1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 * 21 * Fixes: 22 * Alan Cox : Numerous verify_area() calls 23 * Alan Cox : Set the ACK bit on a reset 24 * Alan Cox : Stopped it crashing if it closed while 25 * sk->inuse=1 and was trying to connect 26 * (tcp_err()). 27 * Alan Cox : All icmp error handling was broken 28 * pointers passed where wrong and the 29 * socket was looked up backwards. Nobody 30 * tested any icmp error code obviously. 31 * Alan Cox : tcp_err() now handled properly. It 32 * wakes people on errors. poll 33 * behaves and the icmp error race 34 * has gone by moving it into sock.c 35 * Alan Cox : tcp_send_reset() fixed to work for 36 * everything not just packets for 37 * unknown sockets. 38 * Alan Cox : tcp option processing. 39 * Alan Cox : Reset tweaked (still not 100%) [Had 40 * syn rule wrong] 41 * Herp Rosmanith : More reset fixes 42 * Alan Cox : No longer acks invalid rst frames. 43 * Acking any kind of RST is right out. 44 * Alan Cox : Sets an ignore me flag on an rst 45 * receive otherwise odd bits of prattle 46 * escape still 47 * Alan Cox : Fixed another acking RST frame bug. 48 * Should stop LAN workplace lockups. 49 * Alan Cox : Some tidyups using the new skb list 50 * facilities 51 * Alan Cox : sk->keepopen now seems to work 52 * Alan Cox : Pulls options out correctly on accepts 53 * Alan Cox : Fixed assorted sk->rqueue->next errors 54 * Alan Cox : PSH doesn't end a TCP read. Switched a 55 * bit to skb ops. 56 * Alan Cox : Tidied tcp_data to avoid a potential 57 * nasty. 58 * Alan Cox : Added some better commenting, as the 59 * tcp is hard to follow 60 * Alan Cox : Removed incorrect check for 20 * psh 61 * Michael O'Reilly : ack < copied bug fix. 62 * Johannes Stille : Misc tcp fixes (not all in yet). 63 * Alan Cox : FIN with no memory -> CRASH 64 * Alan Cox : Added socket option proto entries. 65 * Also added awareness of them to accept. 66 * Alan Cox : Added TCP options (SOL_TCP) 67 * Alan Cox : Switched wakeup calls to callbacks, 68 * so the kernel can layer network 69 * sockets. 70 * Alan Cox : Use ip_tos/ip_ttl settings. 71 * Alan Cox : Handle FIN (more) properly (we hope). 72 * Alan Cox : RST frames sent on unsynchronised 73 * state ack error. 74 * Alan Cox : Put in missing check for SYN bit. 75 * Alan Cox : Added tcp_select_window() aka NET2E 76 * window non shrink trick. 77 * Alan Cox : Added a couple of small NET2E timer 78 * fixes 79 * Charles Hedrick : TCP fixes 80 * Toomas Tamm : TCP window fixes 81 * Alan Cox : Small URG fix to rlogin ^C ack fight 82 * Charles Hedrick : Rewrote most of it to actually work 83 * Linus : Rewrote tcp_read() and URG handling 84 * completely 85 * Gerhard Koerting: Fixed some missing timer handling 86 * Matthew Dillon : Reworked TCP machine states as per RFC 87 * Gerhard Koerting: PC/TCP workarounds 88 * Adam Caldwell : Assorted timer/timing errors 89 * Matthew Dillon : Fixed another RST bug 90 * Alan Cox : Move to kernel side addressing changes. 91 * Alan Cox : Beginning work on TCP fastpathing 92 * (not yet usable) 93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 94 * Alan Cox : TCP fast path debugging 95 * Alan Cox : Window clamping 96 * Michael Riepe : Bug in tcp_check() 97 * Matt Dillon : More TCP improvements and RST bug fixes 98 * Matt Dillon : Yet more small nasties remove from the 99 * TCP code (Be very nice to this man if 100 * tcp finally works 100%) 8) 101 * Alan Cox : BSD accept semantics. 102 * Alan Cox : Reset on closedown bug. 103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 104 * Michael Pall : Handle poll() after URG properly in 105 * all cases. 106 * Michael Pall : Undo the last fix in tcp_read_urg() 107 * (multi URG PUSH broke rlogin). 108 * Michael Pall : Fix the multi URG PUSH problem in 109 * tcp_readable(), poll() after URG 110 * works now. 111 * Michael Pall : recv(...,MSG_OOB) never blocks in the 112 * BSD api. 113 * Alan Cox : Changed the semantics of sk->socket to 114 * fix a race and a signal problem with 115 * accept() and async I/O. 116 * Alan Cox : Relaxed the rules on tcp_sendto(). 117 * Yury Shevchuk : Really fixed accept() blocking problem. 118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 119 * clients/servers which listen in on 120 * fixed ports. 121 * Alan Cox : Cleaned the above up and shrank it to 122 * a sensible code size. 123 * Alan Cox : Self connect lockup fix. 124 * Alan Cox : No connect to multicast. 125 * Ross Biro : Close unaccepted children on master 126 * socket close. 127 * Alan Cox : Reset tracing code. 128 * Alan Cox : Spurious resets on shutdown. 129 * Alan Cox : Giant 15 minute/60 second timer error 130 * Alan Cox : Small whoops in polling before an 131 * accept. 132 * Alan Cox : Kept the state trace facility since 133 * it's handy for debugging. 134 * Alan Cox : More reset handler fixes. 135 * Alan Cox : Started rewriting the code based on 136 * the RFC's for other useful protocol 137 * references see: Comer, KA9Q NOS, and 138 * for a reference on the difference 139 * between specifications and how BSD 140 * works see the 4.4lite source. 141 * A.N.Kuznetsov : Don't time wait on completion of tidy 142 * close. 143 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 144 * Linus Torvalds : Fixed BSD port reuse to work first syn 145 * Alan Cox : Reimplemented timers as per the RFC 146 * and using multiple timers for sanity. 147 * Alan Cox : Small bug fixes, and a lot of new 148 * comments. 149 * Alan Cox : Fixed dual reader crash by locking 150 * the buffers (much like datagram.c) 151 * Alan Cox : Fixed stuck sockets in probe. A probe 152 * now gets fed up of retrying without 153 * (even a no space) answer. 154 * Alan Cox : Extracted closing code better 155 * Alan Cox : Fixed the closing state machine to 156 * resemble the RFC. 157 * Alan Cox : More 'per spec' fixes. 158 * Jorge Cwik : Even faster checksumming. 159 * Alan Cox : tcp_data() doesn't ack illegal PSH 160 * only frames. At least one pc tcp stack 161 * generates them. 162 * Alan Cox : Cache last socket. 163 * Alan Cox : Per route irtt. 164 * Matt Day : poll()->select() match BSD precisely on error 165 * Alan Cox : New buffers 166 * Marc Tamsky : Various sk->prot->retransmits and 167 * sk->retransmits misupdating fixed. 168 * Fixed tcp_write_timeout: stuck close, 169 * and TCP syn retries gets used now. 170 * Mark Yarvis : In tcp_read_wakeup(), don't send an 171 * ack if state is TCP_CLOSED. 172 * Alan Cox : Look up device on a retransmit - routes may 173 * change. Doesn't yet cope with MSS shrink right 174 * but it's a start! 175 * Marc Tamsky : Closing in closing fixes. 176 * Mike Shaver : RFC1122 verifications. 177 * Alan Cox : rcv_saddr errors. 178 * Alan Cox : Block double connect(). 179 * Alan Cox : Small hooks for enSKIP. 180 * Alexey Kuznetsov: Path MTU discovery. 181 * Alan Cox : Support soft errors. 182 * Alan Cox : Fix MTU discovery pathological case 183 * when the remote claims no mtu! 184 * Marc Tamsky : TCP_CLOSE fix. 185 * Colin (G3TNE) : Send a reset on syn ack replies in 186 * window but wrong (fixes NT lpd problems) 187 * Pedro Roque : Better TCP window handling, delayed ack. 188 * Joerg Reuter : No modification of locked buffers in 189 * tcp_do_retransmit() 190 * Eric Schenk : Changed receiver side silly window 191 * avoidance algorithm to BSD style 192 * algorithm. This doubles throughput 193 * against machines running Solaris, 194 * and seems to result in general 195 * improvement. 196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 197 * Willy Konynenberg : Transparent proxying support. 198 * Mike McLagan : Routing by source 199 * Keith Owens : Do proper merging with partial SKB's in 200 * tcp_do_sendmsg to avoid burstiness. 201 * Eric Schenk : Fix fast close down bug with 202 * shutdown() followed by close(). 203 * Andi Kleen : Make poll agree with SIGIO 204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 205 * lingertime == 0 (RFC 793 ABORT Call) 206 * Hirokazu Takahashi : Use copy_from_user() instead of 207 * csum_and_copy_from_user() if possible. 208 * 209 * Description of States: 210 * 211 * TCP_SYN_SENT sent a connection request, waiting for ack 212 * 213 * TCP_SYN_RECV received a connection request, sent ack, 214 * waiting for final ack in three-way handshake. 215 * 216 * TCP_ESTABLISHED connection established 217 * 218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 219 * transmission of remaining buffered data 220 * 221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 222 * to shutdown 223 * 224 * TCP_CLOSING both sides have shutdown but we still have 225 * data we have to finish sending 226 * 227 * TCP_TIME_WAIT timeout to catch resent junk before entering 228 * closed, can only be entered from FIN_WAIT2 229 * or CLOSING. Required because the other end 230 * may not have gotten our last ACK causing it 231 * to retransmit the data packet (which we ignore) 232 * 233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 234 * us to finish writing our data and to shutdown 235 * (we have to close() to move on to LAST_ACK) 236 * 237 * TCP_LAST_ACK out side has shutdown after remote has 238 * shutdown. There may still be data in our 239 * buffer that we have to finish sending 240 * 241 * TCP_CLOSE socket is finished 242 */ 243 244 #define pr_fmt(fmt) "TCP: " fmt 245 246 #include <crypto/md5.h> 247 #include <linux/kernel.h> 248 #include <linux/module.h> 249 #include <linux/types.h> 250 #include <linux/fcntl.h> 251 #include <linux/poll.h> 252 #include <linux/inet_diag.h> 253 #include <linux/init.h> 254 #include <linux/fs.h> 255 #include <linux/skbuff.h> 256 #include <linux/splice.h> 257 #include <linux/net.h> 258 #include <linux/socket.h> 259 #include <linux/random.h> 260 #include <linux/memblock.h> 261 #include <linux/highmem.h> 262 #include <linux/cache.h> 263 #include <linux/err.h> 264 #include <linux/time.h> 265 #include <linux/slab.h> 266 #include <linux/errqueue.h> 267 #include <linux/static_key.h> 268 #include <linux/btf.h> 269 270 #include <net/icmp.h> 271 #include <net/inet_common.h> 272 #include <net/inet_ecn.h> 273 #include <net/tcp.h> 274 #include <net/tcp_ecn.h> 275 #include <net/mptcp.h> 276 #include <net/proto_memory.h> 277 #include <net/xfrm.h> 278 #include <net/ip.h> 279 #include <net/psp.h> 280 #include <net/sock.h> 281 #include <net/rstreason.h> 282 283 #include <linux/uaccess.h> 284 #include <asm/ioctls.h> 285 #include <net/busy_poll.h> 286 #include <net/hotdata.h> 287 #include <trace/events/tcp.h> 288 #include <net/rps.h> 289 290 #include "../core/devmem.h" 291 292 /* Track pending CMSGs. */ 293 enum { 294 TCP_CMSG_INQ = 1, 295 TCP_CMSG_TS = 2 296 }; 297 298 DEFINE_PER_CPU(unsigned int, tcp_orphan_count); 299 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count); 300 301 DEFINE_PER_CPU(u32, tcp_tw_isn); 302 EXPORT_PER_CPU_SYMBOL_GPL(tcp_tw_isn); 303 304 long sysctl_tcp_mem[3] __read_mostly; 305 EXPORT_IPV6_MOD(sysctl_tcp_mem); 306 307 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc); 308 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc); 309 310 #if IS_ENABLED(CONFIG_SMC) 311 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 312 EXPORT_SYMBOL(tcp_have_smc); 313 #endif 314 315 /* 316 * Current number of TCP sockets. 317 */ 318 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp; 319 EXPORT_IPV6_MOD(tcp_sockets_allocated); 320 321 /* 322 * Pressure flag: try to collapse. 323 * Technical note: it is used by multiple contexts non atomically. 324 * All the __sk_mem_schedule() is of this nature: accounting 325 * is strict, actions are advisory and have some latency. 326 */ 327 unsigned long tcp_memory_pressure __read_mostly; 328 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 329 330 void tcp_enter_memory_pressure(struct sock *sk) 331 { 332 unsigned long val; 333 334 if (READ_ONCE(tcp_memory_pressure)) 335 return; 336 val = jiffies; 337 338 if (!val) 339 val--; 340 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 341 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 342 } 343 EXPORT_IPV6_MOD_GPL(tcp_enter_memory_pressure); 344 345 void tcp_leave_memory_pressure(struct sock *sk) 346 { 347 unsigned long val; 348 349 if (!READ_ONCE(tcp_memory_pressure)) 350 return; 351 val = xchg(&tcp_memory_pressure, 0); 352 if (val) 353 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 354 jiffies_to_msecs(jiffies - val)); 355 } 356 EXPORT_IPV6_MOD_GPL(tcp_leave_memory_pressure); 357 358 /* Convert seconds to retransmits based on initial and max timeout */ 359 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 360 { 361 u8 res = 0; 362 363 if (seconds > 0) { 364 int period = timeout; 365 366 res = 1; 367 while (seconds > period && res < 255) { 368 res++; 369 timeout <<= 1; 370 if (timeout > rto_max) 371 timeout = rto_max; 372 period += timeout; 373 } 374 } 375 return res; 376 } 377 378 /* Convert retransmits to seconds based on initial and max timeout */ 379 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 380 { 381 int period = 0; 382 383 if (retrans > 0) { 384 period = timeout; 385 while (--retrans) { 386 timeout <<= 1; 387 if (timeout > rto_max) 388 timeout = rto_max; 389 period += timeout; 390 } 391 } 392 return period; 393 } 394 395 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 396 { 397 u32 rate = READ_ONCE(tp->rate_delivered); 398 u32 intv = READ_ONCE(tp->rate_interval_us); 399 u64 rate64 = 0; 400 401 if (rate && intv) { 402 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 403 do_div(rate64, intv); 404 } 405 return rate64; 406 } 407 408 #ifdef CONFIG_TCP_MD5SIG 409 void tcp_md5_destruct_sock(struct sock *sk) 410 { 411 struct tcp_sock *tp = tcp_sk(sk); 412 413 if (tp->md5sig_info) { 414 415 tcp_clear_md5_list(sk); 416 kfree(rcu_replace_pointer(tp->md5sig_info, NULL, 1)); 417 static_branch_slow_dec_deferred(&tcp_md5_needed); 418 } 419 } 420 EXPORT_IPV6_MOD_GPL(tcp_md5_destruct_sock); 421 #endif 422 423 /* Address-family independent initialization for a tcp_sock. 424 * 425 * NOTE: A lot of things set to zero explicitly by call to 426 * sk_alloc() so need not be done here. 427 */ 428 void tcp_init_sock(struct sock *sk) 429 { 430 struct inet_connection_sock *icsk = inet_csk(sk); 431 struct tcp_sock *tp = tcp_sk(sk); 432 int rto_min_us, rto_max_ms; 433 434 tp->out_of_order_queue = RB_ROOT; 435 sk->tcp_rtx_queue = RB_ROOT; 436 tcp_init_xmit_timers(sk); 437 INIT_LIST_HEAD(&tp->tsq_node); 438 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 439 440 icsk->icsk_rto = TCP_TIMEOUT_INIT; 441 442 rto_max_ms = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rto_max_ms); 443 icsk->icsk_rto_max = msecs_to_jiffies(rto_max_ms); 444 445 rto_min_us = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rto_min_us); 446 icsk->icsk_rto_min = usecs_to_jiffies(rto_min_us); 447 icsk->icsk_delack_max = TCP_DELACK_MAX; 448 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 449 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 450 451 /* So many TCP implementations out there (incorrectly) count the 452 * initial SYN frame in their delayed-ACK and congestion control 453 * algorithms that we must have the following bandaid to talk 454 * efficiently to them. -DaveM 455 */ 456 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 457 458 /* There's a bubble in the pipe until at least the first ACK. */ 459 tp->app_limited = ~0U; 460 tp->rate_app_limited = 1; 461 462 /* See draft-stevens-tcpca-spec-01 for discussion of the 463 * initialization of these values. 464 */ 465 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 466 tp->snd_cwnd_clamp = ~0; 467 tp->mss_cache = TCP_MSS_DEFAULT; 468 469 tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering); 470 tcp_assign_congestion_control(sk); 471 472 tp->tsoffset = 0; 473 tp->rack.reo_wnd_steps = 1; 474 475 sk->sk_write_space = sk_stream_write_space; 476 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 477 478 icsk->icsk_sync_mss = tcp_sync_mss; 479 480 WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1])); 481 WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1])); 482 tcp_scaling_ratio_init(sk); 483 484 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); 485 sk_sockets_allocated_inc(sk); 486 xa_init_flags(&sk->sk_user_frags, XA_FLAGS_ALLOC1); 487 } 488 EXPORT_IPV6_MOD(tcp_init_sock); 489 490 static void tcp_tx_timestamp(struct sock *sk, struct sockcm_cookie *sockc) 491 { 492 struct sk_buff *skb = tcp_write_queue_tail(sk); 493 u32 tsflags = sockc->tsflags; 494 495 if (unlikely(!skb)) 496 skb = skb_rb_last(&sk->tcp_rtx_queue); 497 498 if (tsflags && skb) { 499 struct skb_shared_info *shinfo = skb_shinfo(skb); 500 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 501 502 sock_tx_timestamp(sk, sockc, &shinfo->tx_flags); 503 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 504 tcb->txstamp_ack |= TSTAMP_ACK_SK; 505 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 506 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 507 } 508 509 if (cgroup_bpf_enabled(CGROUP_SOCK_OPS) && 510 SK_BPF_CB_FLAG_TEST(sk, SK_BPF_CB_TX_TIMESTAMPING) && skb) 511 bpf_skops_tx_timestamping(sk, skb, BPF_SOCK_OPS_TSTAMP_SENDMSG_CB); 512 } 513 514 /* @wake is one when sk_stream_write_space() calls us. 515 * This sends EPOLLOUT only if notsent_bytes is half the limit. 516 * This mimics the strategy used in sock_def_write_space(). 517 */ 518 bool tcp_stream_memory_free(const struct sock *sk, int wake) 519 { 520 const struct tcp_sock *tp = tcp_sk(sk); 521 u32 notsent_bytes = READ_ONCE(tp->write_seq) - READ_ONCE(tp->snd_nxt); 522 523 return (notsent_bytes << wake) < tcp_notsent_lowat(tp); 524 } 525 EXPORT_SYMBOL(tcp_stream_memory_free); 526 527 static bool tcp_stream_is_readable(struct sock *sk, int target) 528 { 529 if (tcp_epollin_ready(sk, target)) 530 return true; 531 return sk_is_readable(sk); 532 } 533 534 /* 535 * Wait for a TCP event. 536 * 537 * Note that we don't need to lock the socket, as the upper poll layers 538 * take care of normal races (between the test and the event) and we don't 539 * go look at any of the socket buffers directly. 540 */ 541 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 542 { 543 __poll_t mask; 544 struct sock *sk = sock->sk; 545 const struct tcp_sock *tp = tcp_sk(sk); 546 u8 shutdown; 547 int state; 548 549 sock_poll_wait(file, sock, wait); 550 551 state = inet_sk_state_load(sk); 552 if (state == TCP_LISTEN) 553 return inet_csk_listen_poll(sk); 554 555 /* Socket is not locked. We are protected from async events 556 * by poll logic and correct handling of state changes 557 * made by other threads is impossible in any case. 558 */ 559 560 mask = 0; 561 562 /* 563 * EPOLLHUP is certainly not done right. But poll() doesn't 564 * have a notion of HUP in just one direction, and for a 565 * socket the read side is more interesting. 566 * 567 * Some poll() documentation says that EPOLLHUP is incompatible 568 * with the EPOLLOUT/POLLWR flags, so somebody should check this 569 * all. But careful, it tends to be safer to return too many 570 * bits than too few, and you can easily break real applications 571 * if you don't tell them that something has hung up! 572 * 573 * Check-me. 574 * 575 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 576 * our fs/select.c). It means that after we received EOF, 577 * poll always returns immediately, making impossible poll() on write() 578 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 579 * if and only if shutdown has been made in both directions. 580 * Actually, it is interesting to look how Solaris and DUX 581 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 582 * then we could set it on SND_SHUTDOWN. BTW examples given 583 * in Stevens' books assume exactly this behaviour, it explains 584 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 585 * 586 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 587 * blocking on fresh not-connected or disconnected socket. --ANK 588 */ 589 shutdown = READ_ONCE(sk->sk_shutdown); 590 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 591 mask |= EPOLLHUP; 592 if (shutdown & RCV_SHUTDOWN) 593 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 594 595 /* Connected or passive Fast Open socket? */ 596 if (state != TCP_SYN_SENT && 597 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) { 598 int target = sock_rcvlowat(sk, 0, INT_MAX); 599 u16 urg_data = READ_ONCE(tp->urg_data); 600 601 if (unlikely(urg_data) && 602 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) && 603 !sock_flag(sk, SOCK_URGINLINE)) 604 target++; 605 606 if (tcp_stream_is_readable(sk, target)) 607 mask |= EPOLLIN | EPOLLRDNORM; 608 609 if (!(shutdown & SEND_SHUTDOWN)) { 610 if (__sk_stream_is_writeable(sk, 1)) { 611 mask |= EPOLLOUT | EPOLLWRNORM; 612 } else { /* send SIGIO later */ 613 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 614 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 615 616 /* Race breaker. If space is freed after 617 * wspace test but before the flags are set, 618 * IO signal will be lost. Memory barrier 619 * pairs with the input side. 620 */ 621 smp_mb__after_atomic(); 622 if (__sk_stream_is_writeable(sk, 1)) 623 mask |= EPOLLOUT | EPOLLWRNORM; 624 } 625 } else 626 mask |= EPOLLOUT | EPOLLWRNORM; 627 628 if (urg_data & TCP_URG_VALID) 629 mask |= EPOLLPRI; 630 } else if (state == TCP_SYN_SENT && 631 inet_test_bit(DEFER_CONNECT, sk)) { 632 /* Active TCP fastopen socket with defer_connect 633 * Return EPOLLOUT so application can call write() 634 * in order for kernel to generate SYN+data 635 */ 636 mask |= EPOLLOUT | EPOLLWRNORM; 637 } 638 /* This barrier is coupled with smp_wmb() in tcp_done_with_error() */ 639 smp_rmb(); 640 if (READ_ONCE(sk->sk_err) || 641 !skb_queue_empty_lockless(&sk->sk_error_queue)) 642 mask |= EPOLLERR; 643 644 return mask; 645 } 646 EXPORT_SYMBOL(tcp_poll); 647 648 int tcp_ioctl(struct sock *sk, int cmd, int *karg) 649 { 650 struct tcp_sock *tp = tcp_sk(sk); 651 int answ; 652 bool slow; 653 654 switch (cmd) { 655 case SIOCINQ: 656 if (sk->sk_state == TCP_LISTEN) 657 return -EINVAL; 658 659 slow = lock_sock_fast(sk); 660 answ = tcp_inq(sk); 661 unlock_sock_fast(sk, slow); 662 break; 663 case SIOCATMARK: 664 answ = READ_ONCE(tp->urg_data) && 665 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq); 666 break; 667 case SIOCOUTQ: 668 if (sk->sk_state == TCP_LISTEN) 669 return -EINVAL; 670 671 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 672 answ = 0; 673 else 674 answ = READ_ONCE(tp->write_seq) - tp->snd_una; 675 break; 676 case SIOCOUTQNSD: 677 if (sk->sk_state == TCP_LISTEN) 678 return -EINVAL; 679 680 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 681 answ = 0; 682 else 683 answ = READ_ONCE(tp->write_seq) - 684 READ_ONCE(tp->snd_nxt); 685 break; 686 default: 687 return -ENOIOCTLCMD; 688 } 689 690 *karg = answ; 691 return 0; 692 } 693 EXPORT_IPV6_MOD(tcp_ioctl); 694 695 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 696 { 697 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 698 tp->pushed_seq = tp->write_seq; 699 } 700 701 static inline bool forced_push(const struct tcp_sock *tp) 702 { 703 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 704 } 705 706 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb) 707 { 708 struct tcp_sock *tp = tcp_sk(sk); 709 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 710 711 tcb->seq = tcb->end_seq = tp->write_seq; 712 tcb->tcp_flags = TCPHDR_ACK; 713 __skb_header_release(skb); 714 psp_enqueue_set_decrypted(sk, skb); 715 tcp_add_write_queue_tail(sk, skb); 716 sk_wmem_queued_add(sk, skb->truesize); 717 sk_mem_charge(sk, skb->truesize); 718 if (tp->nonagle & TCP_NAGLE_PUSH) 719 tp->nonagle &= ~TCP_NAGLE_PUSH; 720 721 tcp_slow_start_after_idle_check(sk); 722 } 723 724 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 725 { 726 if (flags & MSG_OOB) 727 tp->snd_up = tp->write_seq; 728 } 729 730 /* If a not yet filled skb is pushed, do not send it if 731 * we have data packets in Qdisc or NIC queues : 732 * Because TX completion will happen shortly, it gives a chance 733 * to coalesce future sendmsg() payload into this skb, without 734 * need for a timer, and with no latency trade off. 735 * As packets containing data payload have a bigger truesize 736 * than pure acks (dataless) packets, the last checks prevent 737 * autocorking if we only have an ACK in Qdisc/NIC queues, 738 * or if TX completion was delayed after we processed ACK packet. 739 */ 740 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 741 int size_goal) 742 { 743 return skb->len < size_goal && 744 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) && 745 !tcp_rtx_queue_empty(sk) && 746 refcount_read(&sk->sk_wmem_alloc) > skb->truesize && 747 tcp_skb_can_collapse_to(skb); 748 } 749 750 void tcp_push(struct sock *sk, int flags, int mss_now, 751 int nonagle, int size_goal) 752 { 753 struct tcp_sock *tp = tcp_sk(sk); 754 struct sk_buff *skb; 755 756 skb = tcp_write_queue_tail(sk); 757 if (!skb) 758 return; 759 if (!(flags & MSG_MORE) || forced_push(tp)) 760 tcp_mark_push(tp, skb); 761 762 tcp_mark_urg(tp, flags); 763 764 if (tcp_should_autocork(sk, skb, size_goal)) { 765 766 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 767 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 768 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 769 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 770 smp_mb__after_atomic(); 771 } 772 /* It is possible TX completion already happened 773 * before we set TSQ_THROTTLED. 774 */ 775 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 776 return; 777 } 778 779 if (flags & MSG_MORE) 780 nonagle = TCP_NAGLE_CORK; 781 782 __tcp_push_pending_frames(sk, mss_now, nonagle); 783 } 784 785 int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 786 unsigned int offset, size_t len) 787 { 788 struct tcp_splice_state *tss = rd_desc->arg.data; 789 int ret; 790 791 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 792 min(rd_desc->count, len), tss->flags); 793 if (ret > 0) 794 rd_desc->count -= ret; 795 return ret; 796 } 797 798 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 799 { 800 /* Store TCP splice context information in read_descriptor_t. */ 801 read_descriptor_t rd_desc = { 802 .arg.data = tss, 803 .count = tss->len, 804 }; 805 806 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 807 } 808 809 /** 810 * tcp_splice_read - splice data from TCP socket to a pipe 811 * @sock: socket to splice from 812 * @ppos: position (not valid) 813 * @pipe: pipe to splice to 814 * @len: number of bytes to splice 815 * @flags: splice modifier flags 816 * 817 * Description: 818 * Will read pages from given socket and fill them into a pipe. 819 * 820 **/ 821 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 822 struct pipe_inode_info *pipe, size_t len, 823 unsigned int flags) 824 { 825 struct sock *sk = sock->sk; 826 struct tcp_splice_state tss = { 827 .pipe = pipe, 828 .len = len, 829 .flags = flags, 830 }; 831 long timeo; 832 ssize_t spliced; 833 int ret; 834 835 sock_rps_record_flow(sk); 836 /* 837 * We can't seek on a socket input 838 */ 839 if (unlikely(*ppos)) 840 return -ESPIPE; 841 842 ret = spliced = 0; 843 844 lock_sock(sk); 845 846 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 847 while (tss.len) { 848 ret = __tcp_splice_read(sk, &tss); 849 if (ret < 0) 850 break; 851 else if (!ret) { 852 if (spliced) 853 break; 854 if (sock_flag(sk, SOCK_DONE)) 855 break; 856 if (sk->sk_err) { 857 ret = sock_error(sk); 858 break; 859 } 860 if (sk->sk_shutdown & RCV_SHUTDOWN) 861 break; 862 if (sk->sk_state == TCP_CLOSE) { 863 /* 864 * This occurs when user tries to read 865 * from never connected socket. 866 */ 867 ret = -ENOTCONN; 868 break; 869 } 870 if (!timeo) { 871 ret = -EAGAIN; 872 break; 873 } 874 /* if __tcp_splice_read() got nothing while we have 875 * an skb in receive queue, we do not want to loop. 876 * This might happen with URG data. 877 */ 878 if (!skb_queue_empty(&sk->sk_receive_queue)) 879 break; 880 ret = sk_wait_data(sk, &timeo, NULL); 881 if (ret < 0) 882 break; 883 if (signal_pending(current)) { 884 ret = sock_intr_errno(timeo); 885 break; 886 } 887 continue; 888 } 889 tss.len -= ret; 890 spliced += ret; 891 892 if (!tss.len || !timeo) 893 break; 894 release_sock(sk); 895 lock_sock(sk); 896 897 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 898 (sk->sk_shutdown & RCV_SHUTDOWN) || 899 signal_pending(current)) 900 break; 901 } 902 903 release_sock(sk); 904 905 if (spliced) 906 return spliced; 907 908 return ret; 909 } 910 EXPORT_IPV6_MOD(tcp_splice_read); 911 912 /* We allow to exceed memory limits for FIN packets to expedite 913 * connection tear down and (memory) recovery. 914 * Otherwise tcp_send_fin() could be tempted to either delay FIN 915 * or even be forced to close flow without any FIN. 916 * In general, we want to allow one skb per socket to avoid hangs 917 * with edge trigger epoll() 918 */ 919 void sk_forced_mem_schedule(struct sock *sk, int size) 920 { 921 int delta, amt; 922 923 delta = size - sk->sk_forward_alloc; 924 if (delta <= 0) 925 return; 926 927 amt = sk_mem_pages(delta); 928 sk_forward_alloc_add(sk, amt << PAGE_SHIFT); 929 930 if (mem_cgroup_sk_enabled(sk)) 931 mem_cgroup_sk_charge(sk, amt, gfp_memcg_charge() | __GFP_NOFAIL); 932 933 if (sk->sk_bypass_prot_mem) 934 return; 935 936 sk_memory_allocated_add(sk, amt); 937 } 938 939 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp, 940 bool force_schedule) 941 { 942 struct sk_buff *skb; 943 944 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 945 if (likely(skb)) { 946 bool mem_scheduled; 947 948 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 949 if (force_schedule) { 950 mem_scheduled = true; 951 sk_forced_mem_schedule(sk, skb->truesize); 952 } else { 953 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 954 } 955 if (likely(mem_scheduled)) { 956 skb_reserve(skb, MAX_TCP_HEADER); 957 skb->ip_summed = CHECKSUM_PARTIAL; 958 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 959 return skb; 960 } 961 __kfree_skb(skb); 962 } else { 963 if (!sk->sk_bypass_prot_mem) 964 tcp_enter_memory_pressure(sk); 965 sk_stream_moderate_sndbuf(sk); 966 } 967 return NULL; 968 } 969 970 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 971 int large_allowed) 972 { 973 struct tcp_sock *tp = tcp_sk(sk); 974 u32 new_size_goal, size_goal; 975 976 if (!large_allowed) 977 return mss_now; 978 979 /* Note : tcp_tso_autosize() will eventually split this later */ 980 new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size); 981 982 /* We try hard to avoid divides here */ 983 size_goal = tp->gso_segs * mss_now; 984 if (unlikely(new_size_goal < size_goal || 985 new_size_goal >= size_goal + mss_now)) { 986 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 987 sk->sk_gso_max_segs); 988 size_goal = tp->gso_segs * mss_now; 989 } 990 991 return max(size_goal, mss_now); 992 } 993 994 int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 995 { 996 int mss_now; 997 998 mss_now = tcp_current_mss(sk); 999 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 1000 1001 return mss_now; 1002 } 1003 1004 /* In some cases, sendmsg() could have added an skb to the write queue, 1005 * but failed adding payload on it. We need to remove it to consume less 1006 * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger 1007 * epoll() users. Another reason is that tcp_write_xmit() does not like 1008 * finding an empty skb in the write queue. 1009 */ 1010 void tcp_remove_empty_skb(struct sock *sk) 1011 { 1012 struct sk_buff *skb = tcp_write_queue_tail(sk); 1013 1014 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 1015 tcp_unlink_write_queue(skb, sk); 1016 if (tcp_write_queue_empty(sk)) 1017 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 1018 tcp_wmem_free_skb(sk, skb); 1019 } 1020 } 1021 1022 /* skb changing from pure zc to mixed, must charge zc */ 1023 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb) 1024 { 1025 if (unlikely(skb_zcopy_pure(skb))) { 1026 u32 extra = skb->truesize - 1027 SKB_TRUESIZE(skb_end_offset(skb)); 1028 1029 if (!sk_wmem_schedule(sk, extra)) 1030 return -ENOMEM; 1031 1032 sk_mem_charge(sk, extra); 1033 skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY; 1034 } 1035 return 0; 1036 } 1037 1038 1039 int tcp_wmem_schedule(struct sock *sk, int copy) 1040 { 1041 int left; 1042 1043 if (likely(sk_wmem_schedule(sk, copy))) 1044 return copy; 1045 1046 /* We could be in trouble if we have nothing queued. 1047 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0] 1048 * to guarantee some progress. 1049 */ 1050 left = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[0]) - sk->sk_wmem_queued; 1051 if (left > 0) 1052 sk_forced_mem_schedule(sk, min(left, copy)); 1053 return min(copy, sk->sk_forward_alloc); 1054 } 1055 1056 void tcp_free_fastopen_req(struct tcp_sock *tp) 1057 { 1058 if (tp->fastopen_req) { 1059 kfree(tp->fastopen_req); 1060 tp->fastopen_req = NULL; 1061 } 1062 } 1063 1064 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied, 1065 size_t size, struct ubuf_info *uarg) 1066 { 1067 struct tcp_sock *tp = tcp_sk(sk); 1068 struct inet_sock *inet = inet_sk(sk); 1069 struct sockaddr *uaddr = msg->msg_name; 1070 int err, flags; 1071 1072 if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) & 1073 TFO_CLIENT_ENABLE) || 1074 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1075 uaddr->sa_family == AF_UNSPEC)) 1076 return -EOPNOTSUPP; 1077 if (tp->fastopen_req) 1078 return -EALREADY; /* Another Fast Open is in progress */ 1079 1080 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1081 sk->sk_allocation); 1082 if (unlikely(!tp->fastopen_req)) 1083 return -ENOBUFS; 1084 tp->fastopen_req->data = msg; 1085 tp->fastopen_req->size = size; 1086 tp->fastopen_req->uarg = uarg; 1087 1088 if (inet_test_bit(DEFER_CONNECT, sk)) { 1089 err = tcp_connect(sk); 1090 /* Same failure procedure as in tcp_v4/6_connect */ 1091 if (err) { 1092 tcp_set_state(sk, TCP_CLOSE); 1093 inet->inet_dport = 0; 1094 sk->sk_route_caps = 0; 1095 } 1096 } 1097 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1098 err = __inet_stream_connect(sk->sk_socket, (struct sockaddr_unsized *)uaddr, 1099 msg->msg_namelen, flags, 1); 1100 /* fastopen_req could already be freed in __inet_stream_connect 1101 * if the connection times out or gets rst 1102 */ 1103 if (tp->fastopen_req) { 1104 *copied = tp->fastopen_req->copied; 1105 tcp_free_fastopen_req(tp); 1106 inet_clear_bit(DEFER_CONNECT, sk); 1107 } 1108 return err; 1109 } 1110 1111 /* If a gap is detected between sends, mark the socket application-limited. */ 1112 void tcp_rate_check_app_limited(struct sock *sk) 1113 { 1114 struct tcp_sock *tp = tcp_sk(sk); 1115 1116 if (/* We have less than one packet to send. */ 1117 tp->write_seq - tp->snd_nxt < tp->mss_cache && 1118 /* Nothing in sending host's qdisc queues or NIC tx queue. */ 1119 sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1) && 1120 /* We are not limited by CWND. */ 1121 tcp_packets_in_flight(tp) < tcp_snd_cwnd(tp) && 1122 /* All lost packets have been retransmitted. */ 1123 tp->lost_out <= tp->retrans_out) 1124 tp->app_limited = 1125 (tp->delivered + tcp_packets_in_flight(tp)) ? : 1; 1126 } 1127 EXPORT_SYMBOL_GPL(tcp_rate_check_app_limited); 1128 1129 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1130 { 1131 struct net_devmem_dmabuf_binding *binding = NULL; 1132 struct tcp_sock *tp = tcp_sk(sk); 1133 struct ubuf_info *uarg = NULL; 1134 struct sk_buff *skb; 1135 struct sockcm_cookie sockc; 1136 int flags, err, copied = 0; 1137 int mss_now = 0, size_goal, copied_syn = 0; 1138 int process_backlog = 0; 1139 int sockc_err = 0; 1140 int zc = 0; 1141 long timeo; 1142 1143 flags = msg->msg_flags; 1144 1145 sockc = (struct sockcm_cookie){ .tsflags = READ_ONCE(sk->sk_tsflags) }; 1146 if (msg->msg_controllen) { 1147 sockc_err = sock_cmsg_send(sk, msg, &sockc); 1148 /* Don't return error until MSG_FASTOPEN has been processed; 1149 * that may succeed even if the cmsg is invalid. 1150 */ 1151 } 1152 1153 if ((flags & MSG_ZEROCOPY) && size) { 1154 if (msg->msg_ubuf) { 1155 uarg = msg->msg_ubuf; 1156 if (sk->sk_route_caps & NETIF_F_SG) 1157 zc = MSG_ZEROCOPY; 1158 } else if (sock_flag(sk, SOCK_ZEROCOPY)) { 1159 skb = tcp_write_queue_tail(sk); 1160 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb), 1161 !sockc_err && sockc.dmabuf_id); 1162 if (!uarg) { 1163 err = -ENOBUFS; 1164 goto out_err; 1165 } 1166 if (sk->sk_route_caps & NETIF_F_SG) 1167 zc = MSG_ZEROCOPY; 1168 else 1169 uarg_to_msgzc(uarg)->zerocopy = 0; 1170 1171 if (!sockc_err && sockc.dmabuf_id) { 1172 binding = net_devmem_get_binding(sk, sockc.dmabuf_id); 1173 if (IS_ERR(binding)) { 1174 err = PTR_ERR(binding); 1175 binding = NULL; 1176 goto out_err; 1177 } 1178 } 1179 } 1180 } else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) { 1181 if (sk->sk_route_caps & NETIF_F_SG) 1182 zc = MSG_SPLICE_PAGES; 1183 } 1184 1185 if (!sockc_err && sockc.dmabuf_id && 1186 (!(flags & MSG_ZEROCOPY) || !sock_flag(sk, SOCK_ZEROCOPY))) { 1187 err = -EINVAL; 1188 goto out_err; 1189 } 1190 1191 if (unlikely(flags & MSG_FASTOPEN || 1192 inet_test_bit(DEFER_CONNECT, sk)) && 1193 !tp->repair) { 1194 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); 1195 if (err == -EINPROGRESS && copied_syn > 0) 1196 goto out; 1197 else if (err) 1198 goto out_err; 1199 } 1200 1201 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1202 1203 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1204 1205 /* Wait for a connection to finish. One exception is TCP Fast Open 1206 * (passive side) where data is allowed to be sent before a connection 1207 * is fully established. 1208 */ 1209 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1210 !tcp_passive_fastopen(sk)) { 1211 err = sk_stream_wait_connect(sk, &timeo); 1212 if (err != 0) 1213 goto do_error; 1214 } 1215 1216 if (unlikely(tp->repair)) { 1217 if (tp->repair_queue == TCP_RECV_QUEUE) { 1218 copied = tcp_send_rcvq(sk, msg, size); 1219 goto out_nopush; 1220 } 1221 1222 err = -EINVAL; 1223 if (tp->repair_queue == TCP_NO_QUEUE) 1224 goto out_err; 1225 1226 /* 'common' sending to sendq */ 1227 } 1228 1229 if (sockc_err) { 1230 err = sockc_err; 1231 goto out_err; 1232 } 1233 1234 /* This should be in poll */ 1235 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1236 1237 /* Ok commence sending. */ 1238 copied = 0; 1239 1240 restart: 1241 mss_now = tcp_send_mss(sk, &size_goal, flags); 1242 1243 err = -EPIPE; 1244 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1245 goto do_error; 1246 1247 while (msg_data_left(msg)) { 1248 int copy = 0; 1249 1250 skb = tcp_write_queue_tail(sk); 1251 if (skb) 1252 copy = size_goal - skb->len; 1253 1254 trace_tcp_sendmsg_locked(sk, msg, skb, size_goal); 1255 1256 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1257 bool first_skb; 1258 1259 new_segment: 1260 if (!sk_stream_memory_free(sk)) 1261 goto wait_for_space; 1262 1263 if (unlikely(process_backlog >= 16)) { 1264 process_backlog = 0; 1265 if (sk_flush_backlog(sk)) 1266 goto restart; 1267 } 1268 first_skb = tcp_rtx_and_write_queues_empty(sk); 1269 skb = tcp_stream_alloc_skb(sk, sk->sk_allocation, 1270 first_skb); 1271 if (!skb) 1272 goto wait_for_space; 1273 1274 process_backlog++; 1275 1276 #ifdef CONFIG_SKB_DECRYPTED 1277 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED); 1278 #endif 1279 tcp_skb_entail(sk, skb); 1280 copy = size_goal; 1281 1282 /* All packets are restored as if they have 1283 * already been sent. skb_mstamp_ns isn't set to 1284 * avoid wrong rtt estimation. 1285 */ 1286 if (tp->repair) 1287 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1288 } 1289 1290 /* Try to append data to the end of skb. */ 1291 if (copy > msg_data_left(msg)) 1292 copy = msg_data_left(msg); 1293 1294 if (zc == 0) { 1295 bool merge = true; 1296 int i = skb_shinfo(skb)->nr_frags; 1297 struct page_frag *pfrag = sk_page_frag(sk); 1298 1299 if (!sk_page_frag_refill(sk, pfrag)) 1300 goto wait_for_space; 1301 1302 if (!skb_can_coalesce(skb, i, pfrag->page, 1303 pfrag->offset)) { 1304 if (i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) { 1305 tcp_mark_push(tp, skb); 1306 goto new_segment; 1307 } 1308 merge = false; 1309 } 1310 1311 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1312 1313 if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) { 1314 if (tcp_downgrade_zcopy_pure(sk, skb)) 1315 goto wait_for_space; 1316 skb_zcopy_downgrade_managed(skb); 1317 } 1318 1319 copy = tcp_wmem_schedule(sk, copy); 1320 if (!copy) 1321 goto wait_for_space; 1322 1323 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1324 pfrag->page, 1325 pfrag->offset, 1326 copy); 1327 if (err) 1328 goto do_error; 1329 1330 /* Update the skb. */ 1331 if (merge) { 1332 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1333 } else { 1334 skb_fill_page_desc(skb, i, pfrag->page, 1335 pfrag->offset, copy); 1336 page_ref_inc(pfrag->page); 1337 } 1338 pfrag->offset += copy; 1339 } else if (zc == MSG_ZEROCOPY) { 1340 /* First append to a fragless skb builds initial 1341 * pure zerocopy skb 1342 */ 1343 if (!skb->len) 1344 skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY; 1345 1346 if (!skb_zcopy_pure(skb)) { 1347 copy = tcp_wmem_schedule(sk, copy); 1348 if (!copy) 1349 goto wait_for_space; 1350 } 1351 1352 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg, 1353 binding); 1354 if (err == -EMSGSIZE || err == -EEXIST) { 1355 tcp_mark_push(tp, skb); 1356 goto new_segment; 1357 } 1358 if (err < 0) 1359 goto do_error; 1360 copy = err; 1361 } else if (zc == MSG_SPLICE_PAGES) { 1362 /* Splice in data if we can; copy if we can't. */ 1363 if (tcp_downgrade_zcopy_pure(sk, skb)) 1364 goto wait_for_space; 1365 copy = tcp_wmem_schedule(sk, copy); 1366 if (!copy) 1367 goto wait_for_space; 1368 1369 err = skb_splice_from_iter(skb, &msg->msg_iter, copy); 1370 if (err < 0) { 1371 if (err == -EMSGSIZE) { 1372 tcp_mark_push(tp, skb); 1373 goto new_segment; 1374 } 1375 goto do_error; 1376 } 1377 copy = err; 1378 1379 if (!(flags & MSG_NO_SHARED_FRAGS)) 1380 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG; 1381 1382 sk_wmem_queued_add(sk, copy); 1383 sk_mem_charge(sk, copy); 1384 } 1385 1386 if (!copied) 1387 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1388 1389 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1390 TCP_SKB_CB(skb)->end_seq += copy; 1391 tcp_skb_pcount_set(skb, 0); 1392 1393 copied += copy; 1394 if (!msg_data_left(msg)) { 1395 if (unlikely(flags & MSG_EOR)) 1396 TCP_SKB_CB(skb)->eor = 1; 1397 goto out; 1398 } 1399 1400 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1401 continue; 1402 1403 if (forced_push(tp)) { 1404 tcp_mark_push(tp, skb); 1405 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1406 } else if (skb == tcp_send_head(sk)) 1407 tcp_push_one(sk, mss_now); 1408 continue; 1409 1410 wait_for_space: 1411 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1412 tcp_remove_empty_skb(sk); 1413 if (copied) 1414 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1415 TCP_NAGLE_PUSH, size_goal); 1416 1417 err = sk_stream_wait_memory(sk, &timeo); 1418 if (err != 0) 1419 goto do_error; 1420 1421 mss_now = tcp_send_mss(sk, &size_goal, flags); 1422 } 1423 1424 out: 1425 if (copied) { 1426 tcp_tx_timestamp(sk, &sockc); 1427 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1428 } 1429 out_nopush: 1430 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */ 1431 if (uarg && !msg->msg_ubuf) 1432 net_zcopy_put(uarg); 1433 if (binding) 1434 net_devmem_dmabuf_binding_put(binding); 1435 return copied + copied_syn; 1436 1437 do_error: 1438 tcp_remove_empty_skb(sk); 1439 1440 if (copied + copied_syn) 1441 goto out; 1442 out_err: 1443 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */ 1444 if (uarg && !msg->msg_ubuf) 1445 net_zcopy_put_abort(uarg, true); 1446 err = sk_stream_error(sk, flags, err); 1447 /* make sure we wake any epoll edge trigger waiter */ 1448 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1449 sk->sk_write_space(sk); 1450 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1451 } 1452 if (binding) 1453 net_devmem_dmabuf_binding_put(binding); 1454 1455 return err; 1456 } 1457 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1458 1459 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1460 { 1461 int ret; 1462 1463 lock_sock(sk); 1464 ret = tcp_sendmsg_locked(sk, msg, size); 1465 release_sock(sk); 1466 1467 return ret; 1468 } 1469 EXPORT_SYMBOL(tcp_sendmsg); 1470 1471 void tcp_splice_eof(struct socket *sock) 1472 { 1473 struct sock *sk = sock->sk; 1474 struct tcp_sock *tp = tcp_sk(sk); 1475 int mss_now, size_goal; 1476 1477 if (!tcp_write_queue_tail(sk)) 1478 return; 1479 1480 lock_sock(sk); 1481 mss_now = tcp_send_mss(sk, &size_goal, 0); 1482 tcp_push(sk, 0, mss_now, tp->nonagle, size_goal); 1483 release_sock(sk); 1484 } 1485 EXPORT_IPV6_MOD_GPL(tcp_splice_eof); 1486 1487 /* 1488 * Handle reading urgent data. BSD has very simple semantics for 1489 * this, no blocking and very strange errors 8) 1490 */ 1491 1492 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1493 { 1494 struct tcp_sock *tp = tcp_sk(sk); 1495 1496 /* No URG data to read. */ 1497 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1498 tp->urg_data == TCP_URG_READ) 1499 return -EINVAL; /* Yes this is right ! */ 1500 1501 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1502 return -ENOTCONN; 1503 1504 if (tp->urg_data & TCP_URG_VALID) { 1505 int err = 0; 1506 char c = tp->urg_data; 1507 1508 if (!(flags & MSG_PEEK)) 1509 WRITE_ONCE(tp->urg_data, TCP_URG_READ); 1510 1511 /* Read urgent data. */ 1512 msg->msg_flags |= MSG_OOB; 1513 1514 if (len > 0) { 1515 if (!(flags & MSG_TRUNC)) 1516 err = memcpy_to_msg(msg, &c, 1); 1517 len = 1; 1518 } else 1519 msg->msg_flags |= MSG_TRUNC; 1520 1521 return err ? -EFAULT : len; 1522 } 1523 1524 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1525 return 0; 1526 1527 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1528 * the available implementations agree in this case: 1529 * this call should never block, independent of the 1530 * blocking state of the socket. 1531 * Mike <pall@rz.uni-karlsruhe.de> 1532 */ 1533 return -EAGAIN; 1534 } 1535 1536 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1537 { 1538 struct sk_buff *skb; 1539 int copied = 0, err = 0; 1540 1541 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1542 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1543 if (err) 1544 return err; 1545 copied += skb->len; 1546 } 1547 1548 skb_queue_walk(&sk->sk_write_queue, skb) { 1549 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1550 if (err) 1551 break; 1552 1553 copied += skb->len; 1554 } 1555 1556 return err ?: copied; 1557 } 1558 1559 /* Clean up the receive buffer for full frames taken by the user, 1560 * then send an ACK if necessary. COPIED is the number of bytes 1561 * tcp_recvmsg has given to the user so far, it speeds up the 1562 * calculation of whether or not we must ACK for the sake of 1563 * a window update. 1564 */ 1565 void __tcp_cleanup_rbuf(struct sock *sk, int copied) 1566 { 1567 struct tcp_sock *tp = tcp_sk(sk); 1568 bool time_to_ack = false; 1569 1570 if (inet_csk_ack_scheduled(sk)) { 1571 const struct inet_connection_sock *icsk = inet_csk(sk); 1572 1573 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */ 1574 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1575 /* 1576 * If this read emptied read buffer, we send ACK, if 1577 * connection is not bidirectional, user drained 1578 * receive buffer and there was a small segment 1579 * in queue. 1580 */ 1581 (copied > 0 && 1582 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1583 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1584 !inet_csk_in_pingpong_mode(sk))) && 1585 !atomic_read(&sk->sk_rmem_alloc))) 1586 time_to_ack = true; 1587 } 1588 1589 /* We send an ACK if we can now advertise a non-zero window 1590 * which has been raised "significantly". 1591 * 1592 * Even if window raised up to infinity, do not send window open ACK 1593 * in states, where we will not receive more. It is useless. 1594 */ 1595 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1596 __u32 rcv_window_now = tcp_receive_window(tp); 1597 1598 /* Optimize, __tcp_select_window() is not cheap. */ 1599 if (2*rcv_window_now <= tp->window_clamp) { 1600 __u32 new_window = __tcp_select_window(sk); 1601 1602 /* Send ACK now, if this read freed lots of space 1603 * in our buffer. Certainly, new_window is new window. 1604 * We can advertise it now, if it is not less than current one. 1605 * "Lots" means "at least twice" here. 1606 */ 1607 if (new_window && new_window >= 2 * rcv_window_now) 1608 time_to_ack = true; 1609 } 1610 } 1611 if (time_to_ack) { 1612 tcp_mstamp_refresh(tp); 1613 tcp_send_ack(sk); 1614 } 1615 } 1616 1617 void tcp_cleanup_rbuf(struct sock *sk, int copied) 1618 { 1619 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1620 struct tcp_sock *tp = tcp_sk(sk); 1621 1622 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1623 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1624 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1625 __tcp_cleanup_rbuf(sk, copied); 1626 } 1627 1628 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb) 1629 { 1630 __skb_unlink(skb, &sk->sk_receive_queue); 1631 if (likely(skb->destructor == sock_rfree)) { 1632 sock_rfree(skb); 1633 skb->destructor = NULL; 1634 skb->sk = NULL; 1635 return skb_attempt_defer_free(skb); 1636 } 1637 __kfree_skb(skb); 1638 } 1639 1640 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1641 { 1642 struct sk_buff *skb; 1643 u32 offset; 1644 1645 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1646 offset = seq - TCP_SKB_CB(skb)->seq; 1647 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1648 pr_err_once("%s: found a SYN, please report !\n", __func__); 1649 offset--; 1650 } 1651 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1652 *off = offset; 1653 return skb; 1654 } 1655 /* This looks weird, but this can happen if TCP collapsing 1656 * splitted a fat GRO packet, while we released socket lock 1657 * in skb_splice_bits() 1658 */ 1659 tcp_eat_recv_skb(sk, skb); 1660 } 1661 return NULL; 1662 } 1663 EXPORT_SYMBOL(tcp_recv_skb); 1664 1665 /* 1666 * This routine provides an alternative to tcp_recvmsg() for routines 1667 * that would like to handle copying from skbuffs directly in 'sendfile' 1668 * fashion. 1669 * Note: 1670 * - It is assumed that the socket was locked by the caller. 1671 * - The routine does not block. 1672 * - At present, there is no support for reading OOB data 1673 * or for 'peeking' the socket using this routine 1674 * (although both would be easy to implement). 1675 */ 1676 static int __tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1677 sk_read_actor_t recv_actor, bool noack, 1678 u32 *copied_seq) 1679 { 1680 struct sk_buff *skb; 1681 struct tcp_sock *tp = tcp_sk(sk); 1682 u32 seq = *copied_seq; 1683 u32 offset; 1684 int copied = 0; 1685 1686 if (sk->sk_state == TCP_LISTEN) 1687 return -ENOTCONN; 1688 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1689 if (offset < skb->len) { 1690 int used; 1691 size_t len; 1692 1693 len = skb->len - offset; 1694 /* Stop reading if we hit a patch of urgent data */ 1695 if (unlikely(tp->urg_data)) { 1696 u32 urg_offset = tp->urg_seq - seq; 1697 if (urg_offset < len) 1698 len = urg_offset; 1699 if (!len) 1700 break; 1701 } 1702 used = recv_actor(desc, skb, offset, len); 1703 if (used <= 0) { 1704 if (!copied) 1705 copied = used; 1706 break; 1707 } 1708 if (WARN_ON_ONCE(used > len)) 1709 used = len; 1710 seq += used; 1711 copied += used; 1712 offset += used; 1713 1714 /* If recv_actor drops the lock (e.g. TCP splice 1715 * receive) the skb pointer might be invalid when 1716 * getting here: tcp_collapse might have deleted it 1717 * while aggregating skbs from the socket queue. 1718 */ 1719 skb = tcp_recv_skb(sk, seq - 1, &offset); 1720 if (!skb) 1721 break; 1722 /* TCP coalescing might have appended data to the skb. 1723 * Try to splice more frags 1724 */ 1725 if (offset + 1 != skb->len) 1726 continue; 1727 } 1728 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1729 tcp_eat_recv_skb(sk, skb); 1730 ++seq; 1731 break; 1732 } 1733 tcp_eat_recv_skb(sk, skb); 1734 if (!desc->count) 1735 break; 1736 WRITE_ONCE(*copied_seq, seq); 1737 } 1738 WRITE_ONCE(*copied_seq, seq); 1739 1740 if (noack) 1741 goto out; 1742 1743 tcp_rcv_space_adjust(sk); 1744 1745 /* Clean up data we have read: This will do ACK frames. */ 1746 if (copied > 0) { 1747 tcp_recv_skb(sk, seq, &offset); 1748 tcp_cleanup_rbuf(sk, copied); 1749 } 1750 out: 1751 return copied; 1752 } 1753 1754 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1755 sk_read_actor_t recv_actor) 1756 { 1757 return __tcp_read_sock(sk, desc, recv_actor, false, 1758 &tcp_sk(sk)->copied_seq); 1759 } 1760 EXPORT_SYMBOL(tcp_read_sock); 1761 1762 int tcp_read_sock_noack(struct sock *sk, read_descriptor_t *desc, 1763 sk_read_actor_t recv_actor, bool noack, 1764 u32 *copied_seq) 1765 { 1766 return __tcp_read_sock(sk, desc, recv_actor, noack, copied_seq); 1767 } 1768 1769 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor) 1770 { 1771 struct sk_buff *skb; 1772 int copied = 0; 1773 1774 if (sk->sk_state == TCP_LISTEN) 1775 return -ENOTCONN; 1776 1777 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1778 u8 tcp_flags; 1779 int used; 1780 1781 __skb_unlink(skb, &sk->sk_receive_queue); 1782 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk)); 1783 tcp_flags = TCP_SKB_CB(skb)->tcp_flags; 1784 used = recv_actor(sk, skb); 1785 if (used < 0) { 1786 if (!copied) 1787 copied = used; 1788 break; 1789 } 1790 copied += used; 1791 1792 if (tcp_flags & TCPHDR_FIN) 1793 break; 1794 } 1795 return copied; 1796 } 1797 EXPORT_IPV6_MOD(tcp_read_skb); 1798 1799 void tcp_read_done(struct sock *sk, size_t len) 1800 { 1801 struct tcp_sock *tp = tcp_sk(sk); 1802 u32 seq = tp->copied_seq; 1803 struct sk_buff *skb; 1804 size_t left; 1805 u32 offset; 1806 1807 if (sk->sk_state == TCP_LISTEN) 1808 return; 1809 1810 left = len; 1811 while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1812 int used; 1813 1814 used = min_t(size_t, skb->len - offset, left); 1815 seq += used; 1816 left -= used; 1817 1818 if (skb->len > offset + used) 1819 break; 1820 1821 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1822 tcp_eat_recv_skb(sk, skb); 1823 ++seq; 1824 break; 1825 } 1826 tcp_eat_recv_skb(sk, skb); 1827 } 1828 WRITE_ONCE(tp->copied_seq, seq); 1829 1830 tcp_rcv_space_adjust(sk); 1831 1832 /* Clean up data we have read: This will do ACK frames. */ 1833 if (left != len) 1834 tcp_cleanup_rbuf(sk, len - left); 1835 } 1836 EXPORT_SYMBOL(tcp_read_done); 1837 1838 int tcp_peek_len(struct socket *sock) 1839 { 1840 return tcp_inq(sock->sk); 1841 } 1842 EXPORT_IPV6_MOD(tcp_peek_len); 1843 1844 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1845 int tcp_set_rcvlowat(struct sock *sk, int val) 1846 { 1847 struct tcp_sock *tp = tcp_sk(sk); 1848 int space, cap; 1849 1850 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1851 cap = sk->sk_rcvbuf >> 1; 1852 else 1853 cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; 1854 val = min(val, cap); 1855 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1856 1857 /* Check if we need to signal EPOLLIN right now */ 1858 tcp_data_ready(sk); 1859 1860 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1861 return 0; 1862 1863 space = tcp_space_from_win(sk, val); 1864 if (space > sk->sk_rcvbuf) { 1865 WRITE_ONCE(sk->sk_rcvbuf, space); 1866 1867 if (tp->window_clamp && tp->window_clamp < val) 1868 WRITE_ONCE(tp->window_clamp, val); 1869 } 1870 return 0; 1871 } 1872 EXPORT_IPV6_MOD(tcp_set_rcvlowat); 1873 1874 void tcp_update_recv_tstamps(struct sk_buff *skb, 1875 struct scm_timestamping_internal *tss) 1876 { 1877 if (skb->tstamp) 1878 tss->ts[0] = ktime_to_timespec64(skb->tstamp); 1879 else 1880 tss->ts[0] = (struct timespec64) {0}; 1881 1882 if (skb_hwtstamps(skb)->hwtstamp) 1883 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); 1884 else 1885 tss->ts[2] = (struct timespec64) {0}; 1886 } 1887 1888 #ifdef CONFIG_MMU 1889 static const struct vm_operations_struct tcp_vm_ops = { 1890 }; 1891 1892 int tcp_mmap(struct file *file, struct socket *sock, 1893 struct vm_area_struct *vma) 1894 { 1895 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1896 return -EPERM; 1897 vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC); 1898 1899 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */ 1900 vm_flags_set(vma, VM_MIXEDMAP); 1901 1902 vma->vm_ops = &tcp_vm_ops; 1903 return 0; 1904 } 1905 EXPORT_IPV6_MOD(tcp_mmap); 1906 1907 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb, 1908 u32 *offset_frag) 1909 { 1910 skb_frag_t *frag; 1911 1912 if (unlikely(offset_skb >= skb->len)) 1913 return NULL; 1914 1915 offset_skb -= skb_headlen(skb); 1916 if ((int)offset_skb < 0 || skb_has_frag_list(skb)) 1917 return NULL; 1918 1919 frag = skb_shinfo(skb)->frags; 1920 while (offset_skb) { 1921 if (skb_frag_size(frag) > offset_skb) { 1922 *offset_frag = offset_skb; 1923 return frag; 1924 } 1925 offset_skb -= skb_frag_size(frag); 1926 ++frag; 1927 } 1928 *offset_frag = 0; 1929 return frag; 1930 } 1931 1932 static bool can_map_frag(const skb_frag_t *frag) 1933 { 1934 struct page *page; 1935 1936 if (skb_frag_size(frag) != PAGE_SIZE || skb_frag_off(frag)) 1937 return false; 1938 1939 page = skb_frag_page(frag); 1940 1941 if (PageCompound(page) || page->mapping) 1942 return false; 1943 1944 return true; 1945 } 1946 1947 static int find_next_mappable_frag(const skb_frag_t *frag, 1948 int remaining_in_skb) 1949 { 1950 int offset = 0; 1951 1952 if (likely(can_map_frag(frag))) 1953 return 0; 1954 1955 while (offset < remaining_in_skb && !can_map_frag(frag)) { 1956 offset += skb_frag_size(frag); 1957 ++frag; 1958 } 1959 return offset; 1960 } 1961 1962 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk, 1963 struct tcp_zerocopy_receive *zc, 1964 struct sk_buff *skb, u32 offset) 1965 { 1966 u32 frag_offset, partial_frag_remainder = 0; 1967 int mappable_offset; 1968 skb_frag_t *frag; 1969 1970 /* worst case: skip to next skb. try to improve on this case below */ 1971 zc->recv_skip_hint = skb->len - offset; 1972 1973 /* Find the frag containing this offset (and how far into that frag) */ 1974 frag = skb_advance_to_frag(skb, offset, &frag_offset); 1975 if (!frag) 1976 return; 1977 1978 if (frag_offset) { 1979 struct skb_shared_info *info = skb_shinfo(skb); 1980 1981 /* We read part of the last frag, must recvmsg() rest of skb. */ 1982 if (frag == &info->frags[info->nr_frags - 1]) 1983 return; 1984 1985 /* Else, we must at least read the remainder in this frag. */ 1986 partial_frag_remainder = skb_frag_size(frag) - frag_offset; 1987 zc->recv_skip_hint -= partial_frag_remainder; 1988 ++frag; 1989 } 1990 1991 /* partial_frag_remainder: If part way through a frag, must read rest. 1992 * mappable_offset: Bytes till next mappable frag, *not* counting bytes 1993 * in partial_frag_remainder. 1994 */ 1995 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint); 1996 zc->recv_skip_hint = mappable_offset + partial_frag_remainder; 1997 } 1998 1999 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 2000 int flags, struct scm_timestamping_internal *tss, 2001 int *cmsg_flags); 2002 static int receive_fallback_to_copy(struct sock *sk, 2003 struct tcp_zerocopy_receive *zc, int inq, 2004 struct scm_timestamping_internal *tss) 2005 { 2006 unsigned long copy_address = (unsigned long)zc->copybuf_address; 2007 struct msghdr msg = {}; 2008 int err; 2009 2010 zc->length = 0; 2011 zc->recv_skip_hint = 0; 2012 2013 if (copy_address != zc->copybuf_address) 2014 return -EINVAL; 2015 2016 err = import_ubuf(ITER_DEST, (void __user *)copy_address, inq, 2017 &msg.msg_iter); 2018 if (err) 2019 return err; 2020 2021 err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT, 2022 tss, &zc->msg_flags); 2023 if (err < 0) 2024 return err; 2025 2026 zc->copybuf_len = err; 2027 if (likely(zc->copybuf_len)) { 2028 struct sk_buff *skb; 2029 u32 offset; 2030 2031 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset); 2032 if (skb) 2033 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset); 2034 } 2035 return 0; 2036 } 2037 2038 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc, 2039 struct sk_buff *skb, u32 copylen, 2040 u32 *offset, u32 *seq) 2041 { 2042 unsigned long copy_address = (unsigned long)zc->copybuf_address; 2043 struct msghdr msg = {}; 2044 int err; 2045 2046 if (copy_address != zc->copybuf_address) 2047 return -EINVAL; 2048 2049 err = import_ubuf(ITER_DEST, (void __user *)copy_address, copylen, 2050 &msg.msg_iter); 2051 if (err) 2052 return err; 2053 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen); 2054 if (err) 2055 return err; 2056 zc->recv_skip_hint -= copylen; 2057 *offset += copylen; 2058 *seq += copylen; 2059 return (__s32)copylen; 2060 } 2061 2062 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc, 2063 struct sock *sk, 2064 struct sk_buff *skb, 2065 u32 *seq, 2066 s32 copybuf_len, 2067 struct scm_timestamping_internal *tss) 2068 { 2069 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint); 2070 2071 if (!copylen) 2072 return 0; 2073 /* skb is null if inq < PAGE_SIZE. */ 2074 if (skb) { 2075 offset = *seq - TCP_SKB_CB(skb)->seq; 2076 } else { 2077 skb = tcp_recv_skb(sk, *seq, &offset); 2078 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2079 tcp_update_recv_tstamps(skb, tss); 2080 zc->msg_flags |= TCP_CMSG_TS; 2081 } 2082 } 2083 2084 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset, 2085 seq); 2086 return zc->copybuf_len < 0 ? 0 : copylen; 2087 } 2088 2089 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma, 2090 struct page **pending_pages, 2091 unsigned long pages_remaining, 2092 unsigned long *address, 2093 u32 *length, 2094 u32 *seq, 2095 struct tcp_zerocopy_receive *zc, 2096 u32 total_bytes_to_map, 2097 int err) 2098 { 2099 /* At least one page did not map. Try zapping if we skipped earlier. */ 2100 if (err == -EBUSY && 2101 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) { 2102 u32 maybe_zap_len; 2103 2104 maybe_zap_len = total_bytes_to_map - /* All bytes to map */ 2105 *length + /* Mapped or pending */ 2106 (pages_remaining * PAGE_SIZE); /* Failed map. */ 2107 zap_page_range_single(vma, *address, maybe_zap_len, NULL); 2108 err = 0; 2109 } 2110 2111 if (!err) { 2112 unsigned long leftover_pages = pages_remaining; 2113 int bytes_mapped; 2114 2115 /* We called zap_page_range_single, try to reinsert. */ 2116 err = vm_insert_pages(vma, *address, 2117 pending_pages, 2118 &pages_remaining); 2119 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining); 2120 *seq += bytes_mapped; 2121 *address += bytes_mapped; 2122 } 2123 if (err) { 2124 /* Either we were unable to zap, OR we zapped, retried an 2125 * insert, and still had an issue. Either ways, pages_remaining 2126 * is the number of pages we were unable to map, and we unroll 2127 * some state we speculatively touched before. 2128 */ 2129 const int bytes_not_mapped = PAGE_SIZE * pages_remaining; 2130 2131 *length -= bytes_not_mapped; 2132 zc->recv_skip_hint += bytes_not_mapped; 2133 } 2134 return err; 2135 } 2136 2137 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma, 2138 struct page **pages, 2139 unsigned int pages_to_map, 2140 unsigned long *address, 2141 u32 *length, 2142 u32 *seq, 2143 struct tcp_zerocopy_receive *zc, 2144 u32 total_bytes_to_map) 2145 { 2146 unsigned long pages_remaining = pages_to_map; 2147 unsigned int pages_mapped; 2148 unsigned int bytes_mapped; 2149 int err; 2150 2151 err = vm_insert_pages(vma, *address, pages, &pages_remaining); 2152 pages_mapped = pages_to_map - (unsigned int)pages_remaining; 2153 bytes_mapped = PAGE_SIZE * pages_mapped; 2154 /* Even if vm_insert_pages fails, it may have partially succeeded in 2155 * mapping (some but not all of the pages). 2156 */ 2157 *seq += bytes_mapped; 2158 *address += bytes_mapped; 2159 2160 if (likely(!err)) 2161 return 0; 2162 2163 /* Error: maybe zap and retry + rollback state for failed inserts. */ 2164 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped, 2165 pages_remaining, address, length, seq, zc, total_bytes_to_map, 2166 err); 2167 } 2168 2169 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS) 2170 static void tcp_zc_finalize_rx_tstamp(struct sock *sk, 2171 struct tcp_zerocopy_receive *zc, 2172 struct scm_timestamping_internal *tss) 2173 { 2174 unsigned long msg_control_addr; 2175 struct msghdr cmsg_dummy; 2176 2177 msg_control_addr = (unsigned long)zc->msg_control; 2178 cmsg_dummy.msg_control_user = (void __user *)msg_control_addr; 2179 cmsg_dummy.msg_controllen = 2180 (__kernel_size_t)zc->msg_controllen; 2181 cmsg_dummy.msg_flags = in_compat_syscall() 2182 ? MSG_CMSG_COMPAT : 0; 2183 cmsg_dummy.msg_control_is_user = true; 2184 zc->msg_flags = 0; 2185 if (zc->msg_control == msg_control_addr && 2186 zc->msg_controllen == cmsg_dummy.msg_controllen) { 2187 tcp_recv_timestamp(&cmsg_dummy, sk, tss); 2188 zc->msg_control = (__u64) 2189 ((uintptr_t)cmsg_dummy.msg_control_user); 2190 zc->msg_controllen = 2191 (__u64)cmsg_dummy.msg_controllen; 2192 zc->msg_flags = (__u32)cmsg_dummy.msg_flags; 2193 } 2194 } 2195 2196 static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm, 2197 unsigned long address, 2198 bool *mmap_locked) 2199 { 2200 struct vm_area_struct *vma = lock_vma_under_rcu(mm, address); 2201 2202 if (vma) { 2203 if (vma->vm_ops != &tcp_vm_ops) { 2204 vma_end_read(vma); 2205 return NULL; 2206 } 2207 *mmap_locked = false; 2208 return vma; 2209 } 2210 2211 mmap_read_lock(mm); 2212 vma = vma_lookup(mm, address); 2213 if (!vma || vma->vm_ops != &tcp_vm_ops) { 2214 mmap_read_unlock(mm); 2215 return NULL; 2216 } 2217 *mmap_locked = true; 2218 return vma; 2219 } 2220 2221 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32 2222 static int tcp_zerocopy_receive(struct sock *sk, 2223 struct tcp_zerocopy_receive *zc, 2224 struct scm_timestamping_internal *tss) 2225 { 2226 u32 length = 0, offset, vma_len, avail_len, copylen = 0; 2227 unsigned long address = (unsigned long)zc->address; 2228 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE]; 2229 s32 copybuf_len = zc->copybuf_len; 2230 struct tcp_sock *tp = tcp_sk(sk); 2231 const skb_frag_t *frags = NULL; 2232 unsigned int pages_to_map = 0; 2233 struct vm_area_struct *vma; 2234 struct sk_buff *skb = NULL; 2235 u32 seq = tp->copied_seq; 2236 u32 total_bytes_to_map; 2237 int inq = tcp_inq(sk); 2238 bool mmap_locked; 2239 int ret; 2240 2241 zc->copybuf_len = 0; 2242 zc->msg_flags = 0; 2243 2244 if (address & (PAGE_SIZE - 1) || address != zc->address) 2245 return -EINVAL; 2246 2247 if (sk->sk_state == TCP_LISTEN) 2248 return -ENOTCONN; 2249 2250 sock_rps_record_flow(sk); 2251 2252 if (inq && inq <= copybuf_len) 2253 return receive_fallback_to_copy(sk, zc, inq, tss); 2254 2255 if (inq < PAGE_SIZE) { 2256 zc->length = 0; 2257 zc->recv_skip_hint = inq; 2258 if (!inq && sock_flag(sk, SOCK_DONE)) 2259 return -EIO; 2260 return 0; 2261 } 2262 2263 vma = find_tcp_vma(current->mm, address, &mmap_locked); 2264 if (!vma) 2265 return -EINVAL; 2266 2267 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address); 2268 avail_len = min_t(u32, vma_len, inq); 2269 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1); 2270 if (total_bytes_to_map) { 2271 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT)) 2272 zap_page_range_single(vma, address, total_bytes_to_map, 2273 NULL); 2274 zc->length = total_bytes_to_map; 2275 zc->recv_skip_hint = 0; 2276 } else { 2277 zc->length = avail_len; 2278 zc->recv_skip_hint = avail_len; 2279 } 2280 ret = 0; 2281 while (length + PAGE_SIZE <= zc->length) { 2282 int mappable_offset; 2283 struct page *page; 2284 2285 if (zc->recv_skip_hint < PAGE_SIZE) { 2286 u32 offset_frag; 2287 2288 if (skb) { 2289 if (zc->recv_skip_hint > 0) 2290 break; 2291 skb = skb->next; 2292 offset = seq - TCP_SKB_CB(skb)->seq; 2293 } else { 2294 skb = tcp_recv_skb(sk, seq, &offset); 2295 } 2296 2297 if (!skb_frags_readable(skb)) 2298 break; 2299 2300 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2301 tcp_update_recv_tstamps(skb, tss); 2302 zc->msg_flags |= TCP_CMSG_TS; 2303 } 2304 zc->recv_skip_hint = skb->len - offset; 2305 frags = skb_advance_to_frag(skb, offset, &offset_frag); 2306 if (!frags || offset_frag) 2307 break; 2308 } 2309 2310 mappable_offset = find_next_mappable_frag(frags, 2311 zc->recv_skip_hint); 2312 if (mappable_offset) { 2313 zc->recv_skip_hint = mappable_offset; 2314 break; 2315 } 2316 page = skb_frag_page(frags); 2317 if (WARN_ON_ONCE(!page)) 2318 break; 2319 2320 prefetchw(page); 2321 pages[pages_to_map++] = page; 2322 length += PAGE_SIZE; 2323 zc->recv_skip_hint -= PAGE_SIZE; 2324 frags++; 2325 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE || 2326 zc->recv_skip_hint < PAGE_SIZE) { 2327 /* Either full batch, or we're about to go to next skb 2328 * (and we cannot unroll failed ops across skbs). 2329 */ 2330 ret = tcp_zerocopy_vm_insert_batch(vma, pages, 2331 pages_to_map, 2332 &address, &length, 2333 &seq, zc, 2334 total_bytes_to_map); 2335 if (ret) 2336 goto out; 2337 pages_to_map = 0; 2338 } 2339 } 2340 if (pages_to_map) { 2341 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map, 2342 &address, &length, &seq, 2343 zc, total_bytes_to_map); 2344 } 2345 out: 2346 if (mmap_locked) 2347 mmap_read_unlock(current->mm); 2348 else 2349 vma_end_read(vma); 2350 /* Try to copy straggler data. */ 2351 if (!ret) 2352 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss); 2353 2354 if (length + copylen) { 2355 WRITE_ONCE(tp->copied_seq, seq); 2356 tcp_rcv_space_adjust(sk); 2357 2358 /* Clean up data we have read: This will do ACK frames. */ 2359 tcp_recv_skb(sk, seq, &offset); 2360 tcp_cleanup_rbuf(sk, length + copylen); 2361 ret = 0; 2362 if (length == zc->length) 2363 zc->recv_skip_hint = 0; 2364 } else { 2365 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 2366 ret = -EIO; 2367 } 2368 zc->length = length; 2369 return ret; 2370 } 2371 #endif 2372 2373 /* Similar to __sock_recv_timestamp, but does not require an skb */ 2374 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 2375 struct scm_timestamping_internal *tss) 2376 { 2377 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 2378 u32 tsflags = READ_ONCE(sk->sk_tsflags); 2379 bool has_timestamping = false; 2380 2381 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 2382 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 2383 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 2384 if (new_tstamp) { 2385 struct __kernel_timespec kts = { 2386 .tv_sec = tss->ts[0].tv_sec, 2387 .tv_nsec = tss->ts[0].tv_nsec, 2388 }; 2389 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 2390 sizeof(kts), &kts); 2391 } else { 2392 struct __kernel_old_timespec ts_old = { 2393 .tv_sec = tss->ts[0].tv_sec, 2394 .tv_nsec = tss->ts[0].tv_nsec, 2395 }; 2396 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 2397 sizeof(ts_old), &ts_old); 2398 } 2399 } else { 2400 if (new_tstamp) { 2401 struct __kernel_sock_timeval stv = { 2402 .tv_sec = tss->ts[0].tv_sec, 2403 .tv_usec = tss->ts[0].tv_nsec / 1000, 2404 }; 2405 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 2406 sizeof(stv), &stv); 2407 } else { 2408 struct __kernel_old_timeval tv = { 2409 .tv_sec = tss->ts[0].tv_sec, 2410 .tv_usec = tss->ts[0].tv_nsec / 1000, 2411 }; 2412 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 2413 sizeof(tv), &tv); 2414 } 2415 } 2416 } 2417 2418 if (tsflags & SOF_TIMESTAMPING_SOFTWARE && 2419 (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE || 2420 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) 2421 has_timestamping = true; 2422 else 2423 tss->ts[0] = (struct timespec64) {0}; 2424 } 2425 2426 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 2427 if (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE && 2428 (tsflags & SOF_TIMESTAMPING_RX_HARDWARE || 2429 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) 2430 has_timestamping = true; 2431 else 2432 tss->ts[2] = (struct timespec64) {0}; 2433 } 2434 2435 if (has_timestamping) { 2436 tss->ts[1] = (struct timespec64) {0}; 2437 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 2438 put_cmsg_scm_timestamping64(msg, tss); 2439 else 2440 put_cmsg_scm_timestamping(msg, tss); 2441 } 2442 } 2443 2444 static int tcp_inq_hint(struct sock *sk) 2445 { 2446 const struct tcp_sock *tp = tcp_sk(sk); 2447 u32 copied_seq = READ_ONCE(tp->copied_seq); 2448 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 2449 int inq; 2450 2451 inq = rcv_nxt - copied_seq; 2452 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 2453 lock_sock(sk); 2454 inq = tp->rcv_nxt - tp->copied_seq; 2455 release_sock(sk); 2456 } 2457 /* After receiving a FIN, tell the user-space to continue reading 2458 * by returning a non-zero inq. 2459 */ 2460 if (inq == 0 && sock_flag(sk, SOCK_DONE)) 2461 inq = 1; 2462 return inq; 2463 } 2464 2465 /* batch __xa_alloc() calls and reduce xa_lock()/xa_unlock() overhead. */ 2466 struct tcp_xa_pool { 2467 u8 max; /* max <= MAX_SKB_FRAGS */ 2468 u8 idx; /* idx <= max */ 2469 __u32 tokens[MAX_SKB_FRAGS]; 2470 netmem_ref netmems[MAX_SKB_FRAGS]; 2471 }; 2472 2473 static void tcp_xa_pool_commit_locked(struct sock *sk, struct tcp_xa_pool *p) 2474 { 2475 int i; 2476 2477 /* Commit part that has been copied to user space. */ 2478 for (i = 0; i < p->idx; i++) 2479 __xa_cmpxchg(&sk->sk_user_frags, p->tokens[i], XA_ZERO_ENTRY, 2480 (__force void *)p->netmems[i], GFP_KERNEL); 2481 /* Rollback what has been pre-allocated and is no longer needed. */ 2482 for (; i < p->max; i++) 2483 __xa_erase(&sk->sk_user_frags, p->tokens[i]); 2484 2485 p->max = 0; 2486 p->idx = 0; 2487 } 2488 2489 static void tcp_xa_pool_commit(struct sock *sk, struct tcp_xa_pool *p) 2490 { 2491 if (!p->max) 2492 return; 2493 2494 xa_lock_bh(&sk->sk_user_frags); 2495 2496 tcp_xa_pool_commit_locked(sk, p); 2497 2498 xa_unlock_bh(&sk->sk_user_frags); 2499 } 2500 2501 static int tcp_xa_pool_refill(struct sock *sk, struct tcp_xa_pool *p, 2502 unsigned int max_frags) 2503 { 2504 int err, k; 2505 2506 if (p->idx < p->max) 2507 return 0; 2508 2509 xa_lock_bh(&sk->sk_user_frags); 2510 2511 tcp_xa_pool_commit_locked(sk, p); 2512 2513 for (k = 0; k < max_frags; k++) { 2514 err = __xa_alloc(&sk->sk_user_frags, &p->tokens[k], 2515 XA_ZERO_ENTRY, xa_limit_31b, GFP_KERNEL); 2516 if (err) 2517 break; 2518 } 2519 2520 xa_unlock_bh(&sk->sk_user_frags); 2521 2522 p->max = k; 2523 p->idx = 0; 2524 return k ? 0 : err; 2525 } 2526 2527 /* On error, returns the -errno. On success, returns number of bytes sent to the 2528 * user. May not consume all of @remaining_len. 2529 */ 2530 static int tcp_recvmsg_dmabuf(struct sock *sk, const struct sk_buff *skb, 2531 unsigned int offset, struct msghdr *msg, 2532 int remaining_len) 2533 { 2534 struct dmabuf_cmsg dmabuf_cmsg = { 0 }; 2535 struct tcp_xa_pool tcp_xa_pool; 2536 unsigned int start; 2537 int i, copy, n; 2538 int sent = 0; 2539 int err = 0; 2540 2541 tcp_xa_pool.max = 0; 2542 tcp_xa_pool.idx = 0; 2543 do { 2544 start = skb_headlen(skb); 2545 2546 if (skb_frags_readable(skb)) { 2547 err = -ENODEV; 2548 goto out; 2549 } 2550 2551 /* Copy header. */ 2552 copy = start - offset; 2553 if (copy > 0) { 2554 copy = min(copy, remaining_len); 2555 2556 n = copy_to_iter(skb->data + offset, copy, 2557 &msg->msg_iter); 2558 if (n != copy) { 2559 err = -EFAULT; 2560 goto out; 2561 } 2562 2563 offset += copy; 2564 remaining_len -= copy; 2565 2566 /* First a dmabuf_cmsg for # bytes copied to user 2567 * buffer. 2568 */ 2569 memset(&dmabuf_cmsg, 0, sizeof(dmabuf_cmsg)); 2570 dmabuf_cmsg.frag_size = copy; 2571 err = put_cmsg_notrunc(msg, SOL_SOCKET, 2572 SO_DEVMEM_LINEAR, 2573 sizeof(dmabuf_cmsg), 2574 &dmabuf_cmsg); 2575 if (err) 2576 goto out; 2577 2578 sent += copy; 2579 2580 if (remaining_len == 0) 2581 goto out; 2582 } 2583 2584 /* after that, send information of dmabuf pages through a 2585 * sequence of cmsg 2586 */ 2587 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2588 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2589 struct net_iov *niov; 2590 u64 frag_offset; 2591 int end; 2592 2593 /* !skb_frags_readable() should indicate that ALL the 2594 * frags in this skb are dmabuf net_iovs. We're checking 2595 * for that flag above, but also check individual frags 2596 * here. If the tcp stack is not setting 2597 * skb_frags_readable() correctly, we still don't want 2598 * to crash here. 2599 */ 2600 if (!skb_frag_net_iov(frag)) { 2601 net_err_ratelimited("Found non-dmabuf skb with net_iov"); 2602 err = -ENODEV; 2603 goto out; 2604 } 2605 2606 niov = skb_frag_net_iov(frag); 2607 if (!net_is_devmem_iov(niov)) { 2608 err = -ENODEV; 2609 goto out; 2610 } 2611 2612 end = start + skb_frag_size(frag); 2613 copy = end - offset; 2614 2615 if (copy > 0) { 2616 copy = min(copy, remaining_len); 2617 2618 frag_offset = net_iov_virtual_addr(niov) + 2619 skb_frag_off(frag) + offset - 2620 start; 2621 dmabuf_cmsg.frag_offset = frag_offset; 2622 dmabuf_cmsg.frag_size = copy; 2623 err = tcp_xa_pool_refill(sk, &tcp_xa_pool, 2624 skb_shinfo(skb)->nr_frags - i); 2625 if (err) 2626 goto out; 2627 2628 /* Will perform the exchange later */ 2629 dmabuf_cmsg.frag_token = tcp_xa_pool.tokens[tcp_xa_pool.idx]; 2630 dmabuf_cmsg.dmabuf_id = net_devmem_iov_binding_id(niov); 2631 2632 offset += copy; 2633 remaining_len -= copy; 2634 2635 err = put_cmsg_notrunc(msg, SOL_SOCKET, 2636 SO_DEVMEM_DMABUF, 2637 sizeof(dmabuf_cmsg), 2638 &dmabuf_cmsg); 2639 if (err) 2640 goto out; 2641 2642 atomic_long_inc(&niov->desc.pp_ref_count); 2643 tcp_xa_pool.netmems[tcp_xa_pool.idx++] = skb_frag_netmem(frag); 2644 2645 sent += copy; 2646 2647 if (remaining_len == 0) 2648 goto out; 2649 } 2650 start = end; 2651 } 2652 2653 tcp_xa_pool_commit(sk, &tcp_xa_pool); 2654 if (!remaining_len) 2655 goto out; 2656 2657 /* if remaining_len is not satisfied yet, we need to go to the 2658 * next frag in the frag_list to satisfy remaining_len. 2659 */ 2660 skb = skb_shinfo(skb)->frag_list ?: skb->next; 2661 2662 offset = offset - start; 2663 } while (skb); 2664 2665 if (remaining_len) { 2666 err = -EFAULT; 2667 goto out; 2668 } 2669 2670 out: 2671 tcp_xa_pool_commit(sk, &tcp_xa_pool); 2672 if (!sent) 2673 sent = err; 2674 2675 return sent; 2676 } 2677 2678 /* 2679 * This routine copies from a sock struct into the user buffer. 2680 * 2681 * Technical note: in 2.3 we work on _locked_ socket, so that 2682 * tricks with *seq access order and skb->users are not required. 2683 * Probably, code can be easily improved even more. 2684 */ 2685 2686 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 2687 int flags, struct scm_timestamping_internal *tss, 2688 int *cmsg_flags) 2689 { 2690 struct tcp_sock *tp = tcp_sk(sk); 2691 int last_copied_dmabuf = -1; /* uninitialized */ 2692 int copied = 0; 2693 u32 peek_seq; 2694 u32 *seq; 2695 unsigned long used; 2696 int err; 2697 int target; /* Read at least this many bytes */ 2698 long timeo; 2699 struct sk_buff *skb, *last; 2700 u32 peek_offset = 0; 2701 u32 urg_hole = 0; 2702 2703 err = -ENOTCONN; 2704 if (sk->sk_state == TCP_LISTEN) 2705 goto out; 2706 2707 if (tp->recvmsg_inq) 2708 *cmsg_flags = TCP_CMSG_INQ; 2709 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2710 2711 /* Urgent data needs to be handled specially. */ 2712 if (flags & MSG_OOB) 2713 goto recv_urg; 2714 2715 if (unlikely(tp->repair)) { 2716 err = -EPERM; 2717 if (!(flags & MSG_PEEK)) 2718 goto out; 2719 2720 if (tp->repair_queue == TCP_SEND_QUEUE) 2721 goto recv_sndq; 2722 2723 err = -EINVAL; 2724 if (tp->repair_queue == TCP_NO_QUEUE) 2725 goto out; 2726 2727 /* 'common' recv queue MSG_PEEK-ing */ 2728 } 2729 2730 seq = &tp->copied_seq; 2731 if (flags & MSG_PEEK) { 2732 peek_offset = max(sk_peek_offset(sk, flags), 0); 2733 peek_seq = tp->copied_seq + peek_offset; 2734 seq = &peek_seq; 2735 } 2736 2737 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2738 2739 do { 2740 u32 offset; 2741 2742 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 2743 if (unlikely(tp->urg_data) && tp->urg_seq == *seq) { 2744 if (copied) 2745 break; 2746 if (signal_pending(current)) { 2747 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 2748 break; 2749 } 2750 } 2751 2752 /* Next get a buffer. */ 2753 2754 last = skb_peek_tail(&sk->sk_receive_queue); 2755 skb_queue_walk(&sk->sk_receive_queue, skb) { 2756 last = skb; 2757 /* Now that we have two receive queues this 2758 * shouldn't happen. 2759 */ 2760 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 2761 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", 2762 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 2763 flags)) 2764 break; 2765 2766 offset = *seq - TCP_SKB_CB(skb)->seq; 2767 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2768 pr_err_once("%s: found a SYN, please report !\n", __func__); 2769 offset--; 2770 } 2771 if (offset < skb->len) 2772 goto found_ok_skb; 2773 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2774 goto found_fin_ok; 2775 WARN(!(flags & MSG_PEEK), 2776 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", 2777 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2778 } 2779 2780 /* Well, if we have backlog, try to process it now yet. */ 2781 2782 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail)) 2783 break; 2784 2785 if (copied) { 2786 if (!timeo || 2787 sk->sk_err || 2788 sk->sk_state == TCP_CLOSE || 2789 (sk->sk_shutdown & RCV_SHUTDOWN) || 2790 signal_pending(current)) 2791 break; 2792 } else { 2793 if (sock_flag(sk, SOCK_DONE)) 2794 break; 2795 2796 if (sk->sk_err) { 2797 copied = sock_error(sk); 2798 break; 2799 } 2800 2801 if (sk->sk_shutdown & RCV_SHUTDOWN) 2802 break; 2803 2804 if (sk->sk_state == TCP_CLOSE) { 2805 /* This occurs when user tries to read 2806 * from never connected socket. 2807 */ 2808 copied = -ENOTCONN; 2809 break; 2810 } 2811 2812 if (!timeo) { 2813 copied = -EAGAIN; 2814 break; 2815 } 2816 2817 if (signal_pending(current)) { 2818 copied = sock_intr_errno(timeo); 2819 break; 2820 } 2821 } 2822 2823 if (copied >= target) { 2824 /* Do not sleep, just process backlog. */ 2825 __sk_flush_backlog(sk); 2826 } else { 2827 tcp_cleanup_rbuf(sk, copied); 2828 err = sk_wait_data(sk, &timeo, last); 2829 if (err < 0) { 2830 err = copied ? : err; 2831 goto out; 2832 } 2833 } 2834 2835 if ((flags & MSG_PEEK) && 2836 (peek_seq - peek_offset - copied - urg_hole != tp->copied_seq)) { 2837 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2838 current->comm, 2839 task_pid_nr(current)); 2840 peek_seq = tp->copied_seq + peek_offset; 2841 } 2842 continue; 2843 2844 found_ok_skb: 2845 /* Ok so how much can we use? */ 2846 used = skb->len - offset; 2847 if (len < used) 2848 used = len; 2849 2850 /* Do we have urgent data here? */ 2851 if (unlikely(tp->urg_data)) { 2852 u32 urg_offset = tp->urg_seq - *seq; 2853 if (urg_offset < used) { 2854 if (!urg_offset) { 2855 if (!sock_flag(sk, SOCK_URGINLINE)) { 2856 WRITE_ONCE(*seq, *seq + 1); 2857 urg_hole++; 2858 offset++; 2859 used--; 2860 if (!used) 2861 goto skip_copy; 2862 } 2863 } else 2864 used = urg_offset; 2865 } 2866 } 2867 2868 if (!(flags & MSG_TRUNC)) { 2869 if (last_copied_dmabuf != -1 && 2870 last_copied_dmabuf != !skb_frags_readable(skb)) 2871 break; 2872 2873 if (skb_frags_readable(skb)) { 2874 err = skb_copy_datagram_msg(skb, offset, msg, 2875 used); 2876 if (err) { 2877 /* Exception. Bailout! */ 2878 if (!copied) 2879 copied = -EFAULT; 2880 break; 2881 } 2882 } else { 2883 if (!(flags & MSG_SOCK_DEVMEM)) { 2884 /* dmabuf skbs can only be received 2885 * with the MSG_SOCK_DEVMEM flag. 2886 */ 2887 if (!copied) 2888 copied = -EFAULT; 2889 2890 break; 2891 } 2892 2893 err = tcp_recvmsg_dmabuf(sk, skb, offset, msg, 2894 used); 2895 if (err < 0) { 2896 if (!copied) 2897 copied = err; 2898 2899 break; 2900 } 2901 used = err; 2902 } 2903 } 2904 2905 last_copied_dmabuf = !skb_frags_readable(skb); 2906 2907 WRITE_ONCE(*seq, *seq + used); 2908 copied += used; 2909 len -= used; 2910 if (flags & MSG_PEEK) 2911 sk_peek_offset_fwd(sk, used); 2912 else 2913 sk_peek_offset_bwd(sk, used); 2914 tcp_rcv_space_adjust(sk); 2915 2916 skip_copy: 2917 if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) { 2918 WRITE_ONCE(tp->urg_data, 0); 2919 tcp_fast_path_check(sk); 2920 } 2921 2922 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2923 tcp_update_recv_tstamps(skb, tss); 2924 *cmsg_flags |= TCP_CMSG_TS; 2925 } 2926 2927 if (used + offset < skb->len) 2928 continue; 2929 2930 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2931 goto found_fin_ok; 2932 if (!(flags & MSG_PEEK)) 2933 tcp_eat_recv_skb(sk, skb); 2934 continue; 2935 2936 found_fin_ok: 2937 /* Process the FIN. */ 2938 WRITE_ONCE(*seq, *seq + 1); 2939 if (!(flags & MSG_PEEK)) 2940 tcp_eat_recv_skb(sk, skb); 2941 break; 2942 } while (len > 0); 2943 2944 /* According to UNIX98, msg_name/msg_namelen are ignored 2945 * on connected socket. I was just happy when found this 8) --ANK 2946 */ 2947 2948 /* Clean up data we have read: This will do ACK frames. */ 2949 tcp_cleanup_rbuf(sk, copied); 2950 return copied; 2951 2952 out: 2953 return err; 2954 2955 recv_urg: 2956 err = tcp_recv_urg(sk, msg, len, flags); 2957 goto out; 2958 2959 recv_sndq: 2960 err = tcp_peek_sndq(sk, msg, len); 2961 goto out; 2962 } 2963 2964 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, 2965 int *addr_len) 2966 { 2967 int cmsg_flags = 0, ret; 2968 struct scm_timestamping_internal tss; 2969 2970 if (unlikely(flags & MSG_ERRQUEUE)) 2971 return inet_recv_error(sk, msg, len, addr_len); 2972 2973 if (sk_can_busy_loop(sk) && 2974 skb_queue_empty_lockless(&sk->sk_receive_queue) && 2975 sk->sk_state == TCP_ESTABLISHED) 2976 sk_busy_loop(sk, flags & MSG_DONTWAIT); 2977 2978 lock_sock(sk); 2979 ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags); 2980 release_sock(sk); 2981 2982 if ((cmsg_flags | msg->msg_get_inq) && ret >= 0) { 2983 if (cmsg_flags & TCP_CMSG_TS) 2984 tcp_recv_timestamp(msg, sk, &tss); 2985 if ((cmsg_flags & TCP_CMSG_INQ) | msg->msg_get_inq) { 2986 msg->msg_inq = tcp_inq_hint(sk); 2987 if (cmsg_flags & TCP_CMSG_INQ) 2988 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, 2989 sizeof(msg->msg_inq), &msg->msg_inq); 2990 } 2991 } 2992 return ret; 2993 } 2994 EXPORT_IPV6_MOD(tcp_recvmsg); 2995 2996 void tcp_set_state(struct sock *sk, int state) 2997 { 2998 int oldstate = sk->sk_state; 2999 3000 /* We defined a new enum for TCP states that are exported in BPF 3001 * so as not force the internal TCP states to be frozen. The 3002 * following checks will detect if an internal state value ever 3003 * differs from the BPF value. If this ever happens, then we will 3004 * need to remap the internal value to the BPF value before calling 3005 * tcp_call_bpf_2arg. 3006 */ 3007 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 3008 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 3009 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 3010 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 3011 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 3012 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 3013 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 3014 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 3015 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 3016 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 3017 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 3018 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 3019 BUILD_BUG_ON((int)BPF_TCP_BOUND_INACTIVE != (int)TCP_BOUND_INACTIVE); 3020 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 3021 3022 /* bpf uapi header bpf.h defines an anonymous enum with values 3023 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux 3024 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON. 3025 * But clang built vmlinux does not have this enum in DWARF 3026 * since clang removes the above code before generating IR/debuginfo. 3027 * Let us explicitly emit the type debuginfo to ensure the 3028 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF 3029 * regardless of which compiler is used. 3030 */ 3031 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED); 3032 3033 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 3034 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 3035 3036 switch (state) { 3037 case TCP_ESTABLISHED: 3038 if (oldstate != TCP_ESTABLISHED) 3039 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 3040 break; 3041 case TCP_CLOSE_WAIT: 3042 if (oldstate == TCP_SYN_RECV) 3043 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 3044 break; 3045 3046 case TCP_CLOSE: 3047 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 3048 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 3049 3050 sk->sk_prot->unhash(sk); 3051 if (inet_csk(sk)->icsk_bind_hash && 3052 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 3053 inet_put_port(sk); 3054 fallthrough; 3055 default: 3056 if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT) 3057 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 3058 } 3059 3060 /* Change state AFTER socket is unhashed to avoid closed 3061 * socket sitting in hash tables. 3062 */ 3063 inet_sk_state_store(sk, state); 3064 } 3065 EXPORT_SYMBOL_GPL(tcp_set_state); 3066 3067 /* 3068 * State processing on a close. This implements the state shift for 3069 * sending our FIN frame. Note that we only send a FIN for some 3070 * states. A shutdown() may have already sent the FIN, or we may be 3071 * closed. 3072 */ 3073 3074 static const unsigned char new_state[16] = { 3075 /* current state: new state: action: */ 3076 [0 /* (Invalid) */] = TCP_CLOSE, 3077 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 3078 [TCP_SYN_SENT] = TCP_CLOSE, 3079 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 3080 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 3081 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 3082 [TCP_TIME_WAIT] = TCP_CLOSE, 3083 [TCP_CLOSE] = TCP_CLOSE, 3084 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 3085 [TCP_LAST_ACK] = TCP_LAST_ACK, 3086 [TCP_LISTEN] = TCP_CLOSE, 3087 [TCP_CLOSING] = TCP_CLOSING, 3088 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 3089 }; 3090 3091 static int tcp_close_state(struct sock *sk) 3092 { 3093 int next = (int)new_state[sk->sk_state]; 3094 int ns = next & TCP_STATE_MASK; 3095 3096 tcp_set_state(sk, ns); 3097 3098 return next & TCP_ACTION_FIN; 3099 } 3100 3101 /* 3102 * Shutdown the sending side of a connection. Much like close except 3103 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 3104 */ 3105 3106 void tcp_shutdown(struct sock *sk, int how) 3107 { 3108 /* We need to grab some memory, and put together a FIN, 3109 * and then put it into the queue to be sent. 3110 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 3111 */ 3112 if (!(how & SEND_SHUTDOWN)) 3113 return; 3114 3115 /* If we've already sent a FIN, or it's a closed state, skip this. */ 3116 if ((1 << sk->sk_state) & 3117 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 3118 TCPF_CLOSE_WAIT)) { 3119 /* Clear out any half completed packets. FIN if needed. */ 3120 if (tcp_close_state(sk)) 3121 tcp_send_fin(sk); 3122 } 3123 } 3124 EXPORT_IPV6_MOD(tcp_shutdown); 3125 3126 int tcp_orphan_count_sum(void) 3127 { 3128 int i, total = 0; 3129 3130 for_each_possible_cpu(i) 3131 total += per_cpu(tcp_orphan_count, i); 3132 3133 return max(total, 0); 3134 } 3135 3136 static int tcp_orphan_cache; 3137 static struct timer_list tcp_orphan_timer; 3138 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100) 3139 3140 static void tcp_orphan_update(struct timer_list *unused) 3141 { 3142 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum()); 3143 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 3144 } 3145 3146 static bool tcp_too_many_orphans(int shift) 3147 { 3148 return READ_ONCE(tcp_orphan_cache) << shift > 3149 READ_ONCE(sysctl_tcp_max_orphans); 3150 } 3151 3152 static bool tcp_out_of_memory(const struct sock *sk) 3153 { 3154 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF && 3155 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2)) 3156 return true; 3157 return false; 3158 } 3159 3160 bool tcp_check_oom(const struct sock *sk, int shift) 3161 { 3162 bool too_many_orphans, out_of_socket_memory; 3163 3164 too_many_orphans = tcp_too_many_orphans(shift); 3165 out_of_socket_memory = tcp_out_of_memory(sk); 3166 3167 if (too_many_orphans) 3168 net_info_ratelimited("too many orphaned sockets\n"); 3169 if (out_of_socket_memory) 3170 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 3171 return too_many_orphans || out_of_socket_memory; 3172 } 3173 3174 void __tcp_close(struct sock *sk, long timeout) 3175 { 3176 bool data_was_unread = false; 3177 struct sk_buff *skb; 3178 int state; 3179 3180 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 3181 3182 if (sk->sk_state == TCP_LISTEN) { 3183 tcp_set_state(sk, TCP_CLOSE); 3184 3185 /* Special case. */ 3186 inet_csk_listen_stop(sk); 3187 3188 goto adjudge_to_death; 3189 } 3190 3191 /* We need to flush the recv. buffs. We do this only on the 3192 * descriptor close, not protocol-sourced closes, because the 3193 * reader process may not have drained the data yet! 3194 */ 3195 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 3196 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 3197 3198 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 3199 end_seq--; 3200 if (after(end_seq, tcp_sk(sk)->copied_seq)) 3201 data_was_unread = true; 3202 tcp_eat_recv_skb(sk, skb); 3203 } 3204 3205 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 3206 if (sk->sk_state == TCP_CLOSE) 3207 goto adjudge_to_death; 3208 3209 /* As outlined in RFC 2525, section 2.17, we send a RST here because 3210 * data was lost. To witness the awful effects of the old behavior of 3211 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 3212 * GET in an FTP client, suspend the process, wait for the client to 3213 * advertise a zero window, then kill -9 the FTP client, wheee... 3214 * Note: timeout is always zero in such a case. 3215 */ 3216 if (unlikely(tcp_sk(sk)->repair)) { 3217 sk->sk_prot->disconnect(sk, 0); 3218 } else if (data_was_unread) { 3219 /* Unread data was tossed, zap the connection. */ 3220 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 3221 tcp_set_state(sk, TCP_CLOSE); 3222 tcp_send_active_reset(sk, sk->sk_allocation, 3223 SK_RST_REASON_TCP_ABORT_ON_CLOSE); 3224 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 3225 /* Check zero linger _after_ checking for unread data. */ 3226 sk->sk_prot->disconnect(sk, 0); 3227 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 3228 } else if (tcp_close_state(sk)) { 3229 /* We FIN if the application ate all the data before 3230 * zapping the connection. 3231 */ 3232 3233 /* RED-PEN. Formally speaking, we have broken TCP state 3234 * machine. State transitions: 3235 * 3236 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 3237 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (it is difficult) 3238 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 3239 * 3240 * are legal only when FIN has been sent (i.e. in window), 3241 * rather than queued out of window. Purists blame. 3242 * 3243 * F.e. "RFC state" is ESTABLISHED, 3244 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 3245 * 3246 * The visible declinations are that sometimes 3247 * we enter time-wait state, when it is not required really 3248 * (harmless), do not send active resets, when they are 3249 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 3250 * they look as CLOSING or LAST_ACK for Linux) 3251 * Probably, I missed some more holelets. 3252 * --ANK 3253 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 3254 * in a single packet! (May consider it later but will 3255 * probably need API support or TCP_CORK SYN-ACK until 3256 * data is written and socket is closed.) 3257 */ 3258 tcp_send_fin(sk); 3259 } 3260 3261 sk_stream_wait_close(sk, timeout); 3262 3263 adjudge_to_death: 3264 state = sk->sk_state; 3265 sock_hold(sk); 3266 sock_orphan(sk); 3267 3268 local_bh_disable(); 3269 bh_lock_sock(sk); 3270 /* remove backlog if any, without releasing ownership. */ 3271 __release_sock(sk); 3272 3273 tcp_orphan_count_inc(); 3274 3275 /* Have we already been destroyed by a softirq or backlog? */ 3276 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 3277 goto out; 3278 3279 /* This is a (useful) BSD violating of the RFC. There is a 3280 * problem with TCP as specified in that the other end could 3281 * keep a socket open forever with no application left this end. 3282 * We use a 1 minute timeout (about the same as BSD) then kill 3283 * our end. If they send after that then tough - BUT: long enough 3284 * that we won't make the old 4*rto = almost no time - whoops 3285 * reset mistake. 3286 * 3287 * Nope, it was not mistake. It is really desired behaviour 3288 * f.e. on http servers, when such sockets are useless, but 3289 * consume significant resources. Let's do it with special 3290 * linger2 option. --ANK 3291 */ 3292 3293 if (sk->sk_state == TCP_FIN_WAIT2) { 3294 struct tcp_sock *tp = tcp_sk(sk); 3295 if (READ_ONCE(tp->linger2) < 0) { 3296 tcp_set_state(sk, TCP_CLOSE); 3297 tcp_send_active_reset(sk, GFP_ATOMIC, 3298 SK_RST_REASON_TCP_ABORT_ON_LINGER); 3299 __NET_INC_STATS(sock_net(sk), 3300 LINUX_MIB_TCPABORTONLINGER); 3301 } else { 3302 const int tmo = tcp_fin_time(sk); 3303 3304 if (tmo > TCP_TIMEWAIT_LEN) { 3305 tcp_reset_keepalive_timer(sk, 3306 tmo - TCP_TIMEWAIT_LEN); 3307 } else { 3308 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 3309 goto out; 3310 } 3311 } 3312 } 3313 if (sk->sk_state != TCP_CLOSE) { 3314 if (tcp_check_oom(sk, 0)) { 3315 tcp_set_state(sk, TCP_CLOSE); 3316 tcp_send_active_reset(sk, GFP_ATOMIC, 3317 SK_RST_REASON_TCP_ABORT_ON_MEMORY); 3318 __NET_INC_STATS(sock_net(sk), 3319 LINUX_MIB_TCPABORTONMEMORY); 3320 } else if (!check_net(sock_net(sk))) { 3321 /* Not possible to send reset; just close */ 3322 tcp_set_state(sk, TCP_CLOSE); 3323 } 3324 } 3325 3326 if (sk->sk_state == TCP_CLOSE) { 3327 struct request_sock *req; 3328 3329 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 3330 lockdep_sock_is_held(sk)); 3331 /* We could get here with a non-NULL req if the socket is 3332 * aborted (e.g., closed with unread data) before 3WHS 3333 * finishes. 3334 */ 3335 if (req) 3336 reqsk_fastopen_remove(sk, req, false); 3337 inet_csk_destroy_sock(sk); 3338 } 3339 /* Otherwise, socket is reprieved until protocol close. */ 3340 3341 out: 3342 bh_unlock_sock(sk); 3343 local_bh_enable(); 3344 } 3345 3346 void tcp_close(struct sock *sk, long timeout) 3347 { 3348 lock_sock(sk); 3349 __tcp_close(sk, timeout); 3350 release_sock(sk); 3351 if (!sk->sk_net_refcnt) 3352 inet_csk_clear_xmit_timers_sync(sk); 3353 sock_put(sk); 3354 } 3355 EXPORT_SYMBOL(tcp_close); 3356 3357 /* These states need RST on ABORT according to RFC793 */ 3358 3359 static inline bool tcp_need_reset(int state) 3360 { 3361 return (1 << state) & 3362 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 3363 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 3364 } 3365 3366 static void tcp_rtx_queue_purge(struct sock *sk) 3367 { 3368 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 3369 3370 tcp_sk(sk)->highest_sack = NULL; 3371 while (p) { 3372 struct sk_buff *skb = rb_to_skb(p); 3373 3374 p = rb_next(p); 3375 /* Since we are deleting whole queue, no need to 3376 * list_del(&skb->tcp_tsorted_anchor) 3377 */ 3378 tcp_rtx_queue_unlink(skb, sk); 3379 tcp_wmem_free_skb(sk, skb); 3380 } 3381 } 3382 3383 void tcp_write_queue_purge(struct sock *sk) 3384 { 3385 struct sk_buff *skb; 3386 3387 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3388 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 3389 tcp_skb_tsorted_anchor_cleanup(skb); 3390 tcp_wmem_free_skb(sk, skb); 3391 } 3392 tcp_rtx_queue_purge(sk); 3393 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 3394 tcp_clear_all_retrans_hints(tcp_sk(sk)); 3395 tcp_sk(sk)->packets_out = 0; 3396 inet_csk(sk)->icsk_backoff = 0; 3397 } 3398 3399 int tcp_disconnect(struct sock *sk, int flags) 3400 { 3401 struct inet_sock *inet = inet_sk(sk); 3402 struct inet_connection_sock *icsk = inet_csk(sk); 3403 struct tcp_sock *tp = tcp_sk(sk); 3404 int old_state = sk->sk_state; 3405 struct request_sock *req; 3406 u32 seq; 3407 3408 if (old_state != TCP_CLOSE) 3409 tcp_set_state(sk, TCP_CLOSE); 3410 3411 /* ABORT function of RFC793 */ 3412 if (old_state == TCP_LISTEN) { 3413 inet_csk_listen_stop(sk); 3414 } else if (unlikely(tp->repair)) { 3415 WRITE_ONCE(sk->sk_err, ECONNABORTED); 3416 } else if (tcp_need_reset(old_state)) { 3417 tcp_send_active_reset(sk, gfp_any(), SK_RST_REASON_TCP_STATE); 3418 WRITE_ONCE(sk->sk_err, ECONNRESET); 3419 } else if (tp->snd_nxt != tp->write_seq && 3420 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK)) { 3421 /* The last check adjusts for discrepancy of Linux wrt. RFC 3422 * states 3423 */ 3424 tcp_send_active_reset(sk, gfp_any(), 3425 SK_RST_REASON_TCP_DISCONNECT_WITH_DATA); 3426 WRITE_ONCE(sk->sk_err, ECONNRESET); 3427 } else if (old_state == TCP_SYN_SENT) 3428 WRITE_ONCE(sk->sk_err, ECONNRESET); 3429 3430 tcp_clear_xmit_timers(sk); 3431 __skb_queue_purge(&sk->sk_receive_queue); 3432 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 3433 WRITE_ONCE(tp->urg_data, 0); 3434 sk_set_peek_off(sk, -1); 3435 tcp_write_queue_purge(sk); 3436 tcp_fastopen_active_disable_ofo_check(sk); 3437 skb_rbtree_purge(&tp->out_of_order_queue); 3438 3439 inet->inet_dport = 0; 3440 3441 inet_bhash2_reset_saddr(sk); 3442 3443 WRITE_ONCE(sk->sk_shutdown, 0); 3444 sock_reset_flag(sk, SOCK_DONE); 3445 tp->srtt_us = 0; 3446 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 3447 tp->rcv_rtt_last_tsecr = 0; 3448 3449 seq = tp->write_seq + tp->max_window + 2; 3450 if (!seq) 3451 seq = 1; 3452 WRITE_ONCE(tp->write_seq, seq); 3453 3454 icsk->icsk_backoff = 0; 3455 WRITE_ONCE(icsk->icsk_probes_out, 0); 3456 icsk->icsk_probes_tstamp = 0; 3457 icsk->icsk_rto = TCP_TIMEOUT_INIT; 3458 WRITE_ONCE(icsk->icsk_rto_min, TCP_RTO_MIN); 3459 WRITE_ONCE(icsk->icsk_delack_max, TCP_DELACK_MAX); 3460 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 3461 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 3462 tp->snd_cwnd_cnt = 0; 3463 tp->is_cwnd_limited = 0; 3464 tp->max_packets_out = 0; 3465 tp->window_clamp = 0; 3466 tp->delivered = 0; 3467 tp->delivered_ce = 0; 3468 tp->accecn_fail_mode = 0; 3469 tp->saw_accecn_opt = TCP_ACCECN_OPT_NOT_SEEN; 3470 tcp_accecn_init_counters(tp); 3471 tp->prev_ecnfield = 0; 3472 tp->accecn_opt_tstamp = 0; 3473 tp->pkts_acked_ewma = 0; 3474 if (icsk->icsk_ca_initialized && icsk->icsk_ca_ops->release) 3475 icsk->icsk_ca_ops->release(sk); 3476 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv)); 3477 icsk->icsk_ca_initialized = 0; 3478 tcp_set_ca_state(sk, TCP_CA_Open); 3479 tp->is_sack_reneg = 0; 3480 tcp_clear_retrans(tp); 3481 tp->total_retrans = 0; 3482 inet_csk_delack_init(sk); 3483 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 3484 * issue in __tcp_select_window() 3485 */ 3486 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 3487 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 3488 __sk_dst_reset(sk); 3489 dst_release(unrcu_pointer(xchg(&sk->sk_rx_dst, NULL))); 3490 tcp_saved_syn_free(tp); 3491 tp->compressed_ack = 0; 3492 tp->segs_in = 0; 3493 tp->segs_out = 0; 3494 tp->bytes_sent = 0; 3495 tp->bytes_acked = 0; 3496 tp->bytes_received = 0; 3497 tp->bytes_retrans = 0; 3498 tp->data_segs_in = 0; 3499 tp->data_segs_out = 0; 3500 tp->duplicate_sack[0].start_seq = 0; 3501 tp->duplicate_sack[0].end_seq = 0; 3502 tp->dsack_dups = 0; 3503 tp->reord_seen = 0; 3504 tp->retrans_out = 0; 3505 tp->sacked_out = 0; 3506 tp->tlp_high_seq = 0; 3507 tp->last_oow_ack_time = 0; 3508 tp->plb_rehash = 0; 3509 /* There's a bubble in the pipe until at least the first ACK. */ 3510 tp->app_limited = ~0U; 3511 tp->rate_app_limited = 1; 3512 tp->rack.mstamp = 0; 3513 tp->rack.advanced = 0; 3514 tp->rack.reo_wnd_steps = 1; 3515 tp->rack.last_delivered = 0; 3516 tp->rack.reo_wnd_persist = 0; 3517 tp->rack.dsack_seen = 0; 3518 tp->syn_data_acked = 0; 3519 tp->syn_fastopen_child = 0; 3520 tp->rx_opt.saw_tstamp = 0; 3521 tp->rx_opt.dsack = 0; 3522 tp->rx_opt.num_sacks = 0; 3523 tp->rcv_ooopack = 0; 3524 3525 3526 /* Clean up fastopen related fields */ 3527 req = rcu_dereference_protected(tp->fastopen_rsk, 3528 lockdep_sock_is_held(sk)); 3529 if (req) 3530 reqsk_fastopen_remove(sk, req, false); 3531 tcp_free_fastopen_req(tp); 3532 inet_clear_bit(DEFER_CONNECT, sk); 3533 tp->fastopen_client_fail = 0; 3534 3535 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 3536 3537 if (sk->sk_frag.page) { 3538 put_page(sk->sk_frag.page); 3539 sk->sk_frag.page = NULL; 3540 sk->sk_frag.offset = 0; 3541 } 3542 sk_error_report(sk); 3543 return 0; 3544 } 3545 EXPORT_SYMBOL(tcp_disconnect); 3546 3547 static inline bool tcp_can_repair_sock(const struct sock *sk) 3548 { 3549 return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 3550 (sk->sk_state != TCP_LISTEN); 3551 } 3552 3553 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len) 3554 { 3555 struct tcp_repair_window opt; 3556 3557 if (!tp->repair) 3558 return -EPERM; 3559 3560 if (len != sizeof(opt)) 3561 return -EINVAL; 3562 3563 if (copy_from_sockptr(&opt, optbuf, sizeof(opt))) 3564 return -EFAULT; 3565 3566 if (opt.max_window < opt.snd_wnd) 3567 return -EINVAL; 3568 3569 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 3570 return -EINVAL; 3571 3572 if (after(opt.rcv_wup, tp->rcv_nxt)) 3573 return -EINVAL; 3574 3575 tp->snd_wl1 = opt.snd_wl1; 3576 tp->snd_wnd = opt.snd_wnd; 3577 tp->max_window = opt.max_window; 3578 3579 tp->rcv_wnd = opt.rcv_wnd; 3580 tp->rcv_wup = opt.rcv_wup; 3581 3582 return 0; 3583 } 3584 3585 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf, 3586 unsigned int len) 3587 { 3588 struct tcp_sock *tp = tcp_sk(sk); 3589 struct tcp_repair_opt opt; 3590 size_t offset = 0; 3591 3592 while (len >= sizeof(opt)) { 3593 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt))) 3594 return -EFAULT; 3595 3596 offset += sizeof(opt); 3597 len -= sizeof(opt); 3598 3599 switch (opt.opt_code) { 3600 case TCPOPT_MSS: 3601 tp->rx_opt.mss_clamp = opt.opt_val; 3602 tcp_mtup_init(sk); 3603 break; 3604 case TCPOPT_WINDOW: 3605 { 3606 u16 snd_wscale = opt.opt_val & 0xFFFF; 3607 u16 rcv_wscale = opt.opt_val >> 16; 3608 3609 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 3610 return -EFBIG; 3611 3612 tp->rx_opt.snd_wscale = snd_wscale; 3613 tp->rx_opt.rcv_wscale = rcv_wscale; 3614 tp->rx_opt.wscale_ok = 1; 3615 } 3616 break; 3617 case TCPOPT_SACK_PERM: 3618 if (opt.opt_val != 0) 3619 return -EINVAL; 3620 3621 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 3622 break; 3623 case TCPOPT_TIMESTAMP: 3624 if (opt.opt_val != 0) 3625 return -EINVAL; 3626 3627 tp->rx_opt.tstamp_ok = 1; 3628 break; 3629 } 3630 } 3631 3632 return 0; 3633 } 3634 3635 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 3636 EXPORT_IPV6_MOD(tcp_tx_delay_enabled); 3637 3638 static void tcp_enable_tx_delay(struct sock *sk, int val) 3639 { 3640 struct tcp_sock *tp = tcp_sk(sk); 3641 s32 delta = (val - tp->tcp_tx_delay) << 3; 3642 3643 if (val && !static_branch_unlikely(&tcp_tx_delay_enabled)) { 3644 static int __tcp_tx_delay_enabled = 0; 3645 3646 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) { 3647 static_branch_enable(&tcp_tx_delay_enabled); 3648 pr_info("TCP_TX_DELAY enabled\n"); 3649 } 3650 } 3651 /* If we change tcp_tx_delay on a live flow, adjust tp->srtt_us, 3652 * tp->rtt_min, icsk_rto and sk->sk_pacing_rate. 3653 * This is best effort. 3654 */ 3655 if (delta && sk->sk_state == TCP_ESTABLISHED) { 3656 s64 srtt = (s64)tp->srtt_us + delta; 3657 3658 tp->srtt_us = clamp_t(s64, srtt, 1, ~0U); 3659 3660 /* Note: does not deal with non zero icsk_backoff */ 3661 tcp_set_rto(sk); 3662 3663 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 3664 3665 tcp_update_pacing_rate(sk); 3666 } 3667 } 3668 3669 /* When set indicates to always queue non-full frames. Later the user clears 3670 * this option and we transmit any pending partial frames in the queue. This is 3671 * meant to be used alongside sendfile() to get properly filled frames when the 3672 * user (for example) must write out headers with a write() call first and then 3673 * use sendfile to send out the data parts. 3674 * 3675 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than 3676 * TCP_NODELAY. 3677 */ 3678 void __tcp_sock_set_cork(struct sock *sk, bool on) 3679 { 3680 struct tcp_sock *tp = tcp_sk(sk); 3681 3682 if (on) { 3683 tp->nonagle |= TCP_NAGLE_CORK; 3684 } else { 3685 tp->nonagle &= ~TCP_NAGLE_CORK; 3686 if (tp->nonagle & TCP_NAGLE_OFF) 3687 tp->nonagle |= TCP_NAGLE_PUSH; 3688 tcp_push_pending_frames(sk); 3689 } 3690 } 3691 3692 void tcp_sock_set_cork(struct sock *sk, bool on) 3693 { 3694 lock_sock(sk); 3695 __tcp_sock_set_cork(sk, on); 3696 release_sock(sk); 3697 } 3698 EXPORT_SYMBOL(tcp_sock_set_cork); 3699 3700 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is 3701 * remembered, but it is not activated until cork is cleared. 3702 * 3703 * However, when TCP_NODELAY is set we make an explicit push, which overrides 3704 * even TCP_CORK for currently queued segments. 3705 */ 3706 void __tcp_sock_set_nodelay(struct sock *sk, bool on) 3707 { 3708 if (on) { 3709 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 3710 tcp_push_pending_frames(sk); 3711 } else { 3712 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF; 3713 } 3714 } 3715 3716 void tcp_sock_set_nodelay(struct sock *sk) 3717 { 3718 lock_sock(sk); 3719 __tcp_sock_set_nodelay(sk, true); 3720 release_sock(sk); 3721 } 3722 EXPORT_SYMBOL(tcp_sock_set_nodelay); 3723 3724 static void __tcp_sock_set_quickack(struct sock *sk, int val) 3725 { 3726 if (!val) { 3727 inet_csk_enter_pingpong_mode(sk); 3728 return; 3729 } 3730 3731 inet_csk_exit_pingpong_mode(sk); 3732 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 3733 inet_csk_ack_scheduled(sk)) { 3734 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED; 3735 tcp_cleanup_rbuf(sk, 1); 3736 if (!(val & 1)) 3737 inet_csk_enter_pingpong_mode(sk); 3738 } 3739 } 3740 3741 void tcp_sock_set_quickack(struct sock *sk, int val) 3742 { 3743 lock_sock(sk); 3744 __tcp_sock_set_quickack(sk, val); 3745 release_sock(sk); 3746 } 3747 EXPORT_SYMBOL(tcp_sock_set_quickack); 3748 3749 int tcp_sock_set_syncnt(struct sock *sk, int val) 3750 { 3751 if (val < 1 || val > MAX_TCP_SYNCNT) 3752 return -EINVAL; 3753 3754 WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val); 3755 return 0; 3756 } 3757 EXPORT_SYMBOL(tcp_sock_set_syncnt); 3758 3759 int tcp_sock_set_user_timeout(struct sock *sk, int val) 3760 { 3761 /* Cap the max time in ms TCP will retry or probe the window 3762 * before giving up and aborting (ETIMEDOUT) a connection. 3763 */ 3764 if (val < 0) 3765 return -EINVAL; 3766 3767 WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val); 3768 return 0; 3769 } 3770 EXPORT_SYMBOL(tcp_sock_set_user_timeout); 3771 3772 int tcp_sock_set_keepidle_locked(struct sock *sk, int val) 3773 { 3774 struct tcp_sock *tp = tcp_sk(sk); 3775 3776 if (val < 1 || val > MAX_TCP_KEEPIDLE) 3777 return -EINVAL; 3778 3779 /* Paired with WRITE_ONCE() in keepalive_time_when() */ 3780 WRITE_ONCE(tp->keepalive_time, val * HZ); 3781 if (sock_flag(sk, SOCK_KEEPOPEN) && 3782 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) { 3783 u32 elapsed = keepalive_time_elapsed(tp); 3784 3785 if (tp->keepalive_time > elapsed) 3786 elapsed = tp->keepalive_time - elapsed; 3787 else 3788 elapsed = 0; 3789 tcp_reset_keepalive_timer(sk, elapsed); 3790 } 3791 3792 return 0; 3793 } 3794 3795 int tcp_sock_set_keepidle(struct sock *sk, int val) 3796 { 3797 int err; 3798 3799 lock_sock(sk); 3800 err = tcp_sock_set_keepidle_locked(sk, val); 3801 release_sock(sk); 3802 return err; 3803 } 3804 EXPORT_SYMBOL(tcp_sock_set_keepidle); 3805 3806 int tcp_sock_set_keepintvl(struct sock *sk, int val) 3807 { 3808 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3809 return -EINVAL; 3810 3811 WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ); 3812 return 0; 3813 } 3814 EXPORT_SYMBOL(tcp_sock_set_keepintvl); 3815 3816 int tcp_sock_set_keepcnt(struct sock *sk, int val) 3817 { 3818 if (val < 1 || val > MAX_TCP_KEEPCNT) 3819 return -EINVAL; 3820 3821 /* Paired with READ_ONCE() in keepalive_probes() */ 3822 WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val); 3823 return 0; 3824 } 3825 EXPORT_SYMBOL(tcp_sock_set_keepcnt); 3826 3827 int tcp_set_window_clamp(struct sock *sk, int val) 3828 { 3829 u32 old_window_clamp, new_window_clamp, new_rcv_ssthresh; 3830 struct tcp_sock *tp = tcp_sk(sk); 3831 3832 if (!val) { 3833 if (sk->sk_state != TCP_CLOSE) 3834 return -EINVAL; 3835 WRITE_ONCE(tp->window_clamp, 0); 3836 return 0; 3837 } 3838 3839 old_window_clamp = tp->window_clamp; 3840 new_window_clamp = max_t(int, SOCK_MIN_RCVBUF / 2, val); 3841 3842 if (new_window_clamp == old_window_clamp) 3843 return 0; 3844 3845 WRITE_ONCE(tp->window_clamp, new_window_clamp); 3846 3847 /* Need to apply the reserved mem provisioning only 3848 * when shrinking the window clamp. 3849 */ 3850 if (new_window_clamp < old_window_clamp) { 3851 __tcp_adjust_rcv_ssthresh(sk, new_window_clamp); 3852 } else { 3853 new_rcv_ssthresh = min(tp->rcv_wnd, new_window_clamp); 3854 tp->rcv_ssthresh = max(new_rcv_ssthresh, tp->rcv_ssthresh); 3855 } 3856 return 0; 3857 } 3858 3859 int tcp_sock_set_maxseg(struct sock *sk, int val) 3860 { 3861 /* Values greater than interface MTU won't take effect. However 3862 * at the point when this call is done we typically don't yet 3863 * know which interface is going to be used 3864 */ 3865 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) 3866 return -EINVAL; 3867 3868 WRITE_ONCE(tcp_sk(sk)->rx_opt.user_mss, val); 3869 return 0; 3870 } 3871 3872 /* 3873 * Socket option code for TCP. 3874 */ 3875 int do_tcp_setsockopt(struct sock *sk, int level, int optname, 3876 sockptr_t optval, unsigned int optlen) 3877 { 3878 struct tcp_sock *tp = tcp_sk(sk); 3879 struct inet_connection_sock *icsk = inet_csk(sk); 3880 struct net *net = sock_net(sk); 3881 int val; 3882 int err = 0; 3883 3884 /* These are data/string values, all the others are ints */ 3885 switch (optname) { 3886 case TCP_CONGESTION: { 3887 char name[TCP_CA_NAME_MAX]; 3888 3889 if (optlen < 1) 3890 return -EINVAL; 3891 3892 val = strncpy_from_sockptr(name, optval, 3893 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 3894 if (val < 0) 3895 return -EFAULT; 3896 name[val] = 0; 3897 3898 sockopt_lock_sock(sk); 3899 err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(), 3900 sockopt_ns_capable(sock_net(sk)->user_ns, 3901 CAP_NET_ADMIN)); 3902 sockopt_release_sock(sk); 3903 return err; 3904 } 3905 case TCP_ULP: { 3906 char name[TCP_ULP_NAME_MAX]; 3907 3908 if (optlen < 1) 3909 return -EINVAL; 3910 3911 val = strncpy_from_sockptr(name, optval, 3912 min_t(long, TCP_ULP_NAME_MAX - 1, 3913 optlen)); 3914 if (val < 0) 3915 return -EFAULT; 3916 name[val] = 0; 3917 3918 sockopt_lock_sock(sk); 3919 err = tcp_set_ulp(sk, name); 3920 sockopt_release_sock(sk); 3921 return err; 3922 } 3923 case TCP_FASTOPEN_KEY: { 3924 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; 3925 __u8 *backup_key = NULL; 3926 3927 /* Allow a backup key as well to facilitate key rotation 3928 * First key is the active one. 3929 */ 3930 if (optlen != TCP_FASTOPEN_KEY_LENGTH && 3931 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH) 3932 return -EINVAL; 3933 3934 if (copy_from_sockptr(key, optval, optlen)) 3935 return -EFAULT; 3936 3937 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH) 3938 backup_key = key + TCP_FASTOPEN_KEY_LENGTH; 3939 3940 return tcp_fastopen_reset_cipher(net, sk, key, backup_key); 3941 } 3942 default: 3943 /* fallthru */ 3944 break; 3945 } 3946 3947 if (optlen < sizeof(int)) 3948 return -EINVAL; 3949 3950 if (copy_from_sockptr(&val, optval, sizeof(val))) 3951 return -EFAULT; 3952 3953 /* Handle options that can be set without locking the socket. */ 3954 switch (optname) { 3955 case TCP_SYNCNT: 3956 return tcp_sock_set_syncnt(sk, val); 3957 case TCP_USER_TIMEOUT: 3958 return tcp_sock_set_user_timeout(sk, val); 3959 case TCP_KEEPINTVL: 3960 return tcp_sock_set_keepintvl(sk, val); 3961 case TCP_KEEPCNT: 3962 return tcp_sock_set_keepcnt(sk, val); 3963 case TCP_LINGER2: 3964 if (val < 0) 3965 WRITE_ONCE(tp->linger2, -1); 3966 else if (val > TCP_FIN_TIMEOUT_MAX / HZ) 3967 WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX); 3968 else 3969 WRITE_ONCE(tp->linger2, val * HZ); 3970 return 0; 3971 case TCP_DEFER_ACCEPT: 3972 /* Translate value in seconds to number of retransmits */ 3973 WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept, 3974 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 3975 TCP_RTO_MAX / HZ)); 3976 return 0; 3977 case TCP_RTO_MAX_MS: 3978 if (val < MSEC_PER_SEC || val > TCP_RTO_MAX_SEC * MSEC_PER_SEC) 3979 return -EINVAL; 3980 WRITE_ONCE(inet_csk(sk)->icsk_rto_max, msecs_to_jiffies(val)); 3981 return 0; 3982 case TCP_RTO_MIN_US: { 3983 int rto_min = usecs_to_jiffies(val); 3984 3985 if (rto_min > TCP_RTO_MIN || rto_min < TCP_TIMEOUT_MIN) 3986 return -EINVAL; 3987 WRITE_ONCE(inet_csk(sk)->icsk_rto_min, rto_min); 3988 return 0; 3989 } 3990 case TCP_DELACK_MAX_US: { 3991 int delack_max = usecs_to_jiffies(val); 3992 3993 if (delack_max > TCP_DELACK_MAX || delack_max < TCP_TIMEOUT_MIN) 3994 return -EINVAL; 3995 WRITE_ONCE(inet_csk(sk)->icsk_delack_max, delack_max); 3996 return 0; 3997 } 3998 case TCP_MAXSEG: 3999 return tcp_sock_set_maxseg(sk, val); 4000 } 4001 4002 sockopt_lock_sock(sk); 4003 4004 switch (optname) { 4005 case TCP_NODELAY: 4006 __tcp_sock_set_nodelay(sk, val); 4007 break; 4008 4009 case TCP_THIN_LINEAR_TIMEOUTS: 4010 if (val < 0 || val > 1) 4011 err = -EINVAL; 4012 else 4013 tp->thin_lto = val; 4014 break; 4015 4016 case TCP_THIN_DUPACK: 4017 if (val < 0 || val > 1) 4018 err = -EINVAL; 4019 break; 4020 4021 case TCP_REPAIR: 4022 if (!tcp_can_repair_sock(sk)) 4023 err = -EPERM; 4024 else if (val == TCP_REPAIR_ON) { 4025 tp->repair = 1; 4026 sk->sk_reuse = SK_FORCE_REUSE; 4027 tp->repair_queue = TCP_NO_QUEUE; 4028 } else if (val == TCP_REPAIR_OFF) { 4029 tp->repair = 0; 4030 sk->sk_reuse = SK_NO_REUSE; 4031 tcp_send_window_probe(sk); 4032 } else if (val == TCP_REPAIR_OFF_NO_WP) { 4033 tp->repair = 0; 4034 sk->sk_reuse = SK_NO_REUSE; 4035 } else 4036 err = -EINVAL; 4037 4038 break; 4039 4040 case TCP_REPAIR_QUEUE: 4041 if (!tp->repair) 4042 err = -EPERM; 4043 else if ((unsigned int)val < TCP_QUEUES_NR) 4044 tp->repair_queue = val; 4045 else 4046 err = -EINVAL; 4047 break; 4048 4049 case TCP_QUEUE_SEQ: 4050 if (sk->sk_state != TCP_CLOSE) { 4051 err = -EPERM; 4052 } else if (tp->repair_queue == TCP_SEND_QUEUE) { 4053 if (!tcp_rtx_queue_empty(sk)) 4054 err = -EPERM; 4055 else 4056 WRITE_ONCE(tp->write_seq, val); 4057 } else if (tp->repair_queue == TCP_RECV_QUEUE) { 4058 if (tp->rcv_nxt != tp->copied_seq) { 4059 err = -EPERM; 4060 } else { 4061 WRITE_ONCE(tp->rcv_nxt, val); 4062 WRITE_ONCE(tp->copied_seq, val); 4063 } 4064 } else { 4065 err = -EINVAL; 4066 } 4067 break; 4068 4069 case TCP_REPAIR_OPTIONS: 4070 if (!tp->repair) 4071 err = -EINVAL; 4072 else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent) 4073 err = tcp_repair_options_est(sk, optval, optlen); 4074 else 4075 err = -EPERM; 4076 break; 4077 4078 case TCP_CORK: 4079 __tcp_sock_set_cork(sk, val); 4080 break; 4081 4082 case TCP_KEEPIDLE: 4083 err = tcp_sock_set_keepidle_locked(sk, val); 4084 break; 4085 case TCP_SAVE_SYN: 4086 /* 0: disable, 1: enable, 2: start from ether_header */ 4087 if (val < 0 || val > 2) 4088 err = -EINVAL; 4089 else 4090 tp->save_syn = val; 4091 break; 4092 4093 case TCP_WINDOW_CLAMP: 4094 err = tcp_set_window_clamp(sk, val); 4095 break; 4096 4097 case TCP_QUICKACK: 4098 __tcp_sock_set_quickack(sk, val); 4099 break; 4100 4101 case TCP_AO_REPAIR: 4102 if (!tcp_can_repair_sock(sk)) { 4103 err = -EPERM; 4104 break; 4105 } 4106 err = tcp_ao_set_repair(sk, optval, optlen); 4107 break; 4108 #ifdef CONFIG_TCP_AO 4109 case TCP_AO_ADD_KEY: 4110 case TCP_AO_DEL_KEY: 4111 case TCP_AO_INFO: { 4112 /* If this is the first TCP-AO setsockopt() on the socket, 4113 * sk_state has to be LISTEN or CLOSE. Allow TCP_REPAIR 4114 * in any state. 4115 */ 4116 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) 4117 goto ao_parse; 4118 if (rcu_dereference_protected(tcp_sk(sk)->ao_info, 4119 lockdep_sock_is_held(sk))) 4120 goto ao_parse; 4121 if (tp->repair) 4122 goto ao_parse; 4123 err = -EISCONN; 4124 break; 4125 ao_parse: 4126 err = tp->af_specific->ao_parse(sk, optname, optval, optlen); 4127 break; 4128 } 4129 #endif 4130 #ifdef CONFIG_TCP_MD5SIG 4131 case TCP_MD5SIG: 4132 case TCP_MD5SIG_EXT: 4133 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 4134 break; 4135 #endif 4136 case TCP_FASTOPEN: 4137 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 4138 TCPF_LISTEN))) { 4139 tcp_fastopen_init_key_once(net); 4140 4141 fastopen_queue_tune(sk, val); 4142 } else { 4143 err = -EINVAL; 4144 } 4145 break; 4146 case TCP_FASTOPEN_CONNECT: 4147 if (val > 1 || val < 0) { 4148 err = -EINVAL; 4149 } else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) & 4150 TFO_CLIENT_ENABLE) { 4151 if (sk->sk_state == TCP_CLOSE) 4152 tp->fastopen_connect = val; 4153 else 4154 err = -EINVAL; 4155 } else { 4156 err = -EOPNOTSUPP; 4157 } 4158 break; 4159 case TCP_FASTOPEN_NO_COOKIE: 4160 if (val > 1 || val < 0) 4161 err = -EINVAL; 4162 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 4163 err = -EINVAL; 4164 else 4165 tp->fastopen_no_cookie = val; 4166 break; 4167 case TCP_TIMESTAMP: 4168 if (!tp->repair) { 4169 err = -EPERM; 4170 break; 4171 } 4172 /* val is an opaque field, 4173 * and low order bit contains usec_ts enable bit. 4174 * Its a best effort, and we do not care if user makes an error. 4175 */ 4176 tp->tcp_usec_ts = val & 1; 4177 WRITE_ONCE(tp->tsoffset, val - tcp_clock_ts(tp->tcp_usec_ts)); 4178 break; 4179 case TCP_REPAIR_WINDOW: 4180 err = tcp_repair_set_window(tp, optval, optlen); 4181 break; 4182 case TCP_NOTSENT_LOWAT: 4183 WRITE_ONCE(tp->notsent_lowat, val); 4184 sk->sk_write_space(sk); 4185 break; 4186 case TCP_INQ: 4187 if (val > 1 || val < 0) 4188 err = -EINVAL; 4189 else 4190 tp->recvmsg_inq = val; 4191 break; 4192 case TCP_TX_DELAY: 4193 /* tp->srtt_us is u32, and is shifted by 3 */ 4194 if (val < 0 || val >= (1U << (31 - 3))) { 4195 err = -EINVAL; 4196 break; 4197 } 4198 tcp_enable_tx_delay(sk, val); 4199 WRITE_ONCE(tp->tcp_tx_delay, val); 4200 break; 4201 default: 4202 err = -ENOPROTOOPT; 4203 break; 4204 } 4205 4206 sockopt_release_sock(sk); 4207 return err; 4208 } 4209 4210 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 4211 unsigned int optlen) 4212 { 4213 const struct inet_connection_sock *icsk = inet_csk(sk); 4214 4215 if (level != SOL_TCP) 4216 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ 4217 return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname, 4218 optval, optlen); 4219 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 4220 } 4221 EXPORT_IPV6_MOD(tcp_setsockopt); 4222 4223 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 4224 struct tcp_info *info) 4225 { 4226 u64 stats[__TCP_CHRONO_MAX], total = 0; 4227 enum tcp_chrono i; 4228 4229 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 4230 stats[i] = tp->chrono_stat[i - 1]; 4231 if (i == tp->chrono_type) 4232 stats[i] += tcp_jiffies32 - tp->chrono_start; 4233 stats[i] *= USEC_PER_SEC / HZ; 4234 total += stats[i]; 4235 } 4236 4237 info->tcpi_busy_time = total; 4238 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 4239 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 4240 } 4241 4242 /* Return information about state of tcp endpoint in API format. */ 4243 void tcp_get_info(struct sock *sk, struct tcp_info *info) 4244 { 4245 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 4246 const struct inet_connection_sock *icsk = inet_csk(sk); 4247 const u8 ect1_idx = INET_ECN_ECT_1 - 1; 4248 const u8 ect0_idx = INET_ECN_ECT_0 - 1; 4249 const u8 ce_idx = INET_ECN_CE - 1; 4250 unsigned long rate; 4251 u32 now; 4252 u64 rate64; 4253 bool slow; 4254 4255 memset(info, 0, sizeof(*info)); 4256 if (sk->sk_type != SOCK_STREAM) 4257 return; 4258 4259 info->tcpi_state = inet_sk_state_load(sk); 4260 4261 /* Report meaningful fields for all TCP states, including listeners */ 4262 rate = READ_ONCE(sk->sk_pacing_rate); 4263 rate64 = (rate != ~0UL) ? rate : ~0ULL; 4264 info->tcpi_pacing_rate = rate64; 4265 4266 rate = READ_ONCE(sk->sk_max_pacing_rate); 4267 rate64 = (rate != ~0UL) ? rate : ~0ULL; 4268 info->tcpi_max_pacing_rate = rate64; 4269 4270 info->tcpi_reordering = tp->reordering; 4271 info->tcpi_snd_cwnd = tcp_snd_cwnd(tp); 4272 4273 if (info->tcpi_state == TCP_LISTEN) { 4274 /* listeners aliased fields : 4275 * tcpi_unacked -> Number of children ready for accept() 4276 * tcpi_sacked -> max backlog 4277 */ 4278 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog); 4279 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog); 4280 return; 4281 } 4282 4283 slow = lock_sock_fast(sk); 4284 4285 info->tcpi_ca_state = icsk->icsk_ca_state; 4286 info->tcpi_retransmits = icsk->icsk_retransmits; 4287 info->tcpi_probes = icsk->icsk_probes_out; 4288 info->tcpi_backoff = icsk->icsk_backoff; 4289 4290 if (tp->rx_opt.tstamp_ok) 4291 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 4292 if (tcp_is_sack(tp)) 4293 info->tcpi_options |= TCPI_OPT_SACK; 4294 if (tp->rx_opt.wscale_ok) { 4295 info->tcpi_options |= TCPI_OPT_WSCALE; 4296 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 4297 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 4298 } 4299 4300 if (tcp_ecn_mode_any(tp)) 4301 info->tcpi_options |= TCPI_OPT_ECN; 4302 if (tp->ecn_flags & TCP_ECN_SEEN) 4303 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 4304 if (tp->syn_data_acked) 4305 info->tcpi_options |= TCPI_OPT_SYN_DATA; 4306 if (tp->tcp_usec_ts) 4307 info->tcpi_options |= TCPI_OPT_USEC_TS; 4308 if (tp->syn_fastopen_child) 4309 info->tcpi_options |= TCPI_OPT_TFO_CHILD; 4310 4311 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 4312 info->tcpi_ato = jiffies_to_usecs(min_t(u32, icsk->icsk_ack.ato, 4313 tcp_delack_max(sk))); 4314 info->tcpi_snd_mss = tp->mss_cache; 4315 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 4316 4317 info->tcpi_unacked = tp->packets_out; 4318 info->tcpi_sacked = tp->sacked_out; 4319 4320 info->tcpi_lost = tp->lost_out; 4321 info->tcpi_retrans = tp->retrans_out; 4322 4323 now = tcp_jiffies32; 4324 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 4325 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 4326 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 4327 4328 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 4329 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 4330 info->tcpi_rtt = tp->srtt_us >> 3; 4331 info->tcpi_rttvar = tp->mdev_us >> 2; 4332 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 4333 info->tcpi_advmss = tp->advmss; 4334 4335 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 4336 info->tcpi_rcv_space = tp->rcvq_space.space; 4337 4338 info->tcpi_total_retrans = tp->total_retrans; 4339 4340 info->tcpi_bytes_acked = tp->bytes_acked; 4341 info->tcpi_bytes_received = tp->bytes_received; 4342 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 4343 tcp_get_info_chrono_stats(tp, info); 4344 4345 info->tcpi_segs_out = tp->segs_out; 4346 4347 /* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */ 4348 info->tcpi_segs_in = READ_ONCE(tp->segs_in); 4349 info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in); 4350 4351 info->tcpi_min_rtt = tcp_min_rtt(tp); 4352 info->tcpi_data_segs_out = tp->data_segs_out; 4353 4354 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 4355 rate64 = tcp_compute_delivery_rate(tp); 4356 if (rate64) 4357 info->tcpi_delivery_rate = rate64; 4358 info->tcpi_delivered = tp->delivered; 4359 info->tcpi_delivered_ce = tp->delivered_ce; 4360 info->tcpi_bytes_sent = tp->bytes_sent; 4361 info->tcpi_bytes_retrans = tp->bytes_retrans; 4362 info->tcpi_dsack_dups = tp->dsack_dups; 4363 info->tcpi_reord_seen = tp->reord_seen; 4364 info->tcpi_rcv_ooopack = tp->rcv_ooopack; 4365 info->tcpi_snd_wnd = tp->snd_wnd; 4366 info->tcpi_rcv_wnd = tp->rcv_wnd; 4367 info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash; 4368 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail; 4369 4370 info->tcpi_total_rto = tp->total_rto; 4371 info->tcpi_total_rto_recoveries = tp->total_rto_recoveries; 4372 info->tcpi_total_rto_time = tp->total_rto_time; 4373 if (tp->rto_stamp) 4374 info->tcpi_total_rto_time += tcp_clock_ms() - tp->rto_stamp; 4375 4376 if (tcp_ecn_disabled(tp)) 4377 info->tcpi_ecn_mode = TCPI_ECN_MODE_DISABLED; 4378 else if (tcp_ecn_mode_rfc3168(tp)) 4379 info->tcpi_ecn_mode = TCPI_ECN_MODE_RFC3168; 4380 else if (tcp_ecn_mode_accecn(tp)) 4381 info->tcpi_ecn_mode = TCPI_ECN_MODE_ACCECN; 4382 else if (tcp_ecn_mode_pending(tp)) 4383 info->tcpi_ecn_mode = TCPI_ECN_MODE_PENDING; 4384 info->tcpi_accecn_fail_mode = tp->accecn_fail_mode; 4385 info->tcpi_accecn_opt_seen = tp->saw_accecn_opt; 4386 info->tcpi_received_ce = tp->received_ce; 4387 info->tcpi_delivered_e1_bytes = tp->delivered_ecn_bytes[ect1_idx]; 4388 info->tcpi_delivered_e0_bytes = tp->delivered_ecn_bytes[ect0_idx]; 4389 info->tcpi_delivered_ce_bytes = tp->delivered_ecn_bytes[ce_idx]; 4390 info->tcpi_received_e1_bytes = tp->received_ecn_bytes[ect1_idx]; 4391 info->tcpi_received_e0_bytes = tp->received_ecn_bytes[ect0_idx]; 4392 info->tcpi_received_ce_bytes = tp->received_ecn_bytes[ce_idx]; 4393 4394 unlock_sock_fast(sk, slow); 4395 } 4396 EXPORT_SYMBOL_GPL(tcp_get_info); 4397 4398 static size_t tcp_opt_stats_get_size(void) 4399 { 4400 return 4401 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ 4402 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ 4403 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ 4404 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ 4405 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ 4406 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ 4407 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ 4408 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ 4409 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ 4410 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ 4411 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ 4412 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ 4413 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ 4414 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ 4415 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ 4416 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ 4417 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ 4418 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ 4419 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ 4420 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ 4421 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ 4422 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */ 4423 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */ 4424 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */ 4425 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */ 4426 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */ 4427 nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */ 4428 0; 4429 } 4430 4431 /* Returns TTL or hop limit of an incoming packet from skb. */ 4432 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb) 4433 { 4434 if (skb->protocol == htons(ETH_P_IP)) 4435 return ip_hdr(skb)->ttl; 4436 else if (skb->protocol == htons(ETH_P_IPV6)) 4437 return ipv6_hdr(skb)->hop_limit; 4438 else 4439 return 0; 4440 } 4441 4442 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk, 4443 const struct sk_buff *orig_skb, 4444 const struct sk_buff *ack_skb) 4445 { 4446 const struct tcp_sock *tp = tcp_sk(sk); 4447 struct sk_buff *stats; 4448 struct tcp_info info; 4449 unsigned long rate; 4450 u64 rate64; 4451 4452 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); 4453 if (!stats) 4454 return NULL; 4455 4456 tcp_get_info_chrono_stats(tp, &info); 4457 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 4458 info.tcpi_busy_time, TCP_NLA_PAD); 4459 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 4460 info.tcpi_rwnd_limited, TCP_NLA_PAD); 4461 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 4462 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 4463 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 4464 tp->data_segs_out, TCP_NLA_PAD); 4465 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 4466 tp->total_retrans, TCP_NLA_PAD); 4467 4468 rate = READ_ONCE(sk->sk_pacing_rate); 4469 rate64 = (rate != ~0UL) ? rate : ~0ULL; 4470 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 4471 4472 rate64 = tcp_compute_delivery_rate(tp); 4473 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 4474 4475 nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp)); 4476 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 4477 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 4478 4479 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, 4480 READ_ONCE(inet_csk(sk)->icsk_retransmits)); 4481 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 4482 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 4483 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 4484 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 4485 4486 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 4487 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 4488 4489 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, 4490 TCP_NLA_PAD); 4491 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, 4492 TCP_NLA_PAD); 4493 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); 4494 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); 4495 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3); 4496 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash); 4497 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT, 4498 max_t(int, 0, tp->write_seq - tp->snd_nxt)); 4499 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns, 4500 TCP_NLA_PAD); 4501 if (ack_skb) 4502 nla_put_u8(stats, TCP_NLA_TTL, 4503 tcp_skb_ttl_or_hop_limit(ack_skb)); 4504 4505 nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash); 4506 return stats; 4507 } 4508 4509 int do_tcp_getsockopt(struct sock *sk, int level, 4510 int optname, sockptr_t optval, sockptr_t optlen) 4511 { 4512 struct inet_connection_sock *icsk = inet_csk(sk); 4513 struct tcp_sock *tp = tcp_sk(sk); 4514 struct net *net = sock_net(sk); 4515 int user_mss; 4516 int val, len; 4517 4518 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4519 return -EFAULT; 4520 4521 if (len < 0) 4522 return -EINVAL; 4523 4524 len = min_t(unsigned int, len, sizeof(int)); 4525 4526 switch (optname) { 4527 case TCP_MAXSEG: 4528 val = tp->mss_cache; 4529 user_mss = READ_ONCE(tp->rx_opt.user_mss); 4530 if (user_mss && 4531 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 4532 val = user_mss; 4533 if (tp->repair) 4534 val = tp->rx_opt.mss_clamp; 4535 break; 4536 case TCP_NODELAY: 4537 val = !!(tp->nonagle&TCP_NAGLE_OFF); 4538 break; 4539 case TCP_CORK: 4540 val = !!(tp->nonagle&TCP_NAGLE_CORK); 4541 break; 4542 case TCP_KEEPIDLE: 4543 val = keepalive_time_when(tp) / HZ; 4544 break; 4545 case TCP_KEEPINTVL: 4546 val = keepalive_intvl_when(tp) / HZ; 4547 break; 4548 case TCP_KEEPCNT: 4549 val = keepalive_probes(tp); 4550 break; 4551 case TCP_SYNCNT: 4552 val = READ_ONCE(icsk->icsk_syn_retries) ? : 4553 READ_ONCE(net->ipv4.sysctl_tcp_syn_retries); 4554 break; 4555 case TCP_LINGER2: 4556 val = READ_ONCE(tp->linger2); 4557 if (val >= 0) 4558 val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ; 4559 break; 4560 case TCP_DEFER_ACCEPT: 4561 val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept); 4562 val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ, 4563 TCP_RTO_MAX / HZ); 4564 break; 4565 case TCP_WINDOW_CLAMP: 4566 val = READ_ONCE(tp->window_clamp); 4567 break; 4568 case TCP_INFO: { 4569 struct tcp_info info; 4570 4571 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4572 return -EFAULT; 4573 4574 tcp_get_info(sk, &info); 4575 4576 len = min_t(unsigned int, len, sizeof(info)); 4577 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4578 return -EFAULT; 4579 if (copy_to_sockptr(optval, &info, len)) 4580 return -EFAULT; 4581 return 0; 4582 } 4583 case TCP_CC_INFO: { 4584 const struct tcp_congestion_ops *ca_ops; 4585 union tcp_cc_info info; 4586 size_t sz = 0; 4587 int attr; 4588 4589 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4590 return -EFAULT; 4591 4592 ca_ops = icsk->icsk_ca_ops; 4593 if (ca_ops && ca_ops->get_info) 4594 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 4595 4596 len = min_t(unsigned int, len, sz); 4597 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4598 return -EFAULT; 4599 if (copy_to_sockptr(optval, &info, len)) 4600 return -EFAULT; 4601 return 0; 4602 } 4603 case TCP_QUICKACK: 4604 val = !inet_csk_in_pingpong_mode(sk); 4605 break; 4606 4607 case TCP_CONGESTION: 4608 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4609 return -EFAULT; 4610 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 4611 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4612 return -EFAULT; 4613 if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len)) 4614 return -EFAULT; 4615 return 0; 4616 4617 case TCP_ULP: 4618 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4619 return -EFAULT; 4620 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 4621 if (!icsk->icsk_ulp_ops) { 4622 len = 0; 4623 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4624 return -EFAULT; 4625 return 0; 4626 } 4627 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4628 return -EFAULT; 4629 if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len)) 4630 return -EFAULT; 4631 return 0; 4632 4633 case TCP_FASTOPEN_KEY: { 4634 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)]; 4635 unsigned int key_len; 4636 4637 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4638 return -EFAULT; 4639 4640 key_len = tcp_fastopen_get_cipher(net, icsk, key) * 4641 TCP_FASTOPEN_KEY_LENGTH; 4642 len = min_t(unsigned int, len, key_len); 4643 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4644 return -EFAULT; 4645 if (copy_to_sockptr(optval, key, len)) 4646 return -EFAULT; 4647 return 0; 4648 } 4649 case TCP_THIN_LINEAR_TIMEOUTS: 4650 val = tp->thin_lto; 4651 break; 4652 4653 case TCP_THIN_DUPACK: 4654 val = 0; 4655 break; 4656 4657 case TCP_REPAIR: 4658 val = tp->repair; 4659 break; 4660 4661 case TCP_REPAIR_QUEUE: 4662 if (tp->repair) 4663 val = tp->repair_queue; 4664 else 4665 return -EINVAL; 4666 break; 4667 4668 case TCP_REPAIR_WINDOW: { 4669 struct tcp_repair_window opt; 4670 4671 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4672 return -EFAULT; 4673 4674 if (len != sizeof(opt)) 4675 return -EINVAL; 4676 4677 if (!tp->repair) 4678 return -EPERM; 4679 4680 opt.snd_wl1 = tp->snd_wl1; 4681 opt.snd_wnd = tp->snd_wnd; 4682 opt.max_window = tp->max_window; 4683 opt.rcv_wnd = tp->rcv_wnd; 4684 opt.rcv_wup = tp->rcv_wup; 4685 4686 if (copy_to_sockptr(optval, &opt, len)) 4687 return -EFAULT; 4688 return 0; 4689 } 4690 case TCP_QUEUE_SEQ: 4691 if (tp->repair_queue == TCP_SEND_QUEUE) 4692 val = tp->write_seq; 4693 else if (tp->repair_queue == TCP_RECV_QUEUE) 4694 val = tp->rcv_nxt; 4695 else 4696 return -EINVAL; 4697 break; 4698 4699 case TCP_USER_TIMEOUT: 4700 val = READ_ONCE(icsk->icsk_user_timeout); 4701 break; 4702 4703 case TCP_FASTOPEN: 4704 val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen); 4705 break; 4706 4707 case TCP_FASTOPEN_CONNECT: 4708 val = tp->fastopen_connect; 4709 break; 4710 4711 case TCP_FASTOPEN_NO_COOKIE: 4712 val = tp->fastopen_no_cookie; 4713 break; 4714 4715 case TCP_TX_DELAY: 4716 val = READ_ONCE(tp->tcp_tx_delay); 4717 break; 4718 4719 case TCP_TIMESTAMP: 4720 val = tcp_clock_ts(tp->tcp_usec_ts) + READ_ONCE(tp->tsoffset); 4721 if (tp->tcp_usec_ts) 4722 val |= 1; 4723 else 4724 val &= ~1; 4725 break; 4726 case TCP_NOTSENT_LOWAT: 4727 val = READ_ONCE(tp->notsent_lowat); 4728 break; 4729 case TCP_INQ: 4730 val = tp->recvmsg_inq; 4731 break; 4732 case TCP_SAVE_SYN: 4733 val = tp->save_syn; 4734 break; 4735 case TCP_SAVED_SYN: { 4736 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4737 return -EFAULT; 4738 4739 sockopt_lock_sock(sk); 4740 if (tp->saved_syn) { 4741 if (len < tcp_saved_syn_len(tp->saved_syn)) { 4742 len = tcp_saved_syn_len(tp->saved_syn); 4743 if (copy_to_sockptr(optlen, &len, sizeof(int))) { 4744 sockopt_release_sock(sk); 4745 return -EFAULT; 4746 } 4747 sockopt_release_sock(sk); 4748 return -EINVAL; 4749 } 4750 len = tcp_saved_syn_len(tp->saved_syn); 4751 if (copy_to_sockptr(optlen, &len, sizeof(int))) { 4752 sockopt_release_sock(sk); 4753 return -EFAULT; 4754 } 4755 if (copy_to_sockptr(optval, tp->saved_syn->data, len)) { 4756 sockopt_release_sock(sk); 4757 return -EFAULT; 4758 } 4759 tcp_saved_syn_free(tp); 4760 sockopt_release_sock(sk); 4761 } else { 4762 sockopt_release_sock(sk); 4763 len = 0; 4764 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4765 return -EFAULT; 4766 } 4767 return 0; 4768 } 4769 #ifdef CONFIG_MMU 4770 case TCP_ZEROCOPY_RECEIVE: { 4771 struct scm_timestamping_internal tss; 4772 struct tcp_zerocopy_receive zc = {}; 4773 int err; 4774 4775 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4776 return -EFAULT; 4777 if (len < 0 || 4778 len < offsetofend(struct tcp_zerocopy_receive, length)) 4779 return -EINVAL; 4780 if (unlikely(len > sizeof(zc))) { 4781 err = check_zeroed_sockptr(optval, sizeof(zc), 4782 len - sizeof(zc)); 4783 if (err < 1) 4784 return err == 0 ? -EINVAL : err; 4785 len = sizeof(zc); 4786 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4787 return -EFAULT; 4788 } 4789 if (copy_from_sockptr(&zc, optval, len)) 4790 return -EFAULT; 4791 if (zc.reserved) 4792 return -EINVAL; 4793 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS)) 4794 return -EINVAL; 4795 sockopt_lock_sock(sk); 4796 err = tcp_zerocopy_receive(sk, &zc, &tss); 4797 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname, 4798 &zc, &len, err); 4799 sockopt_release_sock(sk); 4800 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags)) 4801 goto zerocopy_rcv_cmsg; 4802 switch (len) { 4803 case offsetofend(struct tcp_zerocopy_receive, msg_flags): 4804 goto zerocopy_rcv_cmsg; 4805 case offsetofend(struct tcp_zerocopy_receive, msg_controllen): 4806 case offsetofend(struct tcp_zerocopy_receive, msg_control): 4807 case offsetofend(struct tcp_zerocopy_receive, flags): 4808 case offsetofend(struct tcp_zerocopy_receive, copybuf_len): 4809 case offsetofend(struct tcp_zerocopy_receive, copybuf_address): 4810 case offsetofend(struct tcp_zerocopy_receive, err): 4811 goto zerocopy_rcv_sk_err; 4812 case offsetofend(struct tcp_zerocopy_receive, inq): 4813 goto zerocopy_rcv_inq; 4814 case offsetofend(struct tcp_zerocopy_receive, length): 4815 default: 4816 goto zerocopy_rcv_out; 4817 } 4818 zerocopy_rcv_cmsg: 4819 if (zc.msg_flags & TCP_CMSG_TS) 4820 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss); 4821 else 4822 zc.msg_flags = 0; 4823 zerocopy_rcv_sk_err: 4824 if (!err) 4825 zc.err = sock_error(sk); 4826 zerocopy_rcv_inq: 4827 zc.inq = tcp_inq_hint(sk); 4828 zerocopy_rcv_out: 4829 if (!err && copy_to_sockptr(optval, &zc, len)) 4830 err = -EFAULT; 4831 return err; 4832 } 4833 #endif 4834 case TCP_AO_REPAIR: 4835 if (!tcp_can_repair_sock(sk)) 4836 return -EPERM; 4837 return tcp_ao_get_repair(sk, optval, optlen); 4838 case TCP_AO_GET_KEYS: 4839 case TCP_AO_INFO: { 4840 int err; 4841 4842 sockopt_lock_sock(sk); 4843 if (optname == TCP_AO_GET_KEYS) 4844 err = tcp_ao_get_mkts(sk, optval, optlen); 4845 else 4846 err = tcp_ao_get_sock_info(sk, optval, optlen); 4847 sockopt_release_sock(sk); 4848 4849 return err; 4850 } 4851 case TCP_IS_MPTCP: 4852 val = 0; 4853 break; 4854 case TCP_RTO_MAX_MS: 4855 val = jiffies_to_msecs(tcp_rto_max(sk)); 4856 break; 4857 case TCP_RTO_MIN_US: 4858 val = jiffies_to_usecs(READ_ONCE(inet_csk(sk)->icsk_rto_min)); 4859 break; 4860 case TCP_DELACK_MAX_US: 4861 val = jiffies_to_usecs(READ_ONCE(inet_csk(sk)->icsk_delack_max)); 4862 break; 4863 default: 4864 return -ENOPROTOOPT; 4865 } 4866 4867 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4868 return -EFAULT; 4869 if (copy_to_sockptr(optval, &val, len)) 4870 return -EFAULT; 4871 return 0; 4872 } 4873 4874 bool tcp_bpf_bypass_getsockopt(int level, int optname) 4875 { 4876 /* TCP do_tcp_getsockopt has optimized getsockopt implementation 4877 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE. 4878 */ 4879 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE) 4880 return true; 4881 4882 return false; 4883 } 4884 EXPORT_IPV6_MOD(tcp_bpf_bypass_getsockopt); 4885 4886 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 4887 int __user *optlen) 4888 { 4889 struct inet_connection_sock *icsk = inet_csk(sk); 4890 4891 if (level != SOL_TCP) 4892 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ 4893 return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname, 4894 optval, optlen); 4895 return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval), 4896 USER_SOCKPTR(optlen)); 4897 } 4898 EXPORT_IPV6_MOD(tcp_getsockopt); 4899 4900 #ifdef CONFIG_TCP_MD5SIG 4901 void tcp_md5_hash_skb_data(struct md5_ctx *ctx, const struct sk_buff *skb, 4902 unsigned int header_len) 4903 { 4904 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 4905 skb_headlen(skb) - header_len : 0; 4906 const struct skb_shared_info *shi = skb_shinfo(skb); 4907 struct sk_buff *frag_iter; 4908 unsigned int i; 4909 4910 md5_update(ctx, (const u8 *)tcp_hdr(skb) + header_len, head_data_len); 4911 4912 for (i = 0; i < shi->nr_frags; ++i) { 4913 const skb_frag_t *f = &shi->frags[i]; 4914 u32 p_off, p_len, copied; 4915 const void *vaddr; 4916 struct page *p; 4917 4918 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f), 4919 p, p_off, p_len, copied) { 4920 vaddr = kmap_local_page(p); 4921 md5_update(ctx, vaddr + p_off, p_len); 4922 kunmap_local(vaddr); 4923 } 4924 } 4925 4926 skb_walk_frags(skb, frag_iter) 4927 tcp_md5_hash_skb_data(ctx, frag_iter, 0); 4928 } 4929 EXPORT_IPV6_MOD(tcp_md5_hash_skb_data); 4930 4931 void tcp_md5_hash_key(struct md5_ctx *ctx, 4932 const struct tcp_md5sig_key *key) 4933 { 4934 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */ 4935 4936 /* We use data_race() because tcp_md5_do_add() might change 4937 * key->key under us 4938 */ 4939 data_race(({ md5_update(ctx, key->key, keylen), 0; })); 4940 } 4941 EXPORT_IPV6_MOD(tcp_md5_hash_key); 4942 4943 /* Called with rcu_read_lock() */ 4944 static enum skb_drop_reason 4945 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, 4946 const void *saddr, const void *daddr, 4947 int family, int l3index, const __u8 *hash_location) 4948 { 4949 /* This gets called for each TCP segment that has TCP-MD5 option. 4950 * We have 2 drop cases: 4951 * o An MD5 signature is present, but we're not expecting one. 4952 * o The MD5 signature is wrong. 4953 */ 4954 const struct tcp_sock *tp = tcp_sk(sk); 4955 struct tcp_md5sig_key *key; 4956 u8 newhash[16]; 4957 4958 key = tcp_md5_do_lookup(sk, l3index, saddr, family); 4959 if (!key) { 4960 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED); 4961 trace_tcp_hash_md5_unexpected(sk, skb); 4962 return SKB_DROP_REASON_TCP_MD5UNEXPECTED; 4963 } 4964 4965 /* Check the signature. 4966 * To support dual stack listeners, we need to handle 4967 * IPv4-mapped case. 4968 */ 4969 if (family == AF_INET) 4970 tcp_v4_md5_hash_skb(newhash, key, NULL, skb); 4971 else 4972 tp->af_specific->calc_md5_hash(newhash, key, NULL, skb); 4973 if (memcmp(hash_location, newhash, 16) != 0) { 4974 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE); 4975 trace_tcp_hash_md5_mismatch(sk, skb); 4976 return SKB_DROP_REASON_TCP_MD5FAILURE; 4977 } 4978 return SKB_NOT_DROPPED_YET; 4979 } 4980 #else 4981 static inline enum skb_drop_reason 4982 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, 4983 const void *saddr, const void *daddr, 4984 int family, int l3index, const __u8 *hash_location) 4985 { 4986 return SKB_NOT_DROPPED_YET; 4987 } 4988 4989 #endif 4990 4991 /* Called with rcu_read_lock() */ 4992 enum skb_drop_reason 4993 tcp_inbound_hash(struct sock *sk, const struct request_sock *req, 4994 const struct sk_buff *skb, 4995 const void *saddr, const void *daddr, 4996 int family, int dif, int sdif) 4997 { 4998 const struct tcphdr *th = tcp_hdr(skb); 4999 const struct tcp_ao_hdr *aoh; 5000 const __u8 *md5_location; 5001 int l3index; 5002 5003 /* Invalid option or two times meet any of auth options */ 5004 if (tcp_parse_auth_options(th, &md5_location, &aoh)) { 5005 trace_tcp_hash_bad_header(sk, skb); 5006 return SKB_DROP_REASON_TCP_AUTH_HDR; 5007 } 5008 5009 if (req) { 5010 if (tcp_rsk_used_ao(req) != !!aoh) { 5011 u8 keyid, rnext, maclen; 5012 5013 if (aoh) { 5014 keyid = aoh->keyid; 5015 rnext = aoh->rnext_keyid; 5016 maclen = tcp_ao_hdr_maclen(aoh); 5017 } else { 5018 keyid = rnext = maclen = 0; 5019 } 5020 5021 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOBAD); 5022 trace_tcp_ao_handshake_failure(sk, skb, keyid, rnext, maclen); 5023 return SKB_DROP_REASON_TCP_AOFAILURE; 5024 } 5025 } 5026 5027 /* sdif set, means packet ingressed via a device 5028 * in an L3 domain and dif is set to the l3mdev 5029 */ 5030 l3index = sdif ? dif : 0; 5031 5032 /* Fast path: unsigned segments */ 5033 if (likely(!md5_location && !aoh)) { 5034 /* Drop if there's TCP-MD5 or TCP-AO key with any rcvid/sndid 5035 * for the remote peer. On TCP-AO established connection 5036 * the last key is impossible to remove, so there's 5037 * always at least one current_key. 5038 */ 5039 if (tcp_ao_required(sk, saddr, family, l3index, true)) { 5040 trace_tcp_hash_ao_required(sk, skb); 5041 return SKB_DROP_REASON_TCP_AONOTFOUND; 5042 } 5043 if (unlikely(tcp_md5_do_lookup(sk, l3index, saddr, family))) { 5044 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND); 5045 trace_tcp_hash_md5_required(sk, skb); 5046 return SKB_DROP_REASON_TCP_MD5NOTFOUND; 5047 } 5048 return SKB_NOT_DROPPED_YET; 5049 } 5050 5051 if (aoh) 5052 return tcp_inbound_ao_hash(sk, skb, family, req, l3index, aoh); 5053 5054 return tcp_inbound_md5_hash(sk, skb, saddr, daddr, family, 5055 l3index, md5_location); 5056 } 5057 EXPORT_IPV6_MOD_GPL(tcp_inbound_hash); 5058 5059 void tcp_done(struct sock *sk) 5060 { 5061 struct request_sock *req; 5062 5063 /* We might be called with a new socket, after 5064 * inet_csk_prepare_forced_close() has been called 5065 * so we can not use lockdep_sock_is_held(sk) 5066 */ 5067 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1); 5068 5069 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 5070 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 5071 5072 tcp_set_state(sk, TCP_CLOSE); 5073 tcp_clear_xmit_timers(sk); 5074 if (req) 5075 reqsk_fastopen_remove(sk, req, false); 5076 5077 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 5078 5079 if (!sock_flag(sk, SOCK_DEAD)) 5080 sk->sk_state_change(sk); 5081 else 5082 inet_csk_destroy_sock(sk); 5083 } 5084 EXPORT_SYMBOL_GPL(tcp_done); 5085 5086 int tcp_abort(struct sock *sk, int err) 5087 { 5088 int state = inet_sk_state_load(sk); 5089 5090 if (state == TCP_NEW_SYN_RECV) { 5091 struct request_sock *req = inet_reqsk(sk); 5092 5093 local_bh_disable(); 5094 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 5095 local_bh_enable(); 5096 return 0; 5097 } 5098 if (state == TCP_TIME_WAIT) { 5099 struct inet_timewait_sock *tw = inet_twsk(sk); 5100 5101 refcount_inc(&tw->tw_refcnt); 5102 local_bh_disable(); 5103 inet_twsk_deschedule_put(tw); 5104 local_bh_enable(); 5105 return 0; 5106 } 5107 5108 /* BPF context ensures sock locking. */ 5109 if (!has_current_bpf_ctx()) 5110 /* Don't race with userspace socket closes such as tcp_close. */ 5111 lock_sock(sk); 5112 5113 /* Avoid closing the same socket twice. */ 5114 if (sk->sk_state == TCP_CLOSE) { 5115 if (!has_current_bpf_ctx()) 5116 release_sock(sk); 5117 return -ENOENT; 5118 } 5119 5120 if (sk->sk_state == TCP_LISTEN) { 5121 tcp_set_state(sk, TCP_CLOSE); 5122 inet_csk_listen_stop(sk); 5123 } 5124 5125 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 5126 local_bh_disable(); 5127 bh_lock_sock(sk); 5128 5129 if (tcp_need_reset(sk->sk_state)) 5130 tcp_send_active_reset(sk, GFP_ATOMIC, 5131 SK_RST_REASON_TCP_STATE); 5132 tcp_done_with_error(sk, err); 5133 5134 bh_unlock_sock(sk); 5135 local_bh_enable(); 5136 if (!has_current_bpf_ctx()) 5137 release_sock(sk); 5138 return 0; 5139 } 5140 EXPORT_SYMBOL_GPL(tcp_abort); 5141 5142 extern struct tcp_congestion_ops tcp_reno; 5143 5144 static __initdata unsigned long thash_entries; 5145 static int __init set_thash_entries(char *str) 5146 { 5147 ssize_t ret; 5148 5149 if (!str) 5150 return 0; 5151 5152 ret = kstrtoul(str, 0, &thash_entries); 5153 if (ret) 5154 return 0; 5155 5156 return 1; 5157 } 5158 __setup("thash_entries=", set_thash_entries); 5159 5160 static void __init tcp_init_mem(void) 5161 { 5162 unsigned long limit = nr_free_buffer_pages() / 16; 5163 5164 limit = max(limit, 128UL); 5165 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 5166 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 5167 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 5168 } 5169 5170 static void __init tcp_struct_check(void) 5171 { 5172 /* TX read-mostly hotpath cache lines */ 5173 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, max_window); 5174 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, rcv_ssthresh); 5175 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, reordering); 5176 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, notsent_lowat); 5177 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, gso_segs); 5178 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, retransmit_skb_hint); 5179 #if IS_ENABLED(CONFIG_TLS_DEVICE) 5180 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, tcp_clean_acked); 5181 #endif 5182 5183 /* TXRX read-mostly hotpath cache lines */ 5184 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, tsoffset); 5185 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_wnd); 5186 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, mss_cache); 5187 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_cwnd); 5188 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, prr_out); 5189 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, lost_out); 5190 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, sacked_out); 5191 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, scaling_ratio); 5192 5193 /* RX read-mostly hotpath cache lines */ 5194 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, copied_seq); 5195 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_wl1); 5196 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, tlp_high_seq); 5197 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rttvar_us); 5198 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, retrans_out); 5199 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, advmss); 5200 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, urg_data); 5201 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, lost); 5202 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rtt_min); 5203 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, out_of_order_queue); 5204 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_ssthresh); 5205 5206 /* TX read-write hotpath cache lines */ 5207 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, segs_out); 5208 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, data_segs_out); 5209 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, bytes_sent); 5210 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, snd_sml); 5211 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_start); 5212 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_stat); 5213 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, write_seq); 5214 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, pushed_seq); 5215 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, lsndtime); 5216 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, mdev_us); 5217 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tcp_wstamp_ns); 5218 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, accecn_opt_tstamp); 5219 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, rtt_seq); 5220 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tsorted_sent_queue); 5221 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, highest_sack); 5222 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, ecn_flags); 5223 5224 /* TXRX read-write hotpath cache lines */ 5225 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, pred_flags); 5226 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_clock_cache); 5227 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_mstamp); 5228 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_nxt); 5229 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_nxt); 5230 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_una); 5231 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, window_clamp); 5232 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, srtt_us); 5233 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, packets_out); 5234 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_up); 5235 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered); 5236 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered_ce); 5237 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, received_ce); 5238 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, received_ecn_bytes); 5239 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, app_limited); 5240 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_wnd); 5241 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_tstamp); 5242 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rx_opt); 5243 5244 /* RX read-write hotpath cache lines */ 5245 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_received); 5246 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, segs_in); 5247 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, data_segs_in); 5248 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_wup); 5249 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, max_packets_out); 5250 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, cwnd_usage_seq); 5251 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_delivered); 5252 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_interval_us); 5253 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_last_tsecr); 5254 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, delivered_ecn_bytes); 5255 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, pkts_acked_ewma); 5256 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, first_tx_mstamp); 5257 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, delivered_mstamp); 5258 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_acked); 5259 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_est); 5260 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcvq_space); 5261 } 5262 5263 void __init tcp_init(void) 5264 { 5265 int max_rshare, max_wshare, cnt; 5266 unsigned long limit; 5267 unsigned int i; 5268 5269 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE); 5270 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 5271 sizeof_field(struct sk_buff, cb)); 5272 5273 tcp_struct_check(); 5274 5275 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 5276 5277 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE); 5278 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 5279 5280 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 5281 thash_entries, 21, /* one slot per 2 MB*/ 5282 0, 64 * 1024); 5283 tcp_hashinfo.bind_bucket_cachep = 5284 kmem_cache_create("tcp_bind_bucket", 5285 sizeof(struct inet_bind_bucket), 0, 5286 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 5287 SLAB_ACCOUNT, 5288 NULL); 5289 tcp_hashinfo.bind2_bucket_cachep = 5290 kmem_cache_create("tcp_bind2_bucket", 5291 sizeof(struct inet_bind2_bucket), 0, 5292 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 5293 SLAB_ACCOUNT, 5294 NULL); 5295 5296 /* Size and allocate the main established and bind bucket 5297 * hash tables. 5298 * 5299 * The methodology is similar to that of the buffer cache. 5300 */ 5301 tcp_hashinfo.ehash = 5302 alloc_large_system_hash("TCP established", 5303 sizeof(struct inet_ehash_bucket), 5304 thash_entries, 5305 17, /* one slot per 128 KB of memory */ 5306 0, 5307 NULL, 5308 &tcp_hashinfo.ehash_mask, 5309 0, 5310 thash_entries ? 0 : 512 * 1024); 5311 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 5312 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 5313 5314 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 5315 panic("TCP: failed to alloc ehash_locks"); 5316 tcp_hashinfo.bhash = 5317 alloc_large_system_hash("TCP bind", 5318 2 * sizeof(struct inet_bind_hashbucket), 5319 tcp_hashinfo.ehash_mask + 1, 5320 17, /* one slot per 128 KB of memory */ 5321 0, 5322 &tcp_hashinfo.bhash_size, 5323 NULL, 5324 0, 5325 64 * 1024); 5326 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 5327 tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size; 5328 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 5329 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 5330 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 5331 spin_lock_init(&tcp_hashinfo.bhash2[i].lock); 5332 INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain); 5333 } 5334 5335 tcp_hashinfo.pernet = false; 5336 5337 cnt = tcp_hashinfo.ehash_mask + 1; 5338 sysctl_tcp_max_orphans = cnt / 2; 5339 5340 tcp_init_mem(); 5341 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 5342 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 5343 max_wshare = min(4UL*1024*1024, limit); 5344 max_rshare = min(32UL*1024*1024, limit); 5345 5346 init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE; 5347 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 5348 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 5349 5350 init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE; 5351 init_net.ipv4.sysctl_tcp_rmem[1] = 131072; 5352 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); 5353 5354 pr_info("Hash tables configured (established %u bind %u)\n", 5355 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 5356 5357 tcp_v4_init(); 5358 tcp_metrics_init(); 5359 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 5360 tcp_tsq_work_init(); 5361 mptcp_init(); 5362 } 5363