xref: /linux/net/ipv4/tcp_input.c (revision aba74e639f8d76d29b94991615e33319d7371b63)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:
24  *		Pedro Roque	:	Fast Retransmit/Recovery.
25  *					Two receive queues.
26  *					Retransmit queue handled by TCP.
27  *					Better retransmit timer handling.
28  *					New congestion avoidance.
29  *					Header prediction.
30  *					Variable renaming.
31  *
32  *		Eric		:	Fast Retransmit.
33  *		Randy Scott	:	MSS option defines.
34  *		Eric Schenk	:	Fixes to slow start algorithm.
35  *		Eric Schenk	:	Yet another double ACK bug.
36  *		Eric Schenk	:	Delayed ACK bug fixes.
37  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
38  *		David S. Miller	:	Don't allow zero congestion window.
39  *		Eric Schenk	:	Fix retransmitter so that it sends
40  *					next packet on ack of previous packet.
41  *		Andi Kleen	:	Moved open_request checking here
42  *					and process RSTs for open_requests.
43  *		Andi Kleen	:	Better prune_queue, and other fixes.
44  *		Andrey Savochkin:	Fix RTT measurements in the presence of
45  *					timestamps.
46  *		Andrey Savochkin:	Check sequence numbers correctly when
47  *					removing SACKs due to in sequence incoming
48  *					data segments.
49  *		Andi Kleen:		Make sure we never ack data there is not
50  *					enough room for. Also make this condition
51  *					a fatal error if it might still happen.
52  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
53  *					connections with MSS<min(MTU,ann. MSS)
54  *					work without delayed acks.
55  *		Andi Kleen:		Process packets with PSH set in the
56  *					fast path.
57  *		J Hadi Salim:		ECN support
58  *	 	Andrei Gurtov,
59  *		Pasi Sarolahti,
60  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
61  *					engine. Lots of bugs are found.
62  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
63  */
64 
65 #define pr_fmt(fmt) "TCP: " fmt
66 
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/proto_memory.h>
76 #include <net/inet_common.h>
77 #include <linux/ipsec.h>
78 #include <linux/unaligned.h>
79 #include <linux/errqueue.h>
80 #include <trace/events/tcp.h>
81 #include <linux/jump_label_ratelimit.h>
82 #include <net/busy_poll.h>
83 #include <net/mptcp.h>
84 
85 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
86 
87 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
88 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
89 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
90 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
91 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
92 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
93 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
94 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
95 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
96 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
97 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
98 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
99 #define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
100 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
101 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
102 #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
103 #define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
104 #define FLAG_DSACK_TLP		0x20000 /* DSACK for tail loss probe */
105 
106 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
107 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
108 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
109 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
110 
111 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
112 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
113 
114 #define REXMIT_NONE	0 /* no loss recovery to do */
115 #define REXMIT_LOST	1 /* retransmit packets marked lost */
116 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
117 
118 #if IS_ENABLED(CONFIG_TLS_DEVICE)
119 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
120 
clean_acked_data_enable(struct inet_connection_sock * icsk,void (* cad)(struct sock * sk,u32 ack_seq))121 void clean_acked_data_enable(struct inet_connection_sock *icsk,
122 			     void (*cad)(struct sock *sk, u32 ack_seq))
123 {
124 	icsk->icsk_clean_acked = cad;
125 	static_branch_deferred_inc(&clean_acked_data_enabled);
126 }
127 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
128 
clean_acked_data_disable(struct inet_connection_sock * icsk)129 void clean_acked_data_disable(struct inet_connection_sock *icsk)
130 {
131 	static_branch_slow_dec_deferred(&clean_acked_data_enabled);
132 	icsk->icsk_clean_acked = NULL;
133 }
134 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
135 
clean_acked_data_flush(void)136 void clean_acked_data_flush(void)
137 {
138 	static_key_deferred_flush(&clean_acked_data_enabled);
139 }
140 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
141 #endif
142 
143 #ifdef CONFIG_CGROUP_BPF
bpf_skops_parse_hdr(struct sock * sk,struct sk_buff * skb)144 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
145 {
146 	bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
147 		BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
148 				       BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
149 	bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
150 						    BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
151 	struct bpf_sock_ops_kern sock_ops;
152 
153 	if (likely(!unknown_opt && !parse_all_opt))
154 		return;
155 
156 	/* The skb will be handled in the
157 	 * bpf_skops_established() or
158 	 * bpf_skops_write_hdr_opt().
159 	 */
160 	switch (sk->sk_state) {
161 	case TCP_SYN_RECV:
162 	case TCP_SYN_SENT:
163 	case TCP_LISTEN:
164 		return;
165 	}
166 
167 	sock_owned_by_me(sk);
168 
169 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
170 	sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
171 	sock_ops.is_fullsock = 1;
172 	sock_ops.sk = sk;
173 	bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
174 
175 	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
176 }
177 
bpf_skops_established(struct sock * sk,int bpf_op,struct sk_buff * skb)178 static void bpf_skops_established(struct sock *sk, int bpf_op,
179 				  struct sk_buff *skb)
180 {
181 	struct bpf_sock_ops_kern sock_ops;
182 
183 	sock_owned_by_me(sk);
184 
185 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
186 	sock_ops.op = bpf_op;
187 	sock_ops.is_fullsock = 1;
188 	sock_ops.sk = sk;
189 	/* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
190 	if (skb)
191 		bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
192 
193 	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
194 }
195 #else
bpf_skops_parse_hdr(struct sock * sk,struct sk_buff * skb)196 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
197 {
198 }
199 
bpf_skops_established(struct sock * sk,int bpf_op,struct sk_buff * skb)200 static void bpf_skops_established(struct sock *sk, int bpf_op,
201 				  struct sk_buff *skb)
202 {
203 }
204 #endif
205 
tcp_gro_dev_warn(const struct sock * sk,const struct sk_buff * skb,unsigned int len)206 static __cold void tcp_gro_dev_warn(const struct sock *sk, const struct sk_buff *skb,
207 				    unsigned int len)
208 {
209 	struct net_device *dev;
210 
211 	rcu_read_lock();
212 	dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
213 	if (!dev || len >= READ_ONCE(dev->mtu))
214 		pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
215 			dev ? dev->name : "Unknown driver");
216 	rcu_read_unlock();
217 }
218 
219 /* Adapt the MSS value used to make delayed ack decision to the
220  * real world.
221  */
tcp_measure_rcv_mss(struct sock * sk,const struct sk_buff * skb)222 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
223 {
224 	struct inet_connection_sock *icsk = inet_csk(sk);
225 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
226 	unsigned int len;
227 
228 	icsk->icsk_ack.last_seg_size = 0;
229 
230 	/* skb->len may jitter because of SACKs, even if peer
231 	 * sends good full-sized frames.
232 	 */
233 	len = skb_shinfo(skb)->gso_size ? : skb->len;
234 	if (len >= icsk->icsk_ack.rcv_mss) {
235 		/* Note: divides are still a bit expensive.
236 		 * For the moment, only adjust scaling_ratio
237 		 * when we update icsk_ack.rcv_mss.
238 		 */
239 		if (unlikely(len != icsk->icsk_ack.rcv_mss)) {
240 			u64 val = (u64)skb->len << TCP_RMEM_TO_WIN_SCALE;
241 			u8 old_ratio = tcp_sk(sk)->scaling_ratio;
242 
243 			do_div(val, skb->truesize);
244 			tcp_sk(sk)->scaling_ratio = val ? val : 1;
245 
246 			if (old_ratio != tcp_sk(sk)->scaling_ratio)
247 				WRITE_ONCE(tcp_sk(sk)->window_clamp,
248 					   tcp_win_from_space(sk, sk->sk_rcvbuf));
249 		}
250 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
251 					       tcp_sk(sk)->advmss);
252 		/* Account for possibly-removed options */
253 		DO_ONCE_LITE_IF(len > icsk->icsk_ack.rcv_mss + MAX_TCP_OPTION_SPACE,
254 				tcp_gro_dev_warn, sk, skb, len);
255 		/* If the skb has a len of exactly 1*MSS and has the PSH bit
256 		 * set then it is likely the end of an application write. So
257 		 * more data may not be arriving soon, and yet the data sender
258 		 * may be waiting for an ACK if cwnd-bound or using TX zero
259 		 * copy. So we set ICSK_ACK_PUSHED here so that
260 		 * tcp_cleanup_rbuf() will send an ACK immediately if the app
261 		 * reads all of the data and is not ping-pong. If len > MSS
262 		 * then this logic does not matter (and does not hurt) because
263 		 * tcp_cleanup_rbuf() will always ACK immediately if the app
264 		 * reads data and there is more than an MSS of unACKed data.
265 		 */
266 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_PSH)
267 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
268 	} else {
269 		/* Otherwise, we make more careful check taking into account,
270 		 * that SACKs block is variable.
271 		 *
272 		 * "len" is invariant segment length, including TCP header.
273 		 */
274 		len += skb->data - skb_transport_header(skb);
275 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
276 		    /* If PSH is not set, packet should be
277 		     * full sized, provided peer TCP is not badly broken.
278 		     * This observation (if it is correct 8)) allows
279 		     * to handle super-low mtu links fairly.
280 		     */
281 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
282 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
283 			/* Subtract also invariant (if peer is RFC compliant),
284 			 * tcp header plus fixed timestamp option length.
285 			 * Resulting "len" is MSS free of SACK jitter.
286 			 */
287 			len -= tcp_sk(sk)->tcp_header_len;
288 			icsk->icsk_ack.last_seg_size = len;
289 			if (len == lss) {
290 				icsk->icsk_ack.rcv_mss = len;
291 				return;
292 			}
293 		}
294 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
295 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
296 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
297 	}
298 }
299 
tcp_incr_quickack(struct sock * sk,unsigned int max_quickacks)300 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
301 {
302 	struct inet_connection_sock *icsk = inet_csk(sk);
303 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
304 
305 	if (quickacks == 0)
306 		quickacks = 2;
307 	quickacks = min(quickacks, max_quickacks);
308 	if (quickacks > icsk->icsk_ack.quick)
309 		icsk->icsk_ack.quick = quickacks;
310 }
311 
tcp_enter_quickack_mode(struct sock * sk,unsigned int max_quickacks)312 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
313 {
314 	struct inet_connection_sock *icsk = inet_csk(sk);
315 
316 	tcp_incr_quickack(sk, max_quickacks);
317 	inet_csk_exit_pingpong_mode(sk);
318 	icsk->icsk_ack.ato = TCP_ATO_MIN;
319 }
320 
321 /* Send ACKs quickly, if "quick" count is not exhausted
322  * and the session is not interactive.
323  */
324 
tcp_in_quickack_mode(struct sock * sk)325 static bool tcp_in_quickack_mode(struct sock *sk)
326 {
327 	const struct inet_connection_sock *icsk = inet_csk(sk);
328 	const struct dst_entry *dst = __sk_dst_get(sk);
329 
330 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
331 		(icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
332 }
333 
tcp_ecn_queue_cwr(struct tcp_sock * tp)334 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
335 {
336 	if (tp->ecn_flags & TCP_ECN_OK)
337 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
338 }
339 
tcp_ecn_accept_cwr(struct sock * sk,const struct sk_buff * skb)340 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
341 {
342 	if (tcp_hdr(skb)->cwr) {
343 		tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
344 
345 		/* If the sender is telling us it has entered CWR, then its
346 		 * cwnd may be very low (even just 1 packet), so we should ACK
347 		 * immediately.
348 		 */
349 		if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
350 			inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
351 	}
352 }
353 
tcp_ecn_withdraw_cwr(struct tcp_sock * tp)354 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
355 {
356 	tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
357 }
358 
__tcp_ecn_check_ce(struct sock * sk,const struct sk_buff * skb)359 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
360 {
361 	struct tcp_sock *tp = tcp_sk(sk);
362 
363 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
364 	case INET_ECN_NOT_ECT:
365 		/* Funny extension: if ECT is not set on a segment,
366 		 * and we already seen ECT on a previous segment,
367 		 * it is probably a retransmit.
368 		 */
369 		if (tp->ecn_flags & TCP_ECN_SEEN)
370 			tcp_enter_quickack_mode(sk, 2);
371 		break;
372 	case INET_ECN_CE:
373 		if (tcp_ca_needs_ecn(sk))
374 			tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
375 
376 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
377 			/* Better not delay acks, sender can have a very low cwnd */
378 			tcp_enter_quickack_mode(sk, 2);
379 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
380 		}
381 		tp->ecn_flags |= TCP_ECN_SEEN;
382 		break;
383 	default:
384 		if (tcp_ca_needs_ecn(sk))
385 			tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
386 		tp->ecn_flags |= TCP_ECN_SEEN;
387 		break;
388 	}
389 }
390 
tcp_ecn_check_ce(struct sock * sk,const struct sk_buff * skb)391 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
392 {
393 	if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
394 		__tcp_ecn_check_ce(sk, skb);
395 }
396 
tcp_ecn_rcv_synack(struct tcp_sock * tp,const struct tcphdr * th)397 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
398 {
399 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
400 		tp->ecn_flags &= ~TCP_ECN_OK;
401 }
402 
tcp_ecn_rcv_syn(struct tcp_sock * tp,const struct tcphdr * th)403 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
404 {
405 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
406 		tp->ecn_flags &= ~TCP_ECN_OK;
407 }
408 
tcp_ecn_rcv_ecn_echo(const struct tcp_sock * tp,const struct tcphdr * th)409 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
410 {
411 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
412 		return true;
413 	return false;
414 }
415 
416 /* Buffer size and advertised window tuning.
417  *
418  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
419  */
420 
tcp_sndbuf_expand(struct sock * sk)421 static void tcp_sndbuf_expand(struct sock *sk)
422 {
423 	const struct tcp_sock *tp = tcp_sk(sk);
424 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
425 	int sndmem, per_mss;
426 	u32 nr_segs;
427 
428 	/* Worst case is non GSO/TSO : each frame consumes one skb
429 	 * and skb->head is kmalloced using power of two area of memory
430 	 */
431 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
432 		  MAX_TCP_HEADER +
433 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
434 
435 	per_mss = roundup_pow_of_two(per_mss) +
436 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
437 
438 	nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp));
439 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
440 
441 	/* Fast Recovery (RFC 5681 3.2) :
442 	 * Cubic needs 1.7 factor, rounded to 2 to include
443 	 * extra cushion (application might react slowly to EPOLLOUT)
444 	 */
445 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
446 	sndmem *= nr_segs * per_mss;
447 
448 	if (sk->sk_sndbuf < sndmem)
449 		WRITE_ONCE(sk->sk_sndbuf,
450 			   min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2])));
451 }
452 
453 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
454  *
455  * All tcp_full_space() is split to two parts: "network" buffer, allocated
456  * forward and advertised in receiver window (tp->rcv_wnd) and
457  * "application buffer", required to isolate scheduling/application
458  * latencies from network.
459  * window_clamp is maximal advertised window. It can be less than
460  * tcp_full_space(), in this case tcp_full_space() - window_clamp
461  * is reserved for "application" buffer. The less window_clamp is
462  * the smoother our behaviour from viewpoint of network, but the lower
463  * throughput and the higher sensitivity of the connection to losses. 8)
464  *
465  * rcv_ssthresh is more strict window_clamp used at "slow start"
466  * phase to predict further behaviour of this connection.
467  * It is used for two goals:
468  * - to enforce header prediction at sender, even when application
469  *   requires some significant "application buffer". It is check #1.
470  * - to prevent pruning of receive queue because of misprediction
471  *   of receiver window. Check #2.
472  *
473  * The scheme does not work when sender sends good segments opening
474  * window and then starts to feed us spaghetti. But it should work
475  * in common situations. Otherwise, we have to rely on queue collapsing.
476  */
477 
478 /* Slow part of check#2. */
__tcp_grow_window(const struct sock * sk,const struct sk_buff * skb,unsigned int skbtruesize)479 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb,
480 			     unsigned int skbtruesize)
481 {
482 	const struct tcp_sock *tp = tcp_sk(sk);
483 	/* Optimize this! */
484 	int truesize = tcp_win_from_space(sk, skbtruesize) >> 1;
485 	int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1;
486 
487 	while (tp->rcv_ssthresh <= window) {
488 		if (truesize <= skb->len)
489 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
490 
491 		truesize >>= 1;
492 		window >>= 1;
493 	}
494 	return 0;
495 }
496 
497 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing
498  * can play nice with us, as sk_buff and skb->head might be either
499  * freed or shared with up to MAX_SKB_FRAGS segments.
500  * Only give a boost to drivers using page frag(s) to hold the frame(s),
501  * and if no payload was pulled in skb->head before reaching us.
502  */
truesize_adjust(bool adjust,const struct sk_buff * skb)503 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb)
504 {
505 	u32 truesize = skb->truesize;
506 
507 	if (adjust && !skb_headlen(skb)) {
508 		truesize -= SKB_TRUESIZE(skb_end_offset(skb));
509 		/* paranoid check, some drivers might be buggy */
510 		if (unlikely((int)truesize < (int)skb->len))
511 			truesize = skb->truesize;
512 	}
513 	return truesize;
514 }
515 
tcp_grow_window(struct sock * sk,const struct sk_buff * skb,bool adjust)516 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb,
517 			    bool adjust)
518 {
519 	struct tcp_sock *tp = tcp_sk(sk);
520 	int room;
521 
522 	room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
523 
524 	if (room <= 0)
525 		return;
526 
527 	/* Check #1 */
528 	if (!tcp_under_memory_pressure(sk)) {
529 		unsigned int truesize = truesize_adjust(adjust, skb);
530 		int incr;
531 
532 		/* Check #2. Increase window, if skb with such overhead
533 		 * will fit to rcvbuf in future.
534 		 */
535 		if (tcp_win_from_space(sk, truesize) <= skb->len)
536 			incr = 2 * tp->advmss;
537 		else
538 			incr = __tcp_grow_window(sk, skb, truesize);
539 
540 		if (incr) {
541 			incr = max_t(int, incr, 2 * skb->len);
542 			tp->rcv_ssthresh += min(room, incr);
543 			inet_csk(sk)->icsk_ack.quick |= 1;
544 		}
545 	} else {
546 		/* Under pressure:
547 		 * Adjust rcv_ssthresh according to reserved mem
548 		 */
549 		tcp_adjust_rcv_ssthresh(sk);
550 	}
551 }
552 
553 /* 3. Try to fixup all. It is made immediately after connection enters
554  *    established state.
555  */
tcp_init_buffer_space(struct sock * sk)556 static void tcp_init_buffer_space(struct sock *sk)
557 {
558 	int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win);
559 	struct tcp_sock *tp = tcp_sk(sk);
560 	int maxwin;
561 
562 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
563 		tcp_sndbuf_expand(sk);
564 
565 	tcp_mstamp_refresh(tp);
566 	tp->rcvq_space.time = tp->tcp_mstamp;
567 	tp->rcvq_space.seq = tp->copied_seq;
568 
569 	maxwin = tcp_full_space(sk);
570 
571 	if (tp->window_clamp >= maxwin) {
572 		WRITE_ONCE(tp->window_clamp, maxwin);
573 
574 		if (tcp_app_win && maxwin > 4 * tp->advmss)
575 			WRITE_ONCE(tp->window_clamp,
576 				   max(maxwin - (maxwin >> tcp_app_win),
577 				       4 * tp->advmss));
578 	}
579 
580 	/* Force reservation of one segment. */
581 	if (tcp_app_win &&
582 	    tp->window_clamp > 2 * tp->advmss &&
583 	    tp->window_clamp + tp->advmss > maxwin)
584 		WRITE_ONCE(tp->window_clamp,
585 			   max(2 * tp->advmss, maxwin - tp->advmss));
586 
587 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
588 	tp->snd_cwnd_stamp = tcp_jiffies32;
589 	tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
590 				    (u32)TCP_INIT_CWND * tp->advmss);
591 }
592 
593 /* 4. Recalculate window clamp after socket hit its memory bounds. */
tcp_clamp_window(struct sock * sk)594 static void tcp_clamp_window(struct sock *sk)
595 {
596 	struct tcp_sock *tp = tcp_sk(sk);
597 	struct inet_connection_sock *icsk = inet_csk(sk);
598 	struct net *net = sock_net(sk);
599 	int rmem2;
600 
601 	icsk->icsk_ack.quick = 0;
602 	rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]);
603 
604 	if (sk->sk_rcvbuf < rmem2 &&
605 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
606 	    !tcp_under_memory_pressure(sk) &&
607 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
608 		WRITE_ONCE(sk->sk_rcvbuf,
609 			   min(atomic_read(&sk->sk_rmem_alloc), rmem2));
610 	}
611 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
612 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
613 }
614 
615 /* Initialize RCV_MSS value.
616  * RCV_MSS is an our guess about MSS used by the peer.
617  * We haven't any direct information about the MSS.
618  * It's better to underestimate the RCV_MSS rather than overestimate.
619  * Overestimations make us ACKing less frequently than needed.
620  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
621  */
tcp_initialize_rcv_mss(struct sock * sk)622 void tcp_initialize_rcv_mss(struct sock *sk)
623 {
624 	const struct tcp_sock *tp = tcp_sk(sk);
625 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
626 
627 	hint = min(hint, tp->rcv_wnd / 2);
628 	hint = min(hint, TCP_MSS_DEFAULT);
629 	hint = max(hint, TCP_MIN_MSS);
630 
631 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
632 }
633 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
634 
635 /* Receiver "autotuning" code.
636  *
637  * The algorithm for RTT estimation w/o timestamps is based on
638  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
639  * <https://public.lanl.gov/radiant/pubs.html#DRS>
640  *
641  * More detail on this code can be found at
642  * <http://staff.psc.edu/jheffner/>,
643  * though this reference is out of date.  A new paper
644  * is pending.
645  */
tcp_rcv_rtt_update(struct tcp_sock * tp,u32 sample,int win_dep)646 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
647 {
648 	u32 new_sample = tp->rcv_rtt_est.rtt_us;
649 	long m = sample;
650 
651 	if (new_sample != 0) {
652 		/* If we sample in larger samples in the non-timestamp
653 		 * case, we could grossly overestimate the RTT especially
654 		 * with chatty applications or bulk transfer apps which
655 		 * are stalled on filesystem I/O.
656 		 *
657 		 * Also, since we are only going for a minimum in the
658 		 * non-timestamp case, we do not smooth things out
659 		 * else with timestamps disabled convergence takes too
660 		 * long.
661 		 */
662 		if (!win_dep) {
663 			m -= (new_sample >> 3);
664 			new_sample += m;
665 		} else {
666 			m <<= 3;
667 			if (m < new_sample)
668 				new_sample = m;
669 		}
670 	} else {
671 		/* No previous measure. */
672 		new_sample = m << 3;
673 	}
674 
675 	tp->rcv_rtt_est.rtt_us = new_sample;
676 }
677 
tcp_rcv_rtt_measure(struct tcp_sock * tp)678 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
679 {
680 	u32 delta_us;
681 
682 	if (tp->rcv_rtt_est.time == 0)
683 		goto new_measure;
684 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
685 		return;
686 	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
687 	if (!delta_us)
688 		delta_us = 1;
689 	tcp_rcv_rtt_update(tp, delta_us, 1);
690 
691 new_measure:
692 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
693 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
694 }
695 
tcp_rtt_tsopt_us(const struct tcp_sock * tp)696 static s32 tcp_rtt_tsopt_us(const struct tcp_sock *tp)
697 {
698 	u32 delta, delta_us;
699 
700 	delta = tcp_time_stamp_ts(tp) - tp->rx_opt.rcv_tsecr;
701 	if (tp->tcp_usec_ts)
702 		return delta;
703 
704 	if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
705 		if (!delta)
706 			delta = 1;
707 		delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
708 		return delta_us;
709 	}
710 	return -1;
711 }
712 
tcp_rcv_rtt_measure_ts(struct sock * sk,const struct sk_buff * skb)713 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
714 					  const struct sk_buff *skb)
715 {
716 	struct tcp_sock *tp = tcp_sk(sk);
717 
718 	if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
719 		return;
720 	tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
721 
722 	if (TCP_SKB_CB(skb)->end_seq -
723 	    TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
724 		s32 delta = tcp_rtt_tsopt_us(tp);
725 
726 		if (delta >= 0)
727 			tcp_rcv_rtt_update(tp, delta, 0);
728 	}
729 }
730 
731 /*
732  * This function should be called every time data is copied to user space.
733  * It calculates the appropriate TCP receive buffer space.
734  */
tcp_rcv_space_adjust(struct sock * sk)735 void tcp_rcv_space_adjust(struct sock *sk)
736 {
737 	struct tcp_sock *tp = tcp_sk(sk);
738 	u32 copied;
739 	int time;
740 
741 	trace_tcp_rcv_space_adjust(sk);
742 
743 	tcp_mstamp_refresh(tp);
744 	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
745 	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
746 		return;
747 
748 	/* Number of bytes copied to user in last RTT */
749 	copied = tp->copied_seq - tp->rcvq_space.seq;
750 	if (copied <= tp->rcvq_space.space)
751 		goto new_measure;
752 
753 	/* A bit of theory :
754 	 * copied = bytes received in previous RTT, our base window
755 	 * To cope with packet losses, we need a 2x factor
756 	 * To cope with slow start, and sender growing its cwin by 100 %
757 	 * every RTT, we need a 4x factor, because the ACK we are sending
758 	 * now is for the next RTT, not the current one :
759 	 * <prev RTT . ><current RTT .. ><next RTT .... >
760 	 */
761 
762 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
763 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
764 		u64 rcvwin, grow;
765 		int rcvbuf;
766 
767 		/* minimal window to cope with packet losses, assuming
768 		 * steady state. Add some cushion because of small variations.
769 		 */
770 		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
771 
772 		/* Accommodate for sender rate increase (eg. slow start) */
773 		grow = rcvwin * (copied - tp->rcvq_space.space);
774 		do_div(grow, tp->rcvq_space.space);
775 		rcvwin += (grow << 1);
776 
777 		rcvbuf = min_t(u64, tcp_space_from_win(sk, rcvwin),
778 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
779 		if (rcvbuf > sk->sk_rcvbuf) {
780 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
781 
782 			/* Make the window clamp follow along.  */
783 			WRITE_ONCE(tp->window_clamp,
784 				   tcp_win_from_space(sk, rcvbuf));
785 		}
786 	}
787 	tp->rcvq_space.space = copied;
788 
789 new_measure:
790 	tp->rcvq_space.seq = tp->copied_seq;
791 	tp->rcvq_space.time = tp->tcp_mstamp;
792 }
793 
tcp_save_lrcv_flowlabel(struct sock * sk,const struct sk_buff * skb)794 static void tcp_save_lrcv_flowlabel(struct sock *sk, const struct sk_buff *skb)
795 {
796 #if IS_ENABLED(CONFIG_IPV6)
797 	struct inet_connection_sock *icsk = inet_csk(sk);
798 
799 	if (skb->protocol == htons(ETH_P_IPV6))
800 		icsk->icsk_ack.lrcv_flowlabel = ntohl(ip6_flowlabel(ipv6_hdr(skb)));
801 #endif
802 }
803 
804 /* There is something which you must keep in mind when you analyze the
805  * behavior of the tp->ato delayed ack timeout interval.  When a
806  * connection starts up, we want to ack as quickly as possible.  The
807  * problem is that "good" TCP's do slow start at the beginning of data
808  * transmission.  The means that until we send the first few ACK's the
809  * sender will sit on his end and only queue most of his data, because
810  * he can only send snd_cwnd unacked packets at any given time.  For
811  * each ACK we send, he increments snd_cwnd and transmits more of his
812  * queue.  -DaveM
813  */
tcp_event_data_recv(struct sock * sk,struct sk_buff * skb)814 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
815 {
816 	struct tcp_sock *tp = tcp_sk(sk);
817 	struct inet_connection_sock *icsk = inet_csk(sk);
818 	u32 now;
819 
820 	inet_csk_schedule_ack(sk);
821 
822 	tcp_measure_rcv_mss(sk, skb);
823 
824 	tcp_rcv_rtt_measure(tp);
825 
826 	now = tcp_jiffies32;
827 
828 	if (!icsk->icsk_ack.ato) {
829 		/* The _first_ data packet received, initialize
830 		 * delayed ACK engine.
831 		 */
832 		tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
833 		icsk->icsk_ack.ato = TCP_ATO_MIN;
834 	} else {
835 		int m = now - icsk->icsk_ack.lrcvtime;
836 
837 		if (m <= TCP_ATO_MIN / 2) {
838 			/* The fastest case is the first. */
839 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
840 		} else if (m < icsk->icsk_ack.ato) {
841 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
842 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
843 				icsk->icsk_ack.ato = icsk->icsk_rto;
844 		} else if (m > icsk->icsk_rto) {
845 			/* Too long gap. Apparently sender failed to
846 			 * restart window, so that we send ACKs quickly.
847 			 */
848 			tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
849 		}
850 	}
851 	icsk->icsk_ack.lrcvtime = now;
852 	tcp_save_lrcv_flowlabel(sk, skb);
853 
854 	tcp_ecn_check_ce(sk, skb);
855 
856 	if (skb->len >= 128)
857 		tcp_grow_window(sk, skb, true);
858 }
859 
860 /* Called to compute a smoothed rtt estimate. The data fed to this
861  * routine either comes from timestamps, or from segments that were
862  * known _not_ to have been retransmitted [see Karn/Partridge
863  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
864  * piece by Van Jacobson.
865  * NOTE: the next three routines used to be one big routine.
866  * To save cycles in the RFC 1323 implementation it was better to break
867  * it up into three procedures. -- erics
868  */
tcp_rtt_estimator(struct sock * sk,long mrtt_us)869 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
870 {
871 	struct tcp_sock *tp = tcp_sk(sk);
872 	long m = mrtt_us; /* RTT */
873 	u32 srtt = tp->srtt_us;
874 
875 	/*	The following amusing code comes from Jacobson's
876 	 *	article in SIGCOMM '88.  Note that rtt and mdev
877 	 *	are scaled versions of rtt and mean deviation.
878 	 *	This is designed to be as fast as possible
879 	 *	m stands for "measurement".
880 	 *
881 	 *	On a 1990 paper the rto value is changed to:
882 	 *	RTO = rtt + 4 * mdev
883 	 *
884 	 * Funny. This algorithm seems to be very broken.
885 	 * These formulae increase RTO, when it should be decreased, increase
886 	 * too slowly, when it should be increased quickly, decrease too quickly
887 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
888 	 * does not matter how to _calculate_ it. Seems, it was trap
889 	 * that VJ failed to avoid. 8)
890 	 */
891 	if (srtt != 0) {
892 		m -= (srtt >> 3);	/* m is now error in rtt est */
893 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
894 		if (m < 0) {
895 			m = -m;		/* m is now abs(error) */
896 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
897 			/* This is similar to one of Eifel findings.
898 			 * Eifel blocks mdev updates when rtt decreases.
899 			 * This solution is a bit different: we use finer gain
900 			 * for mdev in this case (alpha*beta).
901 			 * Like Eifel it also prevents growth of rto,
902 			 * but also it limits too fast rto decreases,
903 			 * happening in pure Eifel.
904 			 */
905 			if (m > 0)
906 				m >>= 3;
907 		} else {
908 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
909 		}
910 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
911 		if (tp->mdev_us > tp->mdev_max_us) {
912 			tp->mdev_max_us = tp->mdev_us;
913 			if (tp->mdev_max_us > tp->rttvar_us)
914 				tp->rttvar_us = tp->mdev_max_us;
915 		}
916 		if (after(tp->snd_una, tp->rtt_seq)) {
917 			if (tp->mdev_max_us < tp->rttvar_us)
918 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
919 			tp->rtt_seq = tp->snd_nxt;
920 			tp->mdev_max_us = tcp_rto_min_us(sk);
921 
922 			tcp_bpf_rtt(sk, mrtt_us, srtt);
923 		}
924 	} else {
925 		/* no previous measure. */
926 		srtt = m << 3;		/* take the measured time to be rtt */
927 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
928 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
929 		tp->mdev_max_us = tp->rttvar_us;
930 		tp->rtt_seq = tp->snd_nxt;
931 
932 		tcp_bpf_rtt(sk, mrtt_us, srtt);
933 	}
934 	tp->srtt_us = max(1U, srtt);
935 }
936 
tcp_update_pacing_rate(struct sock * sk)937 static void tcp_update_pacing_rate(struct sock *sk)
938 {
939 	const struct tcp_sock *tp = tcp_sk(sk);
940 	u64 rate;
941 
942 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
943 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
944 
945 	/* current rate is (cwnd * mss) / srtt
946 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
947 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
948 	 *
949 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
950 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
951 	 *	 end of slow start and should slow down.
952 	 */
953 	if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2)
954 		rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio);
955 	else
956 		rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio);
957 
958 	rate *= max(tcp_snd_cwnd(tp), tp->packets_out);
959 
960 	if (likely(tp->srtt_us))
961 		do_div(rate, tp->srtt_us);
962 
963 	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
964 	 * without any lock. We want to make sure compiler wont store
965 	 * intermediate values in this location.
966 	 */
967 	WRITE_ONCE(sk->sk_pacing_rate,
968 		   min_t(u64, rate, READ_ONCE(sk->sk_max_pacing_rate)));
969 }
970 
971 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
972  * routine referred to above.
973  */
tcp_set_rto(struct sock * sk)974 static void tcp_set_rto(struct sock *sk)
975 {
976 	const struct tcp_sock *tp = tcp_sk(sk);
977 	/* Old crap is replaced with new one. 8)
978 	 *
979 	 * More seriously:
980 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
981 	 *    It cannot be less due to utterly erratic ACK generation made
982 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
983 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
984 	 *    is invisible. Actually, Linux-2.4 also generates erratic
985 	 *    ACKs in some circumstances.
986 	 */
987 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
988 
989 	/* 2. Fixups made earlier cannot be right.
990 	 *    If we do not estimate RTO correctly without them,
991 	 *    all the algo is pure shit and should be replaced
992 	 *    with correct one. It is exactly, which we pretend to do.
993 	 */
994 
995 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
996 	 * guarantees that rto is higher.
997 	 */
998 	tcp_bound_rto(sk);
999 }
1000 
tcp_init_cwnd(const struct tcp_sock * tp,const struct dst_entry * dst)1001 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
1002 {
1003 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
1004 
1005 	if (!cwnd)
1006 		cwnd = TCP_INIT_CWND;
1007 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
1008 }
1009 
1010 struct tcp_sacktag_state {
1011 	/* Timestamps for earliest and latest never-retransmitted segment
1012 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1013 	 * but congestion control should still get an accurate delay signal.
1014 	 */
1015 	u64	first_sackt;
1016 	u64	last_sackt;
1017 	u32	reord;
1018 	u32	sack_delivered;
1019 	int	flag;
1020 	unsigned int mss_now;
1021 	struct rate_sample *rate;
1022 };
1023 
1024 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery
1025  * and spurious retransmission information if this DSACK is unlikely caused by
1026  * sender's action:
1027  * - DSACKed sequence range is larger than maximum receiver's window.
1028  * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
1029  */
tcp_dsack_seen(struct tcp_sock * tp,u32 start_seq,u32 end_seq,struct tcp_sacktag_state * state)1030 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
1031 			  u32 end_seq, struct tcp_sacktag_state *state)
1032 {
1033 	u32 seq_len, dup_segs = 1;
1034 
1035 	if (!before(start_seq, end_seq))
1036 		return 0;
1037 
1038 	seq_len = end_seq - start_seq;
1039 	/* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
1040 	if (seq_len > tp->max_window)
1041 		return 0;
1042 	if (seq_len > tp->mss_cache)
1043 		dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
1044 	else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq)
1045 		state->flag |= FLAG_DSACK_TLP;
1046 
1047 	tp->dsack_dups += dup_segs;
1048 	/* Skip the DSACK if dup segs weren't retransmitted by sender */
1049 	if (tp->dsack_dups > tp->total_retrans)
1050 		return 0;
1051 
1052 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
1053 	/* We increase the RACK ordering window in rounds where we receive
1054 	 * DSACKs that may have been due to reordering causing RACK to trigger
1055 	 * a spurious fast recovery. Thus RACK ignores DSACKs that happen
1056 	 * without having seen reordering, or that match TLP probes (TLP
1057 	 * is timer-driven, not triggered by RACK).
1058 	 */
1059 	if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP))
1060 		tp->rack.dsack_seen = 1;
1061 
1062 	state->flag |= FLAG_DSACKING_ACK;
1063 	/* A spurious retransmission is delivered */
1064 	state->sack_delivered += dup_segs;
1065 
1066 	return dup_segs;
1067 }
1068 
1069 /* It's reordering when higher sequence was delivered (i.e. sacked) before
1070  * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
1071  * distance is approximated in full-mss packet distance ("reordering").
1072  */
tcp_check_sack_reordering(struct sock * sk,const u32 low_seq,const int ts)1073 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
1074 				      const int ts)
1075 {
1076 	struct tcp_sock *tp = tcp_sk(sk);
1077 	const u32 mss = tp->mss_cache;
1078 	u32 fack, metric;
1079 
1080 	fack = tcp_highest_sack_seq(tp);
1081 	if (!before(low_seq, fack))
1082 		return;
1083 
1084 	metric = fack - low_seq;
1085 	if ((metric > tp->reordering * mss) && mss) {
1086 #if FASTRETRANS_DEBUG > 1
1087 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
1088 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1089 			 tp->reordering,
1090 			 0,
1091 			 tp->sacked_out,
1092 			 tp->undo_marker ? tp->undo_retrans : 0);
1093 #endif
1094 		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
1095 				       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
1096 	}
1097 
1098 	/* This exciting event is worth to be remembered. 8) */
1099 	tp->reord_seen++;
1100 	NET_INC_STATS(sock_net(sk),
1101 		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1102 }
1103 
1104  /* This must be called before lost_out or retrans_out are updated
1105   * on a new loss, because we want to know if all skbs previously
1106   * known to be lost have already been retransmitted, indicating
1107   * that this newly lost skb is our next skb to retransmit.
1108   */
tcp_verify_retransmit_hint(struct tcp_sock * tp,struct sk_buff * skb)1109 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1110 {
1111 	if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
1112 	    (tp->retransmit_skb_hint &&
1113 	     before(TCP_SKB_CB(skb)->seq,
1114 		    TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
1115 		tp->retransmit_skb_hint = skb;
1116 }
1117 
1118 /* Sum the number of packets on the wire we have marked as lost, and
1119  * notify the congestion control module that the given skb was marked lost.
1120  */
tcp_notify_skb_loss_event(struct tcp_sock * tp,const struct sk_buff * skb)1121 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
1122 {
1123 	tp->lost += tcp_skb_pcount(skb);
1124 }
1125 
tcp_mark_skb_lost(struct sock * sk,struct sk_buff * skb)1126 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
1127 {
1128 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
1129 	struct tcp_sock *tp = tcp_sk(sk);
1130 
1131 	if (sacked & TCPCB_SACKED_ACKED)
1132 		return;
1133 
1134 	tcp_verify_retransmit_hint(tp, skb);
1135 	if (sacked & TCPCB_LOST) {
1136 		if (sacked & TCPCB_SACKED_RETRANS) {
1137 			/* Account for retransmits that are lost again */
1138 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1139 			tp->retrans_out -= tcp_skb_pcount(skb);
1140 			NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
1141 				      tcp_skb_pcount(skb));
1142 			tcp_notify_skb_loss_event(tp, skb);
1143 		}
1144 	} else {
1145 		tp->lost_out += tcp_skb_pcount(skb);
1146 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1147 		tcp_notify_skb_loss_event(tp, skb);
1148 	}
1149 }
1150 
1151 /* Updates the delivered and delivered_ce counts */
tcp_count_delivered(struct tcp_sock * tp,u32 delivered,bool ece_ack)1152 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
1153 				bool ece_ack)
1154 {
1155 	tp->delivered += delivered;
1156 	if (ece_ack)
1157 		tp->delivered_ce += delivered;
1158 }
1159 
1160 /* This procedure tags the retransmission queue when SACKs arrive.
1161  *
1162  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1163  * Packets in queue with these bits set are counted in variables
1164  * sacked_out, retrans_out and lost_out, correspondingly.
1165  *
1166  * Valid combinations are:
1167  * Tag  InFlight	Description
1168  * 0	1		- orig segment is in flight.
1169  * S	0		- nothing flies, orig reached receiver.
1170  * L	0		- nothing flies, orig lost by net.
1171  * R	2		- both orig and retransmit are in flight.
1172  * L|R	1		- orig is lost, retransmit is in flight.
1173  * S|R  1		- orig reached receiver, retrans is still in flight.
1174  * (L|S|R is logically valid, it could occur when L|R is sacked,
1175  *  but it is equivalent to plain S and code short-circuits it to S.
1176  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1177  *
1178  * These 6 states form finite state machine, controlled by the following events:
1179  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1180  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1181  * 3. Loss detection event of two flavors:
1182  *	A. Scoreboard estimator decided the packet is lost.
1183  *	   A'. Reno "three dupacks" marks head of queue lost.
1184  *	B. SACK arrives sacking SND.NXT at the moment, when the
1185  *	   segment was retransmitted.
1186  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1187  *
1188  * It is pleasant to note, that state diagram turns out to be commutative,
1189  * so that we are allowed not to be bothered by order of our actions,
1190  * when multiple events arrive simultaneously. (see the function below).
1191  *
1192  * Reordering detection.
1193  * --------------------
1194  * Reordering metric is maximal distance, which a packet can be displaced
1195  * in packet stream. With SACKs we can estimate it:
1196  *
1197  * 1. SACK fills old hole and the corresponding segment was not
1198  *    ever retransmitted -> reordering. Alas, we cannot use it
1199  *    when segment was retransmitted.
1200  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1201  *    for retransmitted and already SACKed segment -> reordering..
1202  * Both of these heuristics are not used in Loss state, when we cannot
1203  * account for retransmits accurately.
1204  *
1205  * SACK block validation.
1206  * ----------------------
1207  *
1208  * SACK block range validation checks that the received SACK block fits to
1209  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1210  * Note that SND.UNA is not included to the range though being valid because
1211  * it means that the receiver is rather inconsistent with itself reporting
1212  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1213  * perfectly valid, however, in light of RFC2018 which explicitly states
1214  * that "SACK block MUST reflect the newest segment.  Even if the newest
1215  * segment is going to be discarded ...", not that it looks very clever
1216  * in case of head skb. Due to potentional receiver driven attacks, we
1217  * choose to avoid immediate execution of a walk in write queue due to
1218  * reneging and defer head skb's loss recovery to standard loss recovery
1219  * procedure that will eventually trigger (nothing forbids us doing this).
1220  *
1221  * Implements also blockage to start_seq wrap-around. Problem lies in the
1222  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1223  * there's no guarantee that it will be before snd_nxt (n). The problem
1224  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1225  * wrap (s_w):
1226  *
1227  *         <- outs wnd ->                          <- wrapzone ->
1228  *         u     e      n                         u_w   e_w  s n_w
1229  *         |     |      |                          |     |   |  |
1230  * |<------------+------+----- TCP seqno space --------------+---------->|
1231  * ...-- <2^31 ->|                                           |<--------...
1232  * ...---- >2^31 ------>|                                    |<--------...
1233  *
1234  * Current code wouldn't be vulnerable but it's better still to discard such
1235  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1236  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1237  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1238  * equal to the ideal case (infinite seqno space without wrap caused issues).
1239  *
1240  * With D-SACK the lower bound is extended to cover sequence space below
1241  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1242  * again, D-SACK block must not to go across snd_una (for the same reason as
1243  * for the normal SACK blocks, explained above). But there all simplicity
1244  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1245  * fully below undo_marker they do not affect behavior in anyway and can
1246  * therefore be safely ignored. In rare cases (which are more or less
1247  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1248  * fragmentation and packet reordering past skb's retransmission. To consider
1249  * them correctly, the acceptable range must be extended even more though
1250  * the exact amount is rather hard to quantify. However, tp->max_window can
1251  * be used as an exaggerated estimate.
1252  */
tcp_is_sackblock_valid(struct tcp_sock * tp,bool is_dsack,u32 start_seq,u32 end_seq)1253 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1254 				   u32 start_seq, u32 end_seq)
1255 {
1256 	/* Too far in future, or reversed (interpretation is ambiguous) */
1257 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1258 		return false;
1259 
1260 	/* Nasty start_seq wrap-around check (see comments above) */
1261 	if (!before(start_seq, tp->snd_nxt))
1262 		return false;
1263 
1264 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1265 	 * start_seq == snd_una is non-sensical (see comments above)
1266 	 */
1267 	if (after(start_seq, tp->snd_una))
1268 		return true;
1269 
1270 	if (!is_dsack || !tp->undo_marker)
1271 		return false;
1272 
1273 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1274 	if (after(end_seq, tp->snd_una))
1275 		return false;
1276 
1277 	if (!before(start_seq, tp->undo_marker))
1278 		return true;
1279 
1280 	/* Too old */
1281 	if (!after(end_seq, tp->undo_marker))
1282 		return false;
1283 
1284 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1285 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1286 	 */
1287 	return !before(start_seq, end_seq - tp->max_window);
1288 }
1289 
tcp_check_dsack(struct sock * sk,const struct sk_buff * ack_skb,struct tcp_sack_block_wire * sp,int num_sacks,u32 prior_snd_una,struct tcp_sacktag_state * state)1290 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1291 			    struct tcp_sack_block_wire *sp, int num_sacks,
1292 			    u32 prior_snd_una, struct tcp_sacktag_state *state)
1293 {
1294 	struct tcp_sock *tp = tcp_sk(sk);
1295 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1296 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1297 	u32 dup_segs;
1298 
1299 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1300 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1301 	} else if (num_sacks > 1) {
1302 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1303 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1304 
1305 		if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1306 			return false;
1307 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1308 	} else {
1309 		return false;
1310 	}
1311 
1312 	dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1313 	if (!dup_segs) {	/* Skip dubious DSACK */
1314 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
1315 		return false;
1316 	}
1317 
1318 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1319 
1320 	/* D-SACK for already forgotten data... Do dumb counting. */
1321 	if (tp->undo_marker && tp->undo_retrans > 0 &&
1322 	    !after(end_seq_0, prior_snd_una) &&
1323 	    after(end_seq_0, tp->undo_marker))
1324 		tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1325 
1326 	return true;
1327 }
1328 
1329 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1330  * the incoming SACK may not exactly match but we can find smaller MSS
1331  * aligned portion of it that matches. Therefore we might need to fragment
1332  * which may fail and creates some hassle (caller must handle error case
1333  * returns).
1334  *
1335  * FIXME: this could be merged to shift decision code
1336  */
tcp_match_skb_to_sack(struct sock * sk,struct sk_buff * skb,u32 start_seq,u32 end_seq)1337 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1338 				  u32 start_seq, u32 end_seq)
1339 {
1340 	int err;
1341 	bool in_sack;
1342 	unsigned int pkt_len;
1343 	unsigned int mss;
1344 
1345 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1346 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1347 
1348 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1349 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1350 		mss = tcp_skb_mss(skb);
1351 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1352 
1353 		if (!in_sack) {
1354 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1355 			if (pkt_len < mss)
1356 				pkt_len = mss;
1357 		} else {
1358 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1359 			if (pkt_len < mss)
1360 				return -EINVAL;
1361 		}
1362 
1363 		/* Round if necessary so that SACKs cover only full MSSes
1364 		 * and/or the remaining small portion (if present)
1365 		 */
1366 		if (pkt_len > mss) {
1367 			unsigned int new_len = (pkt_len / mss) * mss;
1368 			if (!in_sack && new_len < pkt_len)
1369 				new_len += mss;
1370 			pkt_len = new_len;
1371 		}
1372 
1373 		if (pkt_len >= skb->len && !in_sack)
1374 			return 0;
1375 
1376 		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1377 				   pkt_len, mss, GFP_ATOMIC);
1378 		if (err < 0)
1379 			return err;
1380 	}
1381 
1382 	return in_sack;
1383 }
1384 
1385 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
tcp_sacktag_one(struct sock * sk,struct tcp_sacktag_state * state,u8 sacked,u32 start_seq,u32 end_seq,int dup_sack,int pcount,u64 xmit_time)1386 static u8 tcp_sacktag_one(struct sock *sk,
1387 			  struct tcp_sacktag_state *state, u8 sacked,
1388 			  u32 start_seq, u32 end_seq,
1389 			  int dup_sack, int pcount,
1390 			  u64 xmit_time)
1391 {
1392 	struct tcp_sock *tp = tcp_sk(sk);
1393 
1394 	/* Account D-SACK for retransmitted packet. */
1395 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1396 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1397 		    after(end_seq, tp->undo_marker))
1398 			tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount);
1399 		if ((sacked & TCPCB_SACKED_ACKED) &&
1400 		    before(start_seq, state->reord))
1401 				state->reord = start_seq;
1402 	}
1403 
1404 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1405 	if (!after(end_seq, tp->snd_una))
1406 		return sacked;
1407 
1408 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1409 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1410 
1411 		if (sacked & TCPCB_SACKED_RETRANS) {
1412 			/* If the segment is not tagged as lost,
1413 			 * we do not clear RETRANS, believing
1414 			 * that retransmission is still in flight.
1415 			 */
1416 			if (sacked & TCPCB_LOST) {
1417 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1418 				tp->lost_out -= pcount;
1419 				tp->retrans_out -= pcount;
1420 			}
1421 		} else {
1422 			if (!(sacked & TCPCB_RETRANS)) {
1423 				/* New sack for not retransmitted frame,
1424 				 * which was in hole. It is reordering.
1425 				 */
1426 				if (before(start_seq,
1427 					   tcp_highest_sack_seq(tp)) &&
1428 				    before(start_seq, state->reord))
1429 					state->reord = start_seq;
1430 
1431 				if (!after(end_seq, tp->high_seq))
1432 					state->flag |= FLAG_ORIG_SACK_ACKED;
1433 				if (state->first_sackt == 0)
1434 					state->first_sackt = xmit_time;
1435 				state->last_sackt = xmit_time;
1436 			}
1437 
1438 			if (sacked & TCPCB_LOST) {
1439 				sacked &= ~TCPCB_LOST;
1440 				tp->lost_out -= pcount;
1441 			}
1442 		}
1443 
1444 		sacked |= TCPCB_SACKED_ACKED;
1445 		state->flag |= FLAG_DATA_SACKED;
1446 		tp->sacked_out += pcount;
1447 		/* Out-of-order packets delivered */
1448 		state->sack_delivered += pcount;
1449 
1450 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1451 		if (tp->lost_skb_hint &&
1452 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1453 			tp->lost_cnt_hint += pcount;
1454 	}
1455 
1456 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1457 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1458 	 * are accounted above as well.
1459 	 */
1460 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1461 		sacked &= ~TCPCB_SACKED_RETRANS;
1462 		tp->retrans_out -= pcount;
1463 	}
1464 
1465 	return sacked;
1466 }
1467 
1468 /* Shift newly-SACKed bytes from this skb to the immediately previous
1469  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1470  */
tcp_shifted_skb(struct sock * sk,struct sk_buff * prev,struct sk_buff * skb,struct tcp_sacktag_state * state,unsigned int pcount,int shifted,int mss,bool dup_sack)1471 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1472 			    struct sk_buff *skb,
1473 			    struct tcp_sacktag_state *state,
1474 			    unsigned int pcount, int shifted, int mss,
1475 			    bool dup_sack)
1476 {
1477 	struct tcp_sock *tp = tcp_sk(sk);
1478 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1479 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1480 
1481 	BUG_ON(!pcount);
1482 
1483 	/* Adjust counters and hints for the newly sacked sequence
1484 	 * range but discard the return value since prev is already
1485 	 * marked. We must tag the range first because the seq
1486 	 * advancement below implicitly advances
1487 	 * tcp_highest_sack_seq() when skb is highest_sack.
1488 	 */
1489 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1490 			start_seq, end_seq, dup_sack, pcount,
1491 			tcp_skb_timestamp_us(skb));
1492 	tcp_rate_skb_delivered(sk, skb, state->rate);
1493 
1494 	if (skb == tp->lost_skb_hint)
1495 		tp->lost_cnt_hint += pcount;
1496 
1497 	TCP_SKB_CB(prev)->end_seq += shifted;
1498 	TCP_SKB_CB(skb)->seq += shifted;
1499 
1500 	tcp_skb_pcount_add(prev, pcount);
1501 	WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1502 	tcp_skb_pcount_add(skb, -pcount);
1503 
1504 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1505 	 * in theory this shouldn't be necessary but as long as DSACK
1506 	 * code can come after this skb later on it's better to keep
1507 	 * setting gso_size to something.
1508 	 */
1509 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1510 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1511 
1512 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1513 	if (tcp_skb_pcount(skb) <= 1)
1514 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1515 
1516 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1517 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1518 
1519 	if (skb->len > 0) {
1520 		BUG_ON(!tcp_skb_pcount(skb));
1521 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1522 		return false;
1523 	}
1524 
1525 	/* Whole SKB was eaten :-) */
1526 
1527 	if (skb == tp->retransmit_skb_hint)
1528 		tp->retransmit_skb_hint = prev;
1529 	if (skb == tp->lost_skb_hint) {
1530 		tp->lost_skb_hint = prev;
1531 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1532 	}
1533 
1534 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1535 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1536 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1537 		TCP_SKB_CB(prev)->end_seq++;
1538 
1539 	if (skb == tcp_highest_sack(sk))
1540 		tcp_advance_highest_sack(sk, skb);
1541 
1542 	tcp_skb_collapse_tstamp(prev, skb);
1543 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1544 		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1545 
1546 	tcp_rtx_queue_unlink_and_free(skb, sk);
1547 
1548 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1549 
1550 	return true;
1551 }
1552 
1553 /* I wish gso_size would have a bit more sane initialization than
1554  * something-or-zero which complicates things
1555  */
tcp_skb_seglen(const struct sk_buff * skb)1556 static int tcp_skb_seglen(const struct sk_buff *skb)
1557 {
1558 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1559 }
1560 
1561 /* Shifting pages past head area doesn't work */
skb_can_shift(const struct sk_buff * skb)1562 static int skb_can_shift(const struct sk_buff *skb)
1563 {
1564 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1565 }
1566 
tcp_skb_shift(struct sk_buff * to,struct sk_buff * from,int pcount,int shiftlen)1567 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1568 		  int pcount, int shiftlen)
1569 {
1570 	/* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1571 	 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1572 	 * to make sure not storing more than 65535 * 8 bytes per skb,
1573 	 * even if current MSS is bigger.
1574 	 */
1575 	if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1576 		return 0;
1577 	if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1578 		return 0;
1579 	return skb_shift(to, from, shiftlen);
1580 }
1581 
1582 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1583  * skb.
1584  */
tcp_shift_skb_data(struct sock * sk,struct sk_buff * skb,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack)1585 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1586 					  struct tcp_sacktag_state *state,
1587 					  u32 start_seq, u32 end_seq,
1588 					  bool dup_sack)
1589 {
1590 	struct tcp_sock *tp = tcp_sk(sk);
1591 	struct sk_buff *prev;
1592 	int mss;
1593 	int pcount = 0;
1594 	int len;
1595 	int in_sack;
1596 
1597 	/* Normally R but no L won't result in plain S */
1598 	if (!dup_sack &&
1599 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1600 		goto fallback;
1601 	if (!skb_can_shift(skb))
1602 		goto fallback;
1603 	/* This frame is about to be dropped (was ACKed). */
1604 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1605 		goto fallback;
1606 
1607 	/* Can only happen with delayed DSACK + discard craziness */
1608 	prev = skb_rb_prev(skb);
1609 	if (!prev)
1610 		goto fallback;
1611 
1612 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1613 		goto fallback;
1614 
1615 	if (!tcp_skb_can_collapse(prev, skb))
1616 		goto fallback;
1617 
1618 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1619 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1620 
1621 	if (in_sack) {
1622 		len = skb->len;
1623 		pcount = tcp_skb_pcount(skb);
1624 		mss = tcp_skb_seglen(skb);
1625 
1626 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1627 		 * drop this restriction as unnecessary
1628 		 */
1629 		if (mss != tcp_skb_seglen(prev))
1630 			goto fallback;
1631 	} else {
1632 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1633 			goto noop;
1634 		/* CHECKME: This is non-MSS split case only?, this will
1635 		 * cause skipped skbs due to advancing loop btw, original
1636 		 * has that feature too
1637 		 */
1638 		if (tcp_skb_pcount(skb) <= 1)
1639 			goto noop;
1640 
1641 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1642 		if (!in_sack) {
1643 			/* TODO: head merge to next could be attempted here
1644 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1645 			 * though it might not be worth of the additional hassle
1646 			 *
1647 			 * ...we can probably just fallback to what was done
1648 			 * previously. We could try merging non-SACKed ones
1649 			 * as well but it probably isn't going to buy off
1650 			 * because later SACKs might again split them, and
1651 			 * it would make skb timestamp tracking considerably
1652 			 * harder problem.
1653 			 */
1654 			goto fallback;
1655 		}
1656 
1657 		len = end_seq - TCP_SKB_CB(skb)->seq;
1658 		BUG_ON(len < 0);
1659 		BUG_ON(len > skb->len);
1660 
1661 		/* MSS boundaries should be honoured or else pcount will
1662 		 * severely break even though it makes things bit trickier.
1663 		 * Optimize common case to avoid most of the divides
1664 		 */
1665 		mss = tcp_skb_mss(skb);
1666 
1667 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1668 		 * drop this restriction as unnecessary
1669 		 */
1670 		if (mss != tcp_skb_seglen(prev))
1671 			goto fallback;
1672 
1673 		if (len == mss) {
1674 			pcount = 1;
1675 		} else if (len < mss) {
1676 			goto noop;
1677 		} else {
1678 			pcount = len / mss;
1679 			len = pcount * mss;
1680 		}
1681 	}
1682 
1683 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1684 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1685 		goto fallback;
1686 
1687 	if (!tcp_skb_shift(prev, skb, pcount, len))
1688 		goto fallback;
1689 	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1690 		goto out;
1691 
1692 	/* Hole filled allows collapsing with the next as well, this is very
1693 	 * useful when hole on every nth skb pattern happens
1694 	 */
1695 	skb = skb_rb_next(prev);
1696 	if (!skb)
1697 		goto out;
1698 
1699 	if (!skb_can_shift(skb) ||
1700 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1701 	    (mss != tcp_skb_seglen(skb)))
1702 		goto out;
1703 
1704 	if (!tcp_skb_can_collapse(prev, skb))
1705 		goto out;
1706 	len = skb->len;
1707 	pcount = tcp_skb_pcount(skb);
1708 	if (tcp_skb_shift(prev, skb, pcount, len))
1709 		tcp_shifted_skb(sk, prev, skb, state, pcount,
1710 				len, mss, 0);
1711 
1712 out:
1713 	return prev;
1714 
1715 noop:
1716 	return skb;
1717 
1718 fallback:
1719 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1720 	return NULL;
1721 }
1722 
tcp_sacktag_walk(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack_in)1723 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1724 					struct tcp_sack_block *next_dup,
1725 					struct tcp_sacktag_state *state,
1726 					u32 start_seq, u32 end_seq,
1727 					bool dup_sack_in)
1728 {
1729 	struct tcp_sock *tp = tcp_sk(sk);
1730 	struct sk_buff *tmp;
1731 
1732 	skb_rbtree_walk_from(skb) {
1733 		int in_sack = 0;
1734 		bool dup_sack = dup_sack_in;
1735 
1736 		/* queue is in-order => we can short-circuit the walk early */
1737 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1738 			break;
1739 
1740 		if (next_dup  &&
1741 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1742 			in_sack = tcp_match_skb_to_sack(sk, skb,
1743 							next_dup->start_seq,
1744 							next_dup->end_seq);
1745 			if (in_sack > 0)
1746 				dup_sack = true;
1747 		}
1748 
1749 		/* skb reference here is a bit tricky to get right, since
1750 		 * shifting can eat and free both this skb and the next,
1751 		 * so not even _safe variant of the loop is enough.
1752 		 */
1753 		if (in_sack <= 0) {
1754 			tmp = tcp_shift_skb_data(sk, skb, state,
1755 						 start_seq, end_seq, dup_sack);
1756 			if (tmp) {
1757 				if (tmp != skb) {
1758 					skb = tmp;
1759 					continue;
1760 				}
1761 
1762 				in_sack = 0;
1763 			} else {
1764 				in_sack = tcp_match_skb_to_sack(sk, skb,
1765 								start_seq,
1766 								end_seq);
1767 			}
1768 		}
1769 
1770 		if (unlikely(in_sack < 0))
1771 			break;
1772 
1773 		if (in_sack) {
1774 			TCP_SKB_CB(skb)->sacked =
1775 				tcp_sacktag_one(sk,
1776 						state,
1777 						TCP_SKB_CB(skb)->sacked,
1778 						TCP_SKB_CB(skb)->seq,
1779 						TCP_SKB_CB(skb)->end_seq,
1780 						dup_sack,
1781 						tcp_skb_pcount(skb),
1782 						tcp_skb_timestamp_us(skb));
1783 			tcp_rate_skb_delivered(sk, skb, state->rate);
1784 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1785 				list_del_init(&skb->tcp_tsorted_anchor);
1786 
1787 			if (!before(TCP_SKB_CB(skb)->seq,
1788 				    tcp_highest_sack_seq(tp)))
1789 				tcp_advance_highest_sack(sk, skb);
1790 		}
1791 	}
1792 	return skb;
1793 }
1794 
tcp_sacktag_bsearch(struct sock * sk,u32 seq)1795 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1796 {
1797 	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1798 	struct sk_buff *skb;
1799 
1800 	while (*p) {
1801 		parent = *p;
1802 		skb = rb_to_skb(parent);
1803 		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1804 			p = &parent->rb_left;
1805 			continue;
1806 		}
1807 		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1808 			p = &parent->rb_right;
1809 			continue;
1810 		}
1811 		return skb;
1812 	}
1813 	return NULL;
1814 }
1815 
tcp_sacktag_skip(struct sk_buff * skb,struct sock * sk,u32 skip_to_seq)1816 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1817 					u32 skip_to_seq)
1818 {
1819 	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1820 		return skb;
1821 
1822 	return tcp_sacktag_bsearch(sk, skip_to_seq);
1823 }
1824 
tcp_maybe_skipping_dsack(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 skip_to_seq)1825 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1826 						struct sock *sk,
1827 						struct tcp_sack_block *next_dup,
1828 						struct tcp_sacktag_state *state,
1829 						u32 skip_to_seq)
1830 {
1831 	if (!next_dup)
1832 		return skb;
1833 
1834 	if (before(next_dup->start_seq, skip_to_seq)) {
1835 		skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1836 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1837 				       next_dup->start_seq, next_dup->end_seq,
1838 				       1);
1839 	}
1840 
1841 	return skb;
1842 }
1843 
tcp_sack_cache_ok(const struct tcp_sock * tp,const struct tcp_sack_block * cache)1844 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1845 {
1846 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1847 }
1848 
1849 static int
tcp_sacktag_write_queue(struct sock * sk,const struct sk_buff * ack_skb,u32 prior_snd_una,struct tcp_sacktag_state * state)1850 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1851 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1852 {
1853 	struct tcp_sock *tp = tcp_sk(sk);
1854 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1855 				    TCP_SKB_CB(ack_skb)->sacked);
1856 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1857 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1858 	struct tcp_sack_block *cache;
1859 	struct sk_buff *skb;
1860 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1861 	int used_sacks;
1862 	bool found_dup_sack = false;
1863 	int i, j;
1864 	int first_sack_index;
1865 
1866 	state->flag = 0;
1867 	state->reord = tp->snd_nxt;
1868 
1869 	if (!tp->sacked_out)
1870 		tcp_highest_sack_reset(sk);
1871 
1872 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1873 					 num_sacks, prior_snd_una, state);
1874 
1875 	/* Eliminate too old ACKs, but take into
1876 	 * account more or less fresh ones, they can
1877 	 * contain valid SACK info.
1878 	 */
1879 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1880 		return 0;
1881 
1882 	if (!tp->packets_out)
1883 		goto out;
1884 
1885 	used_sacks = 0;
1886 	first_sack_index = 0;
1887 	for (i = 0; i < num_sacks; i++) {
1888 		bool dup_sack = !i && found_dup_sack;
1889 
1890 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1891 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1892 
1893 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1894 					    sp[used_sacks].start_seq,
1895 					    sp[used_sacks].end_seq)) {
1896 			int mib_idx;
1897 
1898 			if (dup_sack) {
1899 				if (!tp->undo_marker)
1900 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1901 				else
1902 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1903 			} else {
1904 				/* Don't count olds caused by ACK reordering */
1905 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1906 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1907 					continue;
1908 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1909 			}
1910 
1911 			NET_INC_STATS(sock_net(sk), mib_idx);
1912 			if (i == 0)
1913 				first_sack_index = -1;
1914 			continue;
1915 		}
1916 
1917 		/* Ignore very old stuff early */
1918 		if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1919 			if (i == 0)
1920 				first_sack_index = -1;
1921 			continue;
1922 		}
1923 
1924 		used_sacks++;
1925 	}
1926 
1927 	/* order SACK blocks to allow in order walk of the retrans queue */
1928 	for (i = used_sacks - 1; i > 0; i--) {
1929 		for (j = 0; j < i; j++) {
1930 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1931 				swap(sp[j], sp[j + 1]);
1932 
1933 				/* Track where the first SACK block goes to */
1934 				if (j == first_sack_index)
1935 					first_sack_index = j + 1;
1936 			}
1937 		}
1938 	}
1939 
1940 	state->mss_now = tcp_current_mss(sk);
1941 	skb = NULL;
1942 	i = 0;
1943 
1944 	if (!tp->sacked_out) {
1945 		/* It's already past, so skip checking against it */
1946 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1947 	} else {
1948 		cache = tp->recv_sack_cache;
1949 		/* Skip empty blocks in at head of the cache */
1950 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1951 		       !cache->end_seq)
1952 			cache++;
1953 	}
1954 
1955 	while (i < used_sacks) {
1956 		u32 start_seq = sp[i].start_seq;
1957 		u32 end_seq = sp[i].end_seq;
1958 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1959 		struct tcp_sack_block *next_dup = NULL;
1960 
1961 		if (found_dup_sack && ((i + 1) == first_sack_index))
1962 			next_dup = &sp[i + 1];
1963 
1964 		/* Skip too early cached blocks */
1965 		while (tcp_sack_cache_ok(tp, cache) &&
1966 		       !before(start_seq, cache->end_seq))
1967 			cache++;
1968 
1969 		/* Can skip some work by looking recv_sack_cache? */
1970 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1971 		    after(end_seq, cache->start_seq)) {
1972 
1973 			/* Head todo? */
1974 			if (before(start_seq, cache->start_seq)) {
1975 				skb = tcp_sacktag_skip(skb, sk, start_seq);
1976 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1977 						       state,
1978 						       start_seq,
1979 						       cache->start_seq,
1980 						       dup_sack);
1981 			}
1982 
1983 			/* Rest of the block already fully processed? */
1984 			if (!after(end_seq, cache->end_seq))
1985 				goto advance_sp;
1986 
1987 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1988 						       state,
1989 						       cache->end_seq);
1990 
1991 			/* ...tail remains todo... */
1992 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1993 				/* ...but better entrypoint exists! */
1994 				skb = tcp_highest_sack(sk);
1995 				if (!skb)
1996 					break;
1997 				cache++;
1998 				goto walk;
1999 			}
2000 
2001 			skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
2002 			/* Check overlap against next cached too (past this one already) */
2003 			cache++;
2004 			continue;
2005 		}
2006 
2007 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
2008 			skb = tcp_highest_sack(sk);
2009 			if (!skb)
2010 				break;
2011 		}
2012 		skb = tcp_sacktag_skip(skb, sk, start_seq);
2013 
2014 walk:
2015 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
2016 				       start_seq, end_seq, dup_sack);
2017 
2018 advance_sp:
2019 		i++;
2020 	}
2021 
2022 	/* Clear the head of the cache sack blocks so we can skip it next time */
2023 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
2024 		tp->recv_sack_cache[i].start_seq = 0;
2025 		tp->recv_sack_cache[i].end_seq = 0;
2026 	}
2027 	for (j = 0; j < used_sacks; j++)
2028 		tp->recv_sack_cache[i++] = sp[j];
2029 
2030 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
2031 		tcp_check_sack_reordering(sk, state->reord, 0);
2032 
2033 	tcp_verify_left_out(tp);
2034 out:
2035 
2036 #if FASTRETRANS_DEBUG > 0
2037 	WARN_ON((int)tp->sacked_out < 0);
2038 	WARN_ON((int)tp->lost_out < 0);
2039 	WARN_ON((int)tp->retrans_out < 0);
2040 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
2041 #endif
2042 	return state->flag;
2043 }
2044 
2045 /* Limits sacked_out so that sum with lost_out isn't ever larger than
2046  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
2047  */
tcp_limit_reno_sacked(struct tcp_sock * tp)2048 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
2049 {
2050 	u32 holes;
2051 
2052 	holes = max(tp->lost_out, 1U);
2053 	holes = min(holes, tp->packets_out);
2054 
2055 	if ((tp->sacked_out + holes) > tp->packets_out) {
2056 		tp->sacked_out = tp->packets_out - holes;
2057 		return true;
2058 	}
2059 	return false;
2060 }
2061 
2062 /* If we receive more dupacks than we expected counting segments
2063  * in assumption of absent reordering, interpret this as reordering.
2064  * The only another reason could be bug in receiver TCP.
2065  */
tcp_check_reno_reordering(struct sock * sk,const int addend)2066 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
2067 {
2068 	struct tcp_sock *tp = tcp_sk(sk);
2069 
2070 	if (!tcp_limit_reno_sacked(tp))
2071 		return;
2072 
2073 	tp->reordering = min_t(u32, tp->packets_out + addend,
2074 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
2075 	tp->reord_seen++;
2076 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
2077 }
2078 
2079 /* Emulate SACKs for SACKless connection: account for a new dupack. */
2080 
tcp_add_reno_sack(struct sock * sk,int num_dupack,bool ece_ack)2081 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
2082 {
2083 	if (num_dupack) {
2084 		struct tcp_sock *tp = tcp_sk(sk);
2085 		u32 prior_sacked = tp->sacked_out;
2086 		s32 delivered;
2087 
2088 		tp->sacked_out += num_dupack;
2089 		tcp_check_reno_reordering(sk, 0);
2090 		delivered = tp->sacked_out - prior_sacked;
2091 		if (delivered > 0)
2092 			tcp_count_delivered(tp, delivered, ece_ack);
2093 		tcp_verify_left_out(tp);
2094 	}
2095 }
2096 
2097 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2098 
tcp_remove_reno_sacks(struct sock * sk,int acked,bool ece_ack)2099 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
2100 {
2101 	struct tcp_sock *tp = tcp_sk(sk);
2102 
2103 	if (acked > 0) {
2104 		/* One ACK acked hole. The rest eat duplicate ACKs. */
2105 		tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
2106 				    ece_ack);
2107 		if (acked - 1 >= tp->sacked_out)
2108 			tp->sacked_out = 0;
2109 		else
2110 			tp->sacked_out -= acked - 1;
2111 	}
2112 	tcp_check_reno_reordering(sk, acked);
2113 	tcp_verify_left_out(tp);
2114 }
2115 
tcp_reset_reno_sack(struct tcp_sock * tp)2116 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2117 {
2118 	tp->sacked_out = 0;
2119 }
2120 
tcp_clear_retrans(struct tcp_sock * tp)2121 void tcp_clear_retrans(struct tcp_sock *tp)
2122 {
2123 	tp->retrans_out = 0;
2124 	tp->lost_out = 0;
2125 	tp->undo_marker = 0;
2126 	tp->undo_retrans = -1;
2127 	tp->sacked_out = 0;
2128 	tp->rto_stamp = 0;
2129 	tp->total_rto = 0;
2130 	tp->total_rto_recoveries = 0;
2131 	tp->total_rto_time = 0;
2132 }
2133 
tcp_init_undo(struct tcp_sock * tp)2134 static inline void tcp_init_undo(struct tcp_sock *tp)
2135 {
2136 	tp->undo_marker = tp->snd_una;
2137 
2138 	/* Retransmission still in flight may cause DSACKs later. */
2139 	/* First, account for regular retransmits in flight: */
2140 	tp->undo_retrans = tp->retrans_out;
2141 	/* Next, account for TLP retransmits in flight: */
2142 	if (tp->tlp_high_seq && tp->tlp_retrans)
2143 		tp->undo_retrans++;
2144 	/* Finally, avoid 0, because undo_retrans==0 means "can undo now": */
2145 	if (!tp->undo_retrans)
2146 		tp->undo_retrans = -1;
2147 }
2148 
tcp_is_rack(const struct sock * sk)2149 static bool tcp_is_rack(const struct sock *sk)
2150 {
2151 	return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) &
2152 		TCP_RACK_LOSS_DETECTION;
2153 }
2154 
2155 /* If we detect SACK reneging, forget all SACK information
2156  * and reset tags completely, otherwise preserve SACKs. If receiver
2157  * dropped its ofo queue, we will know this due to reneging detection.
2158  */
tcp_timeout_mark_lost(struct sock * sk)2159 static void tcp_timeout_mark_lost(struct sock *sk)
2160 {
2161 	struct tcp_sock *tp = tcp_sk(sk);
2162 	struct sk_buff *skb, *head;
2163 	bool is_reneg;			/* is receiver reneging on SACKs? */
2164 
2165 	head = tcp_rtx_queue_head(sk);
2166 	is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
2167 	if (is_reneg) {
2168 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2169 		tp->sacked_out = 0;
2170 		/* Mark SACK reneging until we recover from this loss event. */
2171 		tp->is_sack_reneg = 1;
2172 	} else if (tcp_is_reno(tp)) {
2173 		tcp_reset_reno_sack(tp);
2174 	}
2175 
2176 	skb = head;
2177 	skb_rbtree_walk_from(skb) {
2178 		if (is_reneg)
2179 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2180 		else if (tcp_is_rack(sk) && skb != head &&
2181 			 tcp_rack_skb_timeout(tp, skb, 0) > 0)
2182 			continue; /* Don't mark recently sent ones lost yet */
2183 		tcp_mark_skb_lost(sk, skb);
2184 	}
2185 	tcp_verify_left_out(tp);
2186 	tcp_clear_all_retrans_hints(tp);
2187 }
2188 
2189 /* Enter Loss state. */
tcp_enter_loss(struct sock * sk)2190 void tcp_enter_loss(struct sock *sk)
2191 {
2192 	const struct inet_connection_sock *icsk = inet_csk(sk);
2193 	struct tcp_sock *tp = tcp_sk(sk);
2194 	struct net *net = sock_net(sk);
2195 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2196 	u8 reordering;
2197 
2198 	tcp_timeout_mark_lost(sk);
2199 
2200 	/* Reduce ssthresh if it has not yet been made inside this window. */
2201 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2202 	    !after(tp->high_seq, tp->snd_una) ||
2203 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2204 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2205 		tp->prior_cwnd = tcp_snd_cwnd(tp);
2206 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2207 		tcp_ca_event(sk, CA_EVENT_LOSS);
2208 		tcp_init_undo(tp);
2209 	}
2210 	tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1);
2211 	tp->snd_cwnd_cnt   = 0;
2212 	tp->snd_cwnd_stamp = tcp_jiffies32;
2213 
2214 	/* Timeout in disordered state after receiving substantial DUPACKs
2215 	 * suggests that the degree of reordering is over-estimated.
2216 	 */
2217 	reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering);
2218 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2219 	    tp->sacked_out >= reordering)
2220 		tp->reordering = min_t(unsigned int, tp->reordering,
2221 				       reordering);
2222 
2223 	tcp_set_ca_state(sk, TCP_CA_Loss);
2224 	tp->high_seq = tp->snd_nxt;
2225 	tp->tlp_high_seq = 0;
2226 	tcp_ecn_queue_cwr(tp);
2227 
2228 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2229 	 * loss recovery is underway except recurring timeout(s) on
2230 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2231 	 */
2232 	tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) &&
2233 		   (new_recovery || icsk->icsk_retransmits) &&
2234 		   !inet_csk(sk)->icsk_mtup.probe_size;
2235 }
2236 
2237 /* If ACK arrived pointing to a remembered SACK, it means that our
2238  * remembered SACKs do not reflect real state of receiver i.e.
2239  * receiver _host_ is heavily congested (or buggy).
2240  *
2241  * To avoid big spurious retransmission bursts due to transient SACK
2242  * scoreboard oddities that look like reneging, we give the receiver a
2243  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2244  * restore sanity to the SACK scoreboard. If the apparent reneging
2245  * persists until this RTO then we'll clear the SACK scoreboard.
2246  */
tcp_check_sack_reneging(struct sock * sk,int * ack_flag)2247 static bool tcp_check_sack_reneging(struct sock *sk, int *ack_flag)
2248 {
2249 	if (*ack_flag & FLAG_SACK_RENEGING &&
2250 	    *ack_flag & FLAG_SND_UNA_ADVANCED) {
2251 		struct tcp_sock *tp = tcp_sk(sk);
2252 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2253 					  msecs_to_jiffies(10));
2254 
2255 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2256 					  delay, TCP_RTO_MAX);
2257 		*ack_flag &= ~FLAG_SET_XMIT_TIMER;
2258 		return true;
2259 	}
2260 	return false;
2261 }
2262 
2263 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2264  * counter when SACK is enabled (without SACK, sacked_out is used for
2265  * that purpose).
2266  *
2267  * With reordering, holes may still be in flight, so RFC3517 recovery
2268  * uses pure sacked_out (total number of SACKed segments) even though
2269  * it violates the RFC that uses duplicate ACKs, often these are equal
2270  * but when e.g. out-of-window ACKs or packet duplication occurs,
2271  * they differ. Since neither occurs due to loss, TCP should really
2272  * ignore them.
2273  */
tcp_dupack_heuristics(const struct tcp_sock * tp)2274 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2275 {
2276 	return tp->sacked_out + 1;
2277 }
2278 
2279 /* Linux NewReno/SACK/ECN state machine.
2280  * --------------------------------------
2281  *
2282  * "Open"	Normal state, no dubious events, fast path.
2283  * "Disorder"   In all the respects it is "Open",
2284  *		but requires a bit more attention. It is entered when
2285  *		we see some SACKs or dupacks. It is split of "Open"
2286  *		mainly to move some processing from fast path to slow one.
2287  * "CWR"	CWND was reduced due to some Congestion Notification event.
2288  *		It can be ECN, ICMP source quench, local device congestion.
2289  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2290  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2291  *
2292  * tcp_fastretrans_alert() is entered:
2293  * - each incoming ACK, if state is not "Open"
2294  * - when arrived ACK is unusual, namely:
2295  *	* SACK
2296  *	* Duplicate ACK.
2297  *	* ECN ECE.
2298  *
2299  * Counting packets in flight is pretty simple.
2300  *
2301  *	in_flight = packets_out - left_out + retrans_out
2302  *
2303  *	packets_out is SND.NXT-SND.UNA counted in packets.
2304  *
2305  *	retrans_out is number of retransmitted segments.
2306  *
2307  *	left_out is number of segments left network, but not ACKed yet.
2308  *
2309  *		left_out = sacked_out + lost_out
2310  *
2311  *     sacked_out: Packets, which arrived to receiver out of order
2312  *		   and hence not ACKed. With SACKs this number is simply
2313  *		   amount of SACKed data. Even without SACKs
2314  *		   it is easy to give pretty reliable estimate of this number,
2315  *		   counting duplicate ACKs.
2316  *
2317  *       lost_out: Packets lost by network. TCP has no explicit
2318  *		   "loss notification" feedback from network (for now).
2319  *		   It means that this number can be only _guessed_.
2320  *		   Actually, it is the heuristics to predict lossage that
2321  *		   distinguishes different algorithms.
2322  *
2323  *	F.e. after RTO, when all the queue is considered as lost,
2324  *	lost_out = packets_out and in_flight = retrans_out.
2325  *
2326  *		Essentially, we have now a few algorithms detecting
2327  *		lost packets.
2328  *
2329  *		If the receiver supports SACK:
2330  *
2331  *		RFC6675/3517: It is the conventional algorithm. A packet is
2332  *		considered lost if the number of higher sequence packets
2333  *		SACKed is greater than or equal the DUPACK thoreshold
2334  *		(reordering). This is implemented in tcp_mark_head_lost and
2335  *		tcp_update_scoreboard.
2336  *
2337  *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2338  *		(2017-) that checks timing instead of counting DUPACKs.
2339  *		Essentially a packet is considered lost if it's not S/ACKed
2340  *		after RTT + reordering_window, where both metrics are
2341  *		dynamically measured and adjusted. This is implemented in
2342  *		tcp_rack_mark_lost.
2343  *
2344  *		If the receiver does not support SACK:
2345  *
2346  *		NewReno (RFC6582): in Recovery we assume that one segment
2347  *		is lost (classic Reno). While we are in Recovery and
2348  *		a partial ACK arrives, we assume that one more packet
2349  *		is lost (NewReno). This heuristics are the same in NewReno
2350  *		and SACK.
2351  *
2352  * Really tricky (and requiring careful tuning) part of algorithm
2353  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2354  * The first determines the moment _when_ we should reduce CWND and,
2355  * hence, slow down forward transmission. In fact, it determines the moment
2356  * when we decide that hole is caused by loss, rather than by a reorder.
2357  *
2358  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2359  * holes, caused by lost packets.
2360  *
2361  * And the most logically complicated part of algorithm is undo
2362  * heuristics. We detect false retransmits due to both too early
2363  * fast retransmit (reordering) and underestimated RTO, analyzing
2364  * timestamps and D-SACKs. When we detect that some segments were
2365  * retransmitted by mistake and CWND reduction was wrong, we undo
2366  * window reduction and abort recovery phase. This logic is hidden
2367  * inside several functions named tcp_try_undo_<something>.
2368  */
2369 
2370 /* This function decides, when we should leave Disordered state
2371  * and enter Recovery phase, reducing congestion window.
2372  *
2373  * Main question: may we further continue forward transmission
2374  * with the same cwnd?
2375  */
tcp_time_to_recover(struct sock * sk,int flag)2376 static bool tcp_time_to_recover(struct sock *sk, int flag)
2377 {
2378 	struct tcp_sock *tp = tcp_sk(sk);
2379 
2380 	/* Trick#1: The loss is proven. */
2381 	if (tp->lost_out)
2382 		return true;
2383 
2384 	/* Not-A-Trick#2 : Classic rule... */
2385 	if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2386 		return true;
2387 
2388 	return false;
2389 }
2390 
2391 /* Detect loss in event "A" above by marking head of queue up as lost.
2392  * For RFC3517 SACK, a segment is considered lost if it
2393  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2394  * the maximum SACKed segments to pass before reaching this limit.
2395  */
tcp_mark_head_lost(struct sock * sk,int packets,int mark_head)2396 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2397 {
2398 	struct tcp_sock *tp = tcp_sk(sk);
2399 	struct sk_buff *skb;
2400 	int cnt;
2401 	/* Use SACK to deduce losses of new sequences sent during recovery */
2402 	const u32 loss_high = tp->snd_nxt;
2403 
2404 	WARN_ON(packets > tp->packets_out);
2405 	skb = tp->lost_skb_hint;
2406 	if (skb) {
2407 		/* Head already handled? */
2408 		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2409 			return;
2410 		cnt = tp->lost_cnt_hint;
2411 	} else {
2412 		skb = tcp_rtx_queue_head(sk);
2413 		cnt = 0;
2414 	}
2415 
2416 	skb_rbtree_walk_from(skb) {
2417 		/* TODO: do this better */
2418 		/* this is not the most efficient way to do this... */
2419 		tp->lost_skb_hint = skb;
2420 		tp->lost_cnt_hint = cnt;
2421 
2422 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2423 			break;
2424 
2425 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2426 			cnt += tcp_skb_pcount(skb);
2427 
2428 		if (cnt > packets)
2429 			break;
2430 
2431 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST))
2432 			tcp_mark_skb_lost(sk, skb);
2433 
2434 		if (mark_head)
2435 			break;
2436 	}
2437 	tcp_verify_left_out(tp);
2438 }
2439 
2440 /* Account newly detected lost packet(s) */
2441 
tcp_update_scoreboard(struct sock * sk,int fast_rexmit)2442 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2443 {
2444 	struct tcp_sock *tp = tcp_sk(sk);
2445 
2446 	if (tcp_is_sack(tp)) {
2447 		int sacked_upto = tp->sacked_out - tp->reordering;
2448 		if (sacked_upto >= 0)
2449 			tcp_mark_head_lost(sk, sacked_upto, 0);
2450 		else if (fast_rexmit)
2451 			tcp_mark_head_lost(sk, 1, 1);
2452 	}
2453 }
2454 
tcp_tsopt_ecr_before(const struct tcp_sock * tp,u32 when)2455 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2456 {
2457 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2458 	       before(tp->rx_opt.rcv_tsecr, when);
2459 }
2460 
2461 /* skb is spurious retransmitted if the returned timestamp echo
2462  * reply is prior to the skb transmission time
2463  */
tcp_skb_spurious_retrans(const struct tcp_sock * tp,const struct sk_buff * skb)2464 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2465 				     const struct sk_buff *skb)
2466 {
2467 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2468 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb));
2469 }
2470 
2471 /* Nothing was retransmitted or returned timestamp is less
2472  * than timestamp of the first retransmission.
2473  */
tcp_packet_delayed(const struct tcp_sock * tp)2474 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2475 {
2476 	const struct sock *sk = (const struct sock *)tp;
2477 
2478 	if (tp->retrans_stamp &&
2479 	    tcp_tsopt_ecr_before(tp, tp->retrans_stamp))
2480 		return true;  /* got echoed TS before first retransmission */
2481 
2482 	/* Check if nothing was retransmitted (retrans_stamp==0), which may
2483 	 * happen in fast recovery due to TSQ. But we ignore zero retrans_stamp
2484 	 * in TCP_SYN_SENT, since when we set FLAG_SYN_ACKED we also clear
2485 	 * retrans_stamp even if we had retransmitted the SYN.
2486 	 */
2487 	if (!tp->retrans_stamp &&	   /* no record of a retransmit/SYN? */
2488 	    sk->sk_state != TCP_SYN_SENT)  /* not the FLAG_SYN_ACKED case? */
2489 		return true;  /* nothing was retransmitted */
2490 
2491 	return false;
2492 }
2493 
2494 /* Undo procedures. */
2495 
2496 /* We can clear retrans_stamp when there are no retransmissions in the
2497  * window. It would seem that it is trivially available for us in
2498  * tp->retrans_out, however, that kind of assumptions doesn't consider
2499  * what will happen if errors occur when sending retransmission for the
2500  * second time. ...It could the that such segment has only
2501  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2502  * the head skb is enough except for some reneging corner cases that
2503  * are not worth the effort.
2504  *
2505  * Main reason for all this complexity is the fact that connection dying
2506  * time now depends on the validity of the retrans_stamp, in particular,
2507  * that successive retransmissions of a segment must not advance
2508  * retrans_stamp under any conditions.
2509  */
tcp_any_retrans_done(const struct sock * sk)2510 static bool tcp_any_retrans_done(const struct sock *sk)
2511 {
2512 	const struct tcp_sock *tp = tcp_sk(sk);
2513 	struct sk_buff *skb;
2514 
2515 	if (tp->retrans_out)
2516 		return true;
2517 
2518 	skb = tcp_rtx_queue_head(sk);
2519 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2520 		return true;
2521 
2522 	return false;
2523 }
2524 
2525 /* If loss recovery is finished and there are no retransmits out in the
2526  * network, then we clear retrans_stamp so that upon the next loss recovery
2527  * retransmits_timed_out() and timestamp-undo are using the correct value.
2528  */
tcp_retrans_stamp_cleanup(struct sock * sk)2529 static void tcp_retrans_stamp_cleanup(struct sock *sk)
2530 {
2531 	if (!tcp_any_retrans_done(sk))
2532 		tcp_sk(sk)->retrans_stamp = 0;
2533 }
2534 
DBGUNDO(struct sock * sk,const char * msg)2535 static void DBGUNDO(struct sock *sk, const char *msg)
2536 {
2537 #if FASTRETRANS_DEBUG > 1
2538 	struct tcp_sock *tp = tcp_sk(sk);
2539 	struct inet_sock *inet = inet_sk(sk);
2540 
2541 	if (sk->sk_family == AF_INET) {
2542 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2543 			 msg,
2544 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2545 			 tcp_snd_cwnd(tp), tcp_left_out(tp),
2546 			 tp->snd_ssthresh, tp->prior_ssthresh,
2547 			 tp->packets_out);
2548 	}
2549 #if IS_ENABLED(CONFIG_IPV6)
2550 	else if (sk->sk_family == AF_INET6) {
2551 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2552 			 msg,
2553 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2554 			 tcp_snd_cwnd(tp), tcp_left_out(tp),
2555 			 tp->snd_ssthresh, tp->prior_ssthresh,
2556 			 tp->packets_out);
2557 	}
2558 #endif
2559 #endif
2560 }
2561 
tcp_undo_cwnd_reduction(struct sock * sk,bool unmark_loss)2562 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2563 {
2564 	struct tcp_sock *tp = tcp_sk(sk);
2565 
2566 	if (unmark_loss) {
2567 		struct sk_buff *skb;
2568 
2569 		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2570 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2571 		}
2572 		tp->lost_out = 0;
2573 		tcp_clear_all_retrans_hints(tp);
2574 	}
2575 
2576 	if (tp->prior_ssthresh) {
2577 		const struct inet_connection_sock *icsk = inet_csk(sk);
2578 
2579 		tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk));
2580 
2581 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2582 			tp->snd_ssthresh = tp->prior_ssthresh;
2583 			tcp_ecn_withdraw_cwr(tp);
2584 		}
2585 	}
2586 	tp->snd_cwnd_stamp = tcp_jiffies32;
2587 	tp->undo_marker = 0;
2588 	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2589 }
2590 
tcp_may_undo(const struct tcp_sock * tp)2591 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2592 {
2593 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2594 }
2595 
tcp_is_non_sack_preventing_reopen(struct sock * sk)2596 static bool tcp_is_non_sack_preventing_reopen(struct sock *sk)
2597 {
2598 	struct tcp_sock *tp = tcp_sk(sk);
2599 
2600 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2601 		/* Hold old state until something *above* high_seq
2602 		 * is ACKed. For Reno it is MUST to prevent false
2603 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2604 		if (!tcp_any_retrans_done(sk))
2605 			tp->retrans_stamp = 0;
2606 		return true;
2607 	}
2608 	return false;
2609 }
2610 
2611 /* People celebrate: "We love our President!" */
tcp_try_undo_recovery(struct sock * sk)2612 static bool tcp_try_undo_recovery(struct sock *sk)
2613 {
2614 	struct tcp_sock *tp = tcp_sk(sk);
2615 
2616 	if (tcp_may_undo(tp)) {
2617 		int mib_idx;
2618 
2619 		/* Happy end! We did not retransmit anything
2620 		 * or our original transmission succeeded.
2621 		 */
2622 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2623 		tcp_undo_cwnd_reduction(sk, false);
2624 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2625 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2626 		else
2627 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2628 
2629 		NET_INC_STATS(sock_net(sk), mib_idx);
2630 	} else if (tp->rack.reo_wnd_persist) {
2631 		tp->rack.reo_wnd_persist--;
2632 	}
2633 	if (tcp_is_non_sack_preventing_reopen(sk))
2634 		return true;
2635 	tcp_set_ca_state(sk, TCP_CA_Open);
2636 	tp->is_sack_reneg = 0;
2637 	return false;
2638 }
2639 
2640 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
tcp_try_undo_dsack(struct sock * sk)2641 static bool tcp_try_undo_dsack(struct sock *sk)
2642 {
2643 	struct tcp_sock *tp = tcp_sk(sk);
2644 
2645 	if (tp->undo_marker && !tp->undo_retrans) {
2646 		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2647 					       tp->rack.reo_wnd_persist + 1);
2648 		DBGUNDO(sk, "D-SACK");
2649 		tcp_undo_cwnd_reduction(sk, false);
2650 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2651 		return true;
2652 	}
2653 	return false;
2654 }
2655 
2656 /* Undo during loss recovery after partial ACK or using F-RTO. */
tcp_try_undo_loss(struct sock * sk,bool frto_undo)2657 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2658 {
2659 	struct tcp_sock *tp = tcp_sk(sk);
2660 
2661 	if (frto_undo || tcp_may_undo(tp)) {
2662 		tcp_undo_cwnd_reduction(sk, true);
2663 
2664 		DBGUNDO(sk, "partial loss");
2665 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2666 		if (frto_undo)
2667 			NET_INC_STATS(sock_net(sk),
2668 					LINUX_MIB_TCPSPURIOUSRTOS);
2669 		inet_csk(sk)->icsk_retransmits = 0;
2670 		if (tcp_is_non_sack_preventing_reopen(sk))
2671 			return true;
2672 		if (frto_undo || tcp_is_sack(tp)) {
2673 			tcp_set_ca_state(sk, TCP_CA_Open);
2674 			tp->is_sack_reneg = 0;
2675 		}
2676 		return true;
2677 	}
2678 	return false;
2679 }
2680 
2681 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2682  * It computes the number of packets to send (sndcnt) based on packets newly
2683  * delivered:
2684  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2685  *	cwnd reductions across a full RTT.
2686  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2687  *      But when SND_UNA is acked without further losses,
2688  *      slow starts cwnd up to ssthresh to speed up the recovery.
2689  */
tcp_init_cwnd_reduction(struct sock * sk)2690 static void tcp_init_cwnd_reduction(struct sock *sk)
2691 {
2692 	struct tcp_sock *tp = tcp_sk(sk);
2693 
2694 	tp->high_seq = tp->snd_nxt;
2695 	tp->tlp_high_seq = 0;
2696 	tp->snd_cwnd_cnt = 0;
2697 	tp->prior_cwnd = tcp_snd_cwnd(tp);
2698 	tp->prr_delivered = 0;
2699 	tp->prr_out = 0;
2700 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2701 	tcp_ecn_queue_cwr(tp);
2702 }
2703 
tcp_cwnd_reduction(struct sock * sk,int newly_acked_sacked,int newly_lost,int flag)2704 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag)
2705 {
2706 	struct tcp_sock *tp = tcp_sk(sk);
2707 	int sndcnt = 0;
2708 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2709 
2710 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2711 		return;
2712 
2713 	tp->prr_delivered += newly_acked_sacked;
2714 	if (delta < 0) {
2715 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2716 			       tp->prior_cwnd - 1;
2717 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2718 	} else {
2719 		sndcnt = max_t(int, tp->prr_delivered - tp->prr_out,
2720 			       newly_acked_sacked);
2721 		if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost)
2722 			sndcnt++;
2723 		sndcnt = min(delta, sndcnt);
2724 	}
2725 	/* Force a fast retransmit upon entering fast recovery */
2726 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2727 	tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt);
2728 }
2729 
tcp_end_cwnd_reduction(struct sock * sk)2730 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2731 {
2732 	struct tcp_sock *tp = tcp_sk(sk);
2733 
2734 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2735 		return;
2736 
2737 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2738 	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2739 	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2740 		tcp_snd_cwnd_set(tp, tp->snd_ssthresh);
2741 		tp->snd_cwnd_stamp = tcp_jiffies32;
2742 	}
2743 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2744 }
2745 
2746 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
tcp_enter_cwr(struct sock * sk)2747 void tcp_enter_cwr(struct sock *sk)
2748 {
2749 	struct tcp_sock *tp = tcp_sk(sk);
2750 
2751 	tp->prior_ssthresh = 0;
2752 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2753 		tp->undo_marker = 0;
2754 		tcp_init_cwnd_reduction(sk);
2755 		tcp_set_ca_state(sk, TCP_CA_CWR);
2756 	}
2757 }
2758 EXPORT_SYMBOL(tcp_enter_cwr);
2759 
tcp_try_keep_open(struct sock * sk)2760 static void tcp_try_keep_open(struct sock *sk)
2761 {
2762 	struct tcp_sock *tp = tcp_sk(sk);
2763 	int state = TCP_CA_Open;
2764 
2765 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2766 		state = TCP_CA_Disorder;
2767 
2768 	if (inet_csk(sk)->icsk_ca_state != state) {
2769 		tcp_set_ca_state(sk, state);
2770 		tp->high_seq = tp->snd_nxt;
2771 	}
2772 }
2773 
tcp_try_to_open(struct sock * sk,int flag)2774 static void tcp_try_to_open(struct sock *sk, int flag)
2775 {
2776 	struct tcp_sock *tp = tcp_sk(sk);
2777 
2778 	tcp_verify_left_out(tp);
2779 
2780 	if (!tcp_any_retrans_done(sk))
2781 		tp->retrans_stamp = 0;
2782 
2783 	if (flag & FLAG_ECE)
2784 		tcp_enter_cwr(sk);
2785 
2786 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2787 		tcp_try_keep_open(sk);
2788 	}
2789 }
2790 
tcp_mtup_probe_failed(struct sock * sk)2791 static void tcp_mtup_probe_failed(struct sock *sk)
2792 {
2793 	struct inet_connection_sock *icsk = inet_csk(sk);
2794 
2795 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2796 	icsk->icsk_mtup.probe_size = 0;
2797 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2798 }
2799 
tcp_mtup_probe_success(struct sock * sk)2800 static void tcp_mtup_probe_success(struct sock *sk)
2801 {
2802 	struct tcp_sock *tp = tcp_sk(sk);
2803 	struct inet_connection_sock *icsk = inet_csk(sk);
2804 	u64 val;
2805 
2806 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2807 
2808 	val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache);
2809 	do_div(val, icsk->icsk_mtup.probe_size);
2810 	DEBUG_NET_WARN_ON_ONCE((u32)val != val);
2811 	tcp_snd_cwnd_set(tp, max_t(u32, 1U, val));
2812 
2813 	tp->snd_cwnd_cnt = 0;
2814 	tp->snd_cwnd_stamp = tcp_jiffies32;
2815 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2816 
2817 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2818 	icsk->icsk_mtup.probe_size = 0;
2819 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2820 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2821 }
2822 
2823 /* Sometimes we deduce that packets have been dropped due to reasons other than
2824  * congestion, like path MTU reductions or failed client TFO attempts. In these
2825  * cases we call this function to retransmit as many packets as cwnd allows,
2826  * without reducing cwnd. Given that retransmits will set retrans_stamp to a
2827  * non-zero value (and may do so in a later calling context due to TSQ), we
2828  * also enter CA_Loss so that we track when all retransmitted packets are ACKed
2829  * and clear retrans_stamp when that happens (to ensure later recurring RTOs
2830  * are using the correct retrans_stamp and don't declare ETIMEDOUT
2831  * prematurely).
2832  */
tcp_non_congestion_loss_retransmit(struct sock * sk)2833 static void tcp_non_congestion_loss_retransmit(struct sock *sk)
2834 {
2835 	const struct inet_connection_sock *icsk = inet_csk(sk);
2836 	struct tcp_sock *tp = tcp_sk(sk);
2837 
2838 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2839 		tp->high_seq = tp->snd_nxt;
2840 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2841 		tp->prior_ssthresh = 0;
2842 		tp->undo_marker = 0;
2843 		tcp_set_ca_state(sk, TCP_CA_Loss);
2844 	}
2845 	tcp_xmit_retransmit_queue(sk);
2846 }
2847 
2848 /* Do a simple retransmit without using the backoff mechanisms in
2849  * tcp_timer. This is used for path mtu discovery.
2850  * The socket is already locked here.
2851  */
tcp_simple_retransmit(struct sock * sk)2852 void tcp_simple_retransmit(struct sock *sk)
2853 {
2854 	struct tcp_sock *tp = tcp_sk(sk);
2855 	struct sk_buff *skb;
2856 	int mss;
2857 
2858 	/* A fastopen SYN request is stored as two separate packets within
2859 	 * the retransmit queue, this is done by tcp_send_syn_data().
2860 	 * As a result simply checking the MSS of the frames in the queue
2861 	 * will not work for the SYN packet.
2862 	 *
2863 	 * Us being here is an indication of a path MTU issue so we can
2864 	 * assume that the fastopen SYN was lost and just mark all the
2865 	 * frames in the retransmit queue as lost. We will use an MSS of
2866 	 * -1 to mark all frames as lost, otherwise compute the current MSS.
2867 	 */
2868 	if (tp->syn_data && sk->sk_state == TCP_SYN_SENT)
2869 		mss = -1;
2870 	else
2871 		mss = tcp_current_mss(sk);
2872 
2873 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2874 		if (tcp_skb_seglen(skb) > mss)
2875 			tcp_mark_skb_lost(sk, skb);
2876 	}
2877 
2878 	tcp_clear_retrans_hints_partial(tp);
2879 
2880 	if (!tp->lost_out)
2881 		return;
2882 
2883 	if (tcp_is_reno(tp))
2884 		tcp_limit_reno_sacked(tp);
2885 
2886 	tcp_verify_left_out(tp);
2887 
2888 	/* Don't muck with the congestion window here.
2889 	 * Reason is that we do not increase amount of _data_
2890 	 * in network, but units changed and effective
2891 	 * cwnd/ssthresh really reduced now.
2892 	 */
2893 	tcp_non_congestion_loss_retransmit(sk);
2894 }
2895 EXPORT_SYMBOL(tcp_simple_retransmit);
2896 
tcp_enter_recovery(struct sock * sk,bool ece_ack)2897 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2898 {
2899 	struct tcp_sock *tp = tcp_sk(sk);
2900 	int mib_idx;
2901 
2902 	/* Start the clock with our fast retransmit, for undo and ETIMEDOUT. */
2903 	tcp_retrans_stamp_cleanup(sk);
2904 
2905 	if (tcp_is_reno(tp))
2906 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2907 	else
2908 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2909 
2910 	NET_INC_STATS(sock_net(sk), mib_idx);
2911 
2912 	tp->prior_ssthresh = 0;
2913 	tcp_init_undo(tp);
2914 
2915 	if (!tcp_in_cwnd_reduction(sk)) {
2916 		if (!ece_ack)
2917 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2918 		tcp_init_cwnd_reduction(sk);
2919 	}
2920 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2921 }
2922 
tcp_update_rto_time(struct tcp_sock * tp)2923 static void tcp_update_rto_time(struct tcp_sock *tp)
2924 {
2925 	if (tp->rto_stamp) {
2926 		tp->total_rto_time += tcp_time_stamp_ms(tp) - tp->rto_stamp;
2927 		tp->rto_stamp = 0;
2928 	}
2929 }
2930 
2931 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2932  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2933  */
tcp_process_loss(struct sock * sk,int flag,int num_dupack,int * rexmit)2934 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2935 			     int *rexmit)
2936 {
2937 	struct tcp_sock *tp = tcp_sk(sk);
2938 	bool recovered = !before(tp->snd_una, tp->high_seq);
2939 
2940 	if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2941 	    tcp_try_undo_loss(sk, false))
2942 		return;
2943 
2944 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2945 		/* Step 3.b. A timeout is spurious if not all data are
2946 		 * lost, i.e., never-retransmitted data are (s)acked.
2947 		 */
2948 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2949 		    tcp_try_undo_loss(sk, true))
2950 			return;
2951 
2952 		if (after(tp->snd_nxt, tp->high_seq)) {
2953 			if (flag & FLAG_DATA_SACKED || num_dupack)
2954 				tp->frto = 0; /* Step 3.a. loss was real */
2955 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2956 			tp->high_seq = tp->snd_nxt;
2957 			/* Step 2.b. Try send new data (but deferred until cwnd
2958 			 * is updated in tcp_ack()). Otherwise fall back to
2959 			 * the conventional recovery.
2960 			 */
2961 			if (!tcp_write_queue_empty(sk) &&
2962 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2963 				*rexmit = REXMIT_NEW;
2964 				return;
2965 			}
2966 			tp->frto = 0;
2967 		}
2968 	}
2969 
2970 	if (recovered) {
2971 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2972 		tcp_try_undo_recovery(sk);
2973 		return;
2974 	}
2975 	if (tcp_is_reno(tp)) {
2976 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2977 		 * delivered. Lower inflight to clock out (re)transmissions.
2978 		 */
2979 		if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2980 			tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
2981 		else if (flag & FLAG_SND_UNA_ADVANCED)
2982 			tcp_reset_reno_sack(tp);
2983 	}
2984 	*rexmit = REXMIT_LOST;
2985 }
2986 
tcp_force_fast_retransmit(struct sock * sk)2987 static bool tcp_force_fast_retransmit(struct sock *sk)
2988 {
2989 	struct tcp_sock *tp = tcp_sk(sk);
2990 
2991 	return after(tcp_highest_sack_seq(tp),
2992 		     tp->snd_una + tp->reordering * tp->mss_cache);
2993 }
2994 
2995 /* Undo during fast recovery after partial ACK. */
tcp_try_undo_partial(struct sock * sk,u32 prior_snd_una,bool * do_lost)2996 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una,
2997 				 bool *do_lost)
2998 {
2999 	struct tcp_sock *tp = tcp_sk(sk);
3000 
3001 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
3002 		/* Plain luck! Hole if filled with delayed
3003 		 * packet, rather than with a retransmit. Check reordering.
3004 		 */
3005 		tcp_check_sack_reordering(sk, prior_snd_una, 1);
3006 
3007 		/* We are getting evidence that the reordering degree is higher
3008 		 * than we realized. If there are no retransmits out then we
3009 		 * can undo. Otherwise we clock out new packets but do not
3010 		 * mark more packets lost or retransmit more.
3011 		 */
3012 		if (tp->retrans_out)
3013 			return true;
3014 
3015 		if (!tcp_any_retrans_done(sk))
3016 			tp->retrans_stamp = 0;
3017 
3018 		DBGUNDO(sk, "partial recovery");
3019 		tcp_undo_cwnd_reduction(sk, true);
3020 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
3021 		tcp_try_keep_open(sk);
3022 	} else {
3023 		/* Partial ACK arrived. Force fast retransmit. */
3024 		*do_lost = tcp_force_fast_retransmit(sk);
3025 	}
3026 	return false;
3027 }
3028 
tcp_identify_packet_loss(struct sock * sk,int * ack_flag)3029 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
3030 {
3031 	struct tcp_sock *tp = tcp_sk(sk);
3032 
3033 	if (tcp_rtx_queue_empty(sk))
3034 		return;
3035 
3036 	if (unlikely(tcp_is_reno(tp))) {
3037 		tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
3038 	} else if (tcp_is_rack(sk)) {
3039 		u32 prior_retrans = tp->retrans_out;
3040 
3041 		if (tcp_rack_mark_lost(sk))
3042 			*ack_flag &= ~FLAG_SET_XMIT_TIMER;
3043 		if (prior_retrans > tp->retrans_out)
3044 			*ack_flag |= FLAG_LOST_RETRANS;
3045 	}
3046 }
3047 
3048 /* Process an event, which can update packets-in-flight not trivially.
3049  * Main goal of this function is to calculate new estimate for left_out,
3050  * taking into account both packets sitting in receiver's buffer and
3051  * packets lost by network.
3052  *
3053  * Besides that it updates the congestion state when packet loss or ECN
3054  * is detected. But it does not reduce the cwnd, it is done by the
3055  * congestion control later.
3056  *
3057  * It does _not_ decide what to send, it is made in function
3058  * tcp_xmit_retransmit_queue().
3059  */
tcp_fastretrans_alert(struct sock * sk,const u32 prior_snd_una,int num_dupack,int * ack_flag,int * rexmit)3060 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
3061 				  int num_dupack, int *ack_flag, int *rexmit)
3062 {
3063 	struct inet_connection_sock *icsk = inet_csk(sk);
3064 	struct tcp_sock *tp = tcp_sk(sk);
3065 	int fast_rexmit = 0, flag = *ack_flag;
3066 	bool ece_ack = flag & FLAG_ECE;
3067 	bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
3068 				      tcp_force_fast_retransmit(sk));
3069 
3070 	if (!tp->packets_out && tp->sacked_out)
3071 		tp->sacked_out = 0;
3072 
3073 	/* Now state machine starts.
3074 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3075 	if (ece_ack)
3076 		tp->prior_ssthresh = 0;
3077 
3078 	/* B. In all the states check for reneging SACKs. */
3079 	if (tcp_check_sack_reneging(sk, ack_flag))
3080 		return;
3081 
3082 	/* C. Check consistency of the current state. */
3083 	tcp_verify_left_out(tp);
3084 
3085 	/* D. Check state exit conditions. State can be terminated
3086 	 *    when high_seq is ACKed. */
3087 	if (icsk->icsk_ca_state == TCP_CA_Open) {
3088 		WARN_ON(tp->retrans_out != 0 && !tp->syn_data);
3089 		tp->retrans_stamp = 0;
3090 	} else if (!before(tp->snd_una, tp->high_seq)) {
3091 		switch (icsk->icsk_ca_state) {
3092 		case TCP_CA_CWR:
3093 			/* CWR is to be held something *above* high_seq
3094 			 * is ACKed for CWR bit to reach receiver. */
3095 			if (tp->snd_una != tp->high_seq) {
3096 				tcp_end_cwnd_reduction(sk);
3097 				tcp_set_ca_state(sk, TCP_CA_Open);
3098 			}
3099 			break;
3100 
3101 		case TCP_CA_Recovery:
3102 			if (tcp_is_reno(tp))
3103 				tcp_reset_reno_sack(tp);
3104 			if (tcp_try_undo_recovery(sk))
3105 				return;
3106 			tcp_end_cwnd_reduction(sk);
3107 			break;
3108 		}
3109 	}
3110 
3111 	/* E. Process state. */
3112 	switch (icsk->icsk_ca_state) {
3113 	case TCP_CA_Recovery:
3114 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3115 			if (tcp_is_reno(tp))
3116 				tcp_add_reno_sack(sk, num_dupack, ece_ack);
3117 		} else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost))
3118 			return;
3119 
3120 		if (tcp_try_undo_dsack(sk))
3121 			tcp_try_to_open(sk, flag);
3122 
3123 		tcp_identify_packet_loss(sk, ack_flag);
3124 		if (icsk->icsk_ca_state != TCP_CA_Recovery) {
3125 			if (!tcp_time_to_recover(sk, flag))
3126 				return;
3127 			/* Undo reverts the recovery state. If loss is evident,
3128 			 * starts a new recovery (e.g. reordering then loss);
3129 			 */
3130 			tcp_enter_recovery(sk, ece_ack);
3131 		}
3132 		break;
3133 	case TCP_CA_Loss:
3134 		tcp_process_loss(sk, flag, num_dupack, rexmit);
3135 		if (icsk->icsk_ca_state != TCP_CA_Loss)
3136 			tcp_update_rto_time(tp);
3137 		tcp_identify_packet_loss(sk, ack_flag);
3138 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
3139 		      (*ack_flag & FLAG_LOST_RETRANS)))
3140 			return;
3141 		/* Change state if cwnd is undone or retransmits are lost */
3142 		fallthrough;
3143 	default:
3144 		if (tcp_is_reno(tp)) {
3145 			if (flag & FLAG_SND_UNA_ADVANCED)
3146 				tcp_reset_reno_sack(tp);
3147 			tcp_add_reno_sack(sk, num_dupack, ece_ack);
3148 		}
3149 
3150 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3151 			tcp_try_undo_dsack(sk);
3152 
3153 		tcp_identify_packet_loss(sk, ack_flag);
3154 		if (!tcp_time_to_recover(sk, flag)) {
3155 			tcp_try_to_open(sk, flag);
3156 			return;
3157 		}
3158 
3159 		/* MTU probe failure: don't reduce cwnd */
3160 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
3161 		    icsk->icsk_mtup.probe_size &&
3162 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3163 			tcp_mtup_probe_failed(sk);
3164 			/* Restores the reduction we did in tcp_mtup_probe() */
3165 			tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1);
3166 			tcp_simple_retransmit(sk);
3167 			return;
3168 		}
3169 
3170 		/* Otherwise enter Recovery state */
3171 		tcp_enter_recovery(sk, ece_ack);
3172 		fast_rexmit = 1;
3173 	}
3174 
3175 	if (!tcp_is_rack(sk) && do_lost)
3176 		tcp_update_scoreboard(sk, fast_rexmit);
3177 	*rexmit = REXMIT_LOST;
3178 }
3179 
tcp_update_rtt_min(struct sock * sk,u32 rtt_us,const int flag)3180 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
3181 {
3182 	u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ;
3183 	struct tcp_sock *tp = tcp_sk(sk);
3184 
3185 	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
3186 		/* If the remote keeps returning delayed ACKs, eventually
3187 		 * the min filter would pick it up and overestimate the
3188 		 * prop. delay when it expires. Skip suspected delayed ACKs.
3189 		 */
3190 		return;
3191 	}
3192 	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
3193 			   rtt_us ? : jiffies_to_usecs(1));
3194 }
3195 
tcp_ack_update_rtt(struct sock * sk,const int flag,long seq_rtt_us,long sack_rtt_us,long ca_rtt_us,struct rate_sample * rs)3196 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
3197 			       long seq_rtt_us, long sack_rtt_us,
3198 			       long ca_rtt_us, struct rate_sample *rs)
3199 {
3200 	const struct tcp_sock *tp = tcp_sk(sk);
3201 
3202 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
3203 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
3204 	 * Karn's algorithm forbids taking RTT if some retransmitted data
3205 	 * is acked (RFC6298).
3206 	 */
3207 	if (seq_rtt_us < 0)
3208 		seq_rtt_us = sack_rtt_us;
3209 
3210 	/* RTTM Rule: A TSecr value received in a segment is used to
3211 	 * update the averaged RTT measurement only if the segment
3212 	 * acknowledges some new data, i.e., only if it advances the
3213 	 * left edge of the send window.
3214 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3215 	 */
3216 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp &&
3217 	    tp->rx_opt.rcv_tsecr && flag & FLAG_ACKED)
3218 		seq_rtt_us = ca_rtt_us = tcp_rtt_tsopt_us(tp);
3219 
3220 	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
3221 	if (seq_rtt_us < 0)
3222 		return false;
3223 
3224 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3225 	 * always taken together with ACK, SACK, or TS-opts. Any negative
3226 	 * values will be skipped with the seq_rtt_us < 0 check above.
3227 	 */
3228 	tcp_update_rtt_min(sk, ca_rtt_us, flag);
3229 	tcp_rtt_estimator(sk, seq_rtt_us);
3230 	tcp_set_rto(sk);
3231 
3232 	/* RFC6298: only reset backoff on valid RTT measurement. */
3233 	inet_csk(sk)->icsk_backoff = 0;
3234 	return true;
3235 }
3236 
3237 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
tcp_synack_rtt_meas(struct sock * sk,struct request_sock * req)3238 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3239 {
3240 	struct rate_sample rs;
3241 	long rtt_us = -1L;
3242 
3243 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3244 		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3245 
3246 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3247 }
3248 
3249 
tcp_cong_avoid(struct sock * sk,u32 ack,u32 acked)3250 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3251 {
3252 	const struct inet_connection_sock *icsk = inet_csk(sk);
3253 
3254 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3255 	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3256 }
3257 
3258 /* Restart timer after forward progress on connection.
3259  * RFC2988 recommends to restart timer to now+rto.
3260  */
tcp_rearm_rto(struct sock * sk)3261 void tcp_rearm_rto(struct sock *sk)
3262 {
3263 	const struct inet_connection_sock *icsk = inet_csk(sk);
3264 	struct tcp_sock *tp = tcp_sk(sk);
3265 
3266 	/* If the retrans timer is currently being used by Fast Open
3267 	 * for SYN-ACK retrans purpose, stay put.
3268 	 */
3269 	if (rcu_access_pointer(tp->fastopen_rsk))
3270 		return;
3271 
3272 	if (!tp->packets_out) {
3273 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3274 	} else {
3275 		u32 rto = inet_csk(sk)->icsk_rto;
3276 		/* Offset the time elapsed after installing regular RTO */
3277 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3278 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3279 			s64 delta_us = tcp_rto_delta_us(sk);
3280 			/* delta_us may not be positive if the socket is locked
3281 			 * when the retrans timer fires and is rescheduled.
3282 			 */
3283 			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3284 		}
3285 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3286 				     TCP_RTO_MAX);
3287 	}
3288 }
3289 
3290 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
tcp_set_xmit_timer(struct sock * sk)3291 static void tcp_set_xmit_timer(struct sock *sk)
3292 {
3293 	if (!tcp_schedule_loss_probe(sk, true))
3294 		tcp_rearm_rto(sk);
3295 }
3296 
3297 /* If we get here, the whole TSO packet has not been acked. */
tcp_tso_acked(struct sock * sk,struct sk_buff * skb)3298 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3299 {
3300 	struct tcp_sock *tp = tcp_sk(sk);
3301 	u32 packets_acked;
3302 
3303 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3304 
3305 	packets_acked = tcp_skb_pcount(skb);
3306 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3307 		return 0;
3308 	packets_acked -= tcp_skb_pcount(skb);
3309 
3310 	if (packets_acked) {
3311 		BUG_ON(tcp_skb_pcount(skb) == 0);
3312 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3313 	}
3314 
3315 	return packets_acked;
3316 }
3317 
tcp_ack_tstamp(struct sock * sk,struct sk_buff * skb,const struct sk_buff * ack_skb,u32 prior_snd_una)3318 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3319 			   const struct sk_buff *ack_skb, u32 prior_snd_una)
3320 {
3321 	const struct skb_shared_info *shinfo;
3322 
3323 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3324 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3325 		return;
3326 
3327 	shinfo = skb_shinfo(skb);
3328 	if (!before(shinfo->tskey, prior_snd_una) &&
3329 	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3330 		tcp_skb_tsorted_save(skb) {
3331 			__skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK);
3332 		} tcp_skb_tsorted_restore(skb);
3333 	}
3334 }
3335 
3336 /* Remove acknowledged frames from the retransmission queue. If our packet
3337  * is before the ack sequence we can discard it as it's confirmed to have
3338  * arrived at the other end.
3339  */
tcp_clean_rtx_queue(struct sock * sk,const struct sk_buff * ack_skb,u32 prior_fack,u32 prior_snd_una,struct tcp_sacktag_state * sack,bool ece_ack)3340 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb,
3341 			       u32 prior_fack, u32 prior_snd_una,
3342 			       struct tcp_sacktag_state *sack, bool ece_ack)
3343 {
3344 	const struct inet_connection_sock *icsk = inet_csk(sk);
3345 	u64 first_ackt, last_ackt;
3346 	struct tcp_sock *tp = tcp_sk(sk);
3347 	u32 prior_sacked = tp->sacked_out;
3348 	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3349 	struct sk_buff *skb, *next;
3350 	bool fully_acked = true;
3351 	long sack_rtt_us = -1L;
3352 	long seq_rtt_us = -1L;
3353 	long ca_rtt_us = -1L;
3354 	u32 pkts_acked = 0;
3355 	bool rtt_update;
3356 	int flag = 0;
3357 
3358 	first_ackt = 0;
3359 
3360 	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3361 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3362 		const u32 start_seq = scb->seq;
3363 		u8 sacked = scb->sacked;
3364 		u32 acked_pcount;
3365 
3366 		/* Determine how many packets and what bytes were acked, tso and else */
3367 		if (after(scb->end_seq, tp->snd_una)) {
3368 			if (tcp_skb_pcount(skb) == 1 ||
3369 			    !after(tp->snd_una, scb->seq))
3370 				break;
3371 
3372 			acked_pcount = tcp_tso_acked(sk, skb);
3373 			if (!acked_pcount)
3374 				break;
3375 			fully_acked = false;
3376 		} else {
3377 			acked_pcount = tcp_skb_pcount(skb);
3378 		}
3379 
3380 		if (unlikely(sacked & TCPCB_RETRANS)) {
3381 			if (sacked & TCPCB_SACKED_RETRANS)
3382 				tp->retrans_out -= acked_pcount;
3383 			flag |= FLAG_RETRANS_DATA_ACKED;
3384 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3385 			last_ackt = tcp_skb_timestamp_us(skb);
3386 			WARN_ON_ONCE(last_ackt == 0);
3387 			if (!first_ackt)
3388 				first_ackt = last_ackt;
3389 
3390 			if (before(start_seq, reord))
3391 				reord = start_seq;
3392 			if (!after(scb->end_seq, tp->high_seq))
3393 				flag |= FLAG_ORIG_SACK_ACKED;
3394 		}
3395 
3396 		if (sacked & TCPCB_SACKED_ACKED) {
3397 			tp->sacked_out -= acked_pcount;
3398 		} else if (tcp_is_sack(tp)) {
3399 			tcp_count_delivered(tp, acked_pcount, ece_ack);
3400 			if (!tcp_skb_spurious_retrans(tp, skb))
3401 				tcp_rack_advance(tp, sacked, scb->end_seq,
3402 						 tcp_skb_timestamp_us(skb));
3403 		}
3404 		if (sacked & TCPCB_LOST)
3405 			tp->lost_out -= acked_pcount;
3406 
3407 		tp->packets_out -= acked_pcount;
3408 		pkts_acked += acked_pcount;
3409 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3410 
3411 		/* Initial outgoing SYN's get put onto the write_queue
3412 		 * just like anything else we transmit.  It is not
3413 		 * true data, and if we misinform our callers that
3414 		 * this ACK acks real data, we will erroneously exit
3415 		 * connection startup slow start one packet too
3416 		 * quickly.  This is severely frowned upon behavior.
3417 		 */
3418 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3419 			flag |= FLAG_DATA_ACKED;
3420 		} else {
3421 			flag |= FLAG_SYN_ACKED;
3422 			tp->retrans_stamp = 0;
3423 		}
3424 
3425 		if (!fully_acked)
3426 			break;
3427 
3428 		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3429 
3430 		next = skb_rb_next(skb);
3431 		if (unlikely(skb == tp->retransmit_skb_hint))
3432 			tp->retransmit_skb_hint = NULL;
3433 		if (unlikely(skb == tp->lost_skb_hint))
3434 			tp->lost_skb_hint = NULL;
3435 		tcp_highest_sack_replace(sk, skb, next);
3436 		tcp_rtx_queue_unlink_and_free(skb, sk);
3437 	}
3438 
3439 	if (!skb)
3440 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3441 
3442 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3443 		tp->snd_up = tp->snd_una;
3444 
3445 	if (skb) {
3446 		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3447 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3448 			flag |= FLAG_SACK_RENEGING;
3449 	}
3450 
3451 	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3452 		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3453 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3454 
3455 		if (pkts_acked == 1 && fully_acked && !prior_sacked &&
3456 		    (tp->snd_una - prior_snd_una) < tp->mss_cache &&
3457 		    sack->rate->prior_delivered + 1 == tp->delivered &&
3458 		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3459 			/* Conservatively mark a delayed ACK. It's typically
3460 			 * from a lone runt packet over the round trip to
3461 			 * a receiver w/o out-of-order or CE events.
3462 			 */
3463 			flag |= FLAG_ACK_MAYBE_DELAYED;
3464 		}
3465 	}
3466 	if (sack->first_sackt) {
3467 		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3468 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3469 	}
3470 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3471 					ca_rtt_us, sack->rate);
3472 
3473 	if (flag & FLAG_ACKED) {
3474 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3475 		if (unlikely(icsk->icsk_mtup.probe_size &&
3476 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3477 			tcp_mtup_probe_success(sk);
3478 		}
3479 
3480 		if (tcp_is_reno(tp)) {
3481 			tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3482 
3483 			/* If any of the cumulatively ACKed segments was
3484 			 * retransmitted, non-SACK case cannot confirm that
3485 			 * progress was due to original transmission due to
3486 			 * lack of TCPCB_SACKED_ACKED bits even if some of
3487 			 * the packets may have been never retransmitted.
3488 			 */
3489 			if (flag & FLAG_RETRANS_DATA_ACKED)
3490 				flag &= ~FLAG_ORIG_SACK_ACKED;
3491 		} else {
3492 			int delta;
3493 
3494 			/* Non-retransmitted hole got filled? That's reordering */
3495 			if (before(reord, prior_fack))
3496 				tcp_check_sack_reordering(sk, reord, 0);
3497 
3498 			delta = prior_sacked - tp->sacked_out;
3499 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3500 		}
3501 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3502 		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3503 						    tcp_skb_timestamp_us(skb))) {
3504 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3505 		 * after when the head was last (re)transmitted. Otherwise the
3506 		 * timeout may continue to extend in loss recovery.
3507 		 */
3508 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3509 	}
3510 
3511 	if (icsk->icsk_ca_ops->pkts_acked) {
3512 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3513 					     .rtt_us = sack->rate->rtt_us };
3514 
3515 		sample.in_flight = tp->mss_cache *
3516 			(tp->delivered - sack->rate->prior_delivered);
3517 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3518 	}
3519 
3520 #if FASTRETRANS_DEBUG > 0
3521 	WARN_ON((int)tp->sacked_out < 0);
3522 	WARN_ON((int)tp->lost_out < 0);
3523 	WARN_ON((int)tp->retrans_out < 0);
3524 	if (!tp->packets_out && tcp_is_sack(tp)) {
3525 		icsk = inet_csk(sk);
3526 		if (tp->lost_out) {
3527 			pr_debug("Leak l=%u %d\n",
3528 				 tp->lost_out, icsk->icsk_ca_state);
3529 			tp->lost_out = 0;
3530 		}
3531 		if (tp->sacked_out) {
3532 			pr_debug("Leak s=%u %d\n",
3533 				 tp->sacked_out, icsk->icsk_ca_state);
3534 			tp->sacked_out = 0;
3535 		}
3536 		if (tp->retrans_out) {
3537 			pr_debug("Leak r=%u %d\n",
3538 				 tp->retrans_out, icsk->icsk_ca_state);
3539 			tp->retrans_out = 0;
3540 		}
3541 	}
3542 #endif
3543 	return flag;
3544 }
3545 
tcp_ack_probe(struct sock * sk)3546 static void tcp_ack_probe(struct sock *sk)
3547 {
3548 	struct inet_connection_sock *icsk = inet_csk(sk);
3549 	struct sk_buff *head = tcp_send_head(sk);
3550 	const struct tcp_sock *tp = tcp_sk(sk);
3551 
3552 	/* Was it a usable window open? */
3553 	if (!head)
3554 		return;
3555 	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3556 		icsk->icsk_backoff = 0;
3557 		icsk->icsk_probes_tstamp = 0;
3558 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3559 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3560 		 * This function is not for random using!
3561 		 */
3562 	} else {
3563 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3564 
3565 		when = tcp_clamp_probe0_to_user_timeout(sk, when);
3566 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX);
3567 	}
3568 }
3569 
tcp_ack_is_dubious(const struct sock * sk,const int flag)3570 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3571 {
3572 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3573 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3574 }
3575 
3576 /* Decide wheather to run the increase function of congestion control. */
tcp_may_raise_cwnd(const struct sock * sk,const int flag)3577 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3578 {
3579 	/* If reordering is high then always grow cwnd whenever data is
3580 	 * delivered regardless of its ordering. Otherwise stay conservative
3581 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3582 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3583 	 * cwnd in tcp_fastretrans_alert() based on more states.
3584 	 */
3585 	if (tcp_sk(sk)->reordering >
3586 	    READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering))
3587 		return flag & FLAG_FORWARD_PROGRESS;
3588 
3589 	return flag & FLAG_DATA_ACKED;
3590 }
3591 
3592 /* The "ultimate" congestion control function that aims to replace the rigid
3593  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3594  * It's called toward the end of processing an ACK with precise rate
3595  * information. All transmission or retransmission are delayed afterwards.
3596  */
tcp_cong_control(struct sock * sk,u32 ack,u32 acked_sacked,int flag,const struct rate_sample * rs)3597 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3598 			     int flag, const struct rate_sample *rs)
3599 {
3600 	const struct inet_connection_sock *icsk = inet_csk(sk);
3601 
3602 	if (icsk->icsk_ca_ops->cong_control) {
3603 		icsk->icsk_ca_ops->cong_control(sk, ack, flag, rs);
3604 		return;
3605 	}
3606 
3607 	if (tcp_in_cwnd_reduction(sk)) {
3608 		/* Reduce cwnd if state mandates */
3609 		tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag);
3610 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3611 		/* Advance cwnd if state allows */
3612 		tcp_cong_avoid(sk, ack, acked_sacked);
3613 	}
3614 	tcp_update_pacing_rate(sk);
3615 }
3616 
3617 /* Check that window update is acceptable.
3618  * The function assumes that snd_una<=ack<=snd_next.
3619  */
tcp_may_update_window(const struct tcp_sock * tp,const u32 ack,const u32 ack_seq,const u32 nwin)3620 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3621 					const u32 ack, const u32 ack_seq,
3622 					const u32 nwin)
3623 {
3624 	return	after(ack, tp->snd_una) ||
3625 		after(ack_seq, tp->snd_wl1) ||
3626 		(ack_seq == tp->snd_wl1 && (nwin > tp->snd_wnd || !nwin));
3627 }
3628 
tcp_snd_sne_update(struct tcp_sock * tp,u32 ack)3629 static void tcp_snd_sne_update(struct tcp_sock *tp, u32 ack)
3630 {
3631 #ifdef CONFIG_TCP_AO
3632 	struct tcp_ao_info *ao;
3633 
3634 	if (!static_branch_unlikely(&tcp_ao_needed.key))
3635 		return;
3636 
3637 	ao = rcu_dereference_protected(tp->ao_info,
3638 				       lockdep_sock_is_held((struct sock *)tp));
3639 	if (ao && ack < tp->snd_una) {
3640 		ao->snd_sne++;
3641 		trace_tcp_ao_snd_sne_update((struct sock *)tp, ao->snd_sne);
3642 	}
3643 #endif
3644 }
3645 
3646 /* If we update tp->snd_una, also update tp->bytes_acked */
tcp_snd_una_update(struct tcp_sock * tp,u32 ack)3647 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3648 {
3649 	u32 delta = ack - tp->snd_una;
3650 
3651 	sock_owned_by_me((struct sock *)tp);
3652 	tp->bytes_acked += delta;
3653 	tcp_snd_sne_update(tp, ack);
3654 	tp->snd_una = ack;
3655 }
3656 
tcp_rcv_sne_update(struct tcp_sock * tp,u32 seq)3657 static void tcp_rcv_sne_update(struct tcp_sock *tp, u32 seq)
3658 {
3659 #ifdef CONFIG_TCP_AO
3660 	struct tcp_ao_info *ao;
3661 
3662 	if (!static_branch_unlikely(&tcp_ao_needed.key))
3663 		return;
3664 
3665 	ao = rcu_dereference_protected(tp->ao_info,
3666 				       lockdep_sock_is_held((struct sock *)tp));
3667 	if (ao && seq < tp->rcv_nxt) {
3668 		ao->rcv_sne++;
3669 		trace_tcp_ao_rcv_sne_update((struct sock *)tp, ao->rcv_sne);
3670 	}
3671 #endif
3672 }
3673 
3674 /* If we update tp->rcv_nxt, also update tp->bytes_received */
tcp_rcv_nxt_update(struct tcp_sock * tp,u32 seq)3675 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3676 {
3677 	u32 delta = seq - tp->rcv_nxt;
3678 
3679 	sock_owned_by_me((struct sock *)tp);
3680 	tp->bytes_received += delta;
3681 	tcp_rcv_sne_update(tp, seq);
3682 	WRITE_ONCE(tp->rcv_nxt, seq);
3683 }
3684 
3685 /* Update our send window.
3686  *
3687  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3688  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3689  */
tcp_ack_update_window(struct sock * sk,const struct sk_buff * skb,u32 ack,u32 ack_seq)3690 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3691 				 u32 ack_seq)
3692 {
3693 	struct tcp_sock *tp = tcp_sk(sk);
3694 	int flag = 0;
3695 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3696 
3697 	if (likely(!tcp_hdr(skb)->syn))
3698 		nwin <<= tp->rx_opt.snd_wscale;
3699 
3700 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3701 		flag |= FLAG_WIN_UPDATE;
3702 		tcp_update_wl(tp, ack_seq);
3703 
3704 		if (tp->snd_wnd != nwin) {
3705 			tp->snd_wnd = nwin;
3706 
3707 			/* Note, it is the only place, where
3708 			 * fast path is recovered for sending TCP.
3709 			 */
3710 			tp->pred_flags = 0;
3711 			tcp_fast_path_check(sk);
3712 
3713 			if (!tcp_write_queue_empty(sk))
3714 				tcp_slow_start_after_idle_check(sk);
3715 
3716 			if (nwin > tp->max_window) {
3717 				tp->max_window = nwin;
3718 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3719 			}
3720 		}
3721 	}
3722 
3723 	tcp_snd_una_update(tp, ack);
3724 
3725 	return flag;
3726 }
3727 
__tcp_oow_rate_limited(struct net * net,int mib_idx,u32 * last_oow_ack_time)3728 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3729 				   u32 *last_oow_ack_time)
3730 {
3731 	/* Paired with the WRITE_ONCE() in this function. */
3732 	u32 val = READ_ONCE(*last_oow_ack_time);
3733 
3734 	if (val) {
3735 		s32 elapsed = (s32)(tcp_jiffies32 - val);
3736 
3737 		if (0 <= elapsed &&
3738 		    elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) {
3739 			NET_INC_STATS(net, mib_idx);
3740 			return true;	/* rate-limited: don't send yet! */
3741 		}
3742 	}
3743 
3744 	/* Paired with the prior READ_ONCE() and with itself,
3745 	 * as we might be lockless.
3746 	 */
3747 	WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32);
3748 
3749 	return false;	/* not rate-limited: go ahead, send dupack now! */
3750 }
3751 
3752 /* Return true if we're currently rate-limiting out-of-window ACKs and
3753  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3754  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3755  * attacks that send repeated SYNs or ACKs for the same connection. To
3756  * do this, we do not send a duplicate SYNACK or ACK if the remote
3757  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3758  */
tcp_oow_rate_limited(struct net * net,const struct sk_buff * skb,int mib_idx,u32 * last_oow_ack_time)3759 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3760 			  int mib_idx, u32 *last_oow_ack_time)
3761 {
3762 	/* Data packets without SYNs are not likely part of an ACK loop. */
3763 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3764 	    !tcp_hdr(skb)->syn)
3765 		return false;
3766 
3767 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3768 }
3769 
3770 /* RFC 5961 7 [ACK Throttling] */
tcp_send_challenge_ack(struct sock * sk)3771 static void tcp_send_challenge_ack(struct sock *sk)
3772 {
3773 	struct tcp_sock *tp = tcp_sk(sk);
3774 	struct net *net = sock_net(sk);
3775 	u32 count, now, ack_limit;
3776 
3777 	/* First check our per-socket dupack rate limit. */
3778 	if (__tcp_oow_rate_limited(net,
3779 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3780 				   &tp->last_oow_ack_time))
3781 		return;
3782 
3783 	ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit);
3784 	if (ack_limit == INT_MAX)
3785 		goto send_ack;
3786 
3787 	/* Then check host-wide RFC 5961 rate limit. */
3788 	now = jiffies / HZ;
3789 	if (now != READ_ONCE(net->ipv4.tcp_challenge_timestamp)) {
3790 		u32 half = (ack_limit + 1) >> 1;
3791 
3792 		WRITE_ONCE(net->ipv4.tcp_challenge_timestamp, now);
3793 		WRITE_ONCE(net->ipv4.tcp_challenge_count,
3794 			   get_random_u32_inclusive(half, ack_limit + half - 1));
3795 	}
3796 	count = READ_ONCE(net->ipv4.tcp_challenge_count);
3797 	if (count > 0) {
3798 		WRITE_ONCE(net->ipv4.tcp_challenge_count, count - 1);
3799 send_ack:
3800 		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3801 		tcp_send_ack(sk);
3802 	}
3803 }
3804 
tcp_store_ts_recent(struct tcp_sock * tp)3805 static void tcp_store_ts_recent(struct tcp_sock *tp)
3806 {
3807 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3808 	tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3809 }
3810 
tcp_replace_ts_recent(struct tcp_sock * tp,u32 seq)3811 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3812 {
3813 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3814 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3815 		 * extra check below makes sure this can only happen
3816 		 * for pure ACK frames.  -DaveM
3817 		 *
3818 		 * Not only, also it occurs for expired timestamps.
3819 		 */
3820 
3821 		if (tcp_paws_check(&tp->rx_opt, 0))
3822 			tcp_store_ts_recent(tp);
3823 	}
3824 }
3825 
3826 /* This routine deals with acks during a TLP episode and ends an episode by
3827  * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
3828  */
tcp_process_tlp_ack(struct sock * sk,u32 ack,int flag)3829 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3830 {
3831 	struct tcp_sock *tp = tcp_sk(sk);
3832 
3833 	if (before(ack, tp->tlp_high_seq))
3834 		return;
3835 
3836 	if (!tp->tlp_retrans) {
3837 		/* TLP of new data has been acknowledged */
3838 		tp->tlp_high_seq = 0;
3839 	} else if (flag & FLAG_DSACK_TLP) {
3840 		/* This DSACK means original and TLP probe arrived; no loss */
3841 		tp->tlp_high_seq = 0;
3842 	} else if (after(ack, tp->tlp_high_seq)) {
3843 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3844 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3845 		 */
3846 		tcp_init_cwnd_reduction(sk);
3847 		tcp_set_ca_state(sk, TCP_CA_CWR);
3848 		tcp_end_cwnd_reduction(sk);
3849 		tcp_try_keep_open(sk);
3850 		NET_INC_STATS(sock_net(sk),
3851 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3852 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3853 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3854 		/* Pure dupack: original and TLP probe arrived; no loss */
3855 		tp->tlp_high_seq = 0;
3856 	}
3857 }
3858 
tcp_in_ack_event(struct sock * sk,u32 flags)3859 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3860 {
3861 	const struct inet_connection_sock *icsk = inet_csk(sk);
3862 
3863 	if (icsk->icsk_ca_ops->in_ack_event)
3864 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3865 }
3866 
3867 /* Congestion control has updated the cwnd already. So if we're in
3868  * loss recovery then now we do any new sends (for FRTO) or
3869  * retransmits (for CA_Loss or CA_recovery) that make sense.
3870  */
tcp_xmit_recovery(struct sock * sk,int rexmit)3871 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3872 {
3873 	struct tcp_sock *tp = tcp_sk(sk);
3874 
3875 	if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3876 		return;
3877 
3878 	if (unlikely(rexmit == REXMIT_NEW)) {
3879 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3880 					  TCP_NAGLE_OFF);
3881 		if (after(tp->snd_nxt, tp->high_seq))
3882 			return;
3883 		tp->frto = 0;
3884 	}
3885 	tcp_xmit_retransmit_queue(sk);
3886 }
3887 
3888 /* Returns the number of packets newly acked or sacked by the current ACK */
tcp_newly_delivered(struct sock * sk,u32 prior_delivered,int flag)3889 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3890 {
3891 	const struct net *net = sock_net(sk);
3892 	struct tcp_sock *tp = tcp_sk(sk);
3893 	u32 delivered;
3894 
3895 	delivered = tp->delivered - prior_delivered;
3896 	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3897 	if (flag & FLAG_ECE)
3898 		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3899 
3900 	return delivered;
3901 }
3902 
3903 /* This routine deals with incoming acks, but not outgoing ones. */
tcp_ack(struct sock * sk,const struct sk_buff * skb,int flag)3904 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3905 {
3906 	struct inet_connection_sock *icsk = inet_csk(sk);
3907 	struct tcp_sock *tp = tcp_sk(sk);
3908 	struct tcp_sacktag_state sack_state;
3909 	struct rate_sample rs = { .prior_delivered = 0 };
3910 	u32 prior_snd_una = tp->snd_una;
3911 	bool is_sack_reneg = tp->is_sack_reneg;
3912 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3913 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3914 	int num_dupack = 0;
3915 	int prior_packets = tp->packets_out;
3916 	u32 delivered = tp->delivered;
3917 	u32 lost = tp->lost;
3918 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3919 	u32 prior_fack;
3920 
3921 	sack_state.first_sackt = 0;
3922 	sack_state.rate = &rs;
3923 	sack_state.sack_delivered = 0;
3924 
3925 	/* We very likely will need to access rtx queue. */
3926 	prefetch(sk->tcp_rtx_queue.rb_node);
3927 
3928 	/* If the ack is older than previous acks
3929 	 * then we can probably ignore it.
3930 	 */
3931 	if (before(ack, prior_snd_una)) {
3932 		u32 max_window;
3933 
3934 		/* do not accept ACK for bytes we never sent. */
3935 		max_window = min_t(u64, tp->max_window, tp->bytes_acked);
3936 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3937 		if (before(ack, prior_snd_una - max_window)) {
3938 			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3939 				tcp_send_challenge_ack(sk);
3940 			return -SKB_DROP_REASON_TCP_TOO_OLD_ACK;
3941 		}
3942 		goto old_ack;
3943 	}
3944 
3945 	/* If the ack includes data we haven't sent yet, discard
3946 	 * this segment (RFC793 Section 3.9).
3947 	 */
3948 	if (after(ack, tp->snd_nxt))
3949 		return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA;
3950 
3951 	if (after(ack, prior_snd_una)) {
3952 		flag |= FLAG_SND_UNA_ADVANCED;
3953 		icsk->icsk_retransmits = 0;
3954 
3955 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3956 		if (static_branch_unlikely(&clean_acked_data_enabled.key))
3957 			if (icsk->icsk_clean_acked)
3958 				icsk->icsk_clean_acked(sk, ack);
3959 #endif
3960 	}
3961 
3962 	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3963 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3964 
3965 	/* ts_recent update must be made after we are sure that the packet
3966 	 * is in window.
3967 	 */
3968 	if (flag & FLAG_UPDATE_TS_RECENT)
3969 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3970 
3971 	if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3972 	    FLAG_SND_UNA_ADVANCED) {
3973 		/* Window is constant, pure forward advance.
3974 		 * No more checks are required.
3975 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3976 		 */
3977 		tcp_update_wl(tp, ack_seq);
3978 		tcp_snd_una_update(tp, ack);
3979 		flag |= FLAG_WIN_UPDATE;
3980 
3981 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3982 
3983 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3984 	} else {
3985 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3986 
3987 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3988 			flag |= FLAG_DATA;
3989 		else
3990 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3991 
3992 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3993 
3994 		if (TCP_SKB_CB(skb)->sacked)
3995 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3996 							&sack_state);
3997 
3998 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3999 			flag |= FLAG_ECE;
4000 			ack_ev_flags |= CA_ACK_ECE;
4001 		}
4002 
4003 		if (sack_state.sack_delivered)
4004 			tcp_count_delivered(tp, sack_state.sack_delivered,
4005 					    flag & FLAG_ECE);
4006 
4007 		if (flag & FLAG_WIN_UPDATE)
4008 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
4009 
4010 		tcp_in_ack_event(sk, ack_ev_flags);
4011 	}
4012 
4013 	/* This is a deviation from RFC3168 since it states that:
4014 	 * "When the TCP data sender is ready to set the CWR bit after reducing
4015 	 * the congestion window, it SHOULD set the CWR bit only on the first
4016 	 * new data packet that it transmits."
4017 	 * We accept CWR on pure ACKs to be more robust
4018 	 * with widely-deployed TCP implementations that do this.
4019 	 */
4020 	tcp_ecn_accept_cwr(sk, skb);
4021 
4022 	/* We passed data and got it acked, remove any soft error
4023 	 * log. Something worked...
4024 	 */
4025 	WRITE_ONCE(sk->sk_err_soft, 0);
4026 	icsk->icsk_probes_out = 0;
4027 	tp->rcv_tstamp = tcp_jiffies32;
4028 	if (!prior_packets)
4029 		goto no_queue;
4030 
4031 	/* See if we can take anything off of the retransmit queue. */
4032 	flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una,
4033 				    &sack_state, flag & FLAG_ECE);
4034 
4035 	tcp_rack_update_reo_wnd(sk, &rs);
4036 
4037 	if (tp->tlp_high_seq)
4038 		tcp_process_tlp_ack(sk, ack, flag);
4039 
4040 	if (tcp_ack_is_dubious(sk, flag)) {
4041 		if (!(flag & (FLAG_SND_UNA_ADVANCED |
4042 			      FLAG_NOT_DUP | FLAG_DSACKING_ACK))) {
4043 			num_dupack = 1;
4044 			/* Consider if pure acks were aggregated in tcp_add_backlog() */
4045 			if (!(flag & FLAG_DATA))
4046 				num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4047 		}
4048 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4049 				      &rexmit);
4050 	}
4051 
4052 	/* If needed, reset TLP/RTO timer when RACK doesn't set. */
4053 	if (flag & FLAG_SET_XMIT_TIMER)
4054 		tcp_set_xmit_timer(sk);
4055 
4056 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
4057 		sk_dst_confirm(sk);
4058 
4059 	delivered = tcp_newly_delivered(sk, delivered, flag);
4060 	lost = tp->lost - lost;			/* freshly marked lost */
4061 	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
4062 	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
4063 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
4064 	tcp_xmit_recovery(sk, rexmit);
4065 	return 1;
4066 
4067 no_queue:
4068 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
4069 	if (flag & FLAG_DSACKING_ACK) {
4070 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4071 				      &rexmit);
4072 		tcp_newly_delivered(sk, delivered, flag);
4073 	}
4074 	/* If this ack opens up a zero window, clear backoff.  It was
4075 	 * being used to time the probes, and is probably far higher than
4076 	 * it needs to be for normal retransmission.
4077 	 */
4078 	tcp_ack_probe(sk);
4079 
4080 	if (tp->tlp_high_seq)
4081 		tcp_process_tlp_ack(sk, ack, flag);
4082 	return 1;
4083 
4084 old_ack:
4085 	/* If data was SACKed, tag it and see if we should send more data.
4086 	 * If data was DSACKed, see if we can undo a cwnd reduction.
4087 	 */
4088 	if (TCP_SKB_CB(skb)->sacked) {
4089 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
4090 						&sack_state);
4091 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4092 				      &rexmit);
4093 		tcp_newly_delivered(sk, delivered, flag);
4094 		tcp_xmit_recovery(sk, rexmit);
4095 	}
4096 
4097 	return 0;
4098 }
4099 
tcp_parse_fastopen_option(int len,const unsigned char * cookie,bool syn,struct tcp_fastopen_cookie * foc,bool exp_opt)4100 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
4101 				      bool syn, struct tcp_fastopen_cookie *foc,
4102 				      bool exp_opt)
4103 {
4104 	/* Valid only in SYN or SYN-ACK with an even length.  */
4105 	if (!foc || !syn || len < 0 || (len & 1))
4106 		return;
4107 
4108 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
4109 	    len <= TCP_FASTOPEN_COOKIE_MAX)
4110 		memcpy(foc->val, cookie, len);
4111 	else if (len != 0)
4112 		len = -1;
4113 	foc->len = len;
4114 	foc->exp = exp_opt;
4115 }
4116 
smc_parse_options(const struct tcphdr * th,struct tcp_options_received * opt_rx,const unsigned char * ptr,int opsize)4117 static bool smc_parse_options(const struct tcphdr *th,
4118 			      struct tcp_options_received *opt_rx,
4119 			      const unsigned char *ptr,
4120 			      int opsize)
4121 {
4122 #if IS_ENABLED(CONFIG_SMC)
4123 	if (static_branch_unlikely(&tcp_have_smc)) {
4124 		if (th->syn && !(opsize & 1) &&
4125 		    opsize >= TCPOLEN_EXP_SMC_BASE &&
4126 		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) {
4127 			opt_rx->smc_ok = 1;
4128 			return true;
4129 		}
4130 	}
4131 #endif
4132 	return false;
4133 }
4134 
4135 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
4136  * value on success.
4137  */
tcp_parse_mss_option(const struct tcphdr * th,u16 user_mss)4138 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
4139 {
4140 	const unsigned char *ptr = (const unsigned char *)(th + 1);
4141 	int length = (th->doff * 4) - sizeof(struct tcphdr);
4142 	u16 mss = 0;
4143 
4144 	while (length > 0) {
4145 		int opcode = *ptr++;
4146 		int opsize;
4147 
4148 		switch (opcode) {
4149 		case TCPOPT_EOL:
4150 			return mss;
4151 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
4152 			length--;
4153 			continue;
4154 		default:
4155 			if (length < 2)
4156 				return mss;
4157 			opsize = *ptr++;
4158 			if (opsize < 2) /* "silly options" */
4159 				return mss;
4160 			if (opsize > length)
4161 				return mss;	/* fail on partial options */
4162 			if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
4163 				u16 in_mss = get_unaligned_be16(ptr);
4164 
4165 				if (in_mss) {
4166 					if (user_mss && user_mss < in_mss)
4167 						in_mss = user_mss;
4168 					mss = in_mss;
4169 				}
4170 			}
4171 			ptr += opsize - 2;
4172 			length -= opsize;
4173 		}
4174 	}
4175 	return mss;
4176 }
4177 EXPORT_SYMBOL_GPL(tcp_parse_mss_option);
4178 
4179 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
4180  * But, this can also be called on packets in the established flow when
4181  * the fast version below fails.
4182  */
tcp_parse_options(const struct net * net,const struct sk_buff * skb,struct tcp_options_received * opt_rx,int estab,struct tcp_fastopen_cookie * foc)4183 void tcp_parse_options(const struct net *net,
4184 		       const struct sk_buff *skb,
4185 		       struct tcp_options_received *opt_rx, int estab,
4186 		       struct tcp_fastopen_cookie *foc)
4187 {
4188 	const unsigned char *ptr;
4189 	const struct tcphdr *th = tcp_hdr(skb);
4190 	int length = (th->doff * 4) - sizeof(struct tcphdr);
4191 
4192 	ptr = (const unsigned char *)(th + 1);
4193 	opt_rx->saw_tstamp = 0;
4194 	opt_rx->saw_unknown = 0;
4195 
4196 	while (length > 0) {
4197 		int opcode = *ptr++;
4198 		int opsize;
4199 
4200 		switch (opcode) {
4201 		case TCPOPT_EOL:
4202 			return;
4203 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
4204 			length--;
4205 			continue;
4206 		default:
4207 			if (length < 2)
4208 				return;
4209 			opsize = *ptr++;
4210 			if (opsize < 2) /* "silly options" */
4211 				return;
4212 			if (opsize > length)
4213 				return;	/* don't parse partial options */
4214 			switch (opcode) {
4215 			case TCPOPT_MSS:
4216 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
4217 					u16 in_mss = get_unaligned_be16(ptr);
4218 					if (in_mss) {
4219 						if (opt_rx->user_mss &&
4220 						    opt_rx->user_mss < in_mss)
4221 							in_mss = opt_rx->user_mss;
4222 						opt_rx->mss_clamp = in_mss;
4223 					}
4224 				}
4225 				break;
4226 			case TCPOPT_WINDOW:
4227 				if (opsize == TCPOLEN_WINDOW && th->syn &&
4228 				    !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) {
4229 					__u8 snd_wscale = *(__u8 *)ptr;
4230 					opt_rx->wscale_ok = 1;
4231 					if (snd_wscale > TCP_MAX_WSCALE) {
4232 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
4233 								     __func__,
4234 								     snd_wscale,
4235 								     TCP_MAX_WSCALE);
4236 						snd_wscale = TCP_MAX_WSCALE;
4237 					}
4238 					opt_rx->snd_wscale = snd_wscale;
4239 				}
4240 				break;
4241 			case TCPOPT_TIMESTAMP:
4242 				if ((opsize == TCPOLEN_TIMESTAMP) &&
4243 				    ((estab && opt_rx->tstamp_ok) ||
4244 				     (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) {
4245 					opt_rx->saw_tstamp = 1;
4246 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
4247 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
4248 				}
4249 				break;
4250 			case TCPOPT_SACK_PERM:
4251 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
4252 				    !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) {
4253 					opt_rx->sack_ok = TCP_SACK_SEEN;
4254 					tcp_sack_reset(opt_rx);
4255 				}
4256 				break;
4257 
4258 			case TCPOPT_SACK:
4259 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
4260 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
4261 				   opt_rx->sack_ok) {
4262 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
4263 				}
4264 				break;
4265 #ifdef CONFIG_TCP_MD5SIG
4266 			case TCPOPT_MD5SIG:
4267 				/* The MD5 Hash has already been
4268 				 * checked (see tcp_v{4,6}_rcv()).
4269 				 */
4270 				break;
4271 #endif
4272 #ifdef CONFIG_TCP_AO
4273 			case TCPOPT_AO:
4274 				/* TCP AO has already been checked
4275 				 * (see tcp_inbound_ao_hash()).
4276 				 */
4277 				break;
4278 #endif
4279 			case TCPOPT_FASTOPEN:
4280 				tcp_parse_fastopen_option(
4281 					opsize - TCPOLEN_FASTOPEN_BASE,
4282 					ptr, th->syn, foc, false);
4283 				break;
4284 
4285 			case TCPOPT_EXP:
4286 				/* Fast Open option shares code 254 using a
4287 				 * 16 bits magic number.
4288 				 */
4289 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4290 				    get_unaligned_be16(ptr) ==
4291 				    TCPOPT_FASTOPEN_MAGIC) {
4292 					tcp_parse_fastopen_option(opsize -
4293 						TCPOLEN_EXP_FASTOPEN_BASE,
4294 						ptr + 2, th->syn, foc, true);
4295 					break;
4296 				}
4297 
4298 				if (smc_parse_options(th, opt_rx, ptr, opsize))
4299 					break;
4300 
4301 				opt_rx->saw_unknown = 1;
4302 				break;
4303 
4304 			default:
4305 				opt_rx->saw_unknown = 1;
4306 			}
4307 			ptr += opsize-2;
4308 			length -= opsize;
4309 		}
4310 	}
4311 }
4312 EXPORT_SYMBOL(tcp_parse_options);
4313 
tcp_parse_aligned_timestamp(struct tcp_sock * tp,const struct tcphdr * th)4314 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4315 {
4316 	const __be32 *ptr = (const __be32 *)(th + 1);
4317 
4318 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4319 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4320 		tp->rx_opt.saw_tstamp = 1;
4321 		++ptr;
4322 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
4323 		++ptr;
4324 		if (*ptr)
4325 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4326 		else
4327 			tp->rx_opt.rcv_tsecr = 0;
4328 		return true;
4329 	}
4330 	return false;
4331 }
4332 
4333 /* Fast parse options. This hopes to only see timestamps.
4334  * If it is wrong it falls back on tcp_parse_options().
4335  */
tcp_fast_parse_options(const struct net * net,const struct sk_buff * skb,const struct tcphdr * th,struct tcp_sock * tp)4336 static bool tcp_fast_parse_options(const struct net *net,
4337 				   const struct sk_buff *skb,
4338 				   const struct tcphdr *th, struct tcp_sock *tp)
4339 {
4340 	/* In the spirit of fast parsing, compare doff directly to constant
4341 	 * values.  Because equality is used, short doff can be ignored here.
4342 	 */
4343 	if (th->doff == (sizeof(*th) / 4)) {
4344 		tp->rx_opt.saw_tstamp = 0;
4345 		return false;
4346 	} else if (tp->rx_opt.tstamp_ok &&
4347 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4348 		if (tcp_parse_aligned_timestamp(tp, th))
4349 			return true;
4350 	}
4351 
4352 	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4353 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4354 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4355 
4356 	return true;
4357 }
4358 
4359 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
4360 /*
4361  * Parse Signature options
4362  */
tcp_do_parse_auth_options(const struct tcphdr * th,const u8 ** md5_hash,const u8 ** ao_hash)4363 int tcp_do_parse_auth_options(const struct tcphdr *th,
4364 			      const u8 **md5_hash, const u8 **ao_hash)
4365 {
4366 	int length = (th->doff << 2) - sizeof(*th);
4367 	const u8 *ptr = (const u8 *)(th + 1);
4368 	unsigned int minlen = TCPOLEN_MD5SIG;
4369 
4370 	if (IS_ENABLED(CONFIG_TCP_AO))
4371 		minlen = sizeof(struct tcp_ao_hdr) + 1;
4372 
4373 	*md5_hash = NULL;
4374 	*ao_hash = NULL;
4375 
4376 	/* If not enough data remaining, we can short cut */
4377 	while (length >= minlen) {
4378 		int opcode = *ptr++;
4379 		int opsize;
4380 
4381 		switch (opcode) {
4382 		case TCPOPT_EOL:
4383 			return 0;
4384 		case TCPOPT_NOP:
4385 			length--;
4386 			continue;
4387 		default:
4388 			opsize = *ptr++;
4389 			if (opsize < 2 || opsize > length)
4390 				return -EINVAL;
4391 			if (opcode == TCPOPT_MD5SIG) {
4392 				if (opsize != TCPOLEN_MD5SIG)
4393 					return -EINVAL;
4394 				if (unlikely(*md5_hash || *ao_hash))
4395 					return -EEXIST;
4396 				*md5_hash = ptr;
4397 			} else if (opcode == TCPOPT_AO) {
4398 				if (opsize <= sizeof(struct tcp_ao_hdr))
4399 					return -EINVAL;
4400 				if (unlikely(*md5_hash || *ao_hash))
4401 					return -EEXIST;
4402 				*ao_hash = ptr;
4403 			}
4404 		}
4405 		ptr += opsize - 2;
4406 		length -= opsize;
4407 	}
4408 	return 0;
4409 }
4410 EXPORT_SYMBOL(tcp_do_parse_auth_options);
4411 #endif
4412 
4413 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4414  *
4415  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4416  * it can pass through stack. So, the following predicate verifies that
4417  * this segment is not used for anything but congestion avoidance or
4418  * fast retransmit. Moreover, we even are able to eliminate most of such
4419  * second order effects, if we apply some small "replay" window (~RTO)
4420  * to timestamp space.
4421  *
4422  * All these measures still do not guarantee that we reject wrapped ACKs
4423  * on networks with high bandwidth, when sequence space is recycled fastly,
4424  * but it guarantees that such events will be very rare and do not affect
4425  * connection seriously. This doesn't look nice, but alas, PAWS is really
4426  * buggy extension.
4427  *
4428  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4429  * states that events when retransmit arrives after original data are rare.
4430  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4431  * the biggest problem on large power networks even with minor reordering.
4432  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4433  * up to bandwidth of 18Gigabit/sec. 8) ]
4434  */
4435 
4436 /* Estimates max number of increments of remote peer TSval in
4437  * a replay window (based on our current RTO estimation).
4438  */
tcp_tsval_replay(const struct sock * sk)4439 static u32 tcp_tsval_replay(const struct sock *sk)
4440 {
4441 	/* If we use usec TS resolution,
4442 	 * then expect the remote peer to use the same resolution.
4443 	 */
4444 	if (tcp_sk(sk)->tcp_usec_ts)
4445 		return inet_csk(sk)->icsk_rto * (USEC_PER_SEC / HZ);
4446 
4447 	/* RFC 7323 recommends a TSval clock between 1ms and 1sec.
4448 	 * We know that some OS (including old linux) can use 1200 Hz.
4449 	 */
4450 	return inet_csk(sk)->icsk_rto * 1200 / HZ;
4451 }
4452 
tcp_disordered_ack(const struct sock * sk,const struct sk_buff * skb)4453 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4454 {
4455 	const struct tcp_sock *tp = tcp_sk(sk);
4456 	const struct tcphdr *th = tcp_hdr(skb);
4457 	u32 seq = TCP_SKB_CB(skb)->seq;
4458 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4459 
4460 	return	/* 1. Pure ACK with correct sequence number. */
4461 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4462 
4463 		/* 2. ... and duplicate ACK. */
4464 		ack == tp->snd_una &&
4465 
4466 		/* 3. ... and does not update window. */
4467 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4468 
4469 		/* 4. ... and sits in replay window. */
4470 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <=
4471 		tcp_tsval_replay(sk);
4472 }
4473 
tcp_paws_discard(const struct sock * sk,const struct sk_buff * skb)4474 static inline bool tcp_paws_discard(const struct sock *sk,
4475 				   const struct sk_buff *skb)
4476 {
4477 	const struct tcp_sock *tp = tcp_sk(sk);
4478 
4479 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4480 	       !tcp_disordered_ack(sk, skb);
4481 }
4482 
4483 /* Check segment sequence number for validity.
4484  *
4485  * Segment controls are considered valid, if the segment
4486  * fits to the window after truncation to the window. Acceptability
4487  * of data (and SYN, FIN, of course) is checked separately.
4488  * See tcp_data_queue(), for example.
4489  *
4490  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4491  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4492  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4493  * (borrowed from freebsd)
4494  */
4495 
tcp_sequence(const struct tcp_sock * tp,u32 seq,u32 end_seq)4496 static enum skb_drop_reason tcp_sequence(const struct tcp_sock *tp,
4497 					 u32 seq, u32 end_seq)
4498 {
4499 	if (before(end_seq, tp->rcv_wup))
4500 		return SKB_DROP_REASON_TCP_OLD_SEQUENCE;
4501 
4502 	if (after(seq, tp->rcv_nxt + tcp_receive_window(tp)))
4503 		return SKB_DROP_REASON_TCP_INVALID_SEQUENCE;
4504 
4505 	return SKB_NOT_DROPPED_YET;
4506 }
4507 
4508 
tcp_done_with_error(struct sock * sk,int err)4509 void tcp_done_with_error(struct sock *sk, int err)
4510 {
4511 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4512 	WRITE_ONCE(sk->sk_err, err);
4513 	smp_wmb();
4514 
4515 	tcp_write_queue_purge(sk);
4516 	tcp_done(sk);
4517 
4518 	if (!sock_flag(sk, SOCK_DEAD))
4519 		sk_error_report(sk);
4520 }
4521 EXPORT_SYMBOL(tcp_done_with_error);
4522 
4523 /* When we get a reset we do this. */
tcp_reset(struct sock * sk,struct sk_buff * skb)4524 void tcp_reset(struct sock *sk, struct sk_buff *skb)
4525 {
4526 	int err;
4527 
4528 	trace_tcp_receive_reset(sk);
4529 
4530 	/* mptcp can't tell us to ignore reset pkts,
4531 	 * so just ignore the return value of mptcp_incoming_options().
4532 	 */
4533 	if (sk_is_mptcp(sk))
4534 		mptcp_incoming_options(sk, skb);
4535 
4536 	/* We want the right error as BSD sees it (and indeed as we do). */
4537 	switch (sk->sk_state) {
4538 	case TCP_SYN_SENT:
4539 		err = ECONNREFUSED;
4540 		break;
4541 	case TCP_CLOSE_WAIT:
4542 		err = EPIPE;
4543 		break;
4544 	case TCP_CLOSE:
4545 		return;
4546 	default:
4547 		err = ECONNRESET;
4548 	}
4549 	tcp_done_with_error(sk, err);
4550 }
4551 
4552 /*
4553  * 	Process the FIN bit. This now behaves as it is supposed to work
4554  *	and the FIN takes effect when it is validly part of sequence
4555  *	space. Not before when we get holes.
4556  *
4557  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4558  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4559  *	TIME-WAIT)
4560  *
4561  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4562  *	close and we go into CLOSING (and later onto TIME-WAIT)
4563  *
4564  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4565  */
tcp_fin(struct sock * sk)4566 void tcp_fin(struct sock *sk)
4567 {
4568 	struct tcp_sock *tp = tcp_sk(sk);
4569 
4570 	inet_csk_schedule_ack(sk);
4571 
4572 	WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
4573 	sock_set_flag(sk, SOCK_DONE);
4574 
4575 	switch (sk->sk_state) {
4576 	case TCP_SYN_RECV:
4577 	case TCP_ESTABLISHED:
4578 		/* Move to CLOSE_WAIT */
4579 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4580 		inet_csk_enter_pingpong_mode(sk);
4581 		break;
4582 
4583 	case TCP_CLOSE_WAIT:
4584 	case TCP_CLOSING:
4585 		/* Received a retransmission of the FIN, do
4586 		 * nothing.
4587 		 */
4588 		break;
4589 	case TCP_LAST_ACK:
4590 		/* RFC793: Remain in the LAST-ACK state. */
4591 		break;
4592 
4593 	case TCP_FIN_WAIT1:
4594 		/* This case occurs when a simultaneous close
4595 		 * happens, we must ack the received FIN and
4596 		 * enter the CLOSING state.
4597 		 */
4598 		tcp_send_ack(sk);
4599 		tcp_set_state(sk, TCP_CLOSING);
4600 		break;
4601 	case TCP_FIN_WAIT2:
4602 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4603 		tcp_send_ack(sk);
4604 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4605 		break;
4606 	default:
4607 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4608 		 * cases we should never reach this piece of code.
4609 		 */
4610 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4611 		       __func__, sk->sk_state);
4612 		break;
4613 	}
4614 
4615 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4616 	 * Probably, we should reset in this case. For now drop them.
4617 	 */
4618 	skb_rbtree_purge(&tp->out_of_order_queue);
4619 	if (tcp_is_sack(tp))
4620 		tcp_sack_reset(&tp->rx_opt);
4621 
4622 	if (!sock_flag(sk, SOCK_DEAD)) {
4623 		sk->sk_state_change(sk);
4624 
4625 		/* Do not send POLL_HUP for half duplex close. */
4626 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4627 		    sk->sk_state == TCP_CLOSE)
4628 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4629 		else
4630 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4631 	}
4632 }
4633 
tcp_sack_extend(struct tcp_sack_block * sp,u32 seq,u32 end_seq)4634 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4635 				  u32 end_seq)
4636 {
4637 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4638 		if (before(seq, sp->start_seq))
4639 			sp->start_seq = seq;
4640 		if (after(end_seq, sp->end_seq))
4641 			sp->end_seq = end_seq;
4642 		return true;
4643 	}
4644 	return false;
4645 }
4646 
tcp_dsack_set(struct sock * sk,u32 seq,u32 end_seq)4647 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4648 {
4649 	struct tcp_sock *tp = tcp_sk(sk);
4650 
4651 	if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4652 		int mib_idx;
4653 
4654 		if (before(seq, tp->rcv_nxt))
4655 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4656 		else
4657 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4658 
4659 		NET_INC_STATS(sock_net(sk), mib_idx);
4660 
4661 		tp->rx_opt.dsack = 1;
4662 		tp->duplicate_sack[0].start_seq = seq;
4663 		tp->duplicate_sack[0].end_seq = end_seq;
4664 	}
4665 }
4666 
tcp_dsack_extend(struct sock * sk,u32 seq,u32 end_seq)4667 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4668 {
4669 	struct tcp_sock *tp = tcp_sk(sk);
4670 
4671 	if (!tp->rx_opt.dsack)
4672 		tcp_dsack_set(sk, seq, end_seq);
4673 	else
4674 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4675 }
4676 
tcp_rcv_spurious_retrans(struct sock * sk,const struct sk_buff * skb)4677 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4678 {
4679 	/* When the ACK path fails or drops most ACKs, the sender would
4680 	 * timeout and spuriously retransmit the same segment repeatedly.
4681 	 * If it seems our ACKs are not reaching the other side,
4682 	 * based on receiving a duplicate data segment with new flowlabel
4683 	 * (suggesting the sender suffered an RTO), and we are not already
4684 	 * repathing due to our own RTO, then rehash the socket to repath our
4685 	 * packets.
4686 	 */
4687 #if IS_ENABLED(CONFIG_IPV6)
4688 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss &&
4689 	    skb->protocol == htons(ETH_P_IPV6) &&
4690 	    (tcp_sk(sk)->inet_conn.icsk_ack.lrcv_flowlabel !=
4691 	     ntohl(ip6_flowlabel(ipv6_hdr(skb)))) &&
4692 	    sk_rethink_txhash(sk))
4693 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4694 
4695 	/* Save last flowlabel after a spurious retrans. */
4696 	tcp_save_lrcv_flowlabel(sk, skb);
4697 #endif
4698 }
4699 
tcp_send_dupack(struct sock * sk,const struct sk_buff * skb)4700 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4701 {
4702 	struct tcp_sock *tp = tcp_sk(sk);
4703 
4704 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4705 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4706 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4707 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4708 
4709 		if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4710 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4711 
4712 			tcp_rcv_spurious_retrans(sk, skb);
4713 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4714 				end_seq = tp->rcv_nxt;
4715 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4716 		}
4717 	}
4718 
4719 	tcp_send_ack(sk);
4720 }
4721 
4722 /* These routines update the SACK block as out-of-order packets arrive or
4723  * in-order packets close up the sequence space.
4724  */
tcp_sack_maybe_coalesce(struct tcp_sock * tp)4725 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4726 {
4727 	int this_sack;
4728 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4729 	struct tcp_sack_block *swalk = sp + 1;
4730 
4731 	/* See if the recent change to the first SACK eats into
4732 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4733 	 */
4734 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4735 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4736 			int i;
4737 
4738 			/* Zap SWALK, by moving every further SACK up by one slot.
4739 			 * Decrease num_sacks.
4740 			 */
4741 			tp->rx_opt.num_sacks--;
4742 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4743 				sp[i] = sp[i + 1];
4744 			continue;
4745 		}
4746 		this_sack++;
4747 		swalk++;
4748 	}
4749 }
4750 
tcp_sack_compress_send_ack(struct sock * sk)4751 void tcp_sack_compress_send_ack(struct sock *sk)
4752 {
4753 	struct tcp_sock *tp = tcp_sk(sk);
4754 
4755 	if (!tp->compressed_ack)
4756 		return;
4757 
4758 	if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4759 		__sock_put(sk);
4760 
4761 	/* Since we have to send one ack finally,
4762 	 * substract one from tp->compressed_ack to keep
4763 	 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4764 	 */
4765 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4766 		      tp->compressed_ack - 1);
4767 
4768 	tp->compressed_ack = 0;
4769 	tcp_send_ack(sk);
4770 }
4771 
4772 /* Reasonable amount of sack blocks included in TCP SACK option
4773  * The max is 4, but this becomes 3 if TCP timestamps are there.
4774  * Given that SACK packets might be lost, be conservative and use 2.
4775  */
4776 #define TCP_SACK_BLOCKS_EXPECTED 2
4777 
tcp_sack_new_ofo_skb(struct sock * sk,u32 seq,u32 end_seq)4778 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4779 {
4780 	struct tcp_sock *tp = tcp_sk(sk);
4781 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4782 	int cur_sacks = tp->rx_opt.num_sacks;
4783 	int this_sack;
4784 
4785 	if (!cur_sacks)
4786 		goto new_sack;
4787 
4788 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4789 		if (tcp_sack_extend(sp, seq, end_seq)) {
4790 			if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4791 				tcp_sack_compress_send_ack(sk);
4792 			/* Rotate this_sack to the first one. */
4793 			for (; this_sack > 0; this_sack--, sp--)
4794 				swap(*sp, *(sp - 1));
4795 			if (cur_sacks > 1)
4796 				tcp_sack_maybe_coalesce(tp);
4797 			return;
4798 		}
4799 	}
4800 
4801 	if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4802 		tcp_sack_compress_send_ack(sk);
4803 
4804 	/* Could not find an adjacent existing SACK, build a new one,
4805 	 * put it at the front, and shift everyone else down.  We
4806 	 * always know there is at least one SACK present already here.
4807 	 *
4808 	 * If the sack array is full, forget about the last one.
4809 	 */
4810 	if (this_sack >= TCP_NUM_SACKS) {
4811 		this_sack--;
4812 		tp->rx_opt.num_sacks--;
4813 		sp--;
4814 	}
4815 	for (; this_sack > 0; this_sack--, sp--)
4816 		*sp = *(sp - 1);
4817 
4818 new_sack:
4819 	/* Build the new head SACK, and we're done. */
4820 	sp->start_seq = seq;
4821 	sp->end_seq = end_seq;
4822 	tp->rx_opt.num_sacks++;
4823 }
4824 
4825 /* RCV.NXT advances, some SACKs should be eaten. */
4826 
tcp_sack_remove(struct tcp_sock * tp)4827 static void tcp_sack_remove(struct tcp_sock *tp)
4828 {
4829 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4830 	int num_sacks = tp->rx_opt.num_sacks;
4831 	int this_sack;
4832 
4833 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4834 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4835 		tp->rx_opt.num_sacks = 0;
4836 		return;
4837 	}
4838 
4839 	for (this_sack = 0; this_sack < num_sacks;) {
4840 		/* Check if the start of the sack is covered by RCV.NXT. */
4841 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4842 			int i;
4843 
4844 			/* RCV.NXT must cover all the block! */
4845 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4846 
4847 			/* Zap this SACK, by moving forward any other SACKS. */
4848 			for (i = this_sack+1; i < num_sacks; i++)
4849 				tp->selective_acks[i-1] = tp->selective_acks[i];
4850 			num_sacks--;
4851 			continue;
4852 		}
4853 		this_sack++;
4854 		sp++;
4855 	}
4856 	tp->rx_opt.num_sacks = num_sacks;
4857 }
4858 
4859 /**
4860  * tcp_try_coalesce - try to merge skb to prior one
4861  * @sk: socket
4862  * @to: prior buffer
4863  * @from: buffer to add in queue
4864  * @fragstolen: pointer to boolean
4865  *
4866  * Before queueing skb @from after @to, try to merge them
4867  * to reduce overall memory use and queue lengths, if cost is small.
4868  * Packets in ofo or receive queues can stay a long time.
4869  * Better try to coalesce them right now to avoid future collapses.
4870  * Returns true if caller should free @from instead of queueing it
4871  */
tcp_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4872 static bool tcp_try_coalesce(struct sock *sk,
4873 			     struct sk_buff *to,
4874 			     struct sk_buff *from,
4875 			     bool *fragstolen)
4876 {
4877 	int delta;
4878 
4879 	*fragstolen = false;
4880 
4881 	/* Its possible this segment overlaps with prior segment in queue */
4882 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4883 		return false;
4884 
4885 	if (!tcp_skb_can_collapse_rx(to, from))
4886 		return false;
4887 
4888 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4889 		return false;
4890 
4891 	atomic_add(delta, &sk->sk_rmem_alloc);
4892 	sk_mem_charge(sk, delta);
4893 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4894 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4895 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4896 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4897 
4898 	if (TCP_SKB_CB(from)->has_rxtstamp) {
4899 		TCP_SKB_CB(to)->has_rxtstamp = true;
4900 		to->tstamp = from->tstamp;
4901 		skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4902 	}
4903 
4904 	return true;
4905 }
4906 
tcp_ooo_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4907 static bool tcp_ooo_try_coalesce(struct sock *sk,
4908 			     struct sk_buff *to,
4909 			     struct sk_buff *from,
4910 			     bool *fragstolen)
4911 {
4912 	bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4913 
4914 	/* In case tcp_drop_reason() is called later, update to->gso_segs */
4915 	if (res) {
4916 		u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4917 			       max_t(u16, 1, skb_shinfo(from)->gso_segs);
4918 
4919 		skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4920 	}
4921 	return res;
4922 }
4923 
4924 noinline_for_tracing static void
tcp_drop_reason(struct sock * sk,struct sk_buff * skb,enum skb_drop_reason reason)4925 tcp_drop_reason(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason reason)
4926 {
4927 	sk_drops_add(sk, skb);
4928 	sk_skb_reason_drop(sk, skb, reason);
4929 }
4930 
4931 /* This one checks to see if we can put data from the
4932  * out_of_order queue into the receive_queue.
4933  */
tcp_ofo_queue(struct sock * sk)4934 static void tcp_ofo_queue(struct sock *sk)
4935 {
4936 	struct tcp_sock *tp = tcp_sk(sk);
4937 	__u32 dsack_high = tp->rcv_nxt;
4938 	bool fin, fragstolen, eaten;
4939 	struct sk_buff *skb, *tail;
4940 	struct rb_node *p;
4941 
4942 	p = rb_first(&tp->out_of_order_queue);
4943 	while (p) {
4944 		skb = rb_to_skb(p);
4945 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4946 			break;
4947 
4948 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4949 			__u32 dsack = dsack_high;
4950 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4951 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4952 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4953 		}
4954 		p = rb_next(p);
4955 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4956 
4957 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4958 			tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP);
4959 			continue;
4960 		}
4961 
4962 		tail = skb_peek_tail(&sk->sk_receive_queue);
4963 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4964 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4965 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4966 		if (!eaten)
4967 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4968 		else
4969 			kfree_skb_partial(skb, fragstolen);
4970 
4971 		if (unlikely(fin)) {
4972 			tcp_fin(sk);
4973 			/* tcp_fin() purges tp->out_of_order_queue,
4974 			 * so we must end this loop right now.
4975 			 */
4976 			break;
4977 		}
4978 	}
4979 }
4980 
4981 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb);
4982 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb);
4983 
tcp_try_rmem_schedule(struct sock * sk,struct sk_buff * skb,unsigned int size)4984 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4985 				 unsigned int size)
4986 {
4987 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4988 	    !sk_rmem_schedule(sk, skb, size)) {
4989 
4990 		if (tcp_prune_queue(sk, skb) < 0)
4991 			return -1;
4992 
4993 		while (!sk_rmem_schedule(sk, skb, size)) {
4994 			if (!tcp_prune_ofo_queue(sk, skb))
4995 				return -1;
4996 		}
4997 	}
4998 	return 0;
4999 }
5000 
tcp_data_queue_ofo(struct sock * sk,struct sk_buff * skb)5001 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
5002 {
5003 	struct tcp_sock *tp = tcp_sk(sk);
5004 	struct rb_node **p, *parent;
5005 	struct sk_buff *skb1;
5006 	u32 seq, end_seq;
5007 	bool fragstolen;
5008 
5009 	tcp_save_lrcv_flowlabel(sk, skb);
5010 	tcp_ecn_check_ce(sk, skb);
5011 
5012 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
5013 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
5014 		sk->sk_data_ready(sk);
5015 		tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM);
5016 		return;
5017 	}
5018 
5019 	/* Disable header prediction. */
5020 	tp->pred_flags = 0;
5021 	inet_csk_schedule_ack(sk);
5022 
5023 	tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
5024 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
5025 	seq = TCP_SKB_CB(skb)->seq;
5026 	end_seq = TCP_SKB_CB(skb)->end_seq;
5027 
5028 	p = &tp->out_of_order_queue.rb_node;
5029 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5030 		/* Initial out of order segment, build 1 SACK. */
5031 		if (tcp_is_sack(tp)) {
5032 			tp->rx_opt.num_sacks = 1;
5033 			tp->selective_acks[0].start_seq = seq;
5034 			tp->selective_acks[0].end_seq = end_seq;
5035 		}
5036 		rb_link_node(&skb->rbnode, NULL, p);
5037 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
5038 		tp->ooo_last_skb = skb;
5039 		goto end;
5040 	}
5041 
5042 	/* In the typical case, we are adding an skb to the end of the list.
5043 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
5044 	 */
5045 	if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
5046 				 skb, &fragstolen)) {
5047 coalesce_done:
5048 		/* For non sack flows, do not grow window to force DUPACK
5049 		 * and trigger fast retransmit.
5050 		 */
5051 		if (tcp_is_sack(tp))
5052 			tcp_grow_window(sk, skb, true);
5053 		kfree_skb_partial(skb, fragstolen);
5054 		skb = NULL;
5055 		goto add_sack;
5056 	}
5057 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
5058 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
5059 		parent = &tp->ooo_last_skb->rbnode;
5060 		p = &parent->rb_right;
5061 		goto insert;
5062 	}
5063 
5064 	/* Find place to insert this segment. Handle overlaps on the way. */
5065 	parent = NULL;
5066 	while (*p) {
5067 		parent = *p;
5068 		skb1 = rb_to_skb(parent);
5069 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
5070 			p = &parent->rb_left;
5071 			continue;
5072 		}
5073 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
5074 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
5075 				/* All the bits are present. Drop. */
5076 				NET_INC_STATS(sock_net(sk),
5077 					      LINUX_MIB_TCPOFOMERGE);
5078 				tcp_drop_reason(sk, skb,
5079 						SKB_DROP_REASON_TCP_OFOMERGE);
5080 				skb = NULL;
5081 				tcp_dsack_set(sk, seq, end_seq);
5082 				goto add_sack;
5083 			}
5084 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
5085 				/* Partial overlap. */
5086 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
5087 			} else {
5088 				/* skb's seq == skb1's seq and skb covers skb1.
5089 				 * Replace skb1 with skb.
5090 				 */
5091 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
5092 						&tp->out_of_order_queue);
5093 				tcp_dsack_extend(sk,
5094 						 TCP_SKB_CB(skb1)->seq,
5095 						 TCP_SKB_CB(skb1)->end_seq);
5096 				NET_INC_STATS(sock_net(sk),
5097 					      LINUX_MIB_TCPOFOMERGE);
5098 				tcp_drop_reason(sk, skb1,
5099 						SKB_DROP_REASON_TCP_OFOMERGE);
5100 				goto merge_right;
5101 			}
5102 		} else if (tcp_ooo_try_coalesce(sk, skb1,
5103 						skb, &fragstolen)) {
5104 			goto coalesce_done;
5105 		}
5106 		p = &parent->rb_right;
5107 	}
5108 insert:
5109 	/* Insert segment into RB tree. */
5110 	rb_link_node(&skb->rbnode, parent, p);
5111 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
5112 
5113 merge_right:
5114 	/* Remove other segments covered by skb. */
5115 	while ((skb1 = skb_rb_next(skb)) != NULL) {
5116 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
5117 			break;
5118 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
5119 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
5120 					 end_seq);
5121 			break;
5122 		}
5123 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
5124 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
5125 				 TCP_SKB_CB(skb1)->end_seq);
5126 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
5127 		tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE);
5128 	}
5129 	/* If there is no skb after us, we are the last_skb ! */
5130 	if (!skb1)
5131 		tp->ooo_last_skb = skb;
5132 
5133 add_sack:
5134 	if (tcp_is_sack(tp))
5135 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
5136 end:
5137 	if (skb) {
5138 		/* For non sack flows, do not grow window to force DUPACK
5139 		 * and trigger fast retransmit.
5140 		 */
5141 		if (tcp_is_sack(tp))
5142 			tcp_grow_window(sk, skb, false);
5143 		skb_condense(skb);
5144 		skb_set_owner_r(skb, sk);
5145 	}
5146 }
5147 
tcp_queue_rcv(struct sock * sk,struct sk_buff * skb,bool * fragstolen)5148 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
5149 				      bool *fragstolen)
5150 {
5151 	int eaten;
5152 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
5153 
5154 	eaten = (tail &&
5155 		 tcp_try_coalesce(sk, tail,
5156 				  skb, fragstolen)) ? 1 : 0;
5157 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
5158 	if (!eaten) {
5159 		__skb_queue_tail(&sk->sk_receive_queue, skb);
5160 		skb_set_owner_r(skb, sk);
5161 	}
5162 	return eaten;
5163 }
5164 
tcp_send_rcvq(struct sock * sk,struct msghdr * msg,size_t size)5165 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
5166 {
5167 	struct sk_buff *skb;
5168 	int err = -ENOMEM;
5169 	int data_len = 0;
5170 	bool fragstolen;
5171 
5172 	if (size == 0)
5173 		return 0;
5174 
5175 	if (size > PAGE_SIZE) {
5176 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
5177 
5178 		data_len = npages << PAGE_SHIFT;
5179 		size = data_len + (size & ~PAGE_MASK);
5180 	}
5181 	skb = alloc_skb_with_frags(size - data_len, data_len,
5182 				   PAGE_ALLOC_COSTLY_ORDER,
5183 				   &err, sk->sk_allocation);
5184 	if (!skb)
5185 		goto err;
5186 
5187 	skb_put(skb, size - data_len);
5188 	skb->data_len = data_len;
5189 	skb->len = size;
5190 
5191 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5192 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5193 		goto err_free;
5194 	}
5195 
5196 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
5197 	if (err)
5198 		goto err_free;
5199 
5200 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
5201 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
5202 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
5203 
5204 	if (tcp_queue_rcv(sk, skb, &fragstolen)) {
5205 		WARN_ON_ONCE(fragstolen); /* should not happen */
5206 		__kfree_skb(skb);
5207 	}
5208 	return size;
5209 
5210 err_free:
5211 	kfree_skb(skb);
5212 err:
5213 	return err;
5214 
5215 }
5216 
tcp_data_ready(struct sock * sk)5217 void tcp_data_ready(struct sock *sk)
5218 {
5219 	if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE))
5220 		sk->sk_data_ready(sk);
5221 }
5222 
tcp_data_queue(struct sock * sk,struct sk_buff * skb)5223 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
5224 {
5225 	struct tcp_sock *tp = tcp_sk(sk);
5226 	enum skb_drop_reason reason;
5227 	bool fragstolen;
5228 	int eaten;
5229 
5230 	/* If a subflow has been reset, the packet should not continue
5231 	 * to be processed, drop the packet.
5232 	 */
5233 	if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) {
5234 		__kfree_skb(skb);
5235 		return;
5236 	}
5237 
5238 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
5239 		__kfree_skb(skb);
5240 		return;
5241 	}
5242 	skb_dst_drop(skb);
5243 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
5244 
5245 	reason = SKB_DROP_REASON_NOT_SPECIFIED;
5246 	tp->rx_opt.dsack = 0;
5247 
5248 	/*  Queue data for delivery to the user.
5249 	 *  Packets in sequence go to the receive queue.
5250 	 *  Out of sequence packets to the out_of_order_queue.
5251 	 */
5252 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5253 		if (tcp_receive_window(tp) == 0) {
5254 			/* Some stacks are known to send bare FIN packets
5255 			 * in a loop even if we send RWIN 0 in our ACK.
5256 			 * Accepting this FIN does not hurt memory pressure
5257 			 * because the FIN flag will simply be merged to the
5258 			 * receive queue tail skb in most cases.
5259 			 */
5260 			if (!skb->len &&
5261 			    (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
5262 				goto queue_and_out;
5263 
5264 			reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5265 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5266 			goto out_of_window;
5267 		}
5268 
5269 		/* Ok. In sequence. In window. */
5270 queue_and_out:
5271 		if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5272 			/* TODO: maybe ratelimit these WIN 0 ACK ? */
5273 			inet_csk(sk)->icsk_ack.pending |=
5274 					(ICSK_ACK_NOMEM | ICSK_ACK_NOW);
5275 			inet_csk_schedule_ack(sk);
5276 			sk->sk_data_ready(sk);
5277 
5278 			if (skb_queue_len(&sk->sk_receive_queue) && skb->len) {
5279 				reason = SKB_DROP_REASON_PROTO_MEM;
5280 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5281 				goto drop;
5282 			}
5283 			sk_forced_mem_schedule(sk, skb->truesize);
5284 		}
5285 
5286 		eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5287 		if (skb->len)
5288 			tcp_event_data_recv(sk, skb);
5289 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
5290 			tcp_fin(sk);
5291 
5292 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5293 			tcp_ofo_queue(sk);
5294 
5295 			/* RFC5681. 4.2. SHOULD send immediate ACK, when
5296 			 * gap in queue is filled.
5297 			 */
5298 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5299 				inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
5300 		}
5301 
5302 		if (tp->rx_opt.num_sacks)
5303 			tcp_sack_remove(tp);
5304 
5305 		tcp_fast_path_check(sk);
5306 
5307 		if (eaten > 0)
5308 			kfree_skb_partial(skb, fragstolen);
5309 		if (!sock_flag(sk, SOCK_DEAD))
5310 			tcp_data_ready(sk);
5311 		return;
5312 	}
5313 
5314 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
5315 		tcp_rcv_spurious_retrans(sk, skb);
5316 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
5317 		reason = SKB_DROP_REASON_TCP_OLD_DATA;
5318 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
5319 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5320 
5321 out_of_window:
5322 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5323 		inet_csk_schedule_ack(sk);
5324 drop:
5325 		tcp_drop_reason(sk, skb, reason);
5326 		return;
5327 	}
5328 
5329 	/* Out of window. F.e. zero window probe. */
5330 	if (!before(TCP_SKB_CB(skb)->seq,
5331 		    tp->rcv_nxt + tcp_receive_window(tp))) {
5332 		reason = SKB_DROP_REASON_TCP_OVERWINDOW;
5333 		goto out_of_window;
5334 	}
5335 
5336 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5337 		/* Partial packet, seq < rcv_next < end_seq */
5338 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
5339 
5340 		/* If window is closed, drop tail of packet. But after
5341 		 * remembering D-SACK for its head made in previous line.
5342 		 */
5343 		if (!tcp_receive_window(tp)) {
5344 			reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5345 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5346 			goto out_of_window;
5347 		}
5348 		goto queue_and_out;
5349 	}
5350 
5351 	tcp_data_queue_ofo(sk, skb);
5352 }
5353 
tcp_skb_next(struct sk_buff * skb,struct sk_buff_head * list)5354 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
5355 {
5356 	if (list)
5357 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
5358 
5359 	return skb_rb_next(skb);
5360 }
5361 
tcp_collapse_one(struct sock * sk,struct sk_buff * skb,struct sk_buff_head * list,struct rb_root * root)5362 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
5363 					struct sk_buff_head *list,
5364 					struct rb_root *root)
5365 {
5366 	struct sk_buff *next = tcp_skb_next(skb, list);
5367 
5368 	if (list)
5369 		__skb_unlink(skb, list);
5370 	else
5371 		rb_erase(&skb->rbnode, root);
5372 
5373 	__kfree_skb(skb);
5374 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
5375 
5376 	return next;
5377 }
5378 
5379 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
tcp_rbtree_insert(struct rb_root * root,struct sk_buff * skb)5380 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
5381 {
5382 	struct rb_node **p = &root->rb_node;
5383 	struct rb_node *parent = NULL;
5384 	struct sk_buff *skb1;
5385 
5386 	while (*p) {
5387 		parent = *p;
5388 		skb1 = rb_to_skb(parent);
5389 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
5390 			p = &parent->rb_left;
5391 		else
5392 			p = &parent->rb_right;
5393 	}
5394 	rb_link_node(&skb->rbnode, parent, p);
5395 	rb_insert_color(&skb->rbnode, root);
5396 }
5397 
5398 /* Collapse contiguous sequence of skbs head..tail with
5399  * sequence numbers start..end.
5400  *
5401  * If tail is NULL, this means until the end of the queue.
5402  *
5403  * Segments with FIN/SYN are not collapsed (only because this
5404  * simplifies code)
5405  */
5406 static void
tcp_collapse(struct sock * sk,struct sk_buff_head * list,struct rb_root * root,struct sk_buff * head,struct sk_buff * tail,u32 start,u32 end)5407 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5408 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
5409 {
5410 	struct sk_buff *skb = head, *n;
5411 	struct sk_buff_head tmp;
5412 	bool end_of_skbs;
5413 
5414 	/* First, check that queue is collapsible and find
5415 	 * the point where collapsing can be useful.
5416 	 */
5417 restart:
5418 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5419 		n = tcp_skb_next(skb, list);
5420 
5421 		if (!skb_frags_readable(skb))
5422 			goto skip_this;
5423 
5424 		/* No new bits? It is possible on ofo queue. */
5425 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5426 			skb = tcp_collapse_one(sk, skb, list, root);
5427 			if (!skb)
5428 				break;
5429 			goto restart;
5430 		}
5431 
5432 		/* The first skb to collapse is:
5433 		 * - not SYN/FIN and
5434 		 * - bloated or contains data before "start" or
5435 		 *   overlaps to the next one and mptcp allow collapsing.
5436 		 */
5437 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5438 		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5439 		     before(TCP_SKB_CB(skb)->seq, start))) {
5440 			end_of_skbs = false;
5441 			break;
5442 		}
5443 
5444 		if (n && n != tail && skb_frags_readable(n) &&
5445 		    tcp_skb_can_collapse_rx(skb, n) &&
5446 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5447 			end_of_skbs = false;
5448 			break;
5449 		}
5450 
5451 skip_this:
5452 		/* Decided to skip this, advance start seq. */
5453 		start = TCP_SKB_CB(skb)->end_seq;
5454 	}
5455 	if (end_of_skbs ||
5456 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) ||
5457 	    !skb_frags_readable(skb))
5458 		return;
5459 
5460 	__skb_queue_head_init(&tmp);
5461 
5462 	while (before(start, end)) {
5463 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5464 		struct sk_buff *nskb;
5465 
5466 		nskb = alloc_skb(copy, GFP_ATOMIC);
5467 		if (!nskb)
5468 			break;
5469 
5470 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5471 		skb_copy_decrypted(nskb, skb);
5472 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5473 		if (list)
5474 			__skb_queue_before(list, skb, nskb);
5475 		else
5476 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5477 		skb_set_owner_r(nskb, sk);
5478 		mptcp_skb_ext_move(nskb, skb);
5479 
5480 		/* Copy data, releasing collapsed skbs. */
5481 		while (copy > 0) {
5482 			int offset = start - TCP_SKB_CB(skb)->seq;
5483 			int size = TCP_SKB_CB(skb)->end_seq - start;
5484 
5485 			BUG_ON(offset < 0);
5486 			if (size > 0) {
5487 				size = min(copy, size);
5488 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5489 					BUG();
5490 				TCP_SKB_CB(nskb)->end_seq += size;
5491 				copy -= size;
5492 				start += size;
5493 			}
5494 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5495 				skb = tcp_collapse_one(sk, skb, list, root);
5496 				if (!skb ||
5497 				    skb == tail ||
5498 				    !tcp_skb_can_collapse_rx(nskb, skb) ||
5499 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) ||
5500 				    !skb_frags_readable(skb))
5501 					goto end;
5502 			}
5503 		}
5504 	}
5505 end:
5506 	skb_queue_walk_safe(&tmp, skb, n)
5507 		tcp_rbtree_insert(root, skb);
5508 }
5509 
5510 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5511  * and tcp_collapse() them until all the queue is collapsed.
5512  */
tcp_collapse_ofo_queue(struct sock * sk)5513 static void tcp_collapse_ofo_queue(struct sock *sk)
5514 {
5515 	struct tcp_sock *tp = tcp_sk(sk);
5516 	u32 range_truesize, sum_tiny = 0;
5517 	struct sk_buff *skb, *head;
5518 	u32 start, end;
5519 
5520 	skb = skb_rb_first(&tp->out_of_order_queue);
5521 new_range:
5522 	if (!skb) {
5523 		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5524 		return;
5525 	}
5526 	start = TCP_SKB_CB(skb)->seq;
5527 	end = TCP_SKB_CB(skb)->end_seq;
5528 	range_truesize = skb->truesize;
5529 
5530 	for (head = skb;;) {
5531 		skb = skb_rb_next(skb);
5532 
5533 		/* Range is terminated when we see a gap or when
5534 		 * we are at the queue end.
5535 		 */
5536 		if (!skb ||
5537 		    after(TCP_SKB_CB(skb)->seq, end) ||
5538 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
5539 			/* Do not attempt collapsing tiny skbs */
5540 			if (range_truesize != head->truesize ||
5541 			    end - start >= SKB_WITH_OVERHEAD(PAGE_SIZE)) {
5542 				tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5543 					     head, skb, start, end);
5544 			} else {
5545 				sum_tiny += range_truesize;
5546 				if (sum_tiny > sk->sk_rcvbuf >> 3)
5547 					return;
5548 			}
5549 			goto new_range;
5550 		}
5551 
5552 		range_truesize += skb->truesize;
5553 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5554 			start = TCP_SKB_CB(skb)->seq;
5555 		if (after(TCP_SKB_CB(skb)->end_seq, end))
5556 			end = TCP_SKB_CB(skb)->end_seq;
5557 	}
5558 }
5559 
5560 /*
5561  * Clean the out-of-order queue to make room.
5562  * We drop high sequences packets to :
5563  * 1) Let a chance for holes to be filled.
5564  *    This means we do not drop packets from ooo queue if their sequence
5565  *    is before incoming packet sequence.
5566  * 2) not add too big latencies if thousands of packets sit there.
5567  *    (But if application shrinks SO_RCVBUF, we could still end up
5568  *     freeing whole queue here)
5569  * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5570  *
5571  * Return true if queue has shrunk.
5572  */
tcp_prune_ofo_queue(struct sock * sk,const struct sk_buff * in_skb)5573 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb)
5574 {
5575 	struct tcp_sock *tp = tcp_sk(sk);
5576 	struct rb_node *node, *prev;
5577 	bool pruned = false;
5578 	int goal;
5579 
5580 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5581 		return false;
5582 
5583 	goal = sk->sk_rcvbuf >> 3;
5584 	node = &tp->ooo_last_skb->rbnode;
5585 
5586 	do {
5587 		struct sk_buff *skb = rb_to_skb(node);
5588 
5589 		/* If incoming skb would land last in ofo queue, stop pruning. */
5590 		if (after(TCP_SKB_CB(in_skb)->seq, TCP_SKB_CB(skb)->seq))
5591 			break;
5592 		pruned = true;
5593 		prev = rb_prev(node);
5594 		rb_erase(node, &tp->out_of_order_queue);
5595 		goal -= skb->truesize;
5596 		tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE);
5597 		tp->ooo_last_skb = rb_to_skb(prev);
5598 		if (!prev || goal <= 0) {
5599 			if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5600 			    !tcp_under_memory_pressure(sk))
5601 				break;
5602 			goal = sk->sk_rcvbuf >> 3;
5603 		}
5604 		node = prev;
5605 	} while (node);
5606 
5607 	if (pruned) {
5608 		NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5609 		/* Reset SACK state.  A conforming SACK implementation will
5610 		 * do the same at a timeout based retransmit.  When a connection
5611 		 * is in a sad state like this, we care only about integrity
5612 		 * of the connection not performance.
5613 		 */
5614 		if (tp->rx_opt.sack_ok)
5615 			tcp_sack_reset(&tp->rx_opt);
5616 	}
5617 	return pruned;
5618 }
5619 
5620 /* Reduce allocated memory if we can, trying to get
5621  * the socket within its memory limits again.
5622  *
5623  * Return less than zero if we should start dropping frames
5624  * until the socket owning process reads some of the data
5625  * to stabilize the situation.
5626  */
tcp_prune_queue(struct sock * sk,const struct sk_buff * in_skb)5627 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb)
5628 {
5629 	struct tcp_sock *tp = tcp_sk(sk);
5630 
5631 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5632 
5633 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5634 		tcp_clamp_window(sk);
5635 	else if (tcp_under_memory_pressure(sk))
5636 		tcp_adjust_rcv_ssthresh(sk);
5637 
5638 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5639 		return 0;
5640 
5641 	tcp_collapse_ofo_queue(sk);
5642 	if (!skb_queue_empty(&sk->sk_receive_queue))
5643 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5644 			     skb_peek(&sk->sk_receive_queue),
5645 			     NULL,
5646 			     tp->copied_seq, tp->rcv_nxt);
5647 
5648 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5649 		return 0;
5650 
5651 	/* Collapsing did not help, destructive actions follow.
5652 	 * This must not ever occur. */
5653 
5654 	tcp_prune_ofo_queue(sk, in_skb);
5655 
5656 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5657 		return 0;
5658 
5659 	/* If we are really being abused, tell the caller to silently
5660 	 * drop receive data on the floor.  It will get retransmitted
5661 	 * and hopefully then we'll have sufficient space.
5662 	 */
5663 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5664 
5665 	/* Massive buffer overcommit. */
5666 	tp->pred_flags = 0;
5667 	return -1;
5668 }
5669 
tcp_should_expand_sndbuf(struct sock * sk)5670 static bool tcp_should_expand_sndbuf(struct sock *sk)
5671 {
5672 	const struct tcp_sock *tp = tcp_sk(sk);
5673 
5674 	/* If the user specified a specific send buffer setting, do
5675 	 * not modify it.
5676 	 */
5677 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5678 		return false;
5679 
5680 	/* If we are under global TCP memory pressure, do not expand.  */
5681 	if (tcp_under_memory_pressure(sk)) {
5682 		int unused_mem = sk_unused_reserved_mem(sk);
5683 
5684 		/* Adjust sndbuf according to reserved mem. But make sure
5685 		 * it never goes below SOCK_MIN_SNDBUF.
5686 		 * See sk_stream_moderate_sndbuf() for more details.
5687 		 */
5688 		if (unused_mem > SOCK_MIN_SNDBUF)
5689 			WRITE_ONCE(sk->sk_sndbuf, unused_mem);
5690 
5691 		return false;
5692 	}
5693 
5694 	/* If we are under soft global TCP memory pressure, do not expand.  */
5695 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5696 		return false;
5697 
5698 	/* If we filled the congestion window, do not expand.  */
5699 	if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp))
5700 		return false;
5701 
5702 	return true;
5703 }
5704 
tcp_new_space(struct sock * sk)5705 static void tcp_new_space(struct sock *sk)
5706 {
5707 	struct tcp_sock *tp = tcp_sk(sk);
5708 
5709 	if (tcp_should_expand_sndbuf(sk)) {
5710 		tcp_sndbuf_expand(sk);
5711 		tp->snd_cwnd_stamp = tcp_jiffies32;
5712 	}
5713 
5714 	INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk);
5715 }
5716 
5717 /* Caller made space either from:
5718  * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced)
5719  * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt)
5720  *
5721  * We might be able to generate EPOLLOUT to the application if:
5722  * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2
5723  * 2) notsent amount (tp->write_seq - tp->snd_nxt) became
5724  *    small enough that tcp_stream_memory_free() decides it
5725  *    is time to generate EPOLLOUT.
5726  */
tcp_check_space(struct sock * sk)5727 void tcp_check_space(struct sock *sk)
5728 {
5729 	/* pairs with tcp_poll() */
5730 	smp_mb();
5731 	if (sk->sk_socket &&
5732 	    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5733 		tcp_new_space(sk);
5734 		if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5735 			tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5736 	}
5737 }
5738 
tcp_data_snd_check(struct sock * sk)5739 static inline void tcp_data_snd_check(struct sock *sk)
5740 {
5741 	tcp_push_pending_frames(sk);
5742 	tcp_check_space(sk);
5743 }
5744 
5745 /*
5746  * Check if sending an ack is needed.
5747  */
__tcp_ack_snd_check(struct sock * sk,int ofo_possible)5748 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5749 {
5750 	struct tcp_sock *tp = tcp_sk(sk);
5751 	unsigned long rtt, delay;
5752 
5753 	    /* More than one full frame received... */
5754 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5755 	     /* ... and right edge of window advances far enough.
5756 	      * (tcp_recvmsg() will send ACK otherwise).
5757 	      * If application uses SO_RCVLOWAT, we want send ack now if
5758 	      * we have not received enough bytes to satisfy the condition.
5759 	      */
5760 	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5761 	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5762 	    /* We ACK each frame or... */
5763 	    tcp_in_quickack_mode(sk) ||
5764 	    /* Protocol state mandates a one-time immediate ACK */
5765 	    inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5766 		/* If we are running from __release_sock() in user context,
5767 		 * Defer the ack until tcp_release_cb().
5768 		 */
5769 		if (sock_owned_by_user_nocheck(sk) &&
5770 		    READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_backlog_ack_defer)) {
5771 			set_bit(TCP_ACK_DEFERRED, &sk->sk_tsq_flags);
5772 			return;
5773 		}
5774 send_now:
5775 		tcp_send_ack(sk);
5776 		return;
5777 	}
5778 
5779 	if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5780 		tcp_send_delayed_ack(sk);
5781 		return;
5782 	}
5783 
5784 	if (!tcp_is_sack(tp) ||
5785 	    tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr))
5786 		goto send_now;
5787 
5788 	if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5789 		tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5790 		tp->dup_ack_counter = 0;
5791 	}
5792 	if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5793 		tp->dup_ack_counter++;
5794 		goto send_now;
5795 	}
5796 	tp->compressed_ack++;
5797 	if (hrtimer_is_queued(&tp->compressed_ack_timer))
5798 		return;
5799 
5800 	/* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5801 
5802 	rtt = tp->rcv_rtt_est.rtt_us;
5803 	if (tp->srtt_us && tp->srtt_us < rtt)
5804 		rtt = tp->srtt_us;
5805 
5806 	delay = min_t(unsigned long,
5807 		      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns),
5808 		      rtt * (NSEC_PER_USEC >> 3)/20);
5809 	sock_hold(sk);
5810 	hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5811 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns),
5812 			       HRTIMER_MODE_REL_PINNED_SOFT);
5813 }
5814 
tcp_ack_snd_check(struct sock * sk)5815 static inline void tcp_ack_snd_check(struct sock *sk)
5816 {
5817 	if (!inet_csk_ack_scheduled(sk)) {
5818 		/* We sent a data segment already. */
5819 		return;
5820 	}
5821 	__tcp_ack_snd_check(sk, 1);
5822 }
5823 
5824 /*
5825  *	This routine is only called when we have urgent data
5826  *	signaled. Its the 'slow' part of tcp_urg. It could be
5827  *	moved inline now as tcp_urg is only called from one
5828  *	place. We handle URGent data wrong. We have to - as
5829  *	BSD still doesn't use the correction from RFC961.
5830  *	For 1003.1g we should support a new option TCP_STDURG to permit
5831  *	either form (or just set the sysctl tcp_stdurg).
5832  */
5833 
tcp_check_urg(struct sock * sk,const struct tcphdr * th)5834 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5835 {
5836 	struct tcp_sock *tp = tcp_sk(sk);
5837 	u32 ptr = ntohs(th->urg_ptr);
5838 
5839 	if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg))
5840 		ptr--;
5841 	ptr += ntohl(th->seq);
5842 
5843 	/* Ignore urgent data that we've already seen and read. */
5844 	if (after(tp->copied_seq, ptr))
5845 		return;
5846 
5847 	/* Do not replay urg ptr.
5848 	 *
5849 	 * NOTE: interesting situation not covered by specs.
5850 	 * Misbehaving sender may send urg ptr, pointing to segment,
5851 	 * which we already have in ofo queue. We are not able to fetch
5852 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5853 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5854 	 * situations. But it is worth to think about possibility of some
5855 	 * DoSes using some hypothetical application level deadlock.
5856 	 */
5857 	if (before(ptr, tp->rcv_nxt))
5858 		return;
5859 
5860 	/* Do we already have a newer (or duplicate) urgent pointer? */
5861 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5862 		return;
5863 
5864 	/* Tell the world about our new urgent pointer. */
5865 	sk_send_sigurg(sk);
5866 
5867 	/* We may be adding urgent data when the last byte read was
5868 	 * urgent. To do this requires some care. We cannot just ignore
5869 	 * tp->copied_seq since we would read the last urgent byte again
5870 	 * as data, nor can we alter copied_seq until this data arrives
5871 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5872 	 *
5873 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5874 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5875 	 * and expect that both A and B disappear from stream. This is _wrong_.
5876 	 * Though this happens in BSD with high probability, this is occasional.
5877 	 * Any application relying on this is buggy. Note also, that fix "works"
5878 	 * only in this artificial test. Insert some normal data between A and B and we will
5879 	 * decline of BSD again. Verdict: it is better to remove to trap
5880 	 * buggy users.
5881 	 */
5882 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5883 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5884 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5885 		tp->copied_seq++;
5886 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5887 			__skb_unlink(skb, &sk->sk_receive_queue);
5888 			__kfree_skb(skb);
5889 		}
5890 	}
5891 
5892 	WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET);
5893 	WRITE_ONCE(tp->urg_seq, ptr);
5894 
5895 	/* Disable header prediction. */
5896 	tp->pred_flags = 0;
5897 }
5898 
5899 /* This is the 'fast' part of urgent handling. */
tcp_urg(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)5900 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5901 {
5902 	struct tcp_sock *tp = tcp_sk(sk);
5903 
5904 	/* Check if we get a new urgent pointer - normally not. */
5905 	if (unlikely(th->urg))
5906 		tcp_check_urg(sk, th);
5907 
5908 	/* Do we wait for any urgent data? - normally not... */
5909 	if (unlikely(tp->urg_data == TCP_URG_NOTYET)) {
5910 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5911 			  th->syn;
5912 
5913 		/* Is the urgent pointer pointing into this packet? */
5914 		if (ptr < skb->len) {
5915 			u8 tmp;
5916 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5917 				BUG();
5918 			WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp);
5919 			if (!sock_flag(sk, SOCK_DEAD))
5920 				sk->sk_data_ready(sk);
5921 		}
5922 	}
5923 }
5924 
5925 /* Accept RST for rcv_nxt - 1 after a FIN.
5926  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5927  * FIN is sent followed by a RST packet. The RST is sent with the same
5928  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5929  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5930  * ACKs on the closed socket. In addition middleboxes can drop either the
5931  * challenge ACK or a subsequent RST.
5932  */
tcp_reset_check(const struct sock * sk,const struct sk_buff * skb)5933 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5934 {
5935 	const struct tcp_sock *tp = tcp_sk(sk);
5936 
5937 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5938 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5939 					       TCPF_CLOSING));
5940 }
5941 
5942 /* Does PAWS and seqno based validation of an incoming segment, flags will
5943  * play significant role here.
5944  */
tcp_validate_incoming(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th,int syn_inerr)5945 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5946 				  const struct tcphdr *th, int syn_inerr)
5947 {
5948 	struct tcp_sock *tp = tcp_sk(sk);
5949 	SKB_DR(reason);
5950 
5951 	/* RFC1323: H1. Apply PAWS check first. */
5952 	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5953 	    tp->rx_opt.saw_tstamp &&
5954 	    tcp_paws_discard(sk, skb)) {
5955 		if (!th->rst) {
5956 			if (unlikely(th->syn))
5957 				goto syn_challenge;
5958 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5959 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5960 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5961 						  &tp->last_oow_ack_time))
5962 				tcp_send_dupack(sk, skb);
5963 			SKB_DR_SET(reason, TCP_RFC7323_PAWS);
5964 			goto discard;
5965 		}
5966 		/* Reset is accepted even if it did not pass PAWS. */
5967 	}
5968 
5969 	/* Step 1: check sequence number */
5970 	reason = tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5971 	if (reason) {
5972 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5973 		 * (RST) segments are validated by checking their SEQ-fields."
5974 		 * And page 69: "If an incoming segment is not acceptable,
5975 		 * an acknowledgment should be sent in reply (unless the RST
5976 		 * bit is set, if so drop the segment and return)".
5977 		 */
5978 		if (!th->rst) {
5979 			if (th->syn)
5980 				goto syn_challenge;
5981 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5982 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5983 						  &tp->last_oow_ack_time))
5984 				tcp_send_dupack(sk, skb);
5985 		} else if (tcp_reset_check(sk, skb)) {
5986 			goto reset;
5987 		}
5988 		goto discard;
5989 	}
5990 
5991 	/* Step 2: check RST bit */
5992 	if (th->rst) {
5993 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5994 		 * FIN and SACK too if available):
5995 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5996 		 * the right-most SACK block,
5997 		 * then
5998 		 *     RESET the connection
5999 		 * else
6000 		 *     Send a challenge ACK
6001 		 */
6002 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
6003 		    tcp_reset_check(sk, skb))
6004 			goto reset;
6005 
6006 		if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
6007 			struct tcp_sack_block *sp = &tp->selective_acks[0];
6008 			int max_sack = sp[0].end_seq;
6009 			int this_sack;
6010 
6011 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
6012 			     ++this_sack) {
6013 				max_sack = after(sp[this_sack].end_seq,
6014 						 max_sack) ?
6015 					sp[this_sack].end_seq : max_sack;
6016 			}
6017 
6018 			if (TCP_SKB_CB(skb)->seq == max_sack)
6019 				goto reset;
6020 		}
6021 
6022 		/* Disable TFO if RST is out-of-order
6023 		 * and no data has been received
6024 		 * for current active TFO socket
6025 		 */
6026 		if (tp->syn_fastopen && !tp->data_segs_in &&
6027 		    sk->sk_state == TCP_ESTABLISHED)
6028 			tcp_fastopen_active_disable(sk);
6029 		tcp_send_challenge_ack(sk);
6030 		SKB_DR_SET(reason, TCP_RESET);
6031 		goto discard;
6032 	}
6033 
6034 	/* step 3: check security and precedence [ignored] */
6035 
6036 	/* step 4: Check for a SYN
6037 	 * RFC 5961 4.2 : Send a challenge ack
6038 	 */
6039 	if (th->syn) {
6040 		if (sk->sk_state == TCP_SYN_RECV && sk->sk_socket && th->ack &&
6041 		    TCP_SKB_CB(skb)->seq + 1 == TCP_SKB_CB(skb)->end_seq &&
6042 		    TCP_SKB_CB(skb)->seq + 1 == tp->rcv_nxt &&
6043 		    TCP_SKB_CB(skb)->ack_seq == tp->snd_nxt)
6044 			goto pass;
6045 syn_challenge:
6046 		if (syn_inerr)
6047 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6048 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
6049 		tcp_send_challenge_ack(sk);
6050 		SKB_DR_SET(reason, TCP_INVALID_SYN);
6051 		goto discard;
6052 	}
6053 
6054 pass:
6055 	bpf_skops_parse_hdr(sk, skb);
6056 
6057 	return true;
6058 
6059 discard:
6060 	tcp_drop_reason(sk, skb, reason);
6061 	return false;
6062 
6063 reset:
6064 	tcp_reset(sk, skb);
6065 	__kfree_skb(skb);
6066 	return false;
6067 }
6068 
6069 /*
6070  *	TCP receive function for the ESTABLISHED state.
6071  *
6072  *	It is split into a fast path and a slow path. The fast path is
6073  * 	disabled when:
6074  *	- A zero window was announced from us - zero window probing
6075  *        is only handled properly in the slow path.
6076  *	- Out of order segments arrived.
6077  *	- Urgent data is expected.
6078  *	- There is no buffer space left
6079  *	- Unexpected TCP flags/window values/header lengths are received
6080  *	  (detected by checking the TCP header against pred_flags)
6081  *	- Data is sent in both directions. Fast path only supports pure senders
6082  *	  or pure receivers (this means either the sequence number or the ack
6083  *	  value must stay constant)
6084  *	- Unexpected TCP option.
6085  *
6086  *	When these conditions are not satisfied it drops into a standard
6087  *	receive procedure patterned after RFC793 to handle all cases.
6088  *	The first three cases are guaranteed by proper pred_flags setting,
6089  *	the rest is checked inline. Fast processing is turned on in
6090  *	tcp_data_queue when everything is OK.
6091  */
tcp_rcv_established(struct sock * sk,struct sk_buff * skb)6092 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
6093 {
6094 	enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED;
6095 	const struct tcphdr *th = (const struct tcphdr *)skb->data;
6096 	struct tcp_sock *tp = tcp_sk(sk);
6097 	unsigned int len = skb->len;
6098 
6099 	/* TCP congestion window tracking */
6100 	trace_tcp_probe(sk, skb);
6101 
6102 	tcp_mstamp_refresh(tp);
6103 	if (unlikely(!rcu_access_pointer(sk->sk_rx_dst)))
6104 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
6105 	/*
6106 	 *	Header prediction.
6107 	 *	The code loosely follows the one in the famous
6108 	 *	"30 instruction TCP receive" Van Jacobson mail.
6109 	 *
6110 	 *	Van's trick is to deposit buffers into socket queue
6111 	 *	on a device interrupt, to call tcp_recv function
6112 	 *	on the receive process context and checksum and copy
6113 	 *	the buffer to user space. smart...
6114 	 *
6115 	 *	Our current scheme is not silly either but we take the
6116 	 *	extra cost of the net_bh soft interrupt processing...
6117 	 *	We do checksum and copy also but from device to kernel.
6118 	 */
6119 
6120 	tp->rx_opt.saw_tstamp = 0;
6121 
6122 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
6123 	 *	if header_prediction is to be made
6124 	 *	'S' will always be tp->tcp_header_len >> 2
6125 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
6126 	 *  turn it off	(when there are holes in the receive
6127 	 *	 space for instance)
6128 	 *	PSH flag is ignored.
6129 	 */
6130 
6131 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
6132 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
6133 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6134 		int tcp_header_len = tp->tcp_header_len;
6135 
6136 		/* Timestamp header prediction: tcp_header_len
6137 		 * is automatically equal to th->doff*4 due to pred_flags
6138 		 * match.
6139 		 */
6140 
6141 		/* Check timestamp */
6142 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
6143 			/* No? Slow path! */
6144 			if (!tcp_parse_aligned_timestamp(tp, th))
6145 				goto slow_path;
6146 
6147 			/* If PAWS failed, check it more carefully in slow path */
6148 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
6149 				goto slow_path;
6150 
6151 			/* DO NOT update ts_recent here, if checksum fails
6152 			 * and timestamp was corrupted part, it will result
6153 			 * in a hung connection since we will drop all
6154 			 * future packets due to the PAWS test.
6155 			 */
6156 		}
6157 
6158 		if (len <= tcp_header_len) {
6159 			/* Bulk data transfer: sender */
6160 			if (len == tcp_header_len) {
6161 				/* Predicted packet is in window by definition.
6162 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
6163 				 * Hence, check seq<=rcv_wup reduces to:
6164 				 */
6165 				if (tcp_header_len ==
6166 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
6167 				    tp->rcv_nxt == tp->rcv_wup)
6168 					tcp_store_ts_recent(tp);
6169 
6170 				/* We know that such packets are checksummed
6171 				 * on entry.
6172 				 */
6173 				tcp_ack(sk, skb, 0);
6174 				__kfree_skb(skb);
6175 				tcp_data_snd_check(sk);
6176 				/* When receiving pure ack in fast path, update
6177 				 * last ts ecr directly instead of calling
6178 				 * tcp_rcv_rtt_measure_ts()
6179 				 */
6180 				tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
6181 				return;
6182 			} else { /* Header too small */
6183 				reason = SKB_DROP_REASON_PKT_TOO_SMALL;
6184 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6185 				goto discard;
6186 			}
6187 		} else {
6188 			int eaten = 0;
6189 			bool fragstolen = false;
6190 
6191 			if (tcp_checksum_complete(skb))
6192 				goto csum_error;
6193 
6194 			if ((int)skb->truesize > sk->sk_forward_alloc)
6195 				goto step5;
6196 
6197 			/* Predicted packet is in window by definition.
6198 			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
6199 			 * Hence, check seq<=rcv_wup reduces to:
6200 			 */
6201 			if (tcp_header_len ==
6202 			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
6203 			    tp->rcv_nxt == tp->rcv_wup)
6204 				tcp_store_ts_recent(tp);
6205 
6206 			tcp_rcv_rtt_measure_ts(sk, skb);
6207 
6208 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
6209 
6210 			/* Bulk data transfer: receiver */
6211 			skb_dst_drop(skb);
6212 			__skb_pull(skb, tcp_header_len);
6213 			eaten = tcp_queue_rcv(sk, skb, &fragstolen);
6214 
6215 			tcp_event_data_recv(sk, skb);
6216 
6217 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
6218 				/* Well, only one small jumplet in fast path... */
6219 				tcp_ack(sk, skb, FLAG_DATA);
6220 				tcp_data_snd_check(sk);
6221 				if (!inet_csk_ack_scheduled(sk))
6222 					goto no_ack;
6223 			} else {
6224 				tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
6225 			}
6226 
6227 			__tcp_ack_snd_check(sk, 0);
6228 no_ack:
6229 			if (eaten)
6230 				kfree_skb_partial(skb, fragstolen);
6231 			tcp_data_ready(sk);
6232 			return;
6233 		}
6234 	}
6235 
6236 slow_path:
6237 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
6238 		goto csum_error;
6239 
6240 	if (!th->ack && !th->rst && !th->syn) {
6241 		reason = SKB_DROP_REASON_TCP_FLAGS;
6242 		goto discard;
6243 	}
6244 
6245 	/*
6246 	 *	Standard slow path.
6247 	 */
6248 
6249 	if (!tcp_validate_incoming(sk, skb, th, 1))
6250 		return;
6251 
6252 step5:
6253 	reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT);
6254 	if ((int)reason < 0) {
6255 		reason = -reason;
6256 		goto discard;
6257 	}
6258 	tcp_rcv_rtt_measure_ts(sk, skb);
6259 
6260 	/* Process urgent data. */
6261 	tcp_urg(sk, skb, th);
6262 
6263 	/* step 7: process the segment text */
6264 	tcp_data_queue(sk, skb);
6265 
6266 	tcp_data_snd_check(sk);
6267 	tcp_ack_snd_check(sk);
6268 	return;
6269 
6270 csum_error:
6271 	reason = SKB_DROP_REASON_TCP_CSUM;
6272 	trace_tcp_bad_csum(skb);
6273 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
6274 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6275 
6276 discard:
6277 	tcp_drop_reason(sk, skb, reason);
6278 }
6279 EXPORT_SYMBOL(tcp_rcv_established);
6280 
tcp_init_transfer(struct sock * sk,int bpf_op,struct sk_buff * skb)6281 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb)
6282 {
6283 	struct inet_connection_sock *icsk = inet_csk(sk);
6284 	struct tcp_sock *tp = tcp_sk(sk);
6285 
6286 	tcp_mtup_init(sk);
6287 	icsk->icsk_af_ops->rebuild_header(sk);
6288 	tcp_init_metrics(sk);
6289 
6290 	/* Initialize the congestion window to start the transfer.
6291 	 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
6292 	 * retransmitted. In light of RFC6298 more aggressive 1sec
6293 	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
6294 	 * retransmission has occurred.
6295 	 */
6296 	if (tp->total_retrans > 1 && tp->undo_marker)
6297 		tcp_snd_cwnd_set(tp, 1);
6298 	else
6299 		tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk)));
6300 	tp->snd_cwnd_stamp = tcp_jiffies32;
6301 
6302 	bpf_skops_established(sk, bpf_op, skb);
6303 	/* Initialize congestion control unless BPF initialized it already: */
6304 	if (!icsk->icsk_ca_initialized)
6305 		tcp_init_congestion_control(sk);
6306 	tcp_init_buffer_space(sk);
6307 }
6308 
tcp_finish_connect(struct sock * sk,struct sk_buff * skb)6309 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
6310 {
6311 	struct tcp_sock *tp = tcp_sk(sk);
6312 	struct inet_connection_sock *icsk = inet_csk(sk);
6313 
6314 	tcp_ao_finish_connect(sk, skb);
6315 	tcp_set_state(sk, TCP_ESTABLISHED);
6316 	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
6317 
6318 	if (skb) {
6319 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
6320 		security_inet_conn_established(sk, skb);
6321 		sk_mark_napi_id(sk, skb);
6322 	}
6323 
6324 	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb);
6325 
6326 	/* Prevent spurious tcp_cwnd_restart() on first data
6327 	 * packet.
6328 	 */
6329 	tp->lsndtime = tcp_jiffies32;
6330 
6331 	if (sock_flag(sk, SOCK_KEEPOPEN))
6332 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
6333 
6334 	if (!tp->rx_opt.snd_wscale)
6335 		__tcp_fast_path_on(tp, tp->snd_wnd);
6336 	else
6337 		tp->pred_flags = 0;
6338 }
6339 
tcp_rcv_fastopen_synack(struct sock * sk,struct sk_buff * synack,struct tcp_fastopen_cookie * cookie)6340 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
6341 				    struct tcp_fastopen_cookie *cookie)
6342 {
6343 	struct tcp_sock *tp = tcp_sk(sk);
6344 	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
6345 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
6346 	bool syn_drop = false;
6347 
6348 	if (mss == tp->rx_opt.user_mss) {
6349 		struct tcp_options_received opt;
6350 
6351 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
6352 		tcp_clear_options(&opt);
6353 		opt.user_mss = opt.mss_clamp = 0;
6354 		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
6355 		mss = opt.mss_clamp;
6356 	}
6357 
6358 	if (!tp->syn_fastopen) {
6359 		/* Ignore an unsolicited cookie */
6360 		cookie->len = -1;
6361 	} else if (tp->total_retrans) {
6362 		/* SYN timed out and the SYN-ACK neither has a cookie nor
6363 		 * acknowledges data. Presumably the remote received only
6364 		 * the retransmitted (regular) SYNs: either the original
6365 		 * SYN-data or the corresponding SYN-ACK was dropped.
6366 		 */
6367 		syn_drop = (cookie->len < 0 && data);
6368 	} else if (cookie->len < 0 && !tp->syn_data) {
6369 		/* We requested a cookie but didn't get it. If we did not use
6370 		 * the (old) exp opt format then try so next time (try_exp=1).
6371 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
6372 		 */
6373 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
6374 	}
6375 
6376 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
6377 
6378 	if (data) { /* Retransmit unacked data in SYN */
6379 		if (tp->total_retrans)
6380 			tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
6381 		else
6382 			tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
6383 		skb_rbtree_walk_from(data)
6384 			 tcp_mark_skb_lost(sk, data);
6385 		tcp_non_congestion_loss_retransmit(sk);
6386 		NET_INC_STATS(sock_net(sk),
6387 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
6388 		return true;
6389 	}
6390 	tp->syn_data_acked = tp->syn_data;
6391 	if (tp->syn_data_acked) {
6392 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
6393 		/* SYN-data is counted as two separate packets in tcp_ack() */
6394 		if (tp->delivered > 1)
6395 			--tp->delivered;
6396 	}
6397 
6398 	tcp_fastopen_add_skb(sk, synack);
6399 
6400 	return false;
6401 }
6402 
smc_check_reset_syn(struct tcp_sock * tp)6403 static void smc_check_reset_syn(struct tcp_sock *tp)
6404 {
6405 #if IS_ENABLED(CONFIG_SMC)
6406 	if (static_branch_unlikely(&tcp_have_smc)) {
6407 		if (tp->syn_smc && !tp->rx_opt.smc_ok)
6408 			tp->syn_smc = 0;
6409 	}
6410 #endif
6411 }
6412 
tcp_try_undo_spurious_syn(struct sock * sk)6413 static void tcp_try_undo_spurious_syn(struct sock *sk)
6414 {
6415 	struct tcp_sock *tp = tcp_sk(sk);
6416 	u32 syn_stamp;
6417 
6418 	/* undo_marker is set when SYN or SYNACK times out. The timeout is
6419 	 * spurious if the ACK's timestamp option echo value matches the
6420 	 * original SYN timestamp.
6421 	 */
6422 	syn_stamp = tp->retrans_stamp;
6423 	if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
6424 	    syn_stamp == tp->rx_opt.rcv_tsecr)
6425 		tp->undo_marker = 0;
6426 }
6427 
tcp_rcv_synsent_state_process(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)6428 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
6429 					 const struct tcphdr *th)
6430 {
6431 	struct inet_connection_sock *icsk = inet_csk(sk);
6432 	struct tcp_sock *tp = tcp_sk(sk);
6433 	struct tcp_fastopen_cookie foc = { .len = -1 };
6434 	int saved_clamp = tp->rx_opt.mss_clamp;
6435 	bool fastopen_fail;
6436 	SKB_DR(reason);
6437 
6438 	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
6439 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
6440 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
6441 
6442 	if (th->ack) {
6443 		/* rfc793:
6444 		 * "If the state is SYN-SENT then
6445 		 *    first check the ACK bit
6446 		 *      If the ACK bit is set
6447 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6448 		 *        a reset (unless the RST bit is set, if so drop
6449 		 *        the segment and return)"
6450 		 */
6451 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
6452 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6453 			/* Previous FIN/ACK or RST/ACK might be ignored. */
6454 			if (icsk->icsk_retransmits == 0)
6455 				inet_csk_reset_xmit_timer(sk,
6456 						ICSK_TIME_RETRANS,
6457 						TCP_TIMEOUT_MIN, TCP_RTO_MAX);
6458 			SKB_DR_SET(reason, TCP_INVALID_ACK_SEQUENCE);
6459 			goto reset_and_undo;
6460 		}
6461 
6462 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
6463 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
6464 			     tcp_time_stamp_ts(tp))) {
6465 			NET_INC_STATS(sock_net(sk),
6466 					LINUX_MIB_PAWSACTIVEREJECTED);
6467 			SKB_DR_SET(reason, TCP_RFC7323_PAWS);
6468 			goto reset_and_undo;
6469 		}
6470 
6471 		/* Now ACK is acceptable.
6472 		 *
6473 		 * "If the RST bit is set
6474 		 *    If the ACK was acceptable then signal the user "error:
6475 		 *    connection reset", drop the segment, enter CLOSED state,
6476 		 *    delete TCB, and return."
6477 		 */
6478 
6479 		if (th->rst) {
6480 			tcp_reset(sk, skb);
6481 consume:
6482 			__kfree_skb(skb);
6483 			return 0;
6484 		}
6485 
6486 		/* rfc793:
6487 		 *   "fifth, if neither of the SYN or RST bits is set then
6488 		 *    drop the segment and return."
6489 		 *
6490 		 *    See note below!
6491 		 *                                        --ANK(990513)
6492 		 */
6493 		if (!th->syn) {
6494 			SKB_DR_SET(reason, TCP_FLAGS);
6495 			goto discard_and_undo;
6496 		}
6497 		/* rfc793:
6498 		 *   "If the SYN bit is on ...
6499 		 *    are acceptable then ...
6500 		 *    (our SYN has been ACKed), change the connection
6501 		 *    state to ESTABLISHED..."
6502 		 */
6503 
6504 		tcp_ecn_rcv_synack(tp, th);
6505 
6506 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6507 		tcp_try_undo_spurious_syn(sk);
6508 		tcp_ack(sk, skb, FLAG_SLOWPATH);
6509 
6510 		/* Ok.. it's good. Set up sequence numbers and
6511 		 * move to established.
6512 		 */
6513 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6514 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6515 
6516 		/* RFC1323: The window in SYN & SYN/ACK segments is
6517 		 * never scaled.
6518 		 */
6519 		tp->snd_wnd = ntohs(th->window);
6520 
6521 		if (!tp->rx_opt.wscale_ok) {
6522 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6523 			WRITE_ONCE(tp->window_clamp,
6524 				   min(tp->window_clamp, 65535U));
6525 		}
6526 
6527 		if (tp->rx_opt.saw_tstamp) {
6528 			tp->rx_opt.tstamp_ok	   = 1;
6529 			tp->tcp_header_len =
6530 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6531 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
6532 			tcp_store_ts_recent(tp);
6533 		} else {
6534 			tp->tcp_header_len = sizeof(struct tcphdr);
6535 		}
6536 
6537 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6538 		tcp_initialize_rcv_mss(sk);
6539 
6540 		/* Remember, tcp_poll() does not lock socket!
6541 		 * Change state from SYN-SENT only after copied_seq
6542 		 * is initialized. */
6543 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6544 
6545 		smc_check_reset_syn(tp);
6546 
6547 		smp_mb();
6548 
6549 		tcp_finish_connect(sk, skb);
6550 
6551 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6552 				tcp_rcv_fastopen_synack(sk, skb, &foc);
6553 
6554 		if (!sock_flag(sk, SOCK_DEAD)) {
6555 			sk->sk_state_change(sk);
6556 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6557 		}
6558 		if (fastopen_fail)
6559 			return -1;
6560 		if (sk->sk_write_pending ||
6561 		    READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept) ||
6562 		    inet_csk_in_pingpong_mode(sk)) {
6563 			/* Save one ACK. Data will be ready after
6564 			 * several ticks, if write_pending is set.
6565 			 *
6566 			 * It may be deleted, but with this feature tcpdumps
6567 			 * look so _wonderfully_ clever, that I was not able
6568 			 * to stand against the temptation 8)     --ANK
6569 			 */
6570 			inet_csk_schedule_ack(sk);
6571 			tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6572 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6573 						  TCP_DELACK_MAX, TCP_RTO_MAX);
6574 			goto consume;
6575 		}
6576 		tcp_send_ack(sk);
6577 		return -1;
6578 	}
6579 
6580 	/* No ACK in the segment */
6581 
6582 	if (th->rst) {
6583 		/* rfc793:
6584 		 * "If the RST bit is set
6585 		 *
6586 		 *      Otherwise (no ACK) drop the segment and return."
6587 		 */
6588 		SKB_DR_SET(reason, TCP_RESET);
6589 		goto discard_and_undo;
6590 	}
6591 
6592 	/* PAWS check. */
6593 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6594 	    tcp_paws_reject(&tp->rx_opt, 0)) {
6595 		SKB_DR_SET(reason, TCP_RFC7323_PAWS);
6596 		goto discard_and_undo;
6597 	}
6598 	if (th->syn) {
6599 		/* We see SYN without ACK. It is attempt of
6600 		 * simultaneous connect with crossed SYNs.
6601 		 * Particularly, it can be connect to self.
6602 		 */
6603 #ifdef CONFIG_TCP_AO
6604 		struct tcp_ao_info *ao;
6605 
6606 		ao = rcu_dereference_protected(tp->ao_info,
6607 					       lockdep_sock_is_held(sk));
6608 		if (ao) {
6609 			WRITE_ONCE(ao->risn, th->seq);
6610 			ao->rcv_sne = 0;
6611 		}
6612 #endif
6613 		tcp_set_state(sk, TCP_SYN_RECV);
6614 
6615 		if (tp->rx_opt.saw_tstamp) {
6616 			tp->rx_opt.tstamp_ok = 1;
6617 			tcp_store_ts_recent(tp);
6618 			tp->tcp_header_len =
6619 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6620 		} else {
6621 			tp->tcp_header_len = sizeof(struct tcphdr);
6622 		}
6623 
6624 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6625 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6626 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6627 
6628 		/* RFC1323: The window in SYN & SYN/ACK segments is
6629 		 * never scaled.
6630 		 */
6631 		tp->snd_wnd    = ntohs(th->window);
6632 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
6633 		tp->max_window = tp->snd_wnd;
6634 
6635 		tcp_ecn_rcv_syn(tp, th);
6636 
6637 		tcp_mtup_init(sk);
6638 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6639 		tcp_initialize_rcv_mss(sk);
6640 
6641 		tcp_send_synack(sk);
6642 #if 0
6643 		/* Note, we could accept data and URG from this segment.
6644 		 * There are no obstacles to make this (except that we must
6645 		 * either change tcp_recvmsg() to prevent it from returning data
6646 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6647 		 *
6648 		 * However, if we ignore data in ACKless segments sometimes,
6649 		 * we have no reasons to accept it sometimes.
6650 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6651 		 * is not flawless. So, discard packet for sanity.
6652 		 * Uncomment this return to process the data.
6653 		 */
6654 		return -1;
6655 #else
6656 		goto consume;
6657 #endif
6658 	}
6659 	/* "fifth, if neither of the SYN or RST bits is set then
6660 	 * drop the segment and return."
6661 	 */
6662 
6663 discard_and_undo:
6664 	tcp_clear_options(&tp->rx_opt);
6665 	tp->rx_opt.mss_clamp = saved_clamp;
6666 	tcp_drop_reason(sk, skb, reason);
6667 	return 0;
6668 
6669 reset_and_undo:
6670 	tcp_clear_options(&tp->rx_opt);
6671 	tp->rx_opt.mss_clamp = saved_clamp;
6672 	/* we can reuse/return @reason to its caller to handle the exception */
6673 	return reason;
6674 }
6675 
tcp_rcv_synrecv_state_fastopen(struct sock * sk)6676 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6677 {
6678 	struct tcp_sock *tp = tcp_sk(sk);
6679 	struct request_sock *req;
6680 
6681 	/* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6682 	 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6683 	 */
6684 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss && !tp->packets_out)
6685 		tcp_try_undo_recovery(sk);
6686 
6687 	tcp_update_rto_time(tp);
6688 	inet_csk(sk)->icsk_retransmits = 0;
6689 	/* In tcp_fastopen_synack_timer() on the first SYNACK RTO we set
6690 	 * retrans_stamp but don't enter CA_Loss, so in case that happened we
6691 	 * need to zero retrans_stamp here to prevent spurious
6692 	 * retransmits_timed_out(). However, if the ACK of our SYNACK caused us
6693 	 * to enter CA_Recovery then we need to leave retrans_stamp as it was
6694 	 * set entering CA_Recovery, for correct retransmits_timed_out() and
6695 	 * undo behavior.
6696 	 */
6697 	tcp_retrans_stamp_cleanup(sk);
6698 
6699 	/* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6700 	 * we no longer need req so release it.
6701 	 */
6702 	req = rcu_dereference_protected(tp->fastopen_rsk,
6703 					lockdep_sock_is_held(sk));
6704 	reqsk_fastopen_remove(sk, req, false);
6705 
6706 	/* Re-arm the timer because data may have been sent out.
6707 	 * This is similar to the regular data transmission case
6708 	 * when new data has just been ack'ed.
6709 	 *
6710 	 * (TFO) - we could try to be more aggressive and
6711 	 * retransmitting any data sooner based on when they
6712 	 * are sent out.
6713 	 */
6714 	tcp_rearm_rto(sk);
6715 }
6716 
6717 /*
6718  *	This function implements the receiving procedure of RFC 793 for
6719  *	all states except ESTABLISHED and TIME_WAIT.
6720  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6721  *	address independent.
6722  */
6723 
6724 enum skb_drop_reason
tcp_rcv_state_process(struct sock * sk,struct sk_buff * skb)6725 tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6726 {
6727 	struct tcp_sock *tp = tcp_sk(sk);
6728 	struct inet_connection_sock *icsk = inet_csk(sk);
6729 	const struct tcphdr *th = tcp_hdr(skb);
6730 	struct request_sock *req;
6731 	int queued = 0;
6732 	SKB_DR(reason);
6733 
6734 	switch (sk->sk_state) {
6735 	case TCP_CLOSE:
6736 		SKB_DR_SET(reason, TCP_CLOSE);
6737 		goto discard;
6738 
6739 	case TCP_LISTEN:
6740 		if (th->ack)
6741 			return SKB_DROP_REASON_TCP_FLAGS;
6742 
6743 		if (th->rst) {
6744 			SKB_DR_SET(reason, TCP_RESET);
6745 			goto discard;
6746 		}
6747 		if (th->syn) {
6748 			if (th->fin) {
6749 				SKB_DR_SET(reason, TCP_FLAGS);
6750 				goto discard;
6751 			}
6752 			/* It is possible that we process SYN packets from backlog,
6753 			 * so we need to make sure to disable BH and RCU right there.
6754 			 */
6755 			rcu_read_lock();
6756 			local_bh_disable();
6757 			icsk->icsk_af_ops->conn_request(sk, skb);
6758 			local_bh_enable();
6759 			rcu_read_unlock();
6760 
6761 			consume_skb(skb);
6762 			return 0;
6763 		}
6764 		SKB_DR_SET(reason, TCP_FLAGS);
6765 		goto discard;
6766 
6767 	case TCP_SYN_SENT:
6768 		tp->rx_opt.saw_tstamp = 0;
6769 		tcp_mstamp_refresh(tp);
6770 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
6771 		if (queued >= 0)
6772 			return queued;
6773 
6774 		/* Do step6 onward by hand. */
6775 		tcp_urg(sk, skb, th);
6776 		__kfree_skb(skb);
6777 		tcp_data_snd_check(sk);
6778 		return 0;
6779 	}
6780 
6781 	tcp_mstamp_refresh(tp);
6782 	tp->rx_opt.saw_tstamp = 0;
6783 	req = rcu_dereference_protected(tp->fastopen_rsk,
6784 					lockdep_sock_is_held(sk));
6785 	if (req) {
6786 		bool req_stolen;
6787 
6788 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6789 		    sk->sk_state != TCP_FIN_WAIT1);
6790 
6791 		if (!tcp_check_req(sk, skb, req, true, &req_stolen)) {
6792 			SKB_DR_SET(reason, TCP_FASTOPEN);
6793 			goto discard;
6794 		}
6795 	}
6796 
6797 	if (!th->ack && !th->rst && !th->syn) {
6798 		SKB_DR_SET(reason, TCP_FLAGS);
6799 		goto discard;
6800 	}
6801 	if (!tcp_validate_incoming(sk, skb, th, 0))
6802 		return 0;
6803 
6804 	/* step 5: check the ACK field */
6805 	reason = tcp_ack(sk, skb, FLAG_SLOWPATH |
6806 				  FLAG_UPDATE_TS_RECENT |
6807 				  FLAG_NO_CHALLENGE_ACK);
6808 
6809 	if ((int)reason <= 0) {
6810 		if (sk->sk_state == TCP_SYN_RECV) {
6811 			/* send one RST */
6812 			if (!reason)
6813 				return SKB_DROP_REASON_TCP_OLD_ACK;
6814 			return -reason;
6815 		}
6816 		/* accept old ack during closing */
6817 		if ((int)reason < 0) {
6818 			tcp_send_challenge_ack(sk);
6819 			reason = -reason;
6820 			goto discard;
6821 		}
6822 	}
6823 	SKB_DR_SET(reason, NOT_SPECIFIED);
6824 	switch (sk->sk_state) {
6825 	case TCP_SYN_RECV:
6826 		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6827 		if (!tp->srtt_us)
6828 			tcp_synack_rtt_meas(sk, req);
6829 
6830 		if (req) {
6831 			tcp_rcv_synrecv_state_fastopen(sk);
6832 		} else {
6833 			tcp_try_undo_spurious_syn(sk);
6834 			tp->retrans_stamp = 0;
6835 			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,
6836 					  skb);
6837 			WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6838 		}
6839 		tcp_ao_established(sk);
6840 		smp_mb();
6841 		tcp_set_state(sk, TCP_ESTABLISHED);
6842 		sk->sk_state_change(sk);
6843 
6844 		/* Note, that this wakeup is only for marginal crossed SYN case.
6845 		 * Passively open sockets are not waked up, because
6846 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6847 		 */
6848 		if (sk->sk_socket)
6849 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6850 
6851 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6852 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6853 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6854 
6855 		if (tp->rx_opt.tstamp_ok)
6856 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6857 
6858 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6859 			tcp_update_pacing_rate(sk);
6860 
6861 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6862 		tp->lsndtime = tcp_jiffies32;
6863 
6864 		tcp_initialize_rcv_mss(sk);
6865 		tcp_fast_path_on(tp);
6866 		if (sk->sk_shutdown & SEND_SHUTDOWN)
6867 			tcp_shutdown(sk, SEND_SHUTDOWN);
6868 		break;
6869 
6870 	case TCP_FIN_WAIT1: {
6871 		int tmo;
6872 
6873 		if (req)
6874 			tcp_rcv_synrecv_state_fastopen(sk);
6875 
6876 		if (tp->snd_una != tp->write_seq)
6877 			break;
6878 
6879 		tcp_set_state(sk, TCP_FIN_WAIT2);
6880 		WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN);
6881 
6882 		sk_dst_confirm(sk);
6883 
6884 		if (!sock_flag(sk, SOCK_DEAD)) {
6885 			/* Wake up lingering close() */
6886 			sk->sk_state_change(sk);
6887 			break;
6888 		}
6889 
6890 		if (READ_ONCE(tp->linger2) < 0) {
6891 			tcp_done(sk);
6892 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6893 			return SKB_DROP_REASON_TCP_ABORT_ON_DATA;
6894 		}
6895 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6896 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6897 			/* Receive out of order FIN after close() */
6898 			if (tp->syn_fastopen && th->fin)
6899 				tcp_fastopen_active_disable(sk);
6900 			tcp_done(sk);
6901 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6902 			return SKB_DROP_REASON_TCP_ABORT_ON_DATA;
6903 		}
6904 
6905 		tmo = tcp_fin_time(sk);
6906 		if (tmo > TCP_TIMEWAIT_LEN) {
6907 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6908 		} else if (th->fin || sock_owned_by_user(sk)) {
6909 			/* Bad case. We could lose such FIN otherwise.
6910 			 * It is not a big problem, but it looks confusing
6911 			 * and not so rare event. We still can lose it now,
6912 			 * if it spins in bh_lock_sock(), but it is really
6913 			 * marginal case.
6914 			 */
6915 			inet_csk_reset_keepalive_timer(sk, tmo);
6916 		} else {
6917 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6918 			goto consume;
6919 		}
6920 		break;
6921 	}
6922 
6923 	case TCP_CLOSING:
6924 		if (tp->snd_una == tp->write_seq) {
6925 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6926 			goto consume;
6927 		}
6928 		break;
6929 
6930 	case TCP_LAST_ACK:
6931 		if (tp->snd_una == tp->write_seq) {
6932 			tcp_update_metrics(sk);
6933 			tcp_done(sk);
6934 			goto consume;
6935 		}
6936 		break;
6937 	}
6938 
6939 	/* step 6: check the URG bit */
6940 	tcp_urg(sk, skb, th);
6941 
6942 	/* step 7: process the segment text */
6943 	switch (sk->sk_state) {
6944 	case TCP_CLOSE_WAIT:
6945 	case TCP_CLOSING:
6946 	case TCP_LAST_ACK:
6947 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6948 			/* If a subflow has been reset, the packet should not
6949 			 * continue to be processed, drop the packet.
6950 			 */
6951 			if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb))
6952 				goto discard;
6953 			break;
6954 		}
6955 		fallthrough;
6956 	case TCP_FIN_WAIT1:
6957 	case TCP_FIN_WAIT2:
6958 		/* RFC 793 says to queue data in these states,
6959 		 * RFC 1122 says we MUST send a reset.
6960 		 * BSD 4.4 also does reset.
6961 		 */
6962 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6963 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6964 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6965 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6966 				tcp_reset(sk, skb);
6967 				return SKB_DROP_REASON_TCP_ABORT_ON_DATA;
6968 			}
6969 		}
6970 		fallthrough;
6971 	case TCP_ESTABLISHED:
6972 		tcp_data_queue(sk, skb);
6973 		queued = 1;
6974 		break;
6975 	}
6976 
6977 	/* tcp_data could move socket to TIME-WAIT */
6978 	if (sk->sk_state != TCP_CLOSE) {
6979 		tcp_data_snd_check(sk);
6980 		tcp_ack_snd_check(sk);
6981 	}
6982 
6983 	if (!queued) {
6984 discard:
6985 		tcp_drop_reason(sk, skb, reason);
6986 	}
6987 	return 0;
6988 
6989 consume:
6990 	__kfree_skb(skb);
6991 	return 0;
6992 }
6993 EXPORT_SYMBOL(tcp_rcv_state_process);
6994 
pr_drop_req(struct request_sock * req,__u16 port,int family)6995 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6996 {
6997 	struct inet_request_sock *ireq = inet_rsk(req);
6998 
6999 	if (family == AF_INET)
7000 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
7001 				    &ireq->ir_rmt_addr, port);
7002 #if IS_ENABLED(CONFIG_IPV6)
7003 	else if (family == AF_INET6)
7004 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
7005 				    &ireq->ir_v6_rmt_addr, port);
7006 #endif
7007 }
7008 
7009 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
7010  *
7011  * If we receive a SYN packet with these bits set, it means a
7012  * network is playing bad games with TOS bits. In order to
7013  * avoid possible false congestion notifications, we disable
7014  * TCP ECN negotiation.
7015  *
7016  * Exception: tcp_ca wants ECN. This is required for DCTCP
7017  * congestion control: Linux DCTCP asserts ECT on all packets,
7018  * including SYN, which is most optimal solution; however,
7019  * others, such as FreeBSD do not.
7020  *
7021  * Exception: At least one of the reserved bits of the TCP header (th->res1) is
7022  * set, indicating the use of a future TCP extension (such as AccECN). See
7023  * RFC8311 §4.3 which updates RFC3168 to allow the development of such
7024  * extensions.
7025  */
tcp_ecn_create_request(struct request_sock * req,const struct sk_buff * skb,const struct sock * listen_sk,const struct dst_entry * dst)7026 static void tcp_ecn_create_request(struct request_sock *req,
7027 				   const struct sk_buff *skb,
7028 				   const struct sock *listen_sk,
7029 				   const struct dst_entry *dst)
7030 {
7031 	const struct tcphdr *th = tcp_hdr(skb);
7032 	const struct net *net = sock_net(listen_sk);
7033 	bool th_ecn = th->ece && th->cwr;
7034 	bool ect, ecn_ok;
7035 	u32 ecn_ok_dst;
7036 
7037 	if (!th_ecn)
7038 		return;
7039 
7040 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
7041 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
7042 	ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst;
7043 
7044 	if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
7045 	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
7046 	    tcp_bpf_ca_needs_ecn((struct sock *)req))
7047 		inet_rsk(req)->ecn_ok = 1;
7048 }
7049 
tcp_openreq_init(struct request_sock * req,const struct tcp_options_received * rx_opt,struct sk_buff * skb,const struct sock * sk)7050 static void tcp_openreq_init(struct request_sock *req,
7051 			     const struct tcp_options_received *rx_opt,
7052 			     struct sk_buff *skb, const struct sock *sk)
7053 {
7054 	struct inet_request_sock *ireq = inet_rsk(req);
7055 
7056 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
7057 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
7058 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
7059 	tcp_rsk(req)->snt_synack = 0;
7060 	tcp_rsk(req)->last_oow_ack_time = 0;
7061 	req->mss = rx_opt->mss_clamp;
7062 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
7063 	ireq->tstamp_ok = rx_opt->tstamp_ok;
7064 	ireq->sack_ok = rx_opt->sack_ok;
7065 	ireq->snd_wscale = rx_opt->snd_wscale;
7066 	ireq->wscale_ok = rx_opt->wscale_ok;
7067 	ireq->acked = 0;
7068 	ireq->ecn_ok = 0;
7069 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
7070 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
7071 	ireq->ir_mark = inet_request_mark(sk, skb);
7072 #if IS_ENABLED(CONFIG_SMC)
7073 	ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested &&
7074 			tcp_sk(sk)->smc_hs_congested(sk));
7075 #endif
7076 }
7077 
7078 /*
7079  * Return true if a syncookie should be sent
7080  */
tcp_syn_flood_action(struct sock * sk,const char * proto)7081 static bool tcp_syn_flood_action(struct sock *sk, const char *proto)
7082 {
7083 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
7084 	const char *msg = "Dropping request";
7085 	struct net *net = sock_net(sk);
7086 	bool want_cookie = false;
7087 	u8 syncookies;
7088 
7089 	syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
7090 
7091 #ifdef CONFIG_SYN_COOKIES
7092 	if (syncookies) {
7093 		msg = "Sending cookies";
7094 		want_cookie = true;
7095 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
7096 	} else
7097 #endif
7098 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
7099 
7100 	if (!READ_ONCE(queue->synflood_warned) && syncookies != 2 &&
7101 	    xchg(&queue->synflood_warned, 1) == 0) {
7102 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_family == AF_INET6) {
7103 			net_info_ratelimited("%s: Possible SYN flooding on port [%pI6c]:%u. %s.\n",
7104 					proto, inet6_rcv_saddr(sk),
7105 					sk->sk_num, msg);
7106 		} else {
7107 			net_info_ratelimited("%s: Possible SYN flooding on port %pI4:%u. %s.\n",
7108 					proto, &sk->sk_rcv_saddr,
7109 					sk->sk_num, msg);
7110 		}
7111 	}
7112 
7113 	return want_cookie;
7114 }
7115 
tcp_reqsk_record_syn(const struct sock * sk,struct request_sock * req,const struct sk_buff * skb)7116 static void tcp_reqsk_record_syn(const struct sock *sk,
7117 				 struct request_sock *req,
7118 				 const struct sk_buff *skb)
7119 {
7120 	if (tcp_sk(sk)->save_syn) {
7121 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
7122 		struct saved_syn *saved_syn;
7123 		u32 mac_hdrlen;
7124 		void *base;
7125 
7126 		if (tcp_sk(sk)->save_syn == 2) {  /* Save full header. */
7127 			base = skb_mac_header(skb);
7128 			mac_hdrlen = skb_mac_header_len(skb);
7129 			len += mac_hdrlen;
7130 		} else {
7131 			base = skb_network_header(skb);
7132 			mac_hdrlen = 0;
7133 		}
7134 
7135 		saved_syn = kmalloc(struct_size(saved_syn, data, len),
7136 				    GFP_ATOMIC);
7137 		if (saved_syn) {
7138 			saved_syn->mac_hdrlen = mac_hdrlen;
7139 			saved_syn->network_hdrlen = skb_network_header_len(skb);
7140 			saved_syn->tcp_hdrlen = tcp_hdrlen(skb);
7141 			memcpy(saved_syn->data, base, len);
7142 			req->saved_syn = saved_syn;
7143 		}
7144 	}
7145 }
7146 
7147 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
7148  * used for SYN cookie generation.
7149  */
tcp_get_syncookie_mss(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct tcphdr * th)7150 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
7151 			  const struct tcp_request_sock_ops *af_ops,
7152 			  struct sock *sk, struct tcphdr *th)
7153 {
7154 	struct tcp_sock *tp = tcp_sk(sk);
7155 	u16 mss;
7156 
7157 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 &&
7158 	    !inet_csk_reqsk_queue_is_full(sk))
7159 		return 0;
7160 
7161 	if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
7162 		return 0;
7163 
7164 	if (sk_acceptq_is_full(sk)) {
7165 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
7166 		return 0;
7167 	}
7168 
7169 	mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
7170 	if (!mss)
7171 		mss = af_ops->mss_clamp;
7172 
7173 	return mss;
7174 }
7175 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
7176 
tcp_conn_request(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct sk_buff * skb)7177 int tcp_conn_request(struct request_sock_ops *rsk_ops,
7178 		     const struct tcp_request_sock_ops *af_ops,
7179 		     struct sock *sk, struct sk_buff *skb)
7180 {
7181 	struct tcp_fastopen_cookie foc = { .len = -1 };
7182 	struct tcp_options_received tmp_opt;
7183 	struct tcp_sock *tp = tcp_sk(sk);
7184 	struct net *net = sock_net(sk);
7185 	struct sock *fastopen_sk = NULL;
7186 	struct request_sock *req;
7187 	bool want_cookie = false;
7188 	struct dst_entry *dst;
7189 	struct flowi fl;
7190 	u8 syncookies;
7191 	u32 isn;
7192 
7193 #ifdef CONFIG_TCP_AO
7194 	const struct tcp_ao_hdr *aoh;
7195 #endif
7196 
7197 	isn = __this_cpu_read(tcp_tw_isn);
7198 	if (isn) {
7199 		/* TW buckets are converted to open requests without
7200 		 * limitations, they conserve resources and peer is
7201 		 * evidently real one.
7202 		 */
7203 		__this_cpu_write(tcp_tw_isn, 0);
7204 	} else {
7205 		syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
7206 
7207 		if (syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) {
7208 			want_cookie = tcp_syn_flood_action(sk,
7209 							   rsk_ops->slab_name);
7210 			if (!want_cookie)
7211 				goto drop;
7212 		}
7213 	}
7214 
7215 	if (sk_acceptq_is_full(sk)) {
7216 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
7217 		goto drop;
7218 	}
7219 
7220 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
7221 	if (!req)
7222 		goto drop;
7223 
7224 	req->syncookie = want_cookie;
7225 	tcp_rsk(req)->af_specific = af_ops;
7226 	tcp_rsk(req)->ts_off = 0;
7227 	tcp_rsk(req)->req_usec_ts = false;
7228 #if IS_ENABLED(CONFIG_MPTCP)
7229 	tcp_rsk(req)->is_mptcp = 0;
7230 #endif
7231 
7232 	tcp_clear_options(&tmp_opt);
7233 	tmp_opt.mss_clamp = af_ops->mss_clamp;
7234 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
7235 	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
7236 			  want_cookie ? NULL : &foc);
7237 
7238 	if (want_cookie && !tmp_opt.saw_tstamp)
7239 		tcp_clear_options(&tmp_opt);
7240 
7241 	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
7242 		tmp_opt.smc_ok = 0;
7243 
7244 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
7245 	tcp_openreq_init(req, &tmp_opt, skb, sk);
7246 	inet_rsk(req)->no_srccheck = inet_test_bit(TRANSPARENT, sk);
7247 
7248 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
7249 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
7250 
7251 	dst = af_ops->route_req(sk, skb, &fl, req, isn);
7252 	if (!dst)
7253 		goto drop_and_free;
7254 
7255 	if (tmp_opt.tstamp_ok) {
7256 		tcp_rsk(req)->req_usec_ts = dst_tcp_usec_ts(dst);
7257 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
7258 	}
7259 	if (!want_cookie && !isn) {
7260 		int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog);
7261 
7262 		/* Kill the following clause, if you dislike this way. */
7263 		if (!syncookies &&
7264 		    (max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
7265 		     (max_syn_backlog >> 2)) &&
7266 		    !tcp_peer_is_proven(req, dst)) {
7267 			/* Without syncookies last quarter of
7268 			 * backlog is filled with destinations,
7269 			 * proven to be alive.
7270 			 * It means that we continue to communicate
7271 			 * to destinations, already remembered
7272 			 * to the moment of synflood.
7273 			 */
7274 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
7275 				    rsk_ops->family);
7276 			goto drop_and_release;
7277 		}
7278 
7279 		isn = af_ops->init_seq(skb);
7280 	}
7281 
7282 	tcp_ecn_create_request(req, skb, sk, dst);
7283 
7284 	if (want_cookie) {
7285 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
7286 		if (!tmp_opt.tstamp_ok)
7287 			inet_rsk(req)->ecn_ok = 0;
7288 	}
7289 
7290 #ifdef CONFIG_TCP_AO
7291 	if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh))
7292 		goto drop_and_release; /* Invalid TCP options */
7293 	if (aoh) {
7294 		tcp_rsk(req)->used_tcp_ao = true;
7295 		tcp_rsk(req)->ao_rcv_next = aoh->keyid;
7296 		tcp_rsk(req)->ao_keyid = aoh->rnext_keyid;
7297 
7298 	} else {
7299 		tcp_rsk(req)->used_tcp_ao = false;
7300 	}
7301 #endif
7302 	tcp_rsk(req)->snt_isn = isn;
7303 	tcp_rsk(req)->txhash = net_tx_rndhash();
7304 	tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
7305 	tcp_openreq_init_rwin(req, sk, dst);
7306 	sk_rx_queue_set(req_to_sk(req), skb);
7307 	if (!want_cookie) {
7308 		tcp_reqsk_record_syn(sk, req, skb);
7309 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
7310 	}
7311 	if (fastopen_sk) {
7312 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
7313 				    &foc, TCP_SYNACK_FASTOPEN, skb);
7314 		/* Add the child socket directly into the accept queue */
7315 		if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
7316 			reqsk_fastopen_remove(fastopen_sk, req, false);
7317 			bh_unlock_sock(fastopen_sk);
7318 			sock_put(fastopen_sk);
7319 			goto drop_and_free;
7320 		}
7321 		sk->sk_data_ready(sk);
7322 		bh_unlock_sock(fastopen_sk);
7323 		sock_put(fastopen_sk);
7324 	} else {
7325 		tcp_rsk(req)->tfo_listener = false;
7326 		if (!want_cookie) {
7327 			req->timeout = tcp_timeout_init((struct sock *)req);
7328 			if (unlikely(!inet_csk_reqsk_queue_hash_add(sk, req,
7329 								    req->timeout))) {
7330 				reqsk_free(req);
7331 				dst_release(dst);
7332 				return 0;
7333 			}
7334 
7335 		}
7336 		af_ops->send_synack(sk, dst, &fl, req, &foc,
7337 				    !want_cookie ? TCP_SYNACK_NORMAL :
7338 						   TCP_SYNACK_COOKIE,
7339 				    skb);
7340 		if (want_cookie) {
7341 			reqsk_free(req);
7342 			return 0;
7343 		}
7344 	}
7345 	reqsk_put(req);
7346 	return 0;
7347 
7348 drop_and_release:
7349 	dst_release(dst);
7350 drop_and_free:
7351 	__reqsk_free(req);
7352 drop:
7353 	tcp_listendrop(sk);
7354 	return 0;
7355 }
7356 EXPORT_SYMBOL(tcp_conn_request);
7357