1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: Pedro Roque : Retransmit queue handled by TCP. 24 * : Fragmentation on mtu decrease 25 * : Segment collapse on retransmit 26 * : AF independence 27 * 28 * Linus Torvalds : send_delayed_ack 29 * David S. Miller : Charge memory using the right skb 30 * during syn/ack processing. 31 * David S. Miller : Output engine completely rewritten. 32 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 33 * Cacophonix Gaul : draft-minshall-nagle-01 34 * J Hadi Salim : ECN support 35 * 36 */ 37 38 #define pr_fmt(fmt) "TCP: " fmt 39 40 #include <net/tcp.h> 41 #include <net/tcp_ecn.h> 42 #include <net/mptcp.h> 43 #include <net/smc.h> 44 #include <net/proto_memory.h> 45 #include <net/psp.h> 46 47 #include <linux/compiler.h> 48 #include <linux/gfp.h> 49 #include <linux/module.h> 50 #include <linux/static_key.h> 51 #include <linux/skbuff_ref.h> 52 53 #include <trace/events/tcp.h> 54 55 /* Refresh clocks of a TCP socket, 56 * ensuring monotically increasing values. 57 */ 58 void tcp_mstamp_refresh(struct tcp_sock *tp) 59 { 60 u64 val = tcp_clock_ns(); 61 62 tp->tcp_clock_cache = val; 63 tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC); 64 } 65 66 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 67 int push_one, gfp_t gfp); 68 69 /* Account for new data that has been sent to the network. */ 70 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb) 71 { 72 struct inet_connection_sock *icsk = inet_csk(sk); 73 struct tcp_sock *tp = tcp_sk(sk); 74 unsigned int prior_packets = tp->packets_out; 75 76 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq); 77 78 __skb_unlink(skb, &sk->sk_write_queue); 79 tcp_rbtree_insert(&sk->tcp_rtx_queue, skb); 80 81 if (tp->highest_sack == NULL) 82 tp->highest_sack = skb; 83 84 tp->packets_out += tcp_skb_pcount(skb); 85 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 86 tcp_rearm_rto(sk); 87 88 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT, 89 tcp_skb_pcount(skb)); 90 tcp_check_space(sk); 91 } 92 93 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one 94 * window scaling factor due to loss of precision. 95 * If window has been shrunk, what should we make? It is not clear at all. 96 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 97 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 98 * invalid. OK, let's make this for now: 99 */ 100 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 101 { 102 const struct tcp_sock *tp = tcp_sk(sk); 103 104 if (!before(tcp_wnd_end(tp), tp->snd_nxt) || 105 (tp->rx_opt.wscale_ok && 106 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale)))) 107 return tp->snd_nxt; 108 else 109 return tcp_wnd_end(tp); 110 } 111 112 /* Calculate mss to advertise in SYN segment. 113 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 114 * 115 * 1. It is independent of path mtu. 116 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 117 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 118 * attached devices, because some buggy hosts are confused by 119 * large MSS. 120 * 4. We do not make 3, we advertise MSS, calculated from first 121 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 122 * This may be overridden via information stored in routing table. 123 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 124 * probably even Jumbo". 125 */ 126 static __u16 tcp_advertise_mss(struct sock *sk) 127 { 128 struct tcp_sock *tp = tcp_sk(sk); 129 const struct dst_entry *dst = __sk_dst_get(sk); 130 int mss = tp->advmss; 131 132 if (dst) { 133 unsigned int metric = dst_metric_advmss(dst); 134 135 if (metric < mss) { 136 mss = metric; 137 tp->advmss = mss; 138 } 139 } 140 141 return (__u16)mss; 142 } 143 144 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 145 * This is the first part of cwnd validation mechanism. 146 */ 147 void tcp_cwnd_restart(struct sock *sk, s32 delta) 148 { 149 struct tcp_sock *tp = tcp_sk(sk); 150 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 151 u32 cwnd = tcp_snd_cwnd(tp); 152 153 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 154 155 tp->snd_ssthresh = tcp_current_ssthresh(sk); 156 restart_cwnd = min(restart_cwnd, cwnd); 157 158 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 159 cwnd >>= 1; 160 tcp_snd_cwnd_set(tp, max(cwnd, restart_cwnd)); 161 tp->snd_cwnd_stamp = tcp_jiffies32; 162 tp->snd_cwnd_used = 0; 163 } 164 165 /* Congestion state accounting after a packet has been sent. */ 166 static void tcp_event_data_sent(struct tcp_sock *tp, 167 struct sock *sk) 168 { 169 struct inet_connection_sock *icsk = inet_csk(sk); 170 const u32 now = tcp_jiffies32; 171 172 if (tcp_packets_in_flight(tp) == 0) 173 tcp_ca_event(sk, CA_EVENT_TX_START); 174 175 tp->lsndtime = now; 176 177 /* If it is a reply for ato after last received 178 * packet, increase pingpong count. 179 */ 180 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) 181 inet_csk_inc_pingpong_cnt(sk); 182 } 183 184 /* Account for an ACK we sent. */ 185 static inline void tcp_event_ack_sent(struct sock *sk, u32 rcv_nxt) 186 { 187 struct tcp_sock *tp = tcp_sk(sk); 188 189 if (unlikely(tp->compressed_ack)) { 190 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 191 tp->compressed_ack); 192 tp->compressed_ack = 0; 193 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 194 __sock_put(sk); 195 } 196 197 if (unlikely(rcv_nxt != tp->rcv_nxt)) 198 return; /* Special ACK sent by DCTCP to reflect ECN */ 199 tcp_dec_quickack_mode(sk); 200 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 201 } 202 203 /* Determine a window scaling and initial window to offer. 204 * Based on the assumption that the given amount of space 205 * will be offered. Store the results in the tp structure. 206 * NOTE: for smooth operation initial space offering should 207 * be a multiple of mss if possible. We assume here that mss >= 1. 208 * This MUST be enforced by all callers. 209 */ 210 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss, 211 __u32 *rcv_wnd, __u32 *__window_clamp, 212 int wscale_ok, __u8 *rcv_wscale, 213 __u32 init_rcv_wnd) 214 { 215 unsigned int space = (__space < 0 ? 0 : __space); 216 u32 window_clamp = READ_ONCE(*__window_clamp); 217 218 /* If no clamp set the clamp to the max possible scaled window */ 219 if (window_clamp == 0) 220 window_clamp = (U16_MAX << TCP_MAX_WSCALE); 221 space = min(window_clamp, space); 222 223 /* Quantize space offering to a multiple of mss if possible. */ 224 if (space > mss) 225 space = rounddown(space, mss); 226 227 /* NOTE: offering an initial window larger than 32767 228 * will break some buggy TCP stacks. If the admin tells us 229 * it is likely we could be speaking with such a buggy stack 230 * we will truncate our initial window offering to 32K-1 231 * unless the remote has sent us a window scaling option, 232 * which we interpret as a sign the remote TCP is not 233 * misinterpreting the window field as a signed quantity. 234 */ 235 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)) 236 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 237 else 238 (*rcv_wnd) = space; 239 240 if (init_rcv_wnd) 241 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 242 243 *rcv_wscale = 0; 244 if (wscale_ok) { 245 /* Set window scaling on max possible window */ 246 space = max_t(u32, space, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); 247 space = max_t(u32, space, READ_ONCE(sysctl_rmem_max)); 248 space = min_t(u32, space, window_clamp); 249 *rcv_wscale = clamp_t(int, ilog2(space) - 15, 250 0, TCP_MAX_WSCALE); 251 } 252 /* Set the clamp no higher than max representable value */ 253 WRITE_ONCE(*__window_clamp, 254 min_t(__u32, U16_MAX << (*rcv_wscale), window_clamp)); 255 } 256 EXPORT_IPV6_MOD(tcp_select_initial_window); 257 258 /* Chose a new window to advertise, update state in tcp_sock for the 259 * socket, and return result with RFC1323 scaling applied. The return 260 * value can be stuffed directly into th->window for an outgoing 261 * frame. 262 */ 263 static u16 tcp_select_window(struct sock *sk) 264 { 265 struct tcp_sock *tp = tcp_sk(sk); 266 struct net *net = sock_net(sk); 267 u32 old_win = tp->rcv_wnd; 268 u32 cur_win, new_win; 269 270 /* Make the window 0 if we failed to queue the data because we 271 * are out of memory. 272 */ 273 if (unlikely(inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOMEM)) { 274 tp->pred_flags = 0; 275 tp->rcv_wnd = 0; 276 tp->rcv_wup = tp->rcv_nxt; 277 return 0; 278 } 279 280 cur_win = tcp_receive_window(tp); 281 new_win = __tcp_select_window(sk); 282 if (new_win < cur_win) { 283 /* Danger Will Robinson! 284 * Don't update rcv_wup/rcv_wnd here or else 285 * we will not be able to advertise a zero 286 * window in time. --DaveM 287 * 288 * Relax Will Robinson. 289 */ 290 if (!READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) || !tp->rx_opt.rcv_wscale) { 291 /* Never shrink the offered window */ 292 if (new_win == 0) 293 NET_INC_STATS(net, LINUX_MIB_TCPWANTZEROWINDOWADV); 294 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 295 } 296 } 297 298 tp->rcv_wnd = new_win; 299 tp->rcv_wup = tp->rcv_nxt; 300 301 /* Make sure we do not exceed the maximum possible 302 * scaled window. 303 */ 304 if (!tp->rx_opt.rcv_wscale && 305 READ_ONCE(net->ipv4.sysctl_tcp_workaround_signed_windows)) 306 new_win = min(new_win, MAX_TCP_WINDOW); 307 else 308 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 309 310 /* RFC1323 scaling applied */ 311 new_win >>= tp->rx_opt.rcv_wscale; 312 313 /* If we advertise zero window, disable fast path. */ 314 if (new_win == 0) { 315 tp->pred_flags = 0; 316 if (old_win) 317 NET_INC_STATS(net, LINUX_MIB_TCPTOZEROWINDOWADV); 318 } else if (old_win == 0) { 319 NET_INC_STATS(net, LINUX_MIB_TCPFROMZEROWINDOWADV); 320 } 321 322 return new_win; 323 } 324 325 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 326 * be sent. 327 */ 328 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb, 329 struct tcphdr *th, int tcp_header_len) 330 { 331 struct tcp_sock *tp = tcp_sk(sk); 332 333 if (!tcp_ecn_mode_any(tp)) 334 return; 335 336 if (tcp_ecn_mode_accecn(tp)) { 337 if (!tcp_accecn_ace_fail_recv(tp)) 338 INET_ECN_xmit(sk); 339 tcp_accecn_set_ace(tp, skb, th); 340 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ACCECN; 341 } else { 342 /* Not-retransmitted data segment: set ECT and inject CWR. */ 343 if (skb->len != tcp_header_len && 344 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 345 INET_ECN_xmit(sk); 346 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 347 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 348 th->cwr = 1; 349 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 350 } 351 } else if (!tcp_ca_needs_ecn(sk)) { 352 /* ACK or retransmitted segment: clear ECT|CE */ 353 INET_ECN_dontxmit(sk); 354 } 355 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 356 th->ece = 1; 357 } 358 } 359 360 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 361 * auto increment end seqno. 362 */ 363 static void tcp_init_nondata_skb(struct sk_buff *skb, struct sock *sk, 364 u32 seq, u16 flags) 365 { 366 skb->ip_summed = CHECKSUM_PARTIAL; 367 368 TCP_SKB_CB(skb)->tcp_flags = flags; 369 370 tcp_skb_pcount_set(skb, 1); 371 psp_enqueue_set_decrypted(sk, skb); 372 373 TCP_SKB_CB(skb)->seq = seq; 374 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 375 seq++; 376 TCP_SKB_CB(skb)->end_seq = seq; 377 } 378 379 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 380 { 381 return tp->snd_una != tp->snd_up; 382 } 383 384 #define OPTION_SACK_ADVERTISE BIT(0) 385 #define OPTION_TS BIT(1) 386 #define OPTION_MD5 BIT(2) 387 #define OPTION_WSCALE BIT(3) 388 #define OPTION_FAST_OPEN_COOKIE BIT(8) 389 #define OPTION_SMC BIT(9) 390 #define OPTION_MPTCP BIT(10) 391 #define OPTION_AO BIT(11) 392 #define OPTION_ACCECN BIT(12) 393 394 static void smc_options_write(__be32 *ptr, u16 *options) 395 { 396 #if IS_ENABLED(CONFIG_SMC) 397 if (static_branch_unlikely(&tcp_have_smc)) { 398 if (unlikely(OPTION_SMC & *options)) { 399 *ptr++ = htonl((TCPOPT_NOP << 24) | 400 (TCPOPT_NOP << 16) | 401 (TCPOPT_EXP << 8) | 402 (TCPOLEN_EXP_SMC_BASE)); 403 *ptr++ = htonl(TCPOPT_SMC_MAGIC); 404 } 405 } 406 #endif 407 } 408 409 struct tcp_out_options { 410 u16 options; /* bit field of OPTION_* */ 411 u16 mss; /* 0 to disable */ 412 u8 ws; /* window scale, 0 to disable */ 413 u8 num_sack_blocks; /* number of SACK blocks to include */ 414 u8 num_accecn_fields:7, /* number of AccECN fields needed */ 415 use_synack_ecn_bytes:1; /* Use synack_ecn_bytes or not */ 416 u8 hash_size; /* bytes in hash_location */ 417 u8 bpf_opt_len; /* length of BPF hdr option */ 418 __u8 *hash_location; /* temporary pointer, overloaded */ 419 __u32 tsval, tsecr; /* need to include OPTION_TS */ 420 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 421 struct mptcp_out_options mptcp; 422 }; 423 424 static void mptcp_options_write(struct tcphdr *th, __be32 *ptr, 425 struct tcp_sock *tp, 426 struct tcp_out_options *opts) 427 { 428 #if IS_ENABLED(CONFIG_MPTCP) 429 if (unlikely(OPTION_MPTCP & opts->options)) 430 mptcp_write_options(th, ptr, tp, &opts->mptcp); 431 #endif 432 } 433 434 #ifdef CONFIG_CGROUP_BPF 435 static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb, 436 enum tcp_synack_type synack_type) 437 { 438 if (unlikely(!skb)) 439 return BPF_WRITE_HDR_TCP_CURRENT_MSS; 440 441 if (unlikely(synack_type == TCP_SYNACK_COOKIE)) 442 return BPF_WRITE_HDR_TCP_SYNACK_COOKIE; 443 444 return 0; 445 } 446 447 /* req, syn_skb and synack_type are used when writing synack */ 448 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb, 449 struct request_sock *req, 450 struct sk_buff *syn_skb, 451 enum tcp_synack_type synack_type, 452 struct tcp_out_options *opts, 453 unsigned int *remaining) 454 { 455 struct bpf_sock_ops_kern sock_ops; 456 int err; 457 458 if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 459 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) || 460 !*remaining) 461 return; 462 463 /* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */ 464 465 /* init sock_ops */ 466 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 467 468 sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB; 469 470 if (req) { 471 /* The listen "sk" cannot be passed here because 472 * it is not locked. It would not make too much 473 * sense to do bpf_setsockopt(listen_sk) based 474 * on individual connection request also. 475 * 476 * Thus, "req" is passed here and the cgroup-bpf-progs 477 * of the listen "sk" will be run. 478 * 479 * "req" is also used here for fastopen even the "sk" here is 480 * a fullsock "child" sk. It is to keep the behavior 481 * consistent between fastopen and non-fastopen on 482 * the bpf programming side. 483 */ 484 sock_ops.sk = (struct sock *)req; 485 sock_ops.syn_skb = syn_skb; 486 } else { 487 sock_owned_by_me(sk); 488 489 sock_ops.is_fullsock = 1; 490 sock_ops.is_locked_tcp_sock = 1; 491 sock_ops.sk = sk; 492 } 493 494 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type); 495 sock_ops.remaining_opt_len = *remaining; 496 /* tcp_current_mss() does not pass a skb */ 497 if (skb) 498 bpf_skops_init_skb(&sock_ops, skb, 0); 499 500 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk); 501 502 if (err || sock_ops.remaining_opt_len == *remaining) 503 return; 504 505 opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len; 506 /* round up to 4 bytes */ 507 opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3; 508 509 *remaining -= opts->bpf_opt_len; 510 } 511 512 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb, 513 struct request_sock *req, 514 struct sk_buff *syn_skb, 515 enum tcp_synack_type synack_type, 516 struct tcp_out_options *opts) 517 { 518 u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len; 519 struct bpf_sock_ops_kern sock_ops; 520 int err; 521 522 if (likely(!max_opt_len)) 523 return; 524 525 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 526 527 sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB; 528 529 if (req) { 530 sock_ops.sk = (struct sock *)req; 531 sock_ops.syn_skb = syn_skb; 532 } else { 533 sock_owned_by_me(sk); 534 535 sock_ops.is_fullsock = 1; 536 sock_ops.is_locked_tcp_sock = 1; 537 sock_ops.sk = sk; 538 } 539 540 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type); 541 sock_ops.remaining_opt_len = max_opt_len; 542 first_opt_off = tcp_hdrlen(skb) - max_opt_len; 543 bpf_skops_init_skb(&sock_ops, skb, first_opt_off); 544 545 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk); 546 547 if (err) 548 nr_written = 0; 549 else 550 nr_written = max_opt_len - sock_ops.remaining_opt_len; 551 552 if (nr_written < max_opt_len) 553 memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP, 554 max_opt_len - nr_written); 555 } 556 #else 557 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb, 558 struct request_sock *req, 559 struct sk_buff *syn_skb, 560 enum tcp_synack_type synack_type, 561 struct tcp_out_options *opts, 562 unsigned int *remaining) 563 { 564 } 565 566 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb, 567 struct request_sock *req, 568 struct sk_buff *syn_skb, 569 enum tcp_synack_type synack_type, 570 struct tcp_out_options *opts) 571 { 572 } 573 #endif 574 575 static __be32 *process_tcp_ao_options(struct tcp_sock *tp, 576 const struct tcp_request_sock *tcprsk, 577 struct tcp_out_options *opts, 578 struct tcp_key *key, __be32 *ptr) 579 { 580 #ifdef CONFIG_TCP_AO 581 u8 maclen = tcp_ao_maclen(key->ao_key); 582 583 if (tcprsk) { 584 u8 aolen = maclen + sizeof(struct tcp_ao_hdr); 585 586 *ptr++ = htonl((TCPOPT_AO << 24) | (aolen << 16) | 587 (tcprsk->ao_keyid << 8) | 588 (tcprsk->ao_rcv_next)); 589 } else { 590 struct tcp_ao_key *rnext_key; 591 struct tcp_ao_info *ao_info; 592 593 ao_info = rcu_dereference_check(tp->ao_info, 594 lockdep_sock_is_held(&tp->inet_conn.icsk_inet.sk)); 595 rnext_key = READ_ONCE(ao_info->rnext_key); 596 if (WARN_ON_ONCE(!rnext_key)) 597 return ptr; 598 *ptr++ = htonl((TCPOPT_AO << 24) | 599 (tcp_ao_len(key->ao_key) << 16) | 600 (key->ao_key->sndid << 8) | 601 (rnext_key->rcvid)); 602 } 603 opts->hash_location = (__u8 *)ptr; 604 ptr += maclen / sizeof(*ptr); 605 if (unlikely(maclen % sizeof(*ptr))) { 606 memset(ptr, TCPOPT_NOP, sizeof(*ptr)); 607 ptr++; 608 } 609 #endif 610 return ptr; 611 } 612 613 /* Initial values for AccECN option, ordered is based on ECN field bits 614 * similar to received_ecn_bytes. Used for SYN/ACK AccECN option. 615 */ 616 static const u32 synack_ecn_bytes[3] = { 0, 0, 0 }; 617 618 /* Write previously computed TCP options to the packet. 619 * 620 * Beware: Something in the Internet is very sensitive to the ordering of 621 * TCP options, we learned this through the hard way, so be careful here. 622 * Luckily we can at least blame others for their non-compliance but from 623 * inter-operability perspective it seems that we're somewhat stuck with 624 * the ordering which we have been using if we want to keep working with 625 * those broken things (not that it currently hurts anybody as there isn't 626 * particular reason why the ordering would need to be changed). 627 * 628 * At least SACK_PERM as the first option is known to lead to a disaster 629 * (but it may well be that other scenarios fail similarly). 630 */ 631 static void tcp_options_write(struct tcphdr *th, struct tcp_sock *tp, 632 const struct tcp_request_sock *tcprsk, 633 struct tcp_out_options *opts, 634 struct tcp_key *key) 635 { 636 u8 leftover_highbyte = TCPOPT_NOP; /* replace 1st NOP if avail */ 637 u8 leftover_lowbyte = TCPOPT_NOP; /* replace 2nd NOP in succession */ 638 __be32 *ptr = (__be32 *)(th + 1); 639 u16 options = opts->options; /* mungable copy */ 640 641 if (tcp_key_is_md5(key)) { 642 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 643 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); 644 /* overload cookie hash location */ 645 opts->hash_location = (__u8 *)ptr; 646 ptr += 4; 647 } else if (tcp_key_is_ao(key)) { 648 ptr = process_tcp_ao_options(tp, tcprsk, opts, key, ptr); 649 } 650 if (unlikely(opts->mss)) { 651 *ptr++ = htonl((TCPOPT_MSS << 24) | 652 (TCPOLEN_MSS << 16) | 653 opts->mss); 654 } 655 656 if (likely(OPTION_TS & options)) { 657 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 658 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 659 (TCPOLEN_SACK_PERM << 16) | 660 (TCPOPT_TIMESTAMP << 8) | 661 TCPOLEN_TIMESTAMP); 662 options &= ~OPTION_SACK_ADVERTISE; 663 } else { 664 *ptr++ = htonl((TCPOPT_NOP << 24) | 665 (TCPOPT_NOP << 16) | 666 (TCPOPT_TIMESTAMP << 8) | 667 TCPOLEN_TIMESTAMP); 668 } 669 *ptr++ = htonl(opts->tsval); 670 *ptr++ = htonl(opts->tsecr); 671 } 672 673 if (OPTION_ACCECN & options) { 674 const u32 *ecn_bytes = opts->use_synack_ecn_bytes ? 675 synack_ecn_bytes : 676 tp->received_ecn_bytes; 677 const u8 ect0_idx = INET_ECN_ECT_0 - 1; 678 const u8 ect1_idx = INET_ECN_ECT_1 - 1; 679 const u8 ce_idx = INET_ECN_CE - 1; 680 u32 e0b; 681 u32 e1b; 682 u32 ceb; 683 u8 len; 684 685 e0b = ecn_bytes[ect0_idx] + TCP_ACCECN_E0B_INIT_OFFSET; 686 e1b = ecn_bytes[ect1_idx] + TCP_ACCECN_E1B_INIT_OFFSET; 687 ceb = ecn_bytes[ce_idx] + TCP_ACCECN_CEB_INIT_OFFSET; 688 len = TCPOLEN_ACCECN_BASE + 689 opts->num_accecn_fields * TCPOLEN_ACCECN_PERFIELD; 690 691 if (opts->num_accecn_fields == 2) { 692 *ptr++ = htonl((TCPOPT_ACCECN1 << 24) | (len << 16) | 693 ((e1b >> 8) & 0xffff)); 694 *ptr++ = htonl(((e1b & 0xff) << 24) | 695 (ceb & 0xffffff)); 696 } else if (opts->num_accecn_fields == 1) { 697 *ptr++ = htonl((TCPOPT_ACCECN1 << 24) | (len << 16) | 698 ((e1b >> 8) & 0xffff)); 699 leftover_highbyte = e1b & 0xff; 700 leftover_lowbyte = TCPOPT_NOP; 701 } else if (opts->num_accecn_fields == 0) { 702 leftover_highbyte = TCPOPT_ACCECN1; 703 leftover_lowbyte = len; 704 } else if (opts->num_accecn_fields == 3) { 705 *ptr++ = htonl((TCPOPT_ACCECN1 << 24) | (len << 16) | 706 ((e1b >> 8) & 0xffff)); 707 *ptr++ = htonl(((e1b & 0xff) << 24) | 708 (ceb & 0xffffff)); 709 *ptr++ = htonl(((e0b & 0xffffff) << 8) | 710 TCPOPT_NOP); 711 } 712 if (tp) { 713 tp->accecn_minlen = 0; 714 tp->accecn_opt_tstamp = tp->tcp_mstamp; 715 if (tp->accecn_opt_demand) 716 tp->accecn_opt_demand--; 717 } 718 } 719 720 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 721 *ptr++ = htonl((leftover_highbyte << 24) | 722 (leftover_lowbyte << 16) | 723 (TCPOPT_SACK_PERM << 8) | 724 TCPOLEN_SACK_PERM); 725 leftover_highbyte = TCPOPT_NOP; 726 leftover_lowbyte = TCPOPT_NOP; 727 } 728 729 if (unlikely(OPTION_WSCALE & options)) { 730 u8 highbyte = TCPOPT_NOP; 731 732 /* Do not split the leftover 2-byte to fit into a single 733 * NOP, i.e., replace this NOP only when 1 byte is leftover 734 * within leftover_highbyte. 735 */ 736 if (unlikely(leftover_highbyte != TCPOPT_NOP && 737 leftover_lowbyte == TCPOPT_NOP)) { 738 highbyte = leftover_highbyte; 739 leftover_highbyte = TCPOPT_NOP; 740 } 741 *ptr++ = htonl((highbyte << 24) | 742 (TCPOPT_WINDOW << 16) | 743 (TCPOLEN_WINDOW << 8) | 744 opts->ws); 745 } 746 747 if (unlikely(opts->num_sack_blocks)) { 748 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 749 tp->duplicate_sack : tp->selective_acks; 750 int this_sack; 751 752 *ptr++ = htonl((leftover_highbyte << 24) | 753 (leftover_lowbyte << 16) | 754 (TCPOPT_SACK << 8) | 755 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 756 TCPOLEN_SACK_PERBLOCK))); 757 leftover_highbyte = TCPOPT_NOP; 758 leftover_lowbyte = TCPOPT_NOP; 759 760 for (this_sack = 0; this_sack < opts->num_sack_blocks; 761 ++this_sack) { 762 *ptr++ = htonl(sp[this_sack].start_seq); 763 *ptr++ = htonl(sp[this_sack].end_seq); 764 } 765 766 tp->rx_opt.dsack = 0; 767 } else if (unlikely(leftover_highbyte != TCPOPT_NOP || 768 leftover_lowbyte != TCPOPT_NOP)) { 769 *ptr++ = htonl((leftover_highbyte << 24) | 770 (leftover_lowbyte << 16) | 771 (TCPOPT_NOP << 8) | 772 TCPOPT_NOP); 773 leftover_highbyte = TCPOPT_NOP; 774 leftover_lowbyte = TCPOPT_NOP; 775 } 776 777 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 778 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 779 u8 *p = (u8 *)ptr; 780 u32 len; /* Fast Open option length */ 781 782 if (foc->exp) { 783 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; 784 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) | 785 TCPOPT_FASTOPEN_MAGIC); 786 p += TCPOLEN_EXP_FASTOPEN_BASE; 787 } else { 788 len = TCPOLEN_FASTOPEN_BASE + foc->len; 789 *p++ = TCPOPT_FASTOPEN; 790 *p++ = len; 791 } 792 793 memcpy(p, foc->val, foc->len); 794 if ((len & 3) == 2) { 795 p[foc->len] = TCPOPT_NOP; 796 p[foc->len + 1] = TCPOPT_NOP; 797 } 798 ptr += (len + 3) >> 2; 799 } 800 801 smc_options_write(ptr, &options); 802 803 mptcp_options_write(th, ptr, tp, opts); 804 } 805 806 static void smc_set_option(struct tcp_sock *tp, 807 struct tcp_out_options *opts, 808 unsigned int *remaining) 809 { 810 #if IS_ENABLED(CONFIG_SMC) 811 if (static_branch_unlikely(&tcp_have_smc) && tp->syn_smc) { 812 tp->syn_smc = !!smc_call_hsbpf(1, tp, syn_option); 813 /* re-check syn_smc */ 814 if (tp->syn_smc && 815 *remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 816 opts->options |= OPTION_SMC; 817 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 818 } 819 } 820 #endif 821 } 822 823 static void smc_set_option_cond(const struct tcp_sock *tp, 824 struct inet_request_sock *ireq, 825 struct tcp_out_options *opts, 826 unsigned int *remaining) 827 { 828 #if IS_ENABLED(CONFIG_SMC) 829 if (static_branch_unlikely(&tcp_have_smc) && tp->syn_smc && ireq->smc_ok) { 830 ireq->smc_ok = !!smc_call_hsbpf(1, tp, synack_option, ireq); 831 /* re-check smc_ok */ 832 if (ireq->smc_ok && 833 *remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 834 opts->options |= OPTION_SMC; 835 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 836 } 837 } 838 #endif 839 } 840 841 static void mptcp_set_option_cond(const struct request_sock *req, 842 struct tcp_out_options *opts, 843 unsigned int *remaining) 844 { 845 if (rsk_is_mptcp(req)) { 846 unsigned int size; 847 848 if (mptcp_synack_options(req, &size, &opts->mptcp)) { 849 if (*remaining >= size) { 850 opts->options |= OPTION_MPTCP; 851 *remaining -= size; 852 } 853 } 854 } 855 } 856 857 static u32 tcp_synack_options_combine_saving(struct tcp_out_options *opts) 858 { 859 /* How much there's room for combining with the alignment padding? */ 860 if ((opts->options & (OPTION_SACK_ADVERTISE | OPTION_TS)) == 861 OPTION_SACK_ADVERTISE) 862 return 2; 863 else if (opts->options & OPTION_WSCALE) 864 return 1; 865 return 0; 866 } 867 868 /* Calculates how long AccECN option will fit to @remaining option space. 869 * 870 * AccECN option can sometimes replace NOPs used for alignment of other 871 * TCP options (up to @max_combine_saving available). 872 * 873 * Only solutions with at least @required AccECN fields are accepted. 874 * 875 * Returns: The size of the AccECN option excluding space repurposed from 876 * the alignment of the other options. 877 */ 878 static int tcp_options_fit_accecn(struct tcp_out_options *opts, int required, 879 int remaining) 880 { 881 int size = TCP_ACCECN_MAXSIZE; 882 int sack_blocks_reduce = 0; 883 int max_combine_saving; 884 int rem = remaining; 885 int align_size; 886 887 if (opts->use_synack_ecn_bytes) 888 max_combine_saving = tcp_synack_options_combine_saving(opts); 889 else 890 max_combine_saving = opts->num_sack_blocks > 0 ? 2 : 0; 891 opts->num_accecn_fields = TCP_ACCECN_NUMFIELDS; 892 while (opts->num_accecn_fields >= required) { 893 /* Pad to dword if cannot combine */ 894 if ((size & 0x3) > max_combine_saving) 895 align_size = ALIGN(size, 4); 896 else 897 align_size = ALIGN_DOWN(size, 4); 898 899 if (rem >= align_size) { 900 size = align_size; 901 break; 902 } else if (opts->num_accecn_fields == required && 903 opts->num_sack_blocks > 2 && 904 required > 0) { 905 /* Try to fit the option by removing one SACK block */ 906 opts->num_sack_blocks--; 907 sack_blocks_reduce++; 908 rem = rem + TCPOLEN_SACK_PERBLOCK; 909 910 opts->num_accecn_fields = TCP_ACCECN_NUMFIELDS; 911 size = TCP_ACCECN_MAXSIZE; 912 continue; 913 } 914 915 opts->num_accecn_fields--; 916 size -= TCPOLEN_ACCECN_PERFIELD; 917 } 918 if (sack_blocks_reduce > 0) { 919 if (opts->num_accecn_fields >= required) 920 size -= sack_blocks_reduce * TCPOLEN_SACK_PERBLOCK; 921 else 922 opts->num_sack_blocks += sack_blocks_reduce; 923 } 924 if (opts->num_accecn_fields < required) 925 return 0; 926 927 opts->options |= OPTION_ACCECN; 928 return size; 929 } 930 931 /* Compute TCP options for SYN packets. This is not the final 932 * network wire format yet. 933 */ 934 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 935 struct tcp_out_options *opts, 936 struct tcp_key *key) 937 { 938 struct tcp_sock *tp = tcp_sk(sk); 939 unsigned int remaining = MAX_TCP_OPTION_SPACE; 940 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 941 bool timestamps; 942 943 /* Better than switch (key.type) as it has static branches */ 944 if (tcp_key_is_md5(key)) { 945 timestamps = false; 946 opts->options |= OPTION_MD5; 947 remaining -= TCPOLEN_MD5SIG_ALIGNED; 948 } else { 949 timestamps = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps); 950 if (tcp_key_is_ao(key)) { 951 opts->options |= OPTION_AO; 952 remaining -= tcp_ao_len_aligned(key->ao_key); 953 } 954 } 955 956 /* We always get an MSS option. The option bytes which will be seen in 957 * normal data packets should timestamps be used, must be in the MSS 958 * advertised. But we subtract them from tp->mss_cache so that 959 * calculations in tcp_sendmsg are simpler etc. So account for this 960 * fact here if necessary. If we don't do this correctly, as a 961 * receiver we won't recognize data packets as being full sized when we 962 * should, and thus we won't abide by the delayed ACK rules correctly. 963 * SACKs don't matter, we never delay an ACK when we have any of those 964 * going out. */ 965 opts->mss = tcp_advertise_mss(sk); 966 remaining -= TCPOLEN_MSS_ALIGNED; 967 968 if (likely(timestamps)) { 969 opts->options |= OPTION_TS; 970 opts->tsval = tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb) + tp->tsoffset; 971 opts->tsecr = tp->rx_opt.ts_recent; 972 remaining -= TCPOLEN_TSTAMP_ALIGNED; 973 } 974 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling))) { 975 opts->ws = tp->rx_opt.rcv_wscale; 976 opts->options |= OPTION_WSCALE; 977 remaining -= TCPOLEN_WSCALE_ALIGNED; 978 } 979 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_sack))) { 980 opts->options |= OPTION_SACK_ADVERTISE; 981 if (unlikely(!(OPTION_TS & opts->options))) 982 remaining -= TCPOLEN_SACKPERM_ALIGNED; 983 } 984 985 if (fastopen && fastopen->cookie.len >= 0) { 986 u32 need = fastopen->cookie.len; 987 988 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE : 989 TCPOLEN_FASTOPEN_BASE; 990 need = (need + 3) & ~3U; /* Align to 32 bits */ 991 if (remaining >= need) { 992 opts->options |= OPTION_FAST_OPEN_COOKIE; 993 opts->fastopen_cookie = &fastopen->cookie; 994 remaining -= need; 995 tp->syn_fastopen = 1; 996 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0; 997 } 998 } 999 1000 smc_set_option(tp, opts, &remaining); 1001 1002 if (sk_is_mptcp(sk)) { 1003 unsigned int size; 1004 1005 if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) { 1006 if (remaining >= size) { 1007 opts->options |= OPTION_MPTCP; 1008 remaining -= size; 1009 } 1010 } 1011 } 1012 1013 /* Simultaneous open SYN/ACK needs AccECN option but not SYN. 1014 * It is attempted to negotiate the use of AccECN also on the first 1015 * retransmitted SYN, as mentioned in "3.1.4.1. Retransmitted SYNs" 1016 * of AccECN draft. 1017 */ 1018 if (unlikely((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK) && 1019 tcp_ecn_mode_accecn(tp) && 1020 inet_csk(sk)->icsk_retransmits < 2 && 1021 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_option) && 1022 remaining >= TCPOLEN_ACCECN_BASE)) { 1023 opts->use_synack_ecn_bytes = 1; 1024 remaining -= tcp_options_fit_accecn(opts, 0, remaining); 1025 } 1026 1027 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining); 1028 1029 return MAX_TCP_OPTION_SPACE - remaining; 1030 } 1031 1032 /* Set up TCP options for SYN-ACKs. */ 1033 static unsigned int tcp_synack_options(const struct sock *sk, 1034 struct request_sock *req, 1035 unsigned int mss, struct sk_buff *skb, 1036 struct tcp_out_options *opts, 1037 const struct tcp_key *key, 1038 struct tcp_fastopen_cookie *foc, 1039 enum tcp_synack_type synack_type, 1040 struct sk_buff *syn_skb) 1041 { 1042 struct inet_request_sock *ireq = inet_rsk(req); 1043 unsigned int remaining = MAX_TCP_OPTION_SPACE; 1044 struct tcp_request_sock *treq = tcp_rsk(req); 1045 1046 if (tcp_key_is_md5(key)) { 1047 opts->options |= OPTION_MD5; 1048 remaining -= TCPOLEN_MD5SIG_ALIGNED; 1049 1050 /* We can't fit any SACK blocks in a packet with MD5 + TS 1051 * options. There was discussion about disabling SACK 1052 * rather than TS in order to fit in better with old, 1053 * buggy kernels, but that was deemed to be unnecessary. 1054 */ 1055 if (synack_type != TCP_SYNACK_COOKIE) 1056 ireq->tstamp_ok &= !ireq->sack_ok; 1057 } else if (tcp_key_is_ao(key)) { 1058 opts->options |= OPTION_AO; 1059 remaining -= tcp_ao_len_aligned(key->ao_key); 1060 ireq->tstamp_ok &= !ireq->sack_ok; 1061 } 1062 1063 /* We always send an MSS option. */ 1064 opts->mss = mss; 1065 remaining -= TCPOLEN_MSS_ALIGNED; 1066 1067 if (likely(ireq->wscale_ok)) { 1068 opts->ws = ireq->rcv_wscale; 1069 opts->options |= OPTION_WSCALE; 1070 remaining -= TCPOLEN_WSCALE_ALIGNED; 1071 } 1072 if (likely(ireq->tstamp_ok)) { 1073 opts->options |= OPTION_TS; 1074 opts->tsval = tcp_skb_timestamp_ts(tcp_rsk(req)->req_usec_ts, skb) + 1075 tcp_rsk(req)->ts_off; 1076 if (!tcp_rsk(req)->snt_tsval_first) { 1077 if (!opts->tsval) 1078 opts->tsval = ~0U; 1079 tcp_rsk(req)->snt_tsval_first = opts->tsval; 1080 } 1081 WRITE_ONCE(tcp_rsk(req)->snt_tsval_last, opts->tsval); 1082 opts->tsecr = req->ts_recent; 1083 remaining -= TCPOLEN_TSTAMP_ALIGNED; 1084 } 1085 if (likely(ireq->sack_ok)) { 1086 opts->options |= OPTION_SACK_ADVERTISE; 1087 if (unlikely(!ireq->tstamp_ok)) 1088 remaining -= TCPOLEN_SACKPERM_ALIGNED; 1089 } 1090 if (foc != NULL && foc->len >= 0) { 1091 u32 need = foc->len; 1092 1093 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE : 1094 TCPOLEN_FASTOPEN_BASE; 1095 need = (need + 3) & ~3U; /* Align to 32 bits */ 1096 if (remaining >= need) { 1097 opts->options |= OPTION_FAST_OPEN_COOKIE; 1098 opts->fastopen_cookie = foc; 1099 remaining -= need; 1100 } 1101 } 1102 1103 mptcp_set_option_cond(req, opts, &remaining); 1104 1105 smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining); 1106 1107 if (treq->accecn_ok && 1108 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_option) && 1109 req->num_timeout < 1 && remaining >= TCPOLEN_ACCECN_BASE) { 1110 opts->use_synack_ecn_bytes = 1; 1111 remaining -= tcp_options_fit_accecn(opts, 0, remaining); 1112 } 1113 1114 bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb, 1115 synack_type, opts, &remaining); 1116 1117 return MAX_TCP_OPTION_SPACE - remaining; 1118 } 1119 1120 /* Compute TCP options for ESTABLISHED sockets. This is not the 1121 * final wire format yet. 1122 */ 1123 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 1124 struct tcp_out_options *opts, 1125 struct tcp_key *key) 1126 { 1127 struct tcp_sock *tp = tcp_sk(sk); 1128 unsigned int size = 0; 1129 unsigned int eff_sacks; 1130 1131 opts->options = 0; 1132 1133 /* Better than switch (key.type) as it has static branches */ 1134 if (tcp_key_is_md5(key)) { 1135 opts->options |= OPTION_MD5; 1136 size += TCPOLEN_MD5SIG_ALIGNED; 1137 } else if (tcp_key_is_ao(key)) { 1138 opts->options |= OPTION_AO; 1139 size += tcp_ao_len_aligned(key->ao_key); 1140 } 1141 1142 if (likely(tp->rx_opt.tstamp_ok)) { 1143 opts->options |= OPTION_TS; 1144 opts->tsval = skb ? tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb) + 1145 tp->tsoffset : 0; 1146 opts->tsecr = tp->rx_opt.ts_recent; 1147 size += TCPOLEN_TSTAMP_ALIGNED; 1148 } 1149 1150 /* MPTCP options have precedence over SACK for the limited TCP 1151 * option space because a MPTCP connection would be forced to 1152 * fall back to regular TCP if a required multipath option is 1153 * missing. SACK still gets a chance to use whatever space is 1154 * left. 1155 */ 1156 if (sk_is_mptcp(sk)) { 1157 unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 1158 unsigned int opt_size = 0; 1159 1160 if (mptcp_established_options(sk, skb, &opt_size, remaining, 1161 &opts->mptcp)) { 1162 opts->options |= OPTION_MPTCP; 1163 size += opt_size; 1164 } 1165 } 1166 1167 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 1168 if (unlikely(eff_sacks)) { 1169 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 1170 if (likely(remaining >= TCPOLEN_SACK_BASE_ALIGNED + 1171 TCPOLEN_SACK_PERBLOCK)) { 1172 opts->num_sack_blocks = 1173 min_t(unsigned int, eff_sacks, 1174 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 1175 TCPOLEN_SACK_PERBLOCK); 1176 1177 size += TCPOLEN_SACK_BASE_ALIGNED + 1178 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 1179 } else { 1180 opts->num_sack_blocks = 0; 1181 } 1182 } else { 1183 opts->num_sack_blocks = 0; 1184 } 1185 1186 if (tcp_ecn_mode_accecn(tp)) { 1187 int ecn_opt = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_option); 1188 1189 if (ecn_opt && tp->saw_accecn_opt && !tcp_accecn_opt_fail_send(tp) && 1190 (ecn_opt >= TCP_ACCECN_OPTION_FULL || tp->accecn_opt_demand || 1191 tcp_accecn_option_beacon_check(sk))) { 1192 opts->use_synack_ecn_bytes = 0; 1193 size += tcp_options_fit_accecn(opts, tp->accecn_minlen, 1194 MAX_TCP_OPTION_SPACE - size); 1195 } 1196 } 1197 1198 if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp, 1199 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) { 1200 unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 1201 1202 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining); 1203 1204 size = MAX_TCP_OPTION_SPACE - remaining; 1205 } 1206 1207 return size; 1208 } 1209 1210 1211 /* TCP SMALL QUEUES (TSQ) 1212 * 1213 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 1214 * to reduce RTT and bufferbloat. 1215 * We do this using a special skb destructor (tcp_wfree). 1216 * 1217 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 1218 * needs to be reallocated in a driver. 1219 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc 1220 * 1221 * Since transmit from skb destructor is forbidden, we use a BH work item 1222 * to process all sockets that eventually need to send more skbs. 1223 * We use one work item per cpu, with its own queue of sockets. 1224 */ 1225 struct tsq_work { 1226 struct work_struct work; 1227 struct list_head head; /* queue of tcp sockets */ 1228 }; 1229 static DEFINE_PER_CPU(struct tsq_work, tsq_work); 1230 1231 static void tcp_tsq_write(struct sock *sk) 1232 { 1233 if ((1 << sk->sk_state) & 1234 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 1235 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) { 1236 struct tcp_sock *tp = tcp_sk(sk); 1237 1238 if (tp->lost_out > tp->retrans_out && 1239 tcp_snd_cwnd(tp) > tcp_packets_in_flight(tp)) { 1240 tcp_mstamp_refresh(tp); 1241 tcp_xmit_retransmit_queue(sk); 1242 } 1243 1244 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle, 1245 0, GFP_ATOMIC); 1246 } 1247 } 1248 1249 static void tcp_tsq_handler(struct sock *sk) 1250 { 1251 bh_lock_sock(sk); 1252 if (!sock_owned_by_user(sk)) 1253 tcp_tsq_write(sk); 1254 else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) 1255 sock_hold(sk); 1256 bh_unlock_sock(sk); 1257 } 1258 /* 1259 * One work item per cpu tries to send more skbs. 1260 * We run in BH context but need to disable irqs when 1261 * transferring tsq->head because tcp_wfree() might 1262 * interrupt us (non NAPI drivers) 1263 */ 1264 static void tcp_tsq_workfn(struct work_struct *work) 1265 { 1266 struct tsq_work *tsq = container_of(work, struct tsq_work, work); 1267 LIST_HEAD(list); 1268 unsigned long flags; 1269 struct list_head *q, *n; 1270 struct tcp_sock *tp; 1271 struct sock *sk; 1272 1273 local_irq_save(flags); 1274 list_splice_init(&tsq->head, &list); 1275 local_irq_restore(flags); 1276 1277 list_for_each_safe(q, n, &list) { 1278 tp = list_entry(q, struct tcp_sock, tsq_node); 1279 list_del(&tp->tsq_node); 1280 1281 sk = (struct sock *)tp; 1282 smp_mb__before_atomic(); 1283 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags); 1284 1285 tcp_tsq_handler(sk); 1286 sk_free(sk); 1287 } 1288 } 1289 1290 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \ 1291 TCPF_WRITE_TIMER_DEFERRED | \ 1292 TCPF_DELACK_TIMER_DEFERRED | \ 1293 TCPF_MTU_REDUCED_DEFERRED | \ 1294 TCPF_ACK_DEFERRED) 1295 /** 1296 * tcp_release_cb - tcp release_sock() callback 1297 * @sk: socket 1298 * 1299 * called from release_sock() to perform protocol dependent 1300 * actions before socket release. 1301 */ 1302 void tcp_release_cb(struct sock *sk) 1303 { 1304 unsigned long flags = smp_load_acquire(&sk->sk_tsq_flags); 1305 unsigned long nflags; 1306 1307 /* perform an atomic operation only if at least one flag is set */ 1308 do { 1309 if (!(flags & TCP_DEFERRED_ALL)) 1310 return; 1311 nflags = flags & ~TCP_DEFERRED_ALL; 1312 } while (!try_cmpxchg(&sk->sk_tsq_flags, &flags, nflags)); 1313 1314 if (flags & TCPF_TSQ_DEFERRED) { 1315 tcp_tsq_write(sk); 1316 __sock_put(sk); 1317 } 1318 1319 if (flags & TCPF_WRITE_TIMER_DEFERRED) { 1320 tcp_write_timer_handler(sk); 1321 __sock_put(sk); 1322 } 1323 if (flags & TCPF_DELACK_TIMER_DEFERRED) { 1324 tcp_delack_timer_handler(sk); 1325 __sock_put(sk); 1326 } 1327 if (flags & TCPF_MTU_REDUCED_DEFERRED) { 1328 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk); 1329 __sock_put(sk); 1330 } 1331 if ((flags & TCPF_ACK_DEFERRED) && inet_csk_ack_scheduled(sk)) 1332 tcp_send_ack(sk); 1333 } 1334 EXPORT_IPV6_MOD(tcp_release_cb); 1335 1336 void __init tcp_tsq_work_init(void) 1337 { 1338 int i; 1339 1340 for_each_possible_cpu(i) { 1341 struct tsq_work *tsq = &per_cpu(tsq_work, i); 1342 1343 INIT_LIST_HEAD(&tsq->head); 1344 INIT_WORK(&tsq->work, tcp_tsq_workfn); 1345 } 1346 } 1347 1348 /* 1349 * Write buffer destructor automatically called from kfree_skb. 1350 * We can't xmit new skbs from this context, as we might already 1351 * hold qdisc lock. 1352 */ 1353 void tcp_wfree(struct sk_buff *skb) 1354 { 1355 struct sock *sk = skb->sk; 1356 struct tcp_sock *tp = tcp_sk(sk); 1357 unsigned long flags, nval, oval; 1358 struct tsq_work *tsq; 1359 bool empty; 1360 1361 /* Keep one reference on sk_wmem_alloc. 1362 * Will be released by sk_free() from here or tcp_tsq_workfn() 1363 */ 1364 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc)); 1365 1366 /* If this softirq is serviced by ksoftirqd, we are likely under stress. 1367 * Wait until our queues (qdisc + devices) are drained. 1368 * This gives : 1369 * - less callbacks to tcp_write_xmit(), reducing stress (batches) 1370 * - chance for incoming ACK (processed by another cpu maybe) 1371 * to migrate this flow (skb->ooo_okay will be eventually set) 1372 */ 1373 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current) 1374 goto out; 1375 1376 oval = smp_load_acquire(&sk->sk_tsq_flags); 1377 do { 1378 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED)) 1379 goto out; 1380 1381 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED; 1382 } while (!try_cmpxchg(&sk->sk_tsq_flags, &oval, nval)); 1383 1384 /* queue this socket to BH workqueue */ 1385 local_irq_save(flags); 1386 tsq = this_cpu_ptr(&tsq_work); 1387 empty = list_empty(&tsq->head); 1388 list_add(&tp->tsq_node, &tsq->head); 1389 if (empty) 1390 queue_work(system_bh_wq, &tsq->work); 1391 local_irq_restore(flags); 1392 return; 1393 out: 1394 sk_free(sk); 1395 } 1396 1397 /* Note: Called under soft irq. 1398 * We can call TCP stack right away, unless socket is owned by user. 1399 */ 1400 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer) 1401 { 1402 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer); 1403 struct sock *sk = (struct sock *)tp; 1404 1405 tcp_tsq_handler(sk); 1406 sock_put(sk); 1407 1408 return HRTIMER_NORESTART; 1409 } 1410 1411 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb, 1412 u64 prior_wstamp) 1413 { 1414 struct tcp_sock *tp = tcp_sk(sk); 1415 1416 if (sk->sk_pacing_status != SK_PACING_NONE) { 1417 unsigned long rate = READ_ONCE(sk->sk_pacing_rate); 1418 1419 /* Original sch_fq does not pace first 10 MSS 1420 * Note that tp->data_segs_out overflows after 2^32 packets, 1421 * this is a minor annoyance. 1422 */ 1423 if (rate != ~0UL && rate && tp->data_segs_out >= 10) { 1424 u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate); 1425 u64 credit = tp->tcp_wstamp_ns - prior_wstamp; 1426 1427 /* take into account OS jitter */ 1428 len_ns -= min_t(u64, len_ns / 2, credit); 1429 tp->tcp_wstamp_ns += len_ns; 1430 } 1431 } 1432 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 1433 } 1434 1435 INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)); 1436 INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)); 1437 INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)); 1438 1439 /* This routine actually transmits TCP packets queued in by 1440 * tcp_do_sendmsg(). This is used by both the initial 1441 * transmission and possible later retransmissions. 1442 * All SKB's seen here are completely headerless. It is our 1443 * job to build the TCP header, and pass the packet down to 1444 * IP so it can do the same plus pass the packet off to the 1445 * device. 1446 * 1447 * We are working here with either a clone of the original 1448 * SKB, or a fresh unique copy made by the retransmit engine. 1449 */ 1450 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, 1451 int clone_it, gfp_t gfp_mask, u32 rcv_nxt) 1452 { 1453 const struct inet_connection_sock *icsk = inet_csk(sk); 1454 struct inet_sock *inet; 1455 struct tcp_sock *tp; 1456 struct tcp_skb_cb *tcb; 1457 struct tcp_out_options opts; 1458 unsigned int tcp_options_size, tcp_header_size; 1459 struct sk_buff *oskb = NULL; 1460 struct tcp_key key; 1461 struct tcphdr *th; 1462 u64 prior_wstamp; 1463 int err; 1464 1465 BUG_ON(!skb || !tcp_skb_pcount(skb)); 1466 tp = tcp_sk(sk); 1467 prior_wstamp = tp->tcp_wstamp_ns; 1468 tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache); 1469 skb_set_delivery_time(skb, tp->tcp_wstamp_ns, SKB_CLOCK_MONOTONIC); 1470 if (clone_it) { 1471 oskb = skb; 1472 1473 tcp_skb_tsorted_save(oskb) { 1474 if (unlikely(skb_cloned(oskb))) 1475 skb = pskb_copy(oskb, gfp_mask); 1476 else 1477 skb = skb_clone(oskb, gfp_mask); 1478 } tcp_skb_tsorted_restore(oskb); 1479 1480 if (unlikely(!skb)) 1481 return -ENOBUFS; 1482 /* retransmit skbs might have a non zero value in skb->dev 1483 * because skb->dev is aliased with skb->rbnode.rb_left 1484 */ 1485 skb->dev = NULL; 1486 } 1487 1488 inet = inet_sk(sk); 1489 tcb = TCP_SKB_CB(skb); 1490 memset(&opts, 0, sizeof(opts)); 1491 1492 tcp_get_current_key(sk, &key); 1493 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) { 1494 tcp_options_size = tcp_syn_options(sk, skb, &opts, &key); 1495 } else { 1496 tcp_options_size = tcp_established_options(sk, skb, &opts, &key); 1497 /* Force a PSH flag on all (GSO) packets to expedite GRO flush 1498 * at receiver : This slightly improve GRO performance. 1499 * Note that we do not force the PSH flag for non GSO packets, 1500 * because they might be sent under high congestion events, 1501 * and in this case it is better to delay the delivery of 1-MSS 1502 * packets and thus the corresponding ACK packet that would 1503 * release the following packet. 1504 */ 1505 if (tcp_skb_pcount(skb) > 1) 1506 tcb->tcp_flags |= TCPHDR_PSH; 1507 } 1508 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 1509 1510 /* We set skb->ooo_okay to one if this packet can select 1511 * a different TX queue than prior packets of this flow, 1512 * to avoid self inflicted reorders. 1513 * The 'other' queue decision is based on current cpu number 1514 * if XPS is enabled, or sk->sk_txhash otherwise. 1515 * We can switch to another (and better) queue if: 1516 * 1) No packet with payload is in qdisc/device queues. 1517 * Delays in TX completion can defeat the test 1518 * even if packets were already sent. 1519 * 2) Or rtx queue is empty. 1520 * This mitigates above case if ACK packets for 1521 * all prior packets were already processed. 1522 */ 1523 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1) || 1524 tcp_rtx_queue_empty(sk); 1525 1526 /* If we had to use memory reserve to allocate this skb, 1527 * this might cause drops if packet is looped back : 1528 * Other socket might not have SOCK_MEMALLOC. 1529 * Packets not looped back do not care about pfmemalloc. 1530 */ 1531 skb->pfmemalloc = 0; 1532 1533 skb_push(skb, tcp_header_size); 1534 skb_reset_transport_header(skb); 1535 1536 skb_orphan(skb); 1537 skb->sk = sk; 1538 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree; 1539 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 1540 1541 skb_set_dst_pending_confirm(skb, READ_ONCE(sk->sk_dst_pending_confirm)); 1542 1543 /* Build TCP header and checksum it. */ 1544 th = (struct tcphdr *)skb->data; 1545 th->source = inet->inet_sport; 1546 th->dest = inet->inet_dport; 1547 th->seq = htonl(tcb->seq); 1548 th->ack_seq = htonl(rcv_nxt); 1549 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 1550 (tcb->tcp_flags & TCPHDR_FLAGS_MASK)); 1551 1552 th->check = 0; 1553 th->urg_ptr = 0; 1554 1555 /* The urg_mode check is necessary during a below snd_una win probe */ 1556 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 1557 if (before(tp->snd_up, tcb->seq + 0x10000)) { 1558 th->urg_ptr = htons(tp->snd_up - tcb->seq); 1559 th->urg = 1; 1560 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 1561 th->urg_ptr = htons(0xFFFF); 1562 th->urg = 1; 1563 } 1564 } 1565 1566 skb_shinfo(skb)->gso_type = sk->sk_gso_type; 1567 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) { 1568 th->window = htons(tcp_select_window(sk)); 1569 tcp_ecn_send(sk, skb, th, tcp_header_size); 1570 } else { 1571 /* RFC1323: The window in SYN & SYN/ACK segments 1572 * is never scaled. 1573 */ 1574 th->window = htons(min(tp->rcv_wnd, 65535U)); 1575 } 1576 1577 tcp_options_write(th, tp, NULL, &opts, &key); 1578 1579 if (tcp_key_is_md5(&key)) { 1580 #ifdef CONFIG_TCP_MD5SIG 1581 /* Calculate the MD5 hash, as we have all we need now */ 1582 sk_gso_disable(sk); 1583 tp->af_specific->calc_md5_hash(opts.hash_location, 1584 key.md5_key, sk, skb); 1585 #endif 1586 } else if (tcp_key_is_ao(&key)) { 1587 int err; 1588 1589 err = tcp_ao_transmit_skb(sk, skb, key.ao_key, th, 1590 opts.hash_location); 1591 if (err) { 1592 sk_skb_reason_drop(sk, skb, SKB_DROP_REASON_NOT_SPECIFIED); 1593 return -ENOMEM; 1594 } 1595 } 1596 1597 /* BPF prog is the last one writing header option */ 1598 bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts); 1599 1600 INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check, 1601 tcp_v6_send_check, tcp_v4_send_check, 1602 sk, skb); 1603 1604 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 1605 tcp_event_ack_sent(sk, rcv_nxt); 1606 1607 if (skb->len != tcp_header_size) { 1608 tcp_event_data_sent(tp, sk); 1609 tp->data_segs_out += tcp_skb_pcount(skb); 1610 tp->bytes_sent += skb->len - tcp_header_size; 1611 } 1612 1613 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 1614 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 1615 tcp_skb_pcount(skb)); 1616 1617 tp->segs_out += tcp_skb_pcount(skb); 1618 skb_set_hash_from_sk(skb, sk); 1619 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */ 1620 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb); 1621 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb); 1622 1623 /* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */ 1624 1625 /* Cleanup our debris for IP stacks */ 1626 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm), 1627 sizeof(struct inet6_skb_parm))); 1628 1629 tcp_add_tx_delay(skb, tp); 1630 1631 err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit, 1632 inet6_csk_xmit, ip_queue_xmit, 1633 sk, skb, &inet->cork.fl); 1634 1635 if (unlikely(err > 0)) { 1636 tcp_enter_cwr(sk); 1637 err = net_xmit_eval(err); 1638 } 1639 if (!err && oskb) { 1640 tcp_update_skb_after_send(sk, oskb, prior_wstamp); 1641 tcp_rate_skb_sent(sk, oskb); 1642 } 1643 return err; 1644 } 1645 1646 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 1647 gfp_t gfp_mask) 1648 { 1649 return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask, 1650 tcp_sk(sk)->rcv_nxt); 1651 } 1652 1653 /* This routine just queues the buffer for sending. 1654 * 1655 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 1656 * otherwise socket can stall. 1657 */ 1658 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 1659 { 1660 struct tcp_sock *tp = tcp_sk(sk); 1661 1662 /* Advance write_seq and place onto the write_queue. */ 1663 WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq); 1664 __skb_header_release(skb); 1665 psp_enqueue_set_decrypted(sk, skb); 1666 tcp_add_write_queue_tail(sk, skb); 1667 sk_wmem_queued_add(sk, skb->truesize); 1668 sk_mem_charge(sk, skb->truesize); 1669 } 1670 1671 /* Initialize TSO segments for a packet. */ 1672 static int tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1673 { 1674 int tso_segs; 1675 1676 if (skb->len <= mss_now) { 1677 /* Avoid the costly divide in the normal 1678 * non-TSO case. 1679 */ 1680 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1681 tcp_skb_pcount_set(skb, 1); 1682 return 1; 1683 } 1684 TCP_SKB_CB(skb)->tcp_gso_size = mss_now; 1685 tso_segs = DIV_ROUND_UP(skb->len, mss_now); 1686 tcp_skb_pcount_set(skb, tso_segs); 1687 return tso_segs; 1688 } 1689 1690 /* Pcount in the middle of the write queue got changed, we need to do various 1691 * tweaks to fix counters 1692 */ 1693 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1694 { 1695 struct tcp_sock *tp = tcp_sk(sk); 1696 1697 tp->packets_out -= decr; 1698 1699 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1700 tp->sacked_out -= decr; 1701 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1702 tp->retrans_out -= decr; 1703 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1704 tp->lost_out -= decr; 1705 1706 /* Reno case is special. Sigh... */ 1707 if (tcp_is_reno(tp) && decr > 0) 1708 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1709 1710 tcp_verify_left_out(tp); 1711 } 1712 1713 static bool tcp_has_tx_tstamp(const struct sk_buff *skb) 1714 { 1715 return TCP_SKB_CB(skb)->txstamp_ack || 1716 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP); 1717 } 1718 1719 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2) 1720 { 1721 struct skb_shared_info *shinfo = skb_shinfo(skb); 1722 1723 if (unlikely(tcp_has_tx_tstamp(skb)) && 1724 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) { 1725 struct skb_shared_info *shinfo2 = skb_shinfo(skb2); 1726 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP; 1727 1728 shinfo->tx_flags &= ~tsflags; 1729 shinfo2->tx_flags |= tsflags; 1730 swap(shinfo->tskey, shinfo2->tskey); 1731 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack; 1732 TCP_SKB_CB(skb)->txstamp_ack = 0; 1733 } 1734 } 1735 1736 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2) 1737 { 1738 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor; 1739 TCP_SKB_CB(skb)->eor = 0; 1740 } 1741 1742 /* Insert buff after skb on the write or rtx queue of sk. */ 1743 static void tcp_insert_write_queue_after(struct sk_buff *skb, 1744 struct sk_buff *buff, 1745 struct sock *sk, 1746 enum tcp_queue tcp_queue) 1747 { 1748 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE) 1749 __skb_queue_after(&sk->sk_write_queue, skb, buff); 1750 else 1751 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 1752 } 1753 1754 /* Function to create two new TCP segments. Shrinks the given segment 1755 * to the specified size and appends a new segment with the rest of the 1756 * packet to the list. This won't be called frequently, I hope. 1757 * Remember, these are still headerless SKBs at this point. 1758 */ 1759 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, 1760 struct sk_buff *skb, u32 len, 1761 unsigned int mss_now, gfp_t gfp) 1762 { 1763 struct tcp_sock *tp = tcp_sk(sk); 1764 struct sk_buff *buff; 1765 int old_factor; 1766 long limit; 1767 u16 flags; 1768 int nlen; 1769 1770 if (WARN_ON(len > skb->len)) 1771 return -EINVAL; 1772 1773 DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb)); 1774 1775 /* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb. 1776 * We need some allowance to not penalize applications setting small 1777 * SO_SNDBUF values. 1778 * Also allow first and last skb in retransmit queue to be split. 1779 */ 1780 limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_LEGACY_MAX_SIZE); 1781 if (unlikely((sk->sk_wmem_queued >> 1) > limit && 1782 tcp_queue != TCP_FRAG_IN_WRITE_QUEUE && 1783 skb != tcp_rtx_queue_head(sk) && 1784 skb != tcp_rtx_queue_tail(sk))) { 1785 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG); 1786 return -ENOMEM; 1787 } 1788 1789 if (skb_unclone_keeptruesize(skb, gfp)) 1790 return -ENOMEM; 1791 1792 /* Get a new skb... force flag on. */ 1793 buff = tcp_stream_alloc_skb(sk, gfp, true); 1794 if (!buff) 1795 return -ENOMEM; /* We'll just try again later. */ 1796 skb_copy_decrypted(buff, skb); 1797 mptcp_skb_ext_copy(buff, skb); 1798 1799 sk_wmem_queued_add(sk, buff->truesize); 1800 sk_mem_charge(sk, buff->truesize); 1801 nlen = skb->len - len; 1802 buff->truesize += nlen; 1803 skb->truesize -= nlen; 1804 1805 /* Correct the sequence numbers. */ 1806 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1807 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1808 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1809 1810 /* PSH and FIN should only be set in the second packet. */ 1811 flags = TCP_SKB_CB(skb)->tcp_flags; 1812 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1813 TCP_SKB_CB(buff)->tcp_flags = flags; 1814 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1815 tcp_skb_fragment_eor(skb, buff); 1816 1817 skb_split(skb, buff, len); 1818 1819 skb_set_delivery_time(buff, skb->tstamp, SKB_CLOCK_MONOTONIC); 1820 tcp_fragment_tstamp(skb, buff); 1821 1822 old_factor = tcp_skb_pcount(skb); 1823 1824 /* Fix up tso_factor for both original and new SKB. */ 1825 tcp_set_skb_tso_segs(skb, mss_now); 1826 tcp_set_skb_tso_segs(buff, mss_now); 1827 1828 /* Update delivered info for the new segment */ 1829 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx; 1830 1831 /* If this packet has been sent out already, we must 1832 * adjust the various packet counters. 1833 */ 1834 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1835 int diff = old_factor - tcp_skb_pcount(skb) - 1836 tcp_skb_pcount(buff); 1837 1838 if (diff) 1839 tcp_adjust_pcount(sk, skb, diff); 1840 } 1841 1842 /* Link BUFF into the send queue. */ 1843 __skb_header_release(buff); 1844 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue); 1845 if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE) 1846 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor); 1847 1848 return 0; 1849 } 1850 1851 /* This is similar to __pskb_pull_tail(). The difference is that pulled 1852 * data is not copied, but immediately discarded. 1853 */ 1854 static int __pskb_trim_head(struct sk_buff *skb, int len) 1855 { 1856 struct skb_shared_info *shinfo; 1857 int i, k, eat; 1858 1859 DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb)); 1860 eat = len; 1861 k = 0; 1862 shinfo = skb_shinfo(skb); 1863 for (i = 0; i < shinfo->nr_frags; i++) { 1864 int size = skb_frag_size(&shinfo->frags[i]); 1865 1866 if (size <= eat) { 1867 skb_frag_unref(skb, i); 1868 eat -= size; 1869 } else { 1870 shinfo->frags[k] = shinfo->frags[i]; 1871 if (eat) { 1872 skb_frag_off_add(&shinfo->frags[k], eat); 1873 skb_frag_size_sub(&shinfo->frags[k], eat); 1874 eat = 0; 1875 } 1876 k++; 1877 } 1878 } 1879 shinfo->nr_frags = k; 1880 1881 skb->data_len -= len; 1882 skb->len = skb->data_len; 1883 return len; 1884 } 1885 1886 /* Remove acked data from a packet in the transmit queue. */ 1887 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1888 { 1889 u32 delta_truesize; 1890 1891 if (skb_unclone_keeptruesize(skb, GFP_ATOMIC)) 1892 return -ENOMEM; 1893 1894 delta_truesize = __pskb_trim_head(skb, len); 1895 1896 TCP_SKB_CB(skb)->seq += len; 1897 1898 skb->truesize -= delta_truesize; 1899 sk_wmem_queued_add(sk, -delta_truesize); 1900 if (!skb_zcopy_pure(skb)) 1901 sk_mem_uncharge(sk, delta_truesize); 1902 1903 /* Any change of skb->len requires recalculation of tso factor. */ 1904 if (tcp_skb_pcount(skb) > 1) 1905 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb)); 1906 1907 return 0; 1908 } 1909 1910 /* Calculate MSS not accounting any TCP options. */ 1911 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) 1912 { 1913 const struct tcp_sock *tp = tcp_sk(sk); 1914 const struct inet_connection_sock *icsk = inet_csk(sk); 1915 int mss_now; 1916 1917 /* Calculate base mss without TCP options: 1918 It is MMS_S - sizeof(tcphdr) of rfc1122 1919 */ 1920 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1921 1922 /* Clamp it (mss_clamp does not include tcp options) */ 1923 if (mss_now > tp->rx_opt.mss_clamp) 1924 mss_now = tp->rx_opt.mss_clamp; 1925 1926 /* Now subtract optional transport overhead */ 1927 mss_now -= icsk->icsk_ext_hdr_len; 1928 1929 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1930 mss_now = max(mss_now, 1931 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss)); 1932 return mss_now; 1933 } 1934 1935 /* Calculate MSS. Not accounting for SACKs here. */ 1936 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1937 { 1938 /* Subtract TCP options size, not including SACKs */ 1939 return __tcp_mtu_to_mss(sk, pmtu) - 1940 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); 1941 } 1942 EXPORT_IPV6_MOD(tcp_mtu_to_mss); 1943 1944 /* Inverse of above */ 1945 int tcp_mss_to_mtu(struct sock *sk, int mss) 1946 { 1947 const struct tcp_sock *tp = tcp_sk(sk); 1948 const struct inet_connection_sock *icsk = inet_csk(sk); 1949 1950 return mss + 1951 tp->tcp_header_len + 1952 icsk->icsk_ext_hdr_len + 1953 icsk->icsk_af_ops->net_header_len; 1954 } 1955 EXPORT_SYMBOL(tcp_mss_to_mtu); 1956 1957 /* MTU probing init per socket */ 1958 void tcp_mtup_init(struct sock *sk) 1959 { 1960 struct tcp_sock *tp = tcp_sk(sk); 1961 struct inet_connection_sock *icsk = inet_csk(sk); 1962 struct net *net = sock_net(sk); 1963 1964 icsk->icsk_mtup.enabled = READ_ONCE(net->ipv4.sysctl_tcp_mtu_probing) > 1; 1965 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1966 icsk->icsk_af_ops->net_header_len; 1967 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, READ_ONCE(net->ipv4.sysctl_tcp_base_mss)); 1968 icsk->icsk_mtup.probe_size = 0; 1969 if (icsk->icsk_mtup.enabled) 1970 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 1971 } 1972 1973 /* This function synchronize snd mss to current pmtu/exthdr set. 1974 1975 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1976 for TCP options, but includes only bare TCP header. 1977 1978 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1979 It is minimum of user_mss and mss received with SYN. 1980 It also does not include TCP options. 1981 1982 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1983 1984 tp->mss_cache is current effective sending mss, including 1985 all tcp options except for SACKs. It is evaluated, 1986 taking into account current pmtu, but never exceeds 1987 tp->rx_opt.mss_clamp. 1988 1989 NOTE1. rfc1122 clearly states that advertised MSS 1990 DOES NOT include either tcp or ip options. 1991 1992 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1993 are READ ONLY outside this function. --ANK (980731) 1994 */ 1995 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1996 { 1997 struct tcp_sock *tp = tcp_sk(sk); 1998 struct inet_connection_sock *icsk = inet_csk(sk); 1999 int mss_now; 2000 2001 if (icsk->icsk_mtup.search_high > pmtu) 2002 icsk->icsk_mtup.search_high = pmtu; 2003 2004 mss_now = tcp_mtu_to_mss(sk, pmtu); 2005 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 2006 2007 /* And store cached results */ 2008 icsk->icsk_pmtu_cookie = pmtu; 2009 if (icsk->icsk_mtup.enabled) 2010 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 2011 tp->mss_cache = mss_now; 2012 2013 return mss_now; 2014 } 2015 EXPORT_IPV6_MOD(tcp_sync_mss); 2016 2017 /* Compute the current effective MSS, taking SACKs and IP options, 2018 * and even PMTU discovery events into account. 2019 */ 2020 unsigned int tcp_current_mss(struct sock *sk) 2021 { 2022 const struct tcp_sock *tp = tcp_sk(sk); 2023 const struct dst_entry *dst = __sk_dst_get(sk); 2024 u32 mss_now; 2025 unsigned int header_len; 2026 struct tcp_out_options opts; 2027 struct tcp_key key; 2028 2029 mss_now = tp->mss_cache; 2030 2031 if (dst) { 2032 u32 mtu = dst_mtu(dst); 2033 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 2034 mss_now = tcp_sync_mss(sk, mtu); 2035 } 2036 tcp_get_current_key(sk, &key); 2037 header_len = tcp_established_options(sk, NULL, &opts, &key) + 2038 sizeof(struct tcphdr); 2039 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 2040 * some common options. If this is an odd packet (because we have SACK 2041 * blocks etc) then our calculated header_len will be different, and 2042 * we have to adjust mss_now correspondingly */ 2043 if (header_len != tp->tcp_header_len) { 2044 int delta = (int) header_len - tp->tcp_header_len; 2045 mss_now -= delta; 2046 } 2047 2048 return mss_now; 2049 } 2050 2051 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 2052 * As additional protections, we do not touch cwnd in retransmission phases, 2053 * and if application hit its sndbuf limit recently. 2054 */ 2055 static void tcp_cwnd_application_limited(struct sock *sk) 2056 { 2057 struct tcp_sock *tp = tcp_sk(sk); 2058 2059 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 2060 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 2061 /* Limited by application or receiver window. */ 2062 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 2063 u32 win_used = max(tp->snd_cwnd_used, init_win); 2064 if (win_used < tcp_snd_cwnd(tp)) { 2065 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2066 tcp_snd_cwnd_set(tp, (tcp_snd_cwnd(tp) + win_used) >> 1); 2067 } 2068 tp->snd_cwnd_used = 0; 2069 } 2070 tp->snd_cwnd_stamp = tcp_jiffies32; 2071 } 2072 2073 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited) 2074 { 2075 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 2076 struct tcp_sock *tp = tcp_sk(sk); 2077 2078 /* Track the strongest available signal of the degree to which the cwnd 2079 * is fully utilized. If cwnd-limited then remember that fact for the 2080 * current window. If not cwnd-limited then track the maximum number of 2081 * outstanding packets in the current window. (If cwnd-limited then we 2082 * chose to not update tp->max_packets_out to avoid an extra else 2083 * clause with no functional impact.) 2084 */ 2085 if (!before(tp->snd_una, tp->cwnd_usage_seq) || 2086 is_cwnd_limited || 2087 (!tp->is_cwnd_limited && 2088 tp->packets_out > tp->max_packets_out)) { 2089 tp->is_cwnd_limited = is_cwnd_limited; 2090 tp->max_packets_out = tp->packets_out; 2091 tp->cwnd_usage_seq = tp->snd_nxt; 2092 } 2093 2094 if (tcp_is_cwnd_limited(sk)) { 2095 /* Network is feed fully. */ 2096 tp->snd_cwnd_used = 0; 2097 tp->snd_cwnd_stamp = tcp_jiffies32; 2098 } else { 2099 /* Network starves. */ 2100 if (tp->packets_out > tp->snd_cwnd_used) 2101 tp->snd_cwnd_used = tp->packets_out; 2102 2103 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) && 2104 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto && 2105 !ca_ops->cong_control) 2106 tcp_cwnd_application_limited(sk); 2107 2108 /* The following conditions together indicate the starvation 2109 * is caused by insufficient sender buffer: 2110 * 1) just sent some data (see tcp_write_xmit) 2111 * 2) not cwnd limited (this else condition) 2112 * 3) no more data to send (tcp_write_queue_empty()) 2113 * 4) application is hitting buffer limit (SOCK_NOSPACE) 2114 */ 2115 if (tcp_write_queue_empty(sk) && sk->sk_socket && 2116 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) && 2117 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 2118 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED); 2119 } 2120 } 2121 2122 /* Minshall's variant of the Nagle send check. */ 2123 static bool tcp_minshall_check(const struct tcp_sock *tp) 2124 { 2125 return after(tp->snd_sml, tp->snd_una) && 2126 !after(tp->snd_sml, tp->snd_nxt); 2127 } 2128 2129 /* Update snd_sml if this skb is under mss 2130 * Note that a TSO packet might end with a sub-mss segment 2131 * The test is really : 2132 * if ((skb->len % mss) != 0) 2133 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 2134 * But we can avoid doing the divide again given we already have 2135 * skb_pcount = skb->len / mss_now 2136 */ 2137 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now, 2138 const struct sk_buff *skb) 2139 { 2140 if (skb->len < tcp_skb_pcount(skb) * mss_now) 2141 tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 2142 } 2143 2144 /* Return false, if packet can be sent now without violation Nagle's rules: 2145 * 1. It is full sized. (provided by caller in %partial bool) 2146 * 2. Or it contains FIN. (already checked by caller) 2147 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 2148 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 2149 * With Minshall's modification: all sent small packets are ACKed. 2150 */ 2151 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp, 2152 int nonagle) 2153 { 2154 return partial && 2155 ((nonagle & TCP_NAGLE_CORK) || 2156 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 2157 } 2158 2159 /* Return how many segs we'd like on a TSO packet, 2160 * depending on current pacing rate, and how close the peer is. 2161 * 2162 * Rationale is: 2163 * - For close peers, we rather send bigger packets to reduce 2164 * cpu costs, because occasional losses will be repaired fast. 2165 * - For long distance/rtt flows, we would like to get ACK clocking 2166 * with 1 ACK per ms. 2167 * 2168 * Use min_rtt to help adapt TSO burst size, with smaller min_rtt resulting 2169 * in bigger TSO bursts. We we cut the RTT-based allowance in half 2170 * for every 2^9 usec (aka 512 us) of RTT, so that the RTT-based allowance 2171 * is below 1500 bytes after 6 * ~500 usec = 3ms. 2172 */ 2173 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now, 2174 int min_tso_segs) 2175 { 2176 unsigned long bytes; 2177 u32 r; 2178 2179 bytes = READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift); 2180 2181 r = tcp_min_rtt(tcp_sk(sk)) >> READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_rtt_log); 2182 if (r < BITS_PER_TYPE(sk->sk_gso_max_size)) 2183 bytes += sk->sk_gso_max_size >> r; 2184 2185 bytes = min_t(unsigned long, bytes, sk->sk_gso_max_size); 2186 2187 return max_t(u32, bytes / mss_now, min_tso_segs); 2188 } 2189 2190 /* Return the number of segments we want in the skb we are transmitting. 2191 * See if congestion control module wants to decide; otherwise, autosize. 2192 */ 2193 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now) 2194 { 2195 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 2196 u32 min_tso, tso_segs; 2197 2198 min_tso = ca_ops->min_tso_segs ? 2199 ca_ops->min_tso_segs(sk) : 2200 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs); 2201 2202 tso_segs = tcp_tso_autosize(sk, mss_now, min_tso); 2203 return min_t(u32, tso_segs, sk->sk_gso_max_segs); 2204 } 2205 2206 /* Returns the portion of skb which can be sent right away */ 2207 static unsigned int tcp_mss_split_point(const struct sock *sk, 2208 const struct sk_buff *skb, 2209 unsigned int mss_now, 2210 unsigned int max_segs, 2211 int nonagle) 2212 { 2213 const struct tcp_sock *tp = tcp_sk(sk); 2214 u32 partial, needed, window, max_len; 2215 2216 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 2217 max_len = mss_now * max_segs; 2218 2219 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) 2220 return max_len; 2221 2222 needed = min(skb->len, window); 2223 2224 if (max_len <= needed) 2225 return max_len; 2226 2227 partial = needed % mss_now; 2228 /* If last segment is not a full MSS, check if Nagle rules allow us 2229 * to include this last segment in this skb. 2230 * Otherwise, we'll split the skb at last MSS boundary 2231 */ 2232 if (tcp_nagle_check(partial != 0, tp, nonagle)) 2233 return needed - partial; 2234 2235 return needed; 2236 } 2237 2238 /* Can at least one segment of SKB be sent right now, according to the 2239 * congestion window rules? If so, return how many segments are allowed. 2240 */ 2241 static u32 tcp_cwnd_test(const struct tcp_sock *tp) 2242 { 2243 u32 in_flight, cwnd, halfcwnd; 2244 2245 in_flight = tcp_packets_in_flight(tp); 2246 cwnd = tcp_snd_cwnd(tp); 2247 if (in_flight >= cwnd) 2248 return 0; 2249 2250 /* For better scheduling, ensure we have at least 2251 * 2 GSO packets in flight. 2252 */ 2253 halfcwnd = max(cwnd >> 1, 1U); 2254 return min(halfcwnd, cwnd - in_flight); 2255 } 2256 2257 /* Initialize TSO state of a skb. 2258 * This must be invoked the first time we consider transmitting 2259 * SKB onto the wire. 2260 */ 2261 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now) 2262 { 2263 int tso_segs = tcp_skb_pcount(skb); 2264 2265 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) 2266 return tcp_set_skb_tso_segs(skb, mss_now); 2267 2268 return tso_segs; 2269 } 2270 2271 2272 /* Return true if the Nagle test allows this packet to be 2273 * sent now. 2274 */ 2275 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 2276 unsigned int cur_mss, int nonagle) 2277 { 2278 /* Nagle rule does not apply to frames, which sit in the middle of the 2279 * write_queue (they have no chances to get new data). 2280 * 2281 * This is implemented in the callers, where they modify the 'nonagle' 2282 * argument based upon the location of SKB in the send queue. 2283 */ 2284 if (nonagle & TCP_NAGLE_PUSH) 2285 return true; 2286 2287 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 2288 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 2289 return true; 2290 2291 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle)) 2292 return true; 2293 2294 return false; 2295 } 2296 2297 /* Does at least the first segment of SKB fit into the send window? */ 2298 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 2299 const struct sk_buff *skb, 2300 unsigned int cur_mss) 2301 { 2302 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 2303 2304 if (skb->len > cur_mss) 2305 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 2306 2307 return !after(end_seq, tcp_wnd_end(tp)); 2308 } 2309 2310 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 2311 * which is put after SKB on the list. It is very much like 2312 * tcp_fragment() except that it may make several kinds of assumptions 2313 * in order to speed up the splitting operation. In particular, we 2314 * know that all the data is in scatter-gather pages, and that the 2315 * packet has never been sent out before (and thus is not cloned). 2316 */ 2317 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, 2318 unsigned int mss_now, gfp_t gfp) 2319 { 2320 int nlen = skb->len - len; 2321 struct sk_buff *buff; 2322 u16 flags; 2323 2324 /* All of a TSO frame must be composed of paged data. */ 2325 DEBUG_NET_WARN_ON_ONCE(skb->len != skb->data_len); 2326 2327 buff = tcp_stream_alloc_skb(sk, gfp, true); 2328 if (unlikely(!buff)) 2329 return -ENOMEM; 2330 skb_copy_decrypted(buff, skb); 2331 mptcp_skb_ext_copy(buff, skb); 2332 2333 sk_wmem_queued_add(sk, buff->truesize); 2334 sk_mem_charge(sk, buff->truesize); 2335 buff->truesize += nlen; 2336 skb->truesize -= nlen; 2337 2338 /* Correct the sequence numbers. */ 2339 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 2340 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 2341 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 2342 2343 /* PSH and FIN should only be set in the second packet. */ 2344 flags = TCP_SKB_CB(skb)->tcp_flags; 2345 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 2346 TCP_SKB_CB(buff)->tcp_flags = flags; 2347 2348 tcp_skb_fragment_eor(skb, buff); 2349 2350 skb_split(skb, buff, len); 2351 tcp_fragment_tstamp(skb, buff); 2352 2353 /* Fix up tso_factor for both original and new SKB. */ 2354 tcp_set_skb_tso_segs(skb, mss_now); 2355 tcp_set_skb_tso_segs(buff, mss_now); 2356 2357 /* Link BUFF into the send queue. */ 2358 __skb_header_release(buff); 2359 tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE); 2360 2361 return 0; 2362 } 2363 2364 /* Try to defer sending, if possible, in order to minimize the amount 2365 * of TSO splitting we do. View it as a kind of TSO Nagle test. 2366 * 2367 * This algorithm is from John Heffner. 2368 */ 2369 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb, 2370 bool *is_cwnd_limited, 2371 bool *is_rwnd_limited, 2372 u32 max_segs) 2373 { 2374 const struct inet_connection_sock *icsk = inet_csk(sk); 2375 u32 send_win, cong_win, limit, in_flight, threshold; 2376 u64 srtt_in_ns, expected_ack, how_far_is_the_ack; 2377 struct tcp_sock *tp = tcp_sk(sk); 2378 struct sk_buff *head; 2379 int win_divisor; 2380 s64 delta; 2381 2382 if (icsk->icsk_ca_state >= TCP_CA_Recovery) 2383 goto send_now; 2384 2385 /* Avoid bursty behavior by allowing defer 2386 * only if the last write was recent (1 ms). 2387 * Note that tp->tcp_wstamp_ns can be in the future if we have 2388 * packets waiting in a qdisc or device for EDT delivery. 2389 */ 2390 delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC; 2391 if (delta > 0) 2392 goto send_now; 2393 2394 in_flight = tcp_packets_in_flight(tp); 2395 2396 BUG_ON(tcp_skb_pcount(skb) <= 1); 2397 BUG_ON(tcp_snd_cwnd(tp) <= in_flight); 2398 2399 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 2400 2401 /* From in_flight test above, we know that cwnd > in_flight. */ 2402 cong_win = (tcp_snd_cwnd(tp) - in_flight) * tp->mss_cache; 2403 2404 limit = min(send_win, cong_win); 2405 2406 /* If a full-sized TSO skb can be sent, do it. */ 2407 if (limit >= max_segs * tp->mss_cache) 2408 goto send_now; 2409 2410 /* Middle in queue won't get any more data, full sendable already? */ 2411 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 2412 goto send_now; 2413 2414 win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor); 2415 if (win_divisor) { 2416 u32 chunk = min(tp->snd_wnd, tcp_snd_cwnd(tp) * tp->mss_cache); 2417 2418 /* If at least some fraction of a window is available, 2419 * just use it. 2420 */ 2421 chunk /= win_divisor; 2422 if (limit >= chunk) 2423 goto send_now; 2424 } else { 2425 /* Different approach, try not to defer past a single 2426 * ACK. Receiver should ACK every other full sized 2427 * frame, so if we have space for more than 3 frames 2428 * then send now. 2429 */ 2430 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 2431 goto send_now; 2432 } 2433 2434 /* TODO : use tsorted_sent_queue ? */ 2435 head = tcp_rtx_queue_head(sk); 2436 if (!head) 2437 goto send_now; 2438 2439 srtt_in_ns = (u64)(NSEC_PER_USEC >> 3) * tp->srtt_us; 2440 /* When is the ACK expected ? */ 2441 expected_ack = head->tstamp + srtt_in_ns; 2442 /* How far from now is the ACK expected ? */ 2443 how_far_is_the_ack = expected_ack - tp->tcp_clock_cache; 2444 2445 /* If next ACK is likely to come too late, 2446 * ie in more than min(1ms, half srtt), do not defer. 2447 */ 2448 threshold = min(srtt_in_ns >> 1, NSEC_PER_MSEC); 2449 2450 if ((s64)(how_far_is_the_ack - threshold) > 0) 2451 goto send_now; 2452 2453 /* Ok, it looks like it is advisable to defer. 2454 * Three cases are tracked : 2455 * 1) We are cwnd-limited 2456 * 2) We are rwnd-limited 2457 * 3) We are application limited. 2458 */ 2459 if (cong_win < send_win) { 2460 if (cong_win <= skb->len) { 2461 *is_cwnd_limited = true; 2462 return true; 2463 } 2464 } else { 2465 if (send_win <= skb->len) { 2466 *is_rwnd_limited = true; 2467 return true; 2468 } 2469 } 2470 2471 /* If this packet won't get more data, do not wait. */ 2472 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) || 2473 TCP_SKB_CB(skb)->eor) 2474 goto send_now; 2475 2476 return true; 2477 2478 send_now: 2479 return false; 2480 } 2481 2482 static inline void tcp_mtu_check_reprobe(struct sock *sk) 2483 { 2484 struct inet_connection_sock *icsk = inet_csk(sk); 2485 struct tcp_sock *tp = tcp_sk(sk); 2486 struct net *net = sock_net(sk); 2487 u32 interval; 2488 s32 delta; 2489 2490 interval = READ_ONCE(net->ipv4.sysctl_tcp_probe_interval); 2491 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp; 2492 if (unlikely(delta >= interval * HZ)) { 2493 int mss = tcp_current_mss(sk); 2494 2495 /* Update current search range */ 2496 icsk->icsk_mtup.probe_size = 0; 2497 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + 2498 sizeof(struct tcphdr) + 2499 icsk->icsk_af_ops->net_header_len; 2500 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss); 2501 2502 /* Update probe time stamp */ 2503 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 2504 } 2505 } 2506 2507 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len) 2508 { 2509 struct sk_buff *skb, *next; 2510 2511 skb = tcp_send_head(sk); 2512 tcp_for_write_queue_from_safe(skb, next, sk) { 2513 if (len <= skb->len) 2514 break; 2515 2516 if (tcp_has_tx_tstamp(skb) || !tcp_skb_can_collapse(skb, next)) 2517 return false; 2518 2519 len -= skb->len; 2520 } 2521 2522 return true; 2523 } 2524 2525 static int tcp_clone_payload(struct sock *sk, struct sk_buff *to, 2526 int probe_size) 2527 { 2528 skb_frag_t *lastfrag = NULL, *fragto = skb_shinfo(to)->frags; 2529 int i, todo, len = 0, nr_frags = 0; 2530 const struct sk_buff *skb; 2531 2532 if (!sk_wmem_schedule(sk, to->truesize + probe_size)) 2533 return -ENOMEM; 2534 2535 skb_queue_walk(&sk->sk_write_queue, skb) { 2536 const skb_frag_t *fragfrom = skb_shinfo(skb)->frags; 2537 2538 if (skb_headlen(skb)) 2539 return -EINVAL; 2540 2541 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, fragfrom++) { 2542 if (len >= probe_size) 2543 goto commit; 2544 todo = min_t(int, skb_frag_size(fragfrom), 2545 probe_size - len); 2546 len += todo; 2547 if (lastfrag && 2548 skb_frag_page(fragfrom) == skb_frag_page(lastfrag) && 2549 skb_frag_off(fragfrom) == skb_frag_off(lastfrag) + 2550 skb_frag_size(lastfrag)) { 2551 skb_frag_size_add(lastfrag, todo); 2552 continue; 2553 } 2554 if (unlikely(nr_frags == MAX_SKB_FRAGS)) 2555 return -E2BIG; 2556 skb_frag_page_copy(fragto, fragfrom); 2557 skb_frag_off_copy(fragto, fragfrom); 2558 skb_frag_size_set(fragto, todo); 2559 nr_frags++; 2560 lastfrag = fragto++; 2561 } 2562 } 2563 commit: 2564 WARN_ON_ONCE(len != probe_size); 2565 for (i = 0; i < nr_frags; i++) 2566 skb_frag_ref(to, i); 2567 2568 skb_shinfo(to)->nr_frags = nr_frags; 2569 to->truesize += probe_size; 2570 to->len += probe_size; 2571 to->data_len += probe_size; 2572 __skb_header_release(to); 2573 return 0; 2574 } 2575 2576 /* tcp_mtu_probe() and tcp_grow_skb() can both eat an skb (src) if 2577 * all its payload was moved to another one (dst). 2578 * Make sure to transfer tcp_flags, eor, and tstamp. 2579 */ 2580 static void tcp_eat_one_skb(struct sock *sk, 2581 struct sk_buff *dst, 2582 struct sk_buff *src) 2583 { 2584 TCP_SKB_CB(dst)->tcp_flags |= TCP_SKB_CB(src)->tcp_flags; 2585 TCP_SKB_CB(dst)->eor = TCP_SKB_CB(src)->eor; 2586 tcp_skb_collapse_tstamp(dst, src); 2587 tcp_unlink_write_queue(src, sk); 2588 tcp_wmem_free_skb(sk, src); 2589 } 2590 2591 /* Create a new MTU probe if we are ready. 2592 * MTU probe is regularly attempting to increase the path MTU by 2593 * deliberately sending larger packets. This discovers routing 2594 * changes resulting in larger path MTUs. 2595 * 2596 * Returns 0 if we should wait to probe (no cwnd available), 2597 * 1 if a probe was sent, 2598 * -1 otherwise 2599 */ 2600 static int tcp_mtu_probe(struct sock *sk) 2601 { 2602 struct inet_connection_sock *icsk = inet_csk(sk); 2603 struct tcp_sock *tp = tcp_sk(sk); 2604 struct sk_buff *skb, *nskb, *next; 2605 struct net *net = sock_net(sk); 2606 int probe_size; 2607 int size_needed; 2608 int copy, len; 2609 int mss_now; 2610 int interval; 2611 2612 /* Not currently probing/verifying, 2613 * not in recovery, 2614 * have enough cwnd, and 2615 * not SACKing (the variable headers throw things off) 2616 */ 2617 if (likely(!icsk->icsk_mtup.enabled || 2618 icsk->icsk_mtup.probe_size || 2619 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 2620 tcp_snd_cwnd(tp) < 11 || 2621 tp->rx_opt.num_sacks || tp->rx_opt.dsack)) 2622 return -1; 2623 2624 /* Use binary search for probe_size between tcp_mss_base, 2625 * and current mss_clamp. if (search_high - search_low) 2626 * smaller than a threshold, backoff from probing. 2627 */ 2628 mss_now = tcp_current_mss(sk); 2629 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high + 2630 icsk->icsk_mtup.search_low) >> 1); 2631 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 2632 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low; 2633 /* When misfortune happens, we are reprobing actively, 2634 * and then reprobe timer has expired. We stick with current 2635 * probing process by not resetting search range to its orignal. 2636 */ 2637 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) || 2638 interval < READ_ONCE(net->ipv4.sysctl_tcp_probe_threshold)) { 2639 /* Check whether enough time has elaplased for 2640 * another round of probing. 2641 */ 2642 tcp_mtu_check_reprobe(sk); 2643 return -1; 2644 } 2645 2646 /* Have enough data in the send queue to probe? */ 2647 if (tp->write_seq - tp->snd_nxt < size_needed) 2648 return -1; 2649 2650 if (tp->snd_wnd < size_needed) 2651 return -1; 2652 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 2653 return 0; 2654 2655 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 2656 if (tcp_packets_in_flight(tp) + 2 > tcp_snd_cwnd(tp)) { 2657 if (!tcp_packets_in_flight(tp)) 2658 return -1; 2659 else 2660 return 0; 2661 } 2662 2663 if (!tcp_can_coalesce_send_queue_head(sk, probe_size)) 2664 return -1; 2665 2666 /* We're allowed to probe. Build it now. */ 2667 nskb = tcp_stream_alloc_skb(sk, GFP_ATOMIC, false); 2668 if (!nskb) 2669 return -1; 2670 2671 /* build the payload, and be prepared to abort if this fails. */ 2672 if (tcp_clone_payload(sk, nskb, probe_size)) { 2673 tcp_skb_tsorted_anchor_cleanup(nskb); 2674 consume_skb(nskb); 2675 return -1; 2676 } 2677 sk_wmem_queued_add(sk, nskb->truesize); 2678 sk_mem_charge(sk, nskb->truesize); 2679 2680 skb = tcp_send_head(sk); 2681 skb_copy_decrypted(nskb, skb); 2682 mptcp_skb_ext_copy(nskb, skb); 2683 2684 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 2685 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 2686 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 2687 2688 tcp_insert_write_queue_before(nskb, skb, sk); 2689 tcp_highest_sack_replace(sk, skb, nskb); 2690 2691 len = 0; 2692 tcp_for_write_queue_from_safe(skb, next, sk) { 2693 copy = min_t(int, skb->len, probe_size - len); 2694 2695 if (skb->len <= copy) { 2696 tcp_eat_one_skb(sk, nskb, skb); 2697 } else { 2698 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 2699 ~(TCPHDR_FIN|TCPHDR_PSH); 2700 __pskb_trim_head(skb, copy); 2701 tcp_set_skb_tso_segs(skb, mss_now); 2702 TCP_SKB_CB(skb)->seq += copy; 2703 } 2704 2705 len += copy; 2706 2707 if (len >= probe_size) 2708 break; 2709 } 2710 tcp_init_tso_segs(nskb, nskb->len); 2711 2712 /* We're ready to send. If this fails, the probe will 2713 * be resegmented into mss-sized pieces by tcp_write_xmit(). 2714 */ 2715 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 2716 /* Decrement cwnd here because we are sending 2717 * effectively two packets. */ 2718 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) - 1); 2719 tcp_event_new_data_sent(sk, nskb); 2720 2721 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 2722 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 2723 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 2724 2725 return 1; 2726 } 2727 2728 return -1; 2729 } 2730 2731 static bool tcp_pacing_check(struct sock *sk) 2732 { 2733 struct tcp_sock *tp = tcp_sk(sk); 2734 2735 if (!tcp_needs_internal_pacing(sk)) 2736 return false; 2737 2738 if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache) 2739 return false; 2740 2741 if (!hrtimer_is_queued(&tp->pacing_timer)) { 2742 hrtimer_start(&tp->pacing_timer, 2743 ns_to_ktime(tp->tcp_wstamp_ns), 2744 HRTIMER_MODE_ABS_PINNED_SOFT); 2745 sock_hold(sk); 2746 } 2747 return true; 2748 } 2749 2750 static bool tcp_rtx_queue_empty_or_single_skb(const struct sock *sk) 2751 { 2752 const struct rb_node *node = sk->tcp_rtx_queue.rb_node; 2753 2754 /* No skb in the rtx queue. */ 2755 if (!node) 2756 return true; 2757 2758 /* Only one skb in rtx queue. */ 2759 return !node->rb_left && !node->rb_right; 2760 } 2761 2762 /* TCP Small Queues : 2763 * Control number of packets in qdisc/devices to two packets / or ~1 ms. 2764 * (These limits are doubled for retransmits) 2765 * This allows for : 2766 * - better RTT estimation and ACK scheduling 2767 * - faster recovery 2768 * - high rates 2769 * Alas, some drivers / subsystems require a fair amount 2770 * of queued bytes to ensure line rate. 2771 * One example is wifi aggregation (802.11 AMPDU) 2772 */ 2773 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb, 2774 unsigned int factor) 2775 { 2776 unsigned long limit; 2777 2778 limit = max_t(unsigned long, 2779 2 * skb->truesize, 2780 READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift)); 2781 limit = min_t(unsigned long, limit, 2782 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes)); 2783 limit <<= factor; 2784 2785 if (static_branch_unlikely(&tcp_tx_delay_enabled) && 2786 tcp_sk(sk)->tcp_tx_delay) { 2787 u64 extra_bytes = (u64)READ_ONCE(sk->sk_pacing_rate) * 2788 tcp_sk(sk)->tcp_tx_delay; 2789 2790 /* TSQ is based on skb truesize sum (sk_wmem_alloc), so we 2791 * approximate our needs assuming an ~100% skb->truesize overhead. 2792 * USEC_PER_SEC is approximated by 2^20. 2793 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift. 2794 */ 2795 extra_bytes >>= (20 - 1); 2796 limit += extra_bytes; 2797 } 2798 if (refcount_read(&sk->sk_wmem_alloc) > limit) { 2799 /* Always send skb if rtx queue is empty or has one skb. 2800 * No need to wait for TX completion to call us back, 2801 * after softirq schedule. 2802 * This helps when TX completions are delayed too much. 2803 */ 2804 if (tcp_rtx_queue_empty_or_single_skb(sk)) 2805 return false; 2806 2807 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 2808 /* It is possible TX completion already happened 2809 * before we set TSQ_THROTTLED, so we must 2810 * test again the condition. 2811 */ 2812 smp_mb__after_atomic(); 2813 if (refcount_read(&sk->sk_wmem_alloc) > limit) 2814 return true; 2815 } 2816 return false; 2817 } 2818 2819 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new) 2820 { 2821 const u32 now = tcp_jiffies32; 2822 enum tcp_chrono old = tp->chrono_type; 2823 2824 if (old > TCP_CHRONO_UNSPEC) 2825 tp->chrono_stat[old - 1] += now - tp->chrono_start; 2826 tp->chrono_start = now; 2827 tp->chrono_type = new; 2828 } 2829 2830 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type) 2831 { 2832 struct tcp_sock *tp = tcp_sk(sk); 2833 2834 /* If there are multiple conditions worthy of tracking in a 2835 * chronograph then the highest priority enum takes precedence 2836 * over the other conditions. So that if something "more interesting" 2837 * starts happening, stop the previous chrono and start a new one. 2838 */ 2839 if (type > tp->chrono_type) 2840 tcp_chrono_set(tp, type); 2841 } 2842 2843 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type) 2844 { 2845 struct tcp_sock *tp = tcp_sk(sk); 2846 2847 2848 /* There are multiple conditions worthy of tracking in a 2849 * chronograph, so that the highest priority enum takes 2850 * precedence over the other conditions (see tcp_chrono_start). 2851 * If a condition stops, we only stop chrono tracking if 2852 * it's the "most interesting" or current chrono we are 2853 * tracking and starts busy chrono if we have pending data. 2854 */ 2855 if (tcp_rtx_and_write_queues_empty(sk)) 2856 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC); 2857 else if (type == tp->chrono_type) 2858 tcp_chrono_set(tp, TCP_CHRONO_BUSY); 2859 } 2860 2861 /* First skb in the write queue is smaller than ideal packet size. 2862 * Check if we can move payload from the second skb in the queue. 2863 */ 2864 static void tcp_grow_skb(struct sock *sk, struct sk_buff *skb, int amount) 2865 { 2866 struct sk_buff *next_skb = skb->next; 2867 unsigned int nlen; 2868 2869 if (tcp_skb_is_last(sk, skb)) 2870 return; 2871 2872 if (!tcp_skb_can_collapse(skb, next_skb)) 2873 return; 2874 2875 nlen = min_t(u32, amount, next_skb->len); 2876 if (!nlen || !skb_shift(skb, next_skb, nlen)) 2877 return; 2878 2879 TCP_SKB_CB(skb)->end_seq += nlen; 2880 TCP_SKB_CB(next_skb)->seq += nlen; 2881 2882 if (!next_skb->len) { 2883 /* In case FIN is set, we need to update end_seq */ 2884 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 2885 2886 tcp_eat_one_skb(sk, skb, next_skb); 2887 } 2888 } 2889 2890 /* This routine writes packets to the network. It advances the 2891 * send_head. This happens as incoming acks open up the remote 2892 * window for us. 2893 * 2894 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 2895 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 2896 * account rare use of URG, this is not a big flaw. 2897 * 2898 * Send at most one packet when push_one > 0. Temporarily ignore 2899 * cwnd limit to force at most one packet out when push_one == 2. 2900 2901 * Returns true, if no segments are in flight and we have queued segments, 2902 * but cannot send anything now because of SWS or another problem. 2903 */ 2904 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 2905 int push_one, gfp_t gfp) 2906 { 2907 struct tcp_sock *tp = tcp_sk(sk); 2908 struct sk_buff *skb; 2909 unsigned int tso_segs, sent_pkts; 2910 u32 cwnd_quota, max_segs; 2911 int result; 2912 bool is_cwnd_limited = false, is_rwnd_limited = false; 2913 2914 sent_pkts = 0; 2915 2916 tcp_mstamp_refresh(tp); 2917 2918 /* AccECN option beacon depends on mstamp, it may change mss */ 2919 if (tcp_ecn_mode_accecn(tp) && tcp_accecn_option_beacon_check(sk)) 2920 mss_now = tcp_current_mss(sk); 2921 2922 if (!push_one) { 2923 /* Do MTU probing. */ 2924 result = tcp_mtu_probe(sk); 2925 if (!result) { 2926 return false; 2927 } else if (result > 0) { 2928 sent_pkts = 1; 2929 } 2930 } 2931 2932 max_segs = tcp_tso_segs(sk, mss_now); 2933 while ((skb = tcp_send_head(sk))) { 2934 unsigned int limit; 2935 int missing_bytes; 2936 2937 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) { 2938 /* "skb_mstamp_ns" is used as a start point for the retransmit timer */ 2939 tp->tcp_wstamp_ns = tp->tcp_clock_cache; 2940 skb_set_delivery_time(skb, tp->tcp_wstamp_ns, SKB_CLOCK_MONOTONIC); 2941 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 2942 tcp_init_tso_segs(skb, mss_now); 2943 goto repair; /* Skip network transmission */ 2944 } 2945 2946 if (tcp_pacing_check(sk)) 2947 break; 2948 2949 cwnd_quota = tcp_cwnd_test(tp); 2950 if (!cwnd_quota) { 2951 if (push_one == 2) 2952 /* Force out a loss probe pkt. */ 2953 cwnd_quota = 1; 2954 else 2955 break; 2956 } 2957 cwnd_quota = min(cwnd_quota, max_segs); 2958 missing_bytes = cwnd_quota * mss_now - skb->len; 2959 if (missing_bytes > 0) 2960 tcp_grow_skb(sk, skb, missing_bytes); 2961 2962 tso_segs = tcp_set_skb_tso_segs(skb, mss_now); 2963 2964 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) { 2965 is_rwnd_limited = true; 2966 break; 2967 } 2968 2969 if (tso_segs == 1) { 2970 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 2971 (tcp_skb_is_last(sk, skb) ? 2972 nonagle : TCP_NAGLE_PUSH)))) 2973 break; 2974 } else { 2975 if (!push_one && 2976 tcp_tso_should_defer(sk, skb, &is_cwnd_limited, 2977 &is_rwnd_limited, max_segs)) 2978 break; 2979 } 2980 2981 limit = mss_now; 2982 if (tso_segs > 1 && !tcp_urg_mode(tp)) 2983 limit = tcp_mss_split_point(sk, skb, mss_now, 2984 cwnd_quota, 2985 nonagle); 2986 2987 if (skb->len > limit && 2988 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp))) 2989 break; 2990 2991 if (tcp_small_queue_check(sk, skb, 0)) 2992 break; 2993 2994 /* Argh, we hit an empty skb(), presumably a thread 2995 * is sleeping in sendmsg()/sk_stream_wait_memory(). 2996 * We do not want to send a pure-ack packet and have 2997 * a strange looking rtx queue with empty packet(s). 2998 */ 2999 if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) 3000 break; 3001 3002 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 3003 break; 3004 3005 repair: 3006 /* Advance the send_head. This one is sent out. 3007 * This call will increment packets_out. 3008 */ 3009 tcp_event_new_data_sent(sk, skb); 3010 3011 tcp_minshall_update(tp, mss_now, skb); 3012 sent_pkts += tcp_skb_pcount(skb); 3013 3014 if (push_one) 3015 break; 3016 } 3017 3018 if (is_rwnd_limited) 3019 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED); 3020 else 3021 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED); 3022 3023 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp)); 3024 if (likely(sent_pkts || is_cwnd_limited)) 3025 tcp_cwnd_validate(sk, is_cwnd_limited); 3026 3027 if (likely(sent_pkts)) { 3028 if (tcp_in_cwnd_reduction(sk)) 3029 tp->prr_out += sent_pkts; 3030 3031 /* Send one loss probe per tail loss episode. */ 3032 if (push_one != 2) 3033 tcp_schedule_loss_probe(sk, false); 3034 return false; 3035 } 3036 return !tp->packets_out && !tcp_write_queue_empty(sk); 3037 } 3038 3039 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto) 3040 { 3041 struct inet_connection_sock *icsk = inet_csk(sk); 3042 struct tcp_sock *tp = tcp_sk(sk); 3043 u32 timeout, timeout_us, rto_delta_us; 3044 int early_retrans; 3045 3046 /* Don't do any loss probe on a Fast Open connection before 3WHS 3047 * finishes. 3048 */ 3049 if (rcu_access_pointer(tp->fastopen_rsk)) 3050 return false; 3051 3052 early_retrans = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_early_retrans); 3053 /* Schedule a loss probe in 2*RTT for SACK capable connections 3054 * not in loss recovery, that are either limited by cwnd or application. 3055 */ 3056 if ((early_retrans != 3 && early_retrans != 4) || 3057 !tp->packets_out || !tcp_is_sack(tp) || 3058 (icsk->icsk_ca_state != TCP_CA_Open && 3059 icsk->icsk_ca_state != TCP_CA_CWR)) 3060 return false; 3061 3062 /* Probe timeout is 2*rtt. Add minimum RTO to account 3063 * for delayed ack when there's one outstanding packet. If no RTT 3064 * sample is available then probe after TCP_TIMEOUT_INIT. 3065 */ 3066 if (tp->srtt_us) { 3067 timeout_us = tp->srtt_us >> 2; 3068 if (tp->packets_out == 1) 3069 timeout_us += tcp_rto_min_us(sk); 3070 else 3071 timeout_us += TCP_TIMEOUT_MIN_US; 3072 timeout = usecs_to_jiffies(timeout_us); 3073 } else { 3074 timeout = TCP_TIMEOUT_INIT; 3075 } 3076 3077 /* If the RTO formula yields an earlier time, then use that time. */ 3078 rto_delta_us = advancing_rto ? 3079 jiffies_to_usecs(inet_csk(sk)->icsk_rto) : 3080 tcp_rto_delta_us(sk); /* How far in future is RTO? */ 3081 if (rto_delta_us > 0) 3082 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us)); 3083 3084 tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, true); 3085 return true; 3086 } 3087 3088 /* Thanks to skb fast clones, we can detect if a prior transmit of 3089 * a packet is still in a qdisc or driver queue. 3090 * In this case, there is very little point doing a retransmit ! 3091 */ 3092 static bool skb_still_in_host_queue(struct sock *sk, 3093 const struct sk_buff *skb) 3094 { 3095 if (unlikely(skb_fclone_busy(sk, skb))) { 3096 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 3097 smp_mb__after_atomic(); 3098 if (skb_fclone_busy(sk, skb)) { 3099 NET_INC_STATS(sock_net(sk), 3100 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); 3101 return true; 3102 } 3103 } 3104 return false; 3105 } 3106 3107 /* When probe timeout (PTO) fires, try send a new segment if possible, else 3108 * retransmit the last segment. 3109 */ 3110 void tcp_send_loss_probe(struct sock *sk) 3111 { 3112 struct tcp_sock *tp = tcp_sk(sk); 3113 struct sk_buff *skb; 3114 int pcount; 3115 int mss = tcp_current_mss(sk); 3116 3117 /* At most one outstanding TLP */ 3118 if (tp->tlp_high_seq) 3119 goto rearm_timer; 3120 3121 tp->tlp_retrans = 0; 3122 skb = tcp_send_head(sk); 3123 if (skb && tcp_snd_wnd_test(tp, skb, mss)) { 3124 pcount = tp->packets_out; 3125 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); 3126 if (tp->packets_out > pcount) 3127 goto probe_sent; 3128 goto rearm_timer; 3129 } 3130 skb = skb_rb_last(&sk->tcp_rtx_queue); 3131 if (unlikely(!skb)) { 3132 tcp_warn_once(sk, tp->packets_out, "invalid inflight: "); 3133 smp_store_release(&inet_csk(sk)->icsk_pending, 0); 3134 return; 3135 } 3136 3137 if (skb_still_in_host_queue(sk, skb)) 3138 goto rearm_timer; 3139 3140 pcount = tcp_skb_pcount(skb); 3141 if (WARN_ON(!pcount)) 3142 goto rearm_timer; 3143 3144 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { 3145 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 3146 (pcount - 1) * mss, mss, 3147 GFP_ATOMIC))) 3148 goto rearm_timer; 3149 skb = skb_rb_next(skb); 3150 } 3151 3152 if (WARN_ON(!skb || !tcp_skb_pcount(skb))) 3153 goto rearm_timer; 3154 3155 if (__tcp_retransmit_skb(sk, skb, 1)) 3156 goto rearm_timer; 3157 3158 tp->tlp_retrans = 1; 3159 3160 probe_sent: 3161 /* Record snd_nxt for loss detection. */ 3162 tp->tlp_high_seq = tp->snd_nxt; 3163 3164 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES); 3165 /* Reset s.t. tcp_rearm_rto will restart timer from now */ 3166 smp_store_release(&inet_csk(sk)->icsk_pending, 0); 3167 rearm_timer: 3168 tcp_rearm_rto(sk); 3169 } 3170 3171 /* Push out any pending frames which were held back due to 3172 * TCP_CORK or attempt at coalescing tiny packets. 3173 * The socket must be locked by the caller. 3174 */ 3175 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 3176 int nonagle) 3177 { 3178 /* If we are closed, the bytes will have to remain here. 3179 * In time closedown will finish, we empty the write queue and 3180 * all will be happy. 3181 */ 3182 if (unlikely(sk->sk_state == TCP_CLOSE)) 3183 return; 3184 3185 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, 3186 sk_gfp_mask(sk, GFP_ATOMIC))) 3187 tcp_check_probe_timer(sk); 3188 } 3189 3190 /* Send _single_ skb sitting at the send head. This function requires 3191 * true push pending frames to setup probe timer etc. 3192 */ 3193 void tcp_push_one(struct sock *sk, unsigned int mss_now) 3194 { 3195 struct sk_buff *skb = tcp_send_head(sk); 3196 3197 BUG_ON(!skb || skb->len < mss_now); 3198 3199 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 3200 } 3201 3202 /* This function returns the amount that we can raise the 3203 * usable window based on the following constraints 3204 * 3205 * 1. The window can never be shrunk once it is offered (RFC 793) 3206 * 2. We limit memory per socket 3207 * 3208 * RFC 1122: 3209 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 3210 * RECV.NEXT + RCV.WIN fixed until: 3211 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 3212 * 3213 * i.e. don't raise the right edge of the window until you can raise 3214 * it at least MSS bytes. 3215 * 3216 * Unfortunately, the recommended algorithm breaks header prediction, 3217 * since header prediction assumes th->window stays fixed. 3218 * 3219 * Strictly speaking, keeping th->window fixed violates the receiver 3220 * side SWS prevention criteria. The problem is that under this rule 3221 * a stream of single byte packets will cause the right side of the 3222 * window to always advance by a single byte. 3223 * 3224 * Of course, if the sender implements sender side SWS prevention 3225 * then this will not be a problem. 3226 * 3227 * BSD seems to make the following compromise: 3228 * 3229 * If the free space is less than the 1/4 of the maximum 3230 * space available and the free space is less than 1/2 mss, 3231 * then set the window to 0. 3232 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 3233 * Otherwise, just prevent the window from shrinking 3234 * and from being larger than the largest representable value. 3235 * 3236 * This prevents incremental opening of the window in the regime 3237 * where TCP is limited by the speed of the reader side taking 3238 * data out of the TCP receive queue. It does nothing about 3239 * those cases where the window is constrained on the sender side 3240 * because the pipeline is full. 3241 * 3242 * BSD also seems to "accidentally" limit itself to windows that are a 3243 * multiple of MSS, at least until the free space gets quite small. 3244 * This would appear to be a side effect of the mbuf implementation. 3245 * Combining these two algorithms results in the observed behavior 3246 * of having a fixed window size at almost all times. 3247 * 3248 * Below we obtain similar behavior by forcing the offered window to 3249 * a multiple of the mss when it is feasible to do so. 3250 * 3251 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 3252 * Regular options like TIMESTAMP are taken into account. 3253 */ 3254 u32 __tcp_select_window(struct sock *sk) 3255 { 3256 struct inet_connection_sock *icsk = inet_csk(sk); 3257 struct tcp_sock *tp = tcp_sk(sk); 3258 struct net *net = sock_net(sk); 3259 /* MSS for the peer's data. Previous versions used mss_clamp 3260 * here. I don't know if the value based on our guesses 3261 * of peer's MSS is better for the performance. It's more correct 3262 * but may be worse for the performance because of rcv_mss 3263 * fluctuations. --SAW 1998/11/1 3264 */ 3265 int mss = icsk->icsk_ack.rcv_mss; 3266 int free_space = tcp_space(sk); 3267 int allowed_space = tcp_full_space(sk); 3268 int full_space, window; 3269 3270 if (sk_is_mptcp(sk)) 3271 mptcp_space(sk, &free_space, &allowed_space); 3272 3273 full_space = min_t(int, tp->window_clamp, allowed_space); 3274 3275 if (unlikely(mss > full_space)) { 3276 mss = full_space; 3277 if (mss <= 0) 3278 return 0; 3279 } 3280 3281 /* Only allow window shrink if the sysctl is enabled and we have 3282 * a non-zero scaling factor in effect. 3283 */ 3284 if (READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) && tp->rx_opt.rcv_wscale) 3285 goto shrink_window_allowed; 3286 3287 /* do not allow window to shrink */ 3288 3289 if (free_space < (full_space >> 1)) { 3290 icsk->icsk_ack.quick = 0; 3291 3292 if (tcp_under_memory_pressure(sk)) 3293 tcp_adjust_rcv_ssthresh(sk); 3294 3295 /* free_space might become our new window, make sure we don't 3296 * increase it due to wscale. 3297 */ 3298 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 3299 3300 /* if free space is less than mss estimate, or is below 1/16th 3301 * of the maximum allowed, try to move to zero-window, else 3302 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and 3303 * new incoming data is dropped due to memory limits. 3304 * With large window, mss test triggers way too late in order 3305 * to announce zero window in time before rmem limit kicks in. 3306 */ 3307 if (free_space < (allowed_space >> 4) || free_space < mss) 3308 return 0; 3309 } 3310 3311 if (free_space > tp->rcv_ssthresh) 3312 free_space = tp->rcv_ssthresh; 3313 3314 /* Don't do rounding if we are using window scaling, since the 3315 * scaled window will not line up with the MSS boundary anyway. 3316 */ 3317 if (tp->rx_opt.rcv_wscale) { 3318 window = free_space; 3319 3320 /* Advertise enough space so that it won't get scaled away. 3321 * Import case: prevent zero window announcement if 3322 * 1<<rcv_wscale > mss. 3323 */ 3324 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale)); 3325 } else { 3326 window = tp->rcv_wnd; 3327 /* Get the largest window that is a nice multiple of mss. 3328 * Window clamp already applied above. 3329 * If our current window offering is within 1 mss of the 3330 * free space we just keep it. This prevents the divide 3331 * and multiply from happening most of the time. 3332 * We also don't do any window rounding when the free space 3333 * is too small. 3334 */ 3335 if (window <= free_space - mss || window > free_space) 3336 window = rounddown(free_space, mss); 3337 else if (mss == full_space && 3338 free_space > window + (full_space >> 1)) 3339 window = free_space; 3340 } 3341 3342 return window; 3343 3344 shrink_window_allowed: 3345 /* new window should always be an exact multiple of scaling factor */ 3346 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 3347 3348 if (free_space < (full_space >> 1)) { 3349 icsk->icsk_ack.quick = 0; 3350 3351 if (tcp_under_memory_pressure(sk)) 3352 tcp_adjust_rcv_ssthresh(sk); 3353 3354 /* if free space is too low, return a zero window */ 3355 if (free_space < (allowed_space >> 4) || free_space < mss || 3356 free_space < (1 << tp->rx_opt.rcv_wscale)) 3357 return 0; 3358 } 3359 3360 if (free_space > tp->rcv_ssthresh) { 3361 free_space = tp->rcv_ssthresh; 3362 /* new window should always be an exact multiple of scaling factor 3363 * 3364 * For this case, we ALIGN "up" (increase free_space) because 3365 * we know free_space is not zero here, it has been reduced from 3366 * the memory-based limit, and rcv_ssthresh is not a hard limit 3367 * (unlike sk_rcvbuf). 3368 */ 3369 free_space = ALIGN(free_space, (1 << tp->rx_opt.rcv_wscale)); 3370 } 3371 3372 return free_space; 3373 } 3374 3375 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 3376 const struct sk_buff *next_skb) 3377 { 3378 if (unlikely(tcp_has_tx_tstamp(next_skb))) { 3379 const struct skb_shared_info *next_shinfo = 3380 skb_shinfo(next_skb); 3381 struct skb_shared_info *shinfo = skb_shinfo(skb); 3382 3383 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP; 3384 shinfo->tskey = next_shinfo->tskey; 3385 TCP_SKB_CB(skb)->txstamp_ack |= 3386 TCP_SKB_CB(next_skb)->txstamp_ack; 3387 } 3388 } 3389 3390 /* Collapses two adjacent SKB's during retransmission. */ 3391 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 3392 { 3393 struct tcp_sock *tp = tcp_sk(sk); 3394 struct sk_buff *next_skb = skb_rb_next(skb); 3395 int next_skb_size; 3396 3397 next_skb_size = next_skb->len; 3398 3399 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 3400 3401 if (next_skb_size && !tcp_skb_shift(skb, next_skb, 1, next_skb_size)) 3402 return false; 3403 3404 tcp_highest_sack_replace(sk, next_skb, skb); 3405 3406 /* Update sequence range on original skb. */ 3407 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 3408 3409 /* Merge over control information. This moves PSH/FIN etc. over */ 3410 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 3411 3412 /* All done, get rid of second SKB and account for it so 3413 * packet counting does not break. 3414 */ 3415 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 3416 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor; 3417 3418 /* changed transmit queue under us so clear hints */ 3419 if (next_skb == tp->retransmit_skb_hint) 3420 tp->retransmit_skb_hint = skb; 3421 3422 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 3423 3424 tcp_skb_collapse_tstamp(skb, next_skb); 3425 3426 tcp_rtx_queue_unlink_and_free(next_skb, sk); 3427 return true; 3428 } 3429 3430 /* Check if coalescing SKBs is legal. */ 3431 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 3432 { 3433 if (tcp_skb_pcount(skb) > 1) 3434 return false; 3435 if (skb_cloned(skb)) 3436 return false; 3437 if (!skb_frags_readable(skb)) 3438 return false; 3439 /* Some heuristics for collapsing over SACK'd could be invented */ 3440 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 3441 return false; 3442 3443 return true; 3444 } 3445 3446 /* Collapse packets in the retransmit queue to make to create 3447 * less packets on the wire. This is only done on retransmission. 3448 */ 3449 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 3450 int space) 3451 { 3452 struct tcp_sock *tp = tcp_sk(sk); 3453 struct sk_buff *skb = to, *tmp; 3454 bool first = true; 3455 3456 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse)) 3457 return; 3458 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 3459 return; 3460 3461 skb_rbtree_walk_from_safe(skb, tmp) { 3462 if (!tcp_can_collapse(sk, skb)) 3463 break; 3464 3465 if (!tcp_skb_can_collapse(to, skb)) 3466 break; 3467 3468 space -= skb->len; 3469 3470 if (first) { 3471 first = false; 3472 continue; 3473 } 3474 3475 if (space < 0) 3476 break; 3477 3478 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 3479 break; 3480 3481 if (!tcp_collapse_retrans(sk, to)) 3482 break; 3483 } 3484 } 3485 3486 /* This retransmits one SKB. Policy decisions and retransmit queue 3487 * state updates are done by the caller. Returns non-zero if an 3488 * error occurred which prevented the send. 3489 */ 3490 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 3491 { 3492 struct inet_connection_sock *icsk = inet_csk(sk); 3493 struct tcp_sock *tp = tcp_sk(sk); 3494 unsigned int cur_mss; 3495 int diff, len, err; 3496 int avail_wnd; 3497 3498 /* Inconclusive MTU probe */ 3499 if (icsk->icsk_mtup.probe_size) 3500 icsk->icsk_mtup.probe_size = 0; 3501 3502 if (skb_still_in_host_queue(sk, skb)) { 3503 err = -EBUSY; 3504 goto out; 3505 } 3506 3507 start: 3508 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 3509 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 3510 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN; 3511 TCP_SKB_CB(skb)->seq++; 3512 goto start; 3513 } 3514 if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) { 3515 WARN_ON_ONCE(1); 3516 err = -EINVAL; 3517 goto out; 3518 } 3519 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) { 3520 err = -ENOMEM; 3521 goto out; 3522 } 3523 } 3524 3525 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) { 3526 err = -EHOSTUNREACH; /* Routing failure or similar. */ 3527 goto out; 3528 } 3529 3530 cur_mss = tcp_current_mss(sk); 3531 avail_wnd = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 3532 3533 /* If receiver has shrunk his window, and skb is out of 3534 * new window, do not retransmit it. The exception is the 3535 * case, when window is shrunk to zero. In this case 3536 * our retransmit of one segment serves as a zero window probe. 3537 */ 3538 if (avail_wnd <= 0) { 3539 if (TCP_SKB_CB(skb)->seq != tp->snd_una) { 3540 err = -EAGAIN; 3541 goto out; 3542 } 3543 avail_wnd = cur_mss; 3544 } 3545 3546 len = cur_mss * segs; 3547 if (len > avail_wnd) { 3548 len = rounddown(avail_wnd, cur_mss); 3549 if (!len) 3550 len = avail_wnd; 3551 } 3552 if (skb->len > len) { 3553 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len, 3554 cur_mss, GFP_ATOMIC)) { 3555 err = -ENOMEM; /* We'll try again later. */ 3556 goto out; 3557 } 3558 } else { 3559 if (skb_unclone_keeptruesize(skb, GFP_ATOMIC)) { 3560 err = -ENOMEM; 3561 goto out; 3562 } 3563 3564 diff = tcp_skb_pcount(skb); 3565 tcp_set_skb_tso_segs(skb, cur_mss); 3566 diff -= tcp_skb_pcount(skb); 3567 if (diff) 3568 tcp_adjust_pcount(sk, skb, diff); 3569 avail_wnd = min_t(int, avail_wnd, cur_mss); 3570 if (skb->len < avail_wnd) 3571 tcp_retrans_try_collapse(sk, skb, avail_wnd); 3572 } 3573 3574 /* RFC3168, section 6.1.1.1. ECN fallback 3575 * As AccECN uses the same SYN flags (+ AE), this check covers both 3576 * cases. 3577 */ 3578 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN) 3579 tcp_ecn_clear_syn(sk, skb); 3580 3581 /* Update global and local TCP statistics. */ 3582 segs = tcp_skb_pcount(skb); 3583 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs); 3584 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 3585 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 3586 tp->total_retrans += segs; 3587 tp->bytes_retrans += skb->len; 3588 3589 /* make sure skb->data is aligned on arches that require it 3590 * and check if ack-trimming & collapsing extended the headroom 3591 * beyond what csum_start can cover. 3592 */ 3593 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || 3594 skb_headroom(skb) >= 0xFFFF)) { 3595 struct sk_buff *nskb; 3596 3597 tcp_skb_tsorted_save(skb) { 3598 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC); 3599 if (nskb) { 3600 nskb->dev = NULL; 3601 err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC); 3602 } else { 3603 err = -ENOBUFS; 3604 } 3605 } tcp_skb_tsorted_restore(skb); 3606 3607 if (!err) { 3608 tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns); 3609 tcp_rate_skb_sent(sk, skb); 3610 } 3611 } else { 3612 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3613 } 3614 3615 if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG)) 3616 tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB, 3617 TCP_SKB_CB(skb)->seq, segs, err); 3618 3619 if (unlikely(err) && err != -EBUSY) 3620 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs); 3621 3622 /* To avoid taking spuriously low RTT samples based on a timestamp 3623 * for a transmit that never happened, always mark EVER_RETRANS 3624 */ 3625 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS; 3626 3627 out: 3628 trace_tcp_retransmit_skb(sk, skb, err); 3629 return err; 3630 } 3631 3632 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 3633 { 3634 struct tcp_sock *tp = tcp_sk(sk); 3635 int err = __tcp_retransmit_skb(sk, skb, segs); 3636 3637 if (err == 0) { 3638 #if FASTRETRANS_DEBUG > 0 3639 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 3640 net_dbg_ratelimited("retrans_out leaked\n"); 3641 } 3642 #endif 3643 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 3644 tp->retrans_out += tcp_skb_pcount(skb); 3645 } 3646 3647 /* Save stamp of the first (attempted) retransmit. */ 3648 if (!tp->retrans_stamp) 3649 tp->retrans_stamp = tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb); 3650 3651 if (tp->undo_retrans < 0) 3652 tp->undo_retrans = 0; 3653 tp->undo_retrans += tcp_skb_pcount(skb); 3654 return err; 3655 } 3656 3657 /* This gets called after a retransmit timeout, and the initially 3658 * retransmitted data is acknowledged. It tries to continue 3659 * resending the rest of the retransmit queue, until either 3660 * we've sent it all or the congestion window limit is reached. 3661 */ 3662 void tcp_xmit_retransmit_queue(struct sock *sk) 3663 { 3664 const struct inet_connection_sock *icsk = inet_csk(sk); 3665 struct sk_buff *skb, *rtx_head, *hole = NULL; 3666 struct tcp_sock *tp = tcp_sk(sk); 3667 bool rearm_timer = false; 3668 u32 max_segs; 3669 int mib_idx; 3670 3671 if (!tp->packets_out) 3672 return; 3673 3674 rtx_head = tcp_rtx_queue_head(sk); 3675 skb = tp->retransmit_skb_hint ?: rtx_head; 3676 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk)); 3677 skb_rbtree_walk_from(skb) { 3678 __u8 sacked; 3679 int segs; 3680 3681 if (tcp_pacing_check(sk)) 3682 break; 3683 3684 /* we could do better than to assign each time */ 3685 if (!hole) 3686 tp->retransmit_skb_hint = skb; 3687 3688 segs = tcp_snd_cwnd(tp) - tcp_packets_in_flight(tp); 3689 if (segs <= 0) 3690 break; 3691 sacked = TCP_SKB_CB(skb)->sacked; 3692 /* In case tcp_shift_skb_data() have aggregated large skbs, 3693 * we need to make sure not sending too bigs TSO packets 3694 */ 3695 segs = min_t(int, segs, max_segs); 3696 3697 if (tp->retrans_out >= tp->lost_out) { 3698 break; 3699 } else if (!(sacked & TCPCB_LOST)) { 3700 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 3701 hole = skb; 3702 continue; 3703 3704 } else { 3705 if (icsk->icsk_ca_state != TCP_CA_Loss) 3706 mib_idx = LINUX_MIB_TCPFASTRETRANS; 3707 else 3708 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 3709 } 3710 3711 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 3712 continue; 3713 3714 if (tcp_small_queue_check(sk, skb, 1)) 3715 break; 3716 3717 if (tcp_retransmit_skb(sk, skb, segs)) 3718 break; 3719 3720 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb)); 3721 3722 if (tcp_in_cwnd_reduction(sk)) 3723 tp->prr_out += tcp_skb_pcount(skb); 3724 3725 if (skb == rtx_head && 3726 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT) 3727 rearm_timer = true; 3728 3729 } 3730 if (rearm_timer) 3731 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3732 inet_csk(sk)->icsk_rto, true); 3733 } 3734 3735 /* We allow to exceed memory limits for FIN packets to expedite 3736 * connection tear down and (memory) recovery. 3737 * Otherwise tcp_send_fin() could be tempted to either delay FIN 3738 * or even be forced to close flow without any FIN. 3739 * In general, we want to allow one skb per socket to avoid hangs 3740 * with edge trigger epoll() 3741 */ 3742 void sk_forced_mem_schedule(struct sock *sk, int size) 3743 { 3744 int delta, amt; 3745 3746 delta = size - sk->sk_forward_alloc; 3747 if (delta <= 0) 3748 return; 3749 3750 amt = sk_mem_pages(delta); 3751 sk_forward_alloc_add(sk, amt << PAGE_SHIFT); 3752 3753 if (mem_cgroup_sk_enabled(sk)) 3754 mem_cgroup_sk_charge(sk, amt, gfp_memcg_charge() | __GFP_NOFAIL); 3755 3756 if (sk->sk_bypass_prot_mem) 3757 return; 3758 3759 sk_memory_allocated_add(sk, amt); 3760 } 3761 3762 /* Send a FIN. The caller locks the socket for us. 3763 * We should try to send a FIN packet really hard, but eventually give up. 3764 */ 3765 void tcp_send_fin(struct sock *sk) 3766 { 3767 struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk); 3768 struct tcp_sock *tp = tcp_sk(sk); 3769 3770 /* Optimization, tack on the FIN if we have one skb in write queue and 3771 * this skb was not yet sent, or we are under memory pressure. 3772 * Note: in the latter case, FIN packet will be sent after a timeout, 3773 * as TCP stack thinks it has already been transmitted. 3774 */ 3775 tskb = tail; 3776 if (!tskb && tcp_under_memory_pressure(sk)) 3777 tskb = skb_rb_last(&sk->tcp_rtx_queue); 3778 3779 if (tskb) { 3780 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN; 3781 TCP_SKB_CB(tskb)->end_seq++; 3782 tp->write_seq++; 3783 if (!tail) { 3784 /* This means tskb was already sent. 3785 * Pretend we included the FIN on previous transmit. 3786 * We need to set tp->snd_nxt to the value it would have 3787 * if FIN had been sent. This is because retransmit path 3788 * does not change tp->snd_nxt. 3789 */ 3790 WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1); 3791 return; 3792 } 3793 } else { 3794 skb = alloc_skb_fclone(MAX_TCP_HEADER, 3795 sk_gfp_mask(sk, GFP_ATOMIC | 3796 __GFP_NOWARN)); 3797 if (unlikely(!skb)) 3798 return; 3799 3800 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 3801 skb_reserve(skb, MAX_TCP_HEADER); 3802 sk_forced_mem_schedule(sk, skb->truesize); 3803 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 3804 tcp_init_nondata_skb(skb, sk, tp->write_seq, 3805 TCPHDR_ACK | TCPHDR_FIN); 3806 tcp_queue_skb(sk, skb); 3807 } 3808 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF); 3809 } 3810 3811 /* We get here when a process closes a file descriptor (either due to 3812 * an explicit close() or as a byproduct of exit()'ing) and there 3813 * was unread data in the receive queue. This behavior is recommended 3814 * by RFC 2525, section 2.17. -DaveM 3815 */ 3816 void tcp_send_active_reset(struct sock *sk, gfp_t priority, 3817 enum sk_rst_reason reason) 3818 { 3819 struct sk_buff *skb; 3820 3821 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 3822 3823 /* NOTE: No TCP options attached and we never retransmit this. */ 3824 skb = alloc_skb(MAX_TCP_HEADER, priority); 3825 if (!skb) { 3826 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3827 return; 3828 } 3829 3830 /* Reserve space for headers and prepare control bits. */ 3831 skb_reserve(skb, MAX_TCP_HEADER); 3832 tcp_init_nondata_skb(skb, sk, tcp_acceptable_seq(sk), 3833 TCPHDR_ACK | TCPHDR_RST); 3834 tcp_mstamp_refresh(tcp_sk(sk)); 3835 /* Send it off. */ 3836 if (tcp_transmit_skb(sk, skb, 0, priority)) 3837 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3838 3839 /* skb of trace_tcp_send_reset() keeps the skb that caused RST, 3840 * skb here is different to the troublesome skb, so use NULL 3841 */ 3842 trace_tcp_send_reset(sk, NULL, reason); 3843 } 3844 3845 /* Send a crossed SYN-ACK during socket establishment. 3846 * WARNING: This routine must only be called when we have already sent 3847 * a SYN packet that crossed the incoming SYN that caused this routine 3848 * to get called. If this assumption fails then the initial rcv_wnd 3849 * and rcv_wscale values will not be correct. 3850 */ 3851 int tcp_send_synack(struct sock *sk) 3852 { 3853 struct sk_buff *skb; 3854 3855 skb = tcp_rtx_queue_head(sk); 3856 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 3857 pr_err("%s: wrong queue state\n", __func__); 3858 return -EFAULT; 3859 } 3860 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 3861 if (skb_cloned(skb)) { 3862 struct sk_buff *nskb; 3863 3864 tcp_skb_tsorted_save(skb) { 3865 nskb = skb_copy(skb, GFP_ATOMIC); 3866 } tcp_skb_tsorted_restore(skb); 3867 if (!nskb) 3868 return -ENOMEM; 3869 INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor); 3870 tcp_highest_sack_replace(sk, skb, nskb); 3871 tcp_rtx_queue_unlink_and_free(skb, sk); 3872 __skb_header_release(nskb); 3873 tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb); 3874 sk_wmem_queued_add(sk, nskb->truesize); 3875 sk_mem_charge(sk, nskb->truesize); 3876 skb = nskb; 3877 } 3878 3879 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 3880 tcp_ecn_send_synack(sk, skb); 3881 } 3882 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3883 } 3884 3885 /** 3886 * tcp_make_synack - Allocate one skb and build a SYNACK packet. 3887 * @sk: listener socket 3888 * @dst: dst entry attached to the SYNACK. It is consumed and caller 3889 * should not use it again. 3890 * @req: request_sock pointer 3891 * @foc: cookie for tcp fast open 3892 * @synack_type: Type of synack to prepare 3893 * @syn_skb: SYN packet just received. It could be NULL for rtx case. 3894 */ 3895 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 3896 struct request_sock *req, 3897 struct tcp_fastopen_cookie *foc, 3898 enum tcp_synack_type synack_type, 3899 struct sk_buff *syn_skb) 3900 { 3901 struct inet_request_sock *ireq = inet_rsk(req); 3902 const struct tcp_sock *tp = tcp_sk(sk); 3903 struct tcp_out_options opts; 3904 struct tcp_key key = {}; 3905 struct sk_buff *skb; 3906 int tcp_header_size; 3907 struct tcphdr *th; 3908 int mss; 3909 u64 now; 3910 3911 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 3912 if (unlikely(!skb)) { 3913 dst_release(dst); 3914 return NULL; 3915 } 3916 /* Reserve space for headers. */ 3917 skb_reserve(skb, MAX_TCP_HEADER); 3918 3919 switch (synack_type) { 3920 case TCP_SYNACK_NORMAL: 3921 skb_set_owner_edemux(skb, req_to_sk(req)); 3922 break; 3923 case TCP_SYNACK_COOKIE: 3924 /* Under synflood, we do not attach skb to a socket, 3925 * to avoid false sharing. 3926 */ 3927 break; 3928 case TCP_SYNACK_FASTOPEN: 3929 /* sk is a const pointer, because we want to express multiple 3930 * cpu might call us concurrently. 3931 * sk->sk_wmem_alloc in an atomic, we can promote to rw. 3932 */ 3933 skb_set_owner_w(skb, (struct sock *)sk); 3934 break; 3935 } 3936 skb_dst_set(skb, dst); 3937 3938 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3939 3940 memset(&opts, 0, sizeof(opts)); 3941 now = tcp_clock_ns(); 3942 #ifdef CONFIG_SYN_COOKIES 3943 if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok)) 3944 skb_set_delivery_time(skb, cookie_init_timestamp(req, now), 3945 SKB_CLOCK_MONOTONIC); 3946 else 3947 #endif 3948 { 3949 skb_set_delivery_time(skb, now, SKB_CLOCK_MONOTONIC); 3950 if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */ 3951 tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb); 3952 } 3953 3954 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO) 3955 rcu_read_lock(); 3956 #endif 3957 if (tcp_rsk_used_ao(req)) { 3958 #ifdef CONFIG_TCP_AO 3959 struct tcp_ao_key *ao_key = NULL; 3960 u8 keyid = tcp_rsk(req)->ao_keyid; 3961 u8 rnext = tcp_rsk(req)->ao_rcv_next; 3962 3963 ao_key = tcp_sk(sk)->af_specific->ao_lookup(sk, req_to_sk(req), 3964 keyid, -1); 3965 /* If there is no matching key - avoid sending anything, 3966 * especially usigned segments. It could try harder and lookup 3967 * for another peer-matching key, but the peer has requested 3968 * ao_keyid (RFC5925 RNextKeyID), so let's keep it simple here. 3969 */ 3970 if (unlikely(!ao_key)) { 3971 trace_tcp_ao_synack_no_key(sk, keyid, rnext); 3972 rcu_read_unlock(); 3973 kfree_skb(skb); 3974 net_warn_ratelimited("TCP-AO: the keyid %u from SYN packet is not present - not sending SYNACK\n", 3975 keyid); 3976 return NULL; 3977 } 3978 key.ao_key = ao_key; 3979 key.type = TCP_KEY_AO; 3980 #endif 3981 } else { 3982 #ifdef CONFIG_TCP_MD5SIG 3983 key.md5_key = tcp_rsk(req)->af_specific->req_md5_lookup(sk, 3984 req_to_sk(req)); 3985 if (key.md5_key) 3986 key.type = TCP_KEY_MD5; 3987 #endif 3988 } 3989 skb_set_hash(skb, READ_ONCE(tcp_rsk(req)->txhash), PKT_HASH_TYPE_L4); 3990 /* bpf program will be interested in the tcp_flags */ 3991 TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK; 3992 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, 3993 &key, foc, synack_type, syn_skb) 3994 + sizeof(*th); 3995 3996 skb_push(skb, tcp_header_size); 3997 skb_reset_transport_header(skb); 3998 3999 th = (struct tcphdr *)skb->data; 4000 memset(th, 0, sizeof(struct tcphdr)); 4001 th->syn = 1; 4002 th->ack = 1; 4003 tcp_ecn_make_synack(req, th); 4004 th->source = htons(ireq->ir_num); 4005 th->dest = ireq->ir_rmt_port; 4006 skb->mark = ireq->ir_mark; 4007 skb->ip_summed = CHECKSUM_PARTIAL; 4008 th->seq = htonl(tcp_rsk(req)->snt_isn); 4009 /* XXX data is queued and acked as is. No buffer/window check */ 4010 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); 4011 4012 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 4013 th->window = htons(min(req->rsk_rcv_wnd, 65535U)); 4014 tcp_options_write(th, NULL, tcp_rsk(req), &opts, &key); 4015 th->doff = (tcp_header_size >> 2); 4016 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS); 4017 4018 /* Okay, we have all we need - do the md5 hash if needed */ 4019 if (tcp_key_is_md5(&key)) { 4020 #ifdef CONFIG_TCP_MD5SIG 4021 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 4022 key.md5_key, req_to_sk(req), skb); 4023 #endif 4024 } else if (tcp_key_is_ao(&key)) { 4025 #ifdef CONFIG_TCP_AO 4026 tcp_rsk(req)->af_specific->ao_synack_hash(opts.hash_location, 4027 key.ao_key, req, skb, 4028 opts.hash_location - (u8 *)th, 0); 4029 #endif 4030 } 4031 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO) 4032 rcu_read_unlock(); 4033 #endif 4034 4035 bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb, 4036 synack_type, &opts); 4037 4038 skb_set_delivery_time(skb, now, SKB_CLOCK_MONOTONIC); 4039 tcp_add_tx_delay(skb, tp); 4040 4041 return skb; 4042 } 4043 EXPORT_IPV6_MOD(tcp_make_synack); 4044 4045 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst) 4046 { 4047 struct inet_connection_sock *icsk = inet_csk(sk); 4048 const struct tcp_congestion_ops *ca; 4049 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO); 4050 4051 if (ca_key == TCP_CA_UNSPEC) 4052 return; 4053 4054 rcu_read_lock(); 4055 ca = tcp_ca_find_key(ca_key); 4056 if (likely(ca && bpf_try_module_get(ca, ca->owner))) { 4057 bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner); 4058 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst); 4059 icsk->icsk_ca_ops = ca; 4060 } 4061 rcu_read_unlock(); 4062 } 4063 4064 /* Do all connect socket setups that can be done AF independent. */ 4065 static void tcp_connect_init(struct sock *sk) 4066 { 4067 const struct dst_entry *dst = __sk_dst_get(sk); 4068 struct tcp_sock *tp = tcp_sk(sk); 4069 __u8 rcv_wscale; 4070 u16 user_mss; 4071 u32 rcv_wnd; 4072 4073 /* We'll fix this up when we get a response from the other end. 4074 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 4075 */ 4076 tp->tcp_header_len = sizeof(struct tcphdr); 4077 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps)) 4078 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED; 4079 4080 tcp_ao_connect_init(sk); 4081 4082 /* If user gave his TCP_MAXSEG, record it to clamp */ 4083 user_mss = READ_ONCE(tp->rx_opt.user_mss); 4084 if (user_mss) 4085 tp->rx_opt.mss_clamp = user_mss; 4086 tp->max_window = 0; 4087 tcp_mtup_init(sk); 4088 tcp_sync_mss(sk, dst_mtu(dst)); 4089 4090 tcp_ca_dst_init(sk, dst); 4091 4092 if (!tp->window_clamp) 4093 WRITE_ONCE(tp->window_clamp, dst_metric(dst, RTAX_WINDOW)); 4094 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 4095 4096 tcp_initialize_rcv_mss(sk); 4097 4098 /* limit the window selection if the user enforce a smaller rx buffer */ 4099 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 4100 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 4101 WRITE_ONCE(tp->window_clamp, tcp_full_space(sk)); 4102 4103 rcv_wnd = tcp_rwnd_init_bpf(sk); 4104 if (rcv_wnd == 0) 4105 rcv_wnd = dst_metric(dst, RTAX_INITRWND); 4106 4107 tcp_select_initial_window(sk, tcp_full_space(sk), 4108 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 4109 &tp->rcv_wnd, 4110 &tp->window_clamp, 4111 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling), 4112 &rcv_wscale, 4113 rcv_wnd); 4114 4115 tp->rx_opt.rcv_wscale = rcv_wscale; 4116 tp->rcv_ssthresh = tp->rcv_wnd; 4117 4118 WRITE_ONCE(sk->sk_err, 0); 4119 sock_reset_flag(sk, SOCK_DONE); 4120 tp->snd_wnd = 0; 4121 tcp_init_wl(tp, 0); 4122 tcp_write_queue_purge(sk); 4123 tp->snd_una = tp->write_seq; 4124 tp->snd_sml = tp->write_seq; 4125 tp->snd_up = tp->write_seq; 4126 WRITE_ONCE(tp->snd_nxt, tp->write_seq); 4127 4128 if (likely(!tp->repair)) 4129 tp->rcv_nxt = 0; 4130 else 4131 tp->rcv_tstamp = tcp_jiffies32; 4132 tp->rcv_wup = tp->rcv_nxt; 4133 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 4134 4135 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk); 4136 WRITE_ONCE(inet_csk(sk)->icsk_retransmits, 0); 4137 tcp_clear_retrans(tp); 4138 } 4139 4140 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 4141 { 4142 struct tcp_sock *tp = tcp_sk(sk); 4143 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 4144 4145 tcb->end_seq += skb->len; 4146 __skb_header_release(skb); 4147 sk_wmem_queued_add(sk, skb->truesize); 4148 sk_mem_charge(sk, skb->truesize); 4149 WRITE_ONCE(tp->write_seq, tcb->end_seq); 4150 tp->packets_out += tcp_skb_pcount(skb); 4151 } 4152 4153 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 4154 * queue a data-only packet after the regular SYN, such that regular SYNs 4155 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 4156 * only the SYN sequence, the data are retransmitted in the first ACK. 4157 * If cookie is not cached or other error occurs, falls back to send a 4158 * regular SYN with Fast Open cookie request option. 4159 */ 4160 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 4161 { 4162 struct inet_connection_sock *icsk = inet_csk(sk); 4163 struct tcp_sock *tp = tcp_sk(sk); 4164 struct tcp_fastopen_request *fo = tp->fastopen_req; 4165 struct page_frag *pfrag = sk_page_frag(sk); 4166 struct sk_buff *syn_data; 4167 int space, err = 0; 4168 4169 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 4170 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie)) 4171 goto fallback; 4172 4173 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 4174 * user-MSS. Reserve maximum option space for middleboxes that add 4175 * private TCP options. The cost is reduced data space in SYN :( 4176 */ 4177 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp); 4178 /* Sync mss_cache after updating the mss_clamp */ 4179 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 4180 4181 space = __tcp_mtu_to_mss(sk, icsk->icsk_pmtu_cookie) - 4182 MAX_TCP_OPTION_SPACE; 4183 4184 space = min_t(size_t, space, fo->size); 4185 4186 if (space && 4187 !skb_page_frag_refill(min_t(size_t, space, PAGE_SIZE), 4188 pfrag, sk->sk_allocation)) 4189 goto fallback; 4190 syn_data = tcp_stream_alloc_skb(sk, sk->sk_allocation, false); 4191 if (!syn_data) 4192 goto fallback; 4193 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb)); 4194 if (space) { 4195 space = min_t(size_t, space, pfrag->size - pfrag->offset); 4196 space = tcp_wmem_schedule(sk, space); 4197 } 4198 if (space) { 4199 space = copy_page_from_iter(pfrag->page, pfrag->offset, 4200 space, &fo->data->msg_iter); 4201 if (unlikely(!space)) { 4202 tcp_skb_tsorted_anchor_cleanup(syn_data); 4203 kfree_skb(syn_data); 4204 goto fallback; 4205 } 4206 skb_fill_page_desc(syn_data, 0, pfrag->page, 4207 pfrag->offset, space); 4208 page_ref_inc(pfrag->page); 4209 pfrag->offset += space; 4210 skb_len_add(syn_data, space); 4211 skb_zcopy_set(syn_data, fo->uarg, NULL); 4212 } 4213 /* No more data pending in inet_wait_for_connect() */ 4214 if (space == fo->size) 4215 fo->data = NULL; 4216 fo->copied = space; 4217 4218 tcp_connect_queue_skb(sk, syn_data); 4219 if (syn_data->len) 4220 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 4221 4222 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation); 4223 4224 skb_set_delivery_time(syn, syn_data->skb_mstamp_ns, SKB_CLOCK_MONOTONIC); 4225 4226 /* Now full SYN+DATA was cloned and sent (or not), 4227 * remove the SYN from the original skb (syn_data) 4228 * we keep in write queue in case of a retransmit, as we 4229 * also have the SYN packet (with no data) in the same queue. 4230 */ 4231 TCP_SKB_CB(syn_data)->seq++; 4232 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH; 4233 if (!err) { 4234 tp->syn_data = (fo->copied > 0); 4235 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data); 4236 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT); 4237 goto done; 4238 } 4239 4240 /* data was not sent, put it in write_queue */ 4241 __skb_queue_tail(&sk->sk_write_queue, syn_data); 4242 tp->packets_out -= tcp_skb_pcount(syn_data); 4243 4244 fallback: 4245 /* Send a regular SYN with Fast Open cookie request option */ 4246 if (fo->cookie.len > 0) 4247 fo->cookie.len = 0; 4248 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 4249 if (err) 4250 tp->syn_fastopen = 0; 4251 done: 4252 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 4253 return err; 4254 } 4255 4256 /* Build a SYN and send it off. */ 4257 int tcp_connect(struct sock *sk) 4258 { 4259 struct tcp_sock *tp = tcp_sk(sk); 4260 struct sk_buff *buff; 4261 int err; 4262 4263 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL); 4264 4265 #if defined(CONFIG_TCP_MD5SIG) && defined(CONFIG_TCP_AO) 4266 /* Has to be checked late, after setting daddr/saddr/ops. 4267 * Return error if the peer has both a md5 and a tcp-ao key 4268 * configured as this is ambiguous. 4269 */ 4270 if (unlikely(rcu_dereference_protected(tp->md5sig_info, 4271 lockdep_sock_is_held(sk)))) { 4272 bool needs_ao = !!tp->af_specific->ao_lookup(sk, sk, -1, -1); 4273 bool needs_md5 = !!tp->af_specific->md5_lookup(sk, sk); 4274 struct tcp_ao_info *ao_info; 4275 4276 ao_info = rcu_dereference_check(tp->ao_info, 4277 lockdep_sock_is_held(sk)); 4278 if (ao_info) { 4279 /* This is an extra check: tcp_ao_required() in 4280 * tcp_v{4,6}_parse_md5_keys() should prevent adding 4281 * md5 keys on ao_required socket. 4282 */ 4283 needs_ao |= ao_info->ao_required; 4284 WARN_ON_ONCE(ao_info->ao_required && needs_md5); 4285 } 4286 if (needs_md5 && needs_ao) 4287 return -EKEYREJECTED; 4288 4289 /* If we have a matching md5 key and no matching tcp-ao key 4290 * then free up ao_info if allocated. 4291 */ 4292 if (needs_md5) { 4293 tcp_ao_destroy_sock(sk, false); 4294 } else if (needs_ao) { 4295 tcp_clear_md5_list(sk); 4296 kfree(rcu_replace_pointer(tp->md5sig_info, NULL, 4297 lockdep_sock_is_held(sk))); 4298 } 4299 } 4300 #endif 4301 #ifdef CONFIG_TCP_AO 4302 if (unlikely(rcu_dereference_protected(tp->ao_info, 4303 lockdep_sock_is_held(sk)))) { 4304 /* Don't allow connecting if ao is configured but no 4305 * matching key is found. 4306 */ 4307 if (!tp->af_specific->ao_lookup(sk, sk, -1, -1)) 4308 return -EKEYREJECTED; 4309 } 4310 #endif 4311 4312 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 4313 return -EHOSTUNREACH; /* Routing failure or similar. */ 4314 4315 tcp_connect_init(sk); 4316 4317 if (unlikely(tp->repair)) { 4318 tcp_finish_connect(sk, NULL); 4319 return 0; 4320 } 4321 4322 buff = tcp_stream_alloc_skb(sk, sk->sk_allocation, true); 4323 if (unlikely(!buff)) 4324 return -ENOBUFS; 4325 4326 /* SYN eats a sequence byte, write_seq updated by 4327 * tcp_connect_queue_skb(). 4328 */ 4329 tcp_init_nondata_skb(buff, sk, tp->write_seq, TCPHDR_SYN); 4330 tcp_mstamp_refresh(tp); 4331 tp->retrans_stamp = tcp_time_stamp_ts(tp); 4332 tcp_connect_queue_skb(sk, buff); 4333 tcp_ecn_send_syn(sk, buff); 4334 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 4335 4336 /* Send off SYN; include data in Fast Open. */ 4337 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 4338 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 4339 if (err == -ECONNREFUSED) 4340 return err; 4341 4342 /* We change tp->snd_nxt after the tcp_transmit_skb() call 4343 * in order to make this packet get counted in tcpOutSegs. 4344 */ 4345 WRITE_ONCE(tp->snd_nxt, tp->write_seq); 4346 tp->pushed_seq = tp->write_seq; 4347 buff = tcp_send_head(sk); 4348 if (unlikely(buff)) { 4349 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq); 4350 tp->pushed_seq = TCP_SKB_CB(buff)->seq; 4351 } 4352 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 4353 4354 /* Timer for repeating the SYN until an answer. */ 4355 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 4356 inet_csk(sk)->icsk_rto, false); 4357 return 0; 4358 } 4359 EXPORT_SYMBOL(tcp_connect); 4360 4361 u32 tcp_delack_max(const struct sock *sk) 4362 { 4363 u32 delack_from_rto_min = max(tcp_rto_min(sk), 2) - 1; 4364 4365 return min(READ_ONCE(inet_csk(sk)->icsk_delack_max), delack_from_rto_min); 4366 } 4367 4368 /* Send out a delayed ack, the caller does the policy checking 4369 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 4370 * for details. 4371 */ 4372 void tcp_send_delayed_ack(struct sock *sk) 4373 { 4374 struct inet_connection_sock *icsk = inet_csk(sk); 4375 int ato = icsk->icsk_ack.ato; 4376 unsigned long timeout; 4377 4378 if (ato > TCP_DELACK_MIN) { 4379 const struct tcp_sock *tp = tcp_sk(sk); 4380 int max_ato = HZ / 2; 4381 4382 if (inet_csk_in_pingpong_mode(sk) || 4383 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 4384 max_ato = TCP_DELACK_MAX; 4385 4386 /* Slow path, intersegment interval is "high". */ 4387 4388 /* If some rtt estimate is known, use it to bound delayed ack. 4389 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 4390 * directly. 4391 */ 4392 if (tp->srtt_us) { 4393 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3), 4394 TCP_DELACK_MIN); 4395 4396 if (rtt < max_ato) 4397 max_ato = rtt; 4398 } 4399 4400 ato = min(ato, max_ato); 4401 } 4402 4403 ato = min_t(u32, ato, tcp_delack_max(sk)); 4404 4405 /* Stay within the limit we were given */ 4406 timeout = jiffies + ato; 4407 4408 /* Use new timeout only if there wasn't a older one earlier. */ 4409 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 4410 /* If delack timer is about to expire, send ACK now. */ 4411 if (time_before_eq(icsk_delack_timeout(icsk), jiffies + (ato >> 2))) { 4412 tcp_send_ack(sk); 4413 return; 4414 } 4415 4416 if (!time_before(timeout, icsk_delack_timeout(icsk))) 4417 timeout = icsk_delack_timeout(icsk); 4418 } 4419 smp_store_release(&icsk->icsk_ack.pending, 4420 icsk->icsk_ack.pending | ICSK_ACK_SCHED | ICSK_ACK_TIMER); 4421 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 4422 } 4423 4424 /* This routine sends an ack and also updates the window. */ 4425 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt, u16 flags) 4426 { 4427 struct sk_buff *buff; 4428 4429 /* If we have been reset, we may not send again. */ 4430 if (sk->sk_state == TCP_CLOSE) 4431 return; 4432 4433 /* We are not putting this on the write queue, so 4434 * tcp_transmit_skb() will set the ownership to this 4435 * sock. 4436 */ 4437 buff = alloc_skb(MAX_TCP_HEADER, 4438 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 4439 if (unlikely(!buff)) { 4440 struct inet_connection_sock *icsk = inet_csk(sk); 4441 unsigned long delay; 4442 4443 delay = TCP_DELACK_MAX << icsk->icsk_ack.retry; 4444 if (delay < tcp_rto_max(sk)) 4445 icsk->icsk_ack.retry++; 4446 inet_csk_schedule_ack(sk); 4447 icsk->icsk_ack.ato = TCP_ATO_MIN; 4448 tcp_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, false); 4449 return; 4450 } 4451 4452 /* Reserve space for headers and prepare control bits. */ 4453 skb_reserve(buff, MAX_TCP_HEADER); 4454 tcp_init_nondata_skb(buff, sk, 4455 tcp_acceptable_seq(sk), TCPHDR_ACK | flags); 4456 4457 /* We do not want pure acks influencing TCP Small Queues or fq/pacing 4458 * too much. 4459 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784 4460 */ 4461 skb_set_tcp_pure_ack(buff); 4462 4463 /* Send it off, this clears delayed acks for us. */ 4464 __tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt); 4465 } 4466 EXPORT_SYMBOL_GPL(__tcp_send_ack); 4467 4468 void tcp_send_ack(struct sock *sk) 4469 { 4470 __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt, 0); 4471 } 4472 4473 /* This routine sends a packet with an out of date sequence 4474 * number. It assumes the other end will try to ack it. 4475 * 4476 * Question: what should we make while urgent mode? 4477 * 4.4BSD forces sending single byte of data. We cannot send 4478 * out of window data, because we have SND.NXT==SND.MAX... 4479 * 4480 * Current solution: to send TWO zero-length segments in urgent mode: 4481 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 4482 * out-of-date with SND.UNA-1 to probe window. 4483 */ 4484 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib) 4485 { 4486 struct tcp_sock *tp = tcp_sk(sk); 4487 struct sk_buff *skb; 4488 4489 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 4490 skb = alloc_skb(MAX_TCP_HEADER, 4491 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 4492 if (!skb) 4493 return -1; 4494 4495 /* Reserve space for headers and set control bits. */ 4496 skb_reserve(skb, MAX_TCP_HEADER); 4497 /* Use a previous sequence. This should cause the other 4498 * end to send an ack. Don't queue or clone SKB, just 4499 * send it. 4500 */ 4501 tcp_init_nondata_skb(skb, sk, tp->snd_una - !urgent, TCPHDR_ACK); 4502 NET_INC_STATS(sock_net(sk), mib); 4503 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0); 4504 } 4505 4506 /* Called from setsockopt( ... TCP_REPAIR ) */ 4507 void tcp_send_window_probe(struct sock *sk) 4508 { 4509 if (sk->sk_state == TCP_ESTABLISHED) { 4510 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 4511 tcp_mstamp_refresh(tcp_sk(sk)); 4512 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE); 4513 } 4514 } 4515 4516 /* Initiate keepalive or window probe from timer. */ 4517 int tcp_write_wakeup(struct sock *sk, int mib) 4518 { 4519 struct tcp_sock *tp = tcp_sk(sk); 4520 struct sk_buff *skb; 4521 4522 if (sk->sk_state == TCP_CLOSE) 4523 return -1; 4524 4525 skb = tcp_send_head(sk); 4526 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 4527 int err; 4528 unsigned int mss = tcp_current_mss(sk); 4529 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 4530 4531 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 4532 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 4533 4534 /* We are probing the opening of a window 4535 * but the window size is != 0 4536 * must have been a result SWS avoidance ( sender ) 4537 */ 4538 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 4539 skb->len > mss) { 4540 seg_size = min(seg_size, mss); 4541 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 4542 if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 4543 skb, seg_size, mss, GFP_ATOMIC)) 4544 return -1; 4545 } else if (!tcp_skb_pcount(skb)) 4546 tcp_set_skb_tso_segs(skb, mss); 4547 4548 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 4549 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 4550 if (!err) 4551 tcp_event_new_data_sent(sk, skb); 4552 return err; 4553 } else { 4554 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 4555 tcp_xmit_probe_skb(sk, 1, mib); 4556 return tcp_xmit_probe_skb(sk, 0, mib); 4557 } 4558 } 4559 4560 /* A window probe timeout has occurred. If window is not closed send 4561 * a partial packet else a zero probe. 4562 */ 4563 void tcp_send_probe0(struct sock *sk) 4564 { 4565 struct inet_connection_sock *icsk = inet_csk(sk); 4566 struct tcp_sock *tp = tcp_sk(sk); 4567 struct net *net = sock_net(sk); 4568 unsigned long timeout; 4569 int err; 4570 4571 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE); 4572 4573 if (tp->packets_out || tcp_write_queue_empty(sk)) { 4574 /* Cancel probe timer, if it is not required. */ 4575 WRITE_ONCE(icsk->icsk_probes_out, 0); 4576 icsk->icsk_backoff = 0; 4577 icsk->icsk_probes_tstamp = 0; 4578 return; 4579 } 4580 4581 WRITE_ONCE(icsk->icsk_probes_out, icsk->icsk_probes_out + 1); 4582 if (err <= 0) { 4583 if (icsk->icsk_backoff < READ_ONCE(net->ipv4.sysctl_tcp_retries2)) 4584 icsk->icsk_backoff++; 4585 timeout = tcp_probe0_when(sk, tcp_rto_max(sk)); 4586 } else { 4587 /* If packet was not sent due to local congestion, 4588 * Let senders fight for local resources conservatively. 4589 */ 4590 timeout = TCP_RESOURCE_PROBE_INTERVAL; 4591 } 4592 4593 timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout); 4594 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, true); 4595 } 4596 4597 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req) 4598 { 4599 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific; 4600 struct flowi fl; 4601 int res; 4602 4603 /* Paired with WRITE_ONCE() in sock_setsockopt() */ 4604 if (READ_ONCE(sk->sk_txrehash) == SOCK_TXREHASH_ENABLED) 4605 WRITE_ONCE(tcp_rsk(req)->txhash, net_tx_rndhash()); 4606 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL, 4607 NULL); 4608 if (!res) { 4609 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 4610 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 4611 if (unlikely(tcp_passive_fastopen(sk))) { 4612 /* sk has const attribute because listeners are lockless. 4613 * However in this case, we are dealing with a passive fastopen 4614 * socket thus we can change total_retrans value. 4615 */ 4616 tcp_sk_rw(sk)->total_retrans++; 4617 } 4618 trace_tcp_retransmit_synack(sk, req); 4619 WRITE_ONCE(req->num_retrans, req->num_retrans + 1); 4620 } 4621 return res; 4622 } 4623 EXPORT_IPV6_MOD(tcp_rtx_synack); 4624