xref: /linux/arch/x86/kvm/mmu/tdp_mmu.c (revision b1fdbe77be6d31d78ecc2a82ea7167773293fed0)
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include "mmu.h"
5 #include "mmu_internal.h"
6 #include "mmutrace.h"
7 #include "tdp_iter.h"
8 #include "tdp_mmu.h"
9 #include "spte.h"
10 
11 #include <asm/cmpxchg.h>
12 #include <trace/events/kvm.h>
13 
14 /* Initializes the TDP MMU for the VM, if enabled. */
kvm_mmu_init_tdp_mmu(struct kvm * kvm)15 void kvm_mmu_init_tdp_mmu(struct kvm *kvm)
16 {
17 	INIT_LIST_HEAD(&kvm->arch.tdp_mmu_roots);
18 	spin_lock_init(&kvm->arch.tdp_mmu_pages_lock);
19 }
20 
21 /* Arbitrarily returns true so that this may be used in if statements. */
kvm_lockdep_assert_mmu_lock_held(struct kvm * kvm,bool shared)22 static __always_inline bool kvm_lockdep_assert_mmu_lock_held(struct kvm *kvm,
23 							     bool shared)
24 {
25 	if (shared)
26 		lockdep_assert_held_read(&kvm->mmu_lock);
27 	else
28 		lockdep_assert_held_write(&kvm->mmu_lock);
29 
30 	return true;
31 }
32 
kvm_mmu_uninit_tdp_mmu(struct kvm * kvm)33 void kvm_mmu_uninit_tdp_mmu(struct kvm *kvm)
34 {
35 	/*
36 	 * Invalidate all roots, which besides the obvious, schedules all roots
37 	 * for zapping and thus puts the TDP MMU's reference to each root, i.e.
38 	 * ultimately frees all roots.
39 	 */
40 	kvm_tdp_mmu_invalidate_all_roots(kvm);
41 	kvm_tdp_mmu_zap_invalidated_roots(kvm);
42 
43 	WARN_ON(atomic64_read(&kvm->arch.tdp_mmu_pages));
44 	WARN_ON(!list_empty(&kvm->arch.tdp_mmu_roots));
45 
46 	/*
47 	 * Ensure that all the outstanding RCU callbacks to free shadow pages
48 	 * can run before the VM is torn down.  Putting the last reference to
49 	 * zapped roots will create new callbacks.
50 	 */
51 	rcu_barrier();
52 }
53 
tdp_mmu_free_sp(struct kvm_mmu_page * sp)54 static void tdp_mmu_free_sp(struct kvm_mmu_page *sp)
55 {
56 	free_page((unsigned long)sp->spt);
57 	kmem_cache_free(mmu_page_header_cache, sp);
58 }
59 
60 /*
61  * This is called through call_rcu in order to free TDP page table memory
62  * safely with respect to other kernel threads that may be operating on
63  * the memory.
64  * By only accessing TDP MMU page table memory in an RCU read critical
65  * section, and freeing it after a grace period, lockless access to that
66  * memory won't use it after it is freed.
67  */
tdp_mmu_free_sp_rcu_callback(struct rcu_head * head)68 static void tdp_mmu_free_sp_rcu_callback(struct rcu_head *head)
69 {
70 	struct kvm_mmu_page *sp = container_of(head, struct kvm_mmu_page,
71 					       rcu_head);
72 
73 	tdp_mmu_free_sp(sp);
74 }
75 
kvm_tdp_mmu_put_root(struct kvm * kvm,struct kvm_mmu_page * root)76 void kvm_tdp_mmu_put_root(struct kvm *kvm, struct kvm_mmu_page *root)
77 {
78 	if (!refcount_dec_and_test(&root->tdp_mmu_root_count))
79 		return;
80 
81 	/*
82 	 * The TDP MMU itself holds a reference to each root until the root is
83 	 * explicitly invalidated, i.e. the final reference should be never be
84 	 * put for a valid root.
85 	 */
86 	KVM_BUG_ON(!is_tdp_mmu_page(root) || !root->role.invalid, kvm);
87 
88 	spin_lock(&kvm->arch.tdp_mmu_pages_lock);
89 	list_del_rcu(&root->link);
90 	spin_unlock(&kvm->arch.tdp_mmu_pages_lock);
91 	call_rcu(&root->rcu_head, tdp_mmu_free_sp_rcu_callback);
92 }
93 
94 /*
95  * Returns the next root after @prev_root (or the first root if @prev_root is
96  * NULL).  A reference to the returned root is acquired, and the reference to
97  * @prev_root is released (the caller obviously must hold a reference to
98  * @prev_root if it's non-NULL).
99  *
100  * If @only_valid is true, invalid roots are skipped.
101  *
102  * Returns NULL if the end of tdp_mmu_roots was reached.
103  */
tdp_mmu_next_root(struct kvm * kvm,struct kvm_mmu_page * prev_root,bool only_valid)104 static struct kvm_mmu_page *tdp_mmu_next_root(struct kvm *kvm,
105 					      struct kvm_mmu_page *prev_root,
106 					      bool only_valid)
107 {
108 	struct kvm_mmu_page *next_root;
109 
110 	/*
111 	 * While the roots themselves are RCU-protected, fields such as
112 	 * role.invalid are protected by mmu_lock.
113 	 */
114 	lockdep_assert_held(&kvm->mmu_lock);
115 
116 	rcu_read_lock();
117 
118 	if (prev_root)
119 		next_root = list_next_or_null_rcu(&kvm->arch.tdp_mmu_roots,
120 						  &prev_root->link,
121 						  typeof(*prev_root), link);
122 	else
123 		next_root = list_first_or_null_rcu(&kvm->arch.tdp_mmu_roots,
124 						   typeof(*next_root), link);
125 
126 	while (next_root) {
127 		if ((!only_valid || !next_root->role.invalid) &&
128 		    kvm_tdp_mmu_get_root(next_root))
129 			break;
130 
131 		next_root = list_next_or_null_rcu(&kvm->arch.tdp_mmu_roots,
132 				&next_root->link, typeof(*next_root), link);
133 	}
134 
135 	rcu_read_unlock();
136 
137 	if (prev_root)
138 		kvm_tdp_mmu_put_root(kvm, prev_root);
139 
140 	return next_root;
141 }
142 
143 /*
144  * Note: this iterator gets and puts references to the roots it iterates over.
145  * This makes it safe to release the MMU lock and yield within the loop, but
146  * if exiting the loop early, the caller must drop the reference to the most
147  * recent root. (Unless keeping a live reference is desirable.)
148  *
149  * If shared is set, this function is operating under the MMU lock in read
150  * mode.
151  */
152 #define __for_each_tdp_mmu_root_yield_safe(_kvm, _root, _as_id, _only_valid)	\
153 	for (_root = tdp_mmu_next_root(_kvm, NULL, _only_valid);		\
154 	     ({ lockdep_assert_held(&(_kvm)->mmu_lock); }), _root;		\
155 	     _root = tdp_mmu_next_root(_kvm, _root, _only_valid))		\
156 		if (_as_id >= 0 && kvm_mmu_page_as_id(_root) != _as_id) {	\
157 		} else
158 
159 #define for_each_valid_tdp_mmu_root_yield_safe(_kvm, _root, _as_id)	\
160 	__for_each_tdp_mmu_root_yield_safe(_kvm, _root, _as_id, true)
161 
162 #define for_each_tdp_mmu_root_yield_safe(_kvm, _root)			\
163 	for (_root = tdp_mmu_next_root(_kvm, NULL, false);		\
164 	     ({ lockdep_assert_held(&(_kvm)->mmu_lock); }), _root;	\
165 	     _root = tdp_mmu_next_root(_kvm, _root, false))
166 
167 /*
168  * Iterate over all TDP MMU roots.  Requires that mmu_lock be held for write,
169  * the implication being that any flow that holds mmu_lock for read is
170  * inherently yield-friendly and should use the yield-safe variant above.
171  * Holding mmu_lock for write obviates the need for RCU protection as the list
172  * is guaranteed to be stable.
173  */
174 #define __for_each_tdp_mmu_root(_kvm, _root, _as_id, _only_valid)		\
175 	list_for_each_entry(_root, &_kvm->arch.tdp_mmu_roots, link)		\
176 		if (kvm_lockdep_assert_mmu_lock_held(_kvm, false) &&		\
177 		    ((_as_id >= 0 && kvm_mmu_page_as_id(_root) != _as_id) ||	\
178 		     ((_only_valid) && (_root)->role.invalid))) {		\
179 		} else
180 
181 #define for_each_tdp_mmu_root(_kvm, _root, _as_id)			\
182 	__for_each_tdp_mmu_root(_kvm, _root, _as_id, false)
183 
184 #define for_each_valid_tdp_mmu_root(_kvm, _root, _as_id)		\
185 	__for_each_tdp_mmu_root(_kvm, _root, _as_id, true)
186 
tdp_mmu_alloc_sp(struct kvm_vcpu * vcpu)187 static struct kvm_mmu_page *tdp_mmu_alloc_sp(struct kvm_vcpu *vcpu)
188 {
189 	struct kvm_mmu_page *sp;
190 
191 	sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
192 	sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
193 
194 	return sp;
195 }
196 
tdp_mmu_init_sp(struct kvm_mmu_page * sp,tdp_ptep_t sptep,gfn_t gfn,union kvm_mmu_page_role role)197 static void tdp_mmu_init_sp(struct kvm_mmu_page *sp, tdp_ptep_t sptep,
198 			    gfn_t gfn, union kvm_mmu_page_role role)
199 {
200 	INIT_LIST_HEAD(&sp->possible_nx_huge_page_link);
201 
202 	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
203 
204 	sp->role = role;
205 	sp->gfn = gfn;
206 	sp->ptep = sptep;
207 	sp->tdp_mmu_page = true;
208 
209 	trace_kvm_mmu_get_page(sp, true);
210 }
211 
tdp_mmu_init_child_sp(struct kvm_mmu_page * child_sp,struct tdp_iter * iter)212 static void tdp_mmu_init_child_sp(struct kvm_mmu_page *child_sp,
213 				  struct tdp_iter *iter)
214 {
215 	struct kvm_mmu_page *parent_sp;
216 	union kvm_mmu_page_role role;
217 
218 	parent_sp = sptep_to_sp(rcu_dereference(iter->sptep));
219 
220 	role = parent_sp->role;
221 	role.level--;
222 
223 	tdp_mmu_init_sp(child_sp, iter->sptep, iter->gfn, role);
224 }
225 
kvm_tdp_mmu_alloc_root(struct kvm_vcpu * vcpu)226 int kvm_tdp_mmu_alloc_root(struct kvm_vcpu *vcpu)
227 {
228 	struct kvm_mmu *mmu = vcpu->arch.mmu;
229 	union kvm_mmu_page_role role = mmu->root_role;
230 	int as_id = kvm_mmu_role_as_id(role);
231 	struct kvm *kvm = vcpu->kvm;
232 	struct kvm_mmu_page *root;
233 
234 	/*
235 	 * Check for an existing root before acquiring the pages lock to avoid
236 	 * unnecessary serialization if multiple vCPUs are loading a new root.
237 	 * E.g. when bringing up secondary vCPUs, KVM will already have created
238 	 * a valid root on behalf of the primary vCPU.
239 	 */
240 	read_lock(&kvm->mmu_lock);
241 
242 	for_each_valid_tdp_mmu_root_yield_safe(kvm, root, as_id) {
243 		if (root->role.word == role.word)
244 			goto out_read_unlock;
245 	}
246 
247 	spin_lock(&kvm->arch.tdp_mmu_pages_lock);
248 
249 	/*
250 	 * Recheck for an existing root after acquiring the pages lock, another
251 	 * vCPU may have raced ahead and created a new usable root.  Manually
252 	 * walk the list of roots as the standard macros assume that the pages
253 	 * lock is *not* held.  WARN if grabbing a reference to a usable root
254 	 * fails, as the last reference to a root can only be put *after* the
255 	 * root has been invalidated, which requires holding mmu_lock for write.
256 	 */
257 	list_for_each_entry(root, &kvm->arch.tdp_mmu_roots, link) {
258 		if (root->role.word == role.word &&
259 		    !WARN_ON_ONCE(!kvm_tdp_mmu_get_root(root)))
260 			goto out_spin_unlock;
261 	}
262 
263 	root = tdp_mmu_alloc_sp(vcpu);
264 	tdp_mmu_init_sp(root, NULL, 0, role);
265 
266 	/*
267 	 * TDP MMU roots are kept until they are explicitly invalidated, either
268 	 * by a memslot update or by the destruction of the VM.  Initialize the
269 	 * refcount to two; one reference for the vCPU, and one reference for
270 	 * the TDP MMU itself, which is held until the root is invalidated and
271 	 * is ultimately put by kvm_tdp_mmu_zap_invalidated_roots().
272 	 */
273 	refcount_set(&root->tdp_mmu_root_count, 2);
274 	list_add_rcu(&root->link, &kvm->arch.tdp_mmu_roots);
275 
276 out_spin_unlock:
277 	spin_unlock(&kvm->arch.tdp_mmu_pages_lock);
278 out_read_unlock:
279 	read_unlock(&kvm->mmu_lock);
280 	/*
281 	 * Note, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS will prevent entering the guest
282 	 * and actually consuming the root if it's invalidated after dropping
283 	 * mmu_lock, and the root can't be freed as this vCPU holds a reference.
284 	 */
285 	mmu->root.hpa = __pa(root->spt);
286 	mmu->root.pgd = 0;
287 	return 0;
288 }
289 
290 static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
291 				u64 old_spte, u64 new_spte, int level,
292 				bool shared);
293 
tdp_account_mmu_page(struct kvm * kvm,struct kvm_mmu_page * sp)294 static void tdp_account_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp)
295 {
296 	kvm_account_pgtable_pages((void *)sp->spt, +1);
297 	atomic64_inc(&kvm->arch.tdp_mmu_pages);
298 }
299 
tdp_unaccount_mmu_page(struct kvm * kvm,struct kvm_mmu_page * sp)300 static void tdp_unaccount_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp)
301 {
302 	kvm_account_pgtable_pages((void *)sp->spt, -1);
303 	atomic64_dec(&kvm->arch.tdp_mmu_pages);
304 }
305 
306 /**
307  * tdp_mmu_unlink_sp() - Remove a shadow page from the list of used pages
308  *
309  * @kvm: kvm instance
310  * @sp: the page to be removed
311  */
tdp_mmu_unlink_sp(struct kvm * kvm,struct kvm_mmu_page * sp)312 static void tdp_mmu_unlink_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
313 {
314 	tdp_unaccount_mmu_page(kvm, sp);
315 
316 	if (!sp->nx_huge_page_disallowed)
317 		return;
318 
319 	spin_lock(&kvm->arch.tdp_mmu_pages_lock);
320 	sp->nx_huge_page_disallowed = false;
321 	untrack_possible_nx_huge_page(kvm, sp);
322 	spin_unlock(&kvm->arch.tdp_mmu_pages_lock);
323 }
324 
325 /**
326  * handle_removed_pt() - handle a page table removed from the TDP structure
327  *
328  * @kvm: kvm instance
329  * @pt: the page removed from the paging structure
330  * @shared: This operation may not be running under the exclusive use
331  *	    of the MMU lock and the operation must synchronize with other
332  *	    threads that might be modifying SPTEs.
333  *
334  * Given a page table that has been removed from the TDP paging structure,
335  * iterates through the page table to clear SPTEs and free child page tables.
336  *
337  * Note that pt is passed in as a tdp_ptep_t, but it does not need RCU
338  * protection. Since this thread removed it from the paging structure,
339  * this thread will be responsible for ensuring the page is freed. Hence the
340  * early rcu_dereferences in the function.
341  */
handle_removed_pt(struct kvm * kvm,tdp_ptep_t pt,bool shared)342 static void handle_removed_pt(struct kvm *kvm, tdp_ptep_t pt, bool shared)
343 {
344 	struct kvm_mmu_page *sp = sptep_to_sp(rcu_dereference(pt));
345 	int level = sp->role.level;
346 	gfn_t base_gfn = sp->gfn;
347 	int i;
348 
349 	trace_kvm_mmu_prepare_zap_page(sp);
350 
351 	tdp_mmu_unlink_sp(kvm, sp);
352 
353 	for (i = 0; i < SPTE_ENT_PER_PAGE; i++) {
354 		tdp_ptep_t sptep = pt + i;
355 		gfn_t gfn = base_gfn + i * KVM_PAGES_PER_HPAGE(level);
356 		u64 old_spte;
357 
358 		if (shared) {
359 			/*
360 			 * Set the SPTE to a nonpresent value that other
361 			 * threads will not overwrite. If the SPTE was
362 			 * already marked as frozen then another thread
363 			 * handling a page fault could overwrite it, so
364 			 * set the SPTE until it is set from some other
365 			 * value to the frozen SPTE value.
366 			 */
367 			for (;;) {
368 				old_spte = kvm_tdp_mmu_write_spte_atomic(sptep, FROZEN_SPTE);
369 				if (!is_frozen_spte(old_spte))
370 					break;
371 				cpu_relax();
372 			}
373 		} else {
374 			/*
375 			 * If the SPTE is not MMU-present, there is no backing
376 			 * page associated with the SPTE and so no side effects
377 			 * that need to be recorded, and exclusive ownership of
378 			 * mmu_lock ensures the SPTE can't be made present.
379 			 * Note, zapping MMIO SPTEs is also unnecessary as they
380 			 * are guarded by the memslots generation, not by being
381 			 * unreachable.
382 			 */
383 			old_spte = kvm_tdp_mmu_read_spte(sptep);
384 			if (!is_shadow_present_pte(old_spte))
385 				continue;
386 
387 			/*
388 			 * Use the common helper instead of a raw WRITE_ONCE as
389 			 * the SPTE needs to be updated atomically if it can be
390 			 * modified by a different vCPU outside of mmu_lock.
391 			 * Even though the parent SPTE is !PRESENT, the TLB
392 			 * hasn't yet been flushed, and both Intel and AMD
393 			 * document that A/D assists can use upper-level PxE
394 			 * entries that are cached in the TLB, i.e. the CPU can
395 			 * still access the page and mark it dirty.
396 			 *
397 			 * No retry is needed in the atomic update path as the
398 			 * sole concern is dropping a Dirty bit, i.e. no other
399 			 * task can zap/remove the SPTE as mmu_lock is held for
400 			 * write.  Marking the SPTE as a frozen SPTE is not
401 			 * strictly necessary for the same reason, but using
402 			 * the frozen SPTE value keeps the shared/exclusive
403 			 * paths consistent and allows the handle_changed_spte()
404 			 * call below to hardcode the new value to FROZEN_SPTE.
405 			 *
406 			 * Note, even though dropping a Dirty bit is the only
407 			 * scenario where a non-atomic update could result in a
408 			 * functional bug, simply checking the Dirty bit isn't
409 			 * sufficient as a fast page fault could read the upper
410 			 * level SPTE before it is zapped, and then make this
411 			 * target SPTE writable, resume the guest, and set the
412 			 * Dirty bit between reading the SPTE above and writing
413 			 * it here.
414 			 */
415 			old_spte = kvm_tdp_mmu_write_spte(sptep, old_spte,
416 							  FROZEN_SPTE, level);
417 		}
418 		handle_changed_spte(kvm, kvm_mmu_page_as_id(sp), gfn,
419 				    old_spte, FROZEN_SPTE, level, shared);
420 	}
421 
422 	call_rcu(&sp->rcu_head, tdp_mmu_free_sp_rcu_callback);
423 }
424 
425 /**
426  * handle_changed_spte - handle bookkeeping associated with an SPTE change
427  * @kvm: kvm instance
428  * @as_id: the address space of the paging structure the SPTE was a part of
429  * @gfn: the base GFN that was mapped by the SPTE
430  * @old_spte: The value of the SPTE before the change
431  * @new_spte: The value of the SPTE after the change
432  * @level: the level of the PT the SPTE is part of in the paging structure
433  * @shared: This operation may not be running under the exclusive use of
434  *	    the MMU lock and the operation must synchronize with other
435  *	    threads that might be modifying SPTEs.
436  *
437  * Handle bookkeeping that might result from the modification of a SPTE.  Note,
438  * dirty logging updates are handled in common code, not here (see make_spte()
439  * and fast_pf_fix_direct_spte()).
440  */
handle_changed_spte(struct kvm * kvm,int as_id,gfn_t gfn,u64 old_spte,u64 new_spte,int level,bool shared)441 static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
442 				u64 old_spte, u64 new_spte, int level,
443 				bool shared)
444 {
445 	bool was_present = is_shadow_present_pte(old_spte);
446 	bool is_present = is_shadow_present_pte(new_spte);
447 	bool was_leaf = was_present && is_last_spte(old_spte, level);
448 	bool is_leaf = is_present && is_last_spte(new_spte, level);
449 	bool pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte);
450 
451 	WARN_ON_ONCE(level > PT64_ROOT_MAX_LEVEL);
452 	WARN_ON_ONCE(level < PG_LEVEL_4K);
453 	WARN_ON_ONCE(gfn & (KVM_PAGES_PER_HPAGE(level) - 1));
454 
455 	/*
456 	 * If this warning were to trigger it would indicate that there was a
457 	 * missing MMU notifier or a race with some notifier handler.
458 	 * A present, leaf SPTE should never be directly replaced with another
459 	 * present leaf SPTE pointing to a different PFN. A notifier handler
460 	 * should be zapping the SPTE before the main MM's page table is
461 	 * changed, or the SPTE should be zeroed, and the TLBs flushed by the
462 	 * thread before replacement.
463 	 */
464 	if (was_leaf && is_leaf && pfn_changed) {
465 		pr_err("Invalid SPTE change: cannot replace a present leaf\n"
466 		       "SPTE with another present leaf SPTE mapping a\n"
467 		       "different PFN!\n"
468 		       "as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d",
469 		       as_id, gfn, old_spte, new_spte, level);
470 
471 		/*
472 		 * Crash the host to prevent error propagation and guest data
473 		 * corruption.
474 		 */
475 		BUG();
476 	}
477 
478 	if (old_spte == new_spte)
479 		return;
480 
481 	trace_kvm_tdp_mmu_spte_changed(as_id, gfn, level, old_spte, new_spte);
482 
483 	if (is_leaf)
484 		check_spte_writable_invariants(new_spte);
485 
486 	/*
487 	 * The only times a SPTE should be changed from a non-present to
488 	 * non-present state is when an MMIO entry is installed/modified/
489 	 * removed. In that case, there is nothing to do here.
490 	 */
491 	if (!was_present && !is_present) {
492 		/*
493 		 * If this change does not involve a MMIO SPTE or frozen SPTE,
494 		 * it is unexpected. Log the change, though it should not
495 		 * impact the guest since both the former and current SPTEs
496 		 * are nonpresent.
497 		 */
498 		if (WARN_ON_ONCE(!is_mmio_spte(kvm, old_spte) &&
499 				 !is_mmio_spte(kvm, new_spte) &&
500 				 !is_frozen_spte(new_spte)))
501 			pr_err("Unexpected SPTE change! Nonpresent SPTEs\n"
502 			       "should not be replaced with another,\n"
503 			       "different nonpresent SPTE, unless one or both\n"
504 			       "are MMIO SPTEs, or the new SPTE is\n"
505 			       "a temporary frozen SPTE.\n"
506 			       "as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d",
507 			       as_id, gfn, old_spte, new_spte, level);
508 		return;
509 	}
510 
511 	if (is_leaf != was_leaf)
512 		kvm_update_page_stats(kvm, level, is_leaf ? 1 : -1);
513 
514 	/*
515 	 * Recursively handle child PTs if the change removed a subtree from
516 	 * the paging structure.  Note the WARN on the PFN changing without the
517 	 * SPTE being converted to a hugepage (leaf) or being zapped.  Shadow
518 	 * pages are kernel allocations and should never be migrated.
519 	 */
520 	if (was_present && !was_leaf &&
521 	    (is_leaf || !is_present || WARN_ON_ONCE(pfn_changed)))
522 		handle_removed_pt(kvm, spte_to_child_pt(old_spte, level), shared);
523 }
524 
__tdp_mmu_set_spte_atomic(struct tdp_iter * iter,u64 new_spte)525 static inline int __must_check __tdp_mmu_set_spte_atomic(struct tdp_iter *iter,
526 							 u64 new_spte)
527 {
528 	u64 *sptep = rcu_dereference(iter->sptep);
529 
530 	/*
531 	 * The caller is responsible for ensuring the old SPTE is not a FROZEN
532 	 * SPTE.  KVM should never attempt to zap or manipulate a FROZEN SPTE,
533 	 * and pre-checking before inserting a new SPTE is advantageous as it
534 	 * avoids unnecessary work.
535 	 */
536 	WARN_ON_ONCE(iter->yielded || is_frozen_spte(iter->old_spte));
537 
538 	/*
539 	 * Note, fast_pf_fix_direct_spte() can also modify TDP MMU SPTEs and
540 	 * does not hold the mmu_lock.  On failure, i.e. if a different logical
541 	 * CPU modified the SPTE, try_cmpxchg64() updates iter->old_spte with
542 	 * the current value, so the caller operates on fresh data, e.g. if it
543 	 * retries tdp_mmu_set_spte_atomic()
544 	 */
545 	if (!try_cmpxchg64(sptep, &iter->old_spte, new_spte))
546 		return -EBUSY;
547 
548 	return 0;
549 }
550 
551 /*
552  * tdp_mmu_set_spte_atomic - Set a TDP MMU SPTE atomically
553  * and handle the associated bookkeeping.  Do not mark the page dirty
554  * in KVM's dirty bitmaps.
555  *
556  * If setting the SPTE fails because it has changed, iter->old_spte will be
557  * refreshed to the current value of the spte.
558  *
559  * @kvm: kvm instance
560  * @iter: a tdp_iter instance currently on the SPTE that should be set
561  * @new_spte: The value the SPTE should be set to
562  * Return:
563  * * 0      - If the SPTE was set.
564  * * -EBUSY - If the SPTE cannot be set. In this case this function will have
565  *            no side-effects other than setting iter->old_spte to the last
566  *            known value of the spte.
567  */
tdp_mmu_set_spte_atomic(struct kvm * kvm,struct tdp_iter * iter,u64 new_spte)568 static inline int __must_check tdp_mmu_set_spte_atomic(struct kvm *kvm,
569 						       struct tdp_iter *iter,
570 						       u64 new_spte)
571 {
572 	int ret;
573 
574 	lockdep_assert_held_read(&kvm->mmu_lock);
575 
576 	ret = __tdp_mmu_set_spte_atomic(iter, new_spte);
577 	if (ret)
578 		return ret;
579 
580 	handle_changed_spte(kvm, iter->as_id, iter->gfn, iter->old_spte,
581 			    new_spte, iter->level, true);
582 
583 	return 0;
584 }
585 
586 /*
587  * tdp_mmu_set_spte - Set a TDP MMU SPTE and handle the associated bookkeeping
588  * @kvm:	      KVM instance
589  * @as_id:	      Address space ID, i.e. regular vs. SMM
590  * @sptep:	      Pointer to the SPTE
591  * @old_spte:	      The current value of the SPTE
592  * @new_spte:	      The new value that will be set for the SPTE
593  * @gfn:	      The base GFN that was (or will be) mapped by the SPTE
594  * @level:	      The level _containing_ the SPTE (its parent PT's level)
595  *
596  * Returns the old SPTE value, which _may_ be different than @old_spte if the
597  * SPTE had voldatile bits.
598  */
tdp_mmu_set_spte(struct kvm * kvm,int as_id,tdp_ptep_t sptep,u64 old_spte,u64 new_spte,gfn_t gfn,int level)599 static u64 tdp_mmu_set_spte(struct kvm *kvm, int as_id, tdp_ptep_t sptep,
600 			    u64 old_spte, u64 new_spte, gfn_t gfn, int level)
601 {
602 	lockdep_assert_held_write(&kvm->mmu_lock);
603 
604 	/*
605 	 * No thread should be using this function to set SPTEs to or from the
606 	 * temporary frozen SPTE value.
607 	 * If operating under the MMU lock in read mode, tdp_mmu_set_spte_atomic
608 	 * should be used. If operating under the MMU lock in write mode, the
609 	 * use of the frozen SPTE should not be necessary.
610 	 */
611 	WARN_ON_ONCE(is_frozen_spte(old_spte) || is_frozen_spte(new_spte));
612 
613 	old_spte = kvm_tdp_mmu_write_spte(sptep, old_spte, new_spte, level);
614 
615 	handle_changed_spte(kvm, as_id, gfn, old_spte, new_spte, level, false);
616 	return old_spte;
617 }
618 
tdp_mmu_iter_set_spte(struct kvm * kvm,struct tdp_iter * iter,u64 new_spte)619 static inline void tdp_mmu_iter_set_spte(struct kvm *kvm, struct tdp_iter *iter,
620 					 u64 new_spte)
621 {
622 	WARN_ON_ONCE(iter->yielded);
623 	iter->old_spte = tdp_mmu_set_spte(kvm, iter->as_id, iter->sptep,
624 					  iter->old_spte, new_spte,
625 					  iter->gfn, iter->level);
626 }
627 
628 #define tdp_root_for_each_pte(_iter, _root, _start, _end) \
629 	for_each_tdp_pte(_iter, _root, _start, _end)
630 
631 #define tdp_root_for_each_leaf_pte(_iter, _root, _start, _end)	\
632 	tdp_root_for_each_pte(_iter, _root, _start, _end)		\
633 		if (!is_shadow_present_pte(_iter.old_spte) ||		\
634 		    !is_last_spte(_iter.old_spte, _iter.level))		\
635 			continue;					\
636 		else
637 
638 #define tdp_mmu_for_each_pte(_iter, _mmu, _start, _end)		\
639 	for_each_tdp_pte(_iter, root_to_sp(_mmu->root.hpa), _start, _end)
640 
tdp_mmu_iter_need_resched(struct kvm * kvm,struct tdp_iter * iter)641 static inline bool __must_check tdp_mmu_iter_need_resched(struct kvm *kvm,
642 							  struct tdp_iter *iter)
643 {
644 	if (!need_resched() && !rwlock_needbreak(&kvm->mmu_lock))
645 		return false;
646 
647 	/* Ensure forward progress has been made before yielding. */
648 	return iter->next_last_level_gfn != iter->yielded_gfn;
649 }
650 
651 /*
652  * Yield if the MMU lock is contended or this thread needs to return control
653  * to the scheduler.
654  *
655  * If this function should yield and flush is set, it will perform a remote
656  * TLB flush before yielding.
657  *
658  * If this function yields, iter->yielded is set and the caller must skip to
659  * the next iteration, where tdp_iter_next() will reset the tdp_iter's walk
660  * over the paging structures to allow the iterator to continue its traversal
661  * from the paging structure root.
662  *
663  * Returns true if this function yielded.
664  */
tdp_mmu_iter_cond_resched(struct kvm * kvm,struct tdp_iter * iter,bool flush,bool shared)665 static inline bool __must_check tdp_mmu_iter_cond_resched(struct kvm *kvm,
666 							  struct tdp_iter *iter,
667 							  bool flush, bool shared)
668 {
669 	KVM_MMU_WARN_ON(iter->yielded);
670 
671 	if (!tdp_mmu_iter_need_resched(kvm, iter))
672 		return false;
673 
674 	if (flush)
675 		kvm_flush_remote_tlbs(kvm);
676 
677 	rcu_read_unlock();
678 
679 	if (shared)
680 		cond_resched_rwlock_read(&kvm->mmu_lock);
681 	else
682 		cond_resched_rwlock_write(&kvm->mmu_lock);
683 
684 	rcu_read_lock();
685 
686 	WARN_ON_ONCE(iter->gfn > iter->next_last_level_gfn);
687 
688 	iter->yielded = true;
689 	return true;
690 }
691 
tdp_mmu_max_gfn_exclusive(void)692 static inline gfn_t tdp_mmu_max_gfn_exclusive(void)
693 {
694 	/*
695 	 * Bound TDP MMU walks at host.MAXPHYADDR.  KVM disallows memslots with
696 	 * a gpa range that would exceed the max gfn, and KVM does not create
697 	 * MMIO SPTEs for "impossible" gfns, instead sending such accesses down
698 	 * the slow emulation path every time.
699 	 */
700 	return kvm_mmu_max_gfn() + 1;
701 }
702 
__tdp_mmu_zap_root(struct kvm * kvm,struct kvm_mmu_page * root,bool shared,int zap_level)703 static void __tdp_mmu_zap_root(struct kvm *kvm, struct kvm_mmu_page *root,
704 			       bool shared, int zap_level)
705 {
706 	struct tdp_iter iter;
707 
708 	gfn_t end = tdp_mmu_max_gfn_exclusive();
709 	gfn_t start = 0;
710 
711 	for_each_tdp_pte_min_level(iter, root, zap_level, start, end) {
712 retry:
713 		if (tdp_mmu_iter_cond_resched(kvm, &iter, false, shared))
714 			continue;
715 
716 		if (!is_shadow_present_pte(iter.old_spte))
717 			continue;
718 
719 		if (iter.level > zap_level)
720 			continue;
721 
722 		if (!shared)
723 			tdp_mmu_iter_set_spte(kvm, &iter, SHADOW_NONPRESENT_VALUE);
724 		else if (tdp_mmu_set_spte_atomic(kvm, &iter, SHADOW_NONPRESENT_VALUE))
725 			goto retry;
726 	}
727 }
728 
tdp_mmu_zap_root(struct kvm * kvm,struct kvm_mmu_page * root,bool shared)729 static void tdp_mmu_zap_root(struct kvm *kvm, struct kvm_mmu_page *root,
730 			     bool shared)
731 {
732 
733 	/*
734 	 * The root must have an elevated refcount so that it's reachable via
735 	 * mmu_notifier callbacks, which allows this path to yield and drop
736 	 * mmu_lock.  When handling an unmap/release mmu_notifier command, KVM
737 	 * must drop all references to relevant pages prior to completing the
738 	 * callback.  Dropping mmu_lock with an unreachable root would result
739 	 * in zapping SPTEs after a relevant mmu_notifier callback completes
740 	 * and lead to use-after-free as zapping a SPTE triggers "writeback" of
741 	 * dirty accessed bits to the SPTE's associated struct page.
742 	 */
743 	WARN_ON_ONCE(!refcount_read(&root->tdp_mmu_root_count));
744 
745 	kvm_lockdep_assert_mmu_lock_held(kvm, shared);
746 
747 	rcu_read_lock();
748 
749 	/*
750 	 * Zap roots in multiple passes of decreasing granularity, i.e. zap at
751 	 * 4KiB=>2MiB=>1GiB=>root, in order to better honor need_resched() (all
752 	 * preempt models) or mmu_lock contention (full or real-time models).
753 	 * Zapping at finer granularity marginally increases the total time of
754 	 * the zap, but in most cases the zap itself isn't latency sensitive.
755 	 *
756 	 * If KVM is configured to prove the MMU, skip the 4KiB and 2MiB zaps
757 	 * in order to mimic the page fault path, which can replace a 1GiB page
758 	 * table with an equivalent 1GiB hugepage, i.e. can get saddled with
759 	 * zapping a 1GiB region that's fully populated with 4KiB SPTEs.  This
760 	 * allows verifying that KVM can safely zap 1GiB regions, e.g. without
761 	 * inducing RCU stalls, without relying on a relatively rare event
762 	 * (zapping roots is orders of magnitude more common).  Note, because
763 	 * zapping a SP recurses on its children, stepping down to PG_LEVEL_4K
764 	 * in the iterator itself is unnecessary.
765 	 */
766 	if (!IS_ENABLED(CONFIG_KVM_PROVE_MMU)) {
767 		__tdp_mmu_zap_root(kvm, root, shared, PG_LEVEL_4K);
768 		__tdp_mmu_zap_root(kvm, root, shared, PG_LEVEL_2M);
769 	}
770 	__tdp_mmu_zap_root(kvm, root, shared, PG_LEVEL_1G);
771 	__tdp_mmu_zap_root(kvm, root, shared, root->role.level);
772 
773 	rcu_read_unlock();
774 }
775 
kvm_tdp_mmu_zap_sp(struct kvm * kvm,struct kvm_mmu_page * sp)776 bool kvm_tdp_mmu_zap_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
777 {
778 	u64 old_spte;
779 
780 	/*
781 	 * This helper intentionally doesn't allow zapping a root shadow page,
782 	 * which doesn't have a parent page table and thus no associated entry.
783 	 */
784 	if (WARN_ON_ONCE(!sp->ptep))
785 		return false;
786 
787 	old_spte = kvm_tdp_mmu_read_spte(sp->ptep);
788 	if (WARN_ON_ONCE(!is_shadow_present_pte(old_spte)))
789 		return false;
790 
791 	tdp_mmu_set_spte(kvm, kvm_mmu_page_as_id(sp), sp->ptep, old_spte,
792 			 SHADOW_NONPRESENT_VALUE, sp->gfn, sp->role.level + 1);
793 
794 	return true;
795 }
796 
797 /*
798  * If can_yield is true, will release the MMU lock and reschedule if the
799  * scheduler needs the CPU or there is contention on the MMU lock. If this
800  * function cannot yield, it will not release the MMU lock or reschedule and
801  * the caller must ensure it does not supply too large a GFN range, or the
802  * operation can cause a soft lockup.
803  */
tdp_mmu_zap_leafs(struct kvm * kvm,struct kvm_mmu_page * root,gfn_t start,gfn_t end,bool can_yield,bool flush)804 static bool tdp_mmu_zap_leafs(struct kvm *kvm, struct kvm_mmu_page *root,
805 			      gfn_t start, gfn_t end, bool can_yield, bool flush)
806 {
807 	struct tdp_iter iter;
808 
809 	end = min(end, tdp_mmu_max_gfn_exclusive());
810 
811 	lockdep_assert_held_write(&kvm->mmu_lock);
812 
813 	rcu_read_lock();
814 
815 	for_each_tdp_pte_min_level(iter, root, PG_LEVEL_4K, start, end) {
816 		if (can_yield &&
817 		    tdp_mmu_iter_cond_resched(kvm, &iter, flush, false)) {
818 			flush = false;
819 			continue;
820 		}
821 
822 		if (!is_shadow_present_pte(iter.old_spte) ||
823 		    !is_last_spte(iter.old_spte, iter.level))
824 			continue;
825 
826 		tdp_mmu_iter_set_spte(kvm, &iter, SHADOW_NONPRESENT_VALUE);
827 
828 		/*
829 		 * Zappings SPTEs in invalid roots doesn't require a TLB flush,
830 		 * see kvm_tdp_mmu_zap_invalidated_roots() for details.
831 		 */
832 		if (!root->role.invalid)
833 			flush = true;
834 	}
835 
836 	rcu_read_unlock();
837 
838 	/*
839 	 * Because this flow zaps _only_ leaf SPTEs, the caller doesn't need
840 	 * to provide RCU protection as no 'struct kvm_mmu_page' will be freed.
841 	 */
842 	return flush;
843 }
844 
845 /*
846  * Zap leaf SPTEs for the range of gfns, [start, end), for all *VALID** roots.
847  * Returns true if a TLB flush is needed before releasing the MMU lock, i.e. if
848  * one or more SPTEs were zapped since the MMU lock was last acquired.
849  */
kvm_tdp_mmu_zap_leafs(struct kvm * kvm,gfn_t start,gfn_t end,bool flush)850 bool kvm_tdp_mmu_zap_leafs(struct kvm *kvm, gfn_t start, gfn_t end, bool flush)
851 {
852 	struct kvm_mmu_page *root;
853 
854 	lockdep_assert_held_write(&kvm->mmu_lock);
855 	for_each_valid_tdp_mmu_root_yield_safe(kvm, root, -1)
856 		flush = tdp_mmu_zap_leafs(kvm, root, start, end, true, flush);
857 
858 	return flush;
859 }
860 
kvm_tdp_mmu_zap_all(struct kvm * kvm)861 void kvm_tdp_mmu_zap_all(struct kvm *kvm)
862 {
863 	struct kvm_mmu_page *root;
864 
865 	/*
866 	 * Zap all roots, including invalid roots, as all SPTEs must be dropped
867 	 * before returning to the caller.  Zap directly even if the root is
868 	 * also being zapped by a worker.  Walking zapped top-level SPTEs isn't
869 	 * all that expensive and mmu_lock is already held, which means the
870 	 * worker has yielded, i.e. flushing the work instead of zapping here
871 	 * isn't guaranteed to be any faster.
872 	 *
873 	 * A TLB flush is unnecessary, KVM zaps everything if and only the VM
874 	 * is being destroyed or the userspace VMM has exited.  In both cases,
875 	 * KVM_RUN is unreachable, i.e. no vCPUs will ever service the request.
876 	 */
877 	lockdep_assert_held_write(&kvm->mmu_lock);
878 	for_each_tdp_mmu_root_yield_safe(kvm, root)
879 		tdp_mmu_zap_root(kvm, root, false);
880 }
881 
882 /*
883  * Zap all invalidated roots to ensure all SPTEs are dropped before the "fast
884  * zap" completes.
885  */
kvm_tdp_mmu_zap_invalidated_roots(struct kvm * kvm)886 void kvm_tdp_mmu_zap_invalidated_roots(struct kvm *kvm)
887 {
888 	struct kvm_mmu_page *root;
889 
890 	read_lock(&kvm->mmu_lock);
891 
892 	for_each_tdp_mmu_root_yield_safe(kvm, root) {
893 		if (!root->tdp_mmu_scheduled_root_to_zap)
894 			continue;
895 
896 		root->tdp_mmu_scheduled_root_to_zap = false;
897 		KVM_BUG_ON(!root->role.invalid, kvm);
898 
899 		/*
900 		 * A TLB flush is not necessary as KVM performs a local TLB
901 		 * flush when allocating a new root (see kvm_mmu_load()), and
902 		 * when migrating a vCPU to a different pCPU.  Note, the local
903 		 * TLB flush on reuse also invalidates paging-structure-cache
904 		 * entries, i.e. TLB entries for intermediate paging structures,
905 		 * that may be zapped, as such entries are associated with the
906 		 * ASID on both VMX and SVM.
907 		 */
908 		tdp_mmu_zap_root(kvm, root, true);
909 
910 		/*
911 		 * The referenced needs to be put *after* zapping the root, as
912 		 * the root must be reachable by mmu_notifiers while it's being
913 		 * zapped
914 		 */
915 		kvm_tdp_mmu_put_root(kvm, root);
916 	}
917 
918 	read_unlock(&kvm->mmu_lock);
919 }
920 
921 /*
922  * Mark each TDP MMU root as invalid to prevent vCPUs from reusing a root that
923  * is about to be zapped, e.g. in response to a memslots update.  The actual
924  * zapping is done separately so that it happens with mmu_lock with read,
925  * whereas invalidating roots must be done with mmu_lock held for write (unless
926  * the VM is being destroyed).
927  *
928  * Note, kvm_tdp_mmu_zap_invalidated_roots() is gifted the TDP MMU's reference.
929  * See kvm_tdp_mmu_alloc_root().
930  */
kvm_tdp_mmu_invalidate_all_roots(struct kvm * kvm)931 void kvm_tdp_mmu_invalidate_all_roots(struct kvm *kvm)
932 {
933 	struct kvm_mmu_page *root;
934 
935 	/*
936 	 * mmu_lock must be held for write to ensure that a root doesn't become
937 	 * invalid while there are active readers (invalidating a root while
938 	 * there are active readers may or may not be problematic in practice,
939 	 * but it's uncharted territory and not supported).
940 	 *
941 	 * Waive the assertion if there are no users of @kvm, i.e. the VM is
942 	 * being destroyed after all references have been put, or if no vCPUs
943 	 * have been created (which means there are no roots), i.e. the VM is
944 	 * being destroyed in an error path of KVM_CREATE_VM.
945 	 */
946 	if (IS_ENABLED(CONFIG_PROVE_LOCKING) &&
947 	    refcount_read(&kvm->users_count) && kvm->created_vcpus)
948 		lockdep_assert_held_write(&kvm->mmu_lock);
949 
950 	/*
951 	 * As above, mmu_lock isn't held when destroying the VM!  There can't
952 	 * be other references to @kvm, i.e. nothing else can invalidate roots
953 	 * or get/put references to roots.
954 	 */
955 	list_for_each_entry(root, &kvm->arch.tdp_mmu_roots, link) {
956 		/*
957 		 * Note, invalid roots can outlive a memslot update!  Invalid
958 		 * roots must be *zapped* before the memslot update completes,
959 		 * but a different task can acquire a reference and keep the
960 		 * root alive after its been zapped.
961 		 */
962 		if (!root->role.invalid) {
963 			root->tdp_mmu_scheduled_root_to_zap = true;
964 			root->role.invalid = true;
965 		}
966 	}
967 }
968 
969 /*
970  * Installs a last-level SPTE to handle a TDP page fault.
971  * (NPT/EPT violation/misconfiguration)
972  */
tdp_mmu_map_handle_target_level(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault,struct tdp_iter * iter)973 static int tdp_mmu_map_handle_target_level(struct kvm_vcpu *vcpu,
974 					  struct kvm_page_fault *fault,
975 					  struct tdp_iter *iter)
976 {
977 	struct kvm_mmu_page *sp = sptep_to_sp(rcu_dereference(iter->sptep));
978 	u64 new_spte;
979 	int ret = RET_PF_FIXED;
980 	bool wrprot = false;
981 
982 	if (WARN_ON_ONCE(sp->role.level != fault->goal_level))
983 		return RET_PF_RETRY;
984 
985 	if (fault->prefetch && is_shadow_present_pte(iter->old_spte))
986 		return RET_PF_SPURIOUS;
987 
988 	if (is_shadow_present_pte(iter->old_spte) &&
989 	    is_access_allowed(fault, iter->old_spte) &&
990 	    is_last_spte(iter->old_spte, iter->level))
991 		return RET_PF_SPURIOUS;
992 
993 	if (unlikely(!fault->slot))
994 		new_spte = make_mmio_spte(vcpu, iter->gfn, ACC_ALL);
995 	else
996 		wrprot = make_spte(vcpu, sp, fault->slot, ACC_ALL, iter->gfn,
997 				   fault->pfn, iter->old_spte, fault->prefetch,
998 				   false, fault->map_writable, &new_spte);
999 
1000 	if (new_spte == iter->old_spte)
1001 		ret = RET_PF_SPURIOUS;
1002 	else if (tdp_mmu_set_spte_atomic(vcpu->kvm, iter, new_spte))
1003 		return RET_PF_RETRY;
1004 	else if (is_shadow_present_pte(iter->old_spte) &&
1005 		 (!is_last_spte(iter->old_spte, iter->level) ||
1006 		  WARN_ON_ONCE(leaf_spte_change_needs_tlb_flush(iter->old_spte, new_spte))))
1007 		kvm_flush_remote_tlbs_gfn(vcpu->kvm, iter->gfn, iter->level);
1008 
1009 	/*
1010 	 * If the page fault was caused by a write but the page is write
1011 	 * protected, emulation is needed. If the emulation was skipped,
1012 	 * the vCPU would have the same fault again.
1013 	 */
1014 	if (wrprot && fault->write)
1015 		ret = RET_PF_WRITE_PROTECTED;
1016 
1017 	/* If a MMIO SPTE is installed, the MMIO will need to be emulated. */
1018 	if (unlikely(is_mmio_spte(vcpu->kvm, new_spte))) {
1019 		vcpu->stat.pf_mmio_spte_created++;
1020 		trace_mark_mmio_spte(rcu_dereference(iter->sptep), iter->gfn,
1021 				     new_spte);
1022 		ret = RET_PF_EMULATE;
1023 	} else {
1024 		trace_kvm_mmu_set_spte(iter->level, iter->gfn,
1025 				       rcu_dereference(iter->sptep));
1026 	}
1027 
1028 	return ret;
1029 }
1030 
1031 /*
1032  * tdp_mmu_link_sp - Replace the given spte with an spte pointing to the
1033  * provided page table.
1034  *
1035  * @kvm: kvm instance
1036  * @iter: a tdp_iter instance currently on the SPTE that should be set
1037  * @sp: The new TDP page table to install.
1038  * @shared: This operation is running under the MMU lock in read mode.
1039  *
1040  * Returns: 0 if the new page table was installed. Non-0 if the page table
1041  *          could not be installed (e.g. the atomic compare-exchange failed).
1042  */
tdp_mmu_link_sp(struct kvm * kvm,struct tdp_iter * iter,struct kvm_mmu_page * sp,bool shared)1043 static int tdp_mmu_link_sp(struct kvm *kvm, struct tdp_iter *iter,
1044 			   struct kvm_mmu_page *sp, bool shared)
1045 {
1046 	u64 spte = make_nonleaf_spte(sp->spt, !kvm_ad_enabled);
1047 	int ret = 0;
1048 
1049 	if (shared) {
1050 		ret = tdp_mmu_set_spte_atomic(kvm, iter, spte);
1051 		if (ret)
1052 			return ret;
1053 	} else {
1054 		tdp_mmu_iter_set_spte(kvm, iter, spte);
1055 	}
1056 
1057 	tdp_account_mmu_page(kvm, sp);
1058 
1059 	return 0;
1060 }
1061 
1062 static int tdp_mmu_split_huge_page(struct kvm *kvm, struct tdp_iter *iter,
1063 				   struct kvm_mmu_page *sp, bool shared);
1064 
1065 /*
1066  * Handle a TDP page fault (NPT/EPT violation/misconfiguration) by installing
1067  * page tables and SPTEs to translate the faulting guest physical address.
1068  */
kvm_tdp_mmu_map(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault)1069 int kvm_tdp_mmu_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
1070 {
1071 	struct kvm_mmu *mmu = vcpu->arch.mmu;
1072 	struct kvm *kvm = vcpu->kvm;
1073 	struct tdp_iter iter;
1074 	struct kvm_mmu_page *sp;
1075 	int ret = RET_PF_RETRY;
1076 
1077 	kvm_mmu_hugepage_adjust(vcpu, fault);
1078 
1079 	trace_kvm_mmu_spte_requested(fault);
1080 
1081 	rcu_read_lock();
1082 
1083 	tdp_mmu_for_each_pte(iter, mmu, fault->gfn, fault->gfn + 1) {
1084 		int r;
1085 
1086 		if (fault->nx_huge_page_workaround_enabled)
1087 			disallowed_hugepage_adjust(fault, iter.old_spte, iter.level);
1088 
1089 		/*
1090 		 * If SPTE has been frozen by another thread, just give up and
1091 		 * retry, avoiding unnecessary page table allocation and free.
1092 		 */
1093 		if (is_frozen_spte(iter.old_spte))
1094 			goto retry;
1095 
1096 		if (iter.level == fault->goal_level)
1097 			goto map_target_level;
1098 
1099 		/* Step down into the lower level page table if it exists. */
1100 		if (is_shadow_present_pte(iter.old_spte) &&
1101 		    !is_large_pte(iter.old_spte))
1102 			continue;
1103 
1104 		/*
1105 		 * The SPTE is either non-present or points to a huge page that
1106 		 * needs to be split.
1107 		 */
1108 		sp = tdp_mmu_alloc_sp(vcpu);
1109 		tdp_mmu_init_child_sp(sp, &iter);
1110 
1111 		sp->nx_huge_page_disallowed = fault->huge_page_disallowed;
1112 
1113 		if (is_shadow_present_pte(iter.old_spte))
1114 			r = tdp_mmu_split_huge_page(kvm, &iter, sp, true);
1115 		else
1116 			r = tdp_mmu_link_sp(kvm, &iter, sp, true);
1117 
1118 		/*
1119 		 * Force the guest to retry if installing an upper level SPTE
1120 		 * failed, e.g. because a different task modified the SPTE.
1121 		 */
1122 		if (r) {
1123 			tdp_mmu_free_sp(sp);
1124 			goto retry;
1125 		}
1126 
1127 		if (fault->huge_page_disallowed &&
1128 		    fault->req_level >= iter.level) {
1129 			spin_lock(&kvm->arch.tdp_mmu_pages_lock);
1130 			if (sp->nx_huge_page_disallowed)
1131 				track_possible_nx_huge_page(kvm, sp);
1132 			spin_unlock(&kvm->arch.tdp_mmu_pages_lock);
1133 		}
1134 	}
1135 
1136 	/*
1137 	 * The walk aborted before reaching the target level, e.g. because the
1138 	 * iterator detected an upper level SPTE was frozen during traversal.
1139 	 */
1140 	WARN_ON_ONCE(iter.level == fault->goal_level);
1141 	goto retry;
1142 
1143 map_target_level:
1144 	ret = tdp_mmu_map_handle_target_level(vcpu, fault, &iter);
1145 
1146 retry:
1147 	rcu_read_unlock();
1148 	return ret;
1149 }
1150 
kvm_tdp_mmu_unmap_gfn_range(struct kvm * kvm,struct kvm_gfn_range * range,bool flush)1151 bool kvm_tdp_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range,
1152 				 bool flush)
1153 {
1154 	struct kvm_mmu_page *root;
1155 
1156 	__for_each_tdp_mmu_root_yield_safe(kvm, root, range->slot->as_id, false)
1157 		flush = tdp_mmu_zap_leafs(kvm, root, range->start, range->end,
1158 					  range->may_block, flush);
1159 
1160 	return flush;
1161 }
1162 
1163 /*
1164  * Mark the SPTEs range of GFNs [start, end) unaccessed and return non-zero
1165  * if any of the GFNs in the range have been accessed.
1166  *
1167  * No need to mark the corresponding PFN as accessed as this call is coming
1168  * from the clear_young() or clear_flush_young() notifier, which uses the
1169  * return value to determine if the page has been accessed.
1170  */
kvm_tdp_mmu_age_spte(struct tdp_iter * iter)1171 static void kvm_tdp_mmu_age_spte(struct tdp_iter *iter)
1172 {
1173 	u64 new_spte;
1174 
1175 	if (spte_ad_enabled(iter->old_spte)) {
1176 		iter->old_spte = tdp_mmu_clear_spte_bits(iter->sptep,
1177 							 iter->old_spte,
1178 							 shadow_accessed_mask,
1179 							 iter->level);
1180 		new_spte = iter->old_spte & ~shadow_accessed_mask;
1181 	} else {
1182 		new_spte = mark_spte_for_access_track(iter->old_spte);
1183 		iter->old_spte = kvm_tdp_mmu_write_spte(iter->sptep,
1184 							iter->old_spte, new_spte,
1185 							iter->level);
1186 	}
1187 
1188 	trace_kvm_tdp_mmu_spte_changed(iter->as_id, iter->gfn, iter->level,
1189 				       iter->old_spte, new_spte);
1190 }
1191 
__kvm_tdp_mmu_age_gfn_range(struct kvm * kvm,struct kvm_gfn_range * range,bool test_only)1192 static bool __kvm_tdp_mmu_age_gfn_range(struct kvm *kvm,
1193 					struct kvm_gfn_range *range,
1194 					bool test_only)
1195 {
1196 	struct kvm_mmu_page *root;
1197 	struct tdp_iter iter;
1198 	bool ret = false;
1199 
1200 	/*
1201 	 * Don't support rescheduling, none of the MMU notifiers that funnel
1202 	 * into this helper allow blocking; it'd be dead, wasteful code.  Note,
1203 	 * this helper must NOT be used to unmap GFNs, as it processes only
1204 	 * valid roots!
1205 	 */
1206 	for_each_valid_tdp_mmu_root(kvm, root, range->slot->as_id) {
1207 		guard(rcu)();
1208 
1209 		tdp_root_for_each_leaf_pte(iter, root, range->start, range->end) {
1210 			if (!is_accessed_spte(iter.old_spte))
1211 				continue;
1212 
1213 			if (test_only)
1214 				return true;
1215 
1216 			ret = true;
1217 			kvm_tdp_mmu_age_spte(&iter);
1218 		}
1219 	}
1220 
1221 	return ret;
1222 }
1223 
kvm_tdp_mmu_age_gfn_range(struct kvm * kvm,struct kvm_gfn_range * range)1224 bool kvm_tdp_mmu_age_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1225 {
1226 	return __kvm_tdp_mmu_age_gfn_range(kvm, range, false);
1227 }
1228 
kvm_tdp_mmu_test_age_gfn(struct kvm * kvm,struct kvm_gfn_range * range)1229 bool kvm_tdp_mmu_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1230 {
1231 	return __kvm_tdp_mmu_age_gfn_range(kvm, range, true);
1232 }
1233 
1234 /*
1235  * Remove write access from all SPTEs at or above min_level that map GFNs
1236  * [start, end). Returns true if an SPTE has been changed and the TLBs need to
1237  * be flushed.
1238  */
wrprot_gfn_range(struct kvm * kvm,struct kvm_mmu_page * root,gfn_t start,gfn_t end,int min_level)1239 static bool wrprot_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
1240 			     gfn_t start, gfn_t end, int min_level)
1241 {
1242 	struct tdp_iter iter;
1243 	u64 new_spte;
1244 	bool spte_set = false;
1245 
1246 	rcu_read_lock();
1247 
1248 	BUG_ON(min_level > KVM_MAX_HUGEPAGE_LEVEL);
1249 
1250 	for_each_tdp_pte_min_level(iter, root, min_level, start, end) {
1251 retry:
1252 		if (tdp_mmu_iter_cond_resched(kvm, &iter, false, true))
1253 			continue;
1254 
1255 		if (!is_shadow_present_pte(iter.old_spte) ||
1256 		    !is_last_spte(iter.old_spte, iter.level) ||
1257 		    !(iter.old_spte & PT_WRITABLE_MASK))
1258 			continue;
1259 
1260 		new_spte = iter.old_spte & ~PT_WRITABLE_MASK;
1261 
1262 		if (tdp_mmu_set_spte_atomic(kvm, &iter, new_spte))
1263 			goto retry;
1264 
1265 		spte_set = true;
1266 	}
1267 
1268 	rcu_read_unlock();
1269 	return spte_set;
1270 }
1271 
1272 /*
1273  * Remove write access from all the SPTEs mapping GFNs in the memslot. Will
1274  * only affect leaf SPTEs down to min_level.
1275  * Returns true if an SPTE has been changed and the TLBs need to be flushed.
1276  */
kvm_tdp_mmu_wrprot_slot(struct kvm * kvm,const struct kvm_memory_slot * slot,int min_level)1277 bool kvm_tdp_mmu_wrprot_slot(struct kvm *kvm,
1278 			     const struct kvm_memory_slot *slot, int min_level)
1279 {
1280 	struct kvm_mmu_page *root;
1281 	bool spte_set = false;
1282 
1283 	lockdep_assert_held_read(&kvm->mmu_lock);
1284 
1285 	for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id)
1286 		spte_set |= wrprot_gfn_range(kvm, root, slot->base_gfn,
1287 			     slot->base_gfn + slot->npages, min_level);
1288 
1289 	return spte_set;
1290 }
1291 
tdp_mmu_alloc_sp_for_split(void)1292 static struct kvm_mmu_page *tdp_mmu_alloc_sp_for_split(void)
1293 {
1294 	struct kvm_mmu_page *sp;
1295 
1296 	sp = kmem_cache_zalloc(mmu_page_header_cache, GFP_KERNEL_ACCOUNT);
1297 	if (!sp)
1298 		return NULL;
1299 
1300 	sp->spt = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
1301 	if (!sp->spt) {
1302 		kmem_cache_free(mmu_page_header_cache, sp);
1303 		return NULL;
1304 	}
1305 
1306 	return sp;
1307 }
1308 
1309 /* Note, the caller is responsible for initializing @sp. */
tdp_mmu_split_huge_page(struct kvm * kvm,struct tdp_iter * iter,struct kvm_mmu_page * sp,bool shared)1310 static int tdp_mmu_split_huge_page(struct kvm *kvm, struct tdp_iter *iter,
1311 				   struct kvm_mmu_page *sp, bool shared)
1312 {
1313 	const u64 huge_spte = iter->old_spte;
1314 	const int level = iter->level;
1315 	int ret, i;
1316 
1317 	/*
1318 	 * No need for atomics when writing to sp->spt since the page table has
1319 	 * not been linked in yet and thus is not reachable from any other CPU.
1320 	 */
1321 	for (i = 0; i < SPTE_ENT_PER_PAGE; i++)
1322 		sp->spt[i] = make_small_spte(kvm, huge_spte, sp->role, i);
1323 
1324 	/*
1325 	 * Replace the huge spte with a pointer to the populated lower level
1326 	 * page table. Since we are making this change without a TLB flush vCPUs
1327 	 * will see a mix of the split mappings and the original huge mapping,
1328 	 * depending on what's currently in their TLB. This is fine from a
1329 	 * correctness standpoint since the translation will be the same either
1330 	 * way.
1331 	 */
1332 	ret = tdp_mmu_link_sp(kvm, iter, sp, shared);
1333 	if (ret)
1334 		goto out;
1335 
1336 	/*
1337 	 * tdp_mmu_link_sp_atomic() will handle subtracting the huge page we
1338 	 * are overwriting from the page stats. But we have to manually update
1339 	 * the page stats with the new present child pages.
1340 	 */
1341 	kvm_update_page_stats(kvm, level - 1, SPTE_ENT_PER_PAGE);
1342 
1343 out:
1344 	trace_kvm_mmu_split_huge_page(iter->gfn, huge_spte, level, ret);
1345 	return ret;
1346 }
1347 
tdp_mmu_split_huge_pages_root(struct kvm * kvm,struct kvm_mmu_page * root,gfn_t start,gfn_t end,int target_level,bool shared)1348 static int tdp_mmu_split_huge_pages_root(struct kvm *kvm,
1349 					 struct kvm_mmu_page *root,
1350 					 gfn_t start, gfn_t end,
1351 					 int target_level, bool shared)
1352 {
1353 	struct kvm_mmu_page *sp = NULL;
1354 	struct tdp_iter iter;
1355 
1356 	rcu_read_lock();
1357 
1358 	/*
1359 	 * Traverse the page table splitting all huge pages above the target
1360 	 * level into one lower level. For example, if we encounter a 1GB page
1361 	 * we split it into 512 2MB pages.
1362 	 *
1363 	 * Since the TDP iterator uses a pre-order traversal, we are guaranteed
1364 	 * to visit an SPTE before ever visiting its children, which means we
1365 	 * will correctly recursively split huge pages that are more than one
1366 	 * level above the target level (e.g. splitting a 1GB to 512 2MB pages,
1367 	 * and then splitting each of those to 512 4KB pages).
1368 	 */
1369 	for_each_tdp_pte_min_level(iter, root, target_level + 1, start, end) {
1370 retry:
1371 		if (tdp_mmu_iter_cond_resched(kvm, &iter, false, shared))
1372 			continue;
1373 
1374 		if (!is_shadow_present_pte(iter.old_spte) || !is_large_pte(iter.old_spte))
1375 			continue;
1376 
1377 		if (!sp) {
1378 			rcu_read_unlock();
1379 
1380 			if (shared)
1381 				read_unlock(&kvm->mmu_lock);
1382 			else
1383 				write_unlock(&kvm->mmu_lock);
1384 
1385 			sp = tdp_mmu_alloc_sp_for_split();
1386 
1387 			if (shared)
1388 				read_lock(&kvm->mmu_lock);
1389 			else
1390 				write_lock(&kvm->mmu_lock);
1391 
1392 			if (!sp) {
1393 				trace_kvm_mmu_split_huge_page(iter.gfn,
1394 							      iter.old_spte,
1395 							      iter.level, -ENOMEM);
1396 				return -ENOMEM;
1397 			}
1398 
1399 			rcu_read_lock();
1400 
1401 			iter.yielded = true;
1402 			continue;
1403 		}
1404 
1405 		tdp_mmu_init_child_sp(sp, &iter);
1406 
1407 		if (tdp_mmu_split_huge_page(kvm, &iter, sp, shared))
1408 			goto retry;
1409 
1410 		sp = NULL;
1411 	}
1412 
1413 	rcu_read_unlock();
1414 
1415 	/*
1416 	 * It's possible to exit the loop having never used the last sp if, for
1417 	 * example, a vCPU doing HugePage NX splitting wins the race and
1418 	 * installs its own sp in place of the last sp we tried to split.
1419 	 */
1420 	if (sp)
1421 		tdp_mmu_free_sp(sp);
1422 
1423 	return 0;
1424 }
1425 
1426 
1427 /*
1428  * Try to split all huge pages mapped by the TDP MMU down to the target level.
1429  */
kvm_tdp_mmu_try_split_huge_pages(struct kvm * kvm,const struct kvm_memory_slot * slot,gfn_t start,gfn_t end,int target_level,bool shared)1430 void kvm_tdp_mmu_try_split_huge_pages(struct kvm *kvm,
1431 				      const struct kvm_memory_slot *slot,
1432 				      gfn_t start, gfn_t end,
1433 				      int target_level, bool shared)
1434 {
1435 	struct kvm_mmu_page *root;
1436 	int r = 0;
1437 
1438 	kvm_lockdep_assert_mmu_lock_held(kvm, shared);
1439 	for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id) {
1440 		r = tdp_mmu_split_huge_pages_root(kvm, root, start, end, target_level, shared);
1441 		if (r) {
1442 			kvm_tdp_mmu_put_root(kvm, root);
1443 			break;
1444 		}
1445 	}
1446 }
1447 
tdp_mmu_need_write_protect(struct kvm_mmu_page * sp)1448 static bool tdp_mmu_need_write_protect(struct kvm_mmu_page *sp)
1449 {
1450 	/*
1451 	 * All TDP MMU shadow pages share the same role as their root, aside
1452 	 * from level, so it is valid to key off any shadow page to determine if
1453 	 * write protection is needed for an entire tree.
1454 	 */
1455 	return kvm_mmu_page_ad_need_write_protect(sp) || !kvm_ad_enabled;
1456 }
1457 
clear_dirty_gfn_range(struct kvm * kvm,struct kvm_mmu_page * root,gfn_t start,gfn_t end)1458 static void clear_dirty_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
1459 				  gfn_t start, gfn_t end)
1460 {
1461 	const u64 dbit = tdp_mmu_need_write_protect(root) ? PT_WRITABLE_MASK :
1462 							    shadow_dirty_mask;
1463 	struct tdp_iter iter;
1464 
1465 	rcu_read_lock();
1466 
1467 	tdp_root_for_each_pte(iter, root, start, end) {
1468 retry:
1469 		if (!is_shadow_present_pte(iter.old_spte) ||
1470 		    !is_last_spte(iter.old_spte, iter.level))
1471 			continue;
1472 
1473 		if (tdp_mmu_iter_cond_resched(kvm, &iter, false, true))
1474 			continue;
1475 
1476 		KVM_MMU_WARN_ON(dbit == shadow_dirty_mask &&
1477 				spte_ad_need_write_protect(iter.old_spte));
1478 
1479 		if (!(iter.old_spte & dbit))
1480 			continue;
1481 
1482 		if (tdp_mmu_set_spte_atomic(kvm, &iter, iter.old_spte & ~dbit))
1483 			goto retry;
1484 	}
1485 
1486 	rcu_read_unlock();
1487 }
1488 
1489 /*
1490  * Clear the dirty status (D-bit or W-bit) of all the SPTEs mapping GFNs in the
1491  * memslot.
1492  */
kvm_tdp_mmu_clear_dirty_slot(struct kvm * kvm,const struct kvm_memory_slot * slot)1493 void kvm_tdp_mmu_clear_dirty_slot(struct kvm *kvm,
1494 				  const struct kvm_memory_slot *slot)
1495 {
1496 	struct kvm_mmu_page *root;
1497 
1498 	lockdep_assert_held_read(&kvm->mmu_lock);
1499 	for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id)
1500 		clear_dirty_gfn_range(kvm, root, slot->base_gfn,
1501 				      slot->base_gfn + slot->npages);
1502 }
1503 
clear_dirty_pt_masked(struct kvm * kvm,struct kvm_mmu_page * root,gfn_t gfn,unsigned long mask,bool wrprot)1504 static void clear_dirty_pt_masked(struct kvm *kvm, struct kvm_mmu_page *root,
1505 				  gfn_t gfn, unsigned long mask, bool wrprot)
1506 {
1507 	const u64 dbit = (wrprot || tdp_mmu_need_write_protect(root)) ? PT_WRITABLE_MASK :
1508 									shadow_dirty_mask;
1509 	struct tdp_iter iter;
1510 
1511 	lockdep_assert_held_write(&kvm->mmu_lock);
1512 
1513 	rcu_read_lock();
1514 
1515 	tdp_root_for_each_leaf_pte(iter, root, gfn + __ffs(mask),
1516 				    gfn + BITS_PER_LONG) {
1517 		if (!mask)
1518 			break;
1519 
1520 		KVM_MMU_WARN_ON(dbit == shadow_dirty_mask &&
1521 				spte_ad_need_write_protect(iter.old_spte));
1522 
1523 		if (iter.level > PG_LEVEL_4K ||
1524 		    !(mask & (1UL << (iter.gfn - gfn))))
1525 			continue;
1526 
1527 		mask &= ~(1UL << (iter.gfn - gfn));
1528 
1529 		if (!(iter.old_spte & dbit))
1530 			continue;
1531 
1532 		iter.old_spte = tdp_mmu_clear_spte_bits(iter.sptep,
1533 							iter.old_spte, dbit,
1534 							iter.level);
1535 
1536 		trace_kvm_tdp_mmu_spte_changed(iter.as_id, iter.gfn, iter.level,
1537 					       iter.old_spte,
1538 					       iter.old_spte & ~dbit);
1539 	}
1540 
1541 	rcu_read_unlock();
1542 }
1543 
1544 /*
1545  * Clear the dirty status (D-bit or W-bit) of all the 4k SPTEs mapping GFNs for
1546  * which a bit is set in mask, starting at gfn. The given memslot is expected to
1547  * contain all the GFNs represented by set bits in the mask.
1548  */
kvm_tdp_mmu_clear_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn,unsigned long mask,bool wrprot)1549 void kvm_tdp_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1550 				       struct kvm_memory_slot *slot,
1551 				       gfn_t gfn, unsigned long mask,
1552 				       bool wrprot)
1553 {
1554 	struct kvm_mmu_page *root;
1555 
1556 	for_each_valid_tdp_mmu_root(kvm, root, slot->as_id)
1557 		clear_dirty_pt_masked(kvm, root, gfn, mask, wrprot);
1558 }
1559 
tdp_mmu_make_huge_spte(struct kvm * kvm,struct tdp_iter * parent,u64 * huge_spte)1560 static int tdp_mmu_make_huge_spte(struct kvm *kvm,
1561 				  struct tdp_iter *parent,
1562 				  u64 *huge_spte)
1563 {
1564 	struct kvm_mmu_page *root = spte_to_child_sp(parent->old_spte);
1565 	gfn_t start = parent->gfn;
1566 	gfn_t end = start + KVM_PAGES_PER_HPAGE(parent->level);
1567 	struct tdp_iter iter;
1568 
1569 	tdp_root_for_each_leaf_pte(iter, root, start, end) {
1570 		/*
1571 		 * Use the parent iterator when checking for forward progress so
1572 		 * that KVM doesn't get stuck continuously trying to yield (i.e.
1573 		 * returning -EAGAIN here and then failing the forward progress
1574 		 * check in the caller ad nauseam).
1575 		 */
1576 		if (tdp_mmu_iter_need_resched(kvm, parent))
1577 			return -EAGAIN;
1578 
1579 		*huge_spte = make_huge_spte(kvm, iter.old_spte, parent->level);
1580 		return 0;
1581 	}
1582 
1583 	return -ENOENT;
1584 }
1585 
recover_huge_pages_range(struct kvm * kvm,struct kvm_mmu_page * root,const struct kvm_memory_slot * slot)1586 static void recover_huge_pages_range(struct kvm *kvm,
1587 				     struct kvm_mmu_page *root,
1588 				     const struct kvm_memory_slot *slot)
1589 {
1590 	gfn_t start = slot->base_gfn;
1591 	gfn_t end = start + slot->npages;
1592 	struct tdp_iter iter;
1593 	int max_mapping_level;
1594 	bool flush = false;
1595 	u64 huge_spte;
1596 	int r;
1597 
1598 	if (WARN_ON_ONCE(kvm_slot_dirty_track_enabled(slot)))
1599 		return;
1600 
1601 	rcu_read_lock();
1602 
1603 	for_each_tdp_pte_min_level(iter, root, PG_LEVEL_2M, start, end) {
1604 retry:
1605 		if (tdp_mmu_iter_cond_resched(kvm, &iter, flush, true)) {
1606 			flush = false;
1607 			continue;
1608 		}
1609 
1610 		if (iter.level > KVM_MAX_HUGEPAGE_LEVEL ||
1611 		    !is_shadow_present_pte(iter.old_spte))
1612 			continue;
1613 
1614 		/*
1615 		 * Don't zap leaf SPTEs, if a leaf SPTE could be replaced with
1616 		 * a large page size, then its parent would have been zapped
1617 		 * instead of stepping down.
1618 		 */
1619 		if (is_last_spte(iter.old_spte, iter.level))
1620 			continue;
1621 
1622 		/*
1623 		 * If iter.gfn resides outside of the slot, i.e. the page for
1624 		 * the current level overlaps but is not contained by the slot,
1625 		 * then the SPTE can't be made huge.  More importantly, trying
1626 		 * to query that info from slot->arch.lpage_info will cause an
1627 		 * out-of-bounds access.
1628 		 */
1629 		if (iter.gfn < start || iter.gfn >= end)
1630 			continue;
1631 
1632 		max_mapping_level = kvm_mmu_max_mapping_level(kvm, slot, iter.gfn);
1633 		if (max_mapping_level < iter.level)
1634 			continue;
1635 
1636 		r = tdp_mmu_make_huge_spte(kvm, &iter, &huge_spte);
1637 		if (r == -EAGAIN)
1638 			goto retry;
1639 		else if (r)
1640 			continue;
1641 
1642 		if (tdp_mmu_set_spte_atomic(kvm, &iter, huge_spte))
1643 			goto retry;
1644 
1645 		flush = true;
1646 	}
1647 
1648 	if (flush)
1649 		kvm_flush_remote_tlbs_memslot(kvm, slot);
1650 
1651 	rcu_read_unlock();
1652 }
1653 
1654 /*
1655  * Recover huge page mappings within the slot by replacing non-leaf SPTEs with
1656  * huge SPTEs where possible.
1657  */
kvm_tdp_mmu_recover_huge_pages(struct kvm * kvm,const struct kvm_memory_slot * slot)1658 void kvm_tdp_mmu_recover_huge_pages(struct kvm *kvm,
1659 				    const struct kvm_memory_slot *slot)
1660 {
1661 	struct kvm_mmu_page *root;
1662 
1663 	lockdep_assert_held_read(&kvm->mmu_lock);
1664 	for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id)
1665 		recover_huge_pages_range(kvm, root, slot);
1666 }
1667 
1668 /*
1669  * Removes write access on the last level SPTE mapping this GFN and unsets the
1670  * MMU-writable bit to ensure future writes continue to be intercepted.
1671  * Returns true if an SPTE was set and a TLB flush is needed.
1672  */
write_protect_gfn(struct kvm * kvm,struct kvm_mmu_page * root,gfn_t gfn,int min_level)1673 static bool write_protect_gfn(struct kvm *kvm, struct kvm_mmu_page *root,
1674 			      gfn_t gfn, int min_level)
1675 {
1676 	struct tdp_iter iter;
1677 	u64 new_spte;
1678 	bool spte_set = false;
1679 
1680 	BUG_ON(min_level > KVM_MAX_HUGEPAGE_LEVEL);
1681 
1682 	rcu_read_lock();
1683 
1684 	for_each_tdp_pte_min_level(iter, root, min_level, gfn, gfn + 1) {
1685 		if (!is_shadow_present_pte(iter.old_spte) ||
1686 		    !is_last_spte(iter.old_spte, iter.level))
1687 			continue;
1688 
1689 		new_spte = iter.old_spte &
1690 			~(PT_WRITABLE_MASK | shadow_mmu_writable_mask);
1691 
1692 		if (new_spte == iter.old_spte)
1693 			break;
1694 
1695 		tdp_mmu_iter_set_spte(kvm, &iter, new_spte);
1696 		spte_set = true;
1697 	}
1698 
1699 	rcu_read_unlock();
1700 
1701 	return spte_set;
1702 }
1703 
1704 /*
1705  * Removes write access on the last level SPTE mapping this GFN and unsets the
1706  * MMU-writable bit to ensure future writes continue to be intercepted.
1707  * Returns true if an SPTE was set and a TLB flush is needed.
1708  */
kvm_tdp_mmu_write_protect_gfn(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn,int min_level)1709 bool kvm_tdp_mmu_write_protect_gfn(struct kvm *kvm,
1710 				   struct kvm_memory_slot *slot, gfn_t gfn,
1711 				   int min_level)
1712 {
1713 	struct kvm_mmu_page *root;
1714 	bool spte_set = false;
1715 
1716 	lockdep_assert_held_write(&kvm->mmu_lock);
1717 	for_each_valid_tdp_mmu_root(kvm, root, slot->as_id)
1718 		spte_set |= write_protect_gfn(kvm, root, gfn, min_level);
1719 
1720 	return spte_set;
1721 }
1722 
1723 /*
1724  * Return the level of the lowest level SPTE added to sptes.
1725  * That SPTE may be non-present.
1726  *
1727  * Must be called between kvm_tdp_mmu_walk_lockless_{begin,end}.
1728  */
kvm_tdp_mmu_get_walk(struct kvm_vcpu * vcpu,u64 addr,u64 * sptes,int * root_level)1729 int kvm_tdp_mmu_get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes,
1730 			 int *root_level)
1731 {
1732 	struct tdp_iter iter;
1733 	struct kvm_mmu *mmu = vcpu->arch.mmu;
1734 	gfn_t gfn = addr >> PAGE_SHIFT;
1735 	int leaf = -1;
1736 
1737 	*root_level = vcpu->arch.mmu->root_role.level;
1738 
1739 	tdp_mmu_for_each_pte(iter, mmu, gfn, gfn + 1) {
1740 		leaf = iter.level;
1741 		sptes[leaf] = iter.old_spte;
1742 	}
1743 
1744 	return leaf;
1745 }
1746 
1747 /*
1748  * Returns the last level spte pointer of the shadow page walk for the given
1749  * gpa, and sets *spte to the spte value. This spte may be non-preset. If no
1750  * walk could be performed, returns NULL and *spte does not contain valid data.
1751  *
1752  * Contract:
1753  *  - Must be called between kvm_tdp_mmu_walk_lockless_{begin,end}.
1754  *  - The returned sptep must not be used after kvm_tdp_mmu_walk_lockless_end.
1755  *
1756  * WARNING: This function is only intended to be called during fast_page_fault.
1757  */
kvm_tdp_mmu_fast_pf_get_last_sptep(struct kvm_vcpu * vcpu,gfn_t gfn,u64 * spte)1758 u64 *kvm_tdp_mmu_fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gfn_t gfn,
1759 					u64 *spte)
1760 {
1761 	struct tdp_iter iter;
1762 	struct kvm_mmu *mmu = vcpu->arch.mmu;
1763 	tdp_ptep_t sptep = NULL;
1764 
1765 	tdp_mmu_for_each_pte(iter, mmu, gfn, gfn + 1) {
1766 		*spte = iter.old_spte;
1767 		sptep = iter.sptep;
1768 	}
1769 
1770 	/*
1771 	 * Perform the rcu_dereference to get the raw spte pointer value since
1772 	 * we are passing it up to fast_page_fault, which is shared with the
1773 	 * legacy MMU and thus does not retain the TDP MMU-specific __rcu
1774 	 * annotation.
1775 	 *
1776 	 * This is safe since fast_page_fault obeys the contracts of this
1777 	 * function as well as all TDP MMU contracts around modifying SPTEs
1778 	 * outside of mmu_lock.
1779 	 */
1780 	return rcu_dereference(sptep);
1781 }
1782