1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * A memslot-related performance benchmark. 4 * 5 * Copyright (C) 2021 Oracle and/or its affiliates. 6 * 7 * Basic guest setup / host vCPU thread code lifted from set_memory_region_test. 8 */ 9 #include <pthread.h> 10 #include <sched.h> 11 #include <semaphore.h> 12 #include <stdatomic.h> 13 #include <stdbool.h> 14 #include <stdint.h> 15 #include <stdio.h> 16 #include <stdlib.h> 17 #include <string.h> 18 #include <sys/mman.h> 19 #include <time.h> 20 #include <unistd.h> 21 22 #include <linux/compiler.h> 23 #include <linux/sizes.h> 24 25 #include <test_util.h> 26 #include <kvm_util.h> 27 #include <processor.h> 28 #include <ucall_common.h> 29 30 #define MEM_EXTRA_SIZE SZ_64K 31 32 #define MEM_SIZE (SZ_512M + MEM_EXTRA_SIZE) 33 #define MEM_GPA SZ_256M 34 #define MEM_AUX_GPA MEM_GPA 35 #define MEM_SYNC_GPA MEM_AUX_GPA 36 #define MEM_TEST_GPA (MEM_AUX_GPA + MEM_EXTRA_SIZE) 37 #define MEM_TEST_SIZE (MEM_SIZE - MEM_EXTRA_SIZE) 38 39 /* 40 * 32 MiB is max size that gets well over 100 iterations on 509 slots. 41 * Considering that each slot needs to have at least one page up to 42 * 8194 slots in use can then be tested (although with slightly 43 * limited resolution). 44 */ 45 #define MEM_SIZE_MAP (SZ_32M + MEM_EXTRA_SIZE) 46 #define MEM_TEST_MAP_SIZE (MEM_SIZE_MAP - MEM_EXTRA_SIZE) 47 48 /* 49 * 128 MiB is min size that fills 32k slots with at least one page in each 50 * while at the same time gets 100+ iterations in such test 51 * 52 * 2 MiB chunk size like a typical huge page 53 */ 54 #define MEM_TEST_UNMAP_SIZE SZ_128M 55 #define MEM_TEST_UNMAP_CHUNK_SIZE SZ_2M 56 57 /* 58 * For the move active test the middle of the test area is placed on 59 * a memslot boundary: half lies in the memslot being moved, half in 60 * other memslot(s). 61 * 62 * We have different number of memory slots, excluding the reserved 63 * memory slot 0, on various architectures and configurations. The 64 * memory size in this test is calculated by picking the maximal 65 * last memory slot's memory size, with alignment to the largest 66 * supported page size (64KB). In this way, the selected memory 67 * size for this test is compatible with test_memslot_move_prepare(). 68 * 69 * architecture slots memory-per-slot memory-on-last-slot 70 * -------------------------------------------------------------- 71 * x86-4KB 32763 16KB 160KB 72 * arm64-4KB 32766 16KB 112KB 73 * arm64-16KB 32766 16KB 112KB 74 * arm64-64KB 8192 64KB 128KB 75 */ 76 #define MEM_TEST_MOVE_SIZE (3 * SZ_64K) 77 #define MEM_TEST_MOVE_GPA_DEST (MEM_GPA + MEM_SIZE) 78 static_assert(MEM_TEST_MOVE_SIZE <= MEM_TEST_SIZE, 79 "invalid move test region size"); 80 81 #define MEM_TEST_VAL_1 0x1122334455667788 82 #define MEM_TEST_VAL_2 0x99AABBCCDDEEFF00 83 84 struct vm_data { 85 struct kvm_vm *vm; 86 struct kvm_vcpu *vcpu; 87 pthread_t vcpu_thread; 88 uint32_t nslots; 89 uint64_t npages; 90 uint64_t pages_per_slot; 91 void **hva_slots; 92 bool mmio_ok; 93 uint64_t mmio_gpa_min; 94 uint64_t mmio_gpa_max; 95 }; 96 97 struct sync_area { 98 uint32_t guest_page_size; 99 atomic_bool start_flag; 100 atomic_bool exit_flag; 101 atomic_bool sync_flag; 102 void *move_area_ptr; 103 }; 104 105 /* 106 * Technically, we need also for the atomic bool to be address-free, which 107 * is recommended, but not strictly required, by C11 for lockless 108 * implementations. 109 * However, in practice both GCC and Clang fulfill this requirement on 110 * all KVM-supported platforms. 111 */ 112 static_assert(ATOMIC_BOOL_LOCK_FREE == 2, "atomic bool is not lockless"); 113 114 static sem_t vcpu_ready; 115 116 static bool map_unmap_verify; 117 #ifdef __x86_64__ 118 static bool disable_slot_zap_quirk; 119 #endif 120 121 static bool verbose; 122 #define pr_info_v(...) \ 123 do { \ 124 if (verbose) \ 125 pr_info(__VA_ARGS__); \ 126 } while (0) 127 128 static void check_mmio_access(struct vm_data *data, struct kvm_run *run) 129 { 130 TEST_ASSERT(data->mmio_ok, "Unexpected mmio exit"); 131 TEST_ASSERT(run->mmio.is_write, "Unexpected mmio read"); 132 TEST_ASSERT(run->mmio.len == 8, 133 "Unexpected exit mmio size = %u", run->mmio.len); 134 TEST_ASSERT(run->mmio.phys_addr >= data->mmio_gpa_min && 135 run->mmio.phys_addr <= data->mmio_gpa_max, 136 "Unexpected exit mmio address = 0x%llx", 137 run->mmio.phys_addr); 138 } 139 140 static void *vcpu_worker(void *__data) 141 { 142 struct vm_data *data = __data; 143 struct kvm_vcpu *vcpu = data->vcpu; 144 struct kvm_run *run = vcpu->run; 145 struct ucall uc; 146 147 while (1) { 148 vcpu_run(vcpu); 149 150 switch (get_ucall(vcpu, &uc)) { 151 case UCALL_SYNC: 152 TEST_ASSERT(uc.args[1] == 0, 153 "Unexpected sync ucall, got %lx", 154 (ulong)uc.args[1]); 155 sem_post(&vcpu_ready); 156 continue; 157 case UCALL_NONE: 158 if (run->exit_reason == KVM_EXIT_MMIO) 159 check_mmio_access(data, run); 160 else 161 goto done; 162 break; 163 case UCALL_ABORT: 164 REPORT_GUEST_ASSERT(uc); 165 break; 166 case UCALL_DONE: 167 goto done; 168 default: 169 TEST_FAIL("Unknown ucall %lu", uc.cmd); 170 } 171 } 172 173 done: 174 return NULL; 175 } 176 177 static void wait_for_vcpu(void) 178 { 179 struct timespec ts; 180 181 TEST_ASSERT(!clock_gettime(CLOCK_REALTIME, &ts), 182 "clock_gettime() failed: %d", errno); 183 184 ts.tv_sec += 2; 185 TEST_ASSERT(!sem_timedwait(&vcpu_ready, &ts), 186 "sem_timedwait() failed: %d", errno); 187 } 188 189 static void *vm_gpa2hva(struct vm_data *data, uint64_t gpa, uint64_t *rempages) 190 { 191 uint64_t gpage, pgoffs; 192 uint32_t slot, slotoffs; 193 void *base; 194 uint32_t guest_page_size = data->vm->page_size; 195 196 TEST_ASSERT(gpa >= MEM_GPA, "Too low gpa to translate"); 197 TEST_ASSERT(gpa < MEM_GPA + data->npages * guest_page_size, 198 "Too high gpa to translate"); 199 gpa -= MEM_GPA; 200 201 gpage = gpa / guest_page_size; 202 pgoffs = gpa % guest_page_size; 203 slot = min(gpage / data->pages_per_slot, (uint64_t)data->nslots - 1); 204 slotoffs = gpage - (slot * data->pages_per_slot); 205 206 if (rempages) { 207 uint64_t slotpages; 208 209 if (slot == data->nslots - 1) 210 slotpages = data->npages - slot * data->pages_per_slot; 211 else 212 slotpages = data->pages_per_slot; 213 214 TEST_ASSERT(!pgoffs, 215 "Asking for remaining pages in slot but gpa not page aligned"); 216 *rempages = slotpages - slotoffs; 217 } 218 219 base = data->hva_slots[slot]; 220 return (uint8_t *)base + slotoffs * guest_page_size + pgoffs; 221 } 222 223 static uint64_t vm_slot2gpa(struct vm_data *data, uint32_t slot) 224 { 225 uint32_t guest_page_size = data->vm->page_size; 226 227 TEST_ASSERT(slot < data->nslots, "Too high slot number"); 228 229 return MEM_GPA + slot * data->pages_per_slot * guest_page_size; 230 } 231 232 static struct vm_data *alloc_vm(void) 233 { 234 struct vm_data *data; 235 236 data = malloc(sizeof(*data)); 237 TEST_ASSERT(data, "malloc(vmdata) failed"); 238 239 data->vm = NULL; 240 data->vcpu = NULL; 241 data->hva_slots = NULL; 242 243 return data; 244 } 245 246 static bool check_slot_pages(uint32_t host_page_size, uint32_t guest_page_size, 247 uint64_t pages_per_slot, uint64_t rempages) 248 { 249 if (!pages_per_slot) 250 return false; 251 252 if ((pages_per_slot * guest_page_size) % host_page_size) 253 return false; 254 255 if ((rempages * guest_page_size) % host_page_size) 256 return false; 257 258 return true; 259 } 260 261 262 static uint64_t get_max_slots(struct vm_data *data, uint32_t host_page_size) 263 { 264 uint32_t guest_page_size = data->vm->page_size; 265 uint64_t mempages, pages_per_slot, rempages; 266 uint64_t slots; 267 268 mempages = data->npages; 269 slots = data->nslots; 270 while (--slots > 1) { 271 pages_per_slot = mempages / slots; 272 if (!pages_per_slot) 273 continue; 274 275 rempages = mempages % pages_per_slot; 276 if (check_slot_pages(host_page_size, guest_page_size, 277 pages_per_slot, rempages)) 278 return slots + 1; /* slot 0 is reserved */ 279 } 280 281 return 0; 282 } 283 284 static bool prepare_vm(struct vm_data *data, int nslots, uint64_t *maxslots, 285 void *guest_code, uint64_t mem_size, 286 struct timespec *slot_runtime) 287 { 288 uint64_t mempages, rempages; 289 uint64_t guest_addr; 290 uint32_t slot, host_page_size, guest_page_size; 291 struct timespec tstart; 292 struct sync_area *sync; 293 294 host_page_size = getpagesize(); 295 guest_page_size = vm_guest_mode_params[VM_MODE_DEFAULT].page_size; 296 mempages = mem_size / guest_page_size; 297 298 data->vm = __vm_create_with_one_vcpu(&data->vcpu, mempages, guest_code); 299 TEST_ASSERT(data->vm->page_size == guest_page_size, "Invalid VM page size"); 300 301 data->npages = mempages; 302 TEST_ASSERT(data->npages > 1, "Can't test without any memory"); 303 data->nslots = nslots; 304 data->pages_per_slot = data->npages / data->nslots; 305 rempages = data->npages % data->nslots; 306 if (!check_slot_pages(host_page_size, guest_page_size, 307 data->pages_per_slot, rempages)) { 308 *maxslots = get_max_slots(data, host_page_size); 309 return false; 310 } 311 312 data->hva_slots = malloc(sizeof(*data->hva_slots) * data->nslots); 313 TEST_ASSERT(data->hva_slots, "malloc() fail"); 314 315 pr_info_v("Adding slots 1..%i, each slot with %"PRIu64" pages + %"PRIu64" extra pages last\n", 316 data->nslots, data->pages_per_slot, rempages); 317 318 clock_gettime(CLOCK_MONOTONIC, &tstart); 319 for (slot = 1, guest_addr = MEM_GPA; slot <= data->nslots; slot++) { 320 uint64_t npages; 321 322 npages = data->pages_per_slot; 323 if (slot == data->nslots) 324 npages += rempages; 325 326 vm_userspace_mem_region_add(data->vm, VM_MEM_SRC_ANONYMOUS, 327 guest_addr, slot, npages, 328 0); 329 guest_addr += npages * guest_page_size; 330 } 331 *slot_runtime = timespec_elapsed(tstart); 332 333 for (slot = 1, guest_addr = MEM_GPA; slot <= data->nslots; slot++) { 334 uint64_t npages; 335 uint64_t gpa; 336 337 npages = data->pages_per_slot; 338 if (slot == data->nslots) 339 npages += rempages; 340 341 gpa = vm_phy_pages_alloc(data->vm, npages, guest_addr, slot); 342 TEST_ASSERT(gpa == guest_addr, 343 "vm_phy_pages_alloc() failed"); 344 345 data->hva_slots[slot - 1] = addr_gpa2hva(data->vm, guest_addr); 346 memset(data->hva_slots[slot - 1], 0, npages * guest_page_size); 347 348 guest_addr += npages * guest_page_size; 349 } 350 351 virt_map(data->vm, MEM_GPA, MEM_GPA, data->npages); 352 353 sync = (typeof(sync))vm_gpa2hva(data, MEM_SYNC_GPA, NULL); 354 sync->guest_page_size = data->vm->page_size; 355 atomic_init(&sync->start_flag, false); 356 atomic_init(&sync->exit_flag, false); 357 atomic_init(&sync->sync_flag, false); 358 359 data->mmio_ok = false; 360 361 return true; 362 } 363 364 static void launch_vm(struct vm_data *data) 365 { 366 pr_info_v("Launching the test VM\n"); 367 368 pthread_create(&data->vcpu_thread, NULL, vcpu_worker, data); 369 370 /* Ensure the guest thread is spun up. */ 371 wait_for_vcpu(); 372 } 373 374 static void free_vm(struct vm_data *data) 375 { 376 kvm_vm_free(data->vm); 377 free(data->hva_slots); 378 free(data); 379 } 380 381 static void wait_guest_exit(struct vm_data *data) 382 { 383 pthread_join(data->vcpu_thread, NULL); 384 } 385 386 static void let_guest_run(struct sync_area *sync) 387 { 388 atomic_store_explicit(&sync->start_flag, true, memory_order_release); 389 } 390 391 static void guest_spin_until_start(void) 392 { 393 struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; 394 395 while (!atomic_load_explicit(&sync->start_flag, memory_order_acquire)) 396 ; 397 } 398 399 static void make_guest_exit(struct sync_area *sync) 400 { 401 atomic_store_explicit(&sync->exit_flag, true, memory_order_release); 402 } 403 404 static bool _guest_should_exit(void) 405 { 406 struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; 407 408 return atomic_load_explicit(&sync->exit_flag, memory_order_acquire); 409 } 410 411 #define guest_should_exit() unlikely(_guest_should_exit()) 412 413 /* 414 * noinline so we can easily see how much time the host spends waiting 415 * for the guest. 416 * For the same reason use alarm() instead of polling clock_gettime() 417 * to implement a wait timeout. 418 */ 419 static noinline void host_perform_sync(struct sync_area *sync) 420 { 421 alarm(10); 422 423 atomic_store_explicit(&sync->sync_flag, true, memory_order_release); 424 while (atomic_load_explicit(&sync->sync_flag, memory_order_acquire)) 425 ; 426 427 alarm(0); 428 } 429 430 static bool guest_perform_sync(void) 431 { 432 struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; 433 bool expected; 434 435 do { 436 if (guest_should_exit()) 437 return false; 438 439 expected = true; 440 } while (!atomic_compare_exchange_weak_explicit(&sync->sync_flag, 441 &expected, false, 442 memory_order_acq_rel, 443 memory_order_relaxed)); 444 445 return true; 446 } 447 448 static void guest_code_test_memslot_move(void) 449 { 450 struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; 451 uint32_t page_size = (typeof(page_size))READ_ONCE(sync->guest_page_size); 452 uintptr_t base = (typeof(base))READ_ONCE(sync->move_area_ptr); 453 454 GUEST_SYNC(0); 455 456 guest_spin_until_start(); 457 458 while (!guest_should_exit()) { 459 uintptr_t ptr; 460 461 for (ptr = base; ptr < base + MEM_TEST_MOVE_SIZE; 462 ptr += page_size) 463 *(uint64_t *)ptr = MEM_TEST_VAL_1; 464 465 /* 466 * No host sync here since the MMIO exits are so expensive 467 * that the host would spend most of its time waiting for 468 * the guest and so instead of measuring memslot move 469 * performance we would measure the performance and 470 * likelihood of MMIO exits 471 */ 472 } 473 474 GUEST_DONE(); 475 } 476 477 static void guest_code_test_memslot_map(void) 478 { 479 struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; 480 uint32_t page_size = (typeof(page_size))READ_ONCE(sync->guest_page_size); 481 482 GUEST_SYNC(0); 483 484 guest_spin_until_start(); 485 486 while (1) { 487 uintptr_t ptr; 488 489 for (ptr = MEM_TEST_GPA; 490 ptr < MEM_TEST_GPA + MEM_TEST_MAP_SIZE / 2; 491 ptr += page_size) 492 *(uint64_t *)ptr = MEM_TEST_VAL_1; 493 494 if (!guest_perform_sync()) 495 break; 496 497 for (ptr = MEM_TEST_GPA + MEM_TEST_MAP_SIZE / 2; 498 ptr < MEM_TEST_GPA + MEM_TEST_MAP_SIZE; 499 ptr += page_size) 500 *(uint64_t *)ptr = MEM_TEST_VAL_2; 501 502 if (!guest_perform_sync()) 503 break; 504 } 505 506 GUEST_DONE(); 507 } 508 509 static void guest_code_test_memslot_unmap(void) 510 { 511 struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; 512 513 GUEST_SYNC(0); 514 515 guest_spin_until_start(); 516 517 while (1) { 518 uintptr_t ptr = MEM_TEST_GPA; 519 520 /* 521 * We can afford to access (map) just a small number of pages 522 * per host sync as otherwise the host will spend 523 * a significant amount of its time waiting for the guest 524 * (instead of doing unmap operations), so this will 525 * effectively turn this test into a map performance test. 526 * 527 * Just access a single page to be on the safe side. 528 */ 529 *(uint64_t *)ptr = MEM_TEST_VAL_1; 530 531 if (!guest_perform_sync()) 532 break; 533 534 ptr += MEM_TEST_UNMAP_SIZE / 2; 535 *(uint64_t *)ptr = MEM_TEST_VAL_2; 536 537 if (!guest_perform_sync()) 538 break; 539 } 540 541 GUEST_DONE(); 542 } 543 544 static void guest_code_test_memslot_rw(void) 545 { 546 struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; 547 uint32_t page_size = (typeof(page_size))READ_ONCE(sync->guest_page_size); 548 549 GUEST_SYNC(0); 550 551 guest_spin_until_start(); 552 553 while (1) { 554 uintptr_t ptr; 555 556 for (ptr = MEM_TEST_GPA; 557 ptr < MEM_TEST_GPA + MEM_TEST_SIZE; ptr += page_size) 558 *(uint64_t *)ptr = MEM_TEST_VAL_1; 559 560 if (!guest_perform_sync()) 561 break; 562 563 for (ptr = MEM_TEST_GPA + page_size / 2; 564 ptr < MEM_TEST_GPA + MEM_TEST_SIZE; ptr += page_size) { 565 uint64_t val = *(uint64_t *)ptr; 566 567 GUEST_ASSERT_EQ(val, MEM_TEST_VAL_2); 568 *(uint64_t *)ptr = 0; 569 } 570 571 if (!guest_perform_sync()) 572 break; 573 } 574 575 GUEST_DONE(); 576 } 577 578 static bool test_memslot_move_prepare(struct vm_data *data, 579 struct sync_area *sync, 580 uint64_t *maxslots, bool isactive) 581 { 582 uint32_t guest_page_size = data->vm->page_size; 583 uint64_t movesrcgpa, movetestgpa; 584 585 #ifdef __x86_64__ 586 if (disable_slot_zap_quirk) 587 vm_enable_cap(data->vm, KVM_CAP_DISABLE_QUIRKS2, KVM_X86_QUIRK_SLOT_ZAP_ALL); 588 #endif 589 590 movesrcgpa = vm_slot2gpa(data, data->nslots - 1); 591 592 if (isactive) { 593 uint64_t lastpages; 594 595 vm_gpa2hva(data, movesrcgpa, &lastpages); 596 if (lastpages * guest_page_size < MEM_TEST_MOVE_SIZE / 2) { 597 *maxslots = 0; 598 return false; 599 } 600 } 601 602 movetestgpa = movesrcgpa - (MEM_TEST_MOVE_SIZE / (isactive ? 2 : 1)); 603 sync->move_area_ptr = (void *)movetestgpa; 604 605 if (isactive) { 606 data->mmio_ok = true; 607 data->mmio_gpa_min = movesrcgpa; 608 data->mmio_gpa_max = movesrcgpa + MEM_TEST_MOVE_SIZE / 2 - 1; 609 } 610 611 return true; 612 } 613 614 static bool test_memslot_move_prepare_active(struct vm_data *data, 615 struct sync_area *sync, 616 uint64_t *maxslots) 617 { 618 return test_memslot_move_prepare(data, sync, maxslots, true); 619 } 620 621 static bool test_memslot_move_prepare_inactive(struct vm_data *data, 622 struct sync_area *sync, 623 uint64_t *maxslots) 624 { 625 return test_memslot_move_prepare(data, sync, maxslots, false); 626 } 627 628 static void test_memslot_move_loop(struct vm_data *data, struct sync_area *sync) 629 { 630 uint64_t movesrcgpa; 631 632 movesrcgpa = vm_slot2gpa(data, data->nslots - 1); 633 vm_mem_region_move(data->vm, data->nslots - 1 + 1, 634 MEM_TEST_MOVE_GPA_DEST); 635 vm_mem_region_move(data->vm, data->nslots - 1 + 1, movesrcgpa); 636 } 637 638 static void test_memslot_do_unmap(struct vm_data *data, 639 uint64_t offsp, uint64_t count) 640 { 641 uint64_t gpa, ctr; 642 uint32_t guest_page_size = data->vm->page_size; 643 644 for (gpa = MEM_TEST_GPA + offsp * guest_page_size, ctr = 0; ctr < count; ) { 645 uint64_t npages; 646 void *hva; 647 int ret; 648 649 hva = vm_gpa2hva(data, gpa, &npages); 650 TEST_ASSERT(npages, "Empty memory slot at gptr 0x%"PRIx64, gpa); 651 npages = min(npages, count - ctr); 652 ret = madvise(hva, npages * guest_page_size, MADV_DONTNEED); 653 TEST_ASSERT(!ret, 654 "madvise(%p, MADV_DONTNEED) on VM memory should not fail for gptr 0x%"PRIx64, 655 hva, gpa); 656 ctr += npages; 657 gpa += npages * guest_page_size; 658 } 659 TEST_ASSERT(ctr == count, 660 "madvise(MADV_DONTNEED) should exactly cover all of the requested area"); 661 } 662 663 static void test_memslot_map_unmap_check(struct vm_data *data, 664 uint64_t offsp, uint64_t valexp) 665 { 666 uint64_t gpa; 667 uint64_t *val; 668 uint32_t guest_page_size = data->vm->page_size; 669 670 if (!map_unmap_verify) 671 return; 672 673 gpa = MEM_TEST_GPA + offsp * guest_page_size; 674 val = (typeof(val))vm_gpa2hva(data, gpa, NULL); 675 TEST_ASSERT(*val == valexp, 676 "Guest written values should read back correctly before unmap (%"PRIu64" vs %"PRIu64" @ %"PRIx64")", 677 *val, valexp, gpa); 678 *val = 0; 679 } 680 681 static void test_memslot_map_loop(struct vm_data *data, struct sync_area *sync) 682 { 683 uint32_t guest_page_size = data->vm->page_size; 684 uint64_t guest_pages = MEM_TEST_MAP_SIZE / guest_page_size; 685 686 /* 687 * Unmap the second half of the test area while guest writes to (maps) 688 * the first half. 689 */ 690 test_memslot_do_unmap(data, guest_pages / 2, guest_pages / 2); 691 692 /* 693 * Wait for the guest to finish writing the first half of the test 694 * area, verify the written value on the first and the last page of 695 * this area and then unmap it. 696 * Meanwhile, the guest is writing to (mapping) the second half of 697 * the test area. 698 */ 699 host_perform_sync(sync); 700 test_memslot_map_unmap_check(data, 0, MEM_TEST_VAL_1); 701 test_memslot_map_unmap_check(data, guest_pages / 2 - 1, MEM_TEST_VAL_1); 702 test_memslot_do_unmap(data, 0, guest_pages / 2); 703 704 705 /* 706 * Wait for the guest to finish writing the second half of the test 707 * area and verify the written value on the first and the last page 708 * of this area. 709 * The area will be unmapped at the beginning of the next loop 710 * iteration. 711 * Meanwhile, the guest is writing to (mapping) the first half of 712 * the test area. 713 */ 714 host_perform_sync(sync); 715 test_memslot_map_unmap_check(data, guest_pages / 2, MEM_TEST_VAL_2); 716 test_memslot_map_unmap_check(data, guest_pages - 1, MEM_TEST_VAL_2); 717 } 718 719 static void test_memslot_unmap_loop_common(struct vm_data *data, 720 struct sync_area *sync, 721 uint64_t chunk) 722 { 723 uint32_t guest_page_size = data->vm->page_size; 724 uint64_t guest_pages = MEM_TEST_UNMAP_SIZE / guest_page_size; 725 uint64_t ctr; 726 727 /* 728 * Wait for the guest to finish mapping page(s) in the first half 729 * of the test area, verify the written value and then perform unmap 730 * of this area. 731 * Meanwhile, the guest is writing to (mapping) page(s) in the second 732 * half of the test area. 733 */ 734 host_perform_sync(sync); 735 test_memslot_map_unmap_check(data, 0, MEM_TEST_VAL_1); 736 for (ctr = 0; ctr < guest_pages / 2; ctr += chunk) 737 test_memslot_do_unmap(data, ctr, chunk); 738 739 /* Likewise, but for the opposite host / guest areas */ 740 host_perform_sync(sync); 741 test_memslot_map_unmap_check(data, guest_pages / 2, MEM_TEST_VAL_2); 742 for (ctr = guest_pages / 2; ctr < guest_pages; ctr += chunk) 743 test_memslot_do_unmap(data, ctr, chunk); 744 } 745 746 static void test_memslot_unmap_loop(struct vm_data *data, 747 struct sync_area *sync) 748 { 749 uint32_t host_page_size = getpagesize(); 750 uint32_t guest_page_size = data->vm->page_size; 751 uint64_t guest_chunk_pages = guest_page_size >= host_page_size ? 752 1 : host_page_size / guest_page_size; 753 754 test_memslot_unmap_loop_common(data, sync, guest_chunk_pages); 755 } 756 757 static void test_memslot_unmap_loop_chunked(struct vm_data *data, 758 struct sync_area *sync) 759 { 760 uint32_t guest_page_size = data->vm->page_size; 761 uint64_t guest_chunk_pages = MEM_TEST_UNMAP_CHUNK_SIZE / guest_page_size; 762 763 test_memslot_unmap_loop_common(data, sync, guest_chunk_pages); 764 } 765 766 static void test_memslot_rw_loop(struct vm_data *data, struct sync_area *sync) 767 { 768 uint64_t gptr; 769 uint32_t guest_page_size = data->vm->page_size; 770 771 for (gptr = MEM_TEST_GPA + guest_page_size / 2; 772 gptr < MEM_TEST_GPA + MEM_TEST_SIZE; gptr += guest_page_size) 773 *(uint64_t *)vm_gpa2hva(data, gptr, NULL) = MEM_TEST_VAL_2; 774 775 host_perform_sync(sync); 776 777 for (gptr = MEM_TEST_GPA; 778 gptr < MEM_TEST_GPA + MEM_TEST_SIZE; gptr += guest_page_size) { 779 uint64_t *vptr = (typeof(vptr))vm_gpa2hva(data, gptr, NULL); 780 uint64_t val = *vptr; 781 782 TEST_ASSERT(val == MEM_TEST_VAL_1, 783 "Guest written values should read back correctly (is %"PRIu64" @ %"PRIx64")", 784 val, gptr); 785 *vptr = 0; 786 } 787 788 host_perform_sync(sync); 789 } 790 791 struct test_data { 792 const char *name; 793 uint64_t mem_size; 794 void (*guest_code)(void); 795 bool (*prepare)(struct vm_data *data, struct sync_area *sync, 796 uint64_t *maxslots); 797 void (*loop)(struct vm_data *data, struct sync_area *sync); 798 }; 799 800 static bool test_execute(int nslots, uint64_t *maxslots, 801 unsigned int maxtime, 802 const struct test_data *tdata, 803 uint64_t *nloops, 804 struct timespec *slot_runtime, 805 struct timespec *guest_runtime) 806 { 807 uint64_t mem_size = tdata->mem_size ? : MEM_SIZE; 808 struct vm_data *data; 809 struct sync_area *sync; 810 struct timespec tstart; 811 bool ret = true; 812 813 data = alloc_vm(); 814 if (!prepare_vm(data, nslots, maxslots, tdata->guest_code, 815 mem_size, slot_runtime)) { 816 ret = false; 817 goto exit_free; 818 } 819 820 sync = (typeof(sync))vm_gpa2hva(data, MEM_SYNC_GPA, NULL); 821 if (tdata->prepare && 822 !tdata->prepare(data, sync, maxslots)) { 823 ret = false; 824 goto exit_free; 825 } 826 827 launch_vm(data); 828 829 clock_gettime(CLOCK_MONOTONIC, &tstart); 830 let_guest_run(sync); 831 832 while (1) { 833 *guest_runtime = timespec_elapsed(tstart); 834 if (guest_runtime->tv_sec >= maxtime) 835 break; 836 837 tdata->loop(data, sync); 838 839 (*nloops)++; 840 } 841 842 make_guest_exit(sync); 843 wait_guest_exit(data); 844 845 exit_free: 846 free_vm(data); 847 848 return ret; 849 } 850 851 static const struct test_data tests[] = { 852 { 853 .name = "map", 854 .mem_size = MEM_SIZE_MAP, 855 .guest_code = guest_code_test_memslot_map, 856 .loop = test_memslot_map_loop, 857 }, 858 { 859 .name = "unmap", 860 .mem_size = MEM_TEST_UNMAP_SIZE + MEM_EXTRA_SIZE, 861 .guest_code = guest_code_test_memslot_unmap, 862 .loop = test_memslot_unmap_loop, 863 }, 864 { 865 .name = "unmap chunked", 866 .mem_size = MEM_TEST_UNMAP_SIZE + MEM_EXTRA_SIZE, 867 .guest_code = guest_code_test_memslot_unmap, 868 .loop = test_memslot_unmap_loop_chunked, 869 }, 870 { 871 .name = "move active area", 872 .guest_code = guest_code_test_memslot_move, 873 .prepare = test_memslot_move_prepare_active, 874 .loop = test_memslot_move_loop, 875 }, 876 { 877 .name = "move inactive area", 878 .guest_code = guest_code_test_memslot_move, 879 .prepare = test_memslot_move_prepare_inactive, 880 .loop = test_memslot_move_loop, 881 }, 882 { 883 .name = "RW", 884 .guest_code = guest_code_test_memslot_rw, 885 .loop = test_memslot_rw_loop 886 }, 887 }; 888 889 #define NTESTS ARRAY_SIZE(tests) 890 891 struct test_args { 892 int tfirst; 893 int tlast; 894 int nslots; 895 int seconds; 896 int runs; 897 }; 898 899 static void help(char *name, struct test_args *targs) 900 { 901 int ctr; 902 903 pr_info("usage: %s [-h] [-v] [-d] [-s slots] [-f first_test] [-e last_test] [-l test_length] [-r run_count]\n", 904 name); 905 pr_info(" -h: print this help screen.\n"); 906 pr_info(" -v: enable verbose mode (not for benchmarking).\n"); 907 pr_info(" -d: enable extra debug checks.\n"); 908 pr_info(" -q: Disable memslot zap quirk during memslot move.\n"); 909 pr_info(" -s: specify memslot count cap (-1 means no cap; currently: %i)\n", 910 targs->nslots); 911 pr_info(" -f: specify the first test to run (currently: %i; max %zu)\n", 912 targs->tfirst, NTESTS - 1); 913 pr_info(" -e: specify the last test to run (currently: %i; max %zu)\n", 914 targs->tlast, NTESTS - 1); 915 pr_info(" -l: specify the test length in seconds (currently: %i)\n", 916 targs->seconds); 917 pr_info(" -r: specify the number of runs per test (currently: %i)\n", 918 targs->runs); 919 920 pr_info("\nAvailable tests:\n"); 921 for (ctr = 0; ctr < NTESTS; ctr++) 922 pr_info("%d: %s\n", ctr, tests[ctr].name); 923 } 924 925 static bool check_memory_sizes(void) 926 { 927 uint32_t host_page_size = getpagesize(); 928 uint32_t guest_page_size = vm_guest_mode_params[VM_MODE_DEFAULT].page_size; 929 930 if (host_page_size > SZ_64K || guest_page_size > SZ_64K) { 931 pr_info("Unsupported page size on host (0x%x) or guest (0x%x)\n", 932 host_page_size, guest_page_size); 933 return false; 934 } 935 936 if (MEM_SIZE % guest_page_size || 937 MEM_TEST_SIZE % guest_page_size) { 938 pr_info("invalid MEM_SIZE or MEM_TEST_SIZE\n"); 939 return false; 940 } 941 942 if (MEM_SIZE_MAP % guest_page_size || 943 MEM_TEST_MAP_SIZE % guest_page_size || 944 (MEM_TEST_MAP_SIZE / guest_page_size) <= 2 || 945 (MEM_TEST_MAP_SIZE / guest_page_size) % 2) { 946 pr_info("invalid MEM_SIZE_MAP or MEM_TEST_MAP_SIZE\n"); 947 return false; 948 } 949 950 if (MEM_TEST_UNMAP_SIZE > MEM_TEST_SIZE || 951 MEM_TEST_UNMAP_SIZE % guest_page_size || 952 (MEM_TEST_UNMAP_SIZE / guest_page_size) % 953 (2 * MEM_TEST_UNMAP_CHUNK_SIZE / guest_page_size)) { 954 pr_info("invalid MEM_TEST_UNMAP_SIZE or MEM_TEST_UNMAP_CHUNK_SIZE\n"); 955 return false; 956 } 957 958 return true; 959 } 960 961 static bool parse_args(int argc, char *argv[], 962 struct test_args *targs) 963 { 964 uint32_t max_mem_slots; 965 int opt; 966 967 while ((opt = getopt(argc, argv, "hvdqs:f:e:l:r:")) != -1) { 968 switch (opt) { 969 case 'h': 970 default: 971 help(argv[0], targs); 972 return false; 973 case 'v': 974 verbose = true; 975 break; 976 case 'd': 977 map_unmap_verify = true; 978 break; 979 #ifdef __x86_64__ 980 case 'q': 981 disable_slot_zap_quirk = true; 982 TEST_REQUIRE(kvm_check_cap(KVM_CAP_DISABLE_QUIRKS2) & 983 KVM_X86_QUIRK_SLOT_ZAP_ALL); 984 break; 985 #endif 986 case 's': 987 targs->nslots = atoi_paranoid(optarg); 988 if (targs->nslots <= 1 && targs->nslots != -1) { 989 pr_info("Slot count cap must be larger than 1 or -1 for no cap\n"); 990 return false; 991 } 992 break; 993 case 'f': 994 targs->tfirst = atoi_non_negative("First test", optarg); 995 break; 996 case 'e': 997 targs->tlast = atoi_non_negative("Last test", optarg); 998 if (targs->tlast >= NTESTS) { 999 pr_info("Last test to run has to be non-negative and less than %zu\n", 1000 NTESTS); 1001 return false; 1002 } 1003 break; 1004 case 'l': 1005 targs->seconds = atoi_non_negative("Test length", optarg); 1006 break; 1007 case 'r': 1008 targs->runs = atoi_positive("Runs per test", optarg); 1009 break; 1010 } 1011 } 1012 1013 if (optind < argc) { 1014 help(argv[0], targs); 1015 return false; 1016 } 1017 1018 if (targs->tfirst > targs->tlast) { 1019 pr_info("First test to run cannot be greater than the last test to run\n"); 1020 return false; 1021 } 1022 1023 max_mem_slots = kvm_check_cap(KVM_CAP_NR_MEMSLOTS); 1024 if (max_mem_slots <= 1) { 1025 pr_info("KVM_CAP_NR_MEMSLOTS should be greater than 1\n"); 1026 return false; 1027 } 1028 1029 /* Memory slot 0 is reserved */ 1030 if (targs->nslots == -1) 1031 targs->nslots = max_mem_slots - 1; 1032 else 1033 targs->nslots = min_t(int, targs->nslots, max_mem_slots) - 1; 1034 1035 pr_info_v("Allowed Number of memory slots: %"PRIu32"\n", 1036 targs->nslots + 1); 1037 1038 return true; 1039 } 1040 1041 struct test_result { 1042 struct timespec slot_runtime, guest_runtime, iter_runtime; 1043 int64_t slottimens, runtimens; 1044 uint64_t nloops; 1045 }; 1046 1047 static bool test_loop(const struct test_data *data, 1048 const struct test_args *targs, 1049 struct test_result *rbestslottime, 1050 struct test_result *rbestruntime) 1051 { 1052 uint64_t maxslots; 1053 struct test_result result = {}; 1054 1055 if (!test_execute(targs->nslots, &maxslots, targs->seconds, data, 1056 &result.nloops, 1057 &result.slot_runtime, &result.guest_runtime)) { 1058 if (maxslots) 1059 pr_info("Memslot count too high for this test, decrease the cap (max is %"PRIu64")\n", 1060 maxslots); 1061 else 1062 pr_info("Memslot count may be too high for this test, try adjusting the cap\n"); 1063 1064 return false; 1065 } 1066 1067 pr_info("Test took %ld.%.9lds for slot setup + %ld.%.9lds all iterations\n", 1068 result.slot_runtime.tv_sec, result.slot_runtime.tv_nsec, 1069 result.guest_runtime.tv_sec, result.guest_runtime.tv_nsec); 1070 if (!result.nloops) { 1071 pr_info("No full loops done - too short test time or system too loaded?\n"); 1072 return true; 1073 } 1074 1075 result.iter_runtime = timespec_div(result.guest_runtime, 1076 result.nloops); 1077 pr_info("Done %"PRIu64" iterations, avg %ld.%.9lds each\n", 1078 result.nloops, 1079 result.iter_runtime.tv_sec, 1080 result.iter_runtime.tv_nsec); 1081 result.slottimens = timespec_to_ns(result.slot_runtime); 1082 result.runtimens = timespec_to_ns(result.iter_runtime); 1083 1084 /* 1085 * Only rank the slot setup time for tests using the whole test memory 1086 * area so they are comparable 1087 */ 1088 if (!data->mem_size && 1089 (!rbestslottime->slottimens || 1090 result.slottimens < rbestslottime->slottimens)) 1091 *rbestslottime = result; 1092 if (!rbestruntime->runtimens || 1093 result.runtimens < rbestruntime->runtimens) 1094 *rbestruntime = result; 1095 1096 return true; 1097 } 1098 1099 int main(int argc, char *argv[]) 1100 { 1101 struct test_args targs = { 1102 .tfirst = 0, 1103 .tlast = NTESTS - 1, 1104 .nslots = -1, 1105 .seconds = 5, 1106 .runs = 1, 1107 }; 1108 struct test_result rbestslottime = {}; 1109 int tctr; 1110 1111 if (!check_memory_sizes()) 1112 return -1; 1113 1114 if (!parse_args(argc, argv, &targs)) 1115 return -1; 1116 1117 for (tctr = targs.tfirst; tctr <= targs.tlast; tctr++) { 1118 const struct test_data *data = &tests[tctr]; 1119 unsigned int runctr; 1120 struct test_result rbestruntime = {}; 1121 1122 if (tctr > targs.tfirst) 1123 pr_info("\n"); 1124 1125 pr_info("Testing %s performance with %i runs, %d seconds each\n", 1126 data->name, targs.runs, targs.seconds); 1127 1128 for (runctr = 0; runctr < targs.runs; runctr++) 1129 if (!test_loop(data, &targs, 1130 &rbestslottime, &rbestruntime)) 1131 break; 1132 1133 if (rbestruntime.runtimens) 1134 pr_info("Best runtime result was %ld.%.9lds per iteration (with %"PRIu64" iterations)\n", 1135 rbestruntime.iter_runtime.tv_sec, 1136 rbestruntime.iter_runtime.tv_nsec, 1137 rbestruntime.nloops); 1138 } 1139 1140 if (rbestslottime.slottimens) 1141 pr_info("Best slot setup time for the whole test area was %ld.%.9lds\n", 1142 rbestslottime.slot_runtime.tv_sec, 1143 rbestslottime.slot_runtime.tv_nsec); 1144 1145 return 0; 1146 } 1147