "Unknown version";
4896 goto bad;
4897 }
4898 if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_INLINE)) != (ic->mode == 'I')) {
4899 r = -EINVAL;
4900 ti->error = "Inline flag mismatch";
4901 goto bad;
4902 }
4903 if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
4904 r = -EINVAL;
4905 ti->error = "Tag size doesn't match the information in superblock";
4906 goto bad;
4907 }
4908 if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
4909 r = -EINVAL;
4910 ti->error = "Block size doesn't match the information in superblock";
4911 goto bad;
4912 }
4913 if (ic->mode != 'I') {
4914 if (!le32_to_cpu(ic->sb->journal_sections)) {
4915 r = -EINVAL;
4916 ti->error = "Corrupted superblock, journal_sections is 0";
4917 goto bad;
4918 }
4919 } else {
4920 if (le32_to_cpu(ic->sb->journal_sections)) {
4921 r = -EINVAL;
4922 ti->error = "Corrupted superblock, journal_sections is not 0";
4923 goto bad;
4924 }
4925 }
4926 /* make sure that ti->max_io_len doesn't overflow */
4927 if (!ic->meta_dev) {
4928 if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
4929 ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
4930 r = -EINVAL;
4931 ti->error = "Invalid interleave_sectors in the superblock";
4932 goto bad;
4933 }
4934 } else {
4935 if (ic->sb->log2_interleave_sectors) {
4936 r = -EINVAL;
4937 ti->error = "Invalid interleave_sectors in the superblock";
4938 goto bad;
4939 }
4940 }
4941 if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
4942 r = -EINVAL;
4943 ti->error = "Journal mac mismatch";
4944 goto bad;
4945 }
4946
4947 get_provided_data_sectors(ic);
4948 if (!ic->provided_data_sectors) {
4949 r = -EINVAL;
4950 ti->error = "The device is too small";
4951 goto bad;
4952 }
4953
4954 try_smaller_buffer:
4955 r = calculate_device_limits(ic);
4956 if (r) {
4957 if (ic->meta_dev) {
4958 if (ic->log2_buffer_sectors > 3) {
4959 ic->log2_buffer_sectors--;
4960 goto try_smaller_buffer;
4961 }
4962 }
4963 ti->error = "The device is too small";
4964 goto bad;
4965 }
4966
4967 if (log2_sectors_per_bitmap_bit < 0)
4968 log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT);
4969 if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block)
4970 log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block;
4971
4972 bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3);
4973 if (bits_in_journal > UINT_MAX)
4974 bits_in_journal = UINT_MAX;
4975 if (bits_in_journal)
4976 while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit)
4977 log2_sectors_per_bitmap_bit++;
4978
4979 log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block;
4980 ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4981 if (should_write_sb)
4982 ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4983
4984 n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block)
4985 + (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit;
4986 ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8);
4987
4988 if (!ic->meta_dev)
4989 ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
4990
4991 if (ti->len > ic->provided_data_sectors) {
4992 r = -EINVAL;
4993 ti->error = "Not enough provided sectors for requested mapping size";
4994 goto bad;
4995 }
4996
4997 threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
4998 threshold += 50;
4999 do_div(threshold, 100);
5000 ic->free_sectors_threshold = threshold;
5001
5002 DEBUG_print("initialized:\n");
5003 DEBUG_print(" integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
5004 DEBUG_print(" journal_entry_size %u\n", ic->journal_entry_size);
5005 DEBUG_print(" journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
5006 DEBUG_print(" journal_section_entries %u\n", ic->journal_section_entries);
5007 DEBUG_print(" journal_section_sectors %u\n", ic->journal_section_sectors);
5008 DEBUG_print(" journal_sections %u\n", (unsigned int)le32_to_cpu(ic->sb->journal_sections));
5009 DEBUG_print(" journal_entries %u\n", ic->journal_entries);
5010 DEBUG_print(" log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
5011 DEBUG_print(" data_device_sectors 0x%llx\n", bdev_nr_sectors(ic->dev->bdev));
5012 DEBUG_print(" initial_sectors 0x%x\n", ic->initial_sectors);
5013 DEBUG_print(" metadata_run 0x%x\n", ic->metadata_run);
5014 DEBUG_print(" log2_metadata_run %d\n", ic->log2_metadata_run);
5015 DEBUG_print(" provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors);
5016 DEBUG_print(" log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
5017 DEBUG_print(" bits_in_journal %llu\n", bits_in_journal);
5018
5019 if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
5020 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
5021 ic->sb->recalc_sector = cpu_to_le64(0);
5022 }
5023
5024 if (ic->internal_hash) {
5025 ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1);
5026 if (!ic->recalc_wq) {
5027 ti->error = "Cannot allocate workqueue";
5028 r = -ENOMEM;
5029 goto bad;
5030 }
5031 INIT_WORK(&ic->recalc_work, ic->mode == 'I' ? integrity_recalc_inline : integrity_recalc);
5032 } else {
5033 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
5034 ti->error = "Recalculate can only be specified with internal_hash";
5035 r = -EINVAL;
5036 goto bad;
5037 }
5038 }
5039
5040 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
5041 le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors &&
5042 dm_integrity_disable_recalculate(ic)) {
5043 ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\"";
5044 r = -EOPNOTSUPP;
5045 goto bad;
5046 }
5047
5048 ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
5049 1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL, 0);
5050 if (IS_ERR(ic->bufio)) {
5051 r = PTR_ERR(ic->bufio);
5052 ti->error = "Cannot initialize dm-bufio";
5053 ic->bufio = NULL;
5054 goto bad;
5055 }
5056 dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
5057
5058 if (ic->mode != 'R' && ic->mode != 'I') {
5059 r = create_journal(ic, &ti->error);
5060 if (r)
5061 goto bad;
5062
5063 }
5064
5065 if (ic->mode == 'B') {
5066 unsigned int i;
5067 unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
5068
5069 ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
5070 if (!ic->recalc_bitmap) {
5071 ti->error = "Could not allocate memory for bitmap";
5072 r = -ENOMEM;
5073 goto bad;
5074 }
5075 ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
5076 if (!ic->may_write_bitmap) {
5077 ti->error = "Could not allocate memory for bitmap";
5078 r = -ENOMEM;
5079 goto bad;
5080 }
5081 ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL);
5082 if (!ic->bbs) {
5083 ti->error = "Could not allocate memory for bitmap";
5084 r = -ENOMEM;
5085 goto bad;
5086 }
5087 INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work);
5088 for (i = 0; i < ic->n_bitmap_blocks; i++) {
5089 struct bitmap_block_status *bbs = &ic->bbs[i];
5090 unsigned int sector, pl_index, pl_offset;
5091
5092 INIT_WORK(&bbs->work, bitmap_block_work);
5093 bbs->ic = ic;
5094 bbs->idx = i;
5095 bio_list_init(&bbs->bio_queue);
5096 spin_lock_init(&bbs->bio_queue_lock);
5097
5098 sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT);
5099 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
5100 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
5101
5102 bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset;
5103 }
5104 }
5105
5106 if (should_write_sb) {
5107 init_journal(ic, 0, ic->journal_sections, 0);
5108 r = dm_integrity_failed(ic);
5109 if (unlikely(r)) {
5110 ti->error = "Error initializing journal";
5111 goto bad;
5112 }
5113 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
5114 if (r) {
5115 ti->error = "Error initializing superblock";
5116 goto bad;
5117 }
5118 ic->just_formatted = true;
5119 }
5120
5121 if (!ic->meta_dev && ic->mode != 'I') {
5122 r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
5123 if (r)
5124 goto bad;
5125 }
5126 if (ic->mode == 'B') {
5127 unsigned int max_io_len;
5128
5129 max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8);
5130 if (!max_io_len)
5131 max_io_len = 1U << 31;
5132 DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len);
5133 if (!ti->max_io_len || ti->max_io_len > max_io_len) {
5134 r = dm_set_target_max_io_len(ti, max_io_len);
5135 if (r)
5136 goto bad;
5137 }
5138 }
5139
5140 ti->num_flush_bios = 1;
5141 ti->flush_supported = true;
5142 if (ic->discard)
5143 ti->num_discard_bios = 1;
5144
5145 if (ic->mode == 'I')
5146 ti->mempool_needs_integrity = true;
5147
5148 dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
5149 return 0;
5150
5151 bad:
5152 dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
5153 dm_integrity_dtr(ti);
5154 return r;
5155 }
5156
dm_integrity_dtr(struct dm_target * ti)5157 static void dm_integrity_dtr(struct dm_target *ti)
5158 {
5159 struct dm_integrity_c *ic = ti->private;
5160
5161 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
5162 BUG_ON(!list_empty(&ic->wait_list));
5163
5164 if (ic->mode == 'B' && ic->bitmap_flush_work.work.func)
5165 cancel_delayed_work_sync(&ic->bitmap_flush_work);
5166 if (ic->metadata_wq)
5167 destroy_workqueue(ic->metadata_wq);
5168 if (ic->wait_wq)
5169 destroy_workqueue(ic->wait_wq);
5170 if (ic->offload_wq)
5171 destroy_workqueue(ic->offload_wq);
5172 if (ic->commit_wq)
5173 destroy_workqueue(ic->commit_wq);
5174 if (ic->writer_wq)
5175 destroy_workqueue(ic->writer_wq);
5176 if (ic->recalc_wq)
5177 destroy_workqueue(ic->recalc_wq);
5178 kvfree(ic->bbs);
5179 if (ic->bufio)
5180 dm_bufio_client_destroy(ic->bufio);
5181 bioset_exit(&ic->recalc_bios);
5182 bioset_exit(&ic->recheck_bios);
5183 mempool_exit(&ic->recheck_pool);
5184 mempool_exit(&ic->journal_io_mempool);
5185 if (ic->io)
5186 dm_io_client_destroy(ic->io);
5187 if (ic->dev)
5188 dm_put_device(ti, ic->dev);
5189 if (ic->meta_dev)
5190 dm_put_device(ti, ic->meta_dev);
5191 dm_integrity_free_page_list(ic->journal);
5192 dm_integrity_free_page_list(ic->journal_io);
5193 dm_integrity_free_page_list(ic->journal_xor);
5194 dm_integrity_free_page_list(ic->recalc_bitmap);
5195 dm_integrity_free_page_list(ic->may_write_bitmap);
5196 if (ic->journal_scatterlist)
5197 dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
5198 if (ic->journal_io_scatterlist)
5199 dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
5200 if (ic->sk_requests) {
5201 unsigned int i;
5202
5203 for (i = 0; i < ic->journal_sections; i++) {
5204 struct skcipher_request *req;
5205
5206 req = ic->sk_requests[i];
5207 if (req) {
5208 kfree_sensitive(req->iv);
5209 skcipher_request_free(req);
5210 }
5211 }
5212 kvfree(ic->sk_requests);
5213 }
5214 kvfree(ic->journal_tree);
5215 if (ic->sb)
5216 free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
5217
5218 if (ic->internal_hash)
5219 crypto_free_shash(ic->internal_hash);
5220 free_alg(&ic->internal_hash_alg);
5221
5222 if (ic->journal_crypt)
5223 crypto_free_skcipher(ic->journal_crypt);
5224 free_alg(&ic->journal_crypt_alg);
5225
5226 if (ic->journal_mac)
5227 crypto_free_shash(ic->journal_mac);
5228 free_alg(&ic->journal_mac_alg);
5229
5230 kfree(ic);
5231 dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
5232 }
5233
5234 static struct target_type integrity_target = {
5235 .name = "integrity",
5236 .version = {1, 13, 0},
5237 .module = THIS_MODULE,
5238 .features = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
5239 .ctr = dm_integrity_ctr,
5240 .dtr = dm_integrity_dtr,
5241 .map = dm_integrity_map,
5242 .end_io = dm_integrity_end_io,
5243 .postsuspend = dm_integrity_postsuspend,
5244 .resume = dm_integrity_resume,
5245 .status = dm_integrity_status,
5246 .iterate_devices = dm_integrity_iterate_devices,
5247 .io_hints = dm_integrity_io_hints,
5248 };
5249
dm_integrity_init(void)5250 static int __init dm_integrity_init(void)
5251 {
5252 int r;
5253
5254 journal_io_cache = kmem_cache_create("integrity_journal_io",
5255 sizeof(struct journal_io), 0, 0, NULL);
5256 if (!journal_io_cache) {
5257 DMERR("can't allocate journal io cache");
5258 return -ENOMEM;
5259 }
5260
5261 r = dm_register_target(&integrity_target);
5262 if (r < 0) {
5263 kmem_cache_destroy(journal_io_cache);
5264 return r;
5265 }
5266
5267 return 0;
5268 }
5269
dm_integrity_exit(void)5270 static void __exit dm_integrity_exit(void)
5271 {
5272 dm_unregister_target(&integrity_target);
5273 kmem_cache_destroy(journal_io_cache);
5274 }
5275
5276 module_init(dm_integrity_init);
5277 module_exit(dm_integrity_exit);
5278
5279 MODULE_AUTHOR("Milan Broz");
5280 MODULE_AUTHOR("Mikulas Patocka");
5281 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
5282 MODULE_LICENSE("GPL");
5283