xref: /linux/include/net/tcp.h (revision 4f9786035f9e519db41375818e1d0b5f20da2f10)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the TCP module.
8  *
9  * Version:	@(#)tcp.h	1.0.5	05/23/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  */
14 #ifndef _TCP_H
15 #define _TCP_H
16 
17 #define FASTRETRANS_DEBUG 1
18 
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/kref.h>
27 #include <linux/ktime.h>
28 #include <linux/indirect_call_wrapper.h>
29 #include <linux/bits.h>
30 
31 #include <net/inet_connection_sock.h>
32 #include <net/inet_timewait_sock.h>
33 #include <net/inet_hashtables.h>
34 #include <net/checksum.h>
35 #include <net/request_sock.h>
36 #include <net/sock_reuseport.h>
37 #include <net/sock.h>
38 #include <net/snmp.h>
39 #include <net/ip.h>
40 #include <net/tcp_states.h>
41 #include <net/tcp_ao.h>
42 #include <net/inet_ecn.h>
43 #include <net/dst.h>
44 #include <net/mptcp.h>
45 #include <net/xfrm.h>
46 
47 #include <linux/seq_file.h>
48 #include <linux/memcontrol.h>
49 #include <linux/bpf-cgroup.h>
50 #include <linux/siphash.h>
51 
52 extern struct inet_hashinfo tcp_hashinfo;
53 
54 DECLARE_PER_CPU(unsigned int, tcp_orphan_count);
55 int tcp_orphan_count_sum(void);
56 
57 DECLARE_PER_CPU(u32, tcp_tw_isn);
58 
59 void tcp_time_wait(struct sock *sk, int state, int timeo);
60 
61 #define MAX_TCP_HEADER	L1_CACHE_ALIGN(128 + MAX_HEADER)
62 #define MAX_TCP_OPTION_SPACE 40
63 #define TCP_MIN_SND_MSS		48
64 #define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
65 
66 /*
67  * Never offer a window over 32767 without using window scaling. Some
68  * poor stacks do signed 16bit maths!
69  */
70 #define MAX_TCP_WINDOW		32767U
71 
72 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
73 #define TCP_MIN_MSS		88U
74 
75 /* The initial MTU to use for probing */
76 #define TCP_BASE_MSS		1024
77 
78 /* probing interval, default to 10 minutes as per RFC4821 */
79 #define TCP_PROBE_INTERVAL	600
80 
81 /* Specify interval when tcp mtu probing will stop */
82 #define TCP_PROBE_THRESHOLD	8
83 
84 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
85 #define TCP_FASTRETRANS_THRESH 3
86 
87 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
88 #define TCP_MAX_QUICKACKS	16U
89 
90 /* Maximal number of window scale according to RFC1323 */
91 #define TCP_MAX_WSCALE		14U
92 
93 /* urg_data states */
94 #define TCP_URG_VALID	0x0100
95 #define TCP_URG_NOTYET	0x0200
96 #define TCP_URG_READ	0x0400
97 
98 #define TCP_RETR1	3	/*
99 				 * This is how many retries it does before it
100 				 * tries to figure out if the gateway is
101 				 * down. Minimal RFC value is 3; it corresponds
102 				 * to ~3sec-8min depending on RTO.
103 				 */
104 
105 #define TCP_RETR2	15	/*
106 				 * This should take at least
107 				 * 90 minutes to time out.
108 				 * RFC1122 says that the limit is 100 sec.
109 				 * 15 is ~13-30min depending on RTO.
110 				 */
111 
112 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
113 				 * when active opening a connection.
114 				 * RFC1122 says the minimum retry MUST
115 				 * be at least 180secs.  Nevertheless
116 				 * this value is corresponding to
117 				 * 63secs of retransmission with the
118 				 * current initial RTO.
119 				 */
120 
121 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
122 				 * when passive opening a connection.
123 				 * This is corresponding to 31secs of
124 				 * retransmission with the current
125 				 * initial RTO.
126 				 */
127 
128 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
129 				  * state, about 60 seconds	*/
130 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
131                                  /* BSD style FIN_WAIT2 deadlock breaker.
132 				  * It used to be 3min, new value is 60sec,
133 				  * to combine FIN-WAIT-2 timeout with
134 				  * TIME-WAIT timer.
135 				  */
136 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
137 
138 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
139 static_assert((1 << ATO_BITS) > TCP_DELACK_MAX);
140 
141 #if HZ >= 100
142 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
143 #define TCP_ATO_MIN	((unsigned)(HZ/25))
144 #else
145 #define TCP_DELACK_MIN	4U
146 #define TCP_ATO_MIN	4U
147 #endif
148 #define TCP_RTO_MAX_SEC 120
149 #define TCP_RTO_MAX	((unsigned)(TCP_RTO_MAX_SEC * HZ))
150 #define TCP_RTO_MIN	((unsigned)(HZ / 5))
151 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
152 
153 #define TCP_TIMEOUT_MIN_US (2*USEC_PER_MSEC) /* Min TCP timeout in microsecs */
154 
155 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
156 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
157 						 * used as a fallback RTO for the
158 						 * initial data transmission if no
159 						 * valid RTT sample has been acquired,
160 						 * most likely due to retrans in 3WHS.
161 						 */
162 
163 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
164 					                 * for local resources.
165 					                 */
166 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
167 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
168 #define TCP_KEEPALIVE_INTVL	(75*HZ)
169 
170 #define MAX_TCP_KEEPIDLE	32767
171 #define MAX_TCP_KEEPINTVL	32767
172 #define MAX_TCP_KEEPCNT		127
173 #define MAX_TCP_SYNCNT		127
174 
175 /* Ensure that TCP PAWS checks are relaxed after ~2147 seconds
176  * to avoid overflows. This assumes a clock smaller than 1 Mhz.
177  * Default clock is 1 Khz, tcp_usec_ts uses 1 Mhz.
178  */
179 #define TCP_PAWS_WRAP (INT_MAX / USEC_PER_SEC)
180 
181 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
182 					 * after this time. It should be equal
183 					 * (or greater than) TCP_TIMEWAIT_LEN
184 					 * to provide reliability equal to one
185 					 * provided by timewait state.
186 					 */
187 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
188 					 * timestamps. It must be less than
189 					 * minimal timewait lifetime.
190 					 */
191 /*
192  *	TCP option
193  */
194 
195 #define TCPOPT_NOP		1	/* Padding */
196 #define TCPOPT_EOL		0	/* End of options */
197 #define TCPOPT_MSS		2	/* Segment size negotiating */
198 #define TCPOPT_WINDOW		3	/* Window scaling */
199 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
200 #define TCPOPT_SACK             5       /* SACK Block */
201 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
202 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
203 #define TCPOPT_AO		29	/* Authentication Option (RFC5925) */
204 #define TCPOPT_MPTCP		30	/* Multipath TCP (RFC6824) */
205 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
206 #define TCPOPT_EXP		254	/* Experimental */
207 /* Magic number to be after the option value for sharing TCP
208  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
209  */
210 #define TCPOPT_FASTOPEN_MAGIC	0xF989
211 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
212 
213 /*
214  *     TCP option lengths
215  */
216 
217 #define TCPOLEN_MSS            4
218 #define TCPOLEN_WINDOW         3
219 #define TCPOLEN_SACK_PERM      2
220 #define TCPOLEN_TIMESTAMP      10
221 #define TCPOLEN_MD5SIG         18
222 #define TCPOLEN_FASTOPEN_BASE  2
223 #define TCPOLEN_EXP_FASTOPEN_BASE  4
224 #define TCPOLEN_EXP_SMC_BASE   6
225 
226 /* But this is what stacks really send out. */
227 #define TCPOLEN_TSTAMP_ALIGNED		12
228 #define TCPOLEN_WSCALE_ALIGNED		4
229 #define TCPOLEN_SACKPERM_ALIGNED	4
230 #define TCPOLEN_SACK_BASE		2
231 #define TCPOLEN_SACK_BASE_ALIGNED	4
232 #define TCPOLEN_SACK_PERBLOCK		8
233 #define TCPOLEN_MD5SIG_ALIGNED		20
234 #define TCPOLEN_MSS_ALIGNED		4
235 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
236 
237 /* Flags in tp->nonagle */
238 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
239 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
240 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
241 
242 /* TCP thin-stream limits */
243 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
244 
245 /* TCP initial congestion window as per rfc6928 */
246 #define TCP_INIT_CWND		10
247 
248 /* Bit Flags for sysctl_tcp_fastopen */
249 #define	TFO_CLIENT_ENABLE	1
250 #define	TFO_SERVER_ENABLE	2
251 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
252 
253 /* Accept SYN data w/o any cookie option */
254 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
255 
256 /* Force enable TFO on all listeners, i.e., not requiring the
257  * TCP_FASTOPEN socket option.
258  */
259 #define	TFO_SERVER_WO_SOCKOPT1	0x400
260 
261 
262 /* sysctl variables for tcp */
263 extern int sysctl_tcp_max_orphans;
264 extern long sysctl_tcp_mem[3];
265 
266 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
267 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
268 #define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
269 
270 extern atomic_long_t tcp_memory_allocated;
271 DECLARE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
272 
273 extern struct percpu_counter tcp_sockets_allocated;
274 extern unsigned long tcp_memory_pressure;
275 
276 /* optimized version of sk_under_memory_pressure() for TCP sockets */
277 static inline bool tcp_under_memory_pressure(const struct sock *sk)
278 {
279 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
280 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
281 		return true;
282 
283 	return READ_ONCE(tcp_memory_pressure);
284 }
285 /*
286  * The next routines deal with comparing 32 bit unsigned ints
287  * and worry about wraparound (automatic with unsigned arithmetic).
288  */
289 
290 static inline bool before(__u32 seq1, __u32 seq2)
291 {
292         return (__s32)(seq1-seq2) < 0;
293 }
294 #define after(seq2, seq1) 	before(seq1, seq2)
295 
296 /* is s2<=s1<=s3 ? */
297 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
298 {
299 	return seq3 - seq2 >= seq1 - seq2;
300 }
301 
302 static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
303 {
304 	sk_wmem_queued_add(sk, -skb->truesize);
305 	if (!skb_zcopy_pure(skb))
306 		sk_mem_uncharge(sk, skb->truesize);
307 	else
308 		sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb)));
309 	__kfree_skb(skb);
310 }
311 
312 void sk_forced_mem_schedule(struct sock *sk, int size);
313 
314 bool tcp_check_oom(const struct sock *sk, int shift);
315 
316 
317 extern struct proto tcp_prot;
318 
319 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
320 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
321 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
322 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
323 
324 void tcp_tasklet_init(void);
325 
326 int tcp_v4_err(struct sk_buff *skb, u32);
327 
328 void tcp_shutdown(struct sock *sk, int how);
329 
330 int tcp_v4_early_demux(struct sk_buff *skb);
331 int tcp_v4_rcv(struct sk_buff *skb);
332 
333 void tcp_remove_empty_skb(struct sock *sk);
334 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
335 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
336 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
337 			 size_t size, struct ubuf_info *uarg);
338 void tcp_splice_eof(struct socket *sock);
339 int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
340 int tcp_wmem_schedule(struct sock *sk, int copy);
341 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
342 	      int size_goal);
343 void tcp_release_cb(struct sock *sk);
344 void tcp_wfree(struct sk_buff *skb);
345 void tcp_write_timer_handler(struct sock *sk);
346 void tcp_delack_timer_handler(struct sock *sk);
347 int tcp_ioctl(struct sock *sk, int cmd, int *karg);
348 enum skb_drop_reason tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
349 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
350 void tcp_rcv_space_adjust(struct sock *sk);
351 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
352 void tcp_twsk_destructor(struct sock *sk);
353 void tcp_twsk_purge(struct list_head *net_exit_list);
354 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
355 			struct pipe_inode_info *pipe, size_t len,
356 			unsigned int flags);
357 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
358 				     bool force_schedule);
359 
360 static inline void tcp_dec_quickack_mode(struct sock *sk)
361 {
362 	struct inet_connection_sock *icsk = inet_csk(sk);
363 
364 	if (icsk->icsk_ack.quick) {
365 		/* How many ACKs S/ACKing new data have we sent? */
366 		const unsigned int pkts = inet_csk_ack_scheduled(sk) ? 1 : 0;
367 
368 		if (pkts >= icsk->icsk_ack.quick) {
369 			icsk->icsk_ack.quick = 0;
370 			/* Leaving quickack mode we deflate ATO. */
371 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
372 		} else
373 			icsk->icsk_ack.quick -= pkts;
374 	}
375 }
376 
377 #define	TCP_ECN_MODE_RFC3168	BIT(0)
378 #define	TCP_ECN_QUEUE_CWR	BIT(1)
379 #define	TCP_ECN_DEMAND_CWR	BIT(2)
380 #define	TCP_ECN_SEEN		BIT(3)
381 #define	TCP_ECN_MODE_ACCECN	BIT(4)
382 
383 #define	TCP_ECN_DISABLED	0
384 #define	TCP_ECN_MODE_PENDING	(TCP_ECN_MODE_RFC3168 | TCP_ECN_MODE_ACCECN)
385 #define	TCP_ECN_MODE_ANY	(TCP_ECN_MODE_RFC3168 | TCP_ECN_MODE_ACCECN)
386 
387 static inline bool tcp_ecn_mode_any(const struct tcp_sock *tp)
388 {
389 	return tp->ecn_flags & TCP_ECN_MODE_ANY;
390 }
391 
392 static inline bool tcp_ecn_mode_rfc3168(const struct tcp_sock *tp)
393 {
394 	return (tp->ecn_flags & TCP_ECN_MODE_ANY) == TCP_ECN_MODE_RFC3168;
395 }
396 
397 static inline bool tcp_ecn_mode_accecn(const struct tcp_sock *tp)
398 {
399 	return (tp->ecn_flags & TCP_ECN_MODE_ANY) == TCP_ECN_MODE_ACCECN;
400 }
401 
402 static inline bool tcp_ecn_disabled(const struct tcp_sock *tp)
403 {
404 	return !tcp_ecn_mode_any(tp);
405 }
406 
407 static inline bool tcp_ecn_mode_pending(const struct tcp_sock *tp)
408 {
409 	return (tp->ecn_flags & TCP_ECN_MODE_PENDING) == TCP_ECN_MODE_PENDING;
410 }
411 
412 static inline void tcp_ecn_mode_set(struct tcp_sock *tp, u8 mode)
413 {
414 	tp->ecn_flags &= ~TCP_ECN_MODE_ANY;
415 	tp->ecn_flags |= mode;
416 }
417 
418 enum tcp_tw_status {
419 	TCP_TW_SUCCESS = 0,
420 	TCP_TW_RST = 1,
421 	TCP_TW_ACK = 2,
422 	TCP_TW_SYN = 3,
423 	TCP_TW_ACK_OOW = 4
424 };
425 
426 
427 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
428 					      struct sk_buff *skb,
429 					      const struct tcphdr *th,
430 					      u32 *tw_isn);
431 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
432 			   struct request_sock *req, bool fastopen,
433 			   bool *lost_race, enum skb_drop_reason *drop_reason);
434 enum skb_drop_reason tcp_child_process(struct sock *parent, struct sock *child,
435 				       struct sk_buff *skb);
436 void tcp_enter_loss(struct sock *sk);
437 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
438 void tcp_clear_retrans(struct tcp_sock *tp);
439 void tcp_update_metrics(struct sock *sk);
440 void tcp_init_metrics(struct sock *sk);
441 void tcp_metrics_init(void);
442 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
443 void __tcp_close(struct sock *sk, long timeout);
444 void tcp_close(struct sock *sk, long timeout);
445 void tcp_init_sock(struct sock *sk);
446 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
447 __poll_t tcp_poll(struct file *file, struct socket *sock,
448 		      struct poll_table_struct *wait);
449 int do_tcp_getsockopt(struct sock *sk, int level,
450 		      int optname, sockptr_t optval, sockptr_t optlen);
451 int tcp_getsockopt(struct sock *sk, int level, int optname,
452 		   char __user *optval, int __user *optlen);
453 bool tcp_bpf_bypass_getsockopt(int level, int optname);
454 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
455 		      sockptr_t optval, unsigned int optlen);
456 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
457 		   unsigned int optlen);
458 void tcp_reset_keepalive_timer(struct sock *sk, unsigned long timeout);
459 void tcp_set_keepalive(struct sock *sk, int val);
460 void tcp_syn_ack_timeout(const struct request_sock *req);
461 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
462 		int flags, int *addr_len);
463 int tcp_set_rcvlowat(struct sock *sk, int val);
464 int tcp_set_window_clamp(struct sock *sk, int val);
465 void tcp_update_recv_tstamps(struct sk_buff *skb,
466 			     struct scm_timestamping_internal *tss);
467 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
468 			struct scm_timestamping_internal *tss);
469 void tcp_data_ready(struct sock *sk);
470 #ifdef CONFIG_MMU
471 int tcp_mmap(struct file *file, struct socket *sock,
472 	     struct vm_area_struct *vma);
473 #endif
474 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
475 		       struct tcp_options_received *opt_rx,
476 		       int estab, struct tcp_fastopen_cookie *foc);
477 
478 /*
479  *	BPF SKB-less helpers
480  */
481 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
482 			 struct tcphdr *th, u32 *cookie);
483 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
484 			 struct tcphdr *th, u32 *cookie);
485 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss);
486 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
487 			  const struct tcp_request_sock_ops *af_ops,
488 			  struct sock *sk, struct tcphdr *th);
489 /*
490  *	TCP v4 functions exported for the inet6 API
491  */
492 
493 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
494 void tcp_v4_mtu_reduced(struct sock *sk);
495 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
496 void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
497 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
498 struct sock *tcp_create_openreq_child(const struct sock *sk,
499 				      struct request_sock *req,
500 				      struct sk_buff *skb);
501 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
502 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
503 				  struct request_sock *req,
504 				  struct dst_entry *dst,
505 				  struct request_sock *req_unhash,
506 				  bool *own_req);
507 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
508 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
509 int tcp_connect(struct sock *sk);
510 enum tcp_synack_type {
511 	TCP_SYNACK_NORMAL,
512 	TCP_SYNACK_FASTOPEN,
513 	TCP_SYNACK_COOKIE,
514 };
515 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
516 				struct request_sock *req,
517 				struct tcp_fastopen_cookie *foc,
518 				enum tcp_synack_type synack_type,
519 				struct sk_buff *syn_skb);
520 int tcp_disconnect(struct sock *sk, int flags);
521 
522 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
523 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
524 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
525 
526 /* From syncookies.c */
527 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
528 				 struct request_sock *req,
529 				 struct dst_entry *dst);
530 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th);
531 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
532 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
533 					    struct sock *sk, struct sk_buff *skb,
534 					    struct tcp_options_received *tcp_opt,
535 					    int mss, u32 tsoff);
536 
537 #if IS_ENABLED(CONFIG_BPF)
538 struct bpf_tcp_req_attrs {
539 	u32 rcv_tsval;
540 	u32 rcv_tsecr;
541 	u16 mss;
542 	u8 rcv_wscale;
543 	u8 snd_wscale;
544 	u8 ecn_ok;
545 	u8 wscale_ok;
546 	u8 sack_ok;
547 	u8 tstamp_ok;
548 	u8 usec_ts_ok;
549 	u8 reserved[3];
550 };
551 #endif
552 
553 #ifdef CONFIG_SYN_COOKIES
554 
555 /* Syncookies use a monotonic timer which increments every 60 seconds.
556  * This counter is used both as a hash input and partially encoded into
557  * the cookie value.  A cookie is only validated further if the delta
558  * between the current counter value and the encoded one is less than this,
559  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
560  * the counter advances immediately after a cookie is generated).
561  */
562 #define MAX_SYNCOOKIE_AGE	2
563 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
564 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
565 
566 /* syncookies: remember time of last synqueue overflow
567  * But do not dirty this field too often (once per second is enough)
568  * It is racy as we do not hold a lock, but race is very minor.
569  */
570 static inline void tcp_synq_overflow(const struct sock *sk)
571 {
572 	unsigned int last_overflow;
573 	unsigned int now = jiffies;
574 
575 	if (sk->sk_reuseport) {
576 		struct sock_reuseport *reuse;
577 
578 		reuse = rcu_dereference(sk->sk_reuseport_cb);
579 		if (likely(reuse)) {
580 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
581 			if (!time_between32(now, last_overflow,
582 					    last_overflow + HZ))
583 				WRITE_ONCE(reuse->synq_overflow_ts, now);
584 			return;
585 		}
586 	}
587 
588 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
589 	if (!time_between32(now, last_overflow, last_overflow + HZ))
590 		WRITE_ONCE(tcp_sk_rw(sk)->rx_opt.ts_recent_stamp, now);
591 }
592 
593 /* syncookies: no recent synqueue overflow on this listening socket? */
594 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
595 {
596 	unsigned int last_overflow;
597 	unsigned int now = jiffies;
598 
599 	if (sk->sk_reuseport) {
600 		struct sock_reuseport *reuse;
601 
602 		reuse = rcu_dereference(sk->sk_reuseport_cb);
603 		if (likely(reuse)) {
604 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
605 			return !time_between32(now, last_overflow - HZ,
606 					       last_overflow +
607 					       TCP_SYNCOOKIE_VALID);
608 		}
609 	}
610 
611 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
612 
613 	/* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
614 	 * then we're under synflood. However, we have to use
615 	 * 'last_overflow - HZ' as lower bound. That's because a concurrent
616 	 * tcp_synq_overflow() could update .ts_recent_stamp after we read
617 	 * jiffies but before we store .ts_recent_stamp into last_overflow,
618 	 * which could lead to rejecting a valid syncookie.
619 	 */
620 	return !time_between32(now, last_overflow - HZ,
621 			       last_overflow + TCP_SYNCOOKIE_VALID);
622 }
623 
624 static inline u32 tcp_cookie_time(void)
625 {
626 	u64 val = get_jiffies_64();
627 
628 	do_div(val, TCP_SYNCOOKIE_PERIOD);
629 	return val;
630 }
631 
632 /* Convert one nsec 64bit timestamp to ts (ms or usec resolution) */
633 static inline u64 tcp_ns_to_ts(bool usec_ts, u64 val)
634 {
635 	if (usec_ts)
636 		return div_u64(val, NSEC_PER_USEC);
637 
638 	return div_u64(val, NSEC_PER_MSEC);
639 }
640 
641 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
642 			      u16 *mssp);
643 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
644 u64 cookie_init_timestamp(struct request_sock *req, u64 now);
645 bool cookie_timestamp_decode(const struct net *net,
646 			     struct tcp_options_received *opt);
647 
648 static inline bool cookie_ecn_ok(const struct net *net, const struct dst_entry *dst)
649 {
650 	return READ_ONCE(net->ipv4.sysctl_tcp_ecn) ||
651 		dst_feature(dst, RTAX_FEATURE_ECN);
652 }
653 
654 #if IS_ENABLED(CONFIG_BPF)
655 static inline bool cookie_bpf_ok(struct sk_buff *skb)
656 {
657 	return skb->sk;
658 }
659 
660 struct request_sock *cookie_bpf_check(struct sock *sk, struct sk_buff *skb);
661 #else
662 static inline bool cookie_bpf_ok(struct sk_buff *skb)
663 {
664 	return false;
665 }
666 
667 static inline struct request_sock *cookie_bpf_check(struct net *net, struct sock *sk,
668 						    struct sk_buff *skb)
669 {
670 	return NULL;
671 }
672 #endif
673 
674 /* From net/ipv6/syncookies.c */
675 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th);
676 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
677 
678 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
679 			      const struct tcphdr *th, u16 *mssp);
680 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
681 #endif
682 /* tcp_output.c */
683 
684 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb);
685 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb);
686 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
687 			       int nonagle);
688 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
689 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
690 void tcp_retransmit_timer(struct sock *sk);
691 void tcp_xmit_retransmit_queue(struct sock *);
692 void tcp_simple_retransmit(struct sock *);
693 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
694 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
695 enum tcp_queue {
696 	TCP_FRAG_IN_WRITE_QUEUE,
697 	TCP_FRAG_IN_RTX_QUEUE,
698 };
699 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
700 		 struct sk_buff *skb, u32 len,
701 		 unsigned int mss_now, gfp_t gfp);
702 
703 void tcp_send_probe0(struct sock *);
704 int tcp_write_wakeup(struct sock *, int mib);
705 void tcp_send_fin(struct sock *sk);
706 void tcp_send_active_reset(struct sock *sk, gfp_t priority,
707 			   enum sk_rst_reason reason);
708 int tcp_send_synack(struct sock *);
709 void tcp_push_one(struct sock *, unsigned int mss_now);
710 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt, u16 flags);
711 void tcp_send_ack(struct sock *sk);
712 void tcp_send_delayed_ack(struct sock *sk);
713 void tcp_send_loss_probe(struct sock *sk);
714 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
715 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
716 			     const struct sk_buff *next_skb);
717 
718 /* tcp_input.c */
719 void tcp_rearm_rto(struct sock *sk);
720 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
721 void tcp_done_with_error(struct sock *sk, int err);
722 void tcp_reset(struct sock *sk, struct sk_buff *skb);
723 void tcp_fin(struct sock *sk);
724 void tcp_check_space(struct sock *sk);
725 void tcp_sack_compress_send_ack(struct sock *sk);
726 
727 static inline void tcp_cleanup_skb(struct sk_buff *skb)
728 {
729 	skb_dst_drop(skb);
730 	secpath_reset(skb);
731 }
732 
733 static inline void tcp_add_receive_queue(struct sock *sk, struct sk_buff *skb)
734 {
735 	DEBUG_NET_WARN_ON_ONCE(skb_dst(skb));
736 	DEBUG_NET_WARN_ON_ONCE(secpath_exists(skb));
737 	__skb_queue_tail(&sk->sk_receive_queue, skb);
738 }
739 
740 /* tcp_timer.c */
741 void tcp_init_xmit_timers(struct sock *);
742 static inline void tcp_clear_xmit_timers(struct sock *sk)
743 {
744 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
745 		__sock_put(sk);
746 
747 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
748 		__sock_put(sk);
749 
750 	inet_csk_clear_xmit_timers(sk);
751 }
752 
753 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
754 unsigned int tcp_current_mss(struct sock *sk);
755 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
756 
757 /* Bound MSS / TSO packet size with the half of the window */
758 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
759 {
760 	int cutoff;
761 
762 	/* When peer uses tiny windows, there is no use in packetizing
763 	 * to sub-MSS pieces for the sake of SWS or making sure there
764 	 * are enough packets in the pipe for fast recovery.
765 	 *
766 	 * On the other hand, for extremely large MSS devices, handling
767 	 * smaller than MSS windows in this way does make sense.
768 	 */
769 	if (tp->max_window > TCP_MSS_DEFAULT)
770 		cutoff = (tp->max_window >> 1);
771 	else
772 		cutoff = tp->max_window;
773 
774 	if (cutoff && pktsize > cutoff)
775 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
776 	else
777 		return pktsize;
778 }
779 
780 /* tcp.c */
781 void tcp_get_info(struct sock *, struct tcp_info *);
782 
783 /* Read 'sendfile()'-style from a TCP socket */
784 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
785 		  sk_read_actor_t recv_actor);
786 int tcp_read_sock_noack(struct sock *sk, read_descriptor_t *desc,
787 			sk_read_actor_t recv_actor, bool noack,
788 			u32 *copied_seq);
789 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor);
790 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off);
791 void tcp_read_done(struct sock *sk, size_t len);
792 
793 void tcp_initialize_rcv_mss(struct sock *sk);
794 
795 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
796 int tcp_mss_to_mtu(struct sock *sk, int mss);
797 void tcp_mtup_init(struct sock *sk);
798 
799 static inline unsigned int tcp_rto_max(const struct sock *sk)
800 {
801 	return READ_ONCE(inet_csk(sk)->icsk_rto_max);
802 }
803 
804 static inline void tcp_bound_rto(struct sock *sk)
805 {
806 	inet_csk(sk)->icsk_rto = min(inet_csk(sk)->icsk_rto, tcp_rto_max(sk));
807 }
808 
809 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
810 {
811 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
812 }
813 
814 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
815 {
816 	/* mptcp hooks are only on the slow path */
817 	if (sk_is_mptcp((struct sock *)tp))
818 		return;
819 
820 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
821 			       ntohl(TCP_FLAG_ACK) |
822 			       snd_wnd);
823 }
824 
825 static inline void tcp_fast_path_on(struct tcp_sock *tp)
826 {
827 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
828 }
829 
830 static inline void tcp_fast_path_check(struct sock *sk)
831 {
832 	struct tcp_sock *tp = tcp_sk(sk);
833 
834 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
835 	    tp->rcv_wnd &&
836 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
837 	    !tp->urg_data)
838 		tcp_fast_path_on(tp);
839 }
840 
841 u32 tcp_delack_max(const struct sock *sk);
842 
843 /* Compute the actual rto_min value */
844 static inline u32 tcp_rto_min(const struct sock *sk)
845 {
846 	const struct dst_entry *dst = __sk_dst_get(sk);
847 	u32 rto_min = READ_ONCE(inet_csk(sk)->icsk_rto_min);
848 
849 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
850 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
851 	return rto_min;
852 }
853 
854 static inline u32 tcp_rto_min_us(const struct sock *sk)
855 {
856 	return jiffies_to_usecs(tcp_rto_min(sk));
857 }
858 
859 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
860 {
861 	return dst_metric_locked(dst, RTAX_CC_ALGO);
862 }
863 
864 /* Minimum RTT in usec. ~0 means not available. */
865 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
866 {
867 	return minmax_get(&tp->rtt_min);
868 }
869 
870 /* Compute the actual receive window we are currently advertising.
871  * Rcv_nxt can be after the window if our peer push more data
872  * than the offered window.
873  */
874 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
875 {
876 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
877 
878 	if (win < 0)
879 		win = 0;
880 	return (u32) win;
881 }
882 
883 /* Choose a new window, without checks for shrinking, and without
884  * scaling applied to the result.  The caller does these things
885  * if necessary.  This is a "raw" window selection.
886  */
887 u32 __tcp_select_window(struct sock *sk);
888 
889 void tcp_send_window_probe(struct sock *sk);
890 
891 /* TCP uses 32bit jiffies to save some space.
892  * Note that this is different from tcp_time_stamp, which
893  * historically has been the same until linux-4.13.
894  */
895 #define tcp_jiffies32 ((u32)jiffies)
896 
897 /*
898  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
899  * It is no longer tied to jiffies, but to 1 ms clock.
900  * Note: double check if you want to use tcp_jiffies32 instead of this.
901  */
902 #define TCP_TS_HZ	1000
903 
904 static inline u64 tcp_clock_ns(void)
905 {
906 	return ktime_get_ns();
907 }
908 
909 static inline u64 tcp_clock_us(void)
910 {
911 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
912 }
913 
914 static inline u64 tcp_clock_ms(void)
915 {
916 	return div_u64(tcp_clock_ns(), NSEC_PER_MSEC);
917 }
918 
919 /* TCP Timestamp included in TS option (RFC 1323) can either use ms
920  * or usec resolution. Each socket carries a flag to select one or other
921  * resolution, as the route attribute could change anytime.
922  * Each flow must stick to initial resolution.
923  */
924 static inline u32 tcp_clock_ts(bool usec_ts)
925 {
926 	return usec_ts ? tcp_clock_us() : tcp_clock_ms();
927 }
928 
929 static inline u32 tcp_time_stamp_ms(const struct tcp_sock *tp)
930 {
931 	return div_u64(tp->tcp_mstamp, USEC_PER_MSEC);
932 }
933 
934 static inline u32 tcp_time_stamp_ts(const struct tcp_sock *tp)
935 {
936 	if (tp->tcp_usec_ts)
937 		return tp->tcp_mstamp;
938 	return tcp_time_stamp_ms(tp);
939 }
940 
941 void tcp_mstamp_refresh(struct tcp_sock *tp);
942 
943 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
944 {
945 	return max_t(s64, t1 - t0, 0);
946 }
947 
948 /* provide the departure time in us unit */
949 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
950 {
951 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
952 }
953 
954 /* Provide skb TSval in usec or ms unit */
955 static inline u32 tcp_skb_timestamp_ts(bool usec_ts, const struct sk_buff *skb)
956 {
957 	if (usec_ts)
958 		return tcp_skb_timestamp_us(skb);
959 
960 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_MSEC);
961 }
962 
963 static inline u32 tcp_tw_tsval(const struct tcp_timewait_sock *tcptw)
964 {
965 	return tcp_clock_ts(tcptw->tw_sk.tw_usec_ts) + tcptw->tw_ts_offset;
966 }
967 
968 static inline u32 tcp_rsk_tsval(const struct tcp_request_sock *treq)
969 {
970 	return tcp_clock_ts(treq->req_usec_ts) + treq->ts_off;
971 }
972 
973 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
974 
975 #define TCPHDR_FIN	BIT(0)
976 #define TCPHDR_SYN	BIT(1)
977 #define TCPHDR_RST	BIT(2)
978 #define TCPHDR_PSH	BIT(3)
979 #define TCPHDR_ACK	BIT(4)
980 #define TCPHDR_URG	BIT(5)
981 #define TCPHDR_ECE	BIT(6)
982 #define TCPHDR_CWR	BIT(7)
983 #define TCPHDR_AE	BIT(8)
984 #define TCPHDR_FLAGS_MASK (TCPHDR_FIN | TCPHDR_SYN | TCPHDR_RST | \
985 			   TCPHDR_PSH | TCPHDR_ACK | TCPHDR_URG | \
986 			   TCPHDR_ECE | TCPHDR_CWR | TCPHDR_AE)
987 #define tcp_flags_ntohs(th) (ntohs(*(__be16 *)&tcp_flag_word(th)) & \
988 			    TCPHDR_FLAGS_MASK)
989 
990 #define TCPHDR_ACE (TCPHDR_ECE | TCPHDR_CWR | TCPHDR_AE)
991 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
992 
993 /* State flags for sacked in struct tcp_skb_cb */
994 enum tcp_skb_cb_sacked_flags {
995 	TCPCB_SACKED_ACKED	= (1 << 0),	/* SKB ACK'd by a SACK block	*/
996 	TCPCB_SACKED_RETRANS	= (1 << 1),	/* SKB retransmitted		*/
997 	TCPCB_LOST		= (1 << 2),	/* SKB is lost			*/
998 	TCPCB_TAGBITS		= (TCPCB_SACKED_ACKED | TCPCB_SACKED_RETRANS |
999 				   TCPCB_LOST),	/* All tag bits			*/
1000 	TCPCB_REPAIRED		= (1 << 4),	/* SKB repaired (no skb_mstamp_ns)	*/
1001 	TCPCB_EVER_RETRANS	= (1 << 7),	/* Ever retransmitted frame	*/
1002 	TCPCB_RETRANS		= (TCPCB_SACKED_RETRANS | TCPCB_EVER_RETRANS |
1003 				   TCPCB_REPAIRED),
1004 };
1005 
1006 /* This is what the send packet queuing engine uses to pass
1007  * TCP per-packet control information to the transmission code.
1008  * We also store the host-order sequence numbers in here too.
1009  * This is 44 bytes if IPV6 is enabled.
1010  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
1011  */
1012 struct tcp_skb_cb {
1013 	__u32		seq;		/* Starting sequence number	*/
1014 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
1015 	union {
1016 		/* Note :
1017 		 * 	  tcp_gso_segs/size are used in write queue only,
1018 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
1019 		 */
1020 		struct {
1021 			u16	tcp_gso_segs;
1022 			u16	tcp_gso_size;
1023 		};
1024 	};
1025 	__u16		tcp_flags;	/* TCP header flags (tcp[12-13])*/
1026 
1027 	__u8		sacked;		/* State flags for SACK.	*/
1028 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
1029 #define TSTAMP_ACK_SK	0x1
1030 #define TSTAMP_ACK_BPF	0x2
1031 	__u8		txstamp_ack:2,	/* Record TX timestamp for ack? */
1032 			eor:1,		/* Is skb MSG_EOR marked? */
1033 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
1034 			unused:4;
1035 	__u32		ack_seq;	/* Sequence number ACK'd	*/
1036 	union {
1037 		struct {
1038 #define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1)
1039 			/* There is space for up to 24 bytes */
1040 			__u32 is_app_limited:1, /* cwnd not fully used? */
1041 			      delivered_ce:20,
1042 			      unused:11;
1043 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
1044 			__u32 delivered;
1045 			/* start of send pipeline phase */
1046 			u64 first_tx_mstamp;
1047 			/* when we reached the "delivered" count */
1048 			u64 delivered_mstamp;
1049 		} tx;   /* only used for outgoing skbs */
1050 		union {
1051 			struct inet_skb_parm	h4;
1052 #if IS_ENABLED(CONFIG_IPV6)
1053 			struct inet6_skb_parm	h6;
1054 #endif
1055 		} header;	/* For incoming skbs */
1056 	};
1057 };
1058 
1059 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
1060 
1061 extern const struct inet_connection_sock_af_ops ipv4_specific;
1062 
1063 #if IS_ENABLED(CONFIG_IPV6)
1064 /* This is the variant of inet6_iif() that must be used by TCP,
1065  * as TCP moves IP6CB into a different location in skb->cb[]
1066  */
1067 static inline int tcp_v6_iif(const struct sk_buff *skb)
1068 {
1069 	return TCP_SKB_CB(skb)->header.h6.iif;
1070 }
1071 
1072 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
1073 {
1074 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
1075 
1076 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
1077 }
1078 
1079 /* TCP_SKB_CB reference means this can not be used from early demux */
1080 static inline int tcp_v6_sdif(const struct sk_buff *skb)
1081 {
1082 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
1083 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
1084 		return TCP_SKB_CB(skb)->header.h6.iif;
1085 #endif
1086 	return 0;
1087 }
1088 
1089 extern const struct inet_connection_sock_af_ops ipv6_specific;
1090 
1091 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
1092 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
1093 void tcp_v6_early_demux(struct sk_buff *skb);
1094 
1095 #endif
1096 
1097 /* TCP_SKB_CB reference means this can not be used from early demux */
1098 static inline int tcp_v4_sdif(struct sk_buff *skb)
1099 {
1100 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
1101 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
1102 		return TCP_SKB_CB(skb)->header.h4.iif;
1103 #endif
1104 	return 0;
1105 }
1106 
1107 /* Due to TSO, an SKB can be composed of multiple actual
1108  * packets.  To keep these tracked properly, we use this.
1109  */
1110 static inline int tcp_skb_pcount(const struct sk_buff *skb)
1111 {
1112 	return TCP_SKB_CB(skb)->tcp_gso_segs;
1113 }
1114 
1115 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
1116 {
1117 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
1118 }
1119 
1120 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
1121 {
1122 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
1123 }
1124 
1125 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
1126 static inline int tcp_skb_mss(const struct sk_buff *skb)
1127 {
1128 	return TCP_SKB_CB(skb)->tcp_gso_size;
1129 }
1130 
1131 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
1132 {
1133 	return likely(!TCP_SKB_CB(skb)->eor);
1134 }
1135 
1136 static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
1137 					const struct sk_buff *from)
1138 {
1139 	/* skb_cmp_decrypted() not needed, use tcp_write_collapse_fence() */
1140 	return likely(tcp_skb_can_collapse_to(to) &&
1141 		      mptcp_skb_can_collapse(to, from) &&
1142 		      skb_pure_zcopy_same(to, from) &&
1143 		      skb_frags_readable(to) == skb_frags_readable(from));
1144 }
1145 
1146 static inline bool tcp_skb_can_collapse_rx(const struct sk_buff *to,
1147 					   const struct sk_buff *from)
1148 {
1149 	return likely(mptcp_skb_can_collapse(to, from) &&
1150 		      !skb_cmp_decrypted(to, from));
1151 }
1152 
1153 /* Events passed to congestion control interface */
1154 enum tcp_ca_event {
1155 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
1156 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
1157 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
1158 	CA_EVENT_LOSS,		/* loss timeout */
1159 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
1160 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
1161 };
1162 
1163 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
1164 enum tcp_ca_ack_event_flags {
1165 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
1166 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
1167 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
1168 };
1169 
1170 /*
1171  * Interface for adding new TCP congestion control handlers
1172  */
1173 #define TCP_CA_NAME_MAX	16
1174 #define TCP_CA_MAX	128
1175 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
1176 
1177 #define TCP_CA_UNSPEC	0
1178 
1179 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1180 #define TCP_CONG_NON_RESTRICTED		BIT(0)
1181 /* Requires ECN/ECT set on all packets */
1182 #define TCP_CONG_NEEDS_ECN		BIT(1)
1183 #define TCP_CONG_MASK	(TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1184 
1185 union tcp_cc_info;
1186 
1187 struct ack_sample {
1188 	u32 pkts_acked;
1189 	s32 rtt_us;
1190 	u32 in_flight;
1191 };
1192 
1193 /* A rate sample measures the number of (original/retransmitted) data
1194  * packets delivered "delivered" over an interval of time "interval_us".
1195  * The tcp_rate.c code fills in the rate sample, and congestion
1196  * control modules that define a cong_control function to run at the end
1197  * of ACK processing can optionally chose to consult this sample when
1198  * setting cwnd and pacing rate.
1199  * A sample is invalid if "delivered" or "interval_us" is negative.
1200  */
1201 struct rate_sample {
1202 	u64  prior_mstamp; /* starting timestamp for interval */
1203 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1204 	u32  prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */
1205 	s32  delivered;		/* number of packets delivered over interval */
1206 	s32  delivered_ce;	/* number of packets delivered w/ CE marks*/
1207 	long interval_us;	/* time for tp->delivered to incr "delivered" */
1208 	u32 snd_interval_us;	/* snd interval for delivered packets */
1209 	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1210 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1211 	int  losses;		/* number of packets marked lost upon ACK */
1212 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1213 	u32  prior_in_flight;	/* in flight before this ACK */
1214 	u32  last_end_seq;	/* end_seq of most recently ACKed packet */
1215 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1216 	bool is_retrans;	/* is sample from retransmission? */
1217 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1218 };
1219 
1220 struct tcp_congestion_ops {
1221 /* fast path fields are put first to fill one cache line */
1222 
1223 	/* return slow start threshold (required) */
1224 	u32 (*ssthresh)(struct sock *sk);
1225 
1226 	/* do new cwnd calculation (required) */
1227 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1228 
1229 	/* call before changing ca_state (optional) */
1230 	void (*set_state)(struct sock *sk, u8 new_state);
1231 
1232 	/* call when cwnd event occurs (optional) */
1233 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1234 
1235 	/* call when ack arrives (optional) */
1236 	void (*in_ack_event)(struct sock *sk, u32 flags);
1237 
1238 	/* hook for packet ack accounting (optional) */
1239 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1240 
1241 	/* override sysctl_tcp_min_tso_segs */
1242 	u32 (*min_tso_segs)(struct sock *sk);
1243 
1244 	/* call when packets are delivered to update cwnd and pacing rate,
1245 	 * after all the ca_state processing. (optional)
1246 	 */
1247 	void (*cong_control)(struct sock *sk, u32 ack, int flag, const struct rate_sample *rs);
1248 
1249 
1250 	/* new value of cwnd after loss (required) */
1251 	u32  (*undo_cwnd)(struct sock *sk);
1252 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1253 	u32 (*sndbuf_expand)(struct sock *sk);
1254 
1255 /* control/slow paths put last */
1256 	/* get info for inet_diag (optional) */
1257 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1258 			   union tcp_cc_info *info);
1259 
1260 	char 			name[TCP_CA_NAME_MAX];
1261 	struct module		*owner;
1262 	struct list_head	list;
1263 	u32			key;
1264 	u32			flags;
1265 
1266 	/* initialize private data (optional) */
1267 	void (*init)(struct sock *sk);
1268 	/* cleanup private data  (optional) */
1269 	void (*release)(struct sock *sk);
1270 } ____cacheline_aligned_in_smp;
1271 
1272 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1273 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1274 int tcp_update_congestion_control(struct tcp_congestion_ops *type,
1275 				  struct tcp_congestion_ops *old_type);
1276 int tcp_validate_congestion_control(struct tcp_congestion_ops *ca);
1277 
1278 void tcp_assign_congestion_control(struct sock *sk);
1279 void tcp_init_congestion_control(struct sock *sk);
1280 void tcp_cleanup_congestion_control(struct sock *sk);
1281 int tcp_set_default_congestion_control(struct net *net, const char *name);
1282 void tcp_get_default_congestion_control(struct net *net, char *name);
1283 void tcp_get_available_congestion_control(char *buf, size_t len);
1284 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1285 int tcp_set_allowed_congestion_control(char *allowed);
1286 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1287 			       bool cap_net_admin);
1288 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1289 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1290 
1291 u32 tcp_reno_ssthresh(struct sock *sk);
1292 u32 tcp_reno_undo_cwnd(struct sock *sk);
1293 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1294 extern struct tcp_congestion_ops tcp_reno;
1295 
1296 struct tcp_congestion_ops *tcp_ca_find(const char *name);
1297 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1298 u32 tcp_ca_get_key_by_name(const char *name, bool *ecn_ca);
1299 #ifdef CONFIG_INET
1300 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1301 #else
1302 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1303 {
1304 	return NULL;
1305 }
1306 #endif
1307 
1308 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1309 {
1310 	const struct inet_connection_sock *icsk = inet_csk(sk);
1311 
1312 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1313 }
1314 
1315 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1316 {
1317 	const struct inet_connection_sock *icsk = inet_csk(sk);
1318 
1319 	if (icsk->icsk_ca_ops->cwnd_event)
1320 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1321 }
1322 
1323 /* From tcp_cong.c */
1324 void tcp_set_ca_state(struct sock *sk, const u8 ca_state);
1325 
1326 /* From tcp_rate.c */
1327 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1328 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1329 			    struct rate_sample *rs);
1330 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1331 		  bool is_sack_reneg, struct rate_sample *rs);
1332 void tcp_rate_check_app_limited(struct sock *sk);
1333 
1334 static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2)
1335 {
1336 	return t1 > t2 || (t1 == t2 && after(seq1, seq2));
1337 }
1338 
1339 /* These functions determine how the current flow behaves in respect of SACK
1340  * handling. SACK is negotiated with the peer, and therefore it can vary
1341  * between different flows.
1342  *
1343  * tcp_is_sack - SACK enabled
1344  * tcp_is_reno - No SACK
1345  */
1346 static inline int tcp_is_sack(const struct tcp_sock *tp)
1347 {
1348 	return likely(tp->rx_opt.sack_ok);
1349 }
1350 
1351 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1352 {
1353 	return !tcp_is_sack(tp);
1354 }
1355 
1356 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1357 {
1358 	return tp->sacked_out + tp->lost_out;
1359 }
1360 
1361 /* This determines how many packets are "in the network" to the best
1362  * of our knowledge.  In many cases it is conservative, but where
1363  * detailed information is available from the receiver (via SACK
1364  * blocks etc.) we can make more aggressive calculations.
1365  *
1366  * Use this for decisions involving congestion control, use just
1367  * tp->packets_out to determine if the send queue is empty or not.
1368  *
1369  * Read this equation as:
1370  *
1371  *	"Packets sent once on transmission queue" MINUS
1372  *	"Packets left network, but not honestly ACKed yet" PLUS
1373  *	"Packets fast retransmitted"
1374  */
1375 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1376 {
1377 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1378 }
1379 
1380 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1381 
1382 static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp)
1383 {
1384 	return tp->snd_cwnd;
1385 }
1386 
1387 static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val)
1388 {
1389 	WARN_ON_ONCE((int)val <= 0);
1390 	tp->snd_cwnd = val;
1391 }
1392 
1393 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1394 {
1395 	return tcp_snd_cwnd(tp) < tp->snd_ssthresh;
1396 }
1397 
1398 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1399 {
1400 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1401 }
1402 
1403 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1404 {
1405 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1406 	       (1 << inet_csk(sk)->icsk_ca_state);
1407 }
1408 
1409 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1410  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1411  * ssthresh.
1412  */
1413 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1414 {
1415 	const struct tcp_sock *tp = tcp_sk(sk);
1416 
1417 	if (tcp_in_cwnd_reduction(sk))
1418 		return tp->snd_ssthresh;
1419 	else
1420 		return max(tp->snd_ssthresh,
1421 			   ((tcp_snd_cwnd(tp) >> 1) +
1422 			    (tcp_snd_cwnd(tp) >> 2)));
1423 }
1424 
1425 /* Use define here intentionally to get WARN_ON location shown at the caller */
1426 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1427 
1428 void tcp_enter_cwr(struct sock *sk);
1429 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1430 
1431 /* The maximum number of MSS of available cwnd for which TSO defers
1432  * sending if not using sysctl_tcp_tso_win_divisor.
1433  */
1434 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1435 {
1436 	return 3;
1437 }
1438 
1439 /* Returns end sequence number of the receiver's advertised window */
1440 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1441 {
1442 	return tp->snd_una + tp->snd_wnd;
1443 }
1444 
1445 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1446  * flexible approach. The RFC suggests cwnd should not be raised unless
1447  * it was fully used previously. And that's exactly what we do in
1448  * congestion avoidance mode. But in slow start we allow cwnd to grow
1449  * as long as the application has used half the cwnd.
1450  * Example :
1451  *    cwnd is 10 (IW10), but application sends 9 frames.
1452  *    We allow cwnd to reach 18 when all frames are ACKed.
1453  * This check is safe because it's as aggressive as slow start which already
1454  * risks 100% overshoot. The advantage is that we discourage application to
1455  * either send more filler packets or data to artificially blow up the cwnd
1456  * usage, and allow application-limited process to probe bw more aggressively.
1457  */
1458 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1459 {
1460 	const struct tcp_sock *tp = tcp_sk(sk);
1461 
1462 	if (tp->is_cwnd_limited)
1463 		return true;
1464 
1465 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1466 	if (tcp_in_slow_start(tp))
1467 		return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out;
1468 
1469 	return false;
1470 }
1471 
1472 /* BBR congestion control needs pacing.
1473  * Same remark for SO_MAX_PACING_RATE.
1474  * sch_fq packet scheduler is efficiently handling pacing,
1475  * but is not always installed/used.
1476  * Return true if TCP stack should pace packets itself.
1477  */
1478 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1479 {
1480 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1481 }
1482 
1483 /* Estimates in how many jiffies next packet for this flow can be sent.
1484  * Scheduling a retransmit timer too early would be silly.
1485  */
1486 static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1487 {
1488 	s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1489 
1490 	return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1491 }
1492 
1493 static inline void tcp_reset_xmit_timer(struct sock *sk,
1494 					const int what,
1495 					unsigned long when,
1496 					bool pace_delay)
1497 {
1498 	if (pace_delay)
1499 		when += tcp_pacing_delay(sk);
1500 	inet_csk_reset_xmit_timer(sk, what, when,
1501 				  tcp_rto_max(sk));
1502 }
1503 
1504 /* Something is really bad, we could not queue an additional packet,
1505  * because qdisc is full or receiver sent a 0 window, or we are paced.
1506  * We do not want to add fuel to the fire, or abort too early,
1507  * so make sure the timer we arm now is at least 200ms in the future,
1508  * regardless of current icsk_rto value (as it could be ~2ms)
1509  */
1510 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1511 {
1512 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1513 }
1514 
1515 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1516 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1517 					    unsigned long max_when)
1518 {
1519 	u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1520 			   inet_csk(sk)->icsk_backoff);
1521 	u64 when = (u64)tcp_probe0_base(sk) << backoff;
1522 
1523 	return (unsigned long)min_t(u64, when, max_when);
1524 }
1525 
1526 static inline void tcp_check_probe_timer(struct sock *sk)
1527 {
1528 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1529 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1530 				     tcp_probe0_base(sk), true);
1531 }
1532 
1533 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1534 {
1535 	tp->snd_wl1 = seq;
1536 }
1537 
1538 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1539 {
1540 	tp->snd_wl1 = seq;
1541 }
1542 
1543 /*
1544  * Calculate(/check) TCP checksum
1545  */
1546 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1547 				   __be32 daddr, __wsum base)
1548 {
1549 	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1550 }
1551 
1552 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1553 {
1554 	return !skb_csum_unnecessary(skb) &&
1555 		__skb_checksum_complete(skb);
1556 }
1557 
1558 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
1559 		     enum skb_drop_reason *reason);
1560 
1561 
1562 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1563 void tcp_set_state(struct sock *sk, int state);
1564 void tcp_done(struct sock *sk);
1565 int tcp_abort(struct sock *sk, int err);
1566 
1567 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1568 {
1569 	rx_opt->dsack = 0;
1570 	rx_opt->num_sacks = 0;
1571 }
1572 
1573 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1574 
1575 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1576 {
1577 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1578 	struct tcp_sock *tp = tcp_sk(sk);
1579 	s32 delta;
1580 
1581 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) ||
1582 	    tp->packets_out || ca_ops->cong_control)
1583 		return;
1584 	delta = tcp_jiffies32 - tp->lsndtime;
1585 	if (delta > inet_csk(sk)->icsk_rto)
1586 		tcp_cwnd_restart(sk, delta);
1587 }
1588 
1589 /* Determine a window scaling and initial window to offer. */
1590 void tcp_select_initial_window(const struct sock *sk, int __space,
1591 			       __u32 mss, __u32 *rcv_wnd,
1592 			       __u32 *window_clamp, int wscale_ok,
1593 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1594 
1595 static inline int __tcp_win_from_space(u8 scaling_ratio, int space)
1596 {
1597 	s64 scaled_space = (s64)space * scaling_ratio;
1598 
1599 	return scaled_space >> TCP_RMEM_TO_WIN_SCALE;
1600 }
1601 
1602 static inline int tcp_win_from_space(const struct sock *sk, int space)
1603 {
1604 	return __tcp_win_from_space(tcp_sk(sk)->scaling_ratio, space);
1605 }
1606 
1607 /* inverse of __tcp_win_from_space() */
1608 static inline int __tcp_space_from_win(u8 scaling_ratio, int win)
1609 {
1610 	u64 val = (u64)win << TCP_RMEM_TO_WIN_SCALE;
1611 
1612 	do_div(val, scaling_ratio);
1613 	return val;
1614 }
1615 
1616 static inline int tcp_space_from_win(const struct sock *sk, int win)
1617 {
1618 	return __tcp_space_from_win(tcp_sk(sk)->scaling_ratio, win);
1619 }
1620 
1621 /* Assume a 50% default for skb->len/skb->truesize ratio.
1622  * This may be adjusted later in tcp_measure_rcv_mss().
1623  */
1624 #define TCP_DEFAULT_SCALING_RATIO (1 << (TCP_RMEM_TO_WIN_SCALE - 1))
1625 
1626 static inline void tcp_scaling_ratio_init(struct sock *sk)
1627 {
1628 	tcp_sk(sk)->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
1629 }
1630 
1631 /* Note: caller must be prepared to deal with negative returns */
1632 static inline int tcp_space(const struct sock *sk)
1633 {
1634 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1635 				  READ_ONCE(sk->sk_backlog.len) -
1636 				  atomic_read(&sk->sk_rmem_alloc));
1637 }
1638 
1639 static inline int tcp_full_space(const struct sock *sk)
1640 {
1641 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1642 }
1643 
1644 static inline void __tcp_adjust_rcv_ssthresh(struct sock *sk, u32 new_ssthresh)
1645 {
1646 	int unused_mem = sk_unused_reserved_mem(sk);
1647 	struct tcp_sock *tp = tcp_sk(sk);
1648 
1649 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, new_ssthresh);
1650 	if (unused_mem)
1651 		tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh,
1652 					 tcp_win_from_space(sk, unused_mem));
1653 }
1654 
1655 static inline void tcp_adjust_rcv_ssthresh(struct sock *sk)
1656 {
1657 	__tcp_adjust_rcv_ssthresh(sk, 4U * tcp_sk(sk)->advmss);
1658 }
1659 
1660 void tcp_cleanup_rbuf(struct sock *sk, int copied);
1661 void __tcp_cleanup_rbuf(struct sock *sk, int copied);
1662 
1663 
1664 /* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1665  * If 87.5 % (7/8) of the space has been consumed, we want to override
1666  * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1667  * len/truesize ratio.
1668  */
1669 static inline bool tcp_rmem_pressure(const struct sock *sk)
1670 {
1671 	int rcvbuf, threshold;
1672 
1673 	if (tcp_under_memory_pressure(sk))
1674 		return true;
1675 
1676 	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1677 	threshold = rcvbuf - (rcvbuf >> 3);
1678 
1679 	return atomic_read(&sk->sk_rmem_alloc) > threshold;
1680 }
1681 
1682 static inline bool tcp_epollin_ready(const struct sock *sk, int target)
1683 {
1684 	const struct tcp_sock *tp = tcp_sk(sk);
1685 	int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
1686 
1687 	if (avail <= 0)
1688 		return false;
1689 
1690 	return (avail >= target) || tcp_rmem_pressure(sk) ||
1691 	       (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
1692 }
1693 
1694 extern void tcp_openreq_init_rwin(struct request_sock *req,
1695 				  const struct sock *sk_listener,
1696 				  const struct dst_entry *dst);
1697 
1698 void tcp_enter_memory_pressure(struct sock *sk);
1699 void tcp_leave_memory_pressure(struct sock *sk);
1700 
1701 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1702 {
1703 	struct net *net = sock_net((struct sock *)tp);
1704 	int val;
1705 
1706 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepintvl()
1707 	 * and do_tcp_setsockopt().
1708 	 */
1709 	val = READ_ONCE(tp->keepalive_intvl);
1710 
1711 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl);
1712 }
1713 
1714 static inline int keepalive_time_when(const struct tcp_sock *tp)
1715 {
1716 	struct net *net = sock_net((struct sock *)tp);
1717 	int val;
1718 
1719 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepidle_locked() */
1720 	val = READ_ONCE(tp->keepalive_time);
1721 
1722 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time);
1723 }
1724 
1725 static inline int keepalive_probes(const struct tcp_sock *tp)
1726 {
1727 	struct net *net = sock_net((struct sock *)tp);
1728 	int val;
1729 
1730 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepcnt()
1731 	 * and do_tcp_setsockopt().
1732 	 */
1733 	val = READ_ONCE(tp->keepalive_probes);
1734 
1735 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes);
1736 }
1737 
1738 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1739 {
1740 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1741 
1742 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1743 			  tcp_jiffies32 - tp->rcv_tstamp);
1744 }
1745 
1746 static inline int tcp_fin_time(const struct sock *sk)
1747 {
1748 	int fin_timeout = tcp_sk(sk)->linger2 ? :
1749 		READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout);
1750 	const int rto = inet_csk(sk)->icsk_rto;
1751 
1752 	if (fin_timeout < (rto << 2) - (rto >> 1))
1753 		fin_timeout = (rto << 2) - (rto >> 1);
1754 
1755 	return fin_timeout;
1756 }
1757 
1758 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1759 				  int paws_win)
1760 {
1761 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1762 		return true;
1763 	if (unlikely(!time_before32(ktime_get_seconds(),
1764 				    rx_opt->ts_recent_stamp + TCP_PAWS_WRAP)))
1765 		return true;
1766 	/*
1767 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1768 	 * then following tcp messages have valid values. Ignore 0 value,
1769 	 * or else 'negative' tsval might forbid us to accept their packets.
1770 	 */
1771 	if (!rx_opt->ts_recent)
1772 		return true;
1773 	return false;
1774 }
1775 
1776 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1777 				   int rst)
1778 {
1779 	if (tcp_paws_check(rx_opt, 0))
1780 		return false;
1781 
1782 	/* RST segments are not recommended to carry timestamp,
1783 	   and, if they do, it is recommended to ignore PAWS because
1784 	   "their cleanup function should take precedence over timestamps."
1785 	   Certainly, it is mistake. It is necessary to understand the reasons
1786 	   of this constraint to relax it: if peer reboots, clock may go
1787 	   out-of-sync and half-open connections will not be reset.
1788 	   Actually, the problem would be not existing if all
1789 	   the implementations followed draft about maintaining clock
1790 	   via reboots. Linux-2.2 DOES NOT!
1791 
1792 	   However, we can relax time bounds for RST segments to MSL.
1793 	 */
1794 	if (rst && !time_before32(ktime_get_seconds(),
1795 				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1796 		return false;
1797 	return true;
1798 }
1799 
1800 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1801 			  int mib_idx, u32 *last_oow_ack_time);
1802 
1803 static inline void tcp_mib_init(struct net *net)
1804 {
1805 	/* See RFC 2012 */
1806 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1807 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1808 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1809 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1810 }
1811 
1812 /* from STCP */
1813 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1814 {
1815 	tp->lost_skb_hint = NULL;
1816 }
1817 
1818 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1819 {
1820 	tcp_clear_retrans_hints_partial(tp);
1821 	tp->retransmit_skb_hint = NULL;
1822 }
1823 
1824 #define tcp_md5_addr tcp_ao_addr
1825 
1826 /* - key database */
1827 struct tcp_md5sig_key {
1828 	struct hlist_node	node;
1829 	u8			keylen;
1830 	u8			family; /* AF_INET or AF_INET6 */
1831 	u8			prefixlen;
1832 	u8			flags;
1833 	union tcp_md5_addr	addr;
1834 	int			l3index; /* set if key added with L3 scope */
1835 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1836 	struct rcu_head		rcu;
1837 };
1838 
1839 /* - sock block */
1840 struct tcp_md5sig_info {
1841 	struct hlist_head	head;
1842 	struct rcu_head		rcu;
1843 };
1844 
1845 /* - pseudo header */
1846 struct tcp4_pseudohdr {
1847 	__be32		saddr;
1848 	__be32		daddr;
1849 	__u8		pad;
1850 	__u8		protocol;
1851 	__be16		len;
1852 };
1853 
1854 struct tcp6_pseudohdr {
1855 	struct in6_addr	saddr;
1856 	struct in6_addr daddr;
1857 	__be32		len;
1858 	__be32		protocol;	/* including padding */
1859 };
1860 
1861 union tcp_md5sum_block {
1862 	struct tcp4_pseudohdr ip4;
1863 #if IS_ENABLED(CONFIG_IPV6)
1864 	struct tcp6_pseudohdr ip6;
1865 #endif
1866 };
1867 
1868 /*
1869  * struct tcp_sigpool - per-CPU pool of ahash_requests
1870  * @scratch: per-CPU temporary area, that can be used between
1871  *	     tcp_sigpool_start() and tcp_sigpool_end() to perform
1872  *	     crypto request
1873  * @req: pre-allocated ahash request
1874  */
1875 struct tcp_sigpool {
1876 	void *scratch;
1877 	struct ahash_request *req;
1878 };
1879 
1880 int tcp_sigpool_alloc_ahash(const char *alg, size_t scratch_size);
1881 void tcp_sigpool_get(unsigned int id);
1882 void tcp_sigpool_release(unsigned int id);
1883 int tcp_sigpool_hash_skb_data(struct tcp_sigpool *hp,
1884 			      const struct sk_buff *skb,
1885 			      unsigned int header_len);
1886 
1887 /**
1888  * tcp_sigpool_start - disable bh and start using tcp_sigpool_ahash
1889  * @id: tcp_sigpool that was previously allocated by tcp_sigpool_alloc_ahash()
1890  * @c: returned tcp_sigpool for usage (uninitialized on failure)
1891  *
1892  * Returns: 0 on success, error otherwise.
1893  */
1894 int tcp_sigpool_start(unsigned int id, struct tcp_sigpool *c);
1895 /**
1896  * tcp_sigpool_end - enable bh and stop using tcp_sigpool
1897  * @c: tcp_sigpool context that was returned by tcp_sigpool_start()
1898  */
1899 void tcp_sigpool_end(struct tcp_sigpool *c);
1900 size_t tcp_sigpool_algo(unsigned int id, char *buf, size_t buf_len);
1901 /* - functions */
1902 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1903 			const struct sock *sk, const struct sk_buff *skb);
1904 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1905 		   int family, u8 prefixlen, int l3index, u8 flags,
1906 		   const u8 *newkey, u8 newkeylen);
1907 int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr,
1908 		     int family, u8 prefixlen, int l3index,
1909 		     struct tcp_md5sig_key *key);
1910 
1911 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1912 		   int family, u8 prefixlen, int l3index, u8 flags);
1913 void tcp_clear_md5_list(struct sock *sk);
1914 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1915 					 const struct sock *addr_sk);
1916 
1917 #ifdef CONFIG_TCP_MD5SIG
1918 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1919 					   const union tcp_md5_addr *addr,
1920 					   int family, bool any_l3index);
1921 static inline struct tcp_md5sig_key *
1922 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1923 		  const union tcp_md5_addr *addr, int family)
1924 {
1925 	if (!static_branch_unlikely(&tcp_md5_needed.key))
1926 		return NULL;
1927 	return __tcp_md5_do_lookup(sk, l3index, addr, family, false);
1928 }
1929 
1930 static inline struct tcp_md5sig_key *
1931 tcp_md5_do_lookup_any_l3index(const struct sock *sk,
1932 			      const union tcp_md5_addr *addr, int family)
1933 {
1934 	if (!static_branch_unlikely(&tcp_md5_needed.key))
1935 		return NULL;
1936 	return __tcp_md5_do_lookup(sk, 0, addr, family, true);
1937 }
1938 
1939 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1940 #else
1941 static inline struct tcp_md5sig_key *
1942 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1943 		  const union tcp_md5_addr *addr, int family)
1944 {
1945 	return NULL;
1946 }
1947 
1948 static inline struct tcp_md5sig_key *
1949 tcp_md5_do_lookup_any_l3index(const struct sock *sk,
1950 			      const union tcp_md5_addr *addr, int family)
1951 {
1952 	return NULL;
1953 }
1954 
1955 #define tcp_twsk_md5_key(twsk)	NULL
1956 #endif
1957 
1958 int tcp_md5_alloc_sigpool(void);
1959 void tcp_md5_release_sigpool(void);
1960 void tcp_md5_add_sigpool(void);
1961 extern int tcp_md5_sigpool_id;
1962 
1963 int tcp_md5_hash_key(struct tcp_sigpool *hp,
1964 		     const struct tcp_md5sig_key *key);
1965 
1966 /* From tcp_fastopen.c */
1967 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1968 			    struct tcp_fastopen_cookie *cookie);
1969 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1970 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1971 			    u16 try_exp);
1972 struct tcp_fastopen_request {
1973 	/* Fast Open cookie. Size 0 means a cookie request */
1974 	struct tcp_fastopen_cookie	cookie;
1975 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1976 	size_t				size;
1977 	int				copied;	/* queued in tcp_connect() */
1978 	struct ubuf_info		*uarg;
1979 };
1980 void tcp_free_fastopen_req(struct tcp_sock *tp);
1981 void tcp_fastopen_destroy_cipher(struct sock *sk);
1982 void tcp_fastopen_ctx_destroy(struct net *net);
1983 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1984 			      void *primary_key, void *backup_key);
1985 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1986 			    u64 *key);
1987 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1988 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1989 			      struct request_sock *req,
1990 			      struct tcp_fastopen_cookie *foc,
1991 			      const struct dst_entry *dst);
1992 void tcp_fastopen_init_key_once(struct net *net);
1993 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1994 			     struct tcp_fastopen_cookie *cookie);
1995 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1996 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1997 #define TCP_FASTOPEN_KEY_MAX 2
1998 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
1999 	(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
2000 
2001 /* Fastopen key context */
2002 struct tcp_fastopen_context {
2003 	siphash_key_t	key[TCP_FASTOPEN_KEY_MAX];
2004 	int		num;
2005 	struct rcu_head	rcu;
2006 };
2007 
2008 void tcp_fastopen_active_disable(struct sock *sk);
2009 bool tcp_fastopen_active_should_disable(struct sock *sk);
2010 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
2011 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
2012 
2013 /* Caller needs to wrap with rcu_read_(un)lock() */
2014 static inline
2015 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
2016 {
2017 	struct tcp_fastopen_context *ctx;
2018 
2019 	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
2020 	if (!ctx)
2021 		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
2022 	return ctx;
2023 }
2024 
2025 static inline
2026 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
2027 			       const struct tcp_fastopen_cookie *orig)
2028 {
2029 	if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
2030 	    orig->len == foc->len &&
2031 	    !memcmp(orig->val, foc->val, foc->len))
2032 		return true;
2033 	return false;
2034 }
2035 
2036 static inline
2037 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
2038 {
2039 	return ctx->num;
2040 }
2041 
2042 /* Latencies incurred by various limits for a sender. They are
2043  * chronograph-like stats that are mutually exclusive.
2044  */
2045 enum tcp_chrono {
2046 	TCP_CHRONO_UNSPEC,
2047 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
2048 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
2049 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
2050 	__TCP_CHRONO_MAX,
2051 };
2052 
2053 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
2054 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
2055 
2056 /* This helper is needed, because skb->tcp_tsorted_anchor uses
2057  * the same memory storage than skb->destructor/_skb_refdst
2058  */
2059 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
2060 {
2061 	skb->destructor = NULL;
2062 	skb->_skb_refdst = 0UL;
2063 }
2064 
2065 #define tcp_skb_tsorted_save(skb) {		\
2066 	unsigned long _save = skb->_skb_refdst;	\
2067 	skb->_skb_refdst = 0UL;
2068 
2069 #define tcp_skb_tsorted_restore(skb)		\
2070 	skb->_skb_refdst = _save;		\
2071 }
2072 
2073 void tcp_write_queue_purge(struct sock *sk);
2074 
2075 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
2076 {
2077 	return skb_rb_first(&sk->tcp_rtx_queue);
2078 }
2079 
2080 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
2081 {
2082 	return skb_rb_last(&sk->tcp_rtx_queue);
2083 }
2084 
2085 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
2086 {
2087 	return skb_peek_tail(&sk->sk_write_queue);
2088 }
2089 
2090 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
2091 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
2092 
2093 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
2094 {
2095 	return skb_peek(&sk->sk_write_queue);
2096 }
2097 
2098 static inline bool tcp_skb_is_last(const struct sock *sk,
2099 				   const struct sk_buff *skb)
2100 {
2101 	return skb_queue_is_last(&sk->sk_write_queue, skb);
2102 }
2103 
2104 /**
2105  * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
2106  * @sk: socket
2107  *
2108  * Since the write queue can have a temporary empty skb in it,
2109  * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
2110  */
2111 static inline bool tcp_write_queue_empty(const struct sock *sk)
2112 {
2113 	const struct tcp_sock *tp = tcp_sk(sk);
2114 
2115 	return tp->write_seq == tp->snd_nxt;
2116 }
2117 
2118 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
2119 {
2120 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
2121 }
2122 
2123 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
2124 {
2125 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
2126 }
2127 
2128 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
2129 {
2130 	__skb_queue_tail(&sk->sk_write_queue, skb);
2131 
2132 	/* Queue it, remembering where we must start sending. */
2133 	if (sk->sk_write_queue.next == skb)
2134 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
2135 }
2136 
2137 /* Insert new before skb on the write queue of sk.  */
2138 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
2139 						  struct sk_buff *skb,
2140 						  struct sock *sk)
2141 {
2142 	__skb_queue_before(&sk->sk_write_queue, skb, new);
2143 }
2144 
2145 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
2146 {
2147 	tcp_skb_tsorted_anchor_cleanup(skb);
2148 	__skb_unlink(skb, &sk->sk_write_queue);
2149 }
2150 
2151 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
2152 
2153 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
2154 {
2155 	tcp_skb_tsorted_anchor_cleanup(skb);
2156 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
2157 }
2158 
2159 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
2160 {
2161 	list_del(&skb->tcp_tsorted_anchor);
2162 	tcp_rtx_queue_unlink(skb, sk);
2163 	tcp_wmem_free_skb(sk, skb);
2164 }
2165 
2166 static inline void tcp_write_collapse_fence(struct sock *sk)
2167 {
2168 	struct sk_buff *skb = tcp_write_queue_tail(sk);
2169 
2170 	if (skb)
2171 		TCP_SKB_CB(skb)->eor = 1;
2172 }
2173 
2174 static inline void tcp_push_pending_frames(struct sock *sk)
2175 {
2176 	if (tcp_send_head(sk)) {
2177 		struct tcp_sock *tp = tcp_sk(sk);
2178 
2179 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
2180 	}
2181 }
2182 
2183 /* Start sequence of the skb just after the highest skb with SACKed
2184  * bit, valid only if sacked_out > 0 or when the caller has ensured
2185  * validity by itself.
2186  */
2187 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
2188 {
2189 	if (!tp->sacked_out)
2190 		return tp->snd_una;
2191 
2192 	if (tp->highest_sack == NULL)
2193 		return tp->snd_nxt;
2194 
2195 	return TCP_SKB_CB(tp->highest_sack)->seq;
2196 }
2197 
2198 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
2199 {
2200 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
2201 }
2202 
2203 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
2204 {
2205 	return tcp_sk(sk)->highest_sack;
2206 }
2207 
2208 static inline void tcp_highest_sack_reset(struct sock *sk)
2209 {
2210 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
2211 }
2212 
2213 /* Called when old skb is about to be deleted and replaced by new skb */
2214 static inline void tcp_highest_sack_replace(struct sock *sk,
2215 					    struct sk_buff *old,
2216 					    struct sk_buff *new)
2217 {
2218 	if (old == tcp_highest_sack(sk))
2219 		tcp_sk(sk)->highest_sack = new;
2220 }
2221 
2222 /* This helper checks if socket has IP_TRANSPARENT set */
2223 static inline bool inet_sk_transparent(const struct sock *sk)
2224 {
2225 	switch (sk->sk_state) {
2226 	case TCP_TIME_WAIT:
2227 		return inet_twsk(sk)->tw_transparent;
2228 	case TCP_NEW_SYN_RECV:
2229 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
2230 	}
2231 	return inet_test_bit(TRANSPARENT, sk);
2232 }
2233 
2234 /* Determines whether this is a thin stream (which may suffer from
2235  * increased latency). Used to trigger latency-reducing mechanisms.
2236  */
2237 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
2238 {
2239 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
2240 }
2241 
2242 /* /proc */
2243 enum tcp_seq_states {
2244 	TCP_SEQ_STATE_LISTENING,
2245 	TCP_SEQ_STATE_ESTABLISHED,
2246 };
2247 
2248 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
2249 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2250 void tcp_seq_stop(struct seq_file *seq, void *v);
2251 
2252 struct tcp_seq_afinfo {
2253 	sa_family_t			family;
2254 };
2255 
2256 struct tcp_iter_state {
2257 	struct seq_net_private	p;
2258 	enum tcp_seq_states	state;
2259 	struct sock		*syn_wait_sk;
2260 	int			bucket, offset, sbucket, num;
2261 	loff_t			last_pos;
2262 };
2263 
2264 extern struct request_sock_ops tcp_request_sock_ops;
2265 extern struct request_sock_ops tcp6_request_sock_ops;
2266 
2267 void tcp_v4_destroy_sock(struct sock *sk);
2268 
2269 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
2270 				netdev_features_t features);
2271 struct tcphdr *tcp_gro_pull_header(struct sk_buff *skb);
2272 struct sk_buff *tcp_gro_lookup(struct list_head *head, struct tcphdr *th);
2273 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb,
2274 				struct tcphdr *th);
2275 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
2276 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
2277 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
2278 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
2279 #ifdef CONFIG_INET
2280 void tcp_gro_complete(struct sk_buff *skb);
2281 #else
2282 static inline void tcp_gro_complete(struct sk_buff *skb) { }
2283 #endif
2284 
2285 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
2286 
2287 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
2288 {
2289 	struct net *net = sock_net((struct sock *)tp);
2290 	u32 val;
2291 
2292 	val = READ_ONCE(tp->notsent_lowat);
2293 
2294 	return val ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat);
2295 }
2296 
2297 bool tcp_stream_memory_free(const struct sock *sk, int wake);
2298 
2299 #ifdef CONFIG_PROC_FS
2300 int tcp4_proc_init(void);
2301 void tcp4_proc_exit(void);
2302 #endif
2303 
2304 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
2305 int tcp_conn_request(struct request_sock_ops *rsk_ops,
2306 		     const struct tcp_request_sock_ops *af_ops,
2307 		     struct sock *sk, struct sk_buff *skb);
2308 
2309 /* TCP af-specific functions */
2310 struct tcp_sock_af_ops {
2311 #ifdef CONFIG_TCP_MD5SIG
2312 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
2313 						const struct sock *addr_sk);
2314 	int		(*calc_md5_hash)(char *location,
2315 					 const struct tcp_md5sig_key *md5,
2316 					 const struct sock *sk,
2317 					 const struct sk_buff *skb);
2318 	int		(*md5_parse)(struct sock *sk,
2319 				     int optname,
2320 				     sockptr_t optval,
2321 				     int optlen);
2322 #endif
2323 #ifdef CONFIG_TCP_AO
2324 	int (*ao_parse)(struct sock *sk, int optname, sockptr_t optval, int optlen);
2325 	struct tcp_ao_key *(*ao_lookup)(const struct sock *sk,
2326 					struct sock *addr_sk,
2327 					int sndid, int rcvid);
2328 	int (*ao_calc_key_sk)(struct tcp_ao_key *mkt, u8 *key,
2329 			      const struct sock *sk,
2330 			      __be32 sisn, __be32 disn, bool send);
2331 	int (*calc_ao_hash)(char *location, struct tcp_ao_key *ao,
2332 			    const struct sock *sk, const struct sk_buff *skb,
2333 			    const u8 *tkey, int hash_offset, u32 sne);
2334 #endif
2335 };
2336 
2337 struct tcp_request_sock_ops {
2338 	u16 mss_clamp;
2339 #ifdef CONFIG_TCP_MD5SIG
2340 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2341 						 const struct sock *addr_sk);
2342 	int		(*calc_md5_hash) (char *location,
2343 					  const struct tcp_md5sig_key *md5,
2344 					  const struct sock *sk,
2345 					  const struct sk_buff *skb);
2346 #endif
2347 #ifdef CONFIG_TCP_AO
2348 	struct tcp_ao_key *(*ao_lookup)(const struct sock *sk,
2349 					struct request_sock *req,
2350 					int sndid, int rcvid);
2351 	int (*ao_calc_key)(struct tcp_ao_key *mkt, u8 *key, struct request_sock *sk);
2352 	int (*ao_synack_hash)(char *ao_hash, struct tcp_ao_key *mkt,
2353 			      struct request_sock *req, const struct sk_buff *skb,
2354 			      int hash_offset, u32 sne);
2355 #endif
2356 #ifdef CONFIG_SYN_COOKIES
2357 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
2358 				 __u16 *mss);
2359 #endif
2360 	struct dst_entry *(*route_req)(const struct sock *sk,
2361 				       struct sk_buff *skb,
2362 				       struct flowi *fl,
2363 				       struct request_sock *req,
2364 				       u32 tw_isn);
2365 	u32 (*init_seq)(const struct sk_buff *skb);
2366 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2367 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2368 			   struct flowi *fl, struct request_sock *req,
2369 			   struct tcp_fastopen_cookie *foc,
2370 			   enum tcp_synack_type synack_type,
2371 			   struct sk_buff *syn_skb);
2372 };
2373 
2374 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2375 #if IS_ENABLED(CONFIG_IPV6)
2376 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2377 #endif
2378 
2379 #ifdef CONFIG_SYN_COOKIES
2380 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2381 					 const struct sock *sk, struct sk_buff *skb,
2382 					 __u16 *mss)
2383 {
2384 	tcp_synq_overflow(sk);
2385 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2386 	return ops->cookie_init_seq(skb, mss);
2387 }
2388 #else
2389 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2390 					 const struct sock *sk, struct sk_buff *skb,
2391 					 __u16 *mss)
2392 {
2393 	return 0;
2394 }
2395 #endif
2396 
2397 struct tcp_key {
2398 	union {
2399 		struct {
2400 			struct tcp_ao_key *ao_key;
2401 			char *traffic_key;
2402 			u32 sne;
2403 			u8 rcv_next;
2404 		};
2405 		struct tcp_md5sig_key *md5_key;
2406 	};
2407 	enum {
2408 		TCP_KEY_NONE = 0,
2409 		TCP_KEY_MD5,
2410 		TCP_KEY_AO,
2411 	} type;
2412 };
2413 
2414 static inline void tcp_get_current_key(const struct sock *sk,
2415 				       struct tcp_key *out)
2416 {
2417 #if defined(CONFIG_TCP_AO) || defined(CONFIG_TCP_MD5SIG)
2418 	const struct tcp_sock *tp = tcp_sk(sk);
2419 #endif
2420 
2421 #ifdef CONFIG_TCP_AO
2422 	if (static_branch_unlikely(&tcp_ao_needed.key)) {
2423 		struct tcp_ao_info *ao;
2424 
2425 		ao = rcu_dereference_protected(tp->ao_info,
2426 					       lockdep_sock_is_held(sk));
2427 		if (ao) {
2428 			out->ao_key = READ_ONCE(ao->current_key);
2429 			out->type = TCP_KEY_AO;
2430 			return;
2431 		}
2432 	}
2433 #endif
2434 #ifdef CONFIG_TCP_MD5SIG
2435 	if (static_branch_unlikely(&tcp_md5_needed.key) &&
2436 	    rcu_access_pointer(tp->md5sig_info)) {
2437 		out->md5_key = tp->af_specific->md5_lookup(sk, sk);
2438 		if (out->md5_key) {
2439 			out->type = TCP_KEY_MD5;
2440 			return;
2441 		}
2442 	}
2443 #endif
2444 	out->type = TCP_KEY_NONE;
2445 }
2446 
2447 static inline bool tcp_key_is_md5(const struct tcp_key *key)
2448 {
2449 	if (static_branch_tcp_md5())
2450 		return key->type == TCP_KEY_MD5;
2451 	return false;
2452 }
2453 
2454 static inline bool tcp_key_is_ao(const struct tcp_key *key)
2455 {
2456 	if (static_branch_tcp_ao())
2457 		return key->type == TCP_KEY_AO;
2458 	return false;
2459 }
2460 
2461 int tcpv4_offload_init(void);
2462 
2463 void tcp_v4_init(void);
2464 void tcp_init(void);
2465 
2466 /* tcp_recovery.c */
2467 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2468 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2469 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2470 				u32 reo_wnd);
2471 extern bool tcp_rack_mark_lost(struct sock *sk);
2472 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2473 			     u64 xmit_time);
2474 extern void tcp_rack_reo_timeout(struct sock *sk);
2475 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2476 
2477 /* tcp_plb.c */
2478 
2479 /*
2480  * Scaling factor for fractions in PLB. For example, tcp_plb_update_state
2481  * expects cong_ratio which represents fraction of traffic that experienced
2482  * congestion over a single RTT. In order to avoid floating point operations,
2483  * this fraction should be mapped to (1 << TCP_PLB_SCALE) and passed in.
2484  */
2485 #define TCP_PLB_SCALE 8
2486 
2487 /* State for PLB (Protective Load Balancing) for a single TCP connection. */
2488 struct tcp_plb_state {
2489 	u8	consec_cong_rounds:5, /* consecutive congested rounds */
2490 		unused:3;
2491 	u32	pause_until; /* jiffies32 when PLB can resume rerouting */
2492 };
2493 
2494 static inline void tcp_plb_init(const struct sock *sk,
2495 				struct tcp_plb_state *plb)
2496 {
2497 	plb->consec_cong_rounds = 0;
2498 	plb->pause_until = 0;
2499 }
2500 void tcp_plb_update_state(const struct sock *sk, struct tcp_plb_state *plb,
2501 			  const int cong_ratio);
2502 void tcp_plb_check_rehash(struct sock *sk, struct tcp_plb_state *plb);
2503 void tcp_plb_update_state_upon_rto(struct sock *sk, struct tcp_plb_state *plb);
2504 
2505 static inline void tcp_warn_once(const struct sock *sk, bool cond, const char *str)
2506 {
2507 	WARN_ONCE(cond,
2508 		  "%scwn:%u out:%u sacked:%u lost:%u retrans:%u tlp_high_seq:%u sk_state:%u ca_state:%u advmss:%u mss_cache:%u pmtu:%u\n",
2509 		  str,
2510 		  tcp_snd_cwnd(tcp_sk(sk)),
2511 		  tcp_sk(sk)->packets_out, tcp_sk(sk)->sacked_out,
2512 		  tcp_sk(sk)->lost_out, tcp_sk(sk)->retrans_out,
2513 		  tcp_sk(sk)->tlp_high_seq, sk->sk_state,
2514 		  inet_csk(sk)->icsk_ca_state,
2515 		  tcp_sk(sk)->advmss, tcp_sk(sk)->mss_cache,
2516 		  inet_csk(sk)->icsk_pmtu_cookie);
2517 }
2518 
2519 /* At how many usecs into the future should the RTO fire? */
2520 static inline s64 tcp_rto_delta_us(const struct sock *sk)
2521 {
2522 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2523 	u32 rto = inet_csk(sk)->icsk_rto;
2524 
2525 	if (likely(skb)) {
2526 		u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2527 
2528 		return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2529 	} else {
2530 		tcp_warn_once(sk, 1, "rtx queue empty: ");
2531 		return jiffies_to_usecs(rto);
2532 	}
2533 
2534 }
2535 
2536 /*
2537  * Save and compile IPv4 options, return a pointer to it
2538  */
2539 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2540 							 struct sk_buff *skb)
2541 {
2542 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2543 	struct ip_options_rcu *dopt = NULL;
2544 
2545 	if (opt->optlen) {
2546 		int opt_size = sizeof(*dopt) + opt->optlen;
2547 
2548 		dopt = kmalloc(opt_size, GFP_ATOMIC);
2549 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2550 			kfree(dopt);
2551 			dopt = NULL;
2552 		}
2553 	}
2554 	return dopt;
2555 }
2556 
2557 /* locally generated TCP pure ACKs have skb->truesize == 2
2558  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2559  * This is much faster than dissecting the packet to find out.
2560  * (Think of GRE encapsulations, IPv4, IPv6, ...)
2561  */
2562 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2563 {
2564 	return skb->truesize == 2;
2565 }
2566 
2567 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2568 {
2569 	skb->truesize = 2;
2570 }
2571 
2572 static inline int tcp_inq(struct sock *sk)
2573 {
2574 	struct tcp_sock *tp = tcp_sk(sk);
2575 	int answ;
2576 
2577 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2578 		answ = 0;
2579 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2580 		   !tp->urg_data ||
2581 		   before(tp->urg_seq, tp->copied_seq) ||
2582 		   !before(tp->urg_seq, tp->rcv_nxt)) {
2583 
2584 		answ = tp->rcv_nxt - tp->copied_seq;
2585 
2586 		/* Subtract 1, if FIN was received */
2587 		if (answ && sock_flag(sk, SOCK_DONE))
2588 			answ--;
2589 	} else {
2590 		answ = tp->urg_seq - tp->copied_seq;
2591 	}
2592 
2593 	return answ;
2594 }
2595 
2596 int tcp_peek_len(struct socket *sock);
2597 
2598 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2599 {
2600 	u16 segs_in;
2601 
2602 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2603 
2604 	/* We update these fields while other threads might
2605 	 * read them from tcp_get_info()
2606 	 */
2607 	WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in);
2608 	if (skb->len > tcp_hdrlen(skb))
2609 		WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in);
2610 }
2611 
2612 /*
2613  * TCP listen path runs lockless.
2614  * We forced "struct sock" to be const qualified to make sure
2615  * we don't modify one of its field by mistake.
2616  * Here, we increment sk_drops which is an atomic_t, so we can safely
2617  * make sock writable again.
2618  */
2619 static inline void tcp_listendrop(const struct sock *sk)
2620 {
2621 	atomic_inc(&((struct sock *)sk)->sk_drops);
2622 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2623 }
2624 
2625 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2626 
2627 /*
2628  * Interface for adding Upper Level Protocols over TCP
2629  */
2630 
2631 #define TCP_ULP_NAME_MAX	16
2632 #define TCP_ULP_MAX		128
2633 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2634 
2635 struct tcp_ulp_ops {
2636 	struct list_head	list;
2637 
2638 	/* initialize ulp */
2639 	int (*init)(struct sock *sk);
2640 	/* update ulp */
2641 	void (*update)(struct sock *sk, struct proto *p,
2642 		       void (*write_space)(struct sock *sk));
2643 	/* cleanup ulp */
2644 	void (*release)(struct sock *sk);
2645 	/* diagnostic */
2646 	int (*get_info)(struct sock *sk, struct sk_buff *skb, bool net_admin);
2647 	size_t (*get_info_size)(const struct sock *sk, bool net_admin);
2648 	/* clone ulp */
2649 	void (*clone)(const struct request_sock *req, struct sock *newsk,
2650 		      const gfp_t priority);
2651 
2652 	char		name[TCP_ULP_NAME_MAX];
2653 	struct module	*owner;
2654 };
2655 int tcp_register_ulp(struct tcp_ulp_ops *type);
2656 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2657 int tcp_set_ulp(struct sock *sk, const char *name);
2658 void tcp_get_available_ulp(char *buf, size_t len);
2659 void tcp_cleanup_ulp(struct sock *sk);
2660 void tcp_update_ulp(struct sock *sk, struct proto *p,
2661 		    void (*write_space)(struct sock *sk));
2662 
2663 #define MODULE_ALIAS_TCP_ULP(name)				\
2664 	__MODULE_INFO(alias, alias_userspace, name);		\
2665 	__MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2666 
2667 #ifdef CONFIG_NET_SOCK_MSG
2668 struct sk_msg;
2669 struct sk_psock;
2670 
2671 #ifdef CONFIG_BPF_SYSCALL
2672 int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
2673 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2674 #ifdef CONFIG_BPF_STREAM_PARSER
2675 struct strparser;
2676 int tcp_bpf_strp_read_sock(struct strparser *strp, read_descriptor_t *desc,
2677 			   sk_read_actor_t recv_actor);
2678 #endif /* CONFIG_BPF_STREAM_PARSER */
2679 #endif /* CONFIG_BPF_SYSCALL */
2680 
2681 #ifdef CONFIG_INET
2682 void tcp_eat_skb(struct sock *sk, struct sk_buff *skb);
2683 #else
2684 static inline void tcp_eat_skb(struct sock *sk, struct sk_buff *skb)
2685 {
2686 }
2687 #endif
2688 
2689 int tcp_bpf_sendmsg_redir(struct sock *sk, bool ingress,
2690 			  struct sk_msg *msg, u32 bytes, int flags);
2691 #endif /* CONFIG_NET_SOCK_MSG */
2692 
2693 #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
2694 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2695 {
2696 }
2697 #endif
2698 
2699 #ifdef CONFIG_CGROUP_BPF
2700 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2701 				      struct sk_buff *skb,
2702 				      unsigned int end_offset)
2703 {
2704 	skops->skb = skb;
2705 	skops->skb_data_end = skb->data + end_offset;
2706 }
2707 #else
2708 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2709 				      struct sk_buff *skb,
2710 				      unsigned int end_offset)
2711 {
2712 }
2713 #endif
2714 
2715 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2716  * is < 0, then the BPF op failed (for example if the loaded BPF
2717  * program does not support the chosen operation or there is no BPF
2718  * program loaded).
2719  */
2720 #ifdef CONFIG_BPF
2721 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2722 {
2723 	struct bpf_sock_ops_kern sock_ops;
2724 	int ret;
2725 
2726 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2727 	if (sk_fullsock(sk)) {
2728 		sock_ops.is_fullsock = 1;
2729 		sock_ops.is_locked_tcp_sock = 1;
2730 		sock_owned_by_me(sk);
2731 	}
2732 
2733 	sock_ops.sk = sk;
2734 	sock_ops.op = op;
2735 	if (nargs > 0)
2736 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2737 
2738 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2739 	if (ret == 0)
2740 		ret = sock_ops.reply;
2741 	else
2742 		ret = -1;
2743 	return ret;
2744 }
2745 
2746 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2747 {
2748 	u32 args[2] = {arg1, arg2};
2749 
2750 	return tcp_call_bpf(sk, op, 2, args);
2751 }
2752 
2753 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2754 				    u32 arg3)
2755 {
2756 	u32 args[3] = {arg1, arg2, arg3};
2757 
2758 	return tcp_call_bpf(sk, op, 3, args);
2759 }
2760 
2761 #else
2762 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2763 {
2764 	return -EPERM;
2765 }
2766 
2767 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2768 {
2769 	return -EPERM;
2770 }
2771 
2772 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2773 				    u32 arg3)
2774 {
2775 	return -EPERM;
2776 }
2777 
2778 #endif
2779 
2780 static inline u32 tcp_timeout_init(struct sock *sk)
2781 {
2782 	int timeout;
2783 
2784 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2785 
2786 	if (timeout <= 0)
2787 		timeout = TCP_TIMEOUT_INIT;
2788 	return min_t(int, timeout, TCP_RTO_MAX);
2789 }
2790 
2791 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2792 {
2793 	int rwnd;
2794 
2795 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2796 
2797 	if (rwnd < 0)
2798 		rwnd = 0;
2799 	return rwnd;
2800 }
2801 
2802 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2803 {
2804 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2805 }
2806 
2807 static inline void tcp_bpf_rtt(struct sock *sk, long mrtt, u32 srtt)
2808 {
2809 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2810 		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_RTT_CB, mrtt, srtt);
2811 }
2812 
2813 #if IS_ENABLED(CONFIG_SMC)
2814 extern struct static_key_false tcp_have_smc;
2815 #endif
2816 
2817 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2818 void clean_acked_data_enable(struct tcp_sock *tp,
2819 			     void (*cad)(struct sock *sk, u32 ack_seq));
2820 void clean_acked_data_disable(struct tcp_sock *tp);
2821 void clean_acked_data_flush(void);
2822 #endif
2823 
2824 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2825 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2826 				    const struct tcp_sock *tp)
2827 {
2828 	if (static_branch_unlikely(&tcp_tx_delay_enabled))
2829 		skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2830 }
2831 
2832 /* Compute Earliest Departure Time for some control packets
2833  * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2834  */
2835 static inline u64 tcp_transmit_time(const struct sock *sk)
2836 {
2837 	if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2838 		u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2839 			tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2840 
2841 		return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2842 	}
2843 	return 0;
2844 }
2845 
2846 static inline int tcp_parse_auth_options(const struct tcphdr *th,
2847 		const u8 **md5_hash, const struct tcp_ao_hdr **aoh)
2848 {
2849 	const u8 *md5_tmp, *ao_tmp;
2850 	int ret;
2851 
2852 	ret = tcp_do_parse_auth_options(th, &md5_tmp, &ao_tmp);
2853 	if (ret)
2854 		return ret;
2855 
2856 	if (md5_hash)
2857 		*md5_hash = md5_tmp;
2858 
2859 	if (aoh) {
2860 		if (!ao_tmp)
2861 			*aoh = NULL;
2862 		else
2863 			*aoh = (struct tcp_ao_hdr *)(ao_tmp - 2);
2864 	}
2865 
2866 	return 0;
2867 }
2868 
2869 static inline bool tcp_ao_required(struct sock *sk, const void *saddr,
2870 				   int family, int l3index, bool stat_inc)
2871 {
2872 #ifdef CONFIG_TCP_AO
2873 	struct tcp_ao_info *ao_info;
2874 	struct tcp_ao_key *ao_key;
2875 
2876 	if (!static_branch_unlikely(&tcp_ao_needed.key))
2877 		return false;
2878 
2879 	ao_info = rcu_dereference_check(tcp_sk(sk)->ao_info,
2880 					lockdep_sock_is_held(sk));
2881 	if (!ao_info)
2882 		return false;
2883 
2884 	ao_key = tcp_ao_do_lookup(sk, l3index, saddr, family, -1, -1);
2885 	if (ao_info->ao_required || ao_key) {
2886 		if (stat_inc) {
2887 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOREQUIRED);
2888 			atomic64_inc(&ao_info->counters.ao_required);
2889 		}
2890 		return true;
2891 	}
2892 #endif
2893 	return false;
2894 }
2895 
2896 enum skb_drop_reason tcp_inbound_hash(struct sock *sk,
2897 		const struct request_sock *req, const struct sk_buff *skb,
2898 		const void *saddr, const void *daddr,
2899 		int family, int dif, int sdif);
2900 
2901 #endif	/* _TCP_H */
2902