xref: /linux/drivers/memory/tegra/mc.c (revision 3a39d672e7f48b8d6b91a09afa4b55352773b4b5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2014 NVIDIA CORPORATION.  All rights reserved.
4  */
5 
6 #include <linux/clk.h>
7 #include <linux/delay.h>
8 #include <linux/dma-mapping.h>
9 #include <linux/export.h>
10 #include <linux/interrupt.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/of.h>
14 #include <linux/of_platform.h>
15 #include <linux/platform_device.h>
16 #include <linux/slab.h>
17 #include <linux/sort.h>
18 #include <linux/tegra-icc.h>
19 
20 #include <soc/tegra/fuse.h>
21 
22 #include "mc.h"
23 
24 static const struct of_device_id tegra_mc_of_match[] = {
25 #ifdef CONFIG_ARCH_TEGRA_2x_SOC
26 	{ .compatible = "nvidia,tegra20-mc-gart", .data = &tegra20_mc_soc },
27 #endif
28 #ifdef CONFIG_ARCH_TEGRA_3x_SOC
29 	{ .compatible = "nvidia,tegra30-mc", .data = &tegra30_mc_soc },
30 #endif
31 #ifdef CONFIG_ARCH_TEGRA_114_SOC
32 	{ .compatible = "nvidia,tegra114-mc", .data = &tegra114_mc_soc },
33 #endif
34 #ifdef CONFIG_ARCH_TEGRA_124_SOC
35 	{ .compatible = "nvidia,tegra124-mc", .data = &tegra124_mc_soc },
36 #endif
37 #ifdef CONFIG_ARCH_TEGRA_132_SOC
38 	{ .compatible = "nvidia,tegra132-mc", .data = &tegra132_mc_soc },
39 #endif
40 #ifdef CONFIG_ARCH_TEGRA_210_SOC
41 	{ .compatible = "nvidia,tegra210-mc", .data = &tegra210_mc_soc },
42 #endif
43 #ifdef CONFIG_ARCH_TEGRA_186_SOC
44 	{ .compatible = "nvidia,tegra186-mc", .data = &tegra186_mc_soc },
45 #endif
46 #ifdef CONFIG_ARCH_TEGRA_194_SOC
47 	{ .compatible = "nvidia,tegra194-mc", .data = &tegra194_mc_soc },
48 #endif
49 #ifdef CONFIG_ARCH_TEGRA_234_SOC
50 	{ .compatible = "nvidia,tegra234-mc", .data = &tegra234_mc_soc },
51 #endif
52 	{ /* sentinel */ }
53 };
54 MODULE_DEVICE_TABLE(of, tegra_mc_of_match);
55 
tegra_mc_devm_action_put_device(void * data)56 static void tegra_mc_devm_action_put_device(void *data)
57 {
58 	struct tegra_mc *mc = data;
59 
60 	put_device(mc->dev);
61 }
62 
63 /**
64  * devm_tegra_memory_controller_get() - get Tegra Memory Controller handle
65  * @dev: device pointer for the consumer device
66  *
67  * This function will search for the Memory Controller node in a device-tree
68  * and retrieve the Memory Controller handle.
69  *
70  * Return: ERR_PTR() on error or a valid pointer to a struct tegra_mc.
71  */
devm_tegra_memory_controller_get(struct device * dev)72 struct tegra_mc *devm_tegra_memory_controller_get(struct device *dev)
73 {
74 	struct platform_device *pdev;
75 	struct device_node *np;
76 	struct tegra_mc *mc;
77 	int err;
78 
79 	np = of_parse_phandle(dev->of_node, "nvidia,memory-controller", 0);
80 	if (!np)
81 		return ERR_PTR(-ENOENT);
82 
83 	pdev = of_find_device_by_node(np);
84 	of_node_put(np);
85 	if (!pdev)
86 		return ERR_PTR(-ENODEV);
87 
88 	mc = platform_get_drvdata(pdev);
89 	if (!mc) {
90 		put_device(&pdev->dev);
91 		return ERR_PTR(-EPROBE_DEFER);
92 	}
93 
94 	err = devm_add_action_or_reset(dev, tegra_mc_devm_action_put_device, mc);
95 	if (err)
96 		return ERR_PTR(err);
97 
98 	return mc;
99 }
100 EXPORT_SYMBOL_GPL(devm_tegra_memory_controller_get);
101 
tegra_mc_probe_device(struct tegra_mc * mc,struct device * dev)102 int tegra_mc_probe_device(struct tegra_mc *mc, struct device *dev)
103 {
104 	if (mc->soc->ops && mc->soc->ops->probe_device)
105 		return mc->soc->ops->probe_device(mc, dev);
106 
107 	return 0;
108 }
109 EXPORT_SYMBOL_GPL(tegra_mc_probe_device);
110 
tegra_mc_get_carveout_info(struct tegra_mc * mc,unsigned int id,phys_addr_t * base,u64 * size)111 int tegra_mc_get_carveout_info(struct tegra_mc *mc, unsigned int id,
112                                phys_addr_t *base, u64 *size)
113 {
114 	u32 offset;
115 
116 	if (id < 1 || id >= mc->soc->num_carveouts)
117 		return -EINVAL;
118 
119 	if (id < 6)
120 		offset = 0xc0c + 0x50 * (id - 1);
121 	else
122 		offset = 0x2004 + 0x50 * (id - 6);
123 
124 	*base = mc_ch_readl(mc, MC_BROADCAST_CHANNEL, offset + 0x0);
125 #ifdef CONFIG_PHYS_ADDR_T_64BIT
126 	*base |= (phys_addr_t)mc_ch_readl(mc, MC_BROADCAST_CHANNEL, offset + 0x4) << 32;
127 #endif
128 
129 	if (size)
130 		*size = mc_ch_readl(mc, MC_BROADCAST_CHANNEL, offset + 0x8) << 17;
131 
132 	return 0;
133 }
134 EXPORT_SYMBOL_GPL(tegra_mc_get_carveout_info);
135 
tegra_mc_block_dma_common(struct tegra_mc * mc,const struct tegra_mc_reset * rst)136 static int tegra_mc_block_dma_common(struct tegra_mc *mc,
137 				     const struct tegra_mc_reset *rst)
138 {
139 	unsigned long flags;
140 	u32 value;
141 
142 	spin_lock_irqsave(&mc->lock, flags);
143 
144 	value = mc_readl(mc, rst->control) | BIT(rst->bit);
145 	mc_writel(mc, value, rst->control);
146 
147 	spin_unlock_irqrestore(&mc->lock, flags);
148 
149 	return 0;
150 }
151 
tegra_mc_dma_idling_common(struct tegra_mc * mc,const struct tegra_mc_reset * rst)152 static bool tegra_mc_dma_idling_common(struct tegra_mc *mc,
153 				       const struct tegra_mc_reset *rst)
154 {
155 	return (mc_readl(mc, rst->status) & BIT(rst->bit)) != 0;
156 }
157 
tegra_mc_unblock_dma_common(struct tegra_mc * mc,const struct tegra_mc_reset * rst)158 static int tegra_mc_unblock_dma_common(struct tegra_mc *mc,
159 				       const struct tegra_mc_reset *rst)
160 {
161 	unsigned long flags;
162 	u32 value;
163 
164 	spin_lock_irqsave(&mc->lock, flags);
165 
166 	value = mc_readl(mc, rst->control) & ~BIT(rst->bit);
167 	mc_writel(mc, value, rst->control);
168 
169 	spin_unlock_irqrestore(&mc->lock, flags);
170 
171 	return 0;
172 }
173 
tegra_mc_reset_status_common(struct tegra_mc * mc,const struct tegra_mc_reset * rst)174 static int tegra_mc_reset_status_common(struct tegra_mc *mc,
175 					const struct tegra_mc_reset *rst)
176 {
177 	return (mc_readl(mc, rst->control) & BIT(rst->bit)) != 0;
178 }
179 
180 const struct tegra_mc_reset_ops tegra_mc_reset_ops_common = {
181 	.block_dma = tegra_mc_block_dma_common,
182 	.dma_idling = tegra_mc_dma_idling_common,
183 	.unblock_dma = tegra_mc_unblock_dma_common,
184 	.reset_status = tegra_mc_reset_status_common,
185 };
186 
reset_to_mc(struct reset_controller_dev * rcdev)187 static inline struct tegra_mc *reset_to_mc(struct reset_controller_dev *rcdev)
188 {
189 	return container_of(rcdev, struct tegra_mc, reset);
190 }
191 
tegra_mc_reset_find(struct tegra_mc * mc,unsigned long id)192 static const struct tegra_mc_reset *tegra_mc_reset_find(struct tegra_mc *mc,
193 							unsigned long id)
194 {
195 	unsigned int i;
196 
197 	for (i = 0; i < mc->soc->num_resets; i++)
198 		if (mc->soc->resets[i].id == id)
199 			return &mc->soc->resets[i];
200 
201 	return NULL;
202 }
203 
tegra_mc_hotreset_assert(struct reset_controller_dev * rcdev,unsigned long id)204 static int tegra_mc_hotreset_assert(struct reset_controller_dev *rcdev,
205 				    unsigned long id)
206 {
207 	struct tegra_mc *mc = reset_to_mc(rcdev);
208 	const struct tegra_mc_reset_ops *rst_ops;
209 	const struct tegra_mc_reset *rst;
210 	int retries = 500;
211 	int err;
212 
213 	rst = tegra_mc_reset_find(mc, id);
214 	if (!rst)
215 		return -ENODEV;
216 
217 	rst_ops = mc->soc->reset_ops;
218 	if (!rst_ops)
219 		return -ENODEV;
220 
221 	/* DMA flushing will fail if reset is already asserted */
222 	if (rst_ops->reset_status) {
223 		/* check whether reset is asserted */
224 		if (rst_ops->reset_status(mc, rst))
225 			return 0;
226 	}
227 
228 	if (rst_ops->block_dma) {
229 		/* block clients DMA requests */
230 		err = rst_ops->block_dma(mc, rst);
231 		if (err) {
232 			dev_err(mc->dev, "failed to block %s DMA: %d\n",
233 				rst->name, err);
234 			return err;
235 		}
236 	}
237 
238 	if (rst_ops->dma_idling) {
239 		/* wait for completion of the outstanding DMA requests */
240 		while (!rst_ops->dma_idling(mc, rst)) {
241 			if (!retries--) {
242 				dev_err(mc->dev, "failed to flush %s DMA\n",
243 					rst->name);
244 				return -EBUSY;
245 			}
246 
247 			usleep_range(10, 100);
248 		}
249 	}
250 
251 	if (rst_ops->hotreset_assert) {
252 		/* clear clients DMA requests sitting before arbitration */
253 		err = rst_ops->hotreset_assert(mc, rst);
254 		if (err) {
255 			dev_err(mc->dev, "failed to hot reset %s: %d\n",
256 				rst->name, err);
257 			return err;
258 		}
259 	}
260 
261 	return 0;
262 }
263 
tegra_mc_hotreset_deassert(struct reset_controller_dev * rcdev,unsigned long id)264 static int tegra_mc_hotreset_deassert(struct reset_controller_dev *rcdev,
265 				      unsigned long id)
266 {
267 	struct tegra_mc *mc = reset_to_mc(rcdev);
268 	const struct tegra_mc_reset_ops *rst_ops;
269 	const struct tegra_mc_reset *rst;
270 	int err;
271 
272 	rst = tegra_mc_reset_find(mc, id);
273 	if (!rst)
274 		return -ENODEV;
275 
276 	rst_ops = mc->soc->reset_ops;
277 	if (!rst_ops)
278 		return -ENODEV;
279 
280 	if (rst_ops->hotreset_deassert) {
281 		/* take out client from hot reset */
282 		err = rst_ops->hotreset_deassert(mc, rst);
283 		if (err) {
284 			dev_err(mc->dev, "failed to deassert hot reset %s: %d\n",
285 				rst->name, err);
286 			return err;
287 		}
288 	}
289 
290 	if (rst_ops->unblock_dma) {
291 		/* allow new DMA requests to proceed to arbitration */
292 		err = rst_ops->unblock_dma(mc, rst);
293 		if (err) {
294 			dev_err(mc->dev, "failed to unblock %s DMA : %d\n",
295 				rst->name, err);
296 			return err;
297 		}
298 	}
299 
300 	return 0;
301 }
302 
tegra_mc_hotreset_status(struct reset_controller_dev * rcdev,unsigned long id)303 static int tegra_mc_hotreset_status(struct reset_controller_dev *rcdev,
304 				    unsigned long id)
305 {
306 	struct tegra_mc *mc = reset_to_mc(rcdev);
307 	const struct tegra_mc_reset_ops *rst_ops;
308 	const struct tegra_mc_reset *rst;
309 
310 	rst = tegra_mc_reset_find(mc, id);
311 	if (!rst)
312 		return -ENODEV;
313 
314 	rst_ops = mc->soc->reset_ops;
315 	if (!rst_ops)
316 		return -ENODEV;
317 
318 	return rst_ops->reset_status(mc, rst);
319 }
320 
321 static const struct reset_control_ops tegra_mc_reset_ops = {
322 	.assert = tegra_mc_hotreset_assert,
323 	.deassert = tegra_mc_hotreset_deassert,
324 	.status = tegra_mc_hotreset_status,
325 };
326 
tegra_mc_reset_setup(struct tegra_mc * mc)327 static int tegra_mc_reset_setup(struct tegra_mc *mc)
328 {
329 	int err;
330 
331 	mc->reset.ops = &tegra_mc_reset_ops;
332 	mc->reset.owner = THIS_MODULE;
333 	mc->reset.of_node = mc->dev->of_node;
334 	mc->reset.of_reset_n_cells = 1;
335 	mc->reset.nr_resets = mc->soc->num_resets;
336 
337 	err = reset_controller_register(&mc->reset);
338 	if (err < 0)
339 		return err;
340 
341 	return 0;
342 }
343 
tegra_mc_write_emem_configuration(struct tegra_mc * mc,unsigned long rate)344 int tegra_mc_write_emem_configuration(struct tegra_mc *mc, unsigned long rate)
345 {
346 	unsigned int i;
347 	struct tegra_mc_timing *timing = NULL;
348 
349 	for (i = 0; i < mc->num_timings; i++) {
350 		if (mc->timings[i].rate == rate) {
351 			timing = &mc->timings[i];
352 			break;
353 		}
354 	}
355 
356 	if (!timing) {
357 		dev_err(mc->dev, "no memory timing registered for rate %lu\n",
358 			rate);
359 		return -EINVAL;
360 	}
361 
362 	for (i = 0; i < mc->soc->num_emem_regs; ++i)
363 		mc_writel(mc, timing->emem_data[i], mc->soc->emem_regs[i]);
364 
365 	return 0;
366 }
367 EXPORT_SYMBOL_GPL(tegra_mc_write_emem_configuration);
368 
tegra_mc_get_emem_device_count(struct tegra_mc * mc)369 unsigned int tegra_mc_get_emem_device_count(struct tegra_mc *mc)
370 {
371 	u8 dram_count;
372 
373 	dram_count = mc_readl(mc, MC_EMEM_ADR_CFG);
374 	dram_count &= MC_EMEM_ADR_CFG_EMEM_NUMDEV;
375 	dram_count++;
376 
377 	return dram_count;
378 }
379 EXPORT_SYMBOL_GPL(tegra_mc_get_emem_device_count);
380 
381 #if defined(CONFIG_ARCH_TEGRA_3x_SOC) || \
382     defined(CONFIG_ARCH_TEGRA_114_SOC) || \
383     defined(CONFIG_ARCH_TEGRA_124_SOC) || \
384     defined(CONFIG_ARCH_TEGRA_132_SOC) || \
385     defined(CONFIG_ARCH_TEGRA_210_SOC)
tegra_mc_setup_latency_allowance(struct tegra_mc * mc)386 static int tegra_mc_setup_latency_allowance(struct tegra_mc *mc)
387 {
388 	unsigned long long tick;
389 	unsigned int i;
390 	u32 value;
391 
392 	/* compute the number of MC clock cycles per tick */
393 	tick = (unsigned long long)mc->tick * clk_get_rate(mc->clk);
394 	do_div(tick, NSEC_PER_SEC);
395 
396 	value = mc_readl(mc, MC_EMEM_ARB_CFG);
397 	value &= ~MC_EMEM_ARB_CFG_CYCLES_PER_UPDATE_MASK;
398 	value |= MC_EMEM_ARB_CFG_CYCLES_PER_UPDATE(tick);
399 	mc_writel(mc, value, MC_EMEM_ARB_CFG);
400 
401 	/* write latency allowance defaults */
402 	for (i = 0; i < mc->soc->num_clients; i++) {
403 		const struct tegra_mc_client *client = &mc->soc->clients[i];
404 		u32 value;
405 
406 		value = mc_readl(mc, client->regs.la.reg);
407 		value &= ~(client->regs.la.mask << client->regs.la.shift);
408 		value |= (client->regs.la.def & client->regs.la.mask) << client->regs.la.shift;
409 		mc_writel(mc, value, client->regs.la.reg);
410 	}
411 
412 	/* latch new values */
413 	mc_writel(mc, MC_TIMING_UPDATE, MC_TIMING_CONTROL);
414 
415 	return 0;
416 }
417 
load_one_timing(struct tegra_mc * mc,struct tegra_mc_timing * timing,struct device_node * node)418 static int load_one_timing(struct tegra_mc *mc,
419 			   struct tegra_mc_timing *timing,
420 			   struct device_node *node)
421 {
422 	int err;
423 	u32 tmp;
424 
425 	err = of_property_read_u32(node, "clock-frequency", &tmp);
426 	if (err) {
427 		dev_err(mc->dev,
428 			"timing %pOFn: failed to read rate\n", node);
429 		return err;
430 	}
431 
432 	timing->rate = tmp;
433 	timing->emem_data = devm_kcalloc(mc->dev, mc->soc->num_emem_regs,
434 					 sizeof(u32), GFP_KERNEL);
435 	if (!timing->emem_data)
436 		return -ENOMEM;
437 
438 	err = of_property_read_u32_array(node, "nvidia,emem-configuration",
439 					 timing->emem_data,
440 					 mc->soc->num_emem_regs);
441 	if (err) {
442 		dev_err(mc->dev,
443 			"timing %pOFn: failed to read EMEM configuration\n",
444 			node);
445 		return err;
446 	}
447 
448 	return 0;
449 }
450 
load_timings(struct tegra_mc * mc,struct device_node * node)451 static int load_timings(struct tegra_mc *mc, struct device_node *node)
452 {
453 	struct tegra_mc_timing *timing;
454 	int child_count = of_get_child_count(node);
455 	int i = 0, err;
456 
457 	mc->timings = devm_kcalloc(mc->dev, child_count, sizeof(*timing),
458 				   GFP_KERNEL);
459 	if (!mc->timings)
460 		return -ENOMEM;
461 
462 	mc->num_timings = child_count;
463 
464 	for_each_child_of_node_scoped(node, child) {
465 		timing = &mc->timings[i++];
466 
467 		err = load_one_timing(mc, timing, child);
468 		if (err)
469 			return err;
470 	}
471 
472 	return 0;
473 }
474 
tegra_mc_setup_timings(struct tegra_mc * mc)475 static int tegra_mc_setup_timings(struct tegra_mc *mc)
476 {
477 	u32 ram_code, node_ram_code;
478 	int err;
479 
480 	ram_code = tegra_read_ram_code();
481 
482 	mc->num_timings = 0;
483 
484 	for_each_child_of_node_scoped(mc->dev->of_node, node) {
485 		err = of_property_read_u32(node, "nvidia,ram-code",
486 					   &node_ram_code);
487 		if (err || (node_ram_code != ram_code))
488 			continue;
489 
490 		err = load_timings(mc, node);
491 		if (err)
492 			return err;
493 		break;
494 	}
495 
496 	if (mc->num_timings == 0)
497 		dev_warn(mc->dev,
498 			 "no memory timings for RAM code %u registered\n",
499 			 ram_code);
500 
501 	return 0;
502 }
503 
tegra30_mc_probe(struct tegra_mc * mc)504 int tegra30_mc_probe(struct tegra_mc *mc)
505 {
506 	int err;
507 
508 	mc->clk = devm_clk_get_optional(mc->dev, "mc");
509 	if (IS_ERR(mc->clk)) {
510 		dev_err(mc->dev, "failed to get MC clock: %ld\n", PTR_ERR(mc->clk));
511 		return PTR_ERR(mc->clk);
512 	}
513 
514 	/* ensure that debug features are disabled */
515 	mc_writel(mc, 0x00000000, MC_TIMING_CONTROL_DBG);
516 
517 	err = tegra_mc_setup_latency_allowance(mc);
518 	if (err < 0) {
519 		dev_err(mc->dev, "failed to setup latency allowance: %d\n", err);
520 		return err;
521 	}
522 
523 	err = tegra_mc_setup_timings(mc);
524 	if (err < 0) {
525 		dev_err(mc->dev, "failed to setup timings: %d\n", err);
526 		return err;
527 	}
528 
529 	return 0;
530 }
531 
532 const struct tegra_mc_ops tegra30_mc_ops = {
533 	.probe = tegra30_mc_probe,
534 	.handle_irq = tegra30_mc_handle_irq,
535 };
536 #endif
537 
mc_global_intstatus_to_channel(const struct tegra_mc * mc,u32 status,unsigned int * mc_channel)538 static int mc_global_intstatus_to_channel(const struct tegra_mc *mc, u32 status,
539 					  unsigned int *mc_channel)
540 {
541 	if ((status & mc->soc->ch_intmask) == 0)
542 		return -EINVAL;
543 
544 	*mc_channel = __ffs((status & mc->soc->ch_intmask) >>
545 			    mc->soc->global_intstatus_channel_shift);
546 
547 	return 0;
548 }
549 
mc_channel_to_global_intstatus(const struct tegra_mc * mc,unsigned int channel)550 static u32 mc_channel_to_global_intstatus(const struct tegra_mc *mc,
551 					  unsigned int channel)
552 {
553 	return BIT(channel) << mc->soc->global_intstatus_channel_shift;
554 }
555 
tegra30_mc_handle_irq(int irq,void * data)556 irqreturn_t tegra30_mc_handle_irq(int irq, void *data)
557 {
558 	struct tegra_mc *mc = data;
559 	unsigned int bit, channel;
560 	unsigned long status;
561 
562 	if (mc->soc->num_channels) {
563 		u32 global_status;
564 		int err;
565 
566 		global_status = mc_ch_readl(mc, MC_BROADCAST_CHANNEL, MC_GLOBAL_INTSTATUS);
567 		err = mc_global_intstatus_to_channel(mc, global_status, &channel);
568 		if (err < 0) {
569 			dev_err_ratelimited(mc->dev, "unknown interrupt channel 0x%08x\n",
570 					    global_status);
571 			return IRQ_NONE;
572 		}
573 
574 		/* mask all interrupts to avoid flooding */
575 		status = mc_ch_readl(mc, channel, MC_INTSTATUS) & mc->soc->intmask;
576 	} else {
577 		status = mc_readl(mc, MC_INTSTATUS) & mc->soc->intmask;
578 	}
579 
580 	if (!status)
581 		return IRQ_NONE;
582 
583 	for_each_set_bit(bit, &status, 32) {
584 		const char *error = tegra_mc_status_names[bit] ?: "unknown";
585 		const char *client = "unknown", *desc;
586 		const char *direction, *secure;
587 		u32 status_reg, addr_reg;
588 		u32 intmask = BIT(bit);
589 		phys_addr_t addr = 0;
590 #ifdef CONFIG_PHYS_ADDR_T_64BIT
591 		u32 addr_hi_reg = 0;
592 #endif
593 		unsigned int i;
594 		char perm[7];
595 		u8 id, type;
596 		u32 value;
597 
598 		switch (intmask) {
599 		case MC_INT_DECERR_VPR:
600 			status_reg = MC_ERR_VPR_STATUS;
601 			addr_reg = MC_ERR_VPR_ADR;
602 			break;
603 
604 		case MC_INT_SECERR_SEC:
605 			status_reg = MC_ERR_SEC_STATUS;
606 			addr_reg = MC_ERR_SEC_ADR;
607 			break;
608 
609 		case MC_INT_DECERR_MTS:
610 			status_reg = MC_ERR_MTS_STATUS;
611 			addr_reg = MC_ERR_MTS_ADR;
612 			break;
613 
614 		case MC_INT_DECERR_GENERALIZED_CARVEOUT:
615 			status_reg = MC_ERR_GENERALIZED_CARVEOUT_STATUS;
616 			addr_reg = MC_ERR_GENERALIZED_CARVEOUT_ADR;
617 			break;
618 
619 		case MC_INT_DECERR_ROUTE_SANITY:
620 			status_reg = MC_ERR_ROUTE_SANITY_STATUS;
621 			addr_reg = MC_ERR_ROUTE_SANITY_ADR;
622 			break;
623 
624 		default:
625 			status_reg = MC_ERR_STATUS;
626 			addr_reg = MC_ERR_ADR;
627 
628 #ifdef CONFIG_PHYS_ADDR_T_64BIT
629 			if (mc->soc->has_addr_hi_reg)
630 				addr_hi_reg = MC_ERR_ADR_HI;
631 #endif
632 			break;
633 		}
634 
635 		if (mc->soc->num_channels)
636 			value = mc_ch_readl(mc, channel, status_reg);
637 		else
638 			value = mc_readl(mc, status_reg);
639 
640 #ifdef CONFIG_PHYS_ADDR_T_64BIT
641 		if (mc->soc->num_address_bits > 32) {
642 			if (addr_hi_reg) {
643 				if (mc->soc->num_channels)
644 					addr = mc_ch_readl(mc, channel, addr_hi_reg);
645 				else
646 					addr = mc_readl(mc, addr_hi_reg);
647 			} else {
648 				addr = ((value >> MC_ERR_STATUS_ADR_HI_SHIFT) &
649 					MC_ERR_STATUS_ADR_HI_MASK);
650 			}
651 			addr <<= 32;
652 		}
653 #endif
654 
655 		if (value & MC_ERR_STATUS_RW)
656 			direction = "write";
657 		else
658 			direction = "read";
659 
660 		if (value & MC_ERR_STATUS_SECURITY)
661 			secure = "secure ";
662 		else
663 			secure = "";
664 
665 		id = value & mc->soc->client_id_mask;
666 
667 		for (i = 0; i < mc->soc->num_clients; i++) {
668 			if (mc->soc->clients[i].id == id) {
669 				client = mc->soc->clients[i].name;
670 				break;
671 			}
672 		}
673 
674 		type = (value & MC_ERR_STATUS_TYPE_MASK) >>
675 		       MC_ERR_STATUS_TYPE_SHIFT;
676 		desc = tegra_mc_error_names[type];
677 
678 		switch (value & MC_ERR_STATUS_TYPE_MASK) {
679 		case MC_ERR_STATUS_TYPE_INVALID_SMMU_PAGE:
680 			perm[0] = ' ';
681 			perm[1] = '[';
682 
683 			if (value & MC_ERR_STATUS_READABLE)
684 				perm[2] = 'R';
685 			else
686 				perm[2] = '-';
687 
688 			if (value & MC_ERR_STATUS_WRITABLE)
689 				perm[3] = 'W';
690 			else
691 				perm[3] = '-';
692 
693 			if (value & MC_ERR_STATUS_NONSECURE)
694 				perm[4] = '-';
695 			else
696 				perm[4] = 'S';
697 
698 			perm[5] = ']';
699 			perm[6] = '\0';
700 			break;
701 
702 		default:
703 			perm[0] = '\0';
704 			break;
705 		}
706 
707 		if (mc->soc->num_channels)
708 			value = mc_ch_readl(mc, channel, addr_reg);
709 		else
710 			value = mc_readl(mc, addr_reg);
711 		addr |= value;
712 
713 		dev_err_ratelimited(mc->dev, "%s: %s%s @%pa: %s (%s%s)\n",
714 				    client, secure, direction, &addr, error,
715 				    desc, perm);
716 	}
717 
718 	/* clear interrupts */
719 	if (mc->soc->num_channels) {
720 		mc_ch_writel(mc, channel, status, MC_INTSTATUS);
721 		mc_ch_writel(mc, MC_BROADCAST_CHANNEL,
722 			     mc_channel_to_global_intstatus(mc, channel),
723 			     MC_GLOBAL_INTSTATUS);
724 	} else {
725 		mc_writel(mc, status, MC_INTSTATUS);
726 	}
727 
728 	return IRQ_HANDLED;
729 }
730 
731 const char *const tegra_mc_status_names[32] = {
732 	[ 1] = "External interrupt",
733 	[ 6] = "EMEM address decode error",
734 	[ 7] = "GART page fault",
735 	[ 8] = "Security violation",
736 	[ 9] = "EMEM arbitration error",
737 	[10] = "Page fault",
738 	[11] = "Invalid APB ASID update",
739 	[12] = "VPR violation",
740 	[13] = "Secure carveout violation",
741 	[16] = "MTS carveout violation",
742 	[17] = "Generalized carveout violation",
743 	[20] = "Route Sanity error",
744 };
745 
746 const char *const tegra_mc_error_names[8] = {
747 	[2] = "EMEM decode error",
748 	[3] = "TrustZone violation",
749 	[4] = "Carveout violation",
750 	[6] = "SMMU translation error",
751 };
752 
tegra_mc_icc_xlate(const struct of_phandle_args * spec,void * data)753 struct icc_node *tegra_mc_icc_xlate(const struct of_phandle_args *spec, void *data)
754 {
755 	struct tegra_mc *mc = icc_provider_to_tegra_mc(data);
756 	struct icc_node *node;
757 
758 	list_for_each_entry(node, &mc->provider.nodes, node_list) {
759 		if (node->id == spec->args[0])
760 			return node;
761 	}
762 
763 	/*
764 	 * If a client driver calls devm_of_icc_get() before the MC driver
765 	 * is probed, then return EPROBE_DEFER to the client driver.
766 	 */
767 	return ERR_PTR(-EPROBE_DEFER);
768 }
769 
tegra_mc_icc_get(struct icc_node * node,u32 * average,u32 * peak)770 static int tegra_mc_icc_get(struct icc_node *node, u32 *average, u32 *peak)
771 {
772 	*average = 0;
773 	*peak = 0;
774 
775 	return 0;
776 }
777 
tegra_mc_icc_set(struct icc_node * src,struct icc_node * dst)778 static int tegra_mc_icc_set(struct icc_node *src, struct icc_node *dst)
779 {
780 	return 0;
781 }
782 
783 const struct tegra_mc_icc_ops tegra_mc_icc_ops = {
784 	.xlate = tegra_mc_icc_xlate,
785 	.aggregate = icc_std_aggregate,
786 	.get_bw = tegra_mc_icc_get,
787 	.set = tegra_mc_icc_set,
788 };
789 
790 /*
791  * Memory Controller (MC) has few Memory Clients that are issuing memory
792  * bandwidth allocation requests to the MC interconnect provider. The MC
793  * provider aggregates the requests and then sends the aggregated request
794  * up to the External Memory Controller (EMC) interconnect provider which
795  * re-configures hardware interface to External Memory (EMEM) in accordance
796  * to the required bandwidth. Each MC interconnect node represents an
797  * individual Memory Client.
798  *
799  * Memory interconnect topology:
800  *
801  *               +----+
802  * +--------+    |    |
803  * | TEXSRD +--->+    |
804  * +--------+    |    |
805  *               |    |    +-----+    +------+
806  *    ...        | MC +--->+ EMC +--->+ EMEM |
807  *               |    |    +-----+    +------+
808  * +--------+    |    |
809  * | DISP.. +--->+    |
810  * +--------+    |    |
811  *               +----+
812  */
tegra_mc_interconnect_setup(struct tegra_mc * mc)813 static int tegra_mc_interconnect_setup(struct tegra_mc *mc)
814 {
815 	struct icc_node *node;
816 	unsigned int i;
817 	int err;
818 
819 	/* older device-trees don't have interconnect properties */
820 	if (!device_property_present(mc->dev, "#interconnect-cells") ||
821 	    !mc->soc->icc_ops)
822 		return 0;
823 
824 	mc->provider.dev = mc->dev;
825 	mc->provider.data = &mc->provider;
826 	mc->provider.set = mc->soc->icc_ops->set;
827 	mc->provider.aggregate = mc->soc->icc_ops->aggregate;
828 	mc->provider.get_bw = mc->soc->icc_ops->get_bw;
829 	mc->provider.xlate = mc->soc->icc_ops->xlate;
830 	mc->provider.xlate_extended = mc->soc->icc_ops->xlate_extended;
831 
832 	icc_provider_init(&mc->provider);
833 
834 	/* create Memory Controller node */
835 	node = icc_node_create(TEGRA_ICC_MC);
836 	if (IS_ERR(node))
837 		return PTR_ERR(node);
838 
839 	node->name = "Memory Controller";
840 	icc_node_add(node, &mc->provider);
841 
842 	/* link Memory Controller to External Memory Controller */
843 	err = icc_link_create(node, TEGRA_ICC_EMC);
844 	if (err)
845 		goto remove_nodes;
846 
847 	for (i = 0; i < mc->soc->num_clients; i++) {
848 		/* create MC client node */
849 		node = icc_node_create(mc->soc->clients[i].id);
850 		if (IS_ERR(node)) {
851 			err = PTR_ERR(node);
852 			goto remove_nodes;
853 		}
854 
855 		node->name = mc->soc->clients[i].name;
856 		icc_node_add(node, &mc->provider);
857 
858 		/* link Memory Client to Memory Controller */
859 		err = icc_link_create(node, TEGRA_ICC_MC);
860 		if (err)
861 			goto remove_nodes;
862 
863 		node->data = (struct tegra_mc_client *)&(mc->soc->clients[i]);
864 	}
865 
866 	err = icc_provider_register(&mc->provider);
867 	if (err)
868 		goto remove_nodes;
869 
870 	return 0;
871 
872 remove_nodes:
873 	icc_nodes_remove(&mc->provider);
874 
875 	return err;
876 }
877 
tegra_mc_num_channel_enabled(struct tegra_mc * mc)878 static void tegra_mc_num_channel_enabled(struct tegra_mc *mc)
879 {
880 	unsigned int i;
881 	u32 value;
882 
883 	value = mc_ch_readl(mc, 0, MC_EMEM_ADR_CFG_CHANNEL_ENABLE);
884 	if (value <= 0) {
885 		mc->num_channels = mc->soc->num_channels;
886 		return;
887 	}
888 
889 	for (i = 0; i < 32; i++) {
890 		if (value & BIT(i))
891 			mc->num_channels++;
892 	}
893 }
894 
tegra_mc_probe(struct platform_device * pdev)895 static int tegra_mc_probe(struct platform_device *pdev)
896 {
897 	struct tegra_mc *mc;
898 	u64 mask;
899 	int err;
900 
901 	mc = devm_kzalloc(&pdev->dev, sizeof(*mc), GFP_KERNEL);
902 	if (!mc)
903 		return -ENOMEM;
904 
905 	platform_set_drvdata(pdev, mc);
906 	spin_lock_init(&mc->lock);
907 	mc->soc = of_device_get_match_data(&pdev->dev);
908 	mc->dev = &pdev->dev;
909 
910 	mask = DMA_BIT_MASK(mc->soc->num_address_bits);
911 
912 	err = dma_coerce_mask_and_coherent(&pdev->dev, mask);
913 	if (err < 0) {
914 		dev_err(&pdev->dev, "failed to set DMA mask: %d\n", err);
915 		return err;
916 	}
917 
918 	/* length of MC tick in nanoseconds */
919 	mc->tick = 30;
920 
921 	mc->regs = devm_platform_ioremap_resource(pdev, 0);
922 	if (IS_ERR(mc->regs))
923 		return PTR_ERR(mc->regs);
924 
925 	mc->debugfs.root = debugfs_create_dir("mc", NULL);
926 
927 	if (mc->soc->ops && mc->soc->ops->probe) {
928 		err = mc->soc->ops->probe(mc);
929 		if (err < 0)
930 			return err;
931 	}
932 
933 	tegra_mc_num_channel_enabled(mc);
934 
935 	if (mc->soc->ops && mc->soc->ops->handle_irq) {
936 		mc->irq = platform_get_irq(pdev, 0);
937 		if (mc->irq < 0)
938 			return mc->irq;
939 
940 		WARN(!mc->soc->client_id_mask, "missing client ID mask for this SoC\n");
941 
942 		if (mc->soc->num_channels)
943 			mc_ch_writel(mc, MC_BROADCAST_CHANNEL, mc->soc->intmask,
944 				     MC_INTMASK);
945 		else
946 			mc_writel(mc, mc->soc->intmask, MC_INTMASK);
947 
948 		err = devm_request_irq(&pdev->dev, mc->irq, mc->soc->ops->handle_irq, 0,
949 				       dev_name(&pdev->dev), mc);
950 		if (err < 0) {
951 			dev_err(&pdev->dev, "failed to request IRQ#%u: %d\n", mc->irq,
952 				err);
953 			return err;
954 		}
955 	}
956 
957 	if (mc->soc->reset_ops) {
958 		err = tegra_mc_reset_setup(mc);
959 		if (err < 0)
960 			dev_err(&pdev->dev, "failed to register reset controller: %d\n", err);
961 	}
962 
963 	err = tegra_mc_interconnect_setup(mc);
964 	if (err < 0)
965 		dev_err(&pdev->dev, "failed to initialize interconnect: %d\n",
966 			err);
967 
968 	if (IS_ENABLED(CONFIG_TEGRA_IOMMU_SMMU) && mc->soc->smmu) {
969 		mc->smmu = tegra_smmu_probe(&pdev->dev, mc->soc->smmu, mc);
970 		if (IS_ERR(mc->smmu)) {
971 			dev_err(&pdev->dev, "failed to probe SMMU: %ld\n",
972 				PTR_ERR(mc->smmu));
973 			mc->smmu = NULL;
974 		}
975 	}
976 
977 	return 0;
978 }
979 
tegra_mc_sync_state(struct device * dev)980 static void tegra_mc_sync_state(struct device *dev)
981 {
982 	struct tegra_mc *mc = dev_get_drvdata(dev);
983 
984 	/* check whether ICC provider is registered */
985 	if (mc->provider.dev == dev)
986 		icc_sync_state(dev);
987 }
988 
989 static struct platform_driver tegra_mc_driver = {
990 	.driver = {
991 		.name = "tegra-mc",
992 		.of_match_table = tegra_mc_of_match,
993 		.suppress_bind_attrs = true,
994 		.sync_state = tegra_mc_sync_state,
995 	},
996 	.prevent_deferred_probe = true,
997 	.probe = tegra_mc_probe,
998 };
999 
tegra_mc_init(void)1000 static int tegra_mc_init(void)
1001 {
1002 	return platform_driver_register(&tegra_mc_driver);
1003 }
1004 arch_initcall(tegra_mc_init);
1005 
1006 MODULE_AUTHOR("Thierry Reding <treding@nvidia.com>");
1007 MODULE_DESCRIPTION("NVIDIA Tegra Memory Controller driver");
1008