xref: /linux/rust/kernel/str.rs (revision e1b1d03ceec343362524318c076b110066ffe305)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! String representations.
4 
5 use crate::{
6     alloc::{flags::*, AllocError, KVec},
7     error::{to_result, Result},
8     fmt::{self, Write},
9     prelude::*,
10 };
11 use core::{
12     marker::PhantomData,
13     ops::{self, Deref, DerefMut, Index},
14 };
15 
16 /// Byte string without UTF-8 validity guarantee.
17 #[repr(transparent)]
18 pub struct BStr([u8]);
19 
20 impl BStr {
21     /// Returns the length of this string.
22     #[inline]
23     pub const fn len(&self) -> usize {
24         self.0.len()
25     }
26 
27     /// Returns `true` if the string is empty.
28     #[inline]
29     pub const fn is_empty(&self) -> bool {
30         self.len() == 0
31     }
32 
33     /// Creates a [`BStr`] from a `[u8]`.
34     #[inline]
35     pub const fn from_bytes(bytes: &[u8]) -> &Self {
36         // SAFETY: `BStr` is transparent to `[u8]`.
37         unsafe { &*(core::ptr::from_ref(bytes) as *const BStr) }
38     }
39 
40     /// Strip a prefix from `self`. Delegates to [`slice::strip_prefix`].
41     ///
42     /// # Examples
43     ///
44     /// ```
45     /// # use kernel::b_str;
46     /// assert_eq!(Some(b_str!("bar")), b_str!("foobar").strip_prefix(b_str!("foo")));
47     /// assert_eq!(None, b_str!("foobar").strip_prefix(b_str!("bar")));
48     /// assert_eq!(Some(b_str!("foobar")), b_str!("foobar").strip_prefix(b_str!("")));
49     /// assert_eq!(Some(b_str!("")), b_str!("foobar").strip_prefix(b_str!("foobar")));
50     /// ```
51     pub fn strip_prefix(&self, pattern: impl AsRef<Self>) -> Option<&BStr> {
52         self.deref()
53             .strip_prefix(pattern.as_ref().deref())
54             .map(Self::from_bytes)
55     }
56 }
57 
58 impl fmt::Display for BStr {
59     /// Formats printable ASCII characters, escaping the rest.
60     ///
61     /// ```
62     /// # use kernel::{prelude::fmt, b_str, str::{BStr, CString}};
63     /// let ascii = b_str!("Hello, BStr!");
64     /// let s = CString::try_from_fmt(fmt!("{ascii}"))?;
65     /// assert_eq!(s.to_bytes(), "Hello, BStr!".as_bytes());
66     ///
67     /// let non_ascii = b_str!("��");
68     /// let s = CString::try_from_fmt(fmt!("{non_ascii}"))?;
69     /// assert_eq!(s.to_bytes(), "\\xf0\\x9f\\xa6\\x80".as_bytes());
70     /// # Ok::<(), kernel::error::Error>(())
71     /// ```
72     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
73         for &b in &self.0 {
74             match b {
75                 // Common escape codes.
76                 b'\t' => f.write_str("\\t")?,
77                 b'\n' => f.write_str("\\n")?,
78                 b'\r' => f.write_str("\\r")?,
79                 // Printable characters.
80                 0x20..=0x7e => f.write_char(b as char)?,
81                 _ => write!(f, "\\x{b:02x}")?,
82             }
83         }
84         Ok(())
85     }
86 }
87 
88 impl fmt::Debug for BStr {
89     /// Formats printable ASCII characters with a double quote on either end,
90     /// escaping the rest.
91     ///
92     /// ```
93     /// # use kernel::{prelude::fmt, b_str, str::{BStr, CString}};
94     /// // Embedded double quotes are escaped.
95     /// let ascii = b_str!("Hello, \"BStr\"!");
96     /// let s = CString::try_from_fmt(fmt!("{ascii:?}"))?;
97     /// assert_eq!(s.to_bytes(), "\"Hello, \\\"BStr\\\"!\"".as_bytes());
98     ///
99     /// let non_ascii = b_str!("��");
100     /// let s = CString::try_from_fmt(fmt!("{non_ascii:?}"))?;
101     /// assert_eq!(s.to_bytes(), "\"\\xf0\\x9f\\x98\\xba\"".as_bytes());
102     /// # Ok::<(), kernel::error::Error>(())
103     /// ```
104     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
105         f.write_char('"')?;
106         for &b in &self.0 {
107             match b {
108                 // Common escape codes.
109                 b'\t' => f.write_str("\\t")?,
110                 b'\n' => f.write_str("\\n")?,
111                 b'\r' => f.write_str("\\r")?,
112                 // String escape characters.
113                 b'\"' => f.write_str("\\\"")?,
114                 b'\\' => f.write_str("\\\\")?,
115                 // Printable characters.
116                 0x20..=0x7e => f.write_char(b as char)?,
117                 _ => write!(f, "\\x{b:02x}")?,
118             }
119         }
120         f.write_char('"')
121     }
122 }
123 
124 impl Deref for BStr {
125     type Target = [u8];
126 
127     #[inline]
128     fn deref(&self) -> &Self::Target {
129         &self.0
130     }
131 }
132 
133 impl PartialEq for BStr {
134     fn eq(&self, other: &Self) -> bool {
135         self.deref().eq(other.deref())
136     }
137 }
138 
139 impl<Idx> Index<Idx> for BStr
140 where
141     [u8]: Index<Idx, Output = [u8]>,
142 {
143     type Output = Self;
144 
145     fn index(&self, index: Idx) -> &Self::Output {
146         BStr::from_bytes(&self.0[index])
147     }
148 }
149 
150 impl AsRef<BStr> for [u8] {
151     fn as_ref(&self) -> &BStr {
152         BStr::from_bytes(self)
153     }
154 }
155 
156 impl AsRef<BStr> for BStr {
157     fn as_ref(&self) -> &BStr {
158         self
159     }
160 }
161 
162 /// Creates a new [`BStr`] from a string literal.
163 ///
164 /// `b_str!` converts the supplied string literal to byte string, so non-ASCII
165 /// characters can be included.
166 ///
167 /// # Examples
168 ///
169 /// ```
170 /// # use kernel::b_str;
171 /// # use kernel::str::BStr;
172 /// const MY_BSTR: &BStr = b_str!("My awesome BStr!");
173 /// ```
174 #[macro_export]
175 macro_rules! b_str {
176     ($str:literal) => {{
177         const S: &'static str = $str;
178         const C: &'static $crate::str::BStr = $crate::str::BStr::from_bytes(S.as_bytes());
179         C
180     }};
181 }
182 
183 /// Returns a C pointer to the string.
184 // It is a free function rather than a method on an extension trait because:
185 //
186 // - error[E0379]: functions in trait impls cannot be declared const
187 #[inline]
188 pub const fn as_char_ptr_in_const_context(c_str: &CStr) -> *const c_char {
189     c_str.0.as_ptr()
190 }
191 
192 /// Possible errors when using conversion functions in [`CStr`].
193 #[derive(Debug, Clone, Copy)]
194 pub enum CStrConvertError {
195     /// Supplied bytes contain an interior `NUL`.
196     InteriorNul,
197 
198     /// Supplied bytes are not terminated by `NUL`.
199     NotNulTerminated,
200 }
201 
202 impl From<CStrConvertError> for Error {
203     #[inline]
204     fn from(_: CStrConvertError) -> Error {
205         EINVAL
206     }
207 }
208 
209 /// A string that is guaranteed to have exactly one `NUL` byte, which is at the
210 /// end.
211 ///
212 /// Used for interoperability with kernel APIs that take C strings.
213 #[repr(transparent)]
214 pub struct CStr([u8]);
215 
216 impl CStr {
217     /// Returns the length of this string excluding `NUL`.
218     #[inline]
219     pub const fn len(&self) -> usize {
220         self.len_with_nul() - 1
221     }
222 
223     /// Returns the length of this string with `NUL`.
224     #[inline]
225     pub const fn len_with_nul(&self) -> usize {
226         if self.0.is_empty() {
227             // SAFETY: This is one of the invariant of `CStr`.
228             // We add a `unreachable_unchecked` here to hint the optimizer that
229             // the value returned from this function is non-zero.
230             unsafe { core::hint::unreachable_unchecked() };
231         }
232         self.0.len()
233     }
234 
235     /// Returns `true` if the string only includes `NUL`.
236     #[inline]
237     pub const fn is_empty(&self) -> bool {
238         self.len() == 0
239     }
240 
241     /// Wraps a raw C string pointer.
242     ///
243     /// # Safety
244     ///
245     /// `ptr` must be a valid pointer to a `NUL`-terminated C string, and it must
246     /// last at least `'a`. When `CStr` is alive, the memory pointed by `ptr`
247     /// must not be mutated.
248     #[inline]
249     pub unsafe fn from_char_ptr<'a>(ptr: *const c_char) -> &'a Self {
250         // SAFETY: The safety precondition guarantees `ptr` is a valid pointer
251         // to a `NUL`-terminated C string.
252         let len = unsafe { bindings::strlen(ptr) } + 1;
253         // SAFETY: Lifetime guaranteed by the safety precondition.
254         let bytes = unsafe { core::slice::from_raw_parts(ptr.cast(), len) };
255         // SAFETY: As `len` is returned by `strlen`, `bytes` does not contain interior `NUL`.
256         // As we have added 1 to `len`, the last byte is known to be `NUL`.
257         unsafe { Self::from_bytes_with_nul_unchecked(bytes) }
258     }
259 
260     /// Creates a [`CStr`] from a `[u8]`.
261     ///
262     /// The provided slice must be `NUL`-terminated, does not contain any
263     /// interior `NUL` bytes.
264     pub const fn from_bytes_with_nul(bytes: &[u8]) -> Result<&Self, CStrConvertError> {
265         if bytes.is_empty() {
266             return Err(CStrConvertError::NotNulTerminated);
267         }
268         if bytes[bytes.len() - 1] != 0 {
269             return Err(CStrConvertError::NotNulTerminated);
270         }
271         let mut i = 0;
272         // `i + 1 < bytes.len()` allows LLVM to optimize away bounds checking,
273         // while it couldn't optimize away bounds checks for `i < bytes.len() - 1`.
274         while i + 1 < bytes.len() {
275             if bytes[i] == 0 {
276                 return Err(CStrConvertError::InteriorNul);
277             }
278             i += 1;
279         }
280         // SAFETY: We just checked that all properties hold.
281         Ok(unsafe { Self::from_bytes_with_nul_unchecked(bytes) })
282     }
283 
284     /// Creates a [`CStr`] from a `[u8]` without performing any additional
285     /// checks.
286     ///
287     /// # Safety
288     ///
289     /// `bytes` *must* end with a `NUL` byte, and should only have a single
290     /// `NUL` byte (or the string will be truncated).
291     #[inline]
292     pub const unsafe fn from_bytes_with_nul_unchecked(bytes: &[u8]) -> &CStr {
293         // SAFETY: Properties of `bytes` guaranteed by the safety precondition.
294         unsafe { core::mem::transmute(bytes) }
295     }
296 
297     /// Creates a mutable [`CStr`] from a `[u8]` without performing any
298     /// additional checks.
299     ///
300     /// # Safety
301     ///
302     /// `bytes` *must* end with a `NUL` byte, and should only have a single
303     /// `NUL` byte (or the string will be truncated).
304     #[inline]
305     pub unsafe fn from_bytes_with_nul_unchecked_mut(bytes: &mut [u8]) -> &mut CStr {
306         // SAFETY: Properties of `bytes` guaranteed by the safety precondition.
307         unsafe { &mut *(core::ptr::from_mut(bytes) as *mut CStr) }
308     }
309 
310     /// Returns a C pointer to the string.
311     ///
312     /// Using this function in a const context is deprecated in favor of
313     /// [`as_char_ptr_in_const_context`] in preparation for replacing `CStr` with `core::ffi::CStr`
314     /// which does not have this method.
315     #[inline]
316     pub const fn as_char_ptr(&self) -> *const c_char {
317         as_char_ptr_in_const_context(self)
318     }
319 
320     /// Convert the string to a byte slice without the trailing `NUL` byte.
321     #[inline]
322     pub fn to_bytes(&self) -> &[u8] {
323         &self.0[..self.len()]
324     }
325 
326     /// Convert the string to a byte slice without the trailing `NUL` byte.
327     ///
328     /// This function is deprecated in favor of [`Self::to_bytes`] in preparation for replacing
329     /// `CStr` with `core::ffi::CStr` which does not have this method.
330     #[inline]
331     pub fn as_bytes(&self) -> &[u8] {
332         self.to_bytes()
333     }
334 
335     /// Convert the string to a byte slice containing the trailing `NUL` byte.
336     #[inline]
337     pub const fn to_bytes_with_nul(&self) -> &[u8] {
338         &self.0
339     }
340 
341     /// Convert the string to a byte slice containing the trailing `NUL` byte.
342     ///
343     /// This function is deprecated in favor of [`Self::to_bytes_with_nul`] in preparation for
344     /// replacing `CStr` with `core::ffi::CStr` which does not have this method.
345     #[inline]
346     pub const fn as_bytes_with_nul(&self) -> &[u8] {
347         self.to_bytes_with_nul()
348     }
349 
350     /// Yields a [`&str`] slice if the [`CStr`] contains valid UTF-8.
351     ///
352     /// If the contents of the [`CStr`] are valid UTF-8 data, this
353     /// function will return the corresponding [`&str`] slice. Otherwise,
354     /// it will return an error with details of where UTF-8 validation failed.
355     ///
356     /// # Examples
357     ///
358     /// ```
359     /// # use kernel::str::CStr;
360     /// let cstr = CStr::from_bytes_with_nul(b"foo\0")?;
361     /// assert_eq!(cstr.to_str(), Ok("foo"));
362     /// # Ok::<(), kernel::error::Error>(())
363     /// ```
364     #[inline]
365     pub fn to_str(&self) -> Result<&str, core::str::Utf8Error> {
366         core::str::from_utf8(self.as_bytes())
367     }
368 
369     /// Unsafely convert this [`CStr`] into a [`&str`], without checking for
370     /// valid UTF-8.
371     ///
372     /// # Safety
373     ///
374     /// The contents must be valid UTF-8.
375     ///
376     /// # Examples
377     ///
378     /// ```
379     /// # use kernel::c_str;
380     /// # use kernel::str::CStr;
381     /// let bar = c_str!("ツ");
382     /// // SAFETY: String literals are guaranteed to be valid UTF-8
383     /// // by the Rust compiler.
384     /// assert_eq!(unsafe { bar.as_str_unchecked() }, "ツ");
385     /// ```
386     #[inline]
387     pub unsafe fn as_str_unchecked(&self) -> &str {
388         // SAFETY: TODO.
389         unsafe { core::str::from_utf8_unchecked(self.as_bytes()) }
390     }
391 
392     /// Convert this [`CStr`] into a [`CString`] by allocating memory and
393     /// copying over the string data.
394     pub fn to_cstring(&self) -> Result<CString, AllocError> {
395         CString::try_from(self)
396     }
397 
398     /// Converts this [`CStr`] to its ASCII lower case equivalent in-place.
399     ///
400     /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
401     /// but non-ASCII letters are unchanged.
402     ///
403     /// To return a new lowercased value without modifying the existing one, use
404     /// [`to_ascii_lowercase()`].
405     ///
406     /// [`to_ascii_lowercase()`]: #method.to_ascii_lowercase
407     pub fn make_ascii_lowercase(&mut self) {
408         // INVARIANT: This doesn't introduce or remove NUL bytes in the C
409         // string.
410         self.0.make_ascii_lowercase();
411     }
412 
413     /// Converts this [`CStr`] to its ASCII upper case equivalent in-place.
414     ///
415     /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
416     /// but non-ASCII letters are unchanged.
417     ///
418     /// To return a new uppercased value without modifying the existing one, use
419     /// [`to_ascii_uppercase()`].
420     ///
421     /// [`to_ascii_uppercase()`]: #method.to_ascii_uppercase
422     pub fn make_ascii_uppercase(&mut self) {
423         // INVARIANT: This doesn't introduce or remove NUL bytes in the C
424         // string.
425         self.0.make_ascii_uppercase();
426     }
427 
428     /// Returns a copy of this [`CString`] where each character is mapped to its
429     /// ASCII lower case equivalent.
430     ///
431     /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
432     /// but non-ASCII letters are unchanged.
433     ///
434     /// To lowercase the value in-place, use [`make_ascii_lowercase`].
435     ///
436     /// [`make_ascii_lowercase`]: str::make_ascii_lowercase
437     pub fn to_ascii_lowercase(&self) -> Result<CString, AllocError> {
438         let mut s = self.to_cstring()?;
439 
440         s.make_ascii_lowercase();
441 
442         Ok(s)
443     }
444 
445     /// Returns a copy of this [`CString`] where each character is mapped to its
446     /// ASCII upper case equivalent.
447     ///
448     /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
449     /// but non-ASCII letters are unchanged.
450     ///
451     /// To uppercase the value in-place, use [`make_ascii_uppercase`].
452     ///
453     /// [`make_ascii_uppercase`]: str::make_ascii_uppercase
454     pub fn to_ascii_uppercase(&self) -> Result<CString, AllocError> {
455         let mut s = self.to_cstring()?;
456 
457         s.make_ascii_uppercase();
458 
459         Ok(s)
460     }
461 }
462 
463 impl fmt::Display for CStr {
464     /// Formats printable ASCII characters, escaping the rest.
465     ///
466     /// ```
467     /// # use kernel::c_str;
468     /// # use kernel::prelude::fmt;
469     /// # use kernel::str::CStr;
470     /// # use kernel::str::CString;
471     /// let penguin = c_str!("��");
472     /// let s = CString::try_from_fmt(fmt!("{penguin}"))?;
473     /// assert_eq!(s.to_bytes_with_nul(), "\\xf0\\x9f\\x90\\xa7\0".as_bytes());
474     ///
475     /// let ascii = c_str!("so \"cool\"");
476     /// let s = CString::try_from_fmt(fmt!("{ascii}"))?;
477     /// assert_eq!(s.to_bytes_with_nul(), "so \"cool\"\0".as_bytes());
478     /// # Ok::<(), kernel::error::Error>(())
479     /// ```
480     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
481         for &c in self.to_bytes() {
482             if (0x20..0x7f).contains(&c) {
483                 // Printable character.
484                 f.write_char(c as char)?;
485             } else {
486                 write!(f, "\\x{c:02x}")?;
487             }
488         }
489         Ok(())
490     }
491 }
492 
493 impl fmt::Debug for CStr {
494     /// Formats printable ASCII characters with a double quote on either end, escaping the rest.
495     ///
496     /// ```
497     /// # use kernel::c_str;
498     /// # use kernel::prelude::fmt;
499     /// # use kernel::str::CStr;
500     /// # use kernel::str::CString;
501     /// let penguin = c_str!("��");
502     /// let s = CString::try_from_fmt(fmt!("{penguin:?}"))?;
503     /// assert_eq!(s.as_bytes_with_nul(), "\"\\xf0\\x9f\\x90\\xa7\"\0".as_bytes());
504     ///
505     /// // Embedded double quotes are escaped.
506     /// let ascii = c_str!("so \"cool\"");
507     /// let s = CString::try_from_fmt(fmt!("{ascii:?}"))?;
508     /// assert_eq!(s.as_bytes_with_nul(), "\"so \\\"cool\\\"\"\0".as_bytes());
509     /// # Ok::<(), kernel::error::Error>(())
510     /// ```
511     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
512         f.write_str("\"")?;
513         for &c in self.as_bytes() {
514             match c {
515                 // Printable characters.
516                 b'\"' => f.write_str("\\\"")?,
517                 0x20..=0x7e => f.write_char(c as char)?,
518                 _ => write!(f, "\\x{c:02x}")?,
519             }
520         }
521         f.write_str("\"")
522     }
523 }
524 
525 impl AsRef<BStr> for CStr {
526     #[inline]
527     fn as_ref(&self) -> &BStr {
528         BStr::from_bytes(self.as_bytes())
529     }
530 }
531 
532 impl Deref for CStr {
533     type Target = BStr;
534 
535     #[inline]
536     fn deref(&self) -> &Self::Target {
537         self.as_ref()
538     }
539 }
540 
541 impl Index<ops::RangeFrom<usize>> for CStr {
542     type Output = CStr;
543 
544     #[inline]
545     fn index(&self, index: ops::RangeFrom<usize>) -> &Self::Output {
546         // Delegate bounds checking to slice.
547         // Assign to _ to mute clippy's unnecessary operation warning.
548         let _ = &self.as_bytes()[index.start..];
549         // SAFETY: We just checked the bounds.
550         unsafe { Self::from_bytes_with_nul_unchecked(&self.0[index.start..]) }
551     }
552 }
553 
554 impl Index<ops::RangeFull> for CStr {
555     type Output = CStr;
556 
557     #[inline]
558     fn index(&self, _index: ops::RangeFull) -> &Self::Output {
559         self
560     }
561 }
562 
563 mod private {
564     use core::ops;
565 
566     // Marker trait for index types that can be forward to `BStr`.
567     pub trait CStrIndex {}
568 
569     impl CStrIndex for usize {}
570     impl CStrIndex for ops::Range<usize> {}
571     impl CStrIndex for ops::RangeInclusive<usize> {}
572     impl CStrIndex for ops::RangeToInclusive<usize> {}
573 }
574 
575 impl<Idx> Index<Idx> for CStr
576 where
577     Idx: private::CStrIndex,
578     BStr: Index<Idx>,
579 {
580     type Output = <BStr as Index<Idx>>::Output;
581 
582     #[inline]
583     fn index(&self, index: Idx) -> &Self::Output {
584         &self.as_ref()[index]
585     }
586 }
587 
588 /// Creates a new [`CStr`] from a string literal.
589 ///
590 /// The string literal should not contain any `NUL` bytes.
591 ///
592 /// # Examples
593 ///
594 /// ```
595 /// # use kernel::c_str;
596 /// # use kernel::str::CStr;
597 /// const MY_CSTR: &CStr = c_str!("My awesome CStr!");
598 /// ```
599 #[macro_export]
600 macro_rules! c_str {
601     ($str:expr) => {{
602         const S: &str = concat!($str, "\0");
603         const C: &$crate::str::CStr = match $crate::str::CStr::from_bytes_with_nul(S.as_bytes()) {
604             Ok(v) => v,
605             Err(_) => panic!("string contains interior NUL"),
606         };
607         C
608     }};
609 }
610 
611 #[kunit_tests(rust_kernel_str)]
612 mod tests {
613     use super::*;
614 
615     macro_rules! format {
616         ($($f:tt)*) => ({
617             CString::try_from_fmt(fmt!($($f)*))?.to_str()?
618         })
619     }
620 
621     const ALL_ASCII_CHARS: &str =
622         "\\x01\\x02\\x03\\x04\\x05\\x06\\x07\\x08\\x09\\x0a\\x0b\\x0c\\x0d\\x0e\\x0f\
623         \\x10\\x11\\x12\\x13\\x14\\x15\\x16\\x17\\x18\\x19\\x1a\\x1b\\x1c\\x1d\\x1e\\x1f \
624         !\"#$%&'()*+,-./0123456789:;<=>?@\
625         ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~\\x7f\
626         \\x80\\x81\\x82\\x83\\x84\\x85\\x86\\x87\\x88\\x89\\x8a\\x8b\\x8c\\x8d\\x8e\\x8f\
627         \\x90\\x91\\x92\\x93\\x94\\x95\\x96\\x97\\x98\\x99\\x9a\\x9b\\x9c\\x9d\\x9e\\x9f\
628         \\xa0\\xa1\\xa2\\xa3\\xa4\\xa5\\xa6\\xa7\\xa8\\xa9\\xaa\\xab\\xac\\xad\\xae\\xaf\
629         \\xb0\\xb1\\xb2\\xb3\\xb4\\xb5\\xb6\\xb7\\xb8\\xb9\\xba\\xbb\\xbc\\xbd\\xbe\\xbf\
630         \\xc0\\xc1\\xc2\\xc3\\xc4\\xc5\\xc6\\xc7\\xc8\\xc9\\xca\\xcb\\xcc\\xcd\\xce\\xcf\
631         \\xd0\\xd1\\xd2\\xd3\\xd4\\xd5\\xd6\\xd7\\xd8\\xd9\\xda\\xdb\\xdc\\xdd\\xde\\xdf\
632         \\xe0\\xe1\\xe2\\xe3\\xe4\\xe5\\xe6\\xe7\\xe8\\xe9\\xea\\xeb\\xec\\xed\\xee\\xef\
633         \\xf0\\xf1\\xf2\\xf3\\xf4\\xf5\\xf6\\xf7\\xf8\\xf9\\xfa\\xfb\\xfc\\xfd\\xfe\\xff";
634 
635     #[test]
636     fn test_cstr_to_str() -> Result {
637         let good_bytes = b"\xf0\x9f\xa6\x80\0";
638         let checked_cstr = CStr::from_bytes_with_nul(good_bytes)?;
639         let checked_str = checked_cstr.to_str()?;
640         assert_eq!(checked_str, "��");
641         Ok(())
642     }
643 
644     #[test]
645     fn test_cstr_to_str_invalid_utf8() -> Result {
646         let bad_bytes = b"\xc3\x28\0";
647         let checked_cstr = CStr::from_bytes_with_nul(bad_bytes)?;
648         assert!(checked_cstr.to_str().is_err());
649         Ok(())
650     }
651 
652     #[test]
653     fn test_cstr_as_str_unchecked() -> Result {
654         let good_bytes = b"\xf0\x9f\x90\xA7\0";
655         let checked_cstr = CStr::from_bytes_with_nul(good_bytes)?;
656         // SAFETY: The contents come from a string literal which contains valid UTF-8.
657         let unchecked_str = unsafe { checked_cstr.as_str_unchecked() };
658         assert_eq!(unchecked_str, "��");
659         Ok(())
660     }
661 
662     #[test]
663     fn test_cstr_display() -> Result {
664         let hello_world = CStr::from_bytes_with_nul(b"hello, world!\0")?;
665         assert_eq!(format!("{hello_world}"), "hello, world!");
666         let non_printables = CStr::from_bytes_with_nul(b"\x01\x09\x0a\0")?;
667         assert_eq!(format!("{non_printables}"), "\\x01\\x09\\x0a");
668         let non_ascii = CStr::from_bytes_with_nul(b"d\xe9j\xe0 vu\0")?;
669         assert_eq!(format!("{non_ascii}"), "d\\xe9j\\xe0 vu");
670         let good_bytes = CStr::from_bytes_with_nul(b"\xf0\x9f\xa6\x80\0")?;
671         assert_eq!(format!("{good_bytes}"), "\\xf0\\x9f\\xa6\\x80");
672         Ok(())
673     }
674 
675     #[test]
676     fn test_cstr_display_all_bytes() -> Result {
677         let mut bytes: [u8; 256] = [0; 256];
678         // fill `bytes` with [1..=255] + [0]
679         for i in u8::MIN..=u8::MAX {
680             bytes[i as usize] = i.wrapping_add(1);
681         }
682         let cstr = CStr::from_bytes_with_nul(&bytes)?;
683         assert_eq!(format!("{cstr}"), ALL_ASCII_CHARS);
684         Ok(())
685     }
686 
687     #[test]
688     fn test_cstr_debug() -> Result {
689         let hello_world = CStr::from_bytes_with_nul(b"hello, world!\0")?;
690         assert_eq!(format!("{hello_world:?}"), "\"hello, world!\"");
691         let non_printables = CStr::from_bytes_with_nul(b"\x01\x09\x0a\0")?;
692         assert_eq!(format!("{non_printables:?}"), "\"\\x01\\x09\\x0a\"");
693         let non_ascii = CStr::from_bytes_with_nul(b"d\xe9j\xe0 vu\0")?;
694         assert_eq!(format!("{non_ascii:?}"), "\"d\\xe9j\\xe0 vu\"");
695         let good_bytes = CStr::from_bytes_with_nul(b"\xf0\x9f\xa6\x80\0")?;
696         assert_eq!(format!("{good_bytes:?}"), "\"\\xf0\\x9f\\xa6\\x80\"");
697         Ok(())
698     }
699 
700     #[test]
701     fn test_bstr_display() -> Result {
702         let hello_world = BStr::from_bytes(b"hello, world!");
703         assert_eq!(format!("{hello_world}"), "hello, world!");
704         let escapes = BStr::from_bytes(b"_\t_\n_\r_\\_\'_\"_");
705         assert_eq!(format!("{escapes}"), "_\\t_\\n_\\r_\\_'_\"_");
706         let others = BStr::from_bytes(b"\x01");
707         assert_eq!(format!("{others}"), "\\x01");
708         let non_ascii = BStr::from_bytes(b"d\xe9j\xe0 vu");
709         assert_eq!(format!("{non_ascii}"), "d\\xe9j\\xe0 vu");
710         let good_bytes = BStr::from_bytes(b"\xf0\x9f\xa6\x80");
711         assert_eq!(format!("{good_bytes}"), "\\xf0\\x9f\\xa6\\x80");
712         Ok(())
713     }
714 
715     #[test]
716     fn test_bstr_debug() -> Result {
717         let hello_world = BStr::from_bytes(b"hello, world!");
718         assert_eq!(format!("{hello_world:?}"), "\"hello, world!\"");
719         let escapes = BStr::from_bytes(b"_\t_\n_\r_\\_\'_\"_");
720         assert_eq!(format!("{escapes:?}"), "\"_\\t_\\n_\\r_\\\\_'_\\\"_\"");
721         let others = BStr::from_bytes(b"\x01");
722         assert_eq!(format!("{others:?}"), "\"\\x01\"");
723         let non_ascii = BStr::from_bytes(b"d\xe9j\xe0 vu");
724         assert_eq!(format!("{non_ascii:?}"), "\"d\\xe9j\\xe0 vu\"");
725         let good_bytes = BStr::from_bytes(b"\xf0\x9f\xa6\x80");
726         assert_eq!(format!("{good_bytes:?}"), "\"\\xf0\\x9f\\xa6\\x80\"");
727         Ok(())
728     }
729 }
730 
731 /// Allows formatting of [`fmt::Arguments`] into a raw buffer.
732 ///
733 /// It does not fail if callers write past the end of the buffer so that they can calculate the
734 /// size required to fit everything.
735 ///
736 /// # Invariants
737 ///
738 /// The memory region between `pos` (inclusive) and `end` (exclusive) is valid for writes if `pos`
739 /// is less than `end`.
740 pub struct RawFormatter {
741     // Use `usize` to use `saturating_*` functions.
742     beg: usize,
743     pos: usize,
744     end: usize,
745 }
746 
747 impl RawFormatter {
748     /// Creates a new instance of [`RawFormatter`] with an empty buffer.
749     fn new() -> Self {
750         // INVARIANT: The buffer is empty, so the region that needs to be writable is empty.
751         Self {
752             beg: 0,
753             pos: 0,
754             end: 0,
755         }
756     }
757 
758     /// Creates a new instance of [`RawFormatter`] with the given buffer pointers.
759     ///
760     /// # Safety
761     ///
762     /// If `pos` is less than `end`, then the region between `pos` (inclusive) and `end`
763     /// (exclusive) must be valid for writes for the lifetime of the returned [`RawFormatter`].
764     pub(crate) unsafe fn from_ptrs(pos: *mut u8, end: *mut u8) -> Self {
765         // INVARIANT: The safety requirements guarantee the type invariants.
766         Self {
767             beg: pos as usize,
768             pos: pos as usize,
769             end: end as usize,
770         }
771     }
772 
773     /// Creates a new instance of [`RawFormatter`] with the given buffer.
774     ///
775     /// # Safety
776     ///
777     /// The memory region starting at `buf` and extending for `len` bytes must be valid for writes
778     /// for the lifetime of the returned [`RawFormatter`].
779     pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self {
780         let pos = buf as usize;
781         // INVARIANT: We ensure that `end` is never less than `buf`, and the safety requirements
782         // guarantees that the memory region is valid for writes.
783         Self {
784             pos,
785             beg: pos,
786             end: pos.saturating_add(len),
787         }
788     }
789 
790     /// Returns the current insert position.
791     ///
792     /// N.B. It may point to invalid memory.
793     pub(crate) fn pos(&self) -> *mut u8 {
794         self.pos as *mut u8
795     }
796 
797     /// Returns the number of bytes written to the formatter.
798     pub fn bytes_written(&self) -> usize {
799         self.pos - self.beg
800     }
801 }
802 
803 impl fmt::Write for RawFormatter {
804     fn write_str(&mut self, s: &str) -> fmt::Result {
805         // `pos` value after writing `len` bytes. This does not have to be bounded by `end`, but we
806         // don't want it to wrap around to 0.
807         let pos_new = self.pos.saturating_add(s.len());
808 
809         // Amount that we can copy. `saturating_sub` ensures we get 0 if `pos` goes past `end`.
810         let len_to_copy = core::cmp::min(pos_new, self.end).saturating_sub(self.pos);
811 
812         if len_to_copy > 0 {
813             // SAFETY: If `len_to_copy` is non-zero, then we know `pos` has not gone past `end`
814             // yet, so it is valid for write per the type invariants.
815             unsafe {
816                 core::ptr::copy_nonoverlapping(
817                     s.as_bytes().as_ptr(),
818                     self.pos as *mut u8,
819                     len_to_copy,
820                 )
821             };
822         }
823 
824         self.pos = pos_new;
825         Ok(())
826     }
827 }
828 
829 /// Allows formatting of [`fmt::Arguments`] into a raw buffer.
830 ///
831 /// Fails if callers attempt to write more than will fit in the buffer.
832 pub struct Formatter<'a>(RawFormatter, PhantomData<&'a mut ()>);
833 
834 impl Formatter<'_> {
835     /// Creates a new instance of [`Formatter`] with the given buffer.
836     ///
837     /// # Safety
838     ///
839     /// The memory region starting at `buf` and extending for `len` bytes must be valid for writes
840     /// for the lifetime of the returned [`Formatter`].
841     pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self {
842         // SAFETY: The safety requirements of this function satisfy those of the callee.
843         Self(unsafe { RawFormatter::from_buffer(buf, len) }, PhantomData)
844     }
845 
846     /// Create a new [`Self`] instance.
847     pub fn new(buffer: &mut [u8]) -> Self {
848         // SAFETY: `buffer` is valid for writes for the entire length for
849         // the lifetime of `Self`.
850         unsafe { Formatter::from_buffer(buffer.as_mut_ptr(), buffer.len()) }
851     }
852 }
853 
854 impl Deref for Formatter<'_> {
855     type Target = RawFormatter;
856 
857     fn deref(&self) -> &Self::Target {
858         &self.0
859     }
860 }
861 
862 impl fmt::Write for Formatter<'_> {
863     fn write_str(&mut self, s: &str) -> fmt::Result {
864         self.0.write_str(s)?;
865 
866         // Fail the request if we go past the end of the buffer.
867         if self.0.pos > self.0.end {
868             Err(fmt::Error)
869         } else {
870             Ok(())
871         }
872     }
873 }
874 
875 /// A mutable reference to a byte buffer where a string can be written into.
876 ///
877 /// The buffer will be automatically null terminated after the last written character.
878 ///
879 /// # Invariants
880 ///
881 /// * The first byte of `buffer` is always zero.
882 /// * The length of `buffer` is at least 1.
883 pub(crate) struct NullTerminatedFormatter<'a> {
884     buffer: &'a mut [u8],
885 }
886 
887 impl<'a> NullTerminatedFormatter<'a> {
888     /// Create a new [`Self`] instance.
889     pub(crate) fn new(buffer: &'a mut [u8]) -> Option<NullTerminatedFormatter<'a>> {
890         *(buffer.first_mut()?) = 0;
891 
892         // INVARIANT:
893         //  - We wrote zero to the first byte above.
894         //  - If buffer was not at least length 1, `buffer.first_mut()` would return None.
895         Some(Self { buffer })
896     }
897 }
898 
899 impl Write for NullTerminatedFormatter<'_> {
900     fn write_str(&mut self, s: &str) -> fmt::Result {
901         let bytes = s.as_bytes();
902         let len = bytes.len();
903 
904         // We want space for a zero. By type invariant, buffer length is always at least 1, so no
905         // underflow.
906         if len > self.buffer.len() - 1 {
907             return Err(fmt::Error);
908         }
909 
910         let buffer = core::mem::take(&mut self.buffer);
911         // We break the zero start invariant for a short while.
912         buffer[..len].copy_from_slice(bytes);
913         // INVARIANT: We checked above that buffer will have size at least 1 after this assignment.
914         self.buffer = &mut buffer[len..];
915 
916         // INVARIANT: We write zero to the first byte of the buffer.
917         self.buffer[0] = 0;
918 
919         Ok(())
920     }
921 }
922 
923 /// # Safety
924 ///
925 /// - `string` must point to a null terminated string that is valid for read.
926 unsafe fn kstrtobool_raw(string: *const u8) -> Result<bool> {
927     let mut result: bool = false;
928 
929     // SAFETY:
930     // - By function safety requirement, `string` is a valid null-terminated string.
931     // - `result` is a valid `bool` that we own.
932     to_result(unsafe { bindings::kstrtobool(string, &mut result) })?;
933     Ok(result)
934 }
935 
936 /// Convert common user inputs into boolean values using the kernel's `kstrtobool` function.
937 ///
938 /// This routine returns `Ok(bool)` if the first character is one of 'YyTt1NnFf0', or
939 /// \[oO\]\[NnFf\] for "on" and "off". Otherwise it will return `Err(EINVAL)`.
940 ///
941 /// # Examples
942 ///
943 /// ```
944 /// # use kernel::{c_str, str::kstrtobool};
945 ///
946 /// // Lowercase
947 /// assert_eq!(kstrtobool(c_str!("true")), Ok(true));
948 /// assert_eq!(kstrtobool(c_str!("tr")), Ok(true));
949 /// assert_eq!(kstrtobool(c_str!("t")), Ok(true));
950 /// assert_eq!(kstrtobool(c_str!("twrong")), Ok(true));
951 /// assert_eq!(kstrtobool(c_str!("false")), Ok(false));
952 /// assert_eq!(kstrtobool(c_str!("f")), Ok(false));
953 /// assert_eq!(kstrtobool(c_str!("yes")), Ok(true));
954 /// assert_eq!(kstrtobool(c_str!("no")), Ok(false));
955 /// assert_eq!(kstrtobool(c_str!("on")), Ok(true));
956 /// assert_eq!(kstrtobool(c_str!("off")), Ok(false));
957 ///
958 /// // Camel case
959 /// assert_eq!(kstrtobool(c_str!("True")), Ok(true));
960 /// assert_eq!(kstrtobool(c_str!("False")), Ok(false));
961 /// assert_eq!(kstrtobool(c_str!("Yes")), Ok(true));
962 /// assert_eq!(kstrtobool(c_str!("No")), Ok(false));
963 /// assert_eq!(kstrtobool(c_str!("On")), Ok(true));
964 /// assert_eq!(kstrtobool(c_str!("Off")), Ok(false));
965 ///
966 /// // All caps
967 /// assert_eq!(kstrtobool(c_str!("TRUE")), Ok(true));
968 /// assert_eq!(kstrtobool(c_str!("FALSE")), Ok(false));
969 /// assert_eq!(kstrtobool(c_str!("YES")), Ok(true));
970 /// assert_eq!(kstrtobool(c_str!("NO")), Ok(false));
971 /// assert_eq!(kstrtobool(c_str!("ON")), Ok(true));
972 /// assert_eq!(kstrtobool(c_str!("OFF")), Ok(false));
973 ///
974 /// // Numeric
975 /// assert_eq!(kstrtobool(c_str!("1")), Ok(true));
976 /// assert_eq!(kstrtobool(c_str!("0")), Ok(false));
977 ///
978 /// // Invalid input
979 /// assert_eq!(kstrtobool(c_str!("invalid")), Err(EINVAL));
980 /// assert_eq!(kstrtobool(c_str!("2")), Err(EINVAL));
981 /// ```
982 pub fn kstrtobool(string: &CStr) -> Result<bool> {
983     // SAFETY:
984     // - The pointer returned by `CStr::as_char_ptr` is guaranteed to be
985     //   null terminated.
986     // - `string` is live and thus the string is valid for read.
987     unsafe { kstrtobool_raw(string.as_char_ptr()) }
988 }
989 
990 /// Convert `&[u8]` to `bool` by deferring to [`kernel::str::kstrtobool`].
991 ///
992 /// Only considers at most the first two bytes of `bytes`.
993 pub fn kstrtobool_bytes(bytes: &[u8]) -> Result<bool> {
994     // `ktostrbool` only considers the first two bytes of the input.
995     let stack_string = [*bytes.first().unwrap_or(&0), *bytes.get(1).unwrap_or(&0), 0];
996     // SAFETY: `stack_string` is null terminated and it is live on the stack so
997     // it is valid for read.
998     unsafe { kstrtobool_raw(stack_string.as_ptr()) }
999 }
1000 
1001 /// An owned string that is guaranteed to have exactly one `NUL` byte, which is at the end.
1002 ///
1003 /// Used for interoperability with kernel APIs that take C strings.
1004 ///
1005 /// # Invariants
1006 ///
1007 /// The string is always `NUL`-terminated and contains no other `NUL` bytes.
1008 ///
1009 /// # Examples
1010 ///
1011 /// ```
1012 /// use kernel::{str::CString, prelude::fmt};
1013 ///
1014 /// let s = CString::try_from_fmt(fmt!("{}{}{}", "abc", 10, 20))?;
1015 /// assert_eq!(s.to_bytes_with_nul(), "abc1020\0".as_bytes());
1016 ///
1017 /// let tmp = "testing";
1018 /// let s = CString::try_from_fmt(fmt!("{tmp}{}", 123))?;
1019 /// assert_eq!(s.to_bytes_with_nul(), "testing123\0".as_bytes());
1020 ///
1021 /// // This fails because it has an embedded `NUL` byte.
1022 /// let s = CString::try_from_fmt(fmt!("a\0b{}", 123));
1023 /// assert_eq!(s.is_ok(), false);
1024 /// # Ok::<(), kernel::error::Error>(())
1025 /// ```
1026 pub struct CString {
1027     buf: KVec<u8>,
1028 }
1029 
1030 impl CString {
1031     /// Creates an instance of [`CString`] from the given formatted arguments.
1032     pub fn try_from_fmt(args: fmt::Arguments<'_>) -> Result<Self, Error> {
1033         // Calculate the size needed (formatted string plus `NUL` terminator).
1034         let mut f = RawFormatter::new();
1035         f.write_fmt(args)?;
1036         f.write_str("\0")?;
1037         let size = f.bytes_written();
1038 
1039         // Allocate a vector with the required number of bytes, and write to it.
1040         let mut buf = KVec::with_capacity(size, GFP_KERNEL)?;
1041         // SAFETY: The buffer stored in `buf` is at least of size `size` and is valid for writes.
1042         let mut f = unsafe { Formatter::from_buffer(buf.as_mut_ptr(), size) };
1043         f.write_fmt(args)?;
1044         f.write_str("\0")?;
1045 
1046         // SAFETY: The number of bytes that can be written to `f` is bounded by `size`, which is
1047         // `buf`'s capacity. The contents of the buffer have been initialised by writes to `f`.
1048         unsafe { buf.inc_len(f.bytes_written()) };
1049 
1050         // Check that there are no `NUL` bytes before the end.
1051         // SAFETY: The buffer is valid for read because `f.bytes_written()` is bounded by `size`
1052         // (which the minimum buffer size) and is non-zero (we wrote at least the `NUL` terminator)
1053         // so `f.bytes_written() - 1` doesn't underflow.
1054         let ptr = unsafe { bindings::memchr(buf.as_ptr().cast(), 0, f.bytes_written() - 1) };
1055         if !ptr.is_null() {
1056             return Err(EINVAL);
1057         }
1058 
1059         // INVARIANT: We wrote the `NUL` terminator and checked above that no other `NUL` bytes
1060         // exist in the buffer.
1061         Ok(Self { buf })
1062     }
1063 }
1064 
1065 impl Deref for CString {
1066     type Target = CStr;
1067 
1068     fn deref(&self) -> &Self::Target {
1069         // SAFETY: The type invariants guarantee that the string is `NUL`-terminated and that no
1070         // other `NUL` bytes exist.
1071         unsafe { CStr::from_bytes_with_nul_unchecked(self.buf.as_slice()) }
1072     }
1073 }
1074 
1075 impl DerefMut for CString {
1076     fn deref_mut(&mut self) -> &mut Self::Target {
1077         // SAFETY: A `CString` is always NUL-terminated and contains no other
1078         // NUL bytes.
1079         unsafe { CStr::from_bytes_with_nul_unchecked_mut(self.buf.as_mut_slice()) }
1080     }
1081 }
1082 
1083 impl<'a> TryFrom<&'a CStr> for CString {
1084     type Error = AllocError;
1085 
1086     fn try_from(cstr: &'a CStr) -> Result<CString, AllocError> {
1087         let mut buf = KVec::new();
1088 
1089         buf.extend_from_slice(cstr.to_bytes_with_nul(), GFP_KERNEL)?;
1090 
1091         // INVARIANT: The `CStr` and `CString` types have the same invariants for
1092         // the string data, and we copied it over without changes.
1093         Ok(CString { buf })
1094     }
1095 }
1096 
1097 impl fmt::Debug for CString {
1098     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1099         fmt::Debug::fmt(&**self, f)
1100     }
1101 }
1102