xref: /linux/arch/x86/kvm/vmx/tdx.c (revision 256e3417065b2721f77bcd37331796b59483ef3b)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/cleanup.h>
3 #include <linux/cpu.h>
4 #include <asm/cpufeature.h>
5 #include <asm/fpu/xcr.h>
6 #include <linux/misc_cgroup.h>
7 #include <linux/mmu_context.h>
8 #include <asm/tdx.h>
9 #include "capabilities.h"
10 #include "mmu.h"
11 #include "x86_ops.h"
12 #include "lapic.h"
13 #include "tdx.h"
14 #include "vmx.h"
15 #include "mmu/spte.h"
16 #include "common.h"
17 #include "posted_intr.h"
18 #include "irq.h"
19 #include <trace/events/kvm.h>
20 #include "trace.h"
21 
22 #pragma GCC poison to_vmx
23 
24 #undef pr_fmt
25 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
26 
27 #define pr_tdx_error(__fn, __err)	\
28 	pr_err_ratelimited("SEAMCALL %s failed: 0x%llx\n", #__fn, __err)
29 
30 #define __pr_tdx_error_N(__fn_str, __err, __fmt, ...)		\
31 	pr_err_ratelimited("SEAMCALL " __fn_str " failed: 0x%llx, " __fmt,  __err,  __VA_ARGS__)
32 
33 #define pr_tdx_error_1(__fn, __err, __rcx)		\
34 	__pr_tdx_error_N(#__fn, __err, "rcx 0x%llx\n", __rcx)
35 
36 #define pr_tdx_error_2(__fn, __err, __rcx, __rdx)	\
37 	__pr_tdx_error_N(#__fn, __err, "rcx 0x%llx, rdx 0x%llx\n", __rcx, __rdx)
38 
39 #define pr_tdx_error_3(__fn, __err, __rcx, __rdx, __r8)	\
40 	__pr_tdx_error_N(#__fn, __err, "rcx 0x%llx, rdx 0x%llx, r8 0x%llx\n", __rcx, __rdx, __r8)
41 
42 bool enable_tdx __ro_after_init;
43 module_param_named(tdx, enable_tdx, bool, 0444);
44 
45 #define TDX_SHARED_BIT_PWL_5 gpa_to_gfn(BIT_ULL(51))
46 #define TDX_SHARED_BIT_PWL_4 gpa_to_gfn(BIT_ULL(47))
47 
48 static enum cpuhp_state tdx_cpuhp_state;
49 
50 static const struct tdx_sys_info *tdx_sysinfo;
51 
tdh_vp_rd_failed(struct vcpu_tdx * tdx,char * uclass,u32 field,u64 err)52 void tdh_vp_rd_failed(struct vcpu_tdx *tdx, char *uclass, u32 field, u64 err)
53 {
54 	KVM_BUG_ON(1, tdx->vcpu.kvm);
55 	pr_err("TDH_VP_RD[%s.0x%x] failed 0x%llx\n", uclass, field, err);
56 }
57 
tdh_vp_wr_failed(struct vcpu_tdx * tdx,char * uclass,char * op,u32 field,u64 val,u64 err)58 void tdh_vp_wr_failed(struct vcpu_tdx *tdx, char *uclass, char *op, u32 field,
59 		      u64 val, u64 err)
60 {
61 	KVM_BUG_ON(1, tdx->vcpu.kvm);
62 	pr_err("TDH_VP_WR[%s.0x%x]%s0x%llx failed: 0x%llx\n", uclass, field, op, val, err);
63 }
64 
65 #define KVM_SUPPORTED_TD_ATTRS (TDX_TD_ATTR_SEPT_VE_DISABLE)
66 
to_kvm_tdx(struct kvm * kvm)67 static __always_inline struct kvm_tdx *to_kvm_tdx(struct kvm *kvm)
68 {
69 	return container_of(kvm, struct kvm_tdx, kvm);
70 }
71 
to_tdx(struct kvm_vcpu * vcpu)72 static __always_inline struct vcpu_tdx *to_tdx(struct kvm_vcpu *vcpu)
73 {
74 	return container_of(vcpu, struct vcpu_tdx, vcpu);
75 }
76 
tdx_get_supported_attrs(const struct tdx_sys_info_td_conf * td_conf)77 static u64 tdx_get_supported_attrs(const struct tdx_sys_info_td_conf *td_conf)
78 {
79 	u64 val = KVM_SUPPORTED_TD_ATTRS;
80 
81 	if ((val & td_conf->attributes_fixed1) != td_conf->attributes_fixed1)
82 		return 0;
83 
84 	val &= td_conf->attributes_fixed0;
85 
86 	return val;
87 }
88 
tdx_get_supported_xfam(const struct tdx_sys_info_td_conf * td_conf)89 static u64 tdx_get_supported_xfam(const struct tdx_sys_info_td_conf *td_conf)
90 {
91 	u64 val = kvm_caps.supported_xcr0 | kvm_caps.supported_xss;
92 
93 	if ((val & td_conf->xfam_fixed1) != td_conf->xfam_fixed1)
94 		return 0;
95 
96 	val &= td_conf->xfam_fixed0;
97 
98 	return val;
99 }
100 
tdx_get_guest_phys_addr_bits(const u32 eax)101 static int tdx_get_guest_phys_addr_bits(const u32 eax)
102 {
103 	return (eax & GENMASK(23, 16)) >> 16;
104 }
105 
tdx_set_guest_phys_addr_bits(const u32 eax,int addr_bits)106 static u32 tdx_set_guest_phys_addr_bits(const u32 eax, int addr_bits)
107 {
108 	return (eax & ~GENMASK(23, 16)) | (addr_bits & 0xff) << 16;
109 }
110 
111 #define TDX_FEATURE_TSX (__feature_bit(X86_FEATURE_HLE) | __feature_bit(X86_FEATURE_RTM))
112 
has_tsx(const struct kvm_cpuid_entry2 * entry)113 static bool has_tsx(const struct kvm_cpuid_entry2 *entry)
114 {
115 	return entry->function == 7 && entry->index == 0 &&
116 	       (entry->ebx & TDX_FEATURE_TSX);
117 }
118 
clear_tsx(struct kvm_cpuid_entry2 * entry)119 static void clear_tsx(struct kvm_cpuid_entry2 *entry)
120 {
121 	entry->ebx &= ~TDX_FEATURE_TSX;
122 }
123 
has_waitpkg(const struct kvm_cpuid_entry2 * entry)124 static bool has_waitpkg(const struct kvm_cpuid_entry2 *entry)
125 {
126 	return entry->function == 7 && entry->index == 0 &&
127 	       (entry->ecx & __feature_bit(X86_FEATURE_WAITPKG));
128 }
129 
clear_waitpkg(struct kvm_cpuid_entry2 * entry)130 static void clear_waitpkg(struct kvm_cpuid_entry2 *entry)
131 {
132 	entry->ecx &= ~__feature_bit(X86_FEATURE_WAITPKG);
133 }
134 
tdx_clear_unsupported_cpuid(struct kvm_cpuid_entry2 * entry)135 static void tdx_clear_unsupported_cpuid(struct kvm_cpuid_entry2 *entry)
136 {
137 	if (has_tsx(entry))
138 		clear_tsx(entry);
139 
140 	if (has_waitpkg(entry))
141 		clear_waitpkg(entry);
142 }
143 
tdx_unsupported_cpuid(const struct kvm_cpuid_entry2 * entry)144 static bool tdx_unsupported_cpuid(const struct kvm_cpuid_entry2 *entry)
145 {
146 	return has_tsx(entry) || has_waitpkg(entry);
147 }
148 
149 #define KVM_TDX_CPUID_NO_SUBLEAF	((__u32)-1)
150 
td_init_cpuid_entry2(struct kvm_cpuid_entry2 * entry,unsigned char idx)151 static void td_init_cpuid_entry2(struct kvm_cpuid_entry2 *entry, unsigned char idx)
152 {
153 	const struct tdx_sys_info_td_conf *td_conf = &tdx_sysinfo->td_conf;
154 
155 	entry->function = (u32)td_conf->cpuid_config_leaves[idx];
156 	entry->index = td_conf->cpuid_config_leaves[idx] >> 32;
157 	entry->eax = (u32)td_conf->cpuid_config_values[idx][0];
158 	entry->ebx = td_conf->cpuid_config_values[idx][0] >> 32;
159 	entry->ecx = (u32)td_conf->cpuid_config_values[idx][1];
160 	entry->edx = td_conf->cpuid_config_values[idx][1] >> 32;
161 
162 	if (entry->index == KVM_TDX_CPUID_NO_SUBLEAF)
163 		entry->index = 0;
164 
165 	/*
166 	 * The TDX module doesn't allow configuring the guest phys addr bits
167 	 * (EAX[23:16]).  However, KVM uses it as an interface to the userspace
168 	 * to configure the GPAW.  Report these bits as configurable.
169 	 */
170 	if (entry->function == 0x80000008)
171 		entry->eax = tdx_set_guest_phys_addr_bits(entry->eax, 0xff);
172 
173 	tdx_clear_unsupported_cpuid(entry);
174 }
175 
176 #define TDVMCALLINFO_SETUP_EVENT_NOTIFY_INTERRUPT	BIT(1)
177 
init_kvm_tdx_caps(const struct tdx_sys_info_td_conf * td_conf,struct kvm_tdx_capabilities * caps)178 static int init_kvm_tdx_caps(const struct tdx_sys_info_td_conf *td_conf,
179 			     struct kvm_tdx_capabilities *caps)
180 {
181 	int i;
182 
183 	caps->supported_attrs = tdx_get_supported_attrs(td_conf);
184 	if (!caps->supported_attrs)
185 		return -EIO;
186 
187 	caps->supported_xfam = tdx_get_supported_xfam(td_conf);
188 	if (!caps->supported_xfam)
189 		return -EIO;
190 
191 	caps->cpuid.nent = td_conf->num_cpuid_config;
192 
193 	caps->user_tdvmcallinfo_1_r11 =
194 		TDVMCALLINFO_SETUP_EVENT_NOTIFY_INTERRUPT;
195 
196 	for (i = 0; i < td_conf->num_cpuid_config; i++)
197 		td_init_cpuid_entry2(&caps->cpuid.entries[i], i);
198 
199 	return 0;
200 }
201 
202 /*
203  * Some SEAMCALLs acquire the TDX module globally, and can fail with
204  * TDX_OPERAND_BUSY.  Use a global mutex to serialize these SEAMCALLs.
205  */
206 static DEFINE_MUTEX(tdx_lock);
207 
208 static atomic_t nr_configured_hkid;
209 
tdx_operand_busy(u64 err)210 static bool tdx_operand_busy(u64 err)
211 {
212 	return (err & TDX_SEAMCALL_STATUS_MASK) == TDX_OPERAND_BUSY;
213 }
214 
215 
216 /*
217  * A per-CPU list of TD vCPUs associated with a given CPU.
218  * Protected by interrupt mask. Only manipulated by the CPU owning this per-CPU
219  * list.
220  * - When a vCPU is loaded onto a CPU, it is removed from the per-CPU list of
221  *   the old CPU during the IPI callback running on the old CPU, and then added
222  *   to the per-CPU list of the new CPU.
223  * - When a TD is tearing down, all vCPUs are disassociated from their current
224  *   running CPUs and removed from the per-CPU list during the IPI callback
225  *   running on those CPUs.
226  * - When a CPU is brought down, traverse the per-CPU list to disassociate all
227  *   associated TD vCPUs and remove them from the per-CPU list.
228  */
229 static DEFINE_PER_CPU(struct list_head, associated_tdvcpus);
230 
tdvmcall_exit_type(struct kvm_vcpu * vcpu)231 static __always_inline unsigned long tdvmcall_exit_type(struct kvm_vcpu *vcpu)
232 {
233 	return to_tdx(vcpu)->vp_enter_args.r10;
234 }
235 
tdvmcall_leaf(struct kvm_vcpu * vcpu)236 static __always_inline unsigned long tdvmcall_leaf(struct kvm_vcpu *vcpu)
237 {
238 	return to_tdx(vcpu)->vp_enter_args.r11;
239 }
240 
tdvmcall_set_return_code(struct kvm_vcpu * vcpu,long val)241 static __always_inline void tdvmcall_set_return_code(struct kvm_vcpu *vcpu,
242 						     long val)
243 {
244 	to_tdx(vcpu)->vp_enter_args.r10 = val;
245 }
246 
tdvmcall_set_return_val(struct kvm_vcpu * vcpu,unsigned long val)247 static __always_inline void tdvmcall_set_return_val(struct kvm_vcpu *vcpu,
248 						    unsigned long val)
249 {
250 	to_tdx(vcpu)->vp_enter_args.r11 = val;
251 }
252 
tdx_hkid_free(struct kvm_tdx * kvm_tdx)253 static inline void tdx_hkid_free(struct kvm_tdx *kvm_tdx)
254 {
255 	tdx_guest_keyid_free(kvm_tdx->hkid);
256 	kvm_tdx->hkid = -1;
257 	atomic_dec(&nr_configured_hkid);
258 	misc_cg_uncharge(MISC_CG_RES_TDX, kvm_tdx->misc_cg, 1);
259 	put_misc_cg(kvm_tdx->misc_cg);
260 	kvm_tdx->misc_cg = NULL;
261 }
262 
is_hkid_assigned(struct kvm_tdx * kvm_tdx)263 static inline bool is_hkid_assigned(struct kvm_tdx *kvm_tdx)
264 {
265 	return kvm_tdx->hkid > 0;
266 }
267 
tdx_disassociate_vp(struct kvm_vcpu * vcpu)268 static inline void tdx_disassociate_vp(struct kvm_vcpu *vcpu)
269 {
270 	lockdep_assert_irqs_disabled();
271 
272 	list_del(&to_tdx(vcpu)->cpu_list);
273 
274 	/*
275 	 * Ensure tdx->cpu_list is updated before setting vcpu->cpu to -1,
276 	 * otherwise, a different CPU can see vcpu->cpu = -1 and add the vCPU
277 	 * to its list before it's deleted from this CPU's list.
278 	 */
279 	smp_wmb();
280 
281 	vcpu->cpu = -1;
282 }
283 
tdx_no_vcpus_enter_start(struct kvm * kvm)284 static void tdx_no_vcpus_enter_start(struct kvm *kvm)
285 {
286 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
287 
288 	lockdep_assert_held_write(&kvm->mmu_lock);
289 
290 	WRITE_ONCE(kvm_tdx->wait_for_sept_zap, true);
291 
292 	kvm_make_all_cpus_request(kvm, KVM_REQ_OUTSIDE_GUEST_MODE);
293 }
294 
tdx_no_vcpus_enter_stop(struct kvm * kvm)295 static void tdx_no_vcpus_enter_stop(struct kvm *kvm)
296 {
297 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
298 
299 	lockdep_assert_held_write(&kvm->mmu_lock);
300 
301 	WRITE_ONCE(kvm_tdx->wait_for_sept_zap, false);
302 }
303 
304 /* TDH.PHYMEM.PAGE.RECLAIM is allowed only when destroying the TD. */
__tdx_reclaim_page(struct page * page)305 static int __tdx_reclaim_page(struct page *page)
306 {
307 	u64 err, rcx, rdx, r8;
308 
309 	err = tdh_phymem_page_reclaim(page, &rcx, &rdx, &r8);
310 
311 	/*
312 	 * No need to check for TDX_OPERAND_BUSY; all TD pages are freed
313 	 * before the HKID is released and control pages have also been
314 	 * released at this point, so there is no possibility of contention.
315 	 */
316 	if (WARN_ON_ONCE(err)) {
317 		pr_tdx_error_3(TDH_PHYMEM_PAGE_RECLAIM, err, rcx, rdx, r8);
318 		return -EIO;
319 	}
320 	return 0;
321 }
322 
tdx_reclaim_page(struct page * page)323 static int tdx_reclaim_page(struct page *page)
324 {
325 	int r;
326 
327 	r = __tdx_reclaim_page(page);
328 	if (!r)
329 		tdx_quirk_reset_page(page);
330 	return r;
331 }
332 
333 
334 /*
335  * Reclaim the TD control page(s) which are crypto-protected by TDX guest's
336  * private KeyID.  Assume the cache associated with the TDX private KeyID has
337  * been flushed.
338  */
tdx_reclaim_control_page(struct page * ctrl_page)339 static void tdx_reclaim_control_page(struct page *ctrl_page)
340 {
341 	/*
342 	 * Leak the page if the kernel failed to reclaim the page.
343 	 * The kernel cannot use it safely anymore.
344 	 */
345 	if (tdx_reclaim_page(ctrl_page))
346 		return;
347 
348 	__free_page(ctrl_page);
349 }
350 
351 struct tdx_flush_vp_arg {
352 	struct kvm_vcpu *vcpu;
353 	u64 err;
354 };
355 
tdx_flush_vp(void * _arg)356 static void tdx_flush_vp(void *_arg)
357 {
358 	struct tdx_flush_vp_arg *arg = _arg;
359 	struct kvm_vcpu *vcpu = arg->vcpu;
360 	u64 err;
361 
362 	arg->err = 0;
363 	lockdep_assert_irqs_disabled();
364 
365 	/* Task migration can race with CPU offlining. */
366 	if (unlikely(vcpu->cpu != raw_smp_processor_id()))
367 		return;
368 
369 	/*
370 	 * No need to do TDH_VP_FLUSH if the vCPU hasn't been initialized.  The
371 	 * list tracking still needs to be updated so that it's correct if/when
372 	 * the vCPU does get initialized.
373 	 */
374 	if (to_tdx(vcpu)->state != VCPU_TD_STATE_UNINITIALIZED) {
375 		/*
376 		 * No need to retry.  TDX Resources needed for TDH.VP.FLUSH are:
377 		 * TDVPR as exclusive, TDR as shared, and TDCS as shared.  This
378 		 * vp flush function is called when destructing vCPU/TD or vCPU
379 		 * migration.  No other thread uses TDVPR in those cases.
380 		 */
381 		err = tdh_vp_flush(&to_tdx(vcpu)->vp);
382 		if (unlikely(err && err != TDX_VCPU_NOT_ASSOCIATED)) {
383 			/*
384 			 * This function is called in IPI context. Do not use
385 			 * printk to avoid console semaphore.
386 			 * The caller prints out the error message, instead.
387 			 */
388 			if (err)
389 				arg->err = err;
390 		}
391 	}
392 
393 	tdx_disassociate_vp(vcpu);
394 }
395 
tdx_flush_vp_on_cpu(struct kvm_vcpu * vcpu)396 static void tdx_flush_vp_on_cpu(struct kvm_vcpu *vcpu)
397 {
398 	struct tdx_flush_vp_arg arg = {
399 		.vcpu = vcpu,
400 	};
401 	int cpu = vcpu->cpu;
402 
403 	if (unlikely(cpu == -1))
404 		return;
405 
406 	smp_call_function_single(cpu, tdx_flush_vp, &arg, 1);
407 	if (KVM_BUG_ON(arg.err, vcpu->kvm))
408 		pr_tdx_error(TDH_VP_FLUSH, arg.err);
409 }
410 
tdx_disable_virtualization_cpu(void)411 void tdx_disable_virtualization_cpu(void)
412 {
413 	int cpu = raw_smp_processor_id();
414 	struct list_head *tdvcpus = &per_cpu(associated_tdvcpus, cpu);
415 	struct tdx_flush_vp_arg arg;
416 	struct vcpu_tdx *tdx, *tmp;
417 	unsigned long flags;
418 
419 	local_irq_save(flags);
420 	/* Safe variant needed as tdx_disassociate_vp() deletes the entry. */
421 	list_for_each_entry_safe(tdx, tmp, tdvcpus, cpu_list) {
422 		arg.vcpu = &tdx->vcpu;
423 		tdx_flush_vp(&arg);
424 	}
425 	local_irq_restore(flags);
426 
427 	/*
428 	 * Flush cache now if kexec is possible: this is necessary to avoid
429 	 * having dirty private memory cachelines when the new kernel boots,
430 	 * but WBINVD is a relatively expensive operation and doing it during
431 	 * kexec can exacerbate races in native_stop_other_cpus().  Do it
432 	 * now, since this is a safe moment and there is going to be no more
433 	 * TDX activity on this CPU from this point on.
434 	 */
435 	tdx_cpu_flush_cache_for_kexec();
436 }
437 
438 #define TDX_SEAMCALL_RETRIES 10000
439 
smp_func_do_phymem_cache_wb(void * unused)440 static void smp_func_do_phymem_cache_wb(void *unused)
441 {
442 	u64 err = 0;
443 	bool resume;
444 	int i;
445 
446 	/*
447 	 * TDH.PHYMEM.CACHE.WB flushes caches associated with any TDX private
448 	 * KeyID on the package or core.  The TDX module may not finish the
449 	 * cache flush but return TDX_INTERRUPTED_RESUMEABLE instead.  The
450 	 * kernel should retry it until it returns success w/o rescheduling.
451 	 */
452 	for (i = TDX_SEAMCALL_RETRIES; i > 0; i--) {
453 		resume = !!err;
454 		err = tdh_phymem_cache_wb(resume);
455 		switch (err) {
456 		case TDX_INTERRUPTED_RESUMABLE:
457 			continue;
458 		case TDX_NO_HKID_READY_TO_WBCACHE:
459 			err = TDX_SUCCESS; /* Already done by other thread */
460 			fallthrough;
461 		default:
462 			goto out;
463 		}
464 	}
465 
466 out:
467 	if (WARN_ON_ONCE(err))
468 		pr_tdx_error(TDH_PHYMEM_CACHE_WB, err);
469 }
470 
tdx_mmu_release_hkid(struct kvm * kvm)471 void tdx_mmu_release_hkid(struct kvm *kvm)
472 {
473 	bool packages_allocated, targets_allocated;
474 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
475 	cpumask_var_t packages, targets;
476 	struct kvm_vcpu *vcpu;
477 	unsigned long j;
478 	int i;
479 	u64 err;
480 
481 	if (!is_hkid_assigned(kvm_tdx))
482 		return;
483 
484 	packages_allocated = zalloc_cpumask_var(&packages, GFP_KERNEL);
485 	targets_allocated = zalloc_cpumask_var(&targets, GFP_KERNEL);
486 	cpus_read_lock();
487 
488 	kvm_for_each_vcpu(j, vcpu, kvm)
489 		tdx_flush_vp_on_cpu(vcpu);
490 
491 	/*
492 	 * TDH.PHYMEM.CACHE.WB tries to acquire the TDX module global lock
493 	 * and can fail with TDX_OPERAND_BUSY when it fails to get the lock.
494 	 * Multiple TDX guests can be destroyed simultaneously. Take the
495 	 * mutex to prevent it from getting error.
496 	 */
497 	mutex_lock(&tdx_lock);
498 
499 	/*
500 	 * Releasing HKID is in vm_destroy().
501 	 * After the above flushing vps, there should be no more vCPU
502 	 * associations, as all vCPU fds have been released at this stage.
503 	 */
504 	err = tdh_mng_vpflushdone(&kvm_tdx->td);
505 	if (err == TDX_FLUSHVP_NOT_DONE)
506 		goto out;
507 	if (KVM_BUG_ON(err, kvm)) {
508 		pr_tdx_error(TDH_MNG_VPFLUSHDONE, err);
509 		pr_err("tdh_mng_vpflushdone() failed. HKID %d is leaked.\n",
510 		       kvm_tdx->hkid);
511 		goto out;
512 	}
513 
514 	for_each_online_cpu(i) {
515 		if (packages_allocated &&
516 		    cpumask_test_and_set_cpu(topology_physical_package_id(i),
517 					     packages))
518 			continue;
519 		if (targets_allocated)
520 			cpumask_set_cpu(i, targets);
521 	}
522 	if (targets_allocated)
523 		on_each_cpu_mask(targets, smp_func_do_phymem_cache_wb, NULL, true);
524 	else
525 		on_each_cpu(smp_func_do_phymem_cache_wb, NULL, true);
526 	/*
527 	 * In the case of error in smp_func_do_phymem_cache_wb(), the following
528 	 * tdh_mng_key_freeid() will fail.
529 	 */
530 	err = tdh_mng_key_freeid(&kvm_tdx->td);
531 	if (KVM_BUG_ON(err, kvm)) {
532 		pr_tdx_error(TDH_MNG_KEY_FREEID, err);
533 		pr_err("tdh_mng_key_freeid() failed. HKID %d is leaked.\n",
534 		       kvm_tdx->hkid);
535 	} else {
536 		tdx_hkid_free(kvm_tdx);
537 	}
538 
539 out:
540 	mutex_unlock(&tdx_lock);
541 	cpus_read_unlock();
542 	free_cpumask_var(targets);
543 	free_cpumask_var(packages);
544 }
545 
tdx_reclaim_td_control_pages(struct kvm * kvm)546 static void tdx_reclaim_td_control_pages(struct kvm *kvm)
547 {
548 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
549 	u64 err;
550 	int i;
551 
552 	/*
553 	 * tdx_mmu_release_hkid() failed to reclaim HKID.  Something went wrong
554 	 * heavily with TDX module.  Give up freeing TD pages.  As the function
555 	 * already warned, don't warn it again.
556 	 */
557 	if (is_hkid_assigned(kvm_tdx))
558 		return;
559 
560 	if (kvm_tdx->td.tdcs_pages) {
561 		for (i = 0; i < kvm_tdx->td.tdcs_nr_pages; i++) {
562 			if (!kvm_tdx->td.tdcs_pages[i])
563 				continue;
564 
565 			tdx_reclaim_control_page(kvm_tdx->td.tdcs_pages[i]);
566 		}
567 		kfree(kvm_tdx->td.tdcs_pages);
568 		kvm_tdx->td.tdcs_pages = NULL;
569 	}
570 
571 	if (!kvm_tdx->td.tdr_page)
572 		return;
573 
574 	if (__tdx_reclaim_page(kvm_tdx->td.tdr_page))
575 		return;
576 
577 	/*
578 	 * Use a SEAMCALL to ask the TDX module to flush the cache based on the
579 	 * KeyID. TDX module may access TDR while operating on TD (Especially
580 	 * when it is reclaiming TDCS).
581 	 */
582 	err = tdh_phymem_page_wbinvd_tdr(&kvm_tdx->td);
583 	if (KVM_BUG_ON(err, kvm)) {
584 		pr_tdx_error(TDH_PHYMEM_PAGE_WBINVD, err);
585 		return;
586 	}
587 	tdx_quirk_reset_page(kvm_tdx->td.tdr_page);
588 
589 	__free_page(kvm_tdx->td.tdr_page);
590 	kvm_tdx->td.tdr_page = NULL;
591 }
592 
tdx_vm_destroy(struct kvm * kvm)593 void tdx_vm_destroy(struct kvm *kvm)
594 {
595 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
596 
597 	tdx_reclaim_td_control_pages(kvm);
598 
599 	kvm_tdx->state = TD_STATE_UNINITIALIZED;
600 }
601 
tdx_do_tdh_mng_key_config(void * param)602 static int tdx_do_tdh_mng_key_config(void *param)
603 {
604 	struct kvm_tdx *kvm_tdx = param;
605 	u64 err;
606 
607 	/* TDX_RND_NO_ENTROPY related retries are handled by sc_retry() */
608 	err = tdh_mng_key_config(&kvm_tdx->td);
609 
610 	if (KVM_BUG_ON(err, &kvm_tdx->kvm)) {
611 		pr_tdx_error(TDH_MNG_KEY_CONFIG, err);
612 		return -EIO;
613 	}
614 
615 	return 0;
616 }
617 
tdx_vm_init(struct kvm * kvm)618 int tdx_vm_init(struct kvm *kvm)
619 {
620 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
621 
622 	kvm->arch.has_protected_state = true;
623 	/*
624 	 * TDX Module doesn't allow the hypervisor to modify the EOI-bitmap,
625 	 * i.e. all EOIs are accelerated and never trigger exits.
626 	 */
627 	kvm->arch.has_protected_eoi = true;
628 	kvm->arch.has_private_mem = true;
629 	kvm->arch.disabled_quirks |= KVM_X86_QUIRK_IGNORE_GUEST_PAT;
630 
631 	/*
632 	 * Because guest TD is protected, VMM can't parse the instruction in TD.
633 	 * Instead, guest uses MMIO hypercall.  For unmodified device driver,
634 	 * #VE needs to be injected for MMIO and #VE handler in TD converts MMIO
635 	 * instruction into MMIO hypercall.
636 	 *
637 	 * SPTE value for MMIO needs to be setup so that #VE is injected into
638 	 * TD instead of triggering EPT MISCONFIG.
639 	 * - RWX=0 so that EPT violation is triggered.
640 	 * - suppress #VE bit is cleared to inject #VE.
641 	 */
642 	kvm_mmu_set_mmio_spte_value(kvm, 0);
643 
644 	/*
645 	 * TDX has its own limit of maximum vCPUs it can support for all
646 	 * TDX guests in addition to KVM_MAX_VCPUS.  TDX module reports
647 	 * such limit via the MAX_VCPU_PER_TD global metadata.  In
648 	 * practice, it reflects the number of logical CPUs that ALL
649 	 * platforms that the TDX module supports can possibly have.
650 	 *
651 	 * Limit TDX guest's maximum vCPUs to the number of logical CPUs
652 	 * the platform has.  Simply forwarding the MAX_VCPU_PER_TD to
653 	 * userspace would result in an unpredictable ABI.
654 	 */
655 	kvm->max_vcpus = min_t(int, kvm->max_vcpus, num_present_cpus());
656 
657 	kvm_tdx->state = TD_STATE_UNINITIALIZED;
658 
659 	return 0;
660 }
661 
tdx_vcpu_create(struct kvm_vcpu * vcpu)662 int tdx_vcpu_create(struct kvm_vcpu *vcpu)
663 {
664 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(vcpu->kvm);
665 	struct vcpu_tdx *tdx = to_tdx(vcpu);
666 
667 	if (kvm_tdx->state != TD_STATE_INITIALIZED)
668 		return -EIO;
669 
670 	/*
671 	 * TDX module mandates APICv, which requires an in-kernel local APIC.
672 	 * Disallow an in-kernel I/O APIC, because level-triggered interrupts
673 	 * and thus the I/O APIC as a whole can't be faithfully emulated in KVM.
674 	 */
675 	if (!irqchip_split(vcpu->kvm))
676 		return -EINVAL;
677 
678 	fpstate_set_confidential(&vcpu->arch.guest_fpu);
679 	vcpu->arch.apic->guest_apic_protected = true;
680 	INIT_LIST_HEAD(&tdx->vt.pi_wakeup_list);
681 
682 	vcpu->arch.efer = EFER_SCE | EFER_LME | EFER_LMA | EFER_NX;
683 
684 	vcpu->arch.switch_db_regs = KVM_DEBUGREG_AUTO_SWITCH;
685 	vcpu->arch.cr0_guest_owned_bits = -1ul;
686 	vcpu->arch.cr4_guest_owned_bits = -1ul;
687 
688 	/* KVM can't change TSC offset/multiplier as TDX module manages them. */
689 	vcpu->arch.guest_tsc_protected = true;
690 	vcpu->arch.tsc_offset = kvm_tdx->tsc_offset;
691 	vcpu->arch.l1_tsc_offset = vcpu->arch.tsc_offset;
692 	vcpu->arch.tsc_scaling_ratio = kvm_tdx->tsc_multiplier;
693 	vcpu->arch.l1_tsc_scaling_ratio = kvm_tdx->tsc_multiplier;
694 
695 	vcpu->arch.guest_state_protected =
696 		!(to_kvm_tdx(vcpu->kvm)->attributes & TDX_TD_ATTR_DEBUG);
697 
698 	if ((kvm_tdx->xfam & XFEATURE_MASK_XTILE) == XFEATURE_MASK_XTILE)
699 		vcpu->arch.xfd_no_write_intercept = true;
700 
701 	tdx->vt.pi_desc.nv = POSTED_INTR_VECTOR;
702 	__pi_set_sn(&tdx->vt.pi_desc);
703 
704 	tdx->state = VCPU_TD_STATE_UNINITIALIZED;
705 
706 	return 0;
707 }
708 
tdx_vcpu_load(struct kvm_vcpu * vcpu,int cpu)709 void tdx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
710 {
711 	struct vcpu_tdx *tdx = to_tdx(vcpu);
712 
713 	vmx_vcpu_pi_load(vcpu, cpu);
714 	if (vcpu->cpu == cpu || !is_hkid_assigned(to_kvm_tdx(vcpu->kvm)))
715 		return;
716 
717 	tdx_flush_vp_on_cpu(vcpu);
718 
719 	KVM_BUG_ON(cpu != raw_smp_processor_id(), vcpu->kvm);
720 	local_irq_disable();
721 	/*
722 	 * Pairs with the smp_wmb() in tdx_disassociate_vp() to ensure
723 	 * vcpu->cpu is read before tdx->cpu_list.
724 	 */
725 	smp_rmb();
726 
727 	list_add(&tdx->cpu_list, &per_cpu(associated_tdvcpus, cpu));
728 	local_irq_enable();
729 }
730 
tdx_interrupt_allowed(struct kvm_vcpu * vcpu)731 bool tdx_interrupt_allowed(struct kvm_vcpu *vcpu)
732 {
733 	/*
734 	 * KVM can't get the interrupt status of TDX guest and it assumes
735 	 * interrupt is always allowed unless TDX guest calls TDVMCALL with HLT,
736 	 * which passes the interrupt blocked flag.
737 	 */
738 	return vmx_get_exit_reason(vcpu).basic != EXIT_REASON_HLT ||
739 	       !to_tdx(vcpu)->vp_enter_args.r12;
740 }
741 
tdx_protected_apic_has_interrupt(struct kvm_vcpu * vcpu)742 static bool tdx_protected_apic_has_interrupt(struct kvm_vcpu *vcpu)
743 {
744 	u64 vcpu_state_details;
745 
746 	if (pi_has_pending_interrupt(vcpu))
747 		return true;
748 
749 	/*
750 	 * Only check RVI pending for HALTED case with IRQ enabled.
751 	 * For non-HLT cases, KVM doesn't care about STI/SS shadows.  And if the
752 	 * interrupt was pending before TD exit, then it _must_ be blocked,
753 	 * otherwise the interrupt would have been serviced at the instruction
754 	 * boundary.
755 	 */
756 	if (vmx_get_exit_reason(vcpu).basic != EXIT_REASON_HLT ||
757 	    to_tdx(vcpu)->vp_enter_args.r12)
758 		return false;
759 
760 	vcpu_state_details =
761 		td_state_non_arch_read64(to_tdx(vcpu), TD_VCPU_STATE_DETAILS_NON_ARCH);
762 
763 	return tdx_vcpu_state_details_intr_pending(vcpu_state_details);
764 }
765 
766 /*
767  * Compared to vmx_prepare_switch_to_guest(), there is not much to do
768  * as SEAMCALL/SEAMRET calls take care of most of save and restore.
769  */
tdx_prepare_switch_to_guest(struct kvm_vcpu * vcpu)770 void tdx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
771 {
772 	struct vcpu_vt *vt = to_vt(vcpu);
773 
774 	if (vt->guest_state_loaded)
775 		return;
776 
777 	if (likely(is_64bit_mm(current->mm)))
778 		vt->msr_host_kernel_gs_base = current->thread.gsbase;
779 	else
780 		vt->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
781 
782 	vt->guest_state_loaded = true;
783 }
784 
785 struct tdx_uret_msr {
786 	u32 msr;
787 	unsigned int slot;
788 	u64 defval;
789 };
790 
791 static struct tdx_uret_msr tdx_uret_msrs[] = {
792 	{.msr = MSR_SYSCALL_MASK, .defval = 0x20200 },
793 	{.msr = MSR_STAR,},
794 	{.msr = MSR_LSTAR,},
795 	{.msr = MSR_TSC_AUX,},
796 };
797 
tdx_user_return_msr_update_cache(void)798 static void tdx_user_return_msr_update_cache(void)
799 {
800 	int i;
801 
802 	for (i = 0; i < ARRAY_SIZE(tdx_uret_msrs); i++)
803 		kvm_user_return_msr_update_cache(tdx_uret_msrs[i].slot,
804 						 tdx_uret_msrs[i].defval);
805 }
806 
tdx_prepare_switch_to_host(struct kvm_vcpu * vcpu)807 static void tdx_prepare_switch_to_host(struct kvm_vcpu *vcpu)
808 {
809 	struct vcpu_vt *vt = to_vt(vcpu);
810 	struct vcpu_tdx *tdx = to_tdx(vcpu);
811 
812 	if (!vt->guest_state_loaded)
813 		return;
814 
815 	++vcpu->stat.host_state_reload;
816 	wrmsrl(MSR_KERNEL_GS_BASE, vt->msr_host_kernel_gs_base);
817 
818 	if (tdx->guest_entered) {
819 		tdx_user_return_msr_update_cache();
820 		tdx->guest_entered = false;
821 	}
822 
823 	vt->guest_state_loaded = false;
824 }
825 
tdx_vcpu_put(struct kvm_vcpu * vcpu)826 void tdx_vcpu_put(struct kvm_vcpu *vcpu)
827 {
828 	vmx_vcpu_pi_put(vcpu);
829 	tdx_prepare_switch_to_host(vcpu);
830 }
831 
tdx_vcpu_free(struct kvm_vcpu * vcpu)832 void tdx_vcpu_free(struct kvm_vcpu *vcpu)
833 {
834 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(vcpu->kvm);
835 	struct vcpu_tdx *tdx = to_tdx(vcpu);
836 	int i;
837 
838 	/*
839 	 * It is not possible to reclaim pages while hkid is assigned. It might
840 	 * be assigned if:
841 	 * 1. the TD VM is being destroyed but freeing hkid failed, in which
842 	 * case the pages are leaked
843 	 * 2. TD VCPU creation failed and this on the error path, in which case
844 	 * there is nothing to do anyway
845 	 */
846 	if (is_hkid_assigned(kvm_tdx))
847 		return;
848 
849 	if (tdx->vp.tdcx_pages) {
850 		for (i = 0; i < kvm_tdx->td.tdcx_nr_pages; i++) {
851 			if (tdx->vp.tdcx_pages[i])
852 				tdx_reclaim_control_page(tdx->vp.tdcx_pages[i]);
853 		}
854 		kfree(tdx->vp.tdcx_pages);
855 		tdx->vp.tdcx_pages = NULL;
856 	}
857 	if (tdx->vp.tdvpr_page) {
858 		tdx_reclaim_control_page(tdx->vp.tdvpr_page);
859 		tdx->vp.tdvpr_page = 0;
860 		tdx->vp.tdvpr_pa = 0;
861 	}
862 
863 	tdx->state = VCPU_TD_STATE_UNINITIALIZED;
864 }
865 
tdx_vcpu_pre_run(struct kvm_vcpu * vcpu)866 int tdx_vcpu_pre_run(struct kvm_vcpu *vcpu)
867 {
868 	if (unlikely(to_tdx(vcpu)->state != VCPU_TD_STATE_INITIALIZED ||
869 		     to_kvm_tdx(vcpu->kvm)->state != TD_STATE_RUNNABLE))
870 		return -EINVAL;
871 
872 	return 1;
873 }
874 
tdcall_to_vmx_exit_reason(struct kvm_vcpu * vcpu)875 static __always_inline u32 tdcall_to_vmx_exit_reason(struct kvm_vcpu *vcpu)
876 {
877 	switch (tdvmcall_leaf(vcpu)) {
878 	case EXIT_REASON_CPUID:
879 	case EXIT_REASON_HLT:
880 	case EXIT_REASON_IO_INSTRUCTION:
881 	case EXIT_REASON_MSR_READ:
882 	case EXIT_REASON_MSR_WRITE:
883 		return tdvmcall_leaf(vcpu);
884 	case EXIT_REASON_EPT_VIOLATION:
885 		return EXIT_REASON_EPT_MISCONFIG;
886 	default:
887 		break;
888 	}
889 
890 	return EXIT_REASON_TDCALL;
891 }
892 
tdx_to_vmx_exit_reason(struct kvm_vcpu * vcpu)893 static __always_inline u32 tdx_to_vmx_exit_reason(struct kvm_vcpu *vcpu)
894 {
895 	struct vcpu_tdx *tdx = to_tdx(vcpu);
896 	u32 exit_reason;
897 
898 	switch (tdx->vp_enter_ret & TDX_SEAMCALL_STATUS_MASK) {
899 	case TDX_SUCCESS:
900 	case TDX_NON_RECOVERABLE_VCPU:
901 	case TDX_NON_RECOVERABLE_TD:
902 	case TDX_NON_RECOVERABLE_TD_NON_ACCESSIBLE:
903 	case TDX_NON_RECOVERABLE_TD_WRONG_APIC_MODE:
904 		break;
905 	default:
906 		return -1u;
907 	}
908 
909 	exit_reason = tdx->vp_enter_ret;
910 
911 	switch (exit_reason) {
912 	case EXIT_REASON_TDCALL:
913 		if (tdvmcall_exit_type(vcpu))
914 			return EXIT_REASON_VMCALL;
915 
916 		return tdcall_to_vmx_exit_reason(vcpu);
917 	case EXIT_REASON_EPT_MISCONFIG:
918 		/*
919 		 * Defer KVM_BUG_ON() until tdx_handle_exit() because this is in
920 		 * non-instrumentable code with interrupts disabled.
921 		 */
922 		return -1u;
923 	default:
924 		break;
925 	}
926 
927 	return exit_reason;
928 }
929 
tdx_vcpu_enter_exit(struct kvm_vcpu * vcpu)930 static noinstr void tdx_vcpu_enter_exit(struct kvm_vcpu *vcpu)
931 {
932 	struct vcpu_tdx *tdx = to_tdx(vcpu);
933 	struct vcpu_vt *vt = to_vt(vcpu);
934 
935 	guest_state_enter_irqoff();
936 
937 	tdx->vp_enter_ret = tdh_vp_enter(&tdx->vp, &tdx->vp_enter_args);
938 
939 	vt->exit_reason.full = tdx_to_vmx_exit_reason(vcpu);
940 
941 	vt->exit_qualification = tdx->vp_enter_args.rcx;
942 	tdx->ext_exit_qualification = tdx->vp_enter_args.rdx;
943 	tdx->exit_gpa = tdx->vp_enter_args.r8;
944 	vt->exit_intr_info = tdx->vp_enter_args.r9;
945 
946 	vmx_handle_nmi(vcpu);
947 
948 	guest_state_exit_irqoff();
949 }
950 
tdx_failed_vmentry(struct kvm_vcpu * vcpu)951 static bool tdx_failed_vmentry(struct kvm_vcpu *vcpu)
952 {
953 	return vmx_get_exit_reason(vcpu).failed_vmentry &&
954 	       vmx_get_exit_reason(vcpu).full != -1u;
955 }
956 
tdx_exit_handlers_fastpath(struct kvm_vcpu * vcpu)957 static fastpath_t tdx_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
958 {
959 	u64 vp_enter_ret = to_tdx(vcpu)->vp_enter_ret;
960 
961 	/*
962 	 * TDX_OPERAND_BUSY could be returned for SEPT due to 0-step mitigation
963 	 * or for TD EPOCH due to contention with TDH.MEM.TRACK on TDH.VP.ENTER.
964 	 *
965 	 * When KVM requests KVM_REQ_OUTSIDE_GUEST_MODE, which has both
966 	 * KVM_REQUEST_WAIT and KVM_REQUEST_NO_ACTION set, it requires target
967 	 * vCPUs leaving fastpath so that interrupt can be enabled to ensure the
968 	 * IPIs can be delivered. Return EXIT_FASTPATH_EXIT_HANDLED instead of
969 	 * EXIT_FASTPATH_REENTER_GUEST to exit fastpath, otherwise, the
970 	 * requester may be blocked endlessly.
971 	 */
972 	if (unlikely(tdx_operand_busy(vp_enter_ret)))
973 		return EXIT_FASTPATH_EXIT_HANDLED;
974 
975 	return EXIT_FASTPATH_NONE;
976 }
977 
978 #define TDX_REGS_AVAIL_SET	(BIT_ULL(VCPU_EXREG_EXIT_INFO_1) | \
979 				 BIT_ULL(VCPU_EXREG_EXIT_INFO_2) | \
980 				 BIT_ULL(VCPU_REGS_RAX) | \
981 				 BIT_ULL(VCPU_REGS_RBX) | \
982 				 BIT_ULL(VCPU_REGS_RCX) | \
983 				 BIT_ULL(VCPU_REGS_RDX) | \
984 				 BIT_ULL(VCPU_REGS_RBP) | \
985 				 BIT_ULL(VCPU_REGS_RSI) | \
986 				 BIT_ULL(VCPU_REGS_RDI) | \
987 				 BIT_ULL(VCPU_REGS_R8) | \
988 				 BIT_ULL(VCPU_REGS_R9) | \
989 				 BIT_ULL(VCPU_REGS_R10) | \
990 				 BIT_ULL(VCPU_REGS_R11) | \
991 				 BIT_ULL(VCPU_REGS_R12) | \
992 				 BIT_ULL(VCPU_REGS_R13) | \
993 				 BIT_ULL(VCPU_REGS_R14) | \
994 				 BIT_ULL(VCPU_REGS_R15))
995 
tdx_load_host_xsave_state(struct kvm_vcpu * vcpu)996 static void tdx_load_host_xsave_state(struct kvm_vcpu *vcpu)
997 {
998 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(vcpu->kvm);
999 
1000 	/*
1001 	 * All TDX hosts support PKRU; but even if they didn't,
1002 	 * vcpu->arch.host_pkru would be 0 and the wrpkru would be
1003 	 * skipped.
1004 	 */
1005 	if (vcpu->arch.host_pkru != 0)
1006 		wrpkru(vcpu->arch.host_pkru);
1007 
1008 	if (kvm_host.xcr0 != (kvm_tdx->xfam & kvm_caps.supported_xcr0))
1009 		xsetbv(XCR_XFEATURE_ENABLED_MASK, kvm_host.xcr0);
1010 
1011 	/*
1012 	 * Likewise, even if a TDX hosts didn't support XSS both arms of
1013 	 * the comparison would be 0 and the wrmsrl would be skipped.
1014 	 */
1015 	if (kvm_host.xss != (kvm_tdx->xfam & kvm_caps.supported_xss))
1016 		wrmsrl(MSR_IA32_XSS, kvm_host.xss);
1017 }
1018 
1019 #define TDX_DEBUGCTL_PRESERVED (DEBUGCTLMSR_BTF | \
1020 				DEBUGCTLMSR_FREEZE_PERFMON_ON_PMI | \
1021 				DEBUGCTLMSR_FREEZE_IN_SMM)
1022 
tdx_vcpu_run(struct kvm_vcpu * vcpu,u64 run_flags)1023 fastpath_t tdx_vcpu_run(struct kvm_vcpu *vcpu, u64 run_flags)
1024 {
1025 	struct vcpu_tdx *tdx = to_tdx(vcpu);
1026 	struct vcpu_vt *vt = to_vt(vcpu);
1027 
1028 	/*
1029 	 * WARN if KVM wants to force an immediate exit, as the TDX module does
1030 	 * not guarantee entry into the guest, i.e. it's possible for KVM to
1031 	 * _think_ it completed entry to the guest and forced an immediate exit
1032 	 * without actually having done so.  Luckily, KVM never needs to force
1033 	 * an immediate exit for TDX (KVM can't do direct event injection, so
1034 	 * just WARN and continue on.
1035 	 */
1036 	WARN_ON_ONCE(run_flags);
1037 
1038 	/*
1039 	 * Wait until retry of SEPT-zap-related SEAMCALL completes before
1040 	 * allowing vCPU entry to avoid contention with tdh_vp_enter() and
1041 	 * TDCALLs.
1042 	 */
1043 	if (unlikely(READ_ONCE(to_kvm_tdx(vcpu->kvm)->wait_for_sept_zap)))
1044 		return EXIT_FASTPATH_EXIT_HANDLED;
1045 
1046 	trace_kvm_entry(vcpu, run_flags & KVM_RUN_FORCE_IMMEDIATE_EXIT);
1047 
1048 	if (pi_test_on(&vt->pi_desc)) {
1049 		apic->send_IPI_self(POSTED_INTR_VECTOR);
1050 
1051 		if (pi_test_pir(kvm_lapic_get_reg(vcpu->arch.apic, APIC_LVTT) &
1052 			       APIC_VECTOR_MASK, &vt->pi_desc))
1053 			kvm_wait_lapic_expire(vcpu);
1054 	}
1055 
1056 	tdx_vcpu_enter_exit(vcpu);
1057 
1058 	if (vcpu->arch.host_debugctl & ~TDX_DEBUGCTL_PRESERVED)
1059 		update_debugctlmsr(vcpu->arch.host_debugctl);
1060 
1061 	tdx_load_host_xsave_state(vcpu);
1062 	tdx->guest_entered = true;
1063 
1064 	vcpu->arch.regs_avail &= TDX_REGS_AVAIL_SET;
1065 
1066 	if (unlikely(tdx->vp_enter_ret == EXIT_REASON_EPT_MISCONFIG))
1067 		return EXIT_FASTPATH_NONE;
1068 
1069 	if (unlikely((tdx->vp_enter_ret & TDX_SW_ERROR) == TDX_SW_ERROR))
1070 		return EXIT_FASTPATH_NONE;
1071 
1072 	if (unlikely(vmx_get_exit_reason(vcpu).basic == EXIT_REASON_MCE_DURING_VMENTRY))
1073 		kvm_machine_check();
1074 
1075 	trace_kvm_exit(vcpu, KVM_ISA_VMX);
1076 
1077 	if (unlikely(tdx_failed_vmentry(vcpu)))
1078 		return EXIT_FASTPATH_NONE;
1079 
1080 	return tdx_exit_handlers_fastpath(vcpu);
1081 }
1082 
tdx_inject_nmi(struct kvm_vcpu * vcpu)1083 void tdx_inject_nmi(struct kvm_vcpu *vcpu)
1084 {
1085 	++vcpu->stat.nmi_injections;
1086 	td_management_write8(to_tdx(vcpu), TD_VCPU_PEND_NMI, 1);
1087 	/*
1088 	 * From KVM's perspective, NMI injection is completed right after
1089 	 * writing to PEND_NMI.  KVM doesn't care whether an NMI is injected by
1090 	 * the TDX module or not.
1091 	 */
1092 	vcpu->arch.nmi_injected = false;
1093 	/*
1094 	 * TDX doesn't support KVM to request NMI window exit.  If there is
1095 	 * still a pending vNMI, KVM is not able to inject it along with the
1096 	 * one pending in TDX module in a back-to-back way.  Since the previous
1097 	 * vNMI is still pending in TDX module, i.e. it has not been delivered
1098 	 * to TDX guest yet, it's OK to collapse the pending vNMI into the
1099 	 * previous one.  The guest is expected to handle all the NMI sources
1100 	 * when handling the first vNMI.
1101 	 */
1102 	vcpu->arch.nmi_pending = 0;
1103 }
1104 
tdx_handle_exception_nmi(struct kvm_vcpu * vcpu)1105 static int tdx_handle_exception_nmi(struct kvm_vcpu *vcpu)
1106 {
1107 	u32 intr_info = vmx_get_intr_info(vcpu);
1108 
1109 	/*
1110 	 * Machine checks are handled by handle_exception_irqoff(), or by
1111 	 * tdx_handle_exit() with TDX_NON_RECOVERABLE set if a #MC occurs on
1112 	 * VM-Entry.  NMIs are handled by tdx_vcpu_enter_exit().
1113 	 */
1114 	if (is_nmi(intr_info) || is_machine_check(intr_info))
1115 		return 1;
1116 
1117 	vcpu->run->exit_reason = KVM_EXIT_EXCEPTION;
1118 	vcpu->run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
1119 	vcpu->run->ex.error_code = 0;
1120 
1121 	return 0;
1122 }
1123 
complete_hypercall_exit(struct kvm_vcpu * vcpu)1124 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
1125 {
1126 	tdvmcall_set_return_code(vcpu, vcpu->run->hypercall.ret);
1127 	return 1;
1128 }
1129 
tdx_emulate_vmcall(struct kvm_vcpu * vcpu)1130 static int tdx_emulate_vmcall(struct kvm_vcpu *vcpu)
1131 {
1132 	kvm_rax_write(vcpu, to_tdx(vcpu)->vp_enter_args.r10);
1133 	kvm_rbx_write(vcpu, to_tdx(vcpu)->vp_enter_args.r11);
1134 	kvm_rcx_write(vcpu, to_tdx(vcpu)->vp_enter_args.r12);
1135 	kvm_rdx_write(vcpu, to_tdx(vcpu)->vp_enter_args.r13);
1136 	kvm_rsi_write(vcpu, to_tdx(vcpu)->vp_enter_args.r14);
1137 
1138 	return __kvm_emulate_hypercall(vcpu, 0, complete_hypercall_exit);
1139 }
1140 
1141 /*
1142  * Split into chunks and check interrupt pending between chunks.  This allows
1143  * for timely injection of interrupts to prevent issues with guest lockup
1144  * detection.
1145  */
1146 #define TDX_MAP_GPA_MAX_LEN (2 * 1024 * 1024)
1147 static void __tdx_map_gpa(struct vcpu_tdx *tdx);
1148 
tdx_complete_vmcall_map_gpa(struct kvm_vcpu * vcpu)1149 static int tdx_complete_vmcall_map_gpa(struct kvm_vcpu *vcpu)
1150 {
1151 	struct vcpu_tdx *tdx = to_tdx(vcpu);
1152 
1153 	if (vcpu->run->hypercall.ret) {
1154 		tdvmcall_set_return_code(vcpu, TDVMCALL_STATUS_INVALID_OPERAND);
1155 		tdx->vp_enter_args.r11 = tdx->map_gpa_next;
1156 		return 1;
1157 	}
1158 
1159 	tdx->map_gpa_next += TDX_MAP_GPA_MAX_LEN;
1160 	if (tdx->map_gpa_next >= tdx->map_gpa_end)
1161 		return 1;
1162 
1163 	/*
1164 	 * Stop processing the remaining part if there is a pending interrupt,
1165 	 * which could be qualified to deliver.  Skip checking pending RVI for
1166 	 * TDVMCALL_MAP_GPA, see comments in tdx_protected_apic_has_interrupt().
1167 	 */
1168 	if (kvm_vcpu_has_events(vcpu)) {
1169 		tdvmcall_set_return_code(vcpu, TDVMCALL_STATUS_RETRY);
1170 		tdx->vp_enter_args.r11 = tdx->map_gpa_next;
1171 		return 1;
1172 	}
1173 
1174 	__tdx_map_gpa(tdx);
1175 	return 0;
1176 }
1177 
__tdx_map_gpa(struct vcpu_tdx * tdx)1178 static void __tdx_map_gpa(struct vcpu_tdx *tdx)
1179 {
1180 	u64 gpa = tdx->map_gpa_next;
1181 	u64 size = tdx->map_gpa_end - tdx->map_gpa_next;
1182 
1183 	if (size > TDX_MAP_GPA_MAX_LEN)
1184 		size = TDX_MAP_GPA_MAX_LEN;
1185 
1186 	tdx->vcpu.run->exit_reason       = KVM_EXIT_HYPERCALL;
1187 	tdx->vcpu.run->hypercall.nr      = KVM_HC_MAP_GPA_RANGE;
1188 	/*
1189 	 * In principle this should have been -KVM_ENOSYS, but userspace (QEMU <=9.2)
1190 	 * assumed that vcpu->run->hypercall.ret is never changed by KVM and thus that
1191 	 * it was always zero on KVM_EXIT_HYPERCALL.  Since KVM is now overwriting
1192 	 * vcpu->run->hypercall.ret, ensuring that it is zero to not break QEMU.
1193 	 */
1194 	tdx->vcpu.run->hypercall.ret = 0;
1195 	tdx->vcpu.run->hypercall.args[0] = gpa & ~gfn_to_gpa(kvm_gfn_direct_bits(tdx->vcpu.kvm));
1196 	tdx->vcpu.run->hypercall.args[1] = size / PAGE_SIZE;
1197 	tdx->vcpu.run->hypercall.args[2] = vt_is_tdx_private_gpa(tdx->vcpu.kvm, gpa) ?
1198 					   KVM_MAP_GPA_RANGE_ENCRYPTED :
1199 					   KVM_MAP_GPA_RANGE_DECRYPTED;
1200 	tdx->vcpu.run->hypercall.flags   = KVM_EXIT_HYPERCALL_LONG_MODE;
1201 
1202 	tdx->vcpu.arch.complete_userspace_io = tdx_complete_vmcall_map_gpa;
1203 }
1204 
tdx_map_gpa(struct kvm_vcpu * vcpu)1205 static int tdx_map_gpa(struct kvm_vcpu *vcpu)
1206 {
1207 	struct vcpu_tdx *tdx = to_tdx(vcpu);
1208 	u64 gpa = tdx->vp_enter_args.r12;
1209 	u64 size = tdx->vp_enter_args.r13;
1210 	u64 ret;
1211 
1212 	/*
1213 	 * Converting TDVMCALL_MAP_GPA to KVM_HC_MAP_GPA_RANGE requires
1214 	 * userspace to enable KVM_CAP_EXIT_HYPERCALL with KVM_HC_MAP_GPA_RANGE
1215 	 * bit set.  This is a base call so it should always be supported, but
1216 	 * KVM has no way to ensure that userspace implements the GHCI correctly.
1217 	 * So if KVM_HC_MAP_GPA_RANGE does not cause a VMEXIT, return an error
1218 	 * to the guest.
1219 	 */
1220 	if (!user_exit_on_hypercall(vcpu->kvm, KVM_HC_MAP_GPA_RANGE)) {
1221 		ret = TDVMCALL_STATUS_SUBFUNC_UNSUPPORTED;
1222 		goto error;
1223 	}
1224 
1225 	if (gpa + size <= gpa || !kvm_vcpu_is_legal_gpa(vcpu, gpa) ||
1226 	    !kvm_vcpu_is_legal_gpa(vcpu, gpa + size - 1) ||
1227 	    (vt_is_tdx_private_gpa(vcpu->kvm, gpa) !=
1228 	     vt_is_tdx_private_gpa(vcpu->kvm, gpa + size - 1))) {
1229 		ret = TDVMCALL_STATUS_INVALID_OPERAND;
1230 		goto error;
1231 	}
1232 
1233 	if (!PAGE_ALIGNED(gpa) || !PAGE_ALIGNED(size)) {
1234 		ret = TDVMCALL_STATUS_ALIGN_ERROR;
1235 		goto error;
1236 	}
1237 
1238 	tdx->map_gpa_end = gpa + size;
1239 	tdx->map_gpa_next = gpa;
1240 
1241 	__tdx_map_gpa(tdx);
1242 	return 0;
1243 
1244 error:
1245 	tdvmcall_set_return_code(vcpu, ret);
1246 	tdx->vp_enter_args.r11 = gpa;
1247 	return 1;
1248 }
1249 
tdx_report_fatal_error(struct kvm_vcpu * vcpu)1250 static int tdx_report_fatal_error(struct kvm_vcpu *vcpu)
1251 {
1252 	struct vcpu_tdx *tdx = to_tdx(vcpu);
1253 	u64 *regs = vcpu->run->system_event.data;
1254 	u64 *module_regs = &tdx->vp_enter_args.r8;
1255 	int index = VCPU_REGS_RAX;
1256 
1257 	vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
1258 	vcpu->run->system_event.type = KVM_SYSTEM_EVENT_TDX_FATAL;
1259 	vcpu->run->system_event.ndata = 16;
1260 
1261 	/* Dump 16 general-purpose registers to userspace in ascending order. */
1262 	regs[index++] = tdx->vp_enter_ret;
1263 	regs[index++] = tdx->vp_enter_args.rcx;
1264 	regs[index++] = tdx->vp_enter_args.rdx;
1265 	regs[index++] = tdx->vp_enter_args.rbx;
1266 	regs[index++] = 0;
1267 	regs[index++] = 0;
1268 	regs[index++] = tdx->vp_enter_args.rsi;
1269 	regs[index] = tdx->vp_enter_args.rdi;
1270 	for (index = 0; index < 8; index++)
1271 		regs[VCPU_REGS_R8 + index] = module_regs[index];
1272 
1273 	return 0;
1274 }
1275 
tdx_emulate_cpuid(struct kvm_vcpu * vcpu)1276 static int tdx_emulate_cpuid(struct kvm_vcpu *vcpu)
1277 {
1278 	u32 eax, ebx, ecx, edx;
1279 	struct vcpu_tdx *tdx = to_tdx(vcpu);
1280 
1281 	/* EAX and ECX for cpuid is stored in R12 and R13. */
1282 	eax = tdx->vp_enter_args.r12;
1283 	ecx = tdx->vp_enter_args.r13;
1284 
1285 	kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false);
1286 
1287 	tdx->vp_enter_args.r12 = eax;
1288 	tdx->vp_enter_args.r13 = ebx;
1289 	tdx->vp_enter_args.r14 = ecx;
1290 	tdx->vp_enter_args.r15 = edx;
1291 
1292 	return 1;
1293 }
1294 
tdx_complete_pio_out(struct kvm_vcpu * vcpu)1295 static int tdx_complete_pio_out(struct kvm_vcpu *vcpu)
1296 {
1297 	vcpu->arch.pio.count = 0;
1298 	return 1;
1299 }
1300 
tdx_complete_pio_in(struct kvm_vcpu * vcpu)1301 static int tdx_complete_pio_in(struct kvm_vcpu *vcpu)
1302 {
1303 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
1304 	unsigned long val = 0;
1305 	int ret;
1306 
1307 	ret = ctxt->ops->pio_in_emulated(ctxt, vcpu->arch.pio.size,
1308 					 vcpu->arch.pio.port, &val, 1);
1309 
1310 	WARN_ON_ONCE(!ret);
1311 
1312 	tdvmcall_set_return_val(vcpu, val);
1313 
1314 	return 1;
1315 }
1316 
tdx_emulate_io(struct kvm_vcpu * vcpu)1317 static int tdx_emulate_io(struct kvm_vcpu *vcpu)
1318 {
1319 	struct vcpu_tdx *tdx = to_tdx(vcpu);
1320 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
1321 	unsigned long val = 0;
1322 	unsigned int port;
1323 	u64 size, write;
1324 	int ret;
1325 
1326 	++vcpu->stat.io_exits;
1327 
1328 	size = tdx->vp_enter_args.r12;
1329 	write = tdx->vp_enter_args.r13;
1330 	port = tdx->vp_enter_args.r14;
1331 
1332 	if ((write != 0 && write != 1) || (size != 1 && size != 2 && size != 4)) {
1333 		tdvmcall_set_return_code(vcpu, TDVMCALL_STATUS_INVALID_OPERAND);
1334 		return 1;
1335 	}
1336 
1337 	if (write) {
1338 		val = tdx->vp_enter_args.r15;
1339 		ret = ctxt->ops->pio_out_emulated(ctxt, size, port, &val, 1);
1340 	} else {
1341 		ret = ctxt->ops->pio_in_emulated(ctxt, size, port, &val, 1);
1342 	}
1343 
1344 	if (!ret)
1345 		vcpu->arch.complete_userspace_io = write ? tdx_complete_pio_out :
1346 							   tdx_complete_pio_in;
1347 	else if (!write)
1348 		tdvmcall_set_return_val(vcpu, val);
1349 
1350 	return ret;
1351 }
1352 
tdx_complete_mmio_read(struct kvm_vcpu * vcpu)1353 static int tdx_complete_mmio_read(struct kvm_vcpu *vcpu)
1354 {
1355 	unsigned long val = 0;
1356 	gpa_t gpa;
1357 	int size;
1358 
1359 	gpa = vcpu->mmio_fragments[0].gpa;
1360 	size = vcpu->mmio_fragments[0].len;
1361 
1362 	memcpy(&val, vcpu->run->mmio.data, size);
1363 	tdvmcall_set_return_val(vcpu, val);
1364 	trace_kvm_mmio(KVM_TRACE_MMIO_READ, size, gpa, &val);
1365 	return 1;
1366 }
1367 
tdx_mmio_write(struct kvm_vcpu * vcpu,gpa_t gpa,int size,unsigned long val)1368 static inline int tdx_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, int size,
1369 				 unsigned long val)
1370 {
1371 	if (!kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
1372 		trace_kvm_fast_mmio(gpa);
1373 		return 0;
1374 	}
1375 
1376 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, size, gpa, &val);
1377 	if (kvm_io_bus_write(vcpu, KVM_MMIO_BUS, gpa, size, &val))
1378 		return -EOPNOTSUPP;
1379 
1380 	return 0;
1381 }
1382 
tdx_mmio_read(struct kvm_vcpu * vcpu,gpa_t gpa,int size)1383 static inline int tdx_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, int size)
1384 {
1385 	unsigned long val;
1386 
1387 	if (kvm_io_bus_read(vcpu, KVM_MMIO_BUS, gpa, size, &val))
1388 		return -EOPNOTSUPP;
1389 
1390 	tdvmcall_set_return_val(vcpu, val);
1391 	trace_kvm_mmio(KVM_TRACE_MMIO_READ, size, gpa, &val);
1392 	return 0;
1393 }
1394 
tdx_emulate_mmio(struct kvm_vcpu * vcpu)1395 static int tdx_emulate_mmio(struct kvm_vcpu *vcpu)
1396 {
1397 	struct vcpu_tdx *tdx = to_tdx(vcpu);
1398 	int size, write, r;
1399 	unsigned long val;
1400 	gpa_t gpa;
1401 
1402 	size = tdx->vp_enter_args.r12;
1403 	write = tdx->vp_enter_args.r13;
1404 	gpa = tdx->vp_enter_args.r14;
1405 	val = write ? tdx->vp_enter_args.r15 : 0;
1406 
1407 	if (size != 1 && size != 2 && size != 4 && size != 8)
1408 		goto error;
1409 	if (write != 0 && write != 1)
1410 		goto error;
1411 
1412 	/*
1413 	 * TDG.VP.VMCALL<MMIO> allows only shared GPA, it makes no sense to
1414 	 * do MMIO emulation for private GPA.
1415 	 */
1416 	if (vt_is_tdx_private_gpa(vcpu->kvm, gpa) ||
1417 	    vt_is_tdx_private_gpa(vcpu->kvm, gpa + size - 1))
1418 		goto error;
1419 
1420 	gpa = gpa & ~gfn_to_gpa(kvm_gfn_direct_bits(vcpu->kvm));
1421 
1422 	if (write)
1423 		r = tdx_mmio_write(vcpu, gpa, size, val);
1424 	else
1425 		r = tdx_mmio_read(vcpu, gpa, size);
1426 	if (!r)
1427 		/* Kernel completed device emulation. */
1428 		return 1;
1429 
1430 	/* Request the device emulation to userspace device model. */
1431 	vcpu->mmio_is_write = write;
1432 	if (!write)
1433 		vcpu->arch.complete_userspace_io = tdx_complete_mmio_read;
1434 
1435 	vcpu->run->mmio.phys_addr = gpa;
1436 	vcpu->run->mmio.len = size;
1437 	vcpu->run->mmio.is_write = write;
1438 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
1439 
1440 	if (write) {
1441 		memcpy(vcpu->run->mmio.data, &val, size);
1442 	} else {
1443 		vcpu->mmio_fragments[0].gpa = gpa;
1444 		vcpu->mmio_fragments[0].len = size;
1445 		trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, size, gpa, NULL);
1446 	}
1447 	return 0;
1448 
1449 error:
1450 	tdvmcall_set_return_code(vcpu, TDVMCALL_STATUS_INVALID_OPERAND);
1451 	return 1;
1452 }
1453 
tdx_complete_get_td_vm_call_info(struct kvm_vcpu * vcpu)1454 static int tdx_complete_get_td_vm_call_info(struct kvm_vcpu *vcpu)
1455 {
1456 	struct vcpu_tdx *tdx = to_tdx(vcpu);
1457 
1458 	tdvmcall_set_return_code(vcpu, vcpu->run->tdx.get_tdvmcall_info.ret);
1459 
1460 	/*
1461 	 * For now, there is no TDVMCALL beyond GHCI base API supported by KVM
1462 	 * directly without the support from userspace, just set the value
1463 	 * returned from userspace.
1464 	 */
1465 	tdx->vp_enter_args.r11 = vcpu->run->tdx.get_tdvmcall_info.r11;
1466 	tdx->vp_enter_args.r12 = vcpu->run->tdx.get_tdvmcall_info.r12;
1467 	tdx->vp_enter_args.r13 = vcpu->run->tdx.get_tdvmcall_info.r13;
1468 	tdx->vp_enter_args.r14 = vcpu->run->tdx.get_tdvmcall_info.r14;
1469 
1470 	return 1;
1471 }
1472 
tdx_get_td_vm_call_info(struct kvm_vcpu * vcpu)1473 static int tdx_get_td_vm_call_info(struct kvm_vcpu *vcpu)
1474 {
1475 	struct vcpu_tdx *tdx = to_tdx(vcpu);
1476 
1477 	switch (tdx->vp_enter_args.r12) {
1478 	case 0:
1479 		tdx->vp_enter_args.r11 = 0;
1480 		tdx->vp_enter_args.r12 = 0;
1481 		tdx->vp_enter_args.r13 = 0;
1482 		tdx->vp_enter_args.r14 = 0;
1483 		tdvmcall_set_return_code(vcpu, TDVMCALL_STATUS_SUCCESS);
1484 		return 1;
1485 	case 1:
1486 		vcpu->run->tdx.get_tdvmcall_info.leaf = tdx->vp_enter_args.r12;
1487 		vcpu->run->exit_reason = KVM_EXIT_TDX;
1488 		vcpu->run->tdx.flags = 0;
1489 		vcpu->run->tdx.nr = TDVMCALL_GET_TD_VM_CALL_INFO;
1490 		vcpu->run->tdx.get_tdvmcall_info.ret = TDVMCALL_STATUS_SUCCESS;
1491 		vcpu->run->tdx.get_tdvmcall_info.r11 = 0;
1492 		vcpu->run->tdx.get_tdvmcall_info.r12 = 0;
1493 		vcpu->run->tdx.get_tdvmcall_info.r13 = 0;
1494 		vcpu->run->tdx.get_tdvmcall_info.r14 = 0;
1495 		vcpu->arch.complete_userspace_io = tdx_complete_get_td_vm_call_info;
1496 		return 0;
1497 	default:
1498 		tdvmcall_set_return_code(vcpu, TDVMCALL_STATUS_INVALID_OPERAND);
1499 		return 1;
1500 	}
1501 }
1502 
tdx_complete_simple(struct kvm_vcpu * vcpu)1503 static int tdx_complete_simple(struct kvm_vcpu *vcpu)
1504 {
1505 	tdvmcall_set_return_code(vcpu, vcpu->run->tdx.unknown.ret);
1506 	return 1;
1507 }
1508 
tdx_get_quote(struct kvm_vcpu * vcpu)1509 static int tdx_get_quote(struct kvm_vcpu *vcpu)
1510 {
1511 	struct vcpu_tdx *tdx = to_tdx(vcpu);
1512 	u64 gpa = tdx->vp_enter_args.r12;
1513 	u64 size = tdx->vp_enter_args.r13;
1514 
1515 	/* The gpa of buffer must have shared bit set. */
1516 	if (vt_is_tdx_private_gpa(vcpu->kvm, gpa)) {
1517 		tdvmcall_set_return_code(vcpu, TDVMCALL_STATUS_INVALID_OPERAND);
1518 		return 1;
1519 	}
1520 
1521 	vcpu->run->exit_reason = KVM_EXIT_TDX;
1522 	vcpu->run->tdx.flags = 0;
1523 	vcpu->run->tdx.nr = TDVMCALL_GET_QUOTE;
1524 	vcpu->run->tdx.get_quote.ret = TDVMCALL_STATUS_SUBFUNC_UNSUPPORTED;
1525 	vcpu->run->tdx.get_quote.gpa = gpa & ~gfn_to_gpa(kvm_gfn_direct_bits(tdx->vcpu.kvm));
1526 	vcpu->run->tdx.get_quote.size = size;
1527 
1528 	vcpu->arch.complete_userspace_io = tdx_complete_simple;
1529 
1530 	return 0;
1531 }
1532 
tdx_setup_event_notify_interrupt(struct kvm_vcpu * vcpu)1533 static int tdx_setup_event_notify_interrupt(struct kvm_vcpu *vcpu)
1534 {
1535 	struct vcpu_tdx *tdx = to_tdx(vcpu);
1536 	u64 vector = tdx->vp_enter_args.r12;
1537 
1538 	if (vector < 32 || vector > 255) {
1539 		tdvmcall_set_return_code(vcpu, TDVMCALL_STATUS_INVALID_OPERAND);
1540 		return 1;
1541 	}
1542 
1543 	vcpu->run->exit_reason = KVM_EXIT_TDX;
1544 	vcpu->run->tdx.flags = 0;
1545 	vcpu->run->tdx.nr = TDVMCALL_SETUP_EVENT_NOTIFY_INTERRUPT;
1546 	vcpu->run->tdx.setup_event_notify.ret = TDVMCALL_STATUS_SUBFUNC_UNSUPPORTED;
1547 	vcpu->run->tdx.setup_event_notify.vector = vector;
1548 
1549 	vcpu->arch.complete_userspace_io = tdx_complete_simple;
1550 
1551 	return 0;
1552 }
1553 
handle_tdvmcall(struct kvm_vcpu * vcpu)1554 static int handle_tdvmcall(struct kvm_vcpu *vcpu)
1555 {
1556 	switch (tdvmcall_leaf(vcpu)) {
1557 	case TDVMCALL_MAP_GPA:
1558 		return tdx_map_gpa(vcpu);
1559 	case TDVMCALL_REPORT_FATAL_ERROR:
1560 		return tdx_report_fatal_error(vcpu);
1561 	case TDVMCALL_GET_TD_VM_CALL_INFO:
1562 		return tdx_get_td_vm_call_info(vcpu);
1563 	case TDVMCALL_GET_QUOTE:
1564 		return tdx_get_quote(vcpu);
1565 	case TDVMCALL_SETUP_EVENT_NOTIFY_INTERRUPT:
1566 		return tdx_setup_event_notify_interrupt(vcpu);
1567 	default:
1568 		break;
1569 	}
1570 
1571 	tdvmcall_set_return_code(vcpu, TDVMCALL_STATUS_SUBFUNC_UNSUPPORTED);
1572 	return 1;
1573 }
1574 
tdx_load_mmu_pgd(struct kvm_vcpu * vcpu,hpa_t root_hpa,int pgd_level)1575 void tdx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, int pgd_level)
1576 {
1577 	u64 shared_bit = (pgd_level == 5) ? TDX_SHARED_BIT_PWL_5 :
1578 			  TDX_SHARED_BIT_PWL_4;
1579 
1580 	if (KVM_BUG_ON(shared_bit != kvm_gfn_direct_bits(vcpu->kvm), vcpu->kvm))
1581 		return;
1582 
1583 	td_vmcs_write64(to_tdx(vcpu), SHARED_EPT_POINTER, root_hpa);
1584 }
1585 
tdx_unpin(struct kvm * kvm,struct page * page)1586 static void tdx_unpin(struct kvm *kvm, struct page *page)
1587 {
1588 	put_page(page);
1589 }
1590 
tdx_mem_page_aug(struct kvm * kvm,gfn_t gfn,enum pg_level level,struct page * page)1591 static int tdx_mem_page_aug(struct kvm *kvm, gfn_t gfn,
1592 			    enum pg_level level, struct page *page)
1593 {
1594 	int tdx_level = pg_level_to_tdx_sept_level(level);
1595 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
1596 	gpa_t gpa = gfn_to_gpa(gfn);
1597 	u64 entry, level_state;
1598 	u64 err;
1599 
1600 	err = tdh_mem_page_aug(&kvm_tdx->td, gpa, tdx_level, page, &entry, &level_state);
1601 	if (unlikely(tdx_operand_busy(err))) {
1602 		tdx_unpin(kvm, page);
1603 		return -EBUSY;
1604 	}
1605 
1606 	if (KVM_BUG_ON(err, kvm)) {
1607 		pr_tdx_error_2(TDH_MEM_PAGE_AUG, err, entry, level_state);
1608 		tdx_unpin(kvm, page);
1609 		return -EIO;
1610 	}
1611 
1612 	return 0;
1613 }
1614 
1615 /*
1616  * KVM_TDX_INIT_MEM_REGION calls kvm_gmem_populate() to map guest pages; the
1617  * callback tdx_gmem_post_populate() then maps pages into private memory.
1618  * through the a seamcall TDH.MEM.PAGE.ADD().  The SEAMCALL also requires the
1619  * private EPT structures for the page to have been built before, which is
1620  * done via kvm_tdp_map_page(). nr_premapped counts the number of pages that
1621  * were added to the EPT structures but not added with TDH.MEM.PAGE.ADD().
1622  * The counter has to be zero on KVM_TDX_FINALIZE_VM, to ensure that there
1623  * are no half-initialized shared EPT pages.
1624  */
tdx_mem_page_record_premap_cnt(struct kvm * kvm,gfn_t gfn,enum pg_level level,kvm_pfn_t pfn)1625 static int tdx_mem_page_record_premap_cnt(struct kvm *kvm, gfn_t gfn,
1626 					  enum pg_level level, kvm_pfn_t pfn)
1627 {
1628 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
1629 
1630 	if (KVM_BUG_ON(kvm->arch.pre_fault_allowed, kvm))
1631 		return -EINVAL;
1632 
1633 	/* nr_premapped will be decreased when tdh_mem_page_add() is called. */
1634 	atomic64_inc(&kvm_tdx->nr_premapped);
1635 	return 0;
1636 }
1637 
tdx_sept_set_private_spte(struct kvm * kvm,gfn_t gfn,enum pg_level level,kvm_pfn_t pfn)1638 static int tdx_sept_set_private_spte(struct kvm *kvm, gfn_t gfn,
1639 				     enum pg_level level, kvm_pfn_t pfn)
1640 {
1641 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
1642 	struct page *page = pfn_to_page(pfn);
1643 
1644 	/* TODO: handle large pages. */
1645 	if (KVM_BUG_ON(level != PG_LEVEL_4K, kvm))
1646 		return -EINVAL;
1647 
1648 	/*
1649 	 * Because guest_memfd doesn't support page migration with
1650 	 * a_ops->migrate_folio (yet), no callback is triggered for KVM on page
1651 	 * migration.  Until guest_memfd supports page migration, prevent page
1652 	 * migration.
1653 	 * TODO: Once guest_memfd introduces callback on page migration,
1654 	 * implement it and remove get_page/put_page().
1655 	 */
1656 	get_page(page);
1657 
1658 	/*
1659 	 * Read 'pre_fault_allowed' before 'kvm_tdx->state'; see matching
1660 	 * barrier in tdx_td_finalize().
1661 	 */
1662 	smp_rmb();
1663 	if (likely(kvm_tdx->state == TD_STATE_RUNNABLE))
1664 		return tdx_mem_page_aug(kvm, gfn, level, page);
1665 
1666 	return tdx_mem_page_record_premap_cnt(kvm, gfn, level, pfn);
1667 }
1668 
tdx_sept_drop_private_spte(struct kvm * kvm,gfn_t gfn,enum pg_level level,struct page * page)1669 static int tdx_sept_drop_private_spte(struct kvm *kvm, gfn_t gfn,
1670 				      enum pg_level level, struct page *page)
1671 {
1672 	int tdx_level = pg_level_to_tdx_sept_level(level);
1673 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
1674 	gpa_t gpa = gfn_to_gpa(gfn);
1675 	u64 err, entry, level_state;
1676 
1677 	/* TODO: handle large pages. */
1678 	if (KVM_BUG_ON(level != PG_LEVEL_4K, kvm))
1679 		return -EINVAL;
1680 
1681 	if (KVM_BUG_ON(!is_hkid_assigned(kvm_tdx), kvm))
1682 		return -EINVAL;
1683 
1684 	/*
1685 	 * When zapping private page, write lock is held. So no race condition
1686 	 * with other vcpu sept operation.
1687 	 * Race with TDH.VP.ENTER due to (0-step mitigation) and Guest TDCALLs.
1688 	 */
1689 	err = tdh_mem_page_remove(&kvm_tdx->td, gpa, tdx_level, &entry,
1690 				  &level_state);
1691 
1692 	if (unlikely(tdx_operand_busy(err))) {
1693 		/*
1694 		 * The second retry is expected to succeed after kicking off all
1695 		 * other vCPUs and prevent them from invoking TDH.VP.ENTER.
1696 		 */
1697 		tdx_no_vcpus_enter_start(kvm);
1698 		err = tdh_mem_page_remove(&kvm_tdx->td, gpa, tdx_level, &entry,
1699 					  &level_state);
1700 		tdx_no_vcpus_enter_stop(kvm);
1701 	}
1702 
1703 	if (KVM_BUG_ON(err, kvm)) {
1704 		pr_tdx_error_2(TDH_MEM_PAGE_REMOVE, err, entry, level_state);
1705 		return -EIO;
1706 	}
1707 
1708 	err = tdh_phymem_page_wbinvd_hkid((u16)kvm_tdx->hkid, page);
1709 
1710 	if (KVM_BUG_ON(err, kvm)) {
1711 		pr_tdx_error(TDH_PHYMEM_PAGE_WBINVD, err);
1712 		return -EIO;
1713 	}
1714 	tdx_quirk_reset_page(page);
1715 	tdx_unpin(kvm, page);
1716 	return 0;
1717 }
1718 
tdx_sept_link_private_spt(struct kvm * kvm,gfn_t gfn,enum pg_level level,void * private_spt)1719 static int tdx_sept_link_private_spt(struct kvm *kvm, gfn_t gfn,
1720 				     enum pg_level level, void *private_spt)
1721 {
1722 	int tdx_level = pg_level_to_tdx_sept_level(level);
1723 	gpa_t gpa = gfn_to_gpa(gfn);
1724 	struct page *page = virt_to_page(private_spt);
1725 	u64 err, entry, level_state;
1726 
1727 	err = tdh_mem_sept_add(&to_kvm_tdx(kvm)->td, gpa, tdx_level, page, &entry,
1728 			       &level_state);
1729 	if (unlikely(tdx_operand_busy(err)))
1730 		return -EBUSY;
1731 
1732 	if (KVM_BUG_ON(err, kvm)) {
1733 		pr_tdx_error_2(TDH_MEM_SEPT_ADD, err, entry, level_state);
1734 		return -EIO;
1735 	}
1736 
1737 	return 0;
1738 }
1739 
1740 /*
1741  * Check if the error returned from a SEPT zap SEAMCALL is due to that a page is
1742  * mapped by KVM_TDX_INIT_MEM_REGION without tdh_mem_page_add() being called
1743  * successfully.
1744  *
1745  * Since tdh_mem_sept_add() must have been invoked successfully before a
1746  * non-leaf entry present in the mirrored page table, the SEPT ZAP related
1747  * SEAMCALLs should not encounter err TDX_EPT_WALK_FAILED. They should instead
1748  * find TDX_EPT_ENTRY_STATE_INCORRECT due to an empty leaf entry found in the
1749  * SEPT.
1750  *
1751  * Further check if the returned entry from SEPT walking is with RWX permissions
1752  * to filter out anything unexpected.
1753  *
1754  * Note: @level is pg_level, not the tdx_level. The tdx_level extracted from
1755  * level_state returned from a SEAMCALL error is the same as that passed into
1756  * the SEAMCALL.
1757  */
tdx_is_sept_zap_err_due_to_premap(struct kvm_tdx * kvm_tdx,u64 err,u64 entry,int level)1758 static int tdx_is_sept_zap_err_due_to_premap(struct kvm_tdx *kvm_tdx, u64 err,
1759 					     u64 entry, int level)
1760 {
1761 	if (!err || kvm_tdx->state == TD_STATE_RUNNABLE)
1762 		return false;
1763 
1764 	if (err != (TDX_EPT_ENTRY_STATE_INCORRECT | TDX_OPERAND_ID_RCX))
1765 		return false;
1766 
1767 	if ((is_last_spte(entry, level) && (entry & VMX_EPT_RWX_MASK)))
1768 		return false;
1769 
1770 	return true;
1771 }
1772 
tdx_sept_zap_private_spte(struct kvm * kvm,gfn_t gfn,enum pg_level level,struct page * page)1773 static int tdx_sept_zap_private_spte(struct kvm *kvm, gfn_t gfn,
1774 				     enum pg_level level, struct page *page)
1775 {
1776 	int tdx_level = pg_level_to_tdx_sept_level(level);
1777 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
1778 	gpa_t gpa = gfn_to_gpa(gfn) & KVM_HPAGE_MASK(level);
1779 	u64 err, entry, level_state;
1780 
1781 	/* For now large page isn't supported yet. */
1782 	WARN_ON_ONCE(level != PG_LEVEL_4K);
1783 
1784 	err = tdh_mem_range_block(&kvm_tdx->td, gpa, tdx_level, &entry, &level_state);
1785 
1786 	if (unlikely(tdx_operand_busy(err))) {
1787 		/* After no vCPUs enter, the second retry is expected to succeed */
1788 		tdx_no_vcpus_enter_start(kvm);
1789 		err = tdh_mem_range_block(&kvm_tdx->td, gpa, tdx_level, &entry, &level_state);
1790 		tdx_no_vcpus_enter_stop(kvm);
1791 	}
1792 	if (tdx_is_sept_zap_err_due_to_premap(kvm_tdx, err, entry, level) &&
1793 	    !KVM_BUG_ON(!atomic64_read(&kvm_tdx->nr_premapped), kvm)) {
1794 		atomic64_dec(&kvm_tdx->nr_premapped);
1795 		tdx_unpin(kvm, page);
1796 		return 0;
1797 	}
1798 
1799 	if (KVM_BUG_ON(err, kvm)) {
1800 		pr_tdx_error_2(TDH_MEM_RANGE_BLOCK, err, entry, level_state);
1801 		return -EIO;
1802 	}
1803 	return 1;
1804 }
1805 
1806 /*
1807  * Ensure shared and private EPTs to be flushed on all vCPUs.
1808  * tdh_mem_track() is the only caller that increases TD epoch. An increase in
1809  * the TD epoch (e.g., to value "N + 1") is successful only if no vCPUs are
1810  * running in guest mode with the value "N - 1".
1811  *
1812  * A successful execution of tdh_mem_track() ensures that vCPUs can only run in
1813  * guest mode with TD epoch value "N" if no TD exit occurs after the TD epoch
1814  * being increased to "N + 1".
1815  *
1816  * Kicking off all vCPUs after that further results in no vCPUs can run in guest
1817  * mode with TD epoch value "N", which unblocks the next tdh_mem_track() (e.g.
1818  * to increase TD epoch to "N + 2").
1819  *
1820  * TDX module will flush EPT on the next TD enter and make vCPUs to run in
1821  * guest mode with TD epoch value "N + 1".
1822  *
1823  * kvm_make_all_cpus_request() guarantees all vCPUs are out of guest mode by
1824  * waiting empty IPI handler ack_kick().
1825  *
1826  * No action is required to the vCPUs being kicked off since the kicking off
1827  * occurs certainly after TD epoch increment and before the next
1828  * tdh_mem_track().
1829  */
tdx_track(struct kvm * kvm)1830 static void tdx_track(struct kvm *kvm)
1831 {
1832 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
1833 	u64 err;
1834 
1835 	/* If TD isn't finalized, it's before any vcpu running. */
1836 	if (unlikely(kvm_tdx->state != TD_STATE_RUNNABLE))
1837 		return;
1838 
1839 	lockdep_assert_held_write(&kvm->mmu_lock);
1840 
1841 	err = tdh_mem_track(&kvm_tdx->td);
1842 	if (unlikely(tdx_operand_busy(err))) {
1843 		/* After no vCPUs enter, the second retry is expected to succeed */
1844 		tdx_no_vcpus_enter_start(kvm);
1845 		err = tdh_mem_track(&kvm_tdx->td);
1846 		tdx_no_vcpus_enter_stop(kvm);
1847 	}
1848 
1849 	if (KVM_BUG_ON(err, kvm))
1850 		pr_tdx_error(TDH_MEM_TRACK, err);
1851 
1852 	kvm_make_all_cpus_request(kvm, KVM_REQ_OUTSIDE_GUEST_MODE);
1853 }
1854 
tdx_sept_free_private_spt(struct kvm * kvm,gfn_t gfn,enum pg_level level,void * private_spt)1855 static int tdx_sept_free_private_spt(struct kvm *kvm, gfn_t gfn,
1856 				     enum pg_level level, void *private_spt)
1857 {
1858 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
1859 
1860 	/*
1861 	 * free_external_spt() is only called after hkid is freed when TD is
1862 	 * tearing down.
1863 	 * KVM doesn't (yet) zap page table pages in mirror page table while
1864 	 * TD is active, though guest pages mapped in mirror page table could be
1865 	 * zapped during TD is active, e.g. for shared <-> private conversion
1866 	 * and slot move/deletion.
1867 	 */
1868 	if (KVM_BUG_ON(is_hkid_assigned(kvm_tdx), kvm))
1869 		return -EINVAL;
1870 
1871 	/*
1872 	 * The HKID assigned to this TD was already freed and cache was
1873 	 * already flushed. We don't have to flush again.
1874 	 */
1875 	return tdx_reclaim_page(virt_to_page(private_spt));
1876 }
1877 
tdx_sept_remove_private_spte(struct kvm * kvm,gfn_t gfn,enum pg_level level,kvm_pfn_t pfn)1878 static int tdx_sept_remove_private_spte(struct kvm *kvm, gfn_t gfn,
1879 					enum pg_level level, kvm_pfn_t pfn)
1880 {
1881 	struct page *page = pfn_to_page(pfn);
1882 	int ret;
1883 
1884 	/*
1885 	 * HKID is released after all private pages have been removed, and set
1886 	 * before any might be populated. Warn if zapping is attempted when
1887 	 * there can't be anything populated in the private EPT.
1888 	 */
1889 	if (KVM_BUG_ON(!is_hkid_assigned(to_kvm_tdx(kvm)), kvm))
1890 		return -EINVAL;
1891 
1892 	ret = tdx_sept_zap_private_spte(kvm, gfn, level, page);
1893 	if (ret <= 0)
1894 		return ret;
1895 
1896 	/*
1897 	 * TDX requires TLB tracking before dropping private page.  Do
1898 	 * it here, although it is also done later.
1899 	 */
1900 	tdx_track(kvm);
1901 
1902 	return tdx_sept_drop_private_spte(kvm, gfn, level, page);
1903 }
1904 
tdx_deliver_interrupt(struct kvm_lapic * apic,int delivery_mode,int trig_mode,int vector)1905 void tdx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode,
1906 			   int trig_mode, int vector)
1907 {
1908 	struct kvm_vcpu *vcpu = apic->vcpu;
1909 	struct vcpu_tdx *tdx = to_tdx(vcpu);
1910 
1911 	/* TDX supports only posted interrupt.  No lapic emulation. */
1912 	__vmx_deliver_posted_interrupt(vcpu, &tdx->vt.pi_desc, vector);
1913 
1914 	trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector);
1915 }
1916 
tdx_is_sept_violation_unexpected_pending(struct kvm_vcpu * vcpu)1917 static inline bool tdx_is_sept_violation_unexpected_pending(struct kvm_vcpu *vcpu)
1918 {
1919 	u64 eeq_type = to_tdx(vcpu)->ext_exit_qualification & TDX_EXT_EXIT_QUAL_TYPE_MASK;
1920 	u64 eq = vmx_get_exit_qual(vcpu);
1921 
1922 	if (eeq_type != TDX_EXT_EXIT_QUAL_TYPE_PENDING_EPT_VIOLATION)
1923 		return false;
1924 
1925 	return !(eq & EPT_VIOLATION_PROT_MASK) && !(eq & EPT_VIOLATION_EXEC_FOR_RING3_LIN);
1926 }
1927 
tdx_handle_ept_violation(struct kvm_vcpu * vcpu)1928 static int tdx_handle_ept_violation(struct kvm_vcpu *vcpu)
1929 {
1930 	unsigned long exit_qual;
1931 	gpa_t gpa = to_tdx(vcpu)->exit_gpa;
1932 	bool local_retry = false;
1933 	int ret;
1934 
1935 	if (vt_is_tdx_private_gpa(vcpu->kvm, gpa)) {
1936 		if (tdx_is_sept_violation_unexpected_pending(vcpu)) {
1937 			pr_warn("Guest access before accepting 0x%llx on vCPU %d\n",
1938 				gpa, vcpu->vcpu_id);
1939 			kvm_vm_dead(vcpu->kvm);
1940 			return -EIO;
1941 		}
1942 		/*
1943 		 * Always treat SEPT violations as write faults.  Ignore the
1944 		 * EXIT_QUALIFICATION reported by TDX-SEAM for SEPT violations.
1945 		 * TD private pages are always RWX in the SEPT tables,
1946 		 * i.e. they're always mapped writable.  Just as importantly,
1947 		 * treating SEPT violations as write faults is necessary to
1948 		 * avoid COW allocations, which will cause TDAUGPAGE failures
1949 		 * due to aliasing a single HPA to multiple GPAs.
1950 		 */
1951 		exit_qual = EPT_VIOLATION_ACC_WRITE;
1952 
1953 		/* Only private GPA triggers zero-step mitigation */
1954 		local_retry = true;
1955 	} else {
1956 		exit_qual = vmx_get_exit_qual(vcpu);
1957 		/*
1958 		 * EPT violation due to instruction fetch should never be
1959 		 * triggered from shared memory in TDX guest.  If such EPT
1960 		 * violation occurs, treat it as broken hardware.
1961 		 */
1962 		if (KVM_BUG_ON(exit_qual & EPT_VIOLATION_ACC_INSTR, vcpu->kvm))
1963 			return -EIO;
1964 	}
1965 
1966 	trace_kvm_page_fault(vcpu, gpa, exit_qual);
1967 
1968 	/*
1969 	 * To minimize TDH.VP.ENTER invocations, retry locally for private GPA
1970 	 * mapping in TDX.
1971 	 *
1972 	 * KVM may return RET_PF_RETRY for private GPA due to
1973 	 * - contentions when atomically updating SPTEs of the mirror page table
1974 	 * - in-progress GFN invalidation or memslot removal.
1975 	 * - TDX_OPERAND_BUSY error from TDH.MEM.PAGE.AUG or TDH.MEM.SEPT.ADD,
1976 	 *   caused by contentions with TDH.VP.ENTER (with zero-step mitigation)
1977 	 *   or certain TDCALLs.
1978 	 *
1979 	 * If TDH.VP.ENTER is invoked more times than the threshold set by the
1980 	 * TDX module before KVM resolves the private GPA mapping, the TDX
1981 	 * module will activate zero-step mitigation during TDH.VP.ENTER. This
1982 	 * process acquires an SEPT tree lock in the TDX module, leading to
1983 	 * further contentions with TDH.MEM.PAGE.AUG or TDH.MEM.SEPT.ADD
1984 	 * operations on other vCPUs.
1985 	 *
1986 	 * Breaking out of local retries for kvm_vcpu_has_events() is for
1987 	 * interrupt injection. kvm_vcpu_has_events() should not see pending
1988 	 * events for TDX. Since KVM can't determine if IRQs (or NMIs) are
1989 	 * blocked by TDs, false positives are inevitable i.e., KVM may re-enter
1990 	 * the guest even if the IRQ/NMI can't be delivered.
1991 	 *
1992 	 * Note: even without breaking out of local retries, zero-step
1993 	 * mitigation may still occur due to
1994 	 * - invoking of TDH.VP.ENTER after KVM_EXIT_MEMORY_FAULT,
1995 	 * - a single RIP causing EPT violations for more GFNs than the
1996 	 *   threshold count.
1997 	 * This is safe, as triggering zero-step mitigation only introduces
1998 	 * contentions to page installation SEAMCALLs on other vCPUs, which will
1999 	 * handle retries locally in their EPT violation handlers.
2000 	 */
2001 	while (1) {
2002 		struct kvm_memory_slot *slot;
2003 
2004 		ret = __vmx_handle_ept_violation(vcpu, gpa, exit_qual);
2005 
2006 		if (ret != RET_PF_RETRY || !local_retry)
2007 			break;
2008 
2009 		if (kvm_vcpu_has_events(vcpu) || signal_pending(current))
2010 			break;
2011 
2012 		if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
2013 			ret = -EIO;
2014 			break;
2015 		}
2016 
2017 		/*
2018 		 * Bail if the memslot is invalid, i.e. is being deleted, as
2019 		 * faulting in will never succeed and this task needs to drop
2020 		 * SRCU in order to let memslot deletion complete.
2021 		 */
2022 		slot = kvm_vcpu_gfn_to_memslot(vcpu, gpa_to_gfn(gpa));
2023 		if (slot && slot->flags & KVM_MEMSLOT_INVALID)
2024 			break;
2025 
2026 		cond_resched();
2027 	}
2028 	return ret;
2029 }
2030 
tdx_complete_emulated_msr(struct kvm_vcpu * vcpu,int err)2031 int tdx_complete_emulated_msr(struct kvm_vcpu *vcpu, int err)
2032 {
2033 	if (err) {
2034 		tdvmcall_set_return_code(vcpu, TDVMCALL_STATUS_INVALID_OPERAND);
2035 		return 1;
2036 	}
2037 
2038 	if (vmx_get_exit_reason(vcpu).basic == EXIT_REASON_MSR_READ)
2039 		tdvmcall_set_return_val(vcpu, kvm_read_edx_eax(vcpu));
2040 
2041 	return 1;
2042 }
2043 
2044 
tdx_handle_exit(struct kvm_vcpu * vcpu,fastpath_t fastpath)2045 int tdx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t fastpath)
2046 {
2047 	struct vcpu_tdx *tdx = to_tdx(vcpu);
2048 	u64 vp_enter_ret = tdx->vp_enter_ret;
2049 	union vmx_exit_reason exit_reason = vmx_get_exit_reason(vcpu);
2050 
2051 	if (fastpath != EXIT_FASTPATH_NONE)
2052 		return 1;
2053 
2054 	if (unlikely(vp_enter_ret == EXIT_REASON_EPT_MISCONFIG)) {
2055 		KVM_BUG_ON(1, vcpu->kvm);
2056 		return -EIO;
2057 	}
2058 
2059 	/*
2060 	 * Handle TDX SW errors, including TDX_SEAMCALL_UD, TDX_SEAMCALL_GP and
2061 	 * TDX_SEAMCALL_VMFAILINVALID.
2062 	 */
2063 	if (unlikely((vp_enter_ret & TDX_SW_ERROR) == TDX_SW_ERROR)) {
2064 		KVM_BUG_ON(!kvm_rebooting, vcpu->kvm);
2065 		goto unhandled_exit;
2066 	}
2067 
2068 	if (unlikely(tdx_failed_vmentry(vcpu))) {
2069 		/*
2070 		 * If the guest state is protected, that means off-TD debug is
2071 		 * not enabled, TDX_NON_RECOVERABLE must be set.
2072 		 */
2073 		WARN_ON_ONCE(vcpu->arch.guest_state_protected &&
2074 				!(vp_enter_ret & TDX_NON_RECOVERABLE));
2075 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2076 		vcpu->run->fail_entry.hardware_entry_failure_reason = exit_reason.full;
2077 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
2078 		return 0;
2079 	}
2080 
2081 	if (unlikely(vp_enter_ret & (TDX_ERROR | TDX_NON_RECOVERABLE)) &&
2082 		exit_reason.basic != EXIT_REASON_TRIPLE_FAULT) {
2083 		kvm_pr_unimpl("TD vp_enter_ret 0x%llx\n", vp_enter_ret);
2084 		goto unhandled_exit;
2085 	}
2086 
2087 	WARN_ON_ONCE(exit_reason.basic != EXIT_REASON_TRIPLE_FAULT &&
2088 		     (vp_enter_ret & TDX_SEAMCALL_STATUS_MASK) != TDX_SUCCESS);
2089 
2090 	switch (exit_reason.basic) {
2091 	case EXIT_REASON_TRIPLE_FAULT:
2092 		vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
2093 		vcpu->mmio_needed = 0;
2094 		return 0;
2095 	case EXIT_REASON_EXCEPTION_NMI:
2096 		return tdx_handle_exception_nmi(vcpu);
2097 	case EXIT_REASON_EXTERNAL_INTERRUPT:
2098 		++vcpu->stat.irq_exits;
2099 		return 1;
2100 	case EXIT_REASON_CPUID:
2101 		return tdx_emulate_cpuid(vcpu);
2102 	case EXIT_REASON_HLT:
2103 		return kvm_emulate_halt_noskip(vcpu);
2104 	case EXIT_REASON_TDCALL:
2105 		return handle_tdvmcall(vcpu);
2106 	case EXIT_REASON_VMCALL:
2107 		return tdx_emulate_vmcall(vcpu);
2108 	case EXIT_REASON_IO_INSTRUCTION:
2109 		return tdx_emulate_io(vcpu);
2110 	case EXIT_REASON_MSR_READ:
2111 		kvm_rcx_write(vcpu, tdx->vp_enter_args.r12);
2112 		return kvm_emulate_rdmsr(vcpu);
2113 	case EXIT_REASON_MSR_WRITE:
2114 		kvm_rcx_write(vcpu, tdx->vp_enter_args.r12);
2115 		kvm_rax_write(vcpu, tdx->vp_enter_args.r13 & -1u);
2116 		kvm_rdx_write(vcpu, tdx->vp_enter_args.r13 >> 32);
2117 		return kvm_emulate_wrmsr(vcpu);
2118 	case EXIT_REASON_EPT_MISCONFIG:
2119 		return tdx_emulate_mmio(vcpu);
2120 	case EXIT_REASON_EPT_VIOLATION:
2121 		return tdx_handle_ept_violation(vcpu);
2122 	case EXIT_REASON_OTHER_SMI:
2123 		/*
2124 		 * Unlike VMX, SMI in SEAM non-root mode (i.e. when
2125 		 * TD guest vCPU is running) will cause VM exit to TDX module,
2126 		 * then SEAMRET to KVM.  Once it exits to KVM, SMI is delivered
2127 		 * and handled by kernel handler right away.
2128 		 *
2129 		 * The Other SMI exit can also be caused by the SEAM non-root
2130 		 * machine check delivered via Machine Check System Management
2131 		 * Interrupt (MSMI), but it has already been handled by the
2132 		 * kernel machine check handler, i.e., the memory page has been
2133 		 * marked as poisoned and it won't be freed to the free list
2134 		 * when the TDX guest is terminated (the TDX module marks the
2135 		 * guest as dead and prevent it from further running when
2136 		 * machine check happens in SEAM non-root).
2137 		 *
2138 		 * - A MSMI will not reach here, it's handled as non_recoverable
2139 		 *   case above.
2140 		 * - If it's not an MSMI, no need to do anything here.
2141 		 */
2142 		return 1;
2143 	default:
2144 		break;
2145 	}
2146 
2147 unhandled_exit:
2148 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2149 	vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
2150 	vcpu->run->internal.ndata = 2;
2151 	vcpu->run->internal.data[0] = vp_enter_ret;
2152 	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
2153 	return 0;
2154 }
2155 
tdx_get_exit_info(struct kvm_vcpu * vcpu,u32 * reason,u64 * info1,u64 * info2,u32 * intr_info,u32 * error_code)2156 void tdx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
2157 		u64 *info1, u64 *info2, u32 *intr_info, u32 *error_code)
2158 {
2159 	struct vcpu_tdx *tdx = to_tdx(vcpu);
2160 
2161 	*reason = tdx->vt.exit_reason.full;
2162 	if (*reason != -1u) {
2163 		*info1 = vmx_get_exit_qual(vcpu);
2164 		*info2 = tdx->ext_exit_qualification;
2165 		*intr_info = vmx_get_intr_info(vcpu);
2166 	} else {
2167 		*info1 = 0;
2168 		*info2 = 0;
2169 		*intr_info = 0;
2170 	}
2171 
2172 	*error_code = 0;
2173 }
2174 
tdx_has_emulated_msr(u32 index)2175 bool tdx_has_emulated_msr(u32 index)
2176 {
2177 	switch (index) {
2178 	case MSR_IA32_UCODE_REV:
2179 	case MSR_IA32_ARCH_CAPABILITIES:
2180 	case MSR_IA32_POWER_CTL:
2181 	case MSR_IA32_CR_PAT:
2182 	case MSR_MTRRcap:
2183 	case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
2184 	case MSR_MTRRdefType:
2185 	case MSR_IA32_TSC_DEADLINE:
2186 	case MSR_IA32_MISC_ENABLE:
2187 	case MSR_PLATFORM_INFO:
2188 	case MSR_MISC_FEATURES_ENABLES:
2189 	case MSR_IA32_APICBASE:
2190 	case MSR_EFER:
2191 	case MSR_IA32_FEAT_CTL:
2192 	case MSR_IA32_MCG_CAP:
2193 	case MSR_IA32_MCG_STATUS:
2194 	case MSR_IA32_MCG_CTL:
2195 	case MSR_IA32_MCG_EXT_CTL:
2196 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2197 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
2198 		/* MSR_IA32_MCx_{CTL, STATUS, ADDR, MISC, CTL2} */
2199 	case MSR_KVM_POLL_CONTROL:
2200 		return true;
2201 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
2202 		/*
2203 		 * x2APIC registers that are virtualized by the CPU can't be
2204 		 * emulated, KVM doesn't have access to the virtual APIC page.
2205 		 */
2206 		switch (index) {
2207 		case X2APIC_MSR(APIC_TASKPRI):
2208 		case X2APIC_MSR(APIC_PROCPRI):
2209 		case X2APIC_MSR(APIC_EOI):
2210 		case X2APIC_MSR(APIC_ISR) ... X2APIC_MSR(APIC_ISR + APIC_ISR_NR):
2211 		case X2APIC_MSR(APIC_TMR) ... X2APIC_MSR(APIC_TMR + APIC_ISR_NR):
2212 		case X2APIC_MSR(APIC_IRR) ... X2APIC_MSR(APIC_IRR + APIC_ISR_NR):
2213 			return false;
2214 		default:
2215 			return true;
2216 		}
2217 	default:
2218 		return false;
2219 	}
2220 }
2221 
tdx_is_read_only_msr(u32 index)2222 static bool tdx_is_read_only_msr(u32 index)
2223 {
2224 	return  index == MSR_IA32_APICBASE || index == MSR_EFER ||
2225 		index == MSR_IA32_FEAT_CTL;
2226 }
2227 
tdx_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr)2228 int tdx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2229 {
2230 	switch (msr->index) {
2231 	case MSR_IA32_FEAT_CTL:
2232 		/*
2233 		 * MCE and MCA are advertised via cpuid. Guest kernel could
2234 		 * check if LMCE is enabled or not.
2235 		 */
2236 		msr->data = FEAT_CTL_LOCKED;
2237 		if (vcpu->arch.mcg_cap & MCG_LMCE_P)
2238 			msr->data |= FEAT_CTL_LMCE_ENABLED;
2239 		return 0;
2240 	case MSR_IA32_MCG_EXT_CTL:
2241 		if (!msr->host_initiated && !(vcpu->arch.mcg_cap & MCG_LMCE_P))
2242 			return 1;
2243 		msr->data = vcpu->arch.mcg_ext_ctl;
2244 		return 0;
2245 	default:
2246 		if (!tdx_has_emulated_msr(msr->index))
2247 			return 1;
2248 
2249 		return kvm_get_msr_common(vcpu, msr);
2250 	}
2251 }
2252 
tdx_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr)2253 int tdx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2254 {
2255 	switch (msr->index) {
2256 	case MSR_IA32_MCG_EXT_CTL:
2257 		if ((!msr->host_initiated && !(vcpu->arch.mcg_cap & MCG_LMCE_P)) ||
2258 		    (msr->data & ~MCG_EXT_CTL_LMCE_EN))
2259 			return 1;
2260 		vcpu->arch.mcg_ext_ctl = msr->data;
2261 		return 0;
2262 	default:
2263 		if (tdx_is_read_only_msr(msr->index))
2264 			return 1;
2265 
2266 		if (!tdx_has_emulated_msr(msr->index))
2267 			return 1;
2268 
2269 		return kvm_set_msr_common(vcpu, msr);
2270 	}
2271 }
2272 
tdx_get_capabilities(struct kvm_tdx_cmd * cmd)2273 static int tdx_get_capabilities(struct kvm_tdx_cmd *cmd)
2274 {
2275 	const struct tdx_sys_info_td_conf *td_conf = &tdx_sysinfo->td_conf;
2276 	struct kvm_tdx_capabilities __user *user_caps;
2277 	struct kvm_tdx_capabilities *caps = NULL;
2278 	u32 nr_user_entries;
2279 	int ret = 0;
2280 
2281 	/* flags is reserved for future use */
2282 	if (cmd->flags)
2283 		return -EINVAL;
2284 
2285 	caps = kzalloc(sizeof(*caps) +
2286 		       sizeof(struct kvm_cpuid_entry2) * td_conf->num_cpuid_config,
2287 		       GFP_KERNEL);
2288 	if (!caps)
2289 		return -ENOMEM;
2290 
2291 	user_caps = u64_to_user_ptr(cmd->data);
2292 	if (get_user(nr_user_entries, &user_caps->cpuid.nent)) {
2293 		ret = -EFAULT;
2294 		goto out;
2295 	}
2296 
2297 	if (nr_user_entries < td_conf->num_cpuid_config) {
2298 		ret = -E2BIG;
2299 		goto out;
2300 	}
2301 
2302 	ret = init_kvm_tdx_caps(td_conf, caps);
2303 	if (ret)
2304 		goto out;
2305 
2306 	if (copy_to_user(user_caps, caps, sizeof(*caps))) {
2307 		ret = -EFAULT;
2308 		goto out;
2309 	}
2310 
2311 	if (copy_to_user(user_caps->cpuid.entries, caps->cpuid.entries,
2312 			 caps->cpuid.nent *
2313 			 sizeof(caps->cpuid.entries[0])))
2314 		ret = -EFAULT;
2315 
2316 out:
2317 	/* kfree() accepts NULL. */
2318 	kfree(caps);
2319 	return ret;
2320 }
2321 
2322 /*
2323  * KVM reports guest physical address in CPUID.0x800000008.EAX[23:16], which is
2324  * similar to TDX's GPAW. Use this field as the interface for userspace to
2325  * configure the GPAW and EPT level for TDs.
2326  *
2327  * Only values 48 and 52 are supported. Value 52 means GPAW-52 and EPT level
2328  * 5, Value 48 means GPAW-48 and EPT level 4. For value 48, GPAW-48 is always
2329  * supported. Value 52 is only supported when the platform supports 5 level
2330  * EPT.
2331  */
setup_tdparams_eptp_controls(struct kvm_cpuid2 * cpuid,struct td_params * td_params)2332 static int setup_tdparams_eptp_controls(struct kvm_cpuid2 *cpuid,
2333 					struct td_params *td_params)
2334 {
2335 	const struct kvm_cpuid_entry2 *entry;
2336 	int guest_pa;
2337 
2338 	entry = kvm_find_cpuid_entry2(cpuid->entries, cpuid->nent, 0x80000008, 0);
2339 	if (!entry)
2340 		return -EINVAL;
2341 
2342 	guest_pa = tdx_get_guest_phys_addr_bits(entry->eax);
2343 
2344 	if (guest_pa != 48 && guest_pa != 52)
2345 		return -EINVAL;
2346 
2347 	if (guest_pa == 52 && !cpu_has_vmx_ept_5levels())
2348 		return -EINVAL;
2349 
2350 	td_params->eptp_controls = VMX_EPTP_MT_WB;
2351 	if (guest_pa == 52) {
2352 		td_params->eptp_controls |= VMX_EPTP_PWL_5;
2353 		td_params->config_flags |= TDX_CONFIG_FLAGS_MAX_GPAW;
2354 	} else {
2355 		td_params->eptp_controls |= VMX_EPTP_PWL_4;
2356 	}
2357 
2358 	return 0;
2359 }
2360 
setup_tdparams_cpuids(struct kvm_cpuid2 * cpuid,struct td_params * td_params)2361 static int setup_tdparams_cpuids(struct kvm_cpuid2 *cpuid,
2362 				 struct td_params *td_params)
2363 {
2364 	const struct tdx_sys_info_td_conf *td_conf = &tdx_sysinfo->td_conf;
2365 	const struct kvm_cpuid_entry2 *entry;
2366 	struct tdx_cpuid_value *value;
2367 	int i, copy_cnt = 0;
2368 
2369 	/*
2370 	 * td_params.cpuid_values: The number and the order of cpuid_value must
2371 	 * be same to the one of struct tdsysinfo.{num_cpuid_config, cpuid_configs}
2372 	 * It's assumed that td_params was zeroed.
2373 	 */
2374 	for (i = 0; i < td_conf->num_cpuid_config; i++) {
2375 		struct kvm_cpuid_entry2 tmp;
2376 
2377 		td_init_cpuid_entry2(&tmp, i);
2378 
2379 		entry = kvm_find_cpuid_entry2(cpuid->entries, cpuid->nent,
2380 					      tmp.function, tmp.index);
2381 		if (!entry)
2382 			continue;
2383 
2384 		if (tdx_unsupported_cpuid(entry))
2385 			return -EINVAL;
2386 
2387 		copy_cnt++;
2388 
2389 		value = &td_params->cpuid_values[i];
2390 		value->eax = entry->eax;
2391 		value->ebx = entry->ebx;
2392 		value->ecx = entry->ecx;
2393 		value->edx = entry->edx;
2394 
2395 		/*
2396 		 * TDX module does not accept nonzero bits 16..23 for the
2397 		 * CPUID[0x80000008].EAX, see setup_tdparams_eptp_controls().
2398 		 */
2399 		if (tmp.function == 0x80000008)
2400 			value->eax = tdx_set_guest_phys_addr_bits(value->eax, 0);
2401 	}
2402 
2403 	/*
2404 	 * Rely on the TDX module to reject invalid configuration, but it can't
2405 	 * check of leafs that don't have a proper slot in td_params->cpuid_values
2406 	 * to stick then. So fail if there were entries that didn't get copied to
2407 	 * td_params.
2408 	 */
2409 	if (copy_cnt != cpuid->nent)
2410 		return -EINVAL;
2411 
2412 	return 0;
2413 }
2414 
setup_tdparams(struct kvm * kvm,struct td_params * td_params,struct kvm_tdx_init_vm * init_vm)2415 static int setup_tdparams(struct kvm *kvm, struct td_params *td_params,
2416 			struct kvm_tdx_init_vm *init_vm)
2417 {
2418 	const struct tdx_sys_info_td_conf *td_conf = &tdx_sysinfo->td_conf;
2419 	struct kvm_cpuid2 *cpuid = &init_vm->cpuid;
2420 	int ret;
2421 
2422 	if (kvm->created_vcpus)
2423 		return -EBUSY;
2424 
2425 	if (init_vm->attributes & ~tdx_get_supported_attrs(td_conf))
2426 		return -EINVAL;
2427 
2428 	if (init_vm->xfam & ~tdx_get_supported_xfam(td_conf))
2429 		return -EINVAL;
2430 
2431 	td_params->max_vcpus = kvm->max_vcpus;
2432 	td_params->attributes = init_vm->attributes | td_conf->attributes_fixed1;
2433 	td_params->xfam = init_vm->xfam | td_conf->xfam_fixed1;
2434 
2435 	td_params->config_flags = TDX_CONFIG_FLAGS_NO_RBP_MOD;
2436 	td_params->tsc_frequency = TDX_TSC_KHZ_TO_25MHZ(kvm->arch.default_tsc_khz);
2437 
2438 	ret = setup_tdparams_eptp_controls(cpuid, td_params);
2439 	if (ret)
2440 		return ret;
2441 
2442 	ret = setup_tdparams_cpuids(cpuid, td_params);
2443 	if (ret)
2444 		return ret;
2445 
2446 #define MEMCPY_SAME_SIZE(dst, src)				\
2447 	do {							\
2448 		BUILD_BUG_ON(sizeof(dst) != sizeof(src));	\
2449 		memcpy((dst), (src), sizeof(dst));		\
2450 	} while (0)
2451 
2452 	MEMCPY_SAME_SIZE(td_params->mrconfigid, init_vm->mrconfigid);
2453 	MEMCPY_SAME_SIZE(td_params->mrowner, init_vm->mrowner);
2454 	MEMCPY_SAME_SIZE(td_params->mrownerconfig, init_vm->mrownerconfig);
2455 
2456 	return 0;
2457 }
2458 
__tdx_td_init(struct kvm * kvm,struct td_params * td_params,u64 * seamcall_err)2459 static int __tdx_td_init(struct kvm *kvm, struct td_params *td_params,
2460 			 u64 *seamcall_err)
2461 {
2462 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
2463 	cpumask_var_t packages;
2464 	struct page **tdcs_pages = NULL;
2465 	struct page *tdr_page;
2466 	int ret, i;
2467 	u64 err, rcx;
2468 
2469 	*seamcall_err = 0;
2470 	ret = tdx_guest_keyid_alloc();
2471 	if (ret < 0)
2472 		return ret;
2473 	kvm_tdx->hkid = ret;
2474 	kvm_tdx->misc_cg = get_current_misc_cg();
2475 	ret = misc_cg_try_charge(MISC_CG_RES_TDX, kvm_tdx->misc_cg, 1);
2476 	if (ret)
2477 		goto free_hkid;
2478 
2479 	ret = -ENOMEM;
2480 
2481 	atomic_inc(&nr_configured_hkid);
2482 
2483 	tdr_page = alloc_page(GFP_KERNEL);
2484 	if (!tdr_page)
2485 		goto free_hkid;
2486 
2487 	kvm_tdx->td.tdcs_nr_pages = tdx_sysinfo->td_ctrl.tdcs_base_size / PAGE_SIZE;
2488 	/* TDVPS = TDVPR(4K page) + TDCX(multiple 4K pages), -1 for TDVPR. */
2489 	kvm_tdx->td.tdcx_nr_pages = tdx_sysinfo->td_ctrl.tdvps_base_size / PAGE_SIZE - 1;
2490 	tdcs_pages = kcalloc(kvm_tdx->td.tdcs_nr_pages, sizeof(*kvm_tdx->td.tdcs_pages),
2491 			     GFP_KERNEL);
2492 	if (!tdcs_pages)
2493 		goto free_tdr;
2494 
2495 	for (i = 0; i < kvm_tdx->td.tdcs_nr_pages; i++) {
2496 		tdcs_pages[i] = alloc_page(GFP_KERNEL);
2497 		if (!tdcs_pages[i])
2498 			goto free_tdcs;
2499 	}
2500 
2501 	if (!zalloc_cpumask_var(&packages, GFP_KERNEL))
2502 		goto free_tdcs;
2503 
2504 	cpus_read_lock();
2505 
2506 	/*
2507 	 * Need at least one CPU of the package to be online in order to
2508 	 * program all packages for host key id.  Check it.
2509 	 */
2510 	for_each_present_cpu(i)
2511 		cpumask_set_cpu(topology_physical_package_id(i), packages);
2512 	for_each_online_cpu(i)
2513 		cpumask_clear_cpu(topology_physical_package_id(i), packages);
2514 	if (!cpumask_empty(packages)) {
2515 		ret = -EIO;
2516 		/*
2517 		 * Because it's hard for human operator to figure out the
2518 		 * reason, warn it.
2519 		 */
2520 #define MSG_ALLPKG	"All packages need to have online CPU to create TD. Online CPU and retry.\n"
2521 		pr_warn_ratelimited(MSG_ALLPKG);
2522 		goto free_packages;
2523 	}
2524 
2525 	/*
2526 	 * TDH.MNG.CREATE tries to grab the global TDX module and fails
2527 	 * with TDX_OPERAND_BUSY when it fails to grab.  Take the global
2528 	 * lock to prevent it from failure.
2529 	 */
2530 	mutex_lock(&tdx_lock);
2531 	kvm_tdx->td.tdr_page = tdr_page;
2532 	err = tdh_mng_create(&kvm_tdx->td, kvm_tdx->hkid);
2533 	mutex_unlock(&tdx_lock);
2534 
2535 	if (err == TDX_RND_NO_ENTROPY) {
2536 		ret = -EAGAIN;
2537 		goto free_packages;
2538 	}
2539 
2540 	if (WARN_ON_ONCE(err)) {
2541 		pr_tdx_error(TDH_MNG_CREATE, err);
2542 		ret = -EIO;
2543 		goto free_packages;
2544 	}
2545 
2546 	for_each_online_cpu(i) {
2547 		int pkg = topology_physical_package_id(i);
2548 
2549 		if (cpumask_test_and_set_cpu(pkg, packages))
2550 			continue;
2551 
2552 		/*
2553 		 * Program the memory controller in the package with an
2554 		 * encryption key associated to a TDX private host key id
2555 		 * assigned to this TDR.  Concurrent operations on same memory
2556 		 * controller results in TDX_OPERAND_BUSY. No locking needed
2557 		 * beyond the cpus_read_lock() above as it serializes against
2558 		 * hotplug and the first online CPU of the package is always
2559 		 * used. We never have two CPUs in the same socket trying to
2560 		 * program the key.
2561 		 */
2562 		ret = smp_call_on_cpu(i, tdx_do_tdh_mng_key_config,
2563 				      kvm_tdx, true);
2564 		if (ret)
2565 			break;
2566 	}
2567 	cpus_read_unlock();
2568 	free_cpumask_var(packages);
2569 	if (ret) {
2570 		i = 0;
2571 		goto teardown;
2572 	}
2573 
2574 	kvm_tdx->td.tdcs_pages = tdcs_pages;
2575 	for (i = 0; i < kvm_tdx->td.tdcs_nr_pages; i++) {
2576 		err = tdh_mng_addcx(&kvm_tdx->td, tdcs_pages[i]);
2577 		if (err == TDX_RND_NO_ENTROPY) {
2578 			/* Here it's hard to allow userspace to retry. */
2579 			ret = -EAGAIN;
2580 			goto teardown;
2581 		}
2582 		if (WARN_ON_ONCE(err)) {
2583 			pr_tdx_error(TDH_MNG_ADDCX, err);
2584 			ret = -EIO;
2585 			goto teardown;
2586 		}
2587 	}
2588 
2589 	err = tdh_mng_init(&kvm_tdx->td, __pa(td_params), &rcx);
2590 	if ((err & TDX_SEAMCALL_STATUS_MASK) == TDX_OPERAND_INVALID) {
2591 		/*
2592 		 * Because a user gives operands, don't warn.
2593 		 * Return a hint to the user because it's sometimes hard for the
2594 		 * user to figure out which operand is invalid.  SEAMCALL status
2595 		 * code includes which operand caused invalid operand error.
2596 		 */
2597 		*seamcall_err = err;
2598 		ret = -EINVAL;
2599 		goto teardown;
2600 	} else if (WARN_ON_ONCE(err)) {
2601 		pr_tdx_error_1(TDH_MNG_INIT, err, rcx);
2602 		ret = -EIO;
2603 		goto teardown;
2604 	}
2605 
2606 	return 0;
2607 
2608 	/*
2609 	 * The sequence for freeing resources from a partially initialized TD
2610 	 * varies based on where in the initialization flow failure occurred.
2611 	 * Simply use the full teardown and destroy, which naturally play nice
2612 	 * with partial initialization.
2613 	 */
2614 teardown:
2615 	/* Only free pages not yet added, so start at 'i' */
2616 	for (; i < kvm_tdx->td.tdcs_nr_pages; i++) {
2617 		if (tdcs_pages[i]) {
2618 			__free_page(tdcs_pages[i]);
2619 			tdcs_pages[i] = NULL;
2620 		}
2621 	}
2622 	if (!kvm_tdx->td.tdcs_pages)
2623 		kfree(tdcs_pages);
2624 
2625 	tdx_mmu_release_hkid(kvm);
2626 	tdx_reclaim_td_control_pages(kvm);
2627 
2628 	return ret;
2629 
2630 free_packages:
2631 	cpus_read_unlock();
2632 	free_cpumask_var(packages);
2633 
2634 free_tdcs:
2635 	for (i = 0; i < kvm_tdx->td.tdcs_nr_pages; i++) {
2636 		if (tdcs_pages[i])
2637 			__free_page(tdcs_pages[i]);
2638 	}
2639 	kfree(tdcs_pages);
2640 	kvm_tdx->td.tdcs_pages = NULL;
2641 
2642 free_tdr:
2643 	if (tdr_page)
2644 		__free_page(tdr_page);
2645 	kvm_tdx->td.tdr_page = 0;
2646 
2647 free_hkid:
2648 	tdx_hkid_free(kvm_tdx);
2649 
2650 	return ret;
2651 }
2652 
tdx_td_metadata_field_read(struct kvm_tdx * tdx,u64 field_id,u64 * data)2653 static u64 tdx_td_metadata_field_read(struct kvm_tdx *tdx, u64 field_id,
2654 				      u64 *data)
2655 {
2656 	u64 err;
2657 
2658 	err = tdh_mng_rd(&tdx->td, field_id, data);
2659 
2660 	return err;
2661 }
2662 
2663 #define TDX_MD_UNREADABLE_LEAF_MASK	GENMASK(30, 7)
2664 #define TDX_MD_UNREADABLE_SUBLEAF_MASK	GENMASK(31, 7)
2665 
tdx_read_cpuid(struct kvm_vcpu * vcpu,u32 leaf,u32 sub_leaf,bool sub_leaf_set,int * entry_index,struct kvm_cpuid_entry2 * out)2666 static int tdx_read_cpuid(struct kvm_vcpu *vcpu, u32 leaf, u32 sub_leaf,
2667 			  bool sub_leaf_set, int *entry_index,
2668 			  struct kvm_cpuid_entry2 *out)
2669 {
2670 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(vcpu->kvm);
2671 	u64 field_id = TD_MD_FIELD_ID_CPUID_VALUES;
2672 	u64 ebx_eax, edx_ecx;
2673 	u64 err = 0;
2674 
2675 	if (sub_leaf > 0b1111111)
2676 		return -EINVAL;
2677 
2678 	if (*entry_index >= KVM_MAX_CPUID_ENTRIES)
2679 		return -EINVAL;
2680 
2681 	if (leaf & TDX_MD_UNREADABLE_LEAF_MASK ||
2682 	    sub_leaf & TDX_MD_UNREADABLE_SUBLEAF_MASK)
2683 		return -EINVAL;
2684 
2685 	/*
2686 	 * bit 23:17, REVSERVED: reserved, must be 0;
2687 	 * bit 16,    LEAF_31: leaf number bit 31;
2688 	 * bit 15:9,  LEAF_6_0: leaf number bits 6:0, leaf bits 30:7 are
2689 	 *                      implicitly 0;
2690 	 * bit 8,     SUBLEAF_NA: sub-leaf not applicable flag;
2691 	 * bit 7:1,   SUBLEAF_6_0: sub-leaf number bits 6:0. If SUBLEAF_NA is 1,
2692 	 *                         the SUBLEAF_6_0 is all-1.
2693 	 *                         sub-leaf bits 31:7 are implicitly 0;
2694 	 * bit 0,     ELEMENT_I: Element index within field;
2695 	 */
2696 	field_id |= ((leaf & 0x80000000) ? 1 : 0) << 16;
2697 	field_id |= (leaf & 0x7f) << 9;
2698 	if (sub_leaf_set)
2699 		field_id |= (sub_leaf & 0x7f) << 1;
2700 	else
2701 		field_id |= 0x1fe;
2702 
2703 	err = tdx_td_metadata_field_read(kvm_tdx, field_id, &ebx_eax);
2704 	if (err) //TODO check for specific errors
2705 		goto err_out;
2706 
2707 	out->eax = (u32) ebx_eax;
2708 	out->ebx = (u32) (ebx_eax >> 32);
2709 
2710 	field_id++;
2711 	err = tdx_td_metadata_field_read(kvm_tdx, field_id, &edx_ecx);
2712 	/*
2713 	 * It's weird that reading edx_ecx fails while reading ebx_eax
2714 	 * succeeded.
2715 	 */
2716 	if (WARN_ON_ONCE(err))
2717 		goto err_out;
2718 
2719 	out->ecx = (u32) edx_ecx;
2720 	out->edx = (u32) (edx_ecx >> 32);
2721 
2722 	out->function = leaf;
2723 	out->index = sub_leaf;
2724 	out->flags |= sub_leaf_set ? KVM_CPUID_FLAG_SIGNIFCANT_INDEX : 0;
2725 
2726 	/*
2727 	 * Work around missing support on old TDX modules, fetch
2728 	 * guest maxpa from gfn_direct_bits.
2729 	 */
2730 	if (leaf == 0x80000008) {
2731 		gpa_t gpa_bits = gfn_to_gpa(kvm_gfn_direct_bits(vcpu->kvm));
2732 		unsigned int g_maxpa = __ffs(gpa_bits) + 1;
2733 
2734 		out->eax = tdx_set_guest_phys_addr_bits(out->eax, g_maxpa);
2735 	}
2736 
2737 	(*entry_index)++;
2738 
2739 	return 0;
2740 
2741 err_out:
2742 	out->eax = 0;
2743 	out->ebx = 0;
2744 	out->ecx = 0;
2745 	out->edx = 0;
2746 
2747 	return -EIO;
2748 }
2749 
tdx_td_init(struct kvm * kvm,struct kvm_tdx_cmd * cmd)2750 static int tdx_td_init(struct kvm *kvm, struct kvm_tdx_cmd *cmd)
2751 {
2752 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
2753 	struct kvm_tdx_init_vm *init_vm;
2754 	struct td_params *td_params = NULL;
2755 	int ret;
2756 
2757 	BUILD_BUG_ON(sizeof(*init_vm) != 256 + sizeof_field(struct kvm_tdx_init_vm, cpuid));
2758 	BUILD_BUG_ON(sizeof(struct td_params) != 1024);
2759 
2760 	if (kvm_tdx->state != TD_STATE_UNINITIALIZED)
2761 		return -EINVAL;
2762 
2763 	if (cmd->flags)
2764 		return -EINVAL;
2765 
2766 	init_vm = kmalloc(sizeof(*init_vm) +
2767 			  sizeof(init_vm->cpuid.entries[0]) * KVM_MAX_CPUID_ENTRIES,
2768 			  GFP_KERNEL);
2769 	if (!init_vm)
2770 		return -ENOMEM;
2771 
2772 	if (copy_from_user(init_vm, u64_to_user_ptr(cmd->data), sizeof(*init_vm))) {
2773 		ret = -EFAULT;
2774 		goto out;
2775 	}
2776 
2777 	if (init_vm->cpuid.nent > KVM_MAX_CPUID_ENTRIES) {
2778 		ret = -E2BIG;
2779 		goto out;
2780 	}
2781 
2782 	if (copy_from_user(init_vm->cpuid.entries,
2783 			   u64_to_user_ptr(cmd->data) + sizeof(*init_vm),
2784 			   flex_array_size(init_vm, cpuid.entries, init_vm->cpuid.nent))) {
2785 		ret = -EFAULT;
2786 		goto out;
2787 	}
2788 
2789 	if (memchr_inv(init_vm->reserved, 0, sizeof(init_vm->reserved))) {
2790 		ret = -EINVAL;
2791 		goto out;
2792 	}
2793 
2794 	if (init_vm->cpuid.padding) {
2795 		ret = -EINVAL;
2796 		goto out;
2797 	}
2798 
2799 	td_params = kzalloc(sizeof(struct td_params), GFP_KERNEL);
2800 	if (!td_params) {
2801 		ret = -ENOMEM;
2802 		goto out;
2803 	}
2804 
2805 	ret = setup_tdparams(kvm, td_params, init_vm);
2806 	if (ret)
2807 		goto out;
2808 
2809 	ret = __tdx_td_init(kvm, td_params, &cmd->hw_error);
2810 	if (ret)
2811 		goto out;
2812 
2813 	kvm_tdx->tsc_offset = td_tdcs_exec_read64(kvm_tdx, TD_TDCS_EXEC_TSC_OFFSET);
2814 	kvm_tdx->tsc_multiplier = td_tdcs_exec_read64(kvm_tdx, TD_TDCS_EXEC_TSC_MULTIPLIER);
2815 	kvm_tdx->attributes = td_params->attributes;
2816 	kvm_tdx->xfam = td_params->xfam;
2817 
2818 	if (td_params->config_flags & TDX_CONFIG_FLAGS_MAX_GPAW)
2819 		kvm->arch.gfn_direct_bits = TDX_SHARED_BIT_PWL_5;
2820 	else
2821 		kvm->arch.gfn_direct_bits = TDX_SHARED_BIT_PWL_4;
2822 
2823 	kvm_tdx->state = TD_STATE_INITIALIZED;
2824 out:
2825 	/* kfree() accepts NULL. */
2826 	kfree(init_vm);
2827 	kfree(td_params);
2828 
2829 	return ret;
2830 }
2831 
tdx_flush_tlb_current(struct kvm_vcpu * vcpu)2832 void tdx_flush_tlb_current(struct kvm_vcpu *vcpu)
2833 {
2834 	/*
2835 	 * flush_tlb_current() is invoked when the first time for the vcpu to
2836 	 * run or when root of shared EPT is invalidated.
2837 	 * KVM only needs to flush shared EPT because the TDX module handles TLB
2838 	 * invalidation for private EPT in tdh_vp_enter();
2839 	 *
2840 	 * A single context invalidation for shared EPT can be performed here.
2841 	 * However, this single context invalidation requires the private EPTP
2842 	 * rather than the shared EPTP to flush shared EPT, as shared EPT uses
2843 	 * private EPTP as its ASID for TLB invalidation.
2844 	 *
2845 	 * To avoid reading back private EPTP, perform a global invalidation for
2846 	 * shared EPT instead to keep this function simple.
2847 	 */
2848 	ept_sync_global();
2849 }
2850 
tdx_flush_tlb_all(struct kvm_vcpu * vcpu)2851 void tdx_flush_tlb_all(struct kvm_vcpu *vcpu)
2852 {
2853 	/*
2854 	 * TDX has called tdx_track() in tdx_sept_remove_private_spte() to
2855 	 * ensure that private EPT will be flushed on the next TD enter. No need
2856 	 * to call tdx_track() here again even when this callback is a result of
2857 	 * zapping private EPT.
2858 	 *
2859 	 * Due to the lack of the context to determine which EPT has been
2860 	 * affected by zapping, invoke invept() directly here for both shared
2861 	 * EPT and private EPT for simplicity, though it's not necessary for
2862 	 * private EPT.
2863 	 */
2864 	ept_sync_global();
2865 }
2866 
tdx_td_finalize(struct kvm * kvm,struct kvm_tdx_cmd * cmd)2867 static int tdx_td_finalize(struct kvm *kvm, struct kvm_tdx_cmd *cmd)
2868 {
2869 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
2870 
2871 	guard(mutex)(&kvm->slots_lock);
2872 
2873 	if (!is_hkid_assigned(kvm_tdx) || kvm_tdx->state == TD_STATE_RUNNABLE)
2874 		return -EINVAL;
2875 	/*
2876 	 * Pages are pending for KVM_TDX_INIT_MEM_REGION to issue
2877 	 * TDH.MEM.PAGE.ADD().
2878 	 */
2879 	if (atomic64_read(&kvm_tdx->nr_premapped))
2880 		return -EINVAL;
2881 
2882 	cmd->hw_error = tdh_mr_finalize(&kvm_tdx->td);
2883 	if (tdx_operand_busy(cmd->hw_error))
2884 		return -EBUSY;
2885 	if (KVM_BUG_ON(cmd->hw_error, kvm)) {
2886 		pr_tdx_error(TDH_MR_FINALIZE, cmd->hw_error);
2887 		return -EIO;
2888 	}
2889 
2890 	kvm_tdx->state = TD_STATE_RUNNABLE;
2891 	/* TD_STATE_RUNNABLE must be set before 'pre_fault_allowed' */
2892 	smp_wmb();
2893 	kvm->arch.pre_fault_allowed = true;
2894 	return 0;
2895 }
2896 
tdx_vm_ioctl(struct kvm * kvm,void __user * argp)2897 int tdx_vm_ioctl(struct kvm *kvm, void __user *argp)
2898 {
2899 	struct kvm_tdx_cmd tdx_cmd;
2900 	int r;
2901 
2902 	if (copy_from_user(&tdx_cmd, argp, sizeof(struct kvm_tdx_cmd)))
2903 		return -EFAULT;
2904 
2905 	/*
2906 	 * Userspace should never set hw_error. It is used to fill
2907 	 * hardware-defined error by the kernel.
2908 	 */
2909 	if (tdx_cmd.hw_error)
2910 		return -EINVAL;
2911 
2912 	mutex_lock(&kvm->lock);
2913 
2914 	switch (tdx_cmd.id) {
2915 	case KVM_TDX_CAPABILITIES:
2916 		r = tdx_get_capabilities(&tdx_cmd);
2917 		break;
2918 	case KVM_TDX_INIT_VM:
2919 		r = tdx_td_init(kvm, &tdx_cmd);
2920 		break;
2921 	case KVM_TDX_FINALIZE_VM:
2922 		r = tdx_td_finalize(kvm, &tdx_cmd);
2923 		break;
2924 	default:
2925 		r = -EINVAL;
2926 		goto out;
2927 	}
2928 
2929 	if (copy_to_user(argp, &tdx_cmd, sizeof(struct kvm_tdx_cmd)))
2930 		r = -EFAULT;
2931 
2932 out:
2933 	mutex_unlock(&kvm->lock);
2934 	return r;
2935 }
2936 
2937 /* VMM can pass one 64bit auxiliary data to vcpu via RCX for guest BIOS. */
tdx_td_vcpu_init(struct kvm_vcpu * vcpu,u64 vcpu_rcx)2938 static int tdx_td_vcpu_init(struct kvm_vcpu *vcpu, u64 vcpu_rcx)
2939 {
2940 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(vcpu->kvm);
2941 	struct vcpu_tdx *tdx = to_tdx(vcpu);
2942 	struct page *page;
2943 	int ret, i;
2944 	u64 err;
2945 
2946 	page = alloc_page(GFP_KERNEL);
2947 	if (!page)
2948 		return -ENOMEM;
2949 	tdx->vp.tdvpr_page = page;
2950 
2951 	/*
2952 	 * page_to_phys() does not work in 'noinstr' code, like guest
2953 	 * entry via tdh_vp_enter(). Precalculate and store it instead
2954 	 * of doing it at runtime later.
2955 	 */
2956 	tdx->vp.tdvpr_pa = page_to_phys(tdx->vp.tdvpr_page);
2957 
2958 	tdx->vp.tdcx_pages = kcalloc(kvm_tdx->td.tdcx_nr_pages, sizeof(*tdx->vp.tdcx_pages),
2959 			       	     GFP_KERNEL);
2960 	if (!tdx->vp.tdcx_pages) {
2961 		ret = -ENOMEM;
2962 		goto free_tdvpr;
2963 	}
2964 
2965 	for (i = 0; i < kvm_tdx->td.tdcx_nr_pages; i++) {
2966 		page = alloc_page(GFP_KERNEL);
2967 		if (!page) {
2968 			ret = -ENOMEM;
2969 			goto free_tdcx;
2970 		}
2971 		tdx->vp.tdcx_pages[i] = page;
2972 	}
2973 
2974 	err = tdh_vp_create(&kvm_tdx->td, &tdx->vp);
2975 	if (KVM_BUG_ON(err, vcpu->kvm)) {
2976 		ret = -EIO;
2977 		pr_tdx_error(TDH_VP_CREATE, err);
2978 		goto free_tdcx;
2979 	}
2980 
2981 	for (i = 0; i < kvm_tdx->td.tdcx_nr_pages; i++) {
2982 		err = tdh_vp_addcx(&tdx->vp, tdx->vp.tdcx_pages[i]);
2983 		if (KVM_BUG_ON(err, vcpu->kvm)) {
2984 			pr_tdx_error(TDH_VP_ADDCX, err);
2985 			/*
2986 			 * Pages already added are reclaimed by the vcpu_free
2987 			 * method, but the rest are freed here.
2988 			 */
2989 			for (; i < kvm_tdx->td.tdcx_nr_pages; i++) {
2990 				__free_page(tdx->vp.tdcx_pages[i]);
2991 				tdx->vp.tdcx_pages[i] = NULL;
2992 			}
2993 			return -EIO;
2994 		}
2995 	}
2996 
2997 	err = tdh_vp_init(&tdx->vp, vcpu_rcx, vcpu->vcpu_id);
2998 	if (KVM_BUG_ON(err, vcpu->kvm)) {
2999 		pr_tdx_error(TDH_VP_INIT, err);
3000 		return -EIO;
3001 	}
3002 
3003 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3004 
3005 	return 0;
3006 
3007 free_tdcx:
3008 	for (i = 0; i < kvm_tdx->td.tdcx_nr_pages; i++) {
3009 		if (tdx->vp.tdcx_pages[i])
3010 			__free_page(tdx->vp.tdcx_pages[i]);
3011 		tdx->vp.tdcx_pages[i] = NULL;
3012 	}
3013 	kfree(tdx->vp.tdcx_pages);
3014 	tdx->vp.tdcx_pages = NULL;
3015 
3016 free_tdvpr:
3017 	if (tdx->vp.tdvpr_page)
3018 		__free_page(tdx->vp.tdvpr_page);
3019 	tdx->vp.tdvpr_page = 0;
3020 	tdx->vp.tdvpr_pa = 0;
3021 
3022 	return ret;
3023 }
3024 
3025 /* Sometimes reads multipple subleafs. Return how many enties were written. */
tdx_vcpu_get_cpuid_leaf(struct kvm_vcpu * vcpu,u32 leaf,int * entry_index,struct kvm_cpuid_entry2 * output_e)3026 static int tdx_vcpu_get_cpuid_leaf(struct kvm_vcpu *vcpu, u32 leaf, int *entry_index,
3027 				   struct kvm_cpuid_entry2 *output_e)
3028 {
3029 	int sub_leaf = 0;
3030 	int ret;
3031 
3032 	/* First try without a subleaf */
3033 	ret = tdx_read_cpuid(vcpu, leaf, 0, false, entry_index, output_e);
3034 
3035 	/* If success, or invalid leaf, just give up */
3036 	if (ret != -EIO)
3037 		return ret;
3038 
3039 	/*
3040 	 * If the try without a subleaf failed, try reading subleafs until
3041 	 * failure. The TDX module only supports 6 bits of subleaf index.
3042 	 */
3043 	while (1) {
3044 		/* Keep reading subleafs until there is a failure. */
3045 		if (tdx_read_cpuid(vcpu, leaf, sub_leaf, true, entry_index, output_e))
3046 			return !sub_leaf;
3047 
3048 		sub_leaf++;
3049 		output_e++;
3050 	}
3051 
3052 	return 0;
3053 }
3054 
tdx_vcpu_get_cpuid(struct kvm_vcpu * vcpu,struct kvm_tdx_cmd * cmd)3055 static int tdx_vcpu_get_cpuid(struct kvm_vcpu *vcpu, struct kvm_tdx_cmd *cmd)
3056 {
3057 	struct kvm_cpuid2 __user *output, *td_cpuid;
3058 	int r = 0, i = 0, leaf;
3059 	u32 level;
3060 
3061 	output = u64_to_user_ptr(cmd->data);
3062 	td_cpuid = kzalloc(sizeof(*td_cpuid) +
3063 			sizeof(output->entries[0]) * KVM_MAX_CPUID_ENTRIES,
3064 			GFP_KERNEL);
3065 	if (!td_cpuid)
3066 		return -ENOMEM;
3067 
3068 	if (copy_from_user(td_cpuid, output, sizeof(*output))) {
3069 		r = -EFAULT;
3070 		goto out;
3071 	}
3072 
3073 	/* Read max CPUID for normal range */
3074 	if (tdx_vcpu_get_cpuid_leaf(vcpu, 0, &i, &td_cpuid->entries[i])) {
3075 		r = -EIO;
3076 		goto out;
3077 	}
3078 	level = td_cpuid->entries[0].eax;
3079 
3080 	for (leaf = 1; leaf <= level; leaf++)
3081 		tdx_vcpu_get_cpuid_leaf(vcpu, leaf, &i, &td_cpuid->entries[i]);
3082 
3083 	/* Read max CPUID for extended range */
3084 	if (tdx_vcpu_get_cpuid_leaf(vcpu, 0x80000000, &i, &td_cpuid->entries[i])) {
3085 		r = -EIO;
3086 		goto out;
3087 	}
3088 	level = td_cpuid->entries[i - 1].eax;
3089 
3090 	for (leaf = 0x80000001; leaf <= level; leaf++)
3091 		tdx_vcpu_get_cpuid_leaf(vcpu, leaf, &i, &td_cpuid->entries[i]);
3092 
3093 	if (td_cpuid->nent < i)
3094 		r = -E2BIG;
3095 	td_cpuid->nent = i;
3096 
3097 	if (copy_to_user(output, td_cpuid, sizeof(*output))) {
3098 		r = -EFAULT;
3099 		goto out;
3100 	}
3101 
3102 	if (r == -E2BIG)
3103 		goto out;
3104 
3105 	if (copy_to_user(output->entries, td_cpuid->entries,
3106 			 td_cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
3107 		r = -EFAULT;
3108 
3109 out:
3110 	kfree(td_cpuid);
3111 
3112 	return r;
3113 }
3114 
tdx_vcpu_init(struct kvm_vcpu * vcpu,struct kvm_tdx_cmd * cmd)3115 static int tdx_vcpu_init(struct kvm_vcpu *vcpu, struct kvm_tdx_cmd *cmd)
3116 {
3117 	u64 apic_base;
3118 	struct vcpu_tdx *tdx = to_tdx(vcpu);
3119 	int ret;
3120 
3121 	if (cmd->flags)
3122 		return -EINVAL;
3123 
3124 	if (tdx->state != VCPU_TD_STATE_UNINITIALIZED)
3125 		return -EINVAL;
3126 
3127 	/*
3128 	 * TDX requires X2APIC, userspace is responsible for configuring guest
3129 	 * CPUID accordingly.
3130 	 */
3131 	apic_base = APIC_DEFAULT_PHYS_BASE | LAPIC_MODE_X2APIC |
3132 		(kvm_vcpu_is_reset_bsp(vcpu) ? MSR_IA32_APICBASE_BSP : 0);
3133 	if (kvm_apic_set_base(vcpu, apic_base, true))
3134 		return -EINVAL;
3135 
3136 	ret = tdx_td_vcpu_init(vcpu, (u64)cmd->data);
3137 	if (ret)
3138 		return ret;
3139 
3140 	td_vmcs_write16(tdx, POSTED_INTR_NV, POSTED_INTR_VECTOR);
3141 	td_vmcs_write64(tdx, POSTED_INTR_DESC_ADDR, __pa(&tdx->vt.pi_desc));
3142 	td_vmcs_setbit32(tdx, PIN_BASED_VM_EXEC_CONTROL, PIN_BASED_POSTED_INTR);
3143 
3144 	tdx->state = VCPU_TD_STATE_INITIALIZED;
3145 
3146 	return 0;
3147 }
3148 
tdx_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)3149 void tdx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
3150 {
3151 	/*
3152 	 * Yell on INIT, as TDX doesn't support INIT, i.e. KVM should drop all
3153 	 * INIT events.
3154 	 *
3155 	 * Defer initializing vCPU for RESET state until KVM_TDX_INIT_VCPU, as
3156 	 * userspace needs to define the vCPU model before KVM can initialize
3157 	 * vCPU state, e.g. to enable x2APIC.
3158 	 */
3159 	WARN_ON_ONCE(init_event);
3160 }
3161 
3162 struct tdx_gmem_post_populate_arg {
3163 	struct kvm_vcpu *vcpu;
3164 	__u32 flags;
3165 };
3166 
tdx_gmem_post_populate(struct kvm * kvm,gfn_t gfn,kvm_pfn_t pfn,void __user * src,int order,void * _arg)3167 static int tdx_gmem_post_populate(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
3168 				  void __user *src, int order, void *_arg)
3169 {
3170 	u64 error_code = PFERR_GUEST_FINAL_MASK | PFERR_PRIVATE_ACCESS;
3171 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
3172 	struct tdx_gmem_post_populate_arg *arg = _arg;
3173 	struct kvm_vcpu *vcpu = arg->vcpu;
3174 	gpa_t gpa = gfn_to_gpa(gfn);
3175 	u8 level = PG_LEVEL_4K;
3176 	struct page *src_page;
3177 	int ret, i;
3178 	u64 err, entry, level_state;
3179 
3180 	/*
3181 	 * Get the source page if it has been faulted in. Return failure if the
3182 	 * source page has been swapped out or unmapped in primary memory.
3183 	 */
3184 	ret = get_user_pages_fast((unsigned long)src, 1, 0, &src_page);
3185 	if (ret < 0)
3186 		return ret;
3187 	if (ret != 1)
3188 		return -ENOMEM;
3189 
3190 	ret = kvm_tdp_map_page(vcpu, gpa, error_code, &level);
3191 	if (ret < 0)
3192 		goto out;
3193 
3194 	/*
3195 	 * The private mem cannot be zapped after kvm_tdp_map_page()
3196 	 * because all paths are covered by slots_lock and the
3197 	 * filemap invalidate lock.  Check that they are indeed enough.
3198 	 */
3199 	if (IS_ENABLED(CONFIG_KVM_PROVE_MMU)) {
3200 		scoped_guard(read_lock, &kvm->mmu_lock) {
3201 			if (KVM_BUG_ON(!kvm_tdp_mmu_gpa_is_mapped(vcpu, gpa), kvm)) {
3202 				ret = -EIO;
3203 				goto out;
3204 			}
3205 		}
3206 	}
3207 
3208 	ret = 0;
3209 	err = tdh_mem_page_add(&kvm_tdx->td, gpa, pfn_to_page(pfn),
3210 			       src_page, &entry, &level_state);
3211 	if (err) {
3212 		ret = unlikely(tdx_operand_busy(err)) ? -EBUSY : -EIO;
3213 		goto out;
3214 	}
3215 
3216 	if (!KVM_BUG_ON(!atomic64_read(&kvm_tdx->nr_premapped), kvm))
3217 		atomic64_dec(&kvm_tdx->nr_premapped);
3218 
3219 	if (arg->flags & KVM_TDX_MEASURE_MEMORY_REGION) {
3220 		for (i = 0; i < PAGE_SIZE; i += TDX_EXTENDMR_CHUNKSIZE) {
3221 			err = tdh_mr_extend(&kvm_tdx->td, gpa + i, &entry,
3222 					    &level_state);
3223 			if (err) {
3224 				ret = -EIO;
3225 				break;
3226 			}
3227 		}
3228 	}
3229 
3230 out:
3231 	put_page(src_page);
3232 	return ret;
3233 }
3234 
tdx_vcpu_init_mem_region(struct kvm_vcpu * vcpu,struct kvm_tdx_cmd * cmd)3235 static int tdx_vcpu_init_mem_region(struct kvm_vcpu *vcpu, struct kvm_tdx_cmd *cmd)
3236 {
3237 	struct vcpu_tdx *tdx = to_tdx(vcpu);
3238 	struct kvm *kvm = vcpu->kvm;
3239 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
3240 	struct kvm_tdx_init_mem_region region;
3241 	struct tdx_gmem_post_populate_arg arg;
3242 	long gmem_ret;
3243 	int ret;
3244 
3245 	if (tdx->state != VCPU_TD_STATE_INITIALIZED)
3246 		return -EINVAL;
3247 
3248 	guard(mutex)(&kvm->slots_lock);
3249 
3250 	/* Once TD is finalized, the initial guest memory is fixed. */
3251 	if (kvm_tdx->state == TD_STATE_RUNNABLE)
3252 		return -EINVAL;
3253 
3254 	if (cmd->flags & ~KVM_TDX_MEASURE_MEMORY_REGION)
3255 		return -EINVAL;
3256 
3257 	if (copy_from_user(&region, u64_to_user_ptr(cmd->data), sizeof(region)))
3258 		return -EFAULT;
3259 
3260 	if (!PAGE_ALIGNED(region.source_addr) || !PAGE_ALIGNED(region.gpa) ||
3261 	    !region.nr_pages ||
3262 	    region.gpa + (region.nr_pages << PAGE_SHIFT) <= region.gpa ||
3263 	    !vt_is_tdx_private_gpa(kvm, region.gpa) ||
3264 	    !vt_is_tdx_private_gpa(kvm, region.gpa + (region.nr_pages << PAGE_SHIFT) - 1))
3265 		return -EINVAL;
3266 
3267 	kvm_mmu_reload(vcpu);
3268 	ret = 0;
3269 	while (region.nr_pages) {
3270 		if (signal_pending(current)) {
3271 			ret = -EINTR;
3272 			break;
3273 		}
3274 
3275 		arg = (struct tdx_gmem_post_populate_arg) {
3276 			.vcpu = vcpu,
3277 			.flags = cmd->flags,
3278 		};
3279 		gmem_ret = kvm_gmem_populate(kvm, gpa_to_gfn(region.gpa),
3280 					     u64_to_user_ptr(region.source_addr),
3281 					     1, tdx_gmem_post_populate, &arg);
3282 		if (gmem_ret < 0) {
3283 			ret = gmem_ret;
3284 			break;
3285 		}
3286 
3287 		if (gmem_ret != 1) {
3288 			ret = -EIO;
3289 			break;
3290 		}
3291 
3292 		region.source_addr += PAGE_SIZE;
3293 		region.gpa += PAGE_SIZE;
3294 		region.nr_pages--;
3295 
3296 		cond_resched();
3297 	}
3298 
3299 	if (copy_to_user(u64_to_user_ptr(cmd->data), &region, sizeof(region)))
3300 		ret = -EFAULT;
3301 	return ret;
3302 }
3303 
tdx_vcpu_ioctl(struct kvm_vcpu * vcpu,void __user * argp)3304 int tdx_vcpu_ioctl(struct kvm_vcpu *vcpu, void __user *argp)
3305 {
3306 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(vcpu->kvm);
3307 	struct kvm_tdx_cmd cmd;
3308 	int ret;
3309 
3310 	if (!is_hkid_assigned(kvm_tdx) || kvm_tdx->state == TD_STATE_RUNNABLE)
3311 		return -EINVAL;
3312 
3313 	if (copy_from_user(&cmd, argp, sizeof(cmd)))
3314 		return -EFAULT;
3315 
3316 	if (cmd.hw_error)
3317 		return -EINVAL;
3318 
3319 	switch (cmd.id) {
3320 	case KVM_TDX_INIT_VCPU:
3321 		ret = tdx_vcpu_init(vcpu, &cmd);
3322 		break;
3323 	case KVM_TDX_INIT_MEM_REGION:
3324 		ret = tdx_vcpu_init_mem_region(vcpu, &cmd);
3325 		break;
3326 	case KVM_TDX_GET_CPUID:
3327 		ret = tdx_vcpu_get_cpuid(vcpu, &cmd);
3328 		break;
3329 	default:
3330 		ret = -EINVAL;
3331 		break;
3332 	}
3333 
3334 	return ret;
3335 }
3336 
tdx_gmem_max_mapping_level(struct kvm * kvm,kvm_pfn_t pfn,bool is_private)3337 int tdx_gmem_max_mapping_level(struct kvm *kvm, kvm_pfn_t pfn, bool is_private)
3338 {
3339 	if (!is_private)
3340 		return 0;
3341 
3342 	return PG_LEVEL_4K;
3343 }
3344 
tdx_online_cpu(unsigned int cpu)3345 static int tdx_online_cpu(unsigned int cpu)
3346 {
3347 	unsigned long flags;
3348 	int r;
3349 
3350 	/* Sanity check CPU is already in post-VMXON */
3351 	WARN_ON_ONCE(!(cr4_read_shadow() & X86_CR4_VMXE));
3352 
3353 	local_irq_save(flags);
3354 	r = tdx_cpu_enable();
3355 	local_irq_restore(flags);
3356 
3357 	return r;
3358 }
3359 
tdx_offline_cpu(unsigned int cpu)3360 static int tdx_offline_cpu(unsigned int cpu)
3361 {
3362 	int i;
3363 
3364 	/* No TD is running.  Allow any cpu to be offline. */
3365 	if (!atomic_read(&nr_configured_hkid))
3366 		return 0;
3367 
3368 	/*
3369 	 * In order to reclaim TDX HKID, (i.e. when deleting guest TD), need to
3370 	 * call TDH.PHYMEM.PAGE.WBINVD on all packages to program all memory
3371 	 * controller with pconfig.  If we have active TDX HKID, refuse to
3372 	 * offline the last online cpu.
3373 	 */
3374 	for_each_online_cpu(i) {
3375 		/*
3376 		 * Found another online cpu on the same package.
3377 		 * Allow to offline.
3378 		 */
3379 		if (i != cpu && topology_physical_package_id(i) ==
3380 				topology_physical_package_id(cpu))
3381 			return 0;
3382 	}
3383 
3384 	/*
3385 	 * This is the last cpu of this package.  Don't offline it.
3386 	 *
3387 	 * Because it's hard for human operator to understand the
3388 	 * reason, warn it.
3389 	 */
3390 #define MSG_ALLPKG_ONLINE \
3391 	"TDX requires all packages to have an online CPU. Delete all TDs in order to offline all CPUs of a package.\n"
3392 	pr_warn_ratelimited(MSG_ALLPKG_ONLINE);
3393 	return -EBUSY;
3394 }
3395 
__do_tdx_cleanup(void)3396 static void __do_tdx_cleanup(void)
3397 {
3398 	/*
3399 	 * Once TDX module is initialized, it cannot be disabled and
3400 	 * re-initialized again w/o runtime update (which isn't
3401 	 * supported by kernel).  Only need to remove the cpuhp here.
3402 	 * The TDX host core code tracks TDX status and can handle
3403 	 * 'multiple enabling' scenario.
3404 	 */
3405 	WARN_ON_ONCE(!tdx_cpuhp_state);
3406 	cpuhp_remove_state_nocalls_cpuslocked(tdx_cpuhp_state);
3407 	tdx_cpuhp_state = 0;
3408 }
3409 
__tdx_cleanup(void)3410 static void __tdx_cleanup(void)
3411 {
3412 	cpus_read_lock();
3413 	__do_tdx_cleanup();
3414 	cpus_read_unlock();
3415 }
3416 
__do_tdx_bringup(void)3417 static int __init __do_tdx_bringup(void)
3418 {
3419 	int r;
3420 
3421 	/*
3422 	 * TDX-specific cpuhp callback to call tdx_cpu_enable() on all
3423 	 * online CPUs before calling tdx_enable(), and on any new
3424 	 * going-online CPU to make sure it is ready for TDX guest.
3425 	 */
3426 	r = cpuhp_setup_state_cpuslocked(CPUHP_AP_ONLINE_DYN,
3427 					 "kvm/cpu/tdx:online",
3428 					 tdx_online_cpu, tdx_offline_cpu);
3429 	if (r < 0)
3430 		return r;
3431 
3432 	tdx_cpuhp_state = r;
3433 
3434 	r = tdx_enable();
3435 	if (r)
3436 		__do_tdx_cleanup();
3437 
3438 	return r;
3439 }
3440 
__tdx_bringup(void)3441 static int __init __tdx_bringup(void)
3442 {
3443 	const struct tdx_sys_info_td_conf *td_conf;
3444 	int r, i;
3445 
3446 	for (i = 0; i < ARRAY_SIZE(tdx_uret_msrs); i++) {
3447 		/*
3448 		 * Check if MSRs (tdx_uret_msrs) can be saved/restored
3449 		 * before returning to user space.
3450 		 *
3451 		 * this_cpu_ptr(user_return_msrs)->registered isn't checked
3452 		 * because the registration is done at vcpu runtime by
3453 		 * tdx_user_return_msr_update_cache().
3454 		 */
3455 		tdx_uret_msrs[i].slot = kvm_find_user_return_msr(tdx_uret_msrs[i].msr);
3456 		if (tdx_uret_msrs[i].slot == -1) {
3457 			/* If any MSR isn't supported, it is a KVM bug */
3458 			pr_err("MSR %x isn't included by kvm_find_user_return_msr\n",
3459 				tdx_uret_msrs[i].msr);
3460 			return -EIO;
3461 		}
3462 	}
3463 
3464 	/*
3465 	 * Enabling TDX requires enabling hardware virtualization first,
3466 	 * as making SEAMCALLs requires CPU being in post-VMXON state.
3467 	 */
3468 	r = kvm_enable_virtualization();
3469 	if (r)
3470 		return r;
3471 
3472 	cpus_read_lock();
3473 	r = __do_tdx_bringup();
3474 	cpus_read_unlock();
3475 
3476 	if (r)
3477 		goto tdx_bringup_err;
3478 
3479 	r = -EINVAL;
3480 	/* Get TDX global information for later use */
3481 	tdx_sysinfo = tdx_get_sysinfo();
3482 	if (WARN_ON_ONCE(!tdx_sysinfo))
3483 		goto get_sysinfo_err;
3484 
3485 	/* Check TDX module and KVM capabilities */
3486 	if (!tdx_get_supported_attrs(&tdx_sysinfo->td_conf) ||
3487 	    !tdx_get_supported_xfam(&tdx_sysinfo->td_conf))
3488 		goto get_sysinfo_err;
3489 
3490 	if (!(tdx_sysinfo->features.tdx_features0 & MD_FIELD_ID_FEATURES0_TOPOLOGY_ENUM))
3491 		goto get_sysinfo_err;
3492 
3493 	/*
3494 	 * TDX has its own limit of maximum vCPUs it can support for all
3495 	 * TDX guests in addition to KVM_MAX_VCPUS.  Userspace needs to
3496 	 * query TDX guest's maximum vCPUs by checking KVM_CAP_MAX_VCPU
3497 	 * extension on per-VM basis.
3498 	 *
3499 	 * TDX module reports such limit via the MAX_VCPU_PER_TD global
3500 	 * metadata.  Different modules may report different values.
3501 	 * Some old module may also not support this metadata (in which
3502 	 * case this limit is U16_MAX).
3503 	 *
3504 	 * In practice, the reported value reflects the maximum logical
3505 	 * CPUs that ALL the platforms that the module supports can
3506 	 * possibly have.
3507 	 *
3508 	 * Simply forwarding the MAX_VCPU_PER_TD to userspace could
3509 	 * result in an unpredictable ABI.  KVM instead always advertise
3510 	 * the number of logical CPUs the platform has as the maximum
3511 	 * vCPUs for TDX guests.
3512 	 *
3513 	 * Make sure MAX_VCPU_PER_TD reported by TDX module is not
3514 	 * smaller than the number of logical CPUs, otherwise KVM will
3515 	 * report an unsupported value to userspace.
3516 	 *
3517 	 * Note, a platform with TDX enabled in the BIOS cannot support
3518 	 * physical CPU hotplug, and TDX requires the BIOS has marked
3519 	 * all logical CPUs in MADT table as enabled.  Just use
3520 	 * num_present_cpus() for the number of logical CPUs.
3521 	 */
3522 	td_conf = &tdx_sysinfo->td_conf;
3523 	if (td_conf->max_vcpus_per_td < num_present_cpus()) {
3524 		pr_err("Disable TDX: MAX_VCPU_PER_TD (%u) smaller than number of logical CPUs (%u).\n",
3525 				td_conf->max_vcpus_per_td, num_present_cpus());
3526 		goto get_sysinfo_err;
3527 	}
3528 
3529 	if (misc_cg_set_capacity(MISC_CG_RES_TDX, tdx_get_nr_guest_keyids()))
3530 		goto get_sysinfo_err;
3531 
3532 	/*
3533 	 * Leave hardware virtualization enabled after TDX is enabled
3534 	 * successfully.  TDX CPU hotplug depends on this.
3535 	 */
3536 	return 0;
3537 
3538 get_sysinfo_err:
3539 	__tdx_cleanup();
3540 tdx_bringup_err:
3541 	kvm_disable_virtualization();
3542 	return r;
3543 }
3544 
tdx_cleanup(void)3545 void tdx_cleanup(void)
3546 {
3547 	if (enable_tdx) {
3548 		misc_cg_set_capacity(MISC_CG_RES_TDX, 0);
3549 		__tdx_cleanup();
3550 		kvm_disable_virtualization();
3551 	}
3552 }
3553 
tdx_bringup(void)3554 int __init tdx_bringup(void)
3555 {
3556 	int r, i;
3557 
3558 	/* tdx_disable_virtualization_cpu() uses associated_tdvcpus. */
3559 	for_each_possible_cpu(i)
3560 		INIT_LIST_HEAD(&per_cpu(associated_tdvcpus, i));
3561 
3562 	if (!enable_tdx)
3563 		return 0;
3564 
3565 	if (!enable_ept) {
3566 		pr_err("EPT is required for TDX\n");
3567 		goto success_disable_tdx;
3568 	}
3569 
3570 	if (!tdp_mmu_enabled || !enable_mmio_caching || !enable_ept_ad_bits) {
3571 		pr_err("TDP MMU and MMIO caching and EPT A/D bit is required for TDX\n");
3572 		goto success_disable_tdx;
3573 	}
3574 
3575 	if (!enable_apicv) {
3576 		pr_err("APICv is required for TDX\n");
3577 		goto success_disable_tdx;
3578 	}
3579 
3580 	if (!cpu_feature_enabled(X86_FEATURE_OSXSAVE)) {
3581 		pr_err("tdx: OSXSAVE is required for TDX\n");
3582 		goto success_disable_tdx;
3583 	}
3584 
3585 	if (!cpu_feature_enabled(X86_FEATURE_MOVDIR64B)) {
3586 		pr_err("tdx: MOVDIR64B is required for TDX\n");
3587 		goto success_disable_tdx;
3588 	}
3589 
3590 	if (!cpu_feature_enabled(X86_FEATURE_SELFSNOOP)) {
3591 		pr_err("Self-snoop is required for TDX\n");
3592 		goto success_disable_tdx;
3593 	}
3594 
3595 	if (!cpu_feature_enabled(X86_FEATURE_TDX_HOST_PLATFORM)) {
3596 		pr_err("tdx: no TDX private KeyIDs available\n");
3597 		goto success_disable_tdx;
3598 	}
3599 
3600 	if (!enable_virt_at_load) {
3601 		pr_err("tdx: tdx requires kvm.enable_virt_at_load=1\n");
3602 		goto success_disable_tdx;
3603 	}
3604 
3605 	/*
3606 	 * Ideally KVM should probe whether TDX module has been loaded
3607 	 * first and then try to bring it up.  But TDX needs to use SEAMCALL
3608 	 * to probe whether the module is loaded (there is no CPUID or MSR
3609 	 * for that), and making SEAMCALL requires enabling virtualization
3610 	 * first, just like the rest steps of bringing up TDX module.
3611 	 *
3612 	 * So, for simplicity do everything in __tdx_bringup(); the first
3613 	 * SEAMCALL will return -ENODEV when the module is not loaded.  The
3614 	 * only complication is having to make sure that initialization
3615 	 * SEAMCALLs don't return TDX_SEAMCALL_VMFAILINVALID in other
3616 	 * cases.
3617 	 */
3618 	r = __tdx_bringup();
3619 	if (r) {
3620 		/*
3621 		 * Disable TDX only but don't fail to load module if the TDX
3622 		 * module could not be loaded.  No need to print message saying
3623 		 * "module is not loaded" because it was printed when the first
3624 		 * SEAMCALL failed.  Don't bother unwinding the S-EPT hooks or
3625 		 * vm_size, as kvm_x86_ops have already been finalized (and are
3626 		 * intentionally not exported).  The S-EPT code is unreachable,
3627 		 * and allocating a few more bytes per VM in a should-be-rare
3628 		 * failure scenario is a non-issue.
3629 		 */
3630 		if (r == -ENODEV)
3631 			goto success_disable_tdx;
3632 
3633 		enable_tdx = 0;
3634 	}
3635 
3636 	return r;
3637 
3638 success_disable_tdx:
3639 	enable_tdx = 0;
3640 	return 0;
3641 }
3642 
tdx_hardware_setup(void)3643 void __init tdx_hardware_setup(void)
3644 {
3645 	KVM_SANITY_CHECK_VM_STRUCT_SIZE(kvm_tdx);
3646 
3647 	/*
3648 	 * Note, if the TDX module can't be loaded, KVM TDX support will be
3649 	 * disabled but KVM will continue loading (see tdx_bringup()).
3650 	 */
3651 	vt_x86_ops.vm_size = max_t(unsigned int, vt_x86_ops.vm_size, sizeof(struct kvm_tdx));
3652 
3653 	vt_x86_ops.link_external_spt = tdx_sept_link_private_spt;
3654 	vt_x86_ops.set_external_spte = tdx_sept_set_private_spte;
3655 	vt_x86_ops.free_external_spt = tdx_sept_free_private_spt;
3656 	vt_x86_ops.remove_external_spte = tdx_sept_remove_private_spte;
3657 	vt_x86_ops.protected_apic_has_interrupt = tdx_protected_apic_has_interrupt;
3658 }
3659