xref: /linux/fs/btrfs/tests/btrfs-tests.c (revision 0eb4aaa230d725fa9b1cd758c0f17abca5597af6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2013 Fusion IO.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/mount.h>
8 #include <linux/pseudo_fs.h>
9 #include <linux/magic.h>
10 #include "btrfs-tests.h"
11 #include "../ctree.h"
12 #include "../free-space-cache.h"
13 #include "../free-space-tree.h"
14 #include "../transaction.h"
15 #include "../volumes.h"
16 #include "../disk-io.h"
17 #include "../qgroup.h"
18 #include "../block-group.h"
19 #include "../fs.h"
20 
21 static struct vfsmount *test_mnt = NULL;
22 
23 const char *test_error[] = {
24 	[TEST_ALLOC_FS_INFO]	     = "cannot allocate fs_info",
25 	[TEST_ALLOC_ROOT]	     = "cannot allocate root",
26 	[TEST_ALLOC_EXTENT_BUFFER]   = "cannot extent buffer",
27 	[TEST_ALLOC_PATH]	     = "cannot allocate path",
28 	[TEST_ALLOC_INODE]	     = "cannot allocate inode",
29 	[TEST_ALLOC_BLOCK_GROUP]     = "cannot allocate block group",
30 	[TEST_ALLOC_EXTENT_MAP]      = "cannot allocate extent map",
31 	[TEST_ALLOC_CHUNK_MAP]       = "cannot allocate chunk map",
32 	[TEST_ALLOC_IO_CONTEXT]	     = "cannot allocate io context",
33 	[TEST_ALLOC_TRANSACTION]     = "cannot allocate transaction",
34 };
35 
36 static const struct super_operations btrfs_test_super_ops = {
37 	.alloc_inode	= btrfs_alloc_inode,
38 	.destroy_inode	= btrfs_test_destroy_inode,
39 };
40 
41 
btrfs_test_init_fs_context(struct fs_context * fc)42 static int btrfs_test_init_fs_context(struct fs_context *fc)
43 {
44 	struct pseudo_fs_context *ctx = init_pseudo(fc, BTRFS_TEST_MAGIC);
45 	if (!ctx)
46 		return -ENOMEM;
47 	ctx->ops = &btrfs_test_super_ops;
48 	return 0;
49 }
50 
51 static struct file_system_type test_type = {
52 	.name		= "btrfs_test_fs",
53 	.init_fs_context = btrfs_test_init_fs_context,
54 	.kill_sb	= kill_anon_super,
55 };
56 
btrfs_new_test_inode(void)57 struct inode *btrfs_new_test_inode(void)
58 {
59 	struct inode *inode;
60 
61 	inode = new_inode(test_mnt->mnt_sb);
62 	if (!inode)
63 		return NULL;
64 
65 	inode->i_mode = S_IFREG;
66 	btrfs_set_inode_number(BTRFS_I(inode), BTRFS_FIRST_FREE_OBJECTID);
67 	inode_init_owner(&nop_mnt_idmap, inode, NULL, S_IFREG);
68 
69 	return inode;
70 }
71 
btrfs_init_test_fs(void)72 static int btrfs_init_test_fs(void)
73 {
74 	int ret;
75 
76 	ret = register_filesystem(&test_type);
77 	if (ret) {
78 		printk(KERN_ERR "btrfs: cannot register test file system\n");
79 		return ret;
80 	}
81 
82 	test_mnt = kern_mount(&test_type);
83 	if (IS_ERR(test_mnt)) {
84 		printk(KERN_ERR "btrfs: cannot mount test file system\n");
85 		unregister_filesystem(&test_type);
86 		return PTR_ERR(test_mnt);
87 	}
88 	return 0;
89 }
90 
btrfs_destroy_test_fs(void)91 static void btrfs_destroy_test_fs(void)
92 {
93 	kern_unmount(test_mnt);
94 	unregister_filesystem(&test_type);
95 }
96 
btrfs_alloc_dummy_device(struct btrfs_fs_info * fs_info)97 struct btrfs_device *btrfs_alloc_dummy_device(struct btrfs_fs_info *fs_info)
98 {
99 	struct btrfs_device *dev;
100 
101 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
102 	if (!dev)
103 		return ERR_PTR(-ENOMEM);
104 
105 	extent_io_tree_init(fs_info, &dev->alloc_state, 0);
106 	INIT_LIST_HEAD(&dev->dev_list);
107 	list_add(&dev->dev_list, &fs_info->fs_devices->devices);
108 
109 	return dev;
110 }
111 
btrfs_free_dummy_device(struct btrfs_device * dev)112 static void btrfs_free_dummy_device(struct btrfs_device *dev)
113 {
114 	extent_io_tree_release(&dev->alloc_state);
115 	kfree(dev);
116 }
117 
btrfs_alloc_dummy_fs_info(u32 nodesize,u32 sectorsize)118 struct btrfs_fs_info *btrfs_alloc_dummy_fs_info(u32 nodesize, u32 sectorsize)
119 {
120 	struct btrfs_fs_info *fs_info = kzalloc(sizeof(struct btrfs_fs_info),
121 						GFP_KERNEL);
122 
123 	if (!fs_info)
124 		return fs_info;
125 	fs_info->fs_devices = kzalloc(sizeof(struct btrfs_fs_devices),
126 				      GFP_KERNEL);
127 	if (!fs_info->fs_devices) {
128 		kfree(fs_info);
129 		return NULL;
130 	}
131 	INIT_LIST_HEAD(&fs_info->fs_devices->devices);
132 
133 	fs_info->super_copy = kzalloc(sizeof(struct btrfs_super_block),
134 				      GFP_KERNEL);
135 	if (!fs_info->super_copy) {
136 		kfree(fs_info->fs_devices);
137 		kfree(fs_info);
138 		return NULL;
139 	}
140 
141 	btrfs_init_fs_info(fs_info);
142 
143 	fs_info->nodesize = nodesize;
144 	fs_info->sectorsize = sectorsize;
145 	fs_info->sectorsize_bits = ilog2(sectorsize);
146 
147 	/* CRC32C csum size. */
148 	fs_info->csum_size = 4;
149 	fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) /
150 		fs_info->csum_size;
151 	set_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
152 
153 	test_mnt->mnt_sb->s_fs_info = fs_info;
154 
155 	return fs_info;
156 }
157 
btrfs_free_dummy_fs_info(struct btrfs_fs_info * fs_info)158 void btrfs_free_dummy_fs_info(struct btrfs_fs_info *fs_info)
159 {
160 	struct radix_tree_iter iter;
161 	void **slot;
162 	struct btrfs_device *dev, *tmp;
163 
164 	if (!fs_info)
165 		return;
166 
167 	if (WARN_ON(!btrfs_is_testing(fs_info)))
168 		return;
169 
170 	test_mnt->mnt_sb->s_fs_info = NULL;
171 
172 	spin_lock(&fs_info->buffer_lock);
173 	radix_tree_for_each_slot(slot, &fs_info->buffer_radix, &iter, 0) {
174 		struct extent_buffer *eb;
175 
176 		eb = radix_tree_deref_slot_protected(slot, &fs_info->buffer_lock);
177 		if (!eb)
178 			continue;
179 		/* Shouldn't happen but that kind of thinking creates CVE's */
180 		if (radix_tree_exception(eb)) {
181 			if (radix_tree_deref_retry(eb))
182 				slot = radix_tree_iter_retry(&iter);
183 			continue;
184 		}
185 		slot = radix_tree_iter_resume(slot, &iter);
186 		spin_unlock(&fs_info->buffer_lock);
187 		free_extent_buffer_stale(eb);
188 		spin_lock(&fs_info->buffer_lock);
189 	}
190 	spin_unlock(&fs_info->buffer_lock);
191 
192 	btrfs_mapping_tree_free(fs_info);
193 	list_for_each_entry_safe(dev, tmp, &fs_info->fs_devices->devices,
194 				 dev_list) {
195 		btrfs_free_dummy_device(dev);
196 	}
197 	btrfs_free_qgroup_config(fs_info);
198 	btrfs_free_fs_roots(fs_info);
199 	kfree(fs_info->super_copy);
200 	btrfs_check_leaked_roots(fs_info);
201 	btrfs_extent_buffer_leak_debug_check(fs_info);
202 	kfree(fs_info->fs_devices);
203 	kfree(fs_info);
204 }
205 
btrfs_free_dummy_root(struct btrfs_root * root)206 void btrfs_free_dummy_root(struct btrfs_root *root)
207 {
208 	if (IS_ERR_OR_NULL(root))
209 		return;
210 	/* Will be freed by btrfs_free_fs_roots */
211 	if (WARN_ON(test_bit(BTRFS_ROOT_IN_RADIX, &root->state)))
212 		return;
213 	btrfs_global_root_delete(root);
214 	btrfs_put_root(root);
215 }
216 
217 struct btrfs_block_group *
btrfs_alloc_dummy_block_group(struct btrfs_fs_info * fs_info,unsigned long length)218 btrfs_alloc_dummy_block_group(struct btrfs_fs_info *fs_info,
219 			      unsigned long length)
220 {
221 	struct btrfs_block_group *cache;
222 
223 	cache = kzalloc(sizeof(*cache), GFP_KERNEL);
224 	if (!cache)
225 		return NULL;
226 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
227 					GFP_KERNEL);
228 	if (!cache->free_space_ctl) {
229 		kfree(cache);
230 		return NULL;
231 	}
232 
233 	cache->start = 0;
234 	cache->length = length;
235 	cache->full_stripe_len = fs_info->sectorsize;
236 	cache->fs_info = fs_info;
237 
238 	INIT_LIST_HEAD(&cache->list);
239 	INIT_LIST_HEAD(&cache->cluster_list);
240 	INIT_LIST_HEAD(&cache->bg_list);
241 	btrfs_init_free_space_ctl(cache, cache->free_space_ctl);
242 	mutex_init(&cache->free_space_lock);
243 
244 	return cache;
245 }
246 
btrfs_free_dummy_block_group(struct btrfs_block_group * cache)247 void btrfs_free_dummy_block_group(struct btrfs_block_group *cache)
248 {
249 	if (!cache)
250 		return;
251 	btrfs_remove_free_space_cache(cache);
252 	kfree(cache->free_space_ctl);
253 	kfree(cache);
254 }
255 
btrfs_init_dummy_transaction(struct btrfs_transaction * trans,struct btrfs_fs_info * fs_info)256 void btrfs_init_dummy_transaction(struct btrfs_transaction *trans, struct btrfs_fs_info *fs_info)
257 {
258 	memset(trans, 0, sizeof(*trans));
259 	trans->fs_info = fs_info;
260 	xa_init(&trans->delayed_refs.head_refs);
261 	xa_init(&trans->delayed_refs.dirty_extents);
262 	spin_lock_init(&trans->delayed_refs.lock);
263 }
264 
btrfs_init_dummy_trans(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)265 void btrfs_init_dummy_trans(struct btrfs_trans_handle *trans,
266 			    struct btrfs_fs_info *fs_info)
267 {
268 	memset(trans, 0, sizeof(*trans));
269 	trans->transid = 1;
270 	trans->type = __TRANS_DUMMY;
271 	trans->fs_info = fs_info;
272 }
273 
btrfs_run_sanity_tests(void)274 int btrfs_run_sanity_tests(void)
275 {
276 	int ret, i;
277 	u32 sectorsize, nodesize;
278 	u32 test_sectorsize[] = {
279 		PAGE_SIZE,
280 	};
281 	ret = btrfs_init_test_fs();
282 	if (ret)
283 		return ret;
284 	for (i = 0; i < ARRAY_SIZE(test_sectorsize); i++) {
285 		sectorsize = test_sectorsize[i];
286 		for (nodesize = sectorsize;
287 		     nodesize <= BTRFS_MAX_METADATA_BLOCKSIZE;
288 		     nodesize <<= 1) {
289 			pr_info("BTRFS: selftest: sectorsize: %u  nodesize: %u\n",
290 				sectorsize, nodesize);
291 			ret = btrfs_test_free_space_cache(sectorsize, nodesize);
292 			if (ret)
293 				goto out;
294 			ret = btrfs_test_extent_buffer_operations(sectorsize,
295 				nodesize);
296 			if (ret)
297 				goto out;
298 			ret = btrfs_test_extent_io(sectorsize, nodesize);
299 			if (ret)
300 				goto out;
301 			ret = btrfs_test_inodes(sectorsize, nodesize);
302 			if (ret)
303 				goto out;
304 			ret = btrfs_test_qgroups(sectorsize, nodesize);
305 			if (ret)
306 				goto out;
307 			ret = btrfs_test_free_space_tree(sectorsize, nodesize);
308 			if (ret)
309 				goto out;
310 			ret = btrfs_test_raid_stripe_tree(sectorsize, nodesize);
311 			if (ret)
312 				goto out;
313 			ret = btrfs_test_delayed_refs(sectorsize, nodesize);
314 			if (ret)
315 				goto out;
316 		}
317 	}
318 	ret = btrfs_test_extent_map();
319 
320 out:
321 	btrfs_destroy_test_fs();
322 	return ret;
323 }
324