xref: /linux/tools/testing/selftests/kvm/arm64/set_id_regs.c (revision 02e5f74ef08d3e6afec438d571487d0d0cec3c48)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * set_id_regs - Test for setting ID register from usersapce.
4  *
5  * Copyright (c) 2023 Google LLC.
6  *
7  *
8  * Test that KVM supports setting ID registers from userspace and handles the
9  * feature set correctly.
10  */
11 
12 #include <stdint.h>
13 #include "kvm_util.h"
14 #include "processor.h"
15 #include "test_util.h"
16 #include <linux/bitfield.h>
17 
18 enum ftr_type {
19 	FTR_EXACT,			/* Use a predefined safe value */
20 	FTR_LOWER_SAFE,			/* Smaller value is safe */
21 	FTR_HIGHER_SAFE,		/* Bigger value is safe */
22 	FTR_HIGHER_OR_ZERO_SAFE,	/* Bigger value is safe, but 0 is biggest */
23 	FTR_END,			/* Mark the last ftr bits */
24 };
25 
26 #define FTR_SIGNED	true	/* Value should be treated as signed */
27 #define FTR_UNSIGNED	false	/* Value should be treated as unsigned */
28 
29 struct reg_ftr_bits {
30 	char *name;
31 	bool sign;
32 	enum ftr_type type;
33 	uint8_t shift;
34 	uint64_t mask;
35 	/*
36 	 * For FTR_EXACT, safe_val is used as the exact safe value.
37 	 * For FTR_LOWER_SAFE, safe_val is used as the minimal safe value.
38 	 */
39 	int64_t safe_val;
40 };
41 
42 struct test_feature_reg {
43 	uint32_t reg;
44 	const struct reg_ftr_bits *ftr_bits;
45 };
46 
47 #define __REG_FTR_BITS(NAME, SIGNED, TYPE, SHIFT, MASK, SAFE_VAL)	\
48 	{								\
49 		.name = #NAME,						\
50 		.sign = SIGNED,						\
51 		.type = TYPE,						\
52 		.shift = SHIFT,						\
53 		.mask = MASK,						\
54 		.safe_val = SAFE_VAL,					\
55 	}
56 
57 #define REG_FTR_BITS(type, reg, field, safe_val) \
58 	__REG_FTR_BITS(reg##_##field, FTR_UNSIGNED, type, reg##_##field##_SHIFT, \
59 		       reg##_##field##_MASK, safe_val)
60 
61 #define S_REG_FTR_BITS(type, reg, field, safe_val) \
62 	__REG_FTR_BITS(reg##_##field, FTR_SIGNED, type, reg##_##field##_SHIFT, \
63 		       reg##_##field##_MASK, safe_val)
64 
65 #define REG_FTR_END					\
66 	{						\
67 		.type = FTR_END,			\
68 	}
69 
70 static const struct reg_ftr_bits ftr_id_aa64dfr0_el1[] = {
71 	S_REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64DFR0_EL1, DoubleLock, 0),
72 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64DFR0_EL1, WRPs, 0),
73 	S_REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64DFR0_EL1, PMUVer, 0),
74 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64DFR0_EL1, DebugVer, ID_AA64DFR0_EL1_DebugVer_IMP),
75 	REG_FTR_END,
76 };
77 
78 static const struct reg_ftr_bits ftr_id_dfr0_el1[] = {
79 	S_REG_FTR_BITS(FTR_LOWER_SAFE, ID_DFR0_EL1, PerfMon, ID_DFR0_EL1_PerfMon_PMUv3),
80 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_DFR0_EL1, CopDbg, ID_DFR0_EL1_CopDbg_Armv8),
81 	REG_FTR_END,
82 };
83 
84 static const struct reg_ftr_bits ftr_id_aa64isar0_el1[] = {
85 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, RNDR, 0),
86 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, TLB, 0),
87 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, TS, 0),
88 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, FHM, 0),
89 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, DP, 0),
90 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, SM4, 0),
91 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, SM3, 0),
92 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, SHA3, 0),
93 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, RDM, 0),
94 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, TME, 0),
95 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, ATOMIC, 0),
96 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, CRC32, 0),
97 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, SHA2, 0),
98 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, SHA1, 0),
99 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, AES, 0),
100 	REG_FTR_END,
101 };
102 
103 static const struct reg_ftr_bits ftr_id_aa64isar1_el1[] = {
104 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, LS64, 0),
105 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, XS, 0),
106 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, I8MM, 0),
107 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, DGH, 0),
108 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, BF16, 0),
109 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, SPECRES, 0),
110 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, SB, 0),
111 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, FRINTTS, 0),
112 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, LRCPC, 0),
113 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, FCMA, 0),
114 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, JSCVT, 0),
115 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, DPB, 0),
116 	REG_FTR_END,
117 };
118 
119 static const struct reg_ftr_bits ftr_id_aa64isar2_el1[] = {
120 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR2_EL1, BC, 0),
121 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR2_EL1, RPRES, 0),
122 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR2_EL1, WFxT, 0),
123 	REG_FTR_END,
124 };
125 
126 static const struct reg_ftr_bits ftr_id_aa64isar3_el1[] = {
127 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR3_EL1, FPRCVT, 0),
128 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR3_EL1, LSFE, 0),
129 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR3_EL1, FAMINMAX, 0),
130 	REG_FTR_END,
131 };
132 
133 static const struct reg_ftr_bits ftr_id_aa64pfr0_el1[] = {
134 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, CSV3, 0),
135 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, CSV2, 0),
136 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, DIT, 0),
137 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, SEL2, 0),
138 	REG_FTR_BITS(FTR_EXACT, ID_AA64PFR0_EL1, GIC, 0),
139 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, EL3, 1),
140 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, EL2, 1),
141 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, EL1, 1),
142 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, EL0, 1),
143 	REG_FTR_END,
144 };
145 
146 static const struct reg_ftr_bits ftr_id_aa64pfr1_el1[] = {
147 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR1_EL1, DF2, 0),
148 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR1_EL1, CSV2_frac, 0),
149 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR1_EL1, SSBS, ID_AA64PFR1_EL1_SSBS_NI),
150 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR1_EL1, BT, 0),
151 	REG_FTR_END,
152 };
153 
154 static const struct reg_ftr_bits ftr_id_aa64mmfr0_el1[] = {
155 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, ECV, 0),
156 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, EXS, 0),
157 	REG_FTR_BITS(FTR_EXACT, ID_AA64MMFR0_EL1, TGRAN4_2, 1),
158 	REG_FTR_BITS(FTR_EXACT, ID_AA64MMFR0_EL1, TGRAN64_2, 1),
159 	REG_FTR_BITS(FTR_EXACT, ID_AA64MMFR0_EL1, TGRAN16_2, 1),
160 	S_REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, TGRAN4, 0),
161 	S_REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, TGRAN64, 0),
162 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, TGRAN16, 0),
163 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, BIGENDEL0, 0),
164 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, SNSMEM, 0),
165 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, BIGEND, 0),
166 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, PARANGE, 0),
167 	REG_FTR_END,
168 };
169 
170 static const struct reg_ftr_bits ftr_id_aa64mmfr1_el1[] = {
171 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, TIDCP1, 0),
172 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, AFP, 0),
173 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, HCX, 0),
174 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, ETS, 0),
175 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, TWED, 0),
176 	REG_FTR_BITS(FTR_HIGHER_SAFE, ID_AA64MMFR1_EL1, SpecSEI, 0),
177 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, PAN, 0),
178 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, LO, 0),
179 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, HPDS, 0),
180 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, HAFDBS, 0),
181 	REG_FTR_END,
182 };
183 
184 static const struct reg_ftr_bits ftr_id_aa64mmfr2_el1[] = {
185 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, E0PD, 0),
186 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, BBM, 0),
187 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, TTL, 0),
188 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, AT, 0),
189 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, ST, 0),
190 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, VARange, 0),
191 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, IESB, 0),
192 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, LSM, 0),
193 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, UAO, 0),
194 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, CnP, 0),
195 	REG_FTR_END,
196 };
197 
198 static const struct reg_ftr_bits ftr_id_aa64mmfr3_el1[] = {
199 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR3_EL1, S1POE, 0),
200 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR3_EL1, S1PIE, 0),
201 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR3_EL1, SCTLRX, 0),
202 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR3_EL1, TCRX, 0),
203 	REG_FTR_END,
204 };
205 
206 static const struct reg_ftr_bits ftr_id_aa64zfr0_el1[] = {
207 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, F64MM, 0),
208 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, F32MM, 0),
209 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, I8MM, 0),
210 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, SM4, 0),
211 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, SHA3, 0),
212 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, BF16, 0),
213 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, BitPerm, 0),
214 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, AES, 0),
215 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, SVEver, 0),
216 	REG_FTR_END,
217 };
218 
219 #define TEST_REG(id, table)			\
220 	{					\
221 		.reg = id,			\
222 		.ftr_bits = &((table)[0]),	\
223 	}
224 
225 static struct test_feature_reg test_regs[] = {
226 	TEST_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0_el1),
227 	TEST_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0_el1),
228 	TEST_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0_el1),
229 	TEST_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1_el1),
230 	TEST_REG(SYS_ID_AA64ISAR2_EL1, ftr_id_aa64isar2_el1),
231 	TEST_REG(SYS_ID_AA64ISAR3_EL1, ftr_id_aa64isar3_el1),
232 	TEST_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0_el1),
233 	TEST_REG(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1_el1),
234 	TEST_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0_el1),
235 	TEST_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1_el1),
236 	TEST_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2_el1),
237 	TEST_REG(SYS_ID_AA64MMFR3_EL1, ftr_id_aa64mmfr3_el1),
238 	TEST_REG(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0_el1),
239 };
240 
241 #define GUEST_REG_SYNC(id) GUEST_SYNC_ARGS(0, id, read_sysreg_s(id), 0, 0);
242 
guest_code(void)243 static void guest_code(void)
244 {
245 	GUEST_REG_SYNC(SYS_ID_AA64DFR0_EL1);
246 	GUEST_REG_SYNC(SYS_ID_DFR0_EL1);
247 	GUEST_REG_SYNC(SYS_ID_AA64ISAR0_EL1);
248 	GUEST_REG_SYNC(SYS_ID_AA64ISAR1_EL1);
249 	GUEST_REG_SYNC(SYS_ID_AA64ISAR2_EL1);
250 	GUEST_REG_SYNC(SYS_ID_AA64ISAR3_EL1);
251 	GUEST_REG_SYNC(SYS_ID_AA64PFR0_EL1);
252 	GUEST_REG_SYNC(SYS_ID_AA64PFR1_EL1);
253 	GUEST_REG_SYNC(SYS_ID_AA64MMFR0_EL1);
254 	GUEST_REG_SYNC(SYS_ID_AA64MMFR1_EL1);
255 	GUEST_REG_SYNC(SYS_ID_AA64MMFR2_EL1);
256 	GUEST_REG_SYNC(SYS_ID_AA64MMFR3_EL1);
257 	GUEST_REG_SYNC(SYS_ID_AA64ZFR0_EL1);
258 	GUEST_REG_SYNC(SYS_MPIDR_EL1);
259 	GUEST_REG_SYNC(SYS_CLIDR_EL1);
260 	GUEST_REG_SYNC(SYS_CTR_EL0);
261 	GUEST_REG_SYNC(SYS_MIDR_EL1);
262 	GUEST_REG_SYNC(SYS_REVIDR_EL1);
263 	GUEST_REG_SYNC(SYS_AIDR_EL1);
264 
265 	GUEST_DONE();
266 }
267 
268 /* Return a safe value to a given ftr_bits an ftr value */
get_safe_value(const struct reg_ftr_bits * ftr_bits,uint64_t ftr)269 uint64_t get_safe_value(const struct reg_ftr_bits *ftr_bits, uint64_t ftr)
270 {
271 	uint64_t ftr_max = GENMASK_ULL(ARM64_FEATURE_FIELD_BITS - 1, 0);
272 
273 	if (ftr_bits->sign == FTR_UNSIGNED) {
274 		switch (ftr_bits->type) {
275 		case FTR_EXACT:
276 			ftr = ftr_bits->safe_val;
277 			break;
278 		case FTR_LOWER_SAFE:
279 			if (ftr > ftr_bits->safe_val)
280 				ftr--;
281 			break;
282 		case FTR_HIGHER_SAFE:
283 			if (ftr < ftr_max)
284 				ftr++;
285 			break;
286 		case FTR_HIGHER_OR_ZERO_SAFE:
287 			if (ftr == ftr_max)
288 				ftr = 0;
289 			else if (ftr != 0)
290 				ftr++;
291 			break;
292 		default:
293 			break;
294 		}
295 	} else if (ftr != ftr_max) {
296 		switch (ftr_bits->type) {
297 		case FTR_EXACT:
298 			ftr = ftr_bits->safe_val;
299 			break;
300 		case FTR_LOWER_SAFE:
301 			if (ftr > ftr_bits->safe_val)
302 				ftr--;
303 			break;
304 		case FTR_HIGHER_SAFE:
305 			if (ftr < ftr_max - 1)
306 				ftr++;
307 			break;
308 		case FTR_HIGHER_OR_ZERO_SAFE:
309 			if (ftr != 0 && ftr != ftr_max - 1)
310 				ftr++;
311 			break;
312 		default:
313 			break;
314 		}
315 	}
316 
317 	return ftr;
318 }
319 
320 /* Return an invalid value to a given ftr_bits an ftr value */
get_invalid_value(const struct reg_ftr_bits * ftr_bits,uint64_t ftr)321 uint64_t get_invalid_value(const struct reg_ftr_bits *ftr_bits, uint64_t ftr)
322 {
323 	uint64_t ftr_max = GENMASK_ULL(ARM64_FEATURE_FIELD_BITS - 1, 0);
324 
325 	if (ftr_bits->sign == FTR_UNSIGNED) {
326 		switch (ftr_bits->type) {
327 		case FTR_EXACT:
328 			ftr = max((uint64_t)ftr_bits->safe_val + 1, ftr + 1);
329 			break;
330 		case FTR_LOWER_SAFE:
331 			ftr++;
332 			break;
333 		case FTR_HIGHER_SAFE:
334 			ftr--;
335 			break;
336 		case FTR_HIGHER_OR_ZERO_SAFE:
337 			if (ftr == 0)
338 				ftr = ftr_max;
339 			else
340 				ftr--;
341 			break;
342 		default:
343 			break;
344 		}
345 	} else if (ftr != ftr_max) {
346 		switch (ftr_bits->type) {
347 		case FTR_EXACT:
348 			ftr = max((uint64_t)ftr_bits->safe_val + 1, ftr + 1);
349 			break;
350 		case FTR_LOWER_SAFE:
351 			ftr++;
352 			break;
353 		case FTR_HIGHER_SAFE:
354 			ftr--;
355 			break;
356 		case FTR_HIGHER_OR_ZERO_SAFE:
357 			if (ftr == 0)
358 				ftr = ftr_max - 1;
359 			else
360 				ftr--;
361 			break;
362 		default:
363 			break;
364 		}
365 	} else {
366 		ftr = 0;
367 	}
368 
369 	return ftr;
370 }
371 
test_reg_set_success(struct kvm_vcpu * vcpu,uint64_t reg,const struct reg_ftr_bits * ftr_bits)372 static uint64_t test_reg_set_success(struct kvm_vcpu *vcpu, uint64_t reg,
373 				     const struct reg_ftr_bits *ftr_bits)
374 {
375 	uint8_t shift = ftr_bits->shift;
376 	uint64_t mask = ftr_bits->mask;
377 	uint64_t val, new_val, ftr;
378 
379 	val = vcpu_get_reg(vcpu, reg);
380 	ftr = (val & mask) >> shift;
381 
382 	ftr = get_safe_value(ftr_bits, ftr);
383 
384 	ftr <<= shift;
385 	val &= ~mask;
386 	val |= ftr;
387 
388 	vcpu_set_reg(vcpu, reg, val);
389 	new_val = vcpu_get_reg(vcpu, reg);
390 	TEST_ASSERT_EQ(new_val, val);
391 
392 	return new_val;
393 }
394 
test_reg_set_fail(struct kvm_vcpu * vcpu,uint64_t reg,const struct reg_ftr_bits * ftr_bits)395 static void test_reg_set_fail(struct kvm_vcpu *vcpu, uint64_t reg,
396 			      const struct reg_ftr_bits *ftr_bits)
397 {
398 	uint8_t shift = ftr_bits->shift;
399 	uint64_t mask = ftr_bits->mask;
400 	uint64_t val, old_val, ftr;
401 	int r;
402 
403 	val = vcpu_get_reg(vcpu, reg);
404 	ftr = (val & mask) >> shift;
405 
406 	ftr = get_invalid_value(ftr_bits, ftr);
407 
408 	old_val = val;
409 	ftr <<= shift;
410 	val &= ~mask;
411 	val |= ftr;
412 
413 	r = __vcpu_set_reg(vcpu, reg, val);
414 	TEST_ASSERT(r < 0 && errno == EINVAL,
415 		    "Unexpected KVM_SET_ONE_REG error: r=%d, errno=%d", r, errno);
416 
417 	val = vcpu_get_reg(vcpu, reg);
418 	TEST_ASSERT_EQ(val, old_val);
419 }
420 
421 static uint64_t test_reg_vals[KVM_ARM_FEATURE_ID_RANGE_SIZE];
422 
423 #define encoding_to_range_idx(encoding)							\
424 	KVM_ARM_FEATURE_ID_RANGE_IDX(sys_reg_Op0(encoding), sys_reg_Op1(encoding),	\
425 				     sys_reg_CRn(encoding), sys_reg_CRm(encoding),	\
426 				     sys_reg_Op2(encoding))
427 
428 
test_vm_ftr_id_regs(struct kvm_vcpu * vcpu,bool aarch64_only)429 static void test_vm_ftr_id_regs(struct kvm_vcpu *vcpu, bool aarch64_only)
430 {
431 	uint64_t masks[KVM_ARM_FEATURE_ID_RANGE_SIZE];
432 	struct reg_mask_range range = {
433 		.addr = (__u64)masks,
434 	};
435 	int ret;
436 
437 	/* KVM should return error when reserved field is not zero */
438 	range.reserved[0] = 1;
439 	ret = __vm_ioctl(vcpu->vm, KVM_ARM_GET_REG_WRITABLE_MASKS, &range);
440 	TEST_ASSERT(ret, "KVM doesn't check invalid parameters.");
441 
442 	/* Get writable masks for feature ID registers */
443 	memset(range.reserved, 0, sizeof(range.reserved));
444 	vm_ioctl(vcpu->vm, KVM_ARM_GET_REG_WRITABLE_MASKS, &range);
445 
446 	for (int i = 0; i < ARRAY_SIZE(test_regs); i++) {
447 		const struct reg_ftr_bits *ftr_bits = test_regs[i].ftr_bits;
448 		uint32_t reg_id = test_regs[i].reg;
449 		uint64_t reg = KVM_ARM64_SYS_REG(reg_id);
450 		int idx;
451 
452 		/* Get the index to masks array for the idreg */
453 		idx = encoding_to_range_idx(reg_id);
454 
455 		for (int j = 0;  ftr_bits[j].type != FTR_END; j++) {
456 			/* Skip aarch32 reg on aarch64 only system, since they are RAZ/WI. */
457 			if (aarch64_only && sys_reg_CRm(reg_id) < 4) {
458 				ksft_test_result_skip("%s on AARCH64 only system\n",
459 						      ftr_bits[j].name);
460 				continue;
461 			}
462 
463 			/* Make sure the feature field is writable */
464 			TEST_ASSERT_EQ(masks[idx] & ftr_bits[j].mask, ftr_bits[j].mask);
465 
466 			test_reg_set_fail(vcpu, reg, &ftr_bits[j]);
467 
468 			test_reg_vals[idx] = test_reg_set_success(vcpu, reg,
469 								  &ftr_bits[j]);
470 
471 			ksft_test_result_pass("%s\n", ftr_bits[j].name);
472 		}
473 	}
474 }
475 
476 #define MPAM_IDREG_TEST	6
test_user_set_mpam_reg(struct kvm_vcpu * vcpu)477 static void test_user_set_mpam_reg(struct kvm_vcpu *vcpu)
478 {
479 	uint64_t masks[KVM_ARM_FEATURE_ID_RANGE_SIZE];
480 	struct reg_mask_range range = {
481 		.addr = (__u64)masks,
482 	};
483 	uint64_t val;
484 	int idx, err;
485 
486 	/*
487 	 * If ID_AA64PFR0.MPAM is _not_ officially modifiable and is zero,
488 	 * check that if it can be set to 1, (i.e. it is supported by the
489 	 * hardware), that it can't be set to other values.
490 	 */
491 
492 	/* Get writable masks for feature ID registers */
493 	memset(range.reserved, 0, sizeof(range.reserved));
494 	vm_ioctl(vcpu->vm, KVM_ARM_GET_REG_WRITABLE_MASKS, &range);
495 
496 	/* Writeable? Nothing to test! */
497 	idx = encoding_to_range_idx(SYS_ID_AA64PFR0_EL1);
498 	if ((masks[idx] & ID_AA64PFR0_EL1_MPAM_MASK) == ID_AA64PFR0_EL1_MPAM_MASK) {
499 		ksft_test_result_skip("ID_AA64PFR0_EL1.MPAM is officially writable, nothing to test\n");
500 		return;
501 	}
502 
503 	/* Get the id register value */
504 	val = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR0_EL1));
505 
506 	/* Try to set MPAM=0. This should always be possible. */
507 	val &= ~ID_AA64PFR0_EL1_MPAM_MASK;
508 	val |= FIELD_PREP(ID_AA64PFR0_EL1_MPAM_MASK, 0);
509 	err = __vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR0_EL1), val);
510 	if (err)
511 		ksft_test_result_fail("ID_AA64PFR0_EL1.MPAM=0 was not accepted\n");
512 	else
513 		ksft_test_result_pass("ID_AA64PFR0_EL1.MPAM=0 worked\n");
514 
515 	/* Try to set MPAM=1 */
516 	val &= ~ID_AA64PFR0_EL1_MPAM_MASK;
517 	val |= FIELD_PREP(ID_AA64PFR0_EL1_MPAM_MASK, 1);
518 	err = __vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR0_EL1), val);
519 	if (err)
520 		ksft_test_result_skip("ID_AA64PFR0_EL1.MPAM is not writable, nothing to test\n");
521 	else
522 		ksft_test_result_pass("ID_AA64PFR0_EL1.MPAM=1 was writable\n");
523 
524 	/* Try to set MPAM=2 */
525 	val &= ~ID_AA64PFR0_EL1_MPAM_MASK;
526 	val |= FIELD_PREP(ID_AA64PFR0_EL1_MPAM_MASK, 2);
527 	err = __vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR0_EL1), val);
528 	if (err)
529 		ksft_test_result_pass("ID_AA64PFR0_EL1.MPAM not arbitrarily modifiable\n");
530 	else
531 		ksft_test_result_fail("ID_AA64PFR0_EL1.MPAM value should not be ignored\n");
532 
533 	/* And again for ID_AA64PFR1_EL1.MPAM_frac */
534 	idx = encoding_to_range_idx(SYS_ID_AA64PFR1_EL1);
535 	if ((masks[idx] & ID_AA64PFR1_EL1_MPAM_frac_MASK) == ID_AA64PFR1_EL1_MPAM_frac_MASK) {
536 		ksft_test_result_skip("ID_AA64PFR1_EL1.MPAM_frac is officially writable, nothing to test\n");
537 		return;
538 	}
539 
540 	/* Get the id register value */
541 	val = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR1_EL1));
542 
543 	/* Try to set MPAM_frac=0. This should always be possible. */
544 	val &= ~ID_AA64PFR1_EL1_MPAM_frac_MASK;
545 	val |= FIELD_PREP(ID_AA64PFR1_EL1_MPAM_frac_MASK, 0);
546 	err = __vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR1_EL1), val);
547 	if (err)
548 		ksft_test_result_fail("ID_AA64PFR0_EL1.MPAM_frac=0 was not accepted\n");
549 	else
550 		ksft_test_result_pass("ID_AA64PFR0_EL1.MPAM_frac=0 worked\n");
551 
552 	/* Try to set MPAM_frac=1 */
553 	val &= ~ID_AA64PFR1_EL1_MPAM_frac_MASK;
554 	val |= FIELD_PREP(ID_AA64PFR1_EL1_MPAM_frac_MASK, 1);
555 	err = __vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR1_EL1), val);
556 	if (err)
557 		ksft_test_result_skip("ID_AA64PFR1_EL1.MPAM_frac is not writable, nothing to test\n");
558 	else
559 		ksft_test_result_pass("ID_AA64PFR0_EL1.MPAM_frac=1 was writable\n");
560 
561 	/* Try to set MPAM_frac=2 */
562 	val &= ~ID_AA64PFR1_EL1_MPAM_frac_MASK;
563 	val |= FIELD_PREP(ID_AA64PFR1_EL1_MPAM_frac_MASK, 2);
564 	err = __vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR1_EL1), val);
565 	if (err)
566 		ksft_test_result_pass("ID_AA64PFR1_EL1.MPAM_frac not arbitrarily modifiable\n");
567 	else
568 		ksft_test_result_fail("ID_AA64PFR1_EL1.MPAM_frac value should not be ignored\n");
569 }
570 
571 #define MTE_IDREG_TEST 1
test_user_set_mte_reg(struct kvm_vcpu * vcpu)572 static void test_user_set_mte_reg(struct kvm_vcpu *vcpu)
573 {
574 	uint64_t masks[KVM_ARM_FEATURE_ID_RANGE_SIZE];
575 	struct reg_mask_range range = {
576 		.addr = (__u64)masks,
577 	};
578 	uint64_t val;
579 	uint64_t mte;
580 	uint64_t mte_frac;
581 	int idx, err;
582 
583 	val = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR1_EL1));
584 	mte = FIELD_GET(ID_AA64PFR1_EL1_MTE, val);
585 	if (!mte) {
586 		ksft_test_result_skip("MTE capability not supported, nothing to test\n");
587 		return;
588 	}
589 
590 	/* Get writable masks for feature ID registers */
591 	memset(range.reserved, 0, sizeof(range.reserved));
592 	vm_ioctl(vcpu->vm, KVM_ARM_GET_REG_WRITABLE_MASKS, &range);
593 
594 	idx = encoding_to_range_idx(SYS_ID_AA64PFR1_EL1);
595 	if ((masks[idx] & ID_AA64PFR1_EL1_MTE_frac_MASK) == ID_AA64PFR1_EL1_MTE_frac_MASK) {
596 		ksft_test_result_skip("ID_AA64PFR1_EL1.MTE_frac is officially writable, nothing to test\n");
597 		return;
598 	}
599 
600 	/*
601 	 * When MTE is supported but MTE_ASYMM is not (ID_AA64PFR1_EL1.MTE == 2)
602 	 * ID_AA64PFR1_EL1.MTE_frac == 0xF indicates MTE_ASYNC is unsupported
603 	 * and MTE_frac == 0 indicates it is supported.
604 	 *
605 	 * As MTE_frac was previously unconditionally read as 0, check
606 	 * that the set to 0 succeeds but does not change MTE_frac
607 	 * from unsupported (0xF) to supported (0).
608 	 *
609 	 */
610 	mte_frac = FIELD_GET(ID_AA64PFR1_EL1_MTE_frac, val);
611 	if (mte != ID_AA64PFR1_EL1_MTE_MTE2 ||
612 	    mte_frac != ID_AA64PFR1_EL1_MTE_frac_NI) {
613 		ksft_test_result_skip("MTE_ASYNC or MTE_ASYMM are supported, nothing to test\n");
614 		return;
615 	}
616 
617 	/* Try to set MTE_frac=0. */
618 	val &= ~ID_AA64PFR1_EL1_MTE_frac_MASK;
619 	val |= FIELD_PREP(ID_AA64PFR1_EL1_MTE_frac_MASK, 0);
620 	err = __vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR1_EL1), val);
621 	if (err) {
622 		ksft_test_result_fail("ID_AA64PFR1_EL1.MTE_frac=0 was not accepted\n");
623 		return;
624 	}
625 
626 	val = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR1_EL1));
627 	mte_frac = FIELD_GET(ID_AA64PFR1_EL1_MTE_frac, val);
628 	if (mte_frac == ID_AA64PFR1_EL1_MTE_frac_NI)
629 		ksft_test_result_pass("ID_AA64PFR1_EL1.MTE_frac=0 accepted and still 0xF\n");
630 	else
631 		ksft_test_result_pass("ID_AA64PFR1_EL1.MTE_frac no longer 0xF\n");
632 }
633 
test_guest_reg_read(struct kvm_vcpu * vcpu)634 static void test_guest_reg_read(struct kvm_vcpu *vcpu)
635 {
636 	bool done = false;
637 	struct ucall uc;
638 
639 	while (!done) {
640 		vcpu_run(vcpu);
641 
642 		switch (get_ucall(vcpu, &uc)) {
643 		case UCALL_ABORT:
644 			REPORT_GUEST_ASSERT(uc);
645 			break;
646 		case UCALL_SYNC:
647 			/* Make sure the written values are seen by guest */
648 			TEST_ASSERT_EQ(test_reg_vals[encoding_to_range_idx(uc.args[2])],
649 				       uc.args[3]);
650 			break;
651 		case UCALL_DONE:
652 			done = true;
653 			break;
654 		default:
655 			TEST_FAIL("Unexpected ucall: %lu", uc.cmd);
656 		}
657 	}
658 }
659 
660 /* Politely lifted from arch/arm64/include/asm/cache.h */
661 /* Ctypen, bits[3(n - 1) + 2 : 3(n - 1)], for n = 1 to 7 */
662 #define CLIDR_CTYPE_SHIFT(level)	(3 * (level - 1))
663 #define CLIDR_CTYPE_MASK(level)		(7 << CLIDR_CTYPE_SHIFT(level))
664 #define CLIDR_CTYPE(clidr, level)	\
665 	(((clidr) & CLIDR_CTYPE_MASK(level)) >> CLIDR_CTYPE_SHIFT(level))
666 
test_clidr(struct kvm_vcpu * vcpu)667 static void test_clidr(struct kvm_vcpu *vcpu)
668 {
669 	uint64_t clidr;
670 	int level;
671 
672 	clidr = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_CLIDR_EL1));
673 
674 	/* find the first empty level in the cache hierarchy */
675 	for (level = 1; level < 7; level++) {
676 		if (!CLIDR_CTYPE(clidr, level))
677 			break;
678 	}
679 
680 	/*
681 	 * If you have a mind-boggling 7 levels of cache, congratulations, you
682 	 * get to fix this.
683 	 */
684 	TEST_ASSERT(level <= 7, "can't find an empty level in cache hierarchy");
685 
686 	/* stick in a unified cache level */
687 	clidr |= BIT(2) << CLIDR_CTYPE_SHIFT(level);
688 
689 	vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_CLIDR_EL1), clidr);
690 	test_reg_vals[encoding_to_range_idx(SYS_CLIDR_EL1)] = clidr;
691 }
692 
test_ctr(struct kvm_vcpu * vcpu)693 static void test_ctr(struct kvm_vcpu *vcpu)
694 {
695 	u64 ctr;
696 
697 	ctr = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_CTR_EL0));
698 	ctr &= ~CTR_EL0_DIC_MASK;
699 	if (ctr & CTR_EL0_IminLine_MASK)
700 		ctr--;
701 
702 	vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_CTR_EL0), ctr);
703 	test_reg_vals[encoding_to_range_idx(SYS_CTR_EL0)] = ctr;
704 }
705 
test_id_reg(struct kvm_vcpu * vcpu,u32 id)706 static void test_id_reg(struct kvm_vcpu *vcpu, u32 id)
707 {
708 	u64 val;
709 
710 	val = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(id));
711 	val++;
712 	vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(id), val);
713 	test_reg_vals[encoding_to_range_idx(id)] = val;
714 }
715 
test_vcpu_ftr_id_regs(struct kvm_vcpu * vcpu)716 static void test_vcpu_ftr_id_regs(struct kvm_vcpu *vcpu)
717 {
718 	test_clidr(vcpu);
719 	test_ctr(vcpu);
720 
721 	test_id_reg(vcpu, SYS_MPIDR_EL1);
722 	ksft_test_result_pass("%s\n", __func__);
723 }
724 
test_vcpu_non_ftr_id_regs(struct kvm_vcpu * vcpu)725 static void test_vcpu_non_ftr_id_regs(struct kvm_vcpu *vcpu)
726 {
727 	test_id_reg(vcpu, SYS_MIDR_EL1);
728 	test_id_reg(vcpu, SYS_REVIDR_EL1);
729 	test_id_reg(vcpu, SYS_AIDR_EL1);
730 
731 	ksft_test_result_pass("%s\n", __func__);
732 }
733 
test_assert_id_reg_unchanged(struct kvm_vcpu * vcpu,uint32_t encoding)734 static void test_assert_id_reg_unchanged(struct kvm_vcpu *vcpu, uint32_t encoding)
735 {
736 	size_t idx = encoding_to_range_idx(encoding);
737 	uint64_t observed;
738 
739 	observed = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(encoding));
740 	TEST_ASSERT_EQ(test_reg_vals[idx], observed);
741 }
742 
test_reset_preserves_id_regs(struct kvm_vcpu * vcpu)743 static void test_reset_preserves_id_regs(struct kvm_vcpu *vcpu)
744 {
745 	/*
746 	 * Calls KVM_ARM_VCPU_INIT behind the scenes, which will do an
747 	 * architectural reset of the vCPU.
748 	 */
749 	aarch64_vcpu_setup(vcpu, NULL);
750 
751 	for (int i = 0; i < ARRAY_SIZE(test_regs); i++)
752 		test_assert_id_reg_unchanged(vcpu, test_regs[i].reg);
753 
754 	test_assert_id_reg_unchanged(vcpu, SYS_MPIDR_EL1);
755 	test_assert_id_reg_unchanged(vcpu, SYS_CLIDR_EL1);
756 	test_assert_id_reg_unchanged(vcpu, SYS_CTR_EL0);
757 	test_assert_id_reg_unchanged(vcpu, SYS_MIDR_EL1);
758 	test_assert_id_reg_unchanged(vcpu, SYS_REVIDR_EL1);
759 	test_assert_id_reg_unchanged(vcpu, SYS_AIDR_EL1);
760 
761 	ksft_test_result_pass("%s\n", __func__);
762 }
763 
main(void)764 int main(void)
765 {
766 	struct kvm_vcpu *vcpu;
767 	struct kvm_vm *vm;
768 	bool aarch64_only;
769 	uint64_t val, el0;
770 	int test_cnt, i, j;
771 
772 	TEST_REQUIRE(kvm_has_cap(KVM_CAP_ARM_SUPPORTED_REG_MASK_RANGES));
773 	TEST_REQUIRE(kvm_has_cap(KVM_CAP_ARM_WRITABLE_IMP_ID_REGS));
774 
775 	test_wants_mte();
776 
777 	vm = vm_create(1);
778 	vm_enable_cap(vm, KVM_CAP_ARM_WRITABLE_IMP_ID_REGS, 0);
779 	vcpu = vm_vcpu_add(vm, 0, guest_code);
780 	kvm_arch_vm_finalize_vcpus(vm);
781 
782 	/* Check for AARCH64 only system */
783 	val = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR0_EL1));
784 	el0 = FIELD_GET(ID_AA64PFR0_EL1_EL0, val);
785 	aarch64_only = (el0 == ID_AA64PFR0_EL1_EL0_IMP);
786 
787 	ksft_print_header();
788 
789 	test_cnt = 3 + MPAM_IDREG_TEST + MTE_IDREG_TEST;
790 	for (i = 0; i < ARRAY_SIZE(test_regs); i++)
791 		for (j = 0; test_regs[i].ftr_bits[j].type != FTR_END; j++)
792 			test_cnt++;
793 
794 	ksft_set_plan(test_cnt);
795 
796 	test_vm_ftr_id_regs(vcpu, aarch64_only);
797 	test_vcpu_ftr_id_regs(vcpu);
798 	test_vcpu_non_ftr_id_regs(vcpu);
799 	test_user_set_mpam_reg(vcpu);
800 	test_user_set_mte_reg(vcpu);
801 
802 	test_guest_reg_read(vcpu);
803 
804 	test_reset_preserves_id_regs(vcpu);
805 
806 	kvm_vm_free(vm);
807 
808 	ksft_finished();
809 }
810