1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2014 NVIDIA CORPORATION. All rights reserved.
4 */
5
6 #include <linux/clk.h>
7 #include <linux/delay.h>
8 #include <linux/dma-mapping.h>
9 #include <linux/export.h>
10 #include <linux/interrupt.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/of.h>
14 #include <linux/of_platform.h>
15 #include <linux/platform_device.h>
16 #include <linux/slab.h>
17 #include <linux/sort.h>
18 #include <linux/tegra-icc.h>
19
20 #include <soc/tegra/fuse.h>
21
22 #include "mc.h"
23
24 static const struct of_device_id tegra_mc_of_match[] = {
25 #ifdef CONFIG_ARCH_TEGRA_2x_SOC
26 { .compatible = "nvidia,tegra20-mc-gart", .data = &tegra20_mc_soc },
27 #endif
28 #ifdef CONFIG_ARCH_TEGRA_3x_SOC
29 { .compatible = "nvidia,tegra30-mc", .data = &tegra30_mc_soc },
30 #endif
31 #ifdef CONFIG_ARCH_TEGRA_114_SOC
32 { .compatible = "nvidia,tegra114-mc", .data = &tegra114_mc_soc },
33 #endif
34 #ifdef CONFIG_ARCH_TEGRA_124_SOC
35 { .compatible = "nvidia,tegra124-mc", .data = &tegra124_mc_soc },
36 #endif
37 #ifdef CONFIG_ARCH_TEGRA_132_SOC
38 { .compatible = "nvidia,tegra132-mc", .data = &tegra132_mc_soc },
39 #endif
40 #ifdef CONFIG_ARCH_TEGRA_210_SOC
41 { .compatible = "nvidia,tegra210-mc", .data = &tegra210_mc_soc },
42 #endif
43 #ifdef CONFIG_ARCH_TEGRA_186_SOC
44 { .compatible = "nvidia,tegra186-mc", .data = &tegra186_mc_soc },
45 #endif
46 #ifdef CONFIG_ARCH_TEGRA_194_SOC
47 { .compatible = "nvidia,tegra194-mc", .data = &tegra194_mc_soc },
48 #endif
49 #ifdef CONFIG_ARCH_TEGRA_234_SOC
50 { .compatible = "nvidia,tegra234-mc", .data = &tegra234_mc_soc },
51 #endif
52 { /* sentinel */ }
53 };
54 MODULE_DEVICE_TABLE(of, tegra_mc_of_match);
55
tegra_mc_devm_action_put_device(void * data)56 static void tegra_mc_devm_action_put_device(void *data)
57 {
58 struct tegra_mc *mc = data;
59
60 put_device(mc->dev);
61 }
62
63 /**
64 * devm_tegra_memory_controller_get() - get Tegra Memory Controller handle
65 * @dev: device pointer for the consumer device
66 *
67 * This function will search for the Memory Controller node in a device-tree
68 * and retrieve the Memory Controller handle.
69 *
70 * Return: ERR_PTR() on error or a valid pointer to a struct tegra_mc.
71 */
devm_tegra_memory_controller_get(struct device * dev)72 struct tegra_mc *devm_tegra_memory_controller_get(struct device *dev)
73 {
74 struct platform_device *pdev;
75 struct device_node *np;
76 struct tegra_mc *mc;
77 int err;
78
79 np = of_parse_phandle(dev->of_node, "nvidia,memory-controller", 0);
80 if (!np)
81 return ERR_PTR(-ENOENT);
82
83 pdev = of_find_device_by_node(np);
84 of_node_put(np);
85 if (!pdev)
86 return ERR_PTR(-ENODEV);
87
88 mc = platform_get_drvdata(pdev);
89 if (!mc) {
90 put_device(&pdev->dev);
91 return ERR_PTR(-EPROBE_DEFER);
92 }
93
94 err = devm_add_action_or_reset(dev, tegra_mc_devm_action_put_device, mc);
95 if (err)
96 return ERR_PTR(err);
97
98 return mc;
99 }
100 EXPORT_SYMBOL_GPL(devm_tegra_memory_controller_get);
101
tegra_mc_probe_device(struct tegra_mc * mc,struct device * dev)102 int tegra_mc_probe_device(struct tegra_mc *mc, struct device *dev)
103 {
104 if (mc->soc->ops && mc->soc->ops->probe_device)
105 return mc->soc->ops->probe_device(mc, dev);
106
107 return 0;
108 }
109 EXPORT_SYMBOL_GPL(tegra_mc_probe_device);
110
tegra_mc_get_carveout_info(struct tegra_mc * mc,unsigned int id,phys_addr_t * base,u64 * size)111 int tegra_mc_get_carveout_info(struct tegra_mc *mc, unsigned int id,
112 phys_addr_t *base, u64 *size)
113 {
114 u32 offset;
115
116 if (id < 1 || id >= mc->soc->num_carveouts)
117 return -EINVAL;
118
119 if (id < 6)
120 offset = 0xc0c + 0x50 * (id - 1);
121 else
122 offset = 0x2004 + 0x50 * (id - 6);
123
124 *base = mc_ch_readl(mc, MC_BROADCAST_CHANNEL, offset + 0x0);
125 #ifdef CONFIG_PHYS_ADDR_T_64BIT
126 *base |= (phys_addr_t)mc_ch_readl(mc, MC_BROADCAST_CHANNEL, offset + 0x4) << 32;
127 #endif
128
129 if (size)
130 *size = mc_ch_readl(mc, MC_BROADCAST_CHANNEL, offset + 0x8) << 17;
131
132 return 0;
133 }
134 EXPORT_SYMBOL_GPL(tegra_mc_get_carveout_info);
135
tegra_mc_block_dma_common(struct tegra_mc * mc,const struct tegra_mc_reset * rst)136 static int tegra_mc_block_dma_common(struct tegra_mc *mc,
137 const struct tegra_mc_reset *rst)
138 {
139 unsigned long flags;
140 u32 value;
141
142 spin_lock_irqsave(&mc->lock, flags);
143
144 value = mc_readl(mc, rst->control) | BIT(rst->bit);
145 mc_writel(mc, value, rst->control);
146
147 spin_unlock_irqrestore(&mc->lock, flags);
148
149 return 0;
150 }
151
tegra_mc_dma_idling_common(struct tegra_mc * mc,const struct tegra_mc_reset * rst)152 static bool tegra_mc_dma_idling_common(struct tegra_mc *mc,
153 const struct tegra_mc_reset *rst)
154 {
155 return (mc_readl(mc, rst->status) & BIT(rst->bit)) != 0;
156 }
157
tegra_mc_unblock_dma_common(struct tegra_mc * mc,const struct tegra_mc_reset * rst)158 static int tegra_mc_unblock_dma_common(struct tegra_mc *mc,
159 const struct tegra_mc_reset *rst)
160 {
161 unsigned long flags;
162 u32 value;
163
164 spin_lock_irqsave(&mc->lock, flags);
165
166 value = mc_readl(mc, rst->control) & ~BIT(rst->bit);
167 mc_writel(mc, value, rst->control);
168
169 spin_unlock_irqrestore(&mc->lock, flags);
170
171 return 0;
172 }
173
tegra_mc_reset_status_common(struct tegra_mc * mc,const struct tegra_mc_reset * rst)174 static int tegra_mc_reset_status_common(struct tegra_mc *mc,
175 const struct tegra_mc_reset *rst)
176 {
177 return (mc_readl(mc, rst->control) & BIT(rst->bit)) != 0;
178 }
179
180 const struct tegra_mc_reset_ops tegra_mc_reset_ops_common = {
181 .block_dma = tegra_mc_block_dma_common,
182 .dma_idling = tegra_mc_dma_idling_common,
183 .unblock_dma = tegra_mc_unblock_dma_common,
184 .reset_status = tegra_mc_reset_status_common,
185 };
186
reset_to_mc(struct reset_controller_dev * rcdev)187 static inline struct tegra_mc *reset_to_mc(struct reset_controller_dev *rcdev)
188 {
189 return container_of(rcdev, struct tegra_mc, reset);
190 }
191
tegra_mc_reset_find(struct tegra_mc * mc,unsigned long id)192 static const struct tegra_mc_reset *tegra_mc_reset_find(struct tegra_mc *mc,
193 unsigned long id)
194 {
195 unsigned int i;
196
197 for (i = 0; i < mc->soc->num_resets; i++)
198 if (mc->soc->resets[i].id == id)
199 return &mc->soc->resets[i];
200
201 return NULL;
202 }
203
tegra_mc_hotreset_assert(struct reset_controller_dev * rcdev,unsigned long id)204 static int tegra_mc_hotreset_assert(struct reset_controller_dev *rcdev,
205 unsigned long id)
206 {
207 struct tegra_mc *mc = reset_to_mc(rcdev);
208 const struct tegra_mc_reset_ops *rst_ops;
209 const struct tegra_mc_reset *rst;
210 int retries = 500;
211 int err;
212
213 rst = tegra_mc_reset_find(mc, id);
214 if (!rst)
215 return -ENODEV;
216
217 rst_ops = mc->soc->reset_ops;
218 if (!rst_ops)
219 return -ENODEV;
220
221 /* DMA flushing will fail if reset is already asserted */
222 if (rst_ops->reset_status) {
223 /* check whether reset is asserted */
224 if (rst_ops->reset_status(mc, rst))
225 return 0;
226 }
227
228 if (rst_ops->block_dma) {
229 /* block clients DMA requests */
230 err = rst_ops->block_dma(mc, rst);
231 if (err) {
232 dev_err(mc->dev, "failed to block %s DMA: %d\n",
233 rst->name, err);
234 return err;
235 }
236 }
237
238 if (rst_ops->dma_idling) {
239 /* wait for completion of the outstanding DMA requests */
240 while (!rst_ops->dma_idling(mc, rst)) {
241 if (!retries--) {
242 dev_err(mc->dev, "failed to flush %s DMA\n",
243 rst->name);
244 return -EBUSY;
245 }
246
247 usleep_range(10, 100);
248 }
249 }
250
251 if (rst_ops->hotreset_assert) {
252 /* clear clients DMA requests sitting before arbitration */
253 err = rst_ops->hotreset_assert(mc, rst);
254 if (err) {
255 dev_err(mc->dev, "failed to hot reset %s: %d\n",
256 rst->name, err);
257 return err;
258 }
259 }
260
261 return 0;
262 }
263
tegra_mc_hotreset_deassert(struct reset_controller_dev * rcdev,unsigned long id)264 static int tegra_mc_hotreset_deassert(struct reset_controller_dev *rcdev,
265 unsigned long id)
266 {
267 struct tegra_mc *mc = reset_to_mc(rcdev);
268 const struct tegra_mc_reset_ops *rst_ops;
269 const struct tegra_mc_reset *rst;
270 int err;
271
272 rst = tegra_mc_reset_find(mc, id);
273 if (!rst)
274 return -ENODEV;
275
276 rst_ops = mc->soc->reset_ops;
277 if (!rst_ops)
278 return -ENODEV;
279
280 if (rst_ops->hotreset_deassert) {
281 /* take out client from hot reset */
282 err = rst_ops->hotreset_deassert(mc, rst);
283 if (err) {
284 dev_err(mc->dev, "failed to deassert hot reset %s: %d\n",
285 rst->name, err);
286 return err;
287 }
288 }
289
290 if (rst_ops->unblock_dma) {
291 /* allow new DMA requests to proceed to arbitration */
292 err = rst_ops->unblock_dma(mc, rst);
293 if (err) {
294 dev_err(mc->dev, "failed to unblock %s DMA : %d\n",
295 rst->name, err);
296 return err;
297 }
298 }
299
300 return 0;
301 }
302
tegra_mc_hotreset_status(struct reset_controller_dev * rcdev,unsigned long id)303 static int tegra_mc_hotreset_status(struct reset_controller_dev *rcdev,
304 unsigned long id)
305 {
306 struct tegra_mc *mc = reset_to_mc(rcdev);
307 const struct tegra_mc_reset_ops *rst_ops;
308 const struct tegra_mc_reset *rst;
309
310 rst = tegra_mc_reset_find(mc, id);
311 if (!rst)
312 return -ENODEV;
313
314 rst_ops = mc->soc->reset_ops;
315 if (!rst_ops)
316 return -ENODEV;
317
318 return rst_ops->reset_status(mc, rst);
319 }
320
321 static const struct reset_control_ops tegra_mc_reset_ops = {
322 .assert = tegra_mc_hotreset_assert,
323 .deassert = tegra_mc_hotreset_deassert,
324 .status = tegra_mc_hotreset_status,
325 };
326
tegra_mc_reset_setup(struct tegra_mc * mc)327 static int tegra_mc_reset_setup(struct tegra_mc *mc)
328 {
329 int err;
330
331 mc->reset.ops = &tegra_mc_reset_ops;
332 mc->reset.owner = THIS_MODULE;
333 mc->reset.of_node = mc->dev->of_node;
334 mc->reset.of_reset_n_cells = 1;
335 mc->reset.nr_resets = mc->soc->num_resets;
336
337 err = reset_controller_register(&mc->reset);
338 if (err < 0)
339 return err;
340
341 return 0;
342 }
343
tegra_mc_write_emem_configuration(struct tegra_mc * mc,unsigned long rate)344 int tegra_mc_write_emem_configuration(struct tegra_mc *mc, unsigned long rate)
345 {
346 unsigned int i;
347 struct tegra_mc_timing *timing = NULL;
348
349 for (i = 0; i < mc->num_timings; i++) {
350 if (mc->timings[i].rate == rate) {
351 timing = &mc->timings[i];
352 break;
353 }
354 }
355
356 if (!timing) {
357 dev_err(mc->dev, "no memory timing registered for rate %lu\n",
358 rate);
359 return -EINVAL;
360 }
361
362 for (i = 0; i < mc->soc->num_emem_regs; ++i)
363 mc_writel(mc, timing->emem_data[i], mc->soc->emem_regs[i]);
364
365 return 0;
366 }
367 EXPORT_SYMBOL_GPL(tegra_mc_write_emem_configuration);
368
tegra_mc_get_emem_device_count(struct tegra_mc * mc)369 unsigned int tegra_mc_get_emem_device_count(struct tegra_mc *mc)
370 {
371 u8 dram_count;
372
373 dram_count = mc_readl(mc, MC_EMEM_ADR_CFG);
374 dram_count &= MC_EMEM_ADR_CFG_EMEM_NUMDEV;
375 dram_count++;
376
377 return dram_count;
378 }
379 EXPORT_SYMBOL_GPL(tegra_mc_get_emem_device_count);
380
381 #if defined(CONFIG_ARCH_TEGRA_3x_SOC) || \
382 defined(CONFIG_ARCH_TEGRA_114_SOC) || \
383 defined(CONFIG_ARCH_TEGRA_124_SOC) || \
384 defined(CONFIG_ARCH_TEGRA_132_SOC) || \
385 defined(CONFIG_ARCH_TEGRA_210_SOC)
tegra_mc_setup_latency_allowance(struct tegra_mc * mc)386 static int tegra_mc_setup_latency_allowance(struct tegra_mc *mc)
387 {
388 unsigned long long tick;
389 unsigned int i;
390 u32 value;
391
392 /* compute the number of MC clock cycles per tick */
393 tick = (unsigned long long)mc->tick * clk_get_rate(mc->clk);
394 do_div(tick, NSEC_PER_SEC);
395
396 value = mc_readl(mc, MC_EMEM_ARB_CFG);
397 value &= ~MC_EMEM_ARB_CFG_CYCLES_PER_UPDATE_MASK;
398 value |= MC_EMEM_ARB_CFG_CYCLES_PER_UPDATE(tick);
399 mc_writel(mc, value, MC_EMEM_ARB_CFG);
400
401 /* write latency allowance defaults */
402 for (i = 0; i < mc->soc->num_clients; i++) {
403 const struct tegra_mc_client *client = &mc->soc->clients[i];
404 u32 value;
405
406 value = mc_readl(mc, client->regs.la.reg);
407 value &= ~(client->regs.la.mask << client->regs.la.shift);
408 value |= (client->regs.la.def & client->regs.la.mask) << client->regs.la.shift;
409 mc_writel(mc, value, client->regs.la.reg);
410 }
411
412 /* latch new values */
413 mc_writel(mc, MC_TIMING_UPDATE, MC_TIMING_CONTROL);
414
415 return 0;
416 }
417
load_one_timing(struct tegra_mc * mc,struct tegra_mc_timing * timing,struct device_node * node)418 static int load_one_timing(struct tegra_mc *mc,
419 struct tegra_mc_timing *timing,
420 struct device_node *node)
421 {
422 int err;
423 u32 tmp;
424
425 err = of_property_read_u32(node, "clock-frequency", &tmp);
426 if (err) {
427 dev_err(mc->dev,
428 "timing %pOFn: failed to read rate\n", node);
429 return err;
430 }
431
432 timing->rate = tmp;
433 timing->emem_data = devm_kcalloc(mc->dev, mc->soc->num_emem_regs,
434 sizeof(u32), GFP_KERNEL);
435 if (!timing->emem_data)
436 return -ENOMEM;
437
438 err = of_property_read_u32_array(node, "nvidia,emem-configuration",
439 timing->emem_data,
440 mc->soc->num_emem_regs);
441 if (err) {
442 dev_err(mc->dev,
443 "timing %pOFn: failed to read EMEM configuration\n",
444 node);
445 return err;
446 }
447
448 return 0;
449 }
450
load_timings(struct tegra_mc * mc,struct device_node * node)451 static int load_timings(struct tegra_mc *mc, struct device_node *node)
452 {
453 struct tegra_mc_timing *timing;
454 int child_count = of_get_child_count(node);
455 int i = 0, err;
456
457 mc->timings = devm_kcalloc(mc->dev, child_count, sizeof(*timing),
458 GFP_KERNEL);
459 if (!mc->timings)
460 return -ENOMEM;
461
462 mc->num_timings = child_count;
463
464 for_each_child_of_node_scoped(node, child) {
465 timing = &mc->timings[i++];
466
467 err = load_one_timing(mc, timing, child);
468 if (err)
469 return err;
470 }
471
472 return 0;
473 }
474
tegra_mc_setup_timings(struct tegra_mc * mc)475 static int tegra_mc_setup_timings(struct tegra_mc *mc)
476 {
477 u32 ram_code, node_ram_code;
478 int err;
479
480 ram_code = tegra_read_ram_code();
481
482 mc->num_timings = 0;
483
484 for_each_child_of_node_scoped(mc->dev->of_node, node) {
485 err = of_property_read_u32(node, "nvidia,ram-code",
486 &node_ram_code);
487 if (err || (node_ram_code != ram_code))
488 continue;
489
490 err = load_timings(mc, node);
491 if (err)
492 return err;
493 break;
494 }
495
496 if (mc->num_timings == 0)
497 dev_warn(mc->dev,
498 "no memory timings for RAM code %u registered\n",
499 ram_code);
500
501 return 0;
502 }
503
tegra30_mc_probe(struct tegra_mc * mc)504 int tegra30_mc_probe(struct tegra_mc *mc)
505 {
506 int err;
507
508 mc->clk = devm_clk_get_optional(mc->dev, "mc");
509 if (IS_ERR(mc->clk)) {
510 dev_err(mc->dev, "failed to get MC clock: %ld\n", PTR_ERR(mc->clk));
511 return PTR_ERR(mc->clk);
512 }
513
514 /* ensure that debug features are disabled */
515 mc_writel(mc, 0x00000000, MC_TIMING_CONTROL_DBG);
516
517 err = tegra_mc_setup_latency_allowance(mc);
518 if (err < 0) {
519 dev_err(mc->dev, "failed to setup latency allowance: %d\n", err);
520 return err;
521 }
522
523 err = tegra_mc_setup_timings(mc);
524 if (err < 0) {
525 dev_err(mc->dev, "failed to setup timings: %d\n", err);
526 return err;
527 }
528
529 return 0;
530 }
531
532 const struct tegra_mc_ops tegra30_mc_ops = {
533 .probe = tegra30_mc_probe,
534 .handle_irq = tegra30_mc_handle_irq,
535 };
536 #endif
537
mc_global_intstatus_to_channel(const struct tegra_mc * mc,u32 status,unsigned int * mc_channel)538 static int mc_global_intstatus_to_channel(const struct tegra_mc *mc, u32 status,
539 unsigned int *mc_channel)
540 {
541 if ((status & mc->soc->ch_intmask) == 0)
542 return -EINVAL;
543
544 *mc_channel = __ffs((status & mc->soc->ch_intmask) >>
545 mc->soc->global_intstatus_channel_shift);
546
547 return 0;
548 }
549
mc_channel_to_global_intstatus(const struct tegra_mc * mc,unsigned int channel)550 static u32 mc_channel_to_global_intstatus(const struct tegra_mc *mc,
551 unsigned int channel)
552 {
553 return BIT(channel) << mc->soc->global_intstatus_channel_shift;
554 }
555
tegra30_mc_handle_irq(int irq,void * data)556 irqreturn_t tegra30_mc_handle_irq(int irq, void *data)
557 {
558 struct tegra_mc *mc = data;
559 unsigned int bit, channel;
560 unsigned long status;
561
562 if (mc->soc->num_channels) {
563 u32 global_status;
564 int err;
565
566 global_status = mc_ch_readl(mc, MC_BROADCAST_CHANNEL, MC_GLOBAL_INTSTATUS);
567 err = mc_global_intstatus_to_channel(mc, global_status, &channel);
568 if (err < 0) {
569 dev_err_ratelimited(mc->dev, "unknown interrupt channel 0x%08x\n",
570 global_status);
571 return IRQ_NONE;
572 }
573
574 /* mask all interrupts to avoid flooding */
575 status = mc_ch_readl(mc, channel, MC_INTSTATUS) & mc->soc->intmask;
576 } else {
577 status = mc_readl(mc, MC_INTSTATUS) & mc->soc->intmask;
578 }
579
580 if (!status)
581 return IRQ_NONE;
582
583 for_each_set_bit(bit, &status, 32) {
584 const char *error = tegra_mc_status_names[bit] ?: "unknown";
585 const char *client = "unknown", *desc;
586 const char *direction, *secure;
587 u32 status_reg, addr_reg;
588 u32 intmask = BIT(bit);
589 phys_addr_t addr = 0;
590 #ifdef CONFIG_PHYS_ADDR_T_64BIT
591 u32 addr_hi_reg = 0;
592 #endif
593 unsigned int i;
594 char perm[7];
595 u8 id, type;
596 u32 value;
597
598 switch (intmask) {
599 case MC_INT_DECERR_VPR:
600 status_reg = MC_ERR_VPR_STATUS;
601 addr_reg = MC_ERR_VPR_ADR;
602 break;
603
604 case MC_INT_SECERR_SEC:
605 status_reg = MC_ERR_SEC_STATUS;
606 addr_reg = MC_ERR_SEC_ADR;
607 break;
608
609 case MC_INT_DECERR_MTS:
610 status_reg = MC_ERR_MTS_STATUS;
611 addr_reg = MC_ERR_MTS_ADR;
612 break;
613
614 case MC_INT_DECERR_GENERALIZED_CARVEOUT:
615 status_reg = MC_ERR_GENERALIZED_CARVEOUT_STATUS;
616 addr_reg = MC_ERR_GENERALIZED_CARVEOUT_ADR;
617 break;
618
619 case MC_INT_DECERR_ROUTE_SANITY:
620 status_reg = MC_ERR_ROUTE_SANITY_STATUS;
621 addr_reg = MC_ERR_ROUTE_SANITY_ADR;
622 break;
623
624 default:
625 status_reg = MC_ERR_STATUS;
626 addr_reg = MC_ERR_ADR;
627
628 #ifdef CONFIG_PHYS_ADDR_T_64BIT
629 if (mc->soc->has_addr_hi_reg)
630 addr_hi_reg = MC_ERR_ADR_HI;
631 #endif
632 break;
633 }
634
635 if (mc->soc->num_channels)
636 value = mc_ch_readl(mc, channel, status_reg);
637 else
638 value = mc_readl(mc, status_reg);
639
640 #ifdef CONFIG_PHYS_ADDR_T_64BIT
641 if (mc->soc->num_address_bits > 32) {
642 if (addr_hi_reg) {
643 if (mc->soc->num_channels)
644 addr = mc_ch_readl(mc, channel, addr_hi_reg);
645 else
646 addr = mc_readl(mc, addr_hi_reg);
647 } else {
648 addr = ((value >> MC_ERR_STATUS_ADR_HI_SHIFT) &
649 MC_ERR_STATUS_ADR_HI_MASK);
650 }
651 addr <<= 32;
652 }
653 #endif
654
655 if (value & MC_ERR_STATUS_RW)
656 direction = "write";
657 else
658 direction = "read";
659
660 if (value & MC_ERR_STATUS_SECURITY)
661 secure = "secure ";
662 else
663 secure = "";
664
665 id = value & mc->soc->client_id_mask;
666
667 for (i = 0; i < mc->soc->num_clients; i++) {
668 if (mc->soc->clients[i].id == id) {
669 client = mc->soc->clients[i].name;
670 break;
671 }
672 }
673
674 type = (value & MC_ERR_STATUS_TYPE_MASK) >>
675 MC_ERR_STATUS_TYPE_SHIFT;
676 desc = tegra_mc_error_names[type];
677
678 switch (value & MC_ERR_STATUS_TYPE_MASK) {
679 case MC_ERR_STATUS_TYPE_INVALID_SMMU_PAGE:
680 perm[0] = ' ';
681 perm[1] = '[';
682
683 if (value & MC_ERR_STATUS_READABLE)
684 perm[2] = 'R';
685 else
686 perm[2] = '-';
687
688 if (value & MC_ERR_STATUS_WRITABLE)
689 perm[3] = 'W';
690 else
691 perm[3] = '-';
692
693 if (value & MC_ERR_STATUS_NONSECURE)
694 perm[4] = '-';
695 else
696 perm[4] = 'S';
697
698 perm[5] = ']';
699 perm[6] = '\0';
700 break;
701
702 default:
703 perm[0] = '\0';
704 break;
705 }
706
707 if (mc->soc->num_channels)
708 value = mc_ch_readl(mc, channel, addr_reg);
709 else
710 value = mc_readl(mc, addr_reg);
711 addr |= value;
712
713 dev_err_ratelimited(mc->dev, "%s: %s%s @%pa: %s (%s%s)\n",
714 client, secure, direction, &addr, error,
715 desc, perm);
716 }
717
718 /* clear interrupts */
719 if (mc->soc->num_channels) {
720 mc_ch_writel(mc, channel, status, MC_INTSTATUS);
721 mc_ch_writel(mc, MC_BROADCAST_CHANNEL,
722 mc_channel_to_global_intstatus(mc, channel),
723 MC_GLOBAL_INTSTATUS);
724 } else {
725 mc_writel(mc, status, MC_INTSTATUS);
726 }
727
728 return IRQ_HANDLED;
729 }
730
731 const char *const tegra_mc_status_names[32] = {
732 [ 1] = "External interrupt",
733 [ 6] = "EMEM address decode error",
734 [ 7] = "GART page fault",
735 [ 8] = "Security violation",
736 [ 9] = "EMEM arbitration error",
737 [10] = "Page fault",
738 [11] = "Invalid APB ASID update",
739 [12] = "VPR violation",
740 [13] = "Secure carveout violation",
741 [16] = "MTS carveout violation",
742 [17] = "Generalized carveout violation",
743 [20] = "Route Sanity error",
744 };
745
746 const char *const tegra_mc_error_names[8] = {
747 [2] = "EMEM decode error",
748 [3] = "TrustZone violation",
749 [4] = "Carveout violation",
750 [6] = "SMMU translation error",
751 };
752
tegra_mc_icc_xlate(const struct of_phandle_args * spec,void * data)753 struct icc_node *tegra_mc_icc_xlate(const struct of_phandle_args *spec, void *data)
754 {
755 struct tegra_mc *mc = icc_provider_to_tegra_mc(data);
756 struct icc_node *node;
757
758 list_for_each_entry(node, &mc->provider.nodes, node_list) {
759 if (node->id == spec->args[0])
760 return node;
761 }
762
763 /*
764 * If a client driver calls devm_of_icc_get() before the MC driver
765 * is probed, then return EPROBE_DEFER to the client driver.
766 */
767 return ERR_PTR(-EPROBE_DEFER);
768 }
769
tegra_mc_icc_get(struct icc_node * node,u32 * average,u32 * peak)770 static int tegra_mc_icc_get(struct icc_node *node, u32 *average, u32 *peak)
771 {
772 *average = 0;
773 *peak = 0;
774
775 return 0;
776 }
777
tegra_mc_icc_set(struct icc_node * src,struct icc_node * dst)778 static int tegra_mc_icc_set(struct icc_node *src, struct icc_node *dst)
779 {
780 return 0;
781 }
782
783 const struct tegra_mc_icc_ops tegra_mc_icc_ops = {
784 .xlate = tegra_mc_icc_xlate,
785 .aggregate = icc_std_aggregate,
786 .get_bw = tegra_mc_icc_get,
787 .set = tegra_mc_icc_set,
788 };
789
790 /*
791 * Memory Controller (MC) has few Memory Clients that are issuing memory
792 * bandwidth allocation requests to the MC interconnect provider. The MC
793 * provider aggregates the requests and then sends the aggregated request
794 * up to the External Memory Controller (EMC) interconnect provider which
795 * re-configures hardware interface to External Memory (EMEM) in accordance
796 * to the required bandwidth. Each MC interconnect node represents an
797 * individual Memory Client.
798 *
799 * Memory interconnect topology:
800 *
801 * +----+
802 * +--------+ | |
803 * | TEXSRD +--->+ |
804 * +--------+ | |
805 * | | +-----+ +------+
806 * ... | MC +--->+ EMC +--->+ EMEM |
807 * | | +-----+ +------+
808 * +--------+ | |
809 * | DISP.. +--->+ |
810 * +--------+ | |
811 * +----+
812 */
tegra_mc_interconnect_setup(struct tegra_mc * mc)813 static int tegra_mc_interconnect_setup(struct tegra_mc *mc)
814 {
815 struct icc_node *node;
816 unsigned int i;
817 int err;
818
819 /* older device-trees don't have interconnect properties */
820 if (!device_property_present(mc->dev, "#interconnect-cells") ||
821 !mc->soc->icc_ops)
822 return 0;
823
824 mc->provider.dev = mc->dev;
825 mc->provider.data = &mc->provider;
826 mc->provider.set = mc->soc->icc_ops->set;
827 mc->provider.aggregate = mc->soc->icc_ops->aggregate;
828 mc->provider.get_bw = mc->soc->icc_ops->get_bw;
829 mc->provider.xlate = mc->soc->icc_ops->xlate;
830 mc->provider.xlate_extended = mc->soc->icc_ops->xlate_extended;
831
832 icc_provider_init(&mc->provider);
833
834 /* create Memory Controller node */
835 node = icc_node_create(TEGRA_ICC_MC);
836 if (IS_ERR(node))
837 return PTR_ERR(node);
838
839 node->name = "Memory Controller";
840 icc_node_add(node, &mc->provider);
841
842 /* link Memory Controller to External Memory Controller */
843 err = icc_link_create(node, TEGRA_ICC_EMC);
844 if (err)
845 goto remove_nodes;
846
847 for (i = 0; i < mc->soc->num_clients; i++) {
848 /* create MC client node */
849 node = icc_node_create(mc->soc->clients[i].id);
850 if (IS_ERR(node)) {
851 err = PTR_ERR(node);
852 goto remove_nodes;
853 }
854
855 node->name = mc->soc->clients[i].name;
856 icc_node_add(node, &mc->provider);
857
858 /* link Memory Client to Memory Controller */
859 err = icc_link_create(node, TEGRA_ICC_MC);
860 if (err)
861 goto remove_nodes;
862
863 node->data = (struct tegra_mc_client *)&(mc->soc->clients[i]);
864 }
865
866 err = icc_provider_register(&mc->provider);
867 if (err)
868 goto remove_nodes;
869
870 return 0;
871
872 remove_nodes:
873 icc_nodes_remove(&mc->provider);
874
875 return err;
876 }
877
tegra_mc_num_channel_enabled(struct tegra_mc * mc)878 static void tegra_mc_num_channel_enabled(struct tegra_mc *mc)
879 {
880 unsigned int i;
881 u32 value;
882
883 value = mc_ch_readl(mc, 0, MC_EMEM_ADR_CFG_CHANNEL_ENABLE);
884 if (value <= 0) {
885 mc->num_channels = mc->soc->num_channels;
886 return;
887 }
888
889 for (i = 0; i < 32; i++) {
890 if (value & BIT(i))
891 mc->num_channels++;
892 }
893 }
894
tegra_mc_probe(struct platform_device * pdev)895 static int tegra_mc_probe(struct platform_device *pdev)
896 {
897 struct tegra_mc *mc;
898 u64 mask;
899 int err;
900
901 mc = devm_kzalloc(&pdev->dev, sizeof(*mc), GFP_KERNEL);
902 if (!mc)
903 return -ENOMEM;
904
905 platform_set_drvdata(pdev, mc);
906 spin_lock_init(&mc->lock);
907 mc->soc = of_device_get_match_data(&pdev->dev);
908 mc->dev = &pdev->dev;
909
910 mask = DMA_BIT_MASK(mc->soc->num_address_bits);
911
912 err = dma_coerce_mask_and_coherent(&pdev->dev, mask);
913 if (err < 0) {
914 dev_err(&pdev->dev, "failed to set DMA mask: %d\n", err);
915 return err;
916 }
917
918 /* length of MC tick in nanoseconds */
919 mc->tick = 30;
920
921 mc->regs = devm_platform_ioremap_resource(pdev, 0);
922 if (IS_ERR(mc->regs))
923 return PTR_ERR(mc->regs);
924
925 mc->debugfs.root = debugfs_create_dir("mc", NULL);
926
927 if (mc->soc->ops && mc->soc->ops->probe) {
928 err = mc->soc->ops->probe(mc);
929 if (err < 0)
930 return err;
931 }
932
933 tegra_mc_num_channel_enabled(mc);
934
935 if (mc->soc->ops && mc->soc->ops->handle_irq) {
936 mc->irq = platform_get_irq(pdev, 0);
937 if (mc->irq < 0)
938 return mc->irq;
939
940 WARN(!mc->soc->client_id_mask, "missing client ID mask for this SoC\n");
941
942 if (mc->soc->num_channels)
943 mc_ch_writel(mc, MC_BROADCAST_CHANNEL, mc->soc->intmask,
944 MC_INTMASK);
945 else
946 mc_writel(mc, mc->soc->intmask, MC_INTMASK);
947
948 err = devm_request_irq(&pdev->dev, mc->irq, mc->soc->ops->handle_irq, 0,
949 dev_name(&pdev->dev), mc);
950 if (err < 0) {
951 dev_err(&pdev->dev, "failed to request IRQ#%u: %d\n", mc->irq,
952 err);
953 return err;
954 }
955 }
956
957 if (mc->soc->reset_ops) {
958 err = tegra_mc_reset_setup(mc);
959 if (err < 0)
960 dev_err(&pdev->dev, "failed to register reset controller: %d\n", err);
961 }
962
963 err = tegra_mc_interconnect_setup(mc);
964 if (err < 0)
965 dev_err(&pdev->dev, "failed to initialize interconnect: %d\n",
966 err);
967
968 if (IS_ENABLED(CONFIG_TEGRA_IOMMU_SMMU) && mc->soc->smmu) {
969 mc->smmu = tegra_smmu_probe(&pdev->dev, mc->soc->smmu, mc);
970 if (IS_ERR(mc->smmu)) {
971 dev_err(&pdev->dev, "failed to probe SMMU: %ld\n",
972 PTR_ERR(mc->smmu));
973 mc->smmu = NULL;
974 }
975 }
976
977 return 0;
978 }
979
tegra_mc_sync_state(struct device * dev)980 static void tegra_mc_sync_state(struct device *dev)
981 {
982 struct tegra_mc *mc = dev_get_drvdata(dev);
983
984 /* check whether ICC provider is registered */
985 if (mc->provider.dev == dev)
986 icc_sync_state(dev);
987 }
988
989 static struct platform_driver tegra_mc_driver = {
990 .driver = {
991 .name = "tegra-mc",
992 .of_match_table = tegra_mc_of_match,
993 .suppress_bind_attrs = true,
994 .sync_state = tegra_mc_sync_state,
995 },
996 .prevent_deferred_probe = true,
997 .probe = tegra_mc_probe,
998 };
999
tegra_mc_init(void)1000 static int tegra_mc_init(void)
1001 {
1002 return platform_driver_register(&tegra_mc_driver);
1003 }
1004 arch_initcall(tegra_mc_init);
1005
1006 MODULE_AUTHOR("Thierry Reding <treding@nvidia.com>");
1007 MODULE_DESCRIPTION("NVIDIA Tegra Memory Controller driver");
1008