1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 *
21 * Fixes:
22 * Alan Cox : Numerous verify_area() calls
23 * Alan Cox : Set the ACK bit on a reset
24 * Alan Cox : Stopped it crashing if it closed while
25 * sk->inuse=1 and was trying to connect
26 * (tcp_err()).
27 * Alan Cox : All icmp error handling was broken
28 * pointers passed where wrong and the
29 * socket was looked up backwards. Nobody
30 * tested any icmp error code obviously.
31 * Alan Cox : tcp_err() now handled properly. It
32 * wakes people on errors. poll
33 * behaves and the icmp error race
34 * has gone by moving it into sock.c
35 * Alan Cox : tcp_send_reset() fixed to work for
36 * everything not just packets for
37 * unknown sockets.
38 * Alan Cox : tcp option processing.
39 * Alan Cox : Reset tweaked (still not 100%) [Had
40 * syn rule wrong]
41 * Herp Rosmanith : More reset fixes
42 * Alan Cox : No longer acks invalid rst frames.
43 * Acking any kind of RST is right out.
44 * Alan Cox : Sets an ignore me flag on an rst
45 * receive otherwise odd bits of prattle
46 * escape still
47 * Alan Cox : Fixed another acking RST frame bug.
48 * Should stop LAN workplace lockups.
49 * Alan Cox : Some tidyups using the new skb list
50 * facilities
51 * Alan Cox : sk->keepopen now seems to work
52 * Alan Cox : Pulls options out correctly on accepts
53 * Alan Cox : Fixed assorted sk->rqueue->next errors
54 * Alan Cox : PSH doesn't end a TCP read. Switched a
55 * bit to skb ops.
56 * Alan Cox : Tidied tcp_data to avoid a potential
57 * nasty.
58 * Alan Cox : Added some better commenting, as the
59 * tcp is hard to follow
60 * Alan Cox : Removed incorrect check for 20 * psh
61 * Michael O'Reilly : ack < copied bug fix.
62 * Johannes Stille : Misc tcp fixes (not all in yet).
63 * Alan Cox : FIN with no memory -> CRASH
64 * Alan Cox : Added socket option proto entries.
65 * Also added awareness of them to accept.
66 * Alan Cox : Added TCP options (SOL_TCP)
67 * Alan Cox : Switched wakeup calls to callbacks,
68 * so the kernel can layer network
69 * sockets.
70 * Alan Cox : Use ip_tos/ip_ttl settings.
71 * Alan Cox : Handle FIN (more) properly (we hope).
72 * Alan Cox : RST frames sent on unsynchronised
73 * state ack error.
74 * Alan Cox : Put in missing check for SYN bit.
75 * Alan Cox : Added tcp_select_window() aka NET2E
76 * window non shrink trick.
77 * Alan Cox : Added a couple of small NET2E timer
78 * fixes
79 * Charles Hedrick : TCP fixes
80 * Toomas Tamm : TCP window fixes
81 * Alan Cox : Small URG fix to rlogin ^C ack fight
82 * Charles Hedrick : Rewrote most of it to actually work
83 * Linus : Rewrote tcp_read() and URG handling
84 * completely
85 * Gerhard Koerting: Fixed some missing timer handling
86 * Matthew Dillon : Reworked TCP machine states as per RFC
87 * Gerhard Koerting: PC/TCP workarounds
88 * Adam Caldwell : Assorted timer/timing errors
89 * Matthew Dillon : Fixed another RST bug
90 * Alan Cox : Move to kernel side addressing changes.
91 * Alan Cox : Beginning work on TCP fastpathing
92 * (not yet usable)
93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
94 * Alan Cox : TCP fast path debugging
95 * Alan Cox : Window clamping
96 * Michael Riepe : Bug in tcp_check()
97 * Matt Dillon : More TCP improvements and RST bug fixes
98 * Matt Dillon : Yet more small nasties remove from the
99 * TCP code (Be very nice to this man if
100 * tcp finally works 100%) 8)
101 * Alan Cox : BSD accept semantics.
102 * Alan Cox : Reset on closedown bug.
103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
104 * Michael Pall : Handle poll() after URG properly in
105 * all cases.
106 * Michael Pall : Undo the last fix in tcp_read_urg()
107 * (multi URG PUSH broke rlogin).
108 * Michael Pall : Fix the multi URG PUSH problem in
109 * tcp_readable(), poll() after URG
110 * works now.
111 * Michael Pall : recv(...,MSG_OOB) never blocks in the
112 * BSD api.
113 * Alan Cox : Changed the semantics of sk->socket to
114 * fix a race and a signal problem with
115 * accept() and async I/O.
116 * Alan Cox : Relaxed the rules on tcp_sendto().
117 * Yury Shevchuk : Really fixed accept() blocking problem.
118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
119 * clients/servers which listen in on
120 * fixed ports.
121 * Alan Cox : Cleaned the above up and shrank it to
122 * a sensible code size.
123 * Alan Cox : Self connect lockup fix.
124 * Alan Cox : No connect to multicast.
125 * Ross Biro : Close unaccepted children on master
126 * socket close.
127 * Alan Cox : Reset tracing code.
128 * Alan Cox : Spurious resets on shutdown.
129 * Alan Cox : Giant 15 minute/60 second timer error
130 * Alan Cox : Small whoops in polling before an
131 * accept.
132 * Alan Cox : Kept the state trace facility since
133 * it's handy for debugging.
134 * Alan Cox : More reset handler fixes.
135 * Alan Cox : Started rewriting the code based on
136 * the RFC's for other useful protocol
137 * references see: Comer, KA9Q NOS, and
138 * for a reference on the difference
139 * between specifications and how BSD
140 * works see the 4.4lite source.
141 * A.N.Kuznetsov : Don't time wait on completion of tidy
142 * close.
143 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
144 * Linus Torvalds : Fixed BSD port reuse to work first syn
145 * Alan Cox : Reimplemented timers as per the RFC
146 * and using multiple timers for sanity.
147 * Alan Cox : Small bug fixes, and a lot of new
148 * comments.
149 * Alan Cox : Fixed dual reader crash by locking
150 * the buffers (much like datagram.c)
151 * Alan Cox : Fixed stuck sockets in probe. A probe
152 * now gets fed up of retrying without
153 * (even a no space) answer.
154 * Alan Cox : Extracted closing code better
155 * Alan Cox : Fixed the closing state machine to
156 * resemble the RFC.
157 * Alan Cox : More 'per spec' fixes.
158 * Jorge Cwik : Even faster checksumming.
159 * Alan Cox : tcp_data() doesn't ack illegal PSH
160 * only frames. At least one pc tcp stack
161 * generates them.
162 * Alan Cox : Cache last socket.
163 * Alan Cox : Per route irtt.
164 * Matt Day : poll()->select() match BSD precisely on error
165 * Alan Cox : New buffers
166 * Marc Tamsky : Various sk->prot->retransmits and
167 * sk->retransmits misupdating fixed.
168 * Fixed tcp_write_timeout: stuck close,
169 * and TCP syn retries gets used now.
170 * Mark Yarvis : In tcp_read_wakeup(), don't send an
171 * ack if state is TCP_CLOSED.
172 * Alan Cox : Look up device on a retransmit - routes may
173 * change. Doesn't yet cope with MSS shrink right
174 * but it's a start!
175 * Marc Tamsky : Closing in closing fixes.
176 * Mike Shaver : RFC1122 verifications.
177 * Alan Cox : rcv_saddr errors.
178 * Alan Cox : Block double connect().
179 * Alan Cox : Small hooks for enSKIP.
180 * Alexey Kuznetsov: Path MTU discovery.
181 * Alan Cox : Support soft errors.
182 * Alan Cox : Fix MTU discovery pathological case
183 * when the remote claims no mtu!
184 * Marc Tamsky : TCP_CLOSE fix.
185 * Colin (G3TNE) : Send a reset on syn ack replies in
186 * window but wrong (fixes NT lpd problems)
187 * Pedro Roque : Better TCP window handling, delayed ack.
188 * Joerg Reuter : No modification of locked buffers in
189 * tcp_do_retransmit()
190 * Eric Schenk : Changed receiver side silly window
191 * avoidance algorithm to BSD style
192 * algorithm. This doubles throughput
193 * against machines running Solaris,
194 * and seems to result in general
195 * improvement.
196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
197 * Willy Konynenberg : Transparent proxying support.
198 * Mike McLagan : Routing by source
199 * Keith Owens : Do proper merging with partial SKB's in
200 * tcp_do_sendmsg to avoid burstiness.
201 * Eric Schenk : Fix fast close down bug with
202 * shutdown() followed by close().
203 * Andi Kleen : Make poll agree with SIGIO
204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
205 * lingertime == 0 (RFC 793 ABORT Call)
206 * Hirokazu Takahashi : Use copy_from_user() instead of
207 * csum_and_copy_from_user() if possible.
208 *
209 * Description of States:
210 *
211 * TCP_SYN_SENT sent a connection request, waiting for ack
212 *
213 * TCP_SYN_RECV received a connection request, sent ack,
214 * waiting for final ack in three-way handshake.
215 *
216 * TCP_ESTABLISHED connection established
217 *
218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
219 * transmission of remaining buffered data
220 *
221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
222 * to shutdown
223 *
224 * TCP_CLOSING both sides have shutdown but we still have
225 * data we have to finish sending
226 *
227 * TCP_TIME_WAIT timeout to catch resent junk before entering
228 * closed, can only be entered from FIN_WAIT2
229 * or CLOSING. Required because the other end
230 * may not have gotten our last ACK causing it
231 * to retransmit the data packet (which we ignore)
232 *
233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
234 * us to finish writing our data and to shutdown
235 * (we have to close() to move on to LAST_ACK)
236 *
237 * TCP_LAST_ACK out side has shutdown after remote has
238 * shutdown. There may still be data in our
239 * buffer that we have to finish sending
240 *
241 * TCP_CLOSE socket is finished
242 */
243
244 #define pr_fmt(fmt) "TCP: " fmt
245
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/cache.h>
264 #include <linux/err.h>
265 #include <linux/time.h>
266 #include <linux/slab.h>
267 #include <linux/errqueue.h>
268 #include <linux/static_key.h>
269 #include <linux/btf.h>
270
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/mptcp.h>
275 #include <net/proto_memory.h>
276 #include <net/xfrm.h>
277 #include <net/ip.h>
278 #include <net/sock.h>
279 #include <net/rstreason.h>
280
281 #include <linux/uaccess.h>
282 #include <asm/ioctls.h>
283 #include <net/busy_poll.h>
284 #include <net/hotdata.h>
285 #include <trace/events/tcp.h>
286 #include <net/rps.h>
287
288 #include "../core/devmem.h"
289
290 /* Track pending CMSGs. */
291 enum {
292 TCP_CMSG_INQ = 1,
293 TCP_CMSG_TS = 2
294 };
295
296 DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
297 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
298
299 DEFINE_PER_CPU(u32, tcp_tw_isn);
300 EXPORT_PER_CPU_SYMBOL_GPL(tcp_tw_isn);
301
302 long sysctl_tcp_mem[3] __read_mostly;
303 EXPORT_IPV6_MOD(sysctl_tcp_mem);
304
305 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp; /* Current allocated memory. */
306 EXPORT_IPV6_MOD(tcp_memory_allocated);
307 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
308 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc);
309
310 #if IS_ENABLED(CONFIG_SMC)
311 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
312 EXPORT_SYMBOL(tcp_have_smc);
313 #endif
314
315 /*
316 * Current number of TCP sockets.
317 */
318 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp;
319 EXPORT_IPV6_MOD(tcp_sockets_allocated);
320
321 /*
322 * TCP splice context
323 */
324 struct tcp_splice_state {
325 struct pipe_inode_info *pipe;
326 size_t len;
327 unsigned int flags;
328 };
329
330 /*
331 * Pressure flag: try to collapse.
332 * Technical note: it is used by multiple contexts non atomically.
333 * All the __sk_mem_schedule() is of this nature: accounting
334 * is strict, actions are advisory and have some latency.
335 */
336 unsigned long tcp_memory_pressure __read_mostly;
337 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
338
tcp_enter_memory_pressure(struct sock * sk)339 void tcp_enter_memory_pressure(struct sock *sk)
340 {
341 unsigned long val;
342
343 if (READ_ONCE(tcp_memory_pressure))
344 return;
345 val = jiffies;
346
347 if (!val)
348 val--;
349 if (!cmpxchg(&tcp_memory_pressure, 0, val))
350 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
351 }
352 EXPORT_IPV6_MOD_GPL(tcp_enter_memory_pressure);
353
tcp_leave_memory_pressure(struct sock * sk)354 void tcp_leave_memory_pressure(struct sock *sk)
355 {
356 unsigned long val;
357
358 if (!READ_ONCE(tcp_memory_pressure))
359 return;
360 val = xchg(&tcp_memory_pressure, 0);
361 if (val)
362 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
363 jiffies_to_msecs(jiffies - val));
364 }
365 EXPORT_IPV6_MOD_GPL(tcp_leave_memory_pressure);
366
367 /* Convert seconds to retransmits based on initial and max timeout */
secs_to_retrans(int seconds,int timeout,int rto_max)368 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
369 {
370 u8 res = 0;
371
372 if (seconds > 0) {
373 int period = timeout;
374
375 res = 1;
376 while (seconds > period && res < 255) {
377 res++;
378 timeout <<= 1;
379 if (timeout > rto_max)
380 timeout = rto_max;
381 period += timeout;
382 }
383 }
384 return res;
385 }
386
387 /* Convert retransmits to seconds based on initial and max timeout */
retrans_to_secs(u8 retrans,int timeout,int rto_max)388 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
389 {
390 int period = 0;
391
392 if (retrans > 0) {
393 period = timeout;
394 while (--retrans) {
395 timeout <<= 1;
396 if (timeout > rto_max)
397 timeout = rto_max;
398 period += timeout;
399 }
400 }
401 return period;
402 }
403
tcp_compute_delivery_rate(const struct tcp_sock * tp)404 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
405 {
406 u32 rate = READ_ONCE(tp->rate_delivered);
407 u32 intv = READ_ONCE(tp->rate_interval_us);
408 u64 rate64 = 0;
409
410 if (rate && intv) {
411 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
412 do_div(rate64, intv);
413 }
414 return rate64;
415 }
416
417 /* Address-family independent initialization for a tcp_sock.
418 *
419 * NOTE: A lot of things set to zero explicitly by call to
420 * sk_alloc() so need not be done here.
421 */
tcp_init_sock(struct sock * sk)422 void tcp_init_sock(struct sock *sk)
423 {
424 struct inet_connection_sock *icsk = inet_csk(sk);
425 struct tcp_sock *tp = tcp_sk(sk);
426 int rto_min_us, rto_max_ms;
427
428 tp->out_of_order_queue = RB_ROOT;
429 sk->tcp_rtx_queue = RB_ROOT;
430 tcp_init_xmit_timers(sk);
431 INIT_LIST_HEAD(&tp->tsq_node);
432 INIT_LIST_HEAD(&tp->tsorted_sent_queue);
433
434 icsk->icsk_rto = TCP_TIMEOUT_INIT;
435
436 rto_max_ms = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rto_max_ms);
437 icsk->icsk_rto_max = msecs_to_jiffies(rto_max_ms);
438
439 rto_min_us = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rto_min_us);
440 icsk->icsk_rto_min = usecs_to_jiffies(rto_min_us);
441 icsk->icsk_delack_max = TCP_DELACK_MAX;
442 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
443 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
444
445 /* So many TCP implementations out there (incorrectly) count the
446 * initial SYN frame in their delayed-ACK and congestion control
447 * algorithms that we must have the following bandaid to talk
448 * efficiently to them. -DaveM
449 */
450 tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
451
452 /* There's a bubble in the pipe until at least the first ACK. */
453 tp->app_limited = ~0U;
454 tp->rate_app_limited = 1;
455
456 /* See draft-stevens-tcpca-spec-01 for discussion of the
457 * initialization of these values.
458 */
459 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
460 tp->snd_cwnd_clamp = ~0;
461 tp->mss_cache = TCP_MSS_DEFAULT;
462
463 tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
464 tcp_assign_congestion_control(sk);
465
466 tp->tsoffset = 0;
467 tp->rack.reo_wnd_steps = 1;
468
469 sk->sk_write_space = sk_stream_write_space;
470 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
471
472 icsk->icsk_sync_mss = tcp_sync_mss;
473
474 WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
475 WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
476 tcp_scaling_ratio_init(sk);
477
478 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
479 sk_sockets_allocated_inc(sk);
480 xa_init_flags(&sk->sk_user_frags, XA_FLAGS_ALLOC1);
481 }
482 EXPORT_IPV6_MOD(tcp_init_sock);
483
tcp_tx_timestamp(struct sock * sk,struct sockcm_cookie * sockc)484 static void tcp_tx_timestamp(struct sock *sk, struct sockcm_cookie *sockc)
485 {
486 struct sk_buff *skb = tcp_write_queue_tail(sk);
487 u32 tsflags = sockc->tsflags;
488
489 if (tsflags && skb) {
490 struct skb_shared_info *shinfo = skb_shinfo(skb);
491 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
492
493 sock_tx_timestamp(sk, sockc, &shinfo->tx_flags);
494 if (tsflags & SOF_TIMESTAMPING_TX_ACK)
495 tcb->txstamp_ack |= TSTAMP_ACK_SK;
496 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
497 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
498 }
499
500 if (cgroup_bpf_enabled(CGROUP_SOCK_OPS) &&
501 SK_BPF_CB_FLAG_TEST(sk, SK_BPF_CB_TX_TIMESTAMPING) && skb)
502 bpf_skops_tx_timestamping(sk, skb, BPF_SOCK_OPS_TSTAMP_SENDMSG_CB);
503 }
504
tcp_stream_is_readable(struct sock * sk,int target)505 static bool tcp_stream_is_readable(struct sock *sk, int target)
506 {
507 if (tcp_epollin_ready(sk, target))
508 return true;
509 return sk_is_readable(sk);
510 }
511
512 /*
513 * Wait for a TCP event.
514 *
515 * Note that we don't need to lock the socket, as the upper poll layers
516 * take care of normal races (between the test and the event) and we don't
517 * go look at any of the socket buffers directly.
518 */
tcp_poll(struct file * file,struct socket * sock,poll_table * wait)519 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
520 {
521 __poll_t mask;
522 struct sock *sk = sock->sk;
523 const struct tcp_sock *tp = tcp_sk(sk);
524 u8 shutdown;
525 int state;
526
527 sock_poll_wait(file, sock, wait);
528
529 state = inet_sk_state_load(sk);
530 if (state == TCP_LISTEN)
531 return inet_csk_listen_poll(sk);
532
533 /* Socket is not locked. We are protected from async events
534 * by poll logic and correct handling of state changes
535 * made by other threads is impossible in any case.
536 */
537
538 mask = 0;
539
540 /*
541 * EPOLLHUP is certainly not done right. But poll() doesn't
542 * have a notion of HUP in just one direction, and for a
543 * socket the read side is more interesting.
544 *
545 * Some poll() documentation says that EPOLLHUP is incompatible
546 * with the EPOLLOUT/POLLWR flags, so somebody should check this
547 * all. But careful, it tends to be safer to return too many
548 * bits than too few, and you can easily break real applications
549 * if you don't tell them that something has hung up!
550 *
551 * Check-me.
552 *
553 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
554 * our fs/select.c). It means that after we received EOF,
555 * poll always returns immediately, making impossible poll() on write()
556 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
557 * if and only if shutdown has been made in both directions.
558 * Actually, it is interesting to look how Solaris and DUX
559 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
560 * then we could set it on SND_SHUTDOWN. BTW examples given
561 * in Stevens' books assume exactly this behaviour, it explains
562 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK
563 *
564 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
565 * blocking on fresh not-connected or disconnected socket. --ANK
566 */
567 shutdown = READ_ONCE(sk->sk_shutdown);
568 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
569 mask |= EPOLLHUP;
570 if (shutdown & RCV_SHUTDOWN)
571 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
572
573 /* Connected or passive Fast Open socket? */
574 if (state != TCP_SYN_SENT &&
575 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
576 int target = sock_rcvlowat(sk, 0, INT_MAX);
577 u16 urg_data = READ_ONCE(tp->urg_data);
578
579 if (unlikely(urg_data) &&
580 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
581 !sock_flag(sk, SOCK_URGINLINE))
582 target++;
583
584 if (tcp_stream_is_readable(sk, target))
585 mask |= EPOLLIN | EPOLLRDNORM;
586
587 if (!(shutdown & SEND_SHUTDOWN)) {
588 if (__sk_stream_is_writeable(sk, 1)) {
589 mask |= EPOLLOUT | EPOLLWRNORM;
590 } else { /* send SIGIO later */
591 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
592 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
593
594 /* Race breaker. If space is freed after
595 * wspace test but before the flags are set,
596 * IO signal will be lost. Memory barrier
597 * pairs with the input side.
598 */
599 smp_mb__after_atomic();
600 if (__sk_stream_is_writeable(sk, 1))
601 mask |= EPOLLOUT | EPOLLWRNORM;
602 }
603 } else
604 mask |= EPOLLOUT | EPOLLWRNORM;
605
606 if (urg_data & TCP_URG_VALID)
607 mask |= EPOLLPRI;
608 } else if (state == TCP_SYN_SENT &&
609 inet_test_bit(DEFER_CONNECT, sk)) {
610 /* Active TCP fastopen socket with defer_connect
611 * Return EPOLLOUT so application can call write()
612 * in order for kernel to generate SYN+data
613 */
614 mask |= EPOLLOUT | EPOLLWRNORM;
615 }
616 /* This barrier is coupled with smp_wmb() in tcp_done_with_error() */
617 smp_rmb();
618 if (READ_ONCE(sk->sk_err) ||
619 !skb_queue_empty_lockless(&sk->sk_error_queue))
620 mask |= EPOLLERR;
621
622 return mask;
623 }
624 EXPORT_SYMBOL(tcp_poll);
625
tcp_ioctl(struct sock * sk,int cmd,int * karg)626 int tcp_ioctl(struct sock *sk, int cmd, int *karg)
627 {
628 struct tcp_sock *tp = tcp_sk(sk);
629 int answ;
630 bool slow;
631
632 switch (cmd) {
633 case SIOCINQ:
634 if (sk->sk_state == TCP_LISTEN)
635 return -EINVAL;
636
637 slow = lock_sock_fast(sk);
638 answ = tcp_inq(sk);
639 unlock_sock_fast(sk, slow);
640 break;
641 case SIOCATMARK:
642 answ = READ_ONCE(tp->urg_data) &&
643 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
644 break;
645 case SIOCOUTQ:
646 if (sk->sk_state == TCP_LISTEN)
647 return -EINVAL;
648
649 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
650 answ = 0;
651 else
652 answ = READ_ONCE(tp->write_seq) - tp->snd_una;
653 break;
654 case SIOCOUTQNSD:
655 if (sk->sk_state == TCP_LISTEN)
656 return -EINVAL;
657
658 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
659 answ = 0;
660 else
661 answ = READ_ONCE(tp->write_seq) -
662 READ_ONCE(tp->snd_nxt);
663 break;
664 default:
665 return -ENOIOCTLCMD;
666 }
667
668 *karg = answ;
669 return 0;
670 }
671 EXPORT_IPV6_MOD(tcp_ioctl);
672
tcp_mark_push(struct tcp_sock * tp,struct sk_buff * skb)673 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
674 {
675 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
676 tp->pushed_seq = tp->write_seq;
677 }
678
forced_push(const struct tcp_sock * tp)679 static inline bool forced_push(const struct tcp_sock *tp)
680 {
681 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
682 }
683
tcp_skb_entail(struct sock * sk,struct sk_buff * skb)684 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
685 {
686 struct tcp_sock *tp = tcp_sk(sk);
687 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
688
689 tcb->seq = tcb->end_seq = tp->write_seq;
690 tcb->tcp_flags = TCPHDR_ACK;
691 __skb_header_release(skb);
692 tcp_add_write_queue_tail(sk, skb);
693 sk_wmem_queued_add(sk, skb->truesize);
694 sk_mem_charge(sk, skb->truesize);
695 if (tp->nonagle & TCP_NAGLE_PUSH)
696 tp->nonagle &= ~TCP_NAGLE_PUSH;
697
698 tcp_slow_start_after_idle_check(sk);
699 }
700
tcp_mark_urg(struct tcp_sock * tp,int flags)701 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
702 {
703 if (flags & MSG_OOB)
704 tp->snd_up = tp->write_seq;
705 }
706
707 /* If a not yet filled skb is pushed, do not send it if
708 * we have data packets in Qdisc or NIC queues :
709 * Because TX completion will happen shortly, it gives a chance
710 * to coalesce future sendmsg() payload into this skb, without
711 * need for a timer, and with no latency trade off.
712 * As packets containing data payload have a bigger truesize
713 * than pure acks (dataless) packets, the last checks prevent
714 * autocorking if we only have an ACK in Qdisc/NIC queues,
715 * or if TX completion was delayed after we processed ACK packet.
716 */
tcp_should_autocork(struct sock * sk,struct sk_buff * skb,int size_goal)717 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
718 int size_goal)
719 {
720 return skb->len < size_goal &&
721 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
722 !tcp_rtx_queue_empty(sk) &&
723 refcount_read(&sk->sk_wmem_alloc) > skb->truesize &&
724 tcp_skb_can_collapse_to(skb);
725 }
726
tcp_push(struct sock * sk,int flags,int mss_now,int nonagle,int size_goal)727 void tcp_push(struct sock *sk, int flags, int mss_now,
728 int nonagle, int size_goal)
729 {
730 struct tcp_sock *tp = tcp_sk(sk);
731 struct sk_buff *skb;
732
733 skb = tcp_write_queue_tail(sk);
734 if (!skb)
735 return;
736 if (!(flags & MSG_MORE) || forced_push(tp))
737 tcp_mark_push(tp, skb);
738
739 tcp_mark_urg(tp, flags);
740
741 if (tcp_should_autocork(sk, skb, size_goal)) {
742
743 /* avoid atomic op if TSQ_THROTTLED bit is already set */
744 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
745 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
746 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
747 smp_mb__after_atomic();
748 }
749 /* It is possible TX completion already happened
750 * before we set TSQ_THROTTLED.
751 */
752 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
753 return;
754 }
755
756 if (flags & MSG_MORE)
757 nonagle = TCP_NAGLE_CORK;
758
759 __tcp_push_pending_frames(sk, mss_now, nonagle);
760 }
761
tcp_splice_data_recv(read_descriptor_t * rd_desc,struct sk_buff * skb,unsigned int offset,size_t len)762 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
763 unsigned int offset, size_t len)
764 {
765 struct tcp_splice_state *tss = rd_desc->arg.data;
766 int ret;
767
768 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
769 min(rd_desc->count, len), tss->flags);
770 if (ret > 0)
771 rd_desc->count -= ret;
772 return ret;
773 }
774
__tcp_splice_read(struct sock * sk,struct tcp_splice_state * tss)775 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
776 {
777 /* Store TCP splice context information in read_descriptor_t. */
778 read_descriptor_t rd_desc = {
779 .arg.data = tss,
780 .count = tss->len,
781 };
782
783 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
784 }
785
786 /**
787 * tcp_splice_read - splice data from TCP socket to a pipe
788 * @sock: socket to splice from
789 * @ppos: position (not valid)
790 * @pipe: pipe to splice to
791 * @len: number of bytes to splice
792 * @flags: splice modifier flags
793 *
794 * Description:
795 * Will read pages from given socket and fill them into a pipe.
796 *
797 **/
tcp_splice_read(struct socket * sock,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)798 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
799 struct pipe_inode_info *pipe, size_t len,
800 unsigned int flags)
801 {
802 struct sock *sk = sock->sk;
803 struct tcp_splice_state tss = {
804 .pipe = pipe,
805 .len = len,
806 .flags = flags,
807 };
808 long timeo;
809 ssize_t spliced;
810 int ret;
811
812 sock_rps_record_flow(sk);
813 /*
814 * We can't seek on a socket input
815 */
816 if (unlikely(*ppos))
817 return -ESPIPE;
818
819 ret = spliced = 0;
820
821 lock_sock(sk);
822
823 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
824 while (tss.len) {
825 ret = __tcp_splice_read(sk, &tss);
826 if (ret < 0)
827 break;
828 else if (!ret) {
829 if (spliced)
830 break;
831 if (sock_flag(sk, SOCK_DONE))
832 break;
833 if (sk->sk_err) {
834 ret = sock_error(sk);
835 break;
836 }
837 if (sk->sk_shutdown & RCV_SHUTDOWN)
838 break;
839 if (sk->sk_state == TCP_CLOSE) {
840 /*
841 * This occurs when user tries to read
842 * from never connected socket.
843 */
844 ret = -ENOTCONN;
845 break;
846 }
847 if (!timeo) {
848 ret = -EAGAIN;
849 break;
850 }
851 /* if __tcp_splice_read() got nothing while we have
852 * an skb in receive queue, we do not want to loop.
853 * This might happen with URG data.
854 */
855 if (!skb_queue_empty(&sk->sk_receive_queue))
856 break;
857 ret = sk_wait_data(sk, &timeo, NULL);
858 if (ret < 0)
859 break;
860 if (signal_pending(current)) {
861 ret = sock_intr_errno(timeo);
862 break;
863 }
864 continue;
865 }
866 tss.len -= ret;
867 spliced += ret;
868
869 if (!tss.len || !timeo)
870 break;
871 release_sock(sk);
872 lock_sock(sk);
873
874 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
875 (sk->sk_shutdown & RCV_SHUTDOWN) ||
876 signal_pending(current))
877 break;
878 }
879
880 release_sock(sk);
881
882 if (spliced)
883 return spliced;
884
885 return ret;
886 }
887 EXPORT_IPV6_MOD(tcp_splice_read);
888
tcp_stream_alloc_skb(struct sock * sk,gfp_t gfp,bool force_schedule)889 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
890 bool force_schedule)
891 {
892 struct sk_buff *skb;
893
894 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
895 if (likely(skb)) {
896 bool mem_scheduled;
897
898 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
899 if (force_schedule) {
900 mem_scheduled = true;
901 sk_forced_mem_schedule(sk, skb->truesize);
902 } else {
903 mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
904 }
905 if (likely(mem_scheduled)) {
906 skb_reserve(skb, MAX_TCP_HEADER);
907 skb->ip_summed = CHECKSUM_PARTIAL;
908 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
909 return skb;
910 }
911 __kfree_skb(skb);
912 } else {
913 sk->sk_prot->enter_memory_pressure(sk);
914 sk_stream_moderate_sndbuf(sk);
915 }
916 return NULL;
917 }
918
tcp_xmit_size_goal(struct sock * sk,u32 mss_now,int large_allowed)919 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
920 int large_allowed)
921 {
922 struct tcp_sock *tp = tcp_sk(sk);
923 u32 new_size_goal, size_goal;
924
925 if (!large_allowed)
926 return mss_now;
927
928 /* Note : tcp_tso_autosize() will eventually split this later */
929 new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size);
930
931 /* We try hard to avoid divides here */
932 size_goal = tp->gso_segs * mss_now;
933 if (unlikely(new_size_goal < size_goal ||
934 new_size_goal >= size_goal + mss_now)) {
935 tp->gso_segs = min_t(u16, new_size_goal / mss_now,
936 sk->sk_gso_max_segs);
937 size_goal = tp->gso_segs * mss_now;
938 }
939
940 return max(size_goal, mss_now);
941 }
942
tcp_send_mss(struct sock * sk,int * size_goal,int flags)943 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
944 {
945 int mss_now;
946
947 mss_now = tcp_current_mss(sk);
948 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
949
950 return mss_now;
951 }
952
953 /* In some cases, sendmsg() could have added an skb to the write queue,
954 * but failed adding payload on it. We need to remove it to consume less
955 * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger
956 * epoll() users. Another reason is that tcp_write_xmit() does not like
957 * finding an empty skb in the write queue.
958 */
tcp_remove_empty_skb(struct sock * sk)959 void tcp_remove_empty_skb(struct sock *sk)
960 {
961 struct sk_buff *skb = tcp_write_queue_tail(sk);
962
963 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
964 tcp_unlink_write_queue(skb, sk);
965 if (tcp_write_queue_empty(sk))
966 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
967 tcp_wmem_free_skb(sk, skb);
968 }
969 }
970
971 /* skb changing from pure zc to mixed, must charge zc */
tcp_downgrade_zcopy_pure(struct sock * sk,struct sk_buff * skb)972 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb)
973 {
974 if (unlikely(skb_zcopy_pure(skb))) {
975 u32 extra = skb->truesize -
976 SKB_TRUESIZE(skb_end_offset(skb));
977
978 if (!sk_wmem_schedule(sk, extra))
979 return -ENOMEM;
980
981 sk_mem_charge(sk, extra);
982 skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY;
983 }
984 return 0;
985 }
986
987
tcp_wmem_schedule(struct sock * sk,int copy)988 int tcp_wmem_schedule(struct sock *sk, int copy)
989 {
990 int left;
991
992 if (likely(sk_wmem_schedule(sk, copy)))
993 return copy;
994
995 /* We could be in trouble if we have nothing queued.
996 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0]
997 * to guarantee some progress.
998 */
999 left = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[0]) - sk->sk_wmem_queued;
1000 if (left > 0)
1001 sk_forced_mem_schedule(sk, min(left, copy));
1002 return min(copy, sk->sk_forward_alloc);
1003 }
1004
tcp_free_fastopen_req(struct tcp_sock * tp)1005 void tcp_free_fastopen_req(struct tcp_sock *tp)
1006 {
1007 if (tp->fastopen_req) {
1008 kfree(tp->fastopen_req);
1009 tp->fastopen_req = NULL;
1010 }
1011 }
1012
tcp_sendmsg_fastopen(struct sock * sk,struct msghdr * msg,int * copied,size_t size,struct ubuf_info * uarg)1013 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
1014 size_t size, struct ubuf_info *uarg)
1015 {
1016 struct tcp_sock *tp = tcp_sk(sk);
1017 struct inet_sock *inet = inet_sk(sk);
1018 struct sockaddr *uaddr = msg->msg_name;
1019 int err, flags;
1020
1021 if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
1022 TFO_CLIENT_ENABLE) ||
1023 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1024 uaddr->sa_family == AF_UNSPEC))
1025 return -EOPNOTSUPP;
1026 if (tp->fastopen_req)
1027 return -EALREADY; /* Another Fast Open is in progress */
1028
1029 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1030 sk->sk_allocation);
1031 if (unlikely(!tp->fastopen_req))
1032 return -ENOBUFS;
1033 tp->fastopen_req->data = msg;
1034 tp->fastopen_req->size = size;
1035 tp->fastopen_req->uarg = uarg;
1036
1037 if (inet_test_bit(DEFER_CONNECT, sk)) {
1038 err = tcp_connect(sk);
1039 /* Same failure procedure as in tcp_v4/6_connect */
1040 if (err) {
1041 tcp_set_state(sk, TCP_CLOSE);
1042 inet->inet_dport = 0;
1043 sk->sk_route_caps = 0;
1044 }
1045 }
1046 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1047 err = __inet_stream_connect(sk->sk_socket, uaddr,
1048 msg->msg_namelen, flags, 1);
1049 /* fastopen_req could already be freed in __inet_stream_connect
1050 * if the connection times out or gets rst
1051 */
1052 if (tp->fastopen_req) {
1053 *copied = tp->fastopen_req->copied;
1054 tcp_free_fastopen_req(tp);
1055 inet_clear_bit(DEFER_CONNECT, sk);
1056 }
1057 return err;
1058 }
1059
tcp_sendmsg_locked(struct sock * sk,struct msghdr * msg,size_t size)1060 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1061 {
1062 struct tcp_sock *tp = tcp_sk(sk);
1063 struct ubuf_info *uarg = NULL;
1064 struct sk_buff *skb;
1065 struct sockcm_cookie sockc;
1066 int flags, err, copied = 0;
1067 int mss_now = 0, size_goal, copied_syn = 0;
1068 int process_backlog = 0;
1069 int zc = 0;
1070 long timeo;
1071
1072 flags = msg->msg_flags;
1073
1074 if ((flags & MSG_ZEROCOPY) && size) {
1075 if (msg->msg_ubuf) {
1076 uarg = msg->msg_ubuf;
1077 if (sk->sk_route_caps & NETIF_F_SG)
1078 zc = MSG_ZEROCOPY;
1079 } else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1080 skb = tcp_write_queue_tail(sk);
1081 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb));
1082 if (!uarg) {
1083 err = -ENOBUFS;
1084 goto out_err;
1085 }
1086 if (sk->sk_route_caps & NETIF_F_SG)
1087 zc = MSG_ZEROCOPY;
1088 else
1089 uarg_to_msgzc(uarg)->zerocopy = 0;
1090 }
1091 } else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) {
1092 if (sk->sk_route_caps & NETIF_F_SG)
1093 zc = MSG_SPLICE_PAGES;
1094 }
1095
1096 if (unlikely(flags & MSG_FASTOPEN ||
1097 inet_test_bit(DEFER_CONNECT, sk)) &&
1098 !tp->repair) {
1099 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1100 if (err == -EINPROGRESS && copied_syn > 0)
1101 goto out;
1102 else if (err)
1103 goto out_err;
1104 }
1105
1106 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1107
1108 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1109
1110 /* Wait for a connection to finish. One exception is TCP Fast Open
1111 * (passive side) where data is allowed to be sent before a connection
1112 * is fully established.
1113 */
1114 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1115 !tcp_passive_fastopen(sk)) {
1116 err = sk_stream_wait_connect(sk, &timeo);
1117 if (err != 0)
1118 goto do_error;
1119 }
1120
1121 if (unlikely(tp->repair)) {
1122 if (tp->repair_queue == TCP_RECV_QUEUE) {
1123 copied = tcp_send_rcvq(sk, msg, size);
1124 goto out_nopush;
1125 }
1126
1127 err = -EINVAL;
1128 if (tp->repair_queue == TCP_NO_QUEUE)
1129 goto out_err;
1130
1131 /* 'common' sending to sendq */
1132 }
1133
1134 sockc = (struct sockcm_cookie) { .tsflags = READ_ONCE(sk->sk_tsflags)};
1135 if (msg->msg_controllen) {
1136 err = sock_cmsg_send(sk, msg, &sockc);
1137 if (unlikely(err)) {
1138 err = -EINVAL;
1139 goto out_err;
1140 }
1141 }
1142
1143 /* This should be in poll */
1144 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1145
1146 /* Ok commence sending. */
1147 copied = 0;
1148
1149 restart:
1150 mss_now = tcp_send_mss(sk, &size_goal, flags);
1151
1152 err = -EPIPE;
1153 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1154 goto do_error;
1155
1156 while (msg_data_left(msg)) {
1157 ssize_t copy = 0;
1158
1159 skb = tcp_write_queue_tail(sk);
1160 if (skb)
1161 copy = size_goal - skb->len;
1162
1163 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1164 bool first_skb;
1165
1166 new_segment:
1167 if (!sk_stream_memory_free(sk))
1168 goto wait_for_space;
1169
1170 if (unlikely(process_backlog >= 16)) {
1171 process_backlog = 0;
1172 if (sk_flush_backlog(sk))
1173 goto restart;
1174 }
1175 first_skb = tcp_rtx_and_write_queues_empty(sk);
1176 skb = tcp_stream_alloc_skb(sk, sk->sk_allocation,
1177 first_skb);
1178 if (!skb)
1179 goto wait_for_space;
1180
1181 process_backlog++;
1182
1183 #ifdef CONFIG_SKB_DECRYPTED
1184 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
1185 #endif
1186 tcp_skb_entail(sk, skb);
1187 copy = size_goal;
1188
1189 /* All packets are restored as if they have
1190 * already been sent. skb_mstamp_ns isn't set to
1191 * avoid wrong rtt estimation.
1192 */
1193 if (tp->repair)
1194 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1195 }
1196
1197 /* Try to append data to the end of skb. */
1198 if (copy > msg_data_left(msg))
1199 copy = msg_data_left(msg);
1200
1201 if (zc == 0) {
1202 bool merge = true;
1203 int i = skb_shinfo(skb)->nr_frags;
1204 struct page_frag *pfrag = sk_page_frag(sk);
1205
1206 if (!sk_page_frag_refill(sk, pfrag))
1207 goto wait_for_space;
1208
1209 if (!skb_can_coalesce(skb, i, pfrag->page,
1210 pfrag->offset)) {
1211 if (i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) {
1212 tcp_mark_push(tp, skb);
1213 goto new_segment;
1214 }
1215 merge = false;
1216 }
1217
1218 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1219
1220 if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) {
1221 if (tcp_downgrade_zcopy_pure(sk, skb))
1222 goto wait_for_space;
1223 skb_zcopy_downgrade_managed(skb);
1224 }
1225
1226 copy = tcp_wmem_schedule(sk, copy);
1227 if (!copy)
1228 goto wait_for_space;
1229
1230 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1231 pfrag->page,
1232 pfrag->offset,
1233 copy);
1234 if (err)
1235 goto do_error;
1236
1237 /* Update the skb. */
1238 if (merge) {
1239 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1240 } else {
1241 skb_fill_page_desc(skb, i, pfrag->page,
1242 pfrag->offset, copy);
1243 page_ref_inc(pfrag->page);
1244 }
1245 pfrag->offset += copy;
1246 } else if (zc == MSG_ZEROCOPY) {
1247 /* First append to a fragless skb builds initial
1248 * pure zerocopy skb
1249 */
1250 if (!skb->len)
1251 skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY;
1252
1253 if (!skb_zcopy_pure(skb)) {
1254 copy = tcp_wmem_schedule(sk, copy);
1255 if (!copy)
1256 goto wait_for_space;
1257 }
1258
1259 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1260 if (err == -EMSGSIZE || err == -EEXIST) {
1261 tcp_mark_push(tp, skb);
1262 goto new_segment;
1263 }
1264 if (err < 0)
1265 goto do_error;
1266 copy = err;
1267 } else if (zc == MSG_SPLICE_PAGES) {
1268 /* Splice in data if we can; copy if we can't. */
1269 if (tcp_downgrade_zcopy_pure(sk, skb))
1270 goto wait_for_space;
1271 copy = tcp_wmem_schedule(sk, copy);
1272 if (!copy)
1273 goto wait_for_space;
1274
1275 err = skb_splice_from_iter(skb, &msg->msg_iter, copy,
1276 sk->sk_allocation);
1277 if (err < 0) {
1278 if (err == -EMSGSIZE) {
1279 tcp_mark_push(tp, skb);
1280 goto new_segment;
1281 }
1282 goto do_error;
1283 }
1284 copy = err;
1285
1286 if (!(flags & MSG_NO_SHARED_FRAGS))
1287 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1288
1289 sk_wmem_queued_add(sk, copy);
1290 sk_mem_charge(sk, copy);
1291 }
1292
1293 if (!copied)
1294 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1295
1296 WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1297 TCP_SKB_CB(skb)->end_seq += copy;
1298 tcp_skb_pcount_set(skb, 0);
1299
1300 copied += copy;
1301 if (!msg_data_left(msg)) {
1302 if (unlikely(flags & MSG_EOR))
1303 TCP_SKB_CB(skb)->eor = 1;
1304 goto out;
1305 }
1306
1307 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1308 continue;
1309
1310 if (forced_push(tp)) {
1311 tcp_mark_push(tp, skb);
1312 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1313 } else if (skb == tcp_send_head(sk))
1314 tcp_push_one(sk, mss_now);
1315 continue;
1316
1317 wait_for_space:
1318 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1319 tcp_remove_empty_skb(sk);
1320 if (copied)
1321 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1322 TCP_NAGLE_PUSH, size_goal);
1323
1324 err = sk_stream_wait_memory(sk, &timeo);
1325 if (err != 0)
1326 goto do_error;
1327
1328 mss_now = tcp_send_mss(sk, &size_goal, flags);
1329 }
1330
1331 out:
1332 if (copied) {
1333 tcp_tx_timestamp(sk, &sockc);
1334 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1335 }
1336 out_nopush:
1337 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1338 if (uarg && !msg->msg_ubuf)
1339 net_zcopy_put(uarg);
1340 return copied + copied_syn;
1341
1342 do_error:
1343 tcp_remove_empty_skb(sk);
1344
1345 if (copied + copied_syn)
1346 goto out;
1347 out_err:
1348 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1349 if (uarg && !msg->msg_ubuf)
1350 net_zcopy_put_abort(uarg, true);
1351 err = sk_stream_error(sk, flags, err);
1352 /* make sure we wake any epoll edge trigger waiter */
1353 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1354 sk->sk_write_space(sk);
1355 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1356 }
1357 return err;
1358 }
1359 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1360
tcp_sendmsg(struct sock * sk,struct msghdr * msg,size_t size)1361 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1362 {
1363 int ret;
1364
1365 lock_sock(sk);
1366 ret = tcp_sendmsg_locked(sk, msg, size);
1367 release_sock(sk);
1368
1369 return ret;
1370 }
1371 EXPORT_SYMBOL(tcp_sendmsg);
1372
tcp_splice_eof(struct socket * sock)1373 void tcp_splice_eof(struct socket *sock)
1374 {
1375 struct sock *sk = sock->sk;
1376 struct tcp_sock *tp = tcp_sk(sk);
1377 int mss_now, size_goal;
1378
1379 if (!tcp_write_queue_tail(sk))
1380 return;
1381
1382 lock_sock(sk);
1383 mss_now = tcp_send_mss(sk, &size_goal, 0);
1384 tcp_push(sk, 0, mss_now, tp->nonagle, size_goal);
1385 release_sock(sk);
1386 }
1387 EXPORT_IPV6_MOD_GPL(tcp_splice_eof);
1388
1389 /*
1390 * Handle reading urgent data. BSD has very simple semantics for
1391 * this, no blocking and very strange errors 8)
1392 */
1393
tcp_recv_urg(struct sock * sk,struct msghdr * msg,int len,int flags)1394 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1395 {
1396 struct tcp_sock *tp = tcp_sk(sk);
1397
1398 /* No URG data to read. */
1399 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1400 tp->urg_data == TCP_URG_READ)
1401 return -EINVAL; /* Yes this is right ! */
1402
1403 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1404 return -ENOTCONN;
1405
1406 if (tp->urg_data & TCP_URG_VALID) {
1407 int err = 0;
1408 char c = tp->urg_data;
1409
1410 if (!(flags & MSG_PEEK))
1411 WRITE_ONCE(tp->urg_data, TCP_URG_READ);
1412
1413 /* Read urgent data. */
1414 msg->msg_flags |= MSG_OOB;
1415
1416 if (len > 0) {
1417 if (!(flags & MSG_TRUNC))
1418 err = memcpy_to_msg(msg, &c, 1);
1419 len = 1;
1420 } else
1421 msg->msg_flags |= MSG_TRUNC;
1422
1423 return err ? -EFAULT : len;
1424 }
1425
1426 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1427 return 0;
1428
1429 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1430 * the available implementations agree in this case:
1431 * this call should never block, independent of the
1432 * blocking state of the socket.
1433 * Mike <pall@rz.uni-karlsruhe.de>
1434 */
1435 return -EAGAIN;
1436 }
1437
tcp_peek_sndq(struct sock * sk,struct msghdr * msg,int len)1438 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1439 {
1440 struct sk_buff *skb;
1441 int copied = 0, err = 0;
1442
1443 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1444 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1445 if (err)
1446 return err;
1447 copied += skb->len;
1448 }
1449
1450 skb_queue_walk(&sk->sk_write_queue, skb) {
1451 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1452 if (err)
1453 break;
1454
1455 copied += skb->len;
1456 }
1457
1458 return err ?: copied;
1459 }
1460
1461 /* Clean up the receive buffer for full frames taken by the user,
1462 * then send an ACK if necessary. COPIED is the number of bytes
1463 * tcp_recvmsg has given to the user so far, it speeds up the
1464 * calculation of whether or not we must ACK for the sake of
1465 * a window update.
1466 */
__tcp_cleanup_rbuf(struct sock * sk,int copied)1467 void __tcp_cleanup_rbuf(struct sock *sk, int copied)
1468 {
1469 struct tcp_sock *tp = tcp_sk(sk);
1470 bool time_to_ack = false;
1471
1472 if (inet_csk_ack_scheduled(sk)) {
1473 const struct inet_connection_sock *icsk = inet_csk(sk);
1474
1475 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1476 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1477 /*
1478 * If this read emptied read buffer, we send ACK, if
1479 * connection is not bidirectional, user drained
1480 * receive buffer and there was a small segment
1481 * in queue.
1482 */
1483 (copied > 0 &&
1484 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1485 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1486 !inet_csk_in_pingpong_mode(sk))) &&
1487 !atomic_read(&sk->sk_rmem_alloc)))
1488 time_to_ack = true;
1489 }
1490
1491 /* We send an ACK if we can now advertise a non-zero window
1492 * which has been raised "significantly".
1493 *
1494 * Even if window raised up to infinity, do not send window open ACK
1495 * in states, where we will not receive more. It is useless.
1496 */
1497 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1498 __u32 rcv_window_now = tcp_receive_window(tp);
1499
1500 /* Optimize, __tcp_select_window() is not cheap. */
1501 if (2*rcv_window_now <= tp->window_clamp) {
1502 __u32 new_window = __tcp_select_window(sk);
1503
1504 /* Send ACK now, if this read freed lots of space
1505 * in our buffer. Certainly, new_window is new window.
1506 * We can advertise it now, if it is not less than current one.
1507 * "Lots" means "at least twice" here.
1508 */
1509 if (new_window && new_window >= 2 * rcv_window_now)
1510 time_to_ack = true;
1511 }
1512 }
1513 if (time_to_ack)
1514 tcp_send_ack(sk);
1515 }
1516
tcp_cleanup_rbuf(struct sock * sk,int copied)1517 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1518 {
1519 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1520 struct tcp_sock *tp = tcp_sk(sk);
1521
1522 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1523 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1524 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1525 __tcp_cleanup_rbuf(sk, copied);
1526 }
1527
1528 /* private version of sock_rfree() avoiding one atomic_sub() */
tcp_sock_rfree(struct sk_buff * skb)1529 void tcp_sock_rfree(struct sk_buff *skb)
1530 {
1531 struct sock *sk = skb->sk;
1532 unsigned int len = skb->truesize;
1533
1534 sock_owned_by_me(sk);
1535 atomic_set(&sk->sk_rmem_alloc,
1536 atomic_read(&sk->sk_rmem_alloc) - len);
1537
1538 sk_forward_alloc_add(sk, len);
1539 sk_mem_reclaim(sk);
1540 }
1541
tcp_eat_recv_skb(struct sock * sk,struct sk_buff * skb)1542 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb)
1543 {
1544 __skb_unlink(skb, &sk->sk_receive_queue);
1545 if (likely(skb->destructor == tcp_sock_rfree)) {
1546 tcp_sock_rfree(skb);
1547 skb->destructor = NULL;
1548 skb->sk = NULL;
1549 return skb_attempt_defer_free(skb);
1550 }
1551 __kfree_skb(skb);
1552 }
1553
tcp_recv_skb(struct sock * sk,u32 seq,u32 * off)1554 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1555 {
1556 struct sk_buff *skb;
1557 u32 offset;
1558
1559 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1560 offset = seq - TCP_SKB_CB(skb)->seq;
1561 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1562 pr_err_once("%s: found a SYN, please report !\n", __func__);
1563 offset--;
1564 }
1565 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1566 *off = offset;
1567 return skb;
1568 }
1569 /* This looks weird, but this can happen if TCP collapsing
1570 * splitted a fat GRO packet, while we released socket lock
1571 * in skb_splice_bits()
1572 */
1573 tcp_eat_recv_skb(sk, skb);
1574 }
1575 return NULL;
1576 }
1577 EXPORT_SYMBOL(tcp_recv_skb);
1578
1579 /*
1580 * This routine provides an alternative to tcp_recvmsg() for routines
1581 * that would like to handle copying from skbuffs directly in 'sendfile'
1582 * fashion.
1583 * Note:
1584 * - It is assumed that the socket was locked by the caller.
1585 * - The routine does not block.
1586 * - At present, there is no support for reading OOB data
1587 * or for 'peeking' the socket using this routine
1588 * (although both would be easy to implement).
1589 */
__tcp_read_sock(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t recv_actor,bool noack,u32 * copied_seq)1590 static int __tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1591 sk_read_actor_t recv_actor, bool noack,
1592 u32 *copied_seq)
1593 {
1594 struct sk_buff *skb;
1595 struct tcp_sock *tp = tcp_sk(sk);
1596 u32 seq = *copied_seq;
1597 u32 offset;
1598 int copied = 0;
1599
1600 if (sk->sk_state == TCP_LISTEN)
1601 return -ENOTCONN;
1602 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1603 if (offset < skb->len) {
1604 int used;
1605 size_t len;
1606
1607 len = skb->len - offset;
1608 /* Stop reading if we hit a patch of urgent data */
1609 if (unlikely(tp->urg_data)) {
1610 u32 urg_offset = tp->urg_seq - seq;
1611 if (urg_offset < len)
1612 len = urg_offset;
1613 if (!len)
1614 break;
1615 }
1616 used = recv_actor(desc, skb, offset, len);
1617 if (used <= 0) {
1618 if (!copied)
1619 copied = used;
1620 break;
1621 }
1622 if (WARN_ON_ONCE(used > len))
1623 used = len;
1624 seq += used;
1625 copied += used;
1626 offset += used;
1627
1628 /* If recv_actor drops the lock (e.g. TCP splice
1629 * receive) the skb pointer might be invalid when
1630 * getting here: tcp_collapse might have deleted it
1631 * while aggregating skbs from the socket queue.
1632 */
1633 skb = tcp_recv_skb(sk, seq - 1, &offset);
1634 if (!skb)
1635 break;
1636 /* TCP coalescing might have appended data to the skb.
1637 * Try to splice more frags
1638 */
1639 if (offset + 1 != skb->len)
1640 continue;
1641 }
1642 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1643 tcp_eat_recv_skb(sk, skb);
1644 ++seq;
1645 break;
1646 }
1647 tcp_eat_recv_skb(sk, skb);
1648 if (!desc->count)
1649 break;
1650 WRITE_ONCE(*copied_seq, seq);
1651 }
1652 WRITE_ONCE(*copied_seq, seq);
1653
1654 if (noack)
1655 goto out;
1656
1657 tcp_rcv_space_adjust(sk);
1658
1659 /* Clean up data we have read: This will do ACK frames. */
1660 if (copied > 0) {
1661 tcp_recv_skb(sk, seq, &offset);
1662 tcp_cleanup_rbuf(sk, copied);
1663 }
1664 out:
1665 return copied;
1666 }
1667
tcp_read_sock(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t recv_actor)1668 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1669 sk_read_actor_t recv_actor)
1670 {
1671 return __tcp_read_sock(sk, desc, recv_actor, false,
1672 &tcp_sk(sk)->copied_seq);
1673 }
1674 EXPORT_SYMBOL(tcp_read_sock);
1675
tcp_read_sock_noack(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t recv_actor,bool noack,u32 * copied_seq)1676 int tcp_read_sock_noack(struct sock *sk, read_descriptor_t *desc,
1677 sk_read_actor_t recv_actor, bool noack,
1678 u32 *copied_seq)
1679 {
1680 return __tcp_read_sock(sk, desc, recv_actor, noack, copied_seq);
1681 }
1682
tcp_read_skb(struct sock * sk,skb_read_actor_t recv_actor)1683 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1684 {
1685 struct sk_buff *skb;
1686 int copied = 0;
1687
1688 if (sk->sk_state == TCP_LISTEN)
1689 return -ENOTCONN;
1690
1691 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1692 u8 tcp_flags;
1693 int used;
1694
1695 __skb_unlink(skb, &sk->sk_receive_queue);
1696 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1697 tcp_flags = TCP_SKB_CB(skb)->tcp_flags;
1698 used = recv_actor(sk, skb);
1699 if (used < 0) {
1700 if (!copied)
1701 copied = used;
1702 break;
1703 }
1704 copied += used;
1705
1706 if (tcp_flags & TCPHDR_FIN)
1707 break;
1708 }
1709 return copied;
1710 }
1711 EXPORT_IPV6_MOD(tcp_read_skb);
1712
tcp_read_done(struct sock * sk,size_t len)1713 void tcp_read_done(struct sock *sk, size_t len)
1714 {
1715 struct tcp_sock *tp = tcp_sk(sk);
1716 u32 seq = tp->copied_seq;
1717 struct sk_buff *skb;
1718 size_t left;
1719 u32 offset;
1720
1721 if (sk->sk_state == TCP_LISTEN)
1722 return;
1723
1724 left = len;
1725 while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1726 int used;
1727
1728 used = min_t(size_t, skb->len - offset, left);
1729 seq += used;
1730 left -= used;
1731
1732 if (skb->len > offset + used)
1733 break;
1734
1735 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1736 tcp_eat_recv_skb(sk, skb);
1737 ++seq;
1738 break;
1739 }
1740 tcp_eat_recv_skb(sk, skb);
1741 }
1742 WRITE_ONCE(tp->copied_seq, seq);
1743
1744 tcp_rcv_space_adjust(sk);
1745
1746 /* Clean up data we have read: This will do ACK frames. */
1747 if (left != len)
1748 tcp_cleanup_rbuf(sk, len - left);
1749 }
1750 EXPORT_SYMBOL(tcp_read_done);
1751
tcp_peek_len(struct socket * sock)1752 int tcp_peek_len(struct socket *sock)
1753 {
1754 return tcp_inq(sock->sk);
1755 }
1756 EXPORT_IPV6_MOD(tcp_peek_len);
1757
1758 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
tcp_set_rcvlowat(struct sock * sk,int val)1759 int tcp_set_rcvlowat(struct sock *sk, int val)
1760 {
1761 int space, cap;
1762
1763 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1764 cap = sk->sk_rcvbuf >> 1;
1765 else
1766 cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1767 val = min(val, cap);
1768 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1769
1770 /* Check if we need to signal EPOLLIN right now */
1771 tcp_data_ready(sk);
1772
1773 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1774 return 0;
1775
1776 space = tcp_space_from_win(sk, val);
1777 if (space > sk->sk_rcvbuf) {
1778 WRITE_ONCE(sk->sk_rcvbuf, space);
1779 WRITE_ONCE(tcp_sk(sk)->window_clamp, val);
1780 }
1781 return 0;
1782 }
1783 EXPORT_IPV6_MOD(tcp_set_rcvlowat);
1784
tcp_update_recv_tstamps(struct sk_buff * skb,struct scm_timestamping_internal * tss)1785 void tcp_update_recv_tstamps(struct sk_buff *skb,
1786 struct scm_timestamping_internal *tss)
1787 {
1788 if (skb->tstamp)
1789 tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1790 else
1791 tss->ts[0] = (struct timespec64) {0};
1792
1793 if (skb_hwtstamps(skb)->hwtstamp)
1794 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1795 else
1796 tss->ts[2] = (struct timespec64) {0};
1797 }
1798
1799 #ifdef CONFIG_MMU
1800 static const struct vm_operations_struct tcp_vm_ops = {
1801 };
1802
tcp_mmap(struct file * file,struct socket * sock,struct vm_area_struct * vma)1803 int tcp_mmap(struct file *file, struct socket *sock,
1804 struct vm_area_struct *vma)
1805 {
1806 if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1807 return -EPERM;
1808 vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC);
1809
1810 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1811 vm_flags_set(vma, VM_MIXEDMAP);
1812
1813 vma->vm_ops = &tcp_vm_ops;
1814 return 0;
1815 }
1816 EXPORT_IPV6_MOD(tcp_mmap);
1817
skb_advance_to_frag(struct sk_buff * skb,u32 offset_skb,u32 * offset_frag)1818 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1819 u32 *offset_frag)
1820 {
1821 skb_frag_t *frag;
1822
1823 if (unlikely(offset_skb >= skb->len))
1824 return NULL;
1825
1826 offset_skb -= skb_headlen(skb);
1827 if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1828 return NULL;
1829
1830 frag = skb_shinfo(skb)->frags;
1831 while (offset_skb) {
1832 if (skb_frag_size(frag) > offset_skb) {
1833 *offset_frag = offset_skb;
1834 return frag;
1835 }
1836 offset_skb -= skb_frag_size(frag);
1837 ++frag;
1838 }
1839 *offset_frag = 0;
1840 return frag;
1841 }
1842
can_map_frag(const skb_frag_t * frag)1843 static bool can_map_frag(const skb_frag_t *frag)
1844 {
1845 struct page *page;
1846
1847 if (skb_frag_size(frag) != PAGE_SIZE || skb_frag_off(frag))
1848 return false;
1849
1850 page = skb_frag_page(frag);
1851
1852 if (PageCompound(page) || page->mapping)
1853 return false;
1854
1855 return true;
1856 }
1857
find_next_mappable_frag(const skb_frag_t * frag,int remaining_in_skb)1858 static int find_next_mappable_frag(const skb_frag_t *frag,
1859 int remaining_in_skb)
1860 {
1861 int offset = 0;
1862
1863 if (likely(can_map_frag(frag)))
1864 return 0;
1865
1866 while (offset < remaining_in_skb && !can_map_frag(frag)) {
1867 offset += skb_frag_size(frag);
1868 ++frag;
1869 }
1870 return offset;
1871 }
1872
tcp_zerocopy_set_hint_for_skb(struct sock * sk,struct tcp_zerocopy_receive * zc,struct sk_buff * skb,u32 offset)1873 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1874 struct tcp_zerocopy_receive *zc,
1875 struct sk_buff *skb, u32 offset)
1876 {
1877 u32 frag_offset, partial_frag_remainder = 0;
1878 int mappable_offset;
1879 skb_frag_t *frag;
1880
1881 /* worst case: skip to next skb. try to improve on this case below */
1882 zc->recv_skip_hint = skb->len - offset;
1883
1884 /* Find the frag containing this offset (and how far into that frag) */
1885 frag = skb_advance_to_frag(skb, offset, &frag_offset);
1886 if (!frag)
1887 return;
1888
1889 if (frag_offset) {
1890 struct skb_shared_info *info = skb_shinfo(skb);
1891
1892 /* We read part of the last frag, must recvmsg() rest of skb. */
1893 if (frag == &info->frags[info->nr_frags - 1])
1894 return;
1895
1896 /* Else, we must at least read the remainder in this frag. */
1897 partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1898 zc->recv_skip_hint -= partial_frag_remainder;
1899 ++frag;
1900 }
1901
1902 /* partial_frag_remainder: If part way through a frag, must read rest.
1903 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1904 * in partial_frag_remainder.
1905 */
1906 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1907 zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1908 }
1909
1910 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1911 int flags, struct scm_timestamping_internal *tss,
1912 int *cmsg_flags);
receive_fallback_to_copy(struct sock * sk,struct tcp_zerocopy_receive * zc,int inq,struct scm_timestamping_internal * tss)1913 static int receive_fallback_to_copy(struct sock *sk,
1914 struct tcp_zerocopy_receive *zc, int inq,
1915 struct scm_timestamping_internal *tss)
1916 {
1917 unsigned long copy_address = (unsigned long)zc->copybuf_address;
1918 struct msghdr msg = {};
1919 int err;
1920
1921 zc->length = 0;
1922 zc->recv_skip_hint = 0;
1923
1924 if (copy_address != zc->copybuf_address)
1925 return -EINVAL;
1926
1927 err = import_ubuf(ITER_DEST, (void __user *)copy_address, inq,
1928 &msg.msg_iter);
1929 if (err)
1930 return err;
1931
1932 err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT,
1933 tss, &zc->msg_flags);
1934 if (err < 0)
1935 return err;
1936
1937 zc->copybuf_len = err;
1938 if (likely(zc->copybuf_len)) {
1939 struct sk_buff *skb;
1940 u32 offset;
1941
1942 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
1943 if (skb)
1944 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
1945 }
1946 return 0;
1947 }
1948
tcp_copy_straggler_data(struct tcp_zerocopy_receive * zc,struct sk_buff * skb,u32 copylen,u32 * offset,u32 * seq)1949 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1950 struct sk_buff *skb, u32 copylen,
1951 u32 *offset, u32 *seq)
1952 {
1953 unsigned long copy_address = (unsigned long)zc->copybuf_address;
1954 struct msghdr msg = {};
1955 int err;
1956
1957 if (copy_address != zc->copybuf_address)
1958 return -EINVAL;
1959
1960 err = import_ubuf(ITER_DEST, (void __user *)copy_address, copylen,
1961 &msg.msg_iter);
1962 if (err)
1963 return err;
1964 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1965 if (err)
1966 return err;
1967 zc->recv_skip_hint -= copylen;
1968 *offset += copylen;
1969 *seq += copylen;
1970 return (__s32)copylen;
1971 }
1972
tcp_zc_handle_leftover(struct tcp_zerocopy_receive * zc,struct sock * sk,struct sk_buff * skb,u32 * seq,s32 copybuf_len,struct scm_timestamping_internal * tss)1973 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
1974 struct sock *sk,
1975 struct sk_buff *skb,
1976 u32 *seq,
1977 s32 copybuf_len,
1978 struct scm_timestamping_internal *tss)
1979 {
1980 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
1981
1982 if (!copylen)
1983 return 0;
1984 /* skb is null if inq < PAGE_SIZE. */
1985 if (skb) {
1986 offset = *seq - TCP_SKB_CB(skb)->seq;
1987 } else {
1988 skb = tcp_recv_skb(sk, *seq, &offset);
1989 if (TCP_SKB_CB(skb)->has_rxtstamp) {
1990 tcp_update_recv_tstamps(skb, tss);
1991 zc->msg_flags |= TCP_CMSG_TS;
1992 }
1993 }
1994
1995 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
1996 seq);
1997 return zc->copybuf_len < 0 ? 0 : copylen;
1998 }
1999
tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct * vma,struct page ** pending_pages,unsigned long pages_remaining,unsigned long * address,u32 * length,u32 * seq,struct tcp_zerocopy_receive * zc,u32 total_bytes_to_map,int err)2000 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
2001 struct page **pending_pages,
2002 unsigned long pages_remaining,
2003 unsigned long *address,
2004 u32 *length,
2005 u32 *seq,
2006 struct tcp_zerocopy_receive *zc,
2007 u32 total_bytes_to_map,
2008 int err)
2009 {
2010 /* At least one page did not map. Try zapping if we skipped earlier. */
2011 if (err == -EBUSY &&
2012 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
2013 u32 maybe_zap_len;
2014
2015 maybe_zap_len = total_bytes_to_map - /* All bytes to map */
2016 *length + /* Mapped or pending */
2017 (pages_remaining * PAGE_SIZE); /* Failed map. */
2018 zap_page_range_single(vma, *address, maybe_zap_len, NULL);
2019 err = 0;
2020 }
2021
2022 if (!err) {
2023 unsigned long leftover_pages = pages_remaining;
2024 int bytes_mapped;
2025
2026 /* We called zap_page_range_single, try to reinsert. */
2027 err = vm_insert_pages(vma, *address,
2028 pending_pages,
2029 &pages_remaining);
2030 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
2031 *seq += bytes_mapped;
2032 *address += bytes_mapped;
2033 }
2034 if (err) {
2035 /* Either we were unable to zap, OR we zapped, retried an
2036 * insert, and still had an issue. Either ways, pages_remaining
2037 * is the number of pages we were unable to map, and we unroll
2038 * some state we speculatively touched before.
2039 */
2040 const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
2041
2042 *length -= bytes_not_mapped;
2043 zc->recv_skip_hint += bytes_not_mapped;
2044 }
2045 return err;
2046 }
2047
tcp_zerocopy_vm_insert_batch(struct vm_area_struct * vma,struct page ** pages,unsigned int pages_to_map,unsigned long * address,u32 * length,u32 * seq,struct tcp_zerocopy_receive * zc,u32 total_bytes_to_map)2048 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
2049 struct page **pages,
2050 unsigned int pages_to_map,
2051 unsigned long *address,
2052 u32 *length,
2053 u32 *seq,
2054 struct tcp_zerocopy_receive *zc,
2055 u32 total_bytes_to_map)
2056 {
2057 unsigned long pages_remaining = pages_to_map;
2058 unsigned int pages_mapped;
2059 unsigned int bytes_mapped;
2060 int err;
2061
2062 err = vm_insert_pages(vma, *address, pages, &pages_remaining);
2063 pages_mapped = pages_to_map - (unsigned int)pages_remaining;
2064 bytes_mapped = PAGE_SIZE * pages_mapped;
2065 /* Even if vm_insert_pages fails, it may have partially succeeded in
2066 * mapping (some but not all of the pages).
2067 */
2068 *seq += bytes_mapped;
2069 *address += bytes_mapped;
2070
2071 if (likely(!err))
2072 return 0;
2073
2074 /* Error: maybe zap and retry + rollback state for failed inserts. */
2075 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2076 pages_remaining, address, length, seq, zc, total_bytes_to_map,
2077 err);
2078 }
2079
2080 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS)
tcp_zc_finalize_rx_tstamp(struct sock * sk,struct tcp_zerocopy_receive * zc,struct scm_timestamping_internal * tss)2081 static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2082 struct tcp_zerocopy_receive *zc,
2083 struct scm_timestamping_internal *tss)
2084 {
2085 unsigned long msg_control_addr;
2086 struct msghdr cmsg_dummy;
2087
2088 msg_control_addr = (unsigned long)zc->msg_control;
2089 cmsg_dummy.msg_control_user = (void __user *)msg_control_addr;
2090 cmsg_dummy.msg_controllen =
2091 (__kernel_size_t)zc->msg_controllen;
2092 cmsg_dummy.msg_flags = in_compat_syscall()
2093 ? MSG_CMSG_COMPAT : 0;
2094 cmsg_dummy.msg_control_is_user = true;
2095 zc->msg_flags = 0;
2096 if (zc->msg_control == msg_control_addr &&
2097 zc->msg_controllen == cmsg_dummy.msg_controllen) {
2098 tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2099 zc->msg_control = (__u64)
2100 ((uintptr_t)cmsg_dummy.msg_control_user);
2101 zc->msg_controllen =
2102 (__u64)cmsg_dummy.msg_controllen;
2103 zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2104 }
2105 }
2106
find_tcp_vma(struct mm_struct * mm,unsigned long address,bool * mmap_locked)2107 static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm,
2108 unsigned long address,
2109 bool *mmap_locked)
2110 {
2111 struct vm_area_struct *vma = lock_vma_under_rcu(mm, address);
2112
2113 if (vma) {
2114 if (vma->vm_ops != &tcp_vm_ops) {
2115 vma_end_read(vma);
2116 return NULL;
2117 }
2118 *mmap_locked = false;
2119 return vma;
2120 }
2121
2122 mmap_read_lock(mm);
2123 vma = vma_lookup(mm, address);
2124 if (!vma || vma->vm_ops != &tcp_vm_ops) {
2125 mmap_read_unlock(mm);
2126 return NULL;
2127 }
2128 *mmap_locked = true;
2129 return vma;
2130 }
2131
2132 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
tcp_zerocopy_receive(struct sock * sk,struct tcp_zerocopy_receive * zc,struct scm_timestamping_internal * tss)2133 static int tcp_zerocopy_receive(struct sock *sk,
2134 struct tcp_zerocopy_receive *zc,
2135 struct scm_timestamping_internal *tss)
2136 {
2137 u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2138 unsigned long address = (unsigned long)zc->address;
2139 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2140 s32 copybuf_len = zc->copybuf_len;
2141 struct tcp_sock *tp = tcp_sk(sk);
2142 const skb_frag_t *frags = NULL;
2143 unsigned int pages_to_map = 0;
2144 struct vm_area_struct *vma;
2145 struct sk_buff *skb = NULL;
2146 u32 seq = tp->copied_seq;
2147 u32 total_bytes_to_map;
2148 int inq = tcp_inq(sk);
2149 bool mmap_locked;
2150 int ret;
2151
2152 zc->copybuf_len = 0;
2153 zc->msg_flags = 0;
2154
2155 if (address & (PAGE_SIZE - 1) || address != zc->address)
2156 return -EINVAL;
2157
2158 if (sk->sk_state == TCP_LISTEN)
2159 return -ENOTCONN;
2160
2161 sock_rps_record_flow(sk);
2162
2163 if (inq && inq <= copybuf_len)
2164 return receive_fallback_to_copy(sk, zc, inq, tss);
2165
2166 if (inq < PAGE_SIZE) {
2167 zc->length = 0;
2168 zc->recv_skip_hint = inq;
2169 if (!inq && sock_flag(sk, SOCK_DONE))
2170 return -EIO;
2171 return 0;
2172 }
2173
2174 vma = find_tcp_vma(current->mm, address, &mmap_locked);
2175 if (!vma)
2176 return -EINVAL;
2177
2178 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2179 avail_len = min_t(u32, vma_len, inq);
2180 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2181 if (total_bytes_to_map) {
2182 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2183 zap_page_range_single(vma, address, total_bytes_to_map,
2184 NULL);
2185 zc->length = total_bytes_to_map;
2186 zc->recv_skip_hint = 0;
2187 } else {
2188 zc->length = avail_len;
2189 zc->recv_skip_hint = avail_len;
2190 }
2191 ret = 0;
2192 while (length + PAGE_SIZE <= zc->length) {
2193 int mappable_offset;
2194 struct page *page;
2195
2196 if (zc->recv_skip_hint < PAGE_SIZE) {
2197 u32 offset_frag;
2198
2199 if (skb) {
2200 if (zc->recv_skip_hint > 0)
2201 break;
2202 skb = skb->next;
2203 offset = seq - TCP_SKB_CB(skb)->seq;
2204 } else {
2205 skb = tcp_recv_skb(sk, seq, &offset);
2206 }
2207
2208 if (!skb_frags_readable(skb))
2209 break;
2210
2211 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2212 tcp_update_recv_tstamps(skb, tss);
2213 zc->msg_flags |= TCP_CMSG_TS;
2214 }
2215 zc->recv_skip_hint = skb->len - offset;
2216 frags = skb_advance_to_frag(skb, offset, &offset_frag);
2217 if (!frags || offset_frag)
2218 break;
2219 }
2220
2221 mappable_offset = find_next_mappable_frag(frags,
2222 zc->recv_skip_hint);
2223 if (mappable_offset) {
2224 zc->recv_skip_hint = mappable_offset;
2225 break;
2226 }
2227 page = skb_frag_page(frags);
2228 if (WARN_ON_ONCE(!page))
2229 break;
2230
2231 prefetchw(page);
2232 pages[pages_to_map++] = page;
2233 length += PAGE_SIZE;
2234 zc->recv_skip_hint -= PAGE_SIZE;
2235 frags++;
2236 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2237 zc->recv_skip_hint < PAGE_SIZE) {
2238 /* Either full batch, or we're about to go to next skb
2239 * (and we cannot unroll failed ops across skbs).
2240 */
2241 ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2242 pages_to_map,
2243 &address, &length,
2244 &seq, zc,
2245 total_bytes_to_map);
2246 if (ret)
2247 goto out;
2248 pages_to_map = 0;
2249 }
2250 }
2251 if (pages_to_map) {
2252 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2253 &address, &length, &seq,
2254 zc, total_bytes_to_map);
2255 }
2256 out:
2257 if (mmap_locked)
2258 mmap_read_unlock(current->mm);
2259 else
2260 vma_end_read(vma);
2261 /* Try to copy straggler data. */
2262 if (!ret)
2263 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2264
2265 if (length + copylen) {
2266 WRITE_ONCE(tp->copied_seq, seq);
2267 tcp_rcv_space_adjust(sk);
2268
2269 /* Clean up data we have read: This will do ACK frames. */
2270 tcp_recv_skb(sk, seq, &offset);
2271 tcp_cleanup_rbuf(sk, length + copylen);
2272 ret = 0;
2273 if (length == zc->length)
2274 zc->recv_skip_hint = 0;
2275 } else {
2276 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2277 ret = -EIO;
2278 }
2279 zc->length = length;
2280 return ret;
2281 }
2282 #endif
2283
2284 /* Similar to __sock_recv_timestamp, but does not require an skb */
tcp_recv_timestamp(struct msghdr * msg,const struct sock * sk,struct scm_timestamping_internal * tss)2285 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2286 struct scm_timestamping_internal *tss)
2287 {
2288 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2289 u32 tsflags = READ_ONCE(sk->sk_tsflags);
2290 bool has_timestamping = false;
2291
2292 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2293 if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2294 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2295 if (new_tstamp) {
2296 struct __kernel_timespec kts = {
2297 .tv_sec = tss->ts[0].tv_sec,
2298 .tv_nsec = tss->ts[0].tv_nsec,
2299 };
2300 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2301 sizeof(kts), &kts);
2302 } else {
2303 struct __kernel_old_timespec ts_old = {
2304 .tv_sec = tss->ts[0].tv_sec,
2305 .tv_nsec = tss->ts[0].tv_nsec,
2306 };
2307 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2308 sizeof(ts_old), &ts_old);
2309 }
2310 } else {
2311 if (new_tstamp) {
2312 struct __kernel_sock_timeval stv = {
2313 .tv_sec = tss->ts[0].tv_sec,
2314 .tv_usec = tss->ts[0].tv_nsec / 1000,
2315 };
2316 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2317 sizeof(stv), &stv);
2318 } else {
2319 struct __kernel_old_timeval tv = {
2320 .tv_sec = tss->ts[0].tv_sec,
2321 .tv_usec = tss->ts[0].tv_nsec / 1000,
2322 };
2323 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2324 sizeof(tv), &tv);
2325 }
2326 }
2327 }
2328
2329 if (tsflags & SOF_TIMESTAMPING_SOFTWARE &&
2330 (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE ||
2331 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER)))
2332 has_timestamping = true;
2333 else
2334 tss->ts[0] = (struct timespec64) {0};
2335 }
2336
2337 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2338 if (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE &&
2339 (tsflags & SOF_TIMESTAMPING_RX_HARDWARE ||
2340 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER)))
2341 has_timestamping = true;
2342 else
2343 tss->ts[2] = (struct timespec64) {0};
2344 }
2345
2346 if (has_timestamping) {
2347 tss->ts[1] = (struct timespec64) {0};
2348 if (sock_flag(sk, SOCK_TSTAMP_NEW))
2349 put_cmsg_scm_timestamping64(msg, tss);
2350 else
2351 put_cmsg_scm_timestamping(msg, tss);
2352 }
2353 }
2354
tcp_inq_hint(struct sock * sk)2355 static int tcp_inq_hint(struct sock *sk)
2356 {
2357 const struct tcp_sock *tp = tcp_sk(sk);
2358 u32 copied_seq = READ_ONCE(tp->copied_seq);
2359 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2360 int inq;
2361
2362 inq = rcv_nxt - copied_seq;
2363 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2364 lock_sock(sk);
2365 inq = tp->rcv_nxt - tp->copied_seq;
2366 release_sock(sk);
2367 }
2368 /* After receiving a FIN, tell the user-space to continue reading
2369 * by returning a non-zero inq.
2370 */
2371 if (inq == 0 && sock_flag(sk, SOCK_DONE))
2372 inq = 1;
2373 return inq;
2374 }
2375
2376 /* batch __xa_alloc() calls and reduce xa_lock()/xa_unlock() overhead. */
2377 struct tcp_xa_pool {
2378 u8 max; /* max <= MAX_SKB_FRAGS */
2379 u8 idx; /* idx <= max */
2380 __u32 tokens[MAX_SKB_FRAGS];
2381 netmem_ref netmems[MAX_SKB_FRAGS];
2382 };
2383
tcp_xa_pool_commit_locked(struct sock * sk,struct tcp_xa_pool * p)2384 static void tcp_xa_pool_commit_locked(struct sock *sk, struct tcp_xa_pool *p)
2385 {
2386 int i;
2387
2388 /* Commit part that has been copied to user space. */
2389 for (i = 0; i < p->idx; i++)
2390 __xa_cmpxchg(&sk->sk_user_frags, p->tokens[i], XA_ZERO_ENTRY,
2391 (__force void *)p->netmems[i], GFP_KERNEL);
2392 /* Rollback what has been pre-allocated and is no longer needed. */
2393 for (; i < p->max; i++)
2394 __xa_erase(&sk->sk_user_frags, p->tokens[i]);
2395
2396 p->max = 0;
2397 p->idx = 0;
2398 }
2399
tcp_xa_pool_commit(struct sock * sk,struct tcp_xa_pool * p)2400 static void tcp_xa_pool_commit(struct sock *sk, struct tcp_xa_pool *p)
2401 {
2402 if (!p->max)
2403 return;
2404
2405 xa_lock_bh(&sk->sk_user_frags);
2406
2407 tcp_xa_pool_commit_locked(sk, p);
2408
2409 xa_unlock_bh(&sk->sk_user_frags);
2410 }
2411
tcp_xa_pool_refill(struct sock * sk,struct tcp_xa_pool * p,unsigned int max_frags)2412 static int tcp_xa_pool_refill(struct sock *sk, struct tcp_xa_pool *p,
2413 unsigned int max_frags)
2414 {
2415 int err, k;
2416
2417 if (p->idx < p->max)
2418 return 0;
2419
2420 xa_lock_bh(&sk->sk_user_frags);
2421
2422 tcp_xa_pool_commit_locked(sk, p);
2423
2424 for (k = 0; k < max_frags; k++) {
2425 err = __xa_alloc(&sk->sk_user_frags, &p->tokens[k],
2426 XA_ZERO_ENTRY, xa_limit_31b, GFP_KERNEL);
2427 if (err)
2428 break;
2429 }
2430
2431 xa_unlock_bh(&sk->sk_user_frags);
2432
2433 p->max = k;
2434 p->idx = 0;
2435 return k ? 0 : err;
2436 }
2437
2438 /* On error, returns the -errno. On success, returns number of bytes sent to the
2439 * user. May not consume all of @remaining_len.
2440 */
tcp_recvmsg_dmabuf(struct sock * sk,const struct sk_buff * skb,unsigned int offset,struct msghdr * msg,int remaining_len)2441 static int tcp_recvmsg_dmabuf(struct sock *sk, const struct sk_buff *skb,
2442 unsigned int offset, struct msghdr *msg,
2443 int remaining_len)
2444 {
2445 struct dmabuf_cmsg dmabuf_cmsg = { 0 };
2446 struct tcp_xa_pool tcp_xa_pool;
2447 unsigned int start;
2448 int i, copy, n;
2449 int sent = 0;
2450 int err = 0;
2451
2452 tcp_xa_pool.max = 0;
2453 tcp_xa_pool.idx = 0;
2454 do {
2455 start = skb_headlen(skb);
2456
2457 if (skb_frags_readable(skb)) {
2458 err = -ENODEV;
2459 goto out;
2460 }
2461
2462 /* Copy header. */
2463 copy = start - offset;
2464 if (copy > 0) {
2465 copy = min(copy, remaining_len);
2466
2467 n = copy_to_iter(skb->data + offset, copy,
2468 &msg->msg_iter);
2469 if (n != copy) {
2470 err = -EFAULT;
2471 goto out;
2472 }
2473
2474 offset += copy;
2475 remaining_len -= copy;
2476
2477 /* First a dmabuf_cmsg for # bytes copied to user
2478 * buffer.
2479 */
2480 memset(&dmabuf_cmsg, 0, sizeof(dmabuf_cmsg));
2481 dmabuf_cmsg.frag_size = copy;
2482 err = put_cmsg_notrunc(msg, SOL_SOCKET,
2483 SO_DEVMEM_LINEAR,
2484 sizeof(dmabuf_cmsg),
2485 &dmabuf_cmsg);
2486 if (err)
2487 goto out;
2488
2489 sent += copy;
2490
2491 if (remaining_len == 0)
2492 goto out;
2493 }
2494
2495 /* after that, send information of dmabuf pages through a
2496 * sequence of cmsg
2497 */
2498 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2499 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2500 struct net_iov *niov;
2501 u64 frag_offset;
2502 int end;
2503
2504 /* !skb_frags_readable() should indicate that ALL the
2505 * frags in this skb are dmabuf net_iovs. We're checking
2506 * for that flag above, but also check individual frags
2507 * here. If the tcp stack is not setting
2508 * skb_frags_readable() correctly, we still don't want
2509 * to crash here.
2510 */
2511 if (!skb_frag_net_iov(frag)) {
2512 net_err_ratelimited("Found non-dmabuf skb with net_iov");
2513 err = -ENODEV;
2514 goto out;
2515 }
2516
2517 niov = skb_frag_net_iov(frag);
2518 if (!net_is_devmem_iov(niov)) {
2519 err = -ENODEV;
2520 goto out;
2521 }
2522
2523 end = start + skb_frag_size(frag);
2524 copy = end - offset;
2525
2526 if (copy > 0) {
2527 copy = min(copy, remaining_len);
2528
2529 frag_offset = net_iov_virtual_addr(niov) +
2530 skb_frag_off(frag) + offset -
2531 start;
2532 dmabuf_cmsg.frag_offset = frag_offset;
2533 dmabuf_cmsg.frag_size = copy;
2534 err = tcp_xa_pool_refill(sk, &tcp_xa_pool,
2535 skb_shinfo(skb)->nr_frags - i);
2536 if (err)
2537 goto out;
2538
2539 /* Will perform the exchange later */
2540 dmabuf_cmsg.frag_token = tcp_xa_pool.tokens[tcp_xa_pool.idx];
2541 dmabuf_cmsg.dmabuf_id = net_devmem_iov_binding_id(niov);
2542
2543 offset += copy;
2544 remaining_len -= copy;
2545
2546 err = put_cmsg_notrunc(msg, SOL_SOCKET,
2547 SO_DEVMEM_DMABUF,
2548 sizeof(dmabuf_cmsg),
2549 &dmabuf_cmsg);
2550 if (err)
2551 goto out;
2552
2553 atomic_long_inc(&niov->pp_ref_count);
2554 tcp_xa_pool.netmems[tcp_xa_pool.idx++] = skb_frag_netmem(frag);
2555
2556 sent += copy;
2557
2558 if (remaining_len == 0)
2559 goto out;
2560 }
2561 start = end;
2562 }
2563
2564 tcp_xa_pool_commit(sk, &tcp_xa_pool);
2565 if (!remaining_len)
2566 goto out;
2567
2568 /* if remaining_len is not satisfied yet, we need to go to the
2569 * next frag in the frag_list to satisfy remaining_len.
2570 */
2571 skb = skb_shinfo(skb)->frag_list ?: skb->next;
2572
2573 offset = offset - start;
2574 } while (skb);
2575
2576 if (remaining_len) {
2577 err = -EFAULT;
2578 goto out;
2579 }
2580
2581 out:
2582 tcp_xa_pool_commit(sk, &tcp_xa_pool);
2583 if (!sent)
2584 sent = err;
2585
2586 return sent;
2587 }
2588
2589 /*
2590 * This routine copies from a sock struct into the user buffer.
2591 *
2592 * Technical note: in 2.3 we work on _locked_ socket, so that
2593 * tricks with *seq access order and skb->users are not required.
2594 * Probably, code can be easily improved even more.
2595 */
2596
tcp_recvmsg_locked(struct sock * sk,struct msghdr * msg,size_t len,int flags,struct scm_timestamping_internal * tss,int * cmsg_flags)2597 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2598 int flags, struct scm_timestamping_internal *tss,
2599 int *cmsg_flags)
2600 {
2601 struct tcp_sock *tp = tcp_sk(sk);
2602 int last_copied_dmabuf = -1; /* uninitialized */
2603 int copied = 0;
2604 u32 peek_seq;
2605 u32 *seq;
2606 unsigned long used;
2607 int err;
2608 int target; /* Read at least this many bytes */
2609 long timeo;
2610 struct sk_buff *skb, *last;
2611 u32 peek_offset = 0;
2612 u32 urg_hole = 0;
2613
2614 err = -ENOTCONN;
2615 if (sk->sk_state == TCP_LISTEN)
2616 goto out;
2617
2618 if (tp->recvmsg_inq) {
2619 *cmsg_flags = TCP_CMSG_INQ;
2620 msg->msg_get_inq = 1;
2621 }
2622 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2623
2624 /* Urgent data needs to be handled specially. */
2625 if (flags & MSG_OOB)
2626 goto recv_urg;
2627
2628 if (unlikely(tp->repair)) {
2629 err = -EPERM;
2630 if (!(flags & MSG_PEEK))
2631 goto out;
2632
2633 if (tp->repair_queue == TCP_SEND_QUEUE)
2634 goto recv_sndq;
2635
2636 err = -EINVAL;
2637 if (tp->repair_queue == TCP_NO_QUEUE)
2638 goto out;
2639
2640 /* 'common' recv queue MSG_PEEK-ing */
2641 }
2642
2643 seq = &tp->copied_seq;
2644 if (flags & MSG_PEEK) {
2645 peek_offset = max(sk_peek_offset(sk, flags), 0);
2646 peek_seq = tp->copied_seq + peek_offset;
2647 seq = &peek_seq;
2648 }
2649
2650 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2651
2652 do {
2653 u32 offset;
2654
2655 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2656 if (unlikely(tp->urg_data) && tp->urg_seq == *seq) {
2657 if (copied)
2658 break;
2659 if (signal_pending(current)) {
2660 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2661 break;
2662 }
2663 }
2664
2665 /* Next get a buffer. */
2666
2667 last = skb_peek_tail(&sk->sk_receive_queue);
2668 skb_queue_walk(&sk->sk_receive_queue, skb) {
2669 last = skb;
2670 /* Now that we have two receive queues this
2671 * shouldn't happen.
2672 */
2673 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2674 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2675 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2676 flags))
2677 break;
2678
2679 offset = *seq - TCP_SKB_CB(skb)->seq;
2680 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2681 pr_err_once("%s: found a SYN, please report !\n", __func__);
2682 offset--;
2683 }
2684 if (offset < skb->len)
2685 goto found_ok_skb;
2686 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2687 goto found_fin_ok;
2688 WARN(!(flags & MSG_PEEK),
2689 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2690 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2691 }
2692
2693 /* Well, if we have backlog, try to process it now yet. */
2694
2695 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2696 break;
2697
2698 if (copied) {
2699 if (!timeo ||
2700 sk->sk_err ||
2701 sk->sk_state == TCP_CLOSE ||
2702 (sk->sk_shutdown & RCV_SHUTDOWN) ||
2703 signal_pending(current))
2704 break;
2705 } else {
2706 if (sock_flag(sk, SOCK_DONE))
2707 break;
2708
2709 if (sk->sk_err) {
2710 copied = sock_error(sk);
2711 break;
2712 }
2713
2714 if (sk->sk_shutdown & RCV_SHUTDOWN)
2715 break;
2716
2717 if (sk->sk_state == TCP_CLOSE) {
2718 /* This occurs when user tries to read
2719 * from never connected socket.
2720 */
2721 copied = -ENOTCONN;
2722 break;
2723 }
2724
2725 if (!timeo) {
2726 copied = -EAGAIN;
2727 break;
2728 }
2729
2730 if (signal_pending(current)) {
2731 copied = sock_intr_errno(timeo);
2732 break;
2733 }
2734 }
2735
2736 if (copied >= target) {
2737 /* Do not sleep, just process backlog. */
2738 __sk_flush_backlog(sk);
2739 } else {
2740 tcp_cleanup_rbuf(sk, copied);
2741 err = sk_wait_data(sk, &timeo, last);
2742 if (err < 0) {
2743 err = copied ? : err;
2744 goto out;
2745 }
2746 }
2747
2748 if ((flags & MSG_PEEK) &&
2749 (peek_seq - peek_offset - copied - urg_hole != tp->copied_seq)) {
2750 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2751 current->comm,
2752 task_pid_nr(current));
2753 peek_seq = tp->copied_seq + peek_offset;
2754 }
2755 continue;
2756
2757 found_ok_skb:
2758 /* Ok so how much can we use? */
2759 used = skb->len - offset;
2760 if (len < used)
2761 used = len;
2762
2763 /* Do we have urgent data here? */
2764 if (unlikely(tp->urg_data)) {
2765 u32 urg_offset = tp->urg_seq - *seq;
2766 if (urg_offset < used) {
2767 if (!urg_offset) {
2768 if (!sock_flag(sk, SOCK_URGINLINE)) {
2769 WRITE_ONCE(*seq, *seq + 1);
2770 urg_hole++;
2771 offset++;
2772 used--;
2773 if (!used)
2774 goto skip_copy;
2775 }
2776 } else
2777 used = urg_offset;
2778 }
2779 }
2780
2781 if (!(flags & MSG_TRUNC)) {
2782 if (last_copied_dmabuf != -1 &&
2783 last_copied_dmabuf != !skb_frags_readable(skb))
2784 break;
2785
2786 if (skb_frags_readable(skb)) {
2787 err = skb_copy_datagram_msg(skb, offset, msg,
2788 used);
2789 if (err) {
2790 /* Exception. Bailout! */
2791 if (!copied)
2792 copied = -EFAULT;
2793 break;
2794 }
2795 } else {
2796 if (!(flags & MSG_SOCK_DEVMEM)) {
2797 /* dmabuf skbs can only be received
2798 * with the MSG_SOCK_DEVMEM flag.
2799 */
2800 if (!copied)
2801 copied = -EFAULT;
2802
2803 break;
2804 }
2805
2806 err = tcp_recvmsg_dmabuf(sk, skb, offset, msg,
2807 used);
2808 if (err <= 0) {
2809 if (!copied)
2810 copied = -EFAULT;
2811
2812 break;
2813 }
2814 used = err;
2815 }
2816 }
2817
2818 last_copied_dmabuf = !skb_frags_readable(skb);
2819
2820 WRITE_ONCE(*seq, *seq + used);
2821 copied += used;
2822 len -= used;
2823 if (flags & MSG_PEEK)
2824 sk_peek_offset_fwd(sk, used);
2825 else
2826 sk_peek_offset_bwd(sk, used);
2827 tcp_rcv_space_adjust(sk);
2828
2829 skip_copy:
2830 if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) {
2831 WRITE_ONCE(tp->urg_data, 0);
2832 tcp_fast_path_check(sk);
2833 }
2834
2835 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2836 tcp_update_recv_tstamps(skb, tss);
2837 *cmsg_flags |= TCP_CMSG_TS;
2838 }
2839
2840 if (used + offset < skb->len)
2841 continue;
2842
2843 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2844 goto found_fin_ok;
2845 if (!(flags & MSG_PEEK))
2846 tcp_eat_recv_skb(sk, skb);
2847 continue;
2848
2849 found_fin_ok:
2850 /* Process the FIN. */
2851 WRITE_ONCE(*seq, *seq + 1);
2852 if (!(flags & MSG_PEEK))
2853 tcp_eat_recv_skb(sk, skb);
2854 break;
2855 } while (len > 0);
2856
2857 /* According to UNIX98, msg_name/msg_namelen are ignored
2858 * on connected socket. I was just happy when found this 8) --ANK
2859 */
2860
2861 /* Clean up data we have read: This will do ACK frames. */
2862 tcp_cleanup_rbuf(sk, copied);
2863 return copied;
2864
2865 out:
2866 return err;
2867
2868 recv_urg:
2869 err = tcp_recv_urg(sk, msg, len, flags);
2870 goto out;
2871
2872 recv_sndq:
2873 err = tcp_peek_sndq(sk, msg, len);
2874 goto out;
2875 }
2876
tcp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags,int * addr_len)2877 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2878 int *addr_len)
2879 {
2880 int cmsg_flags = 0, ret;
2881 struct scm_timestamping_internal tss;
2882
2883 if (unlikely(flags & MSG_ERRQUEUE))
2884 return inet_recv_error(sk, msg, len, addr_len);
2885
2886 if (sk_can_busy_loop(sk) &&
2887 skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2888 sk->sk_state == TCP_ESTABLISHED)
2889 sk_busy_loop(sk, flags & MSG_DONTWAIT);
2890
2891 lock_sock(sk);
2892 ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags);
2893 release_sock(sk);
2894
2895 if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) {
2896 if (cmsg_flags & TCP_CMSG_TS)
2897 tcp_recv_timestamp(msg, sk, &tss);
2898 if (msg->msg_get_inq) {
2899 msg->msg_inq = tcp_inq_hint(sk);
2900 if (cmsg_flags & TCP_CMSG_INQ)
2901 put_cmsg(msg, SOL_TCP, TCP_CM_INQ,
2902 sizeof(msg->msg_inq), &msg->msg_inq);
2903 }
2904 }
2905 return ret;
2906 }
2907 EXPORT_IPV6_MOD(tcp_recvmsg);
2908
tcp_set_state(struct sock * sk,int state)2909 void tcp_set_state(struct sock *sk, int state)
2910 {
2911 int oldstate = sk->sk_state;
2912
2913 /* We defined a new enum for TCP states that are exported in BPF
2914 * so as not force the internal TCP states to be frozen. The
2915 * following checks will detect if an internal state value ever
2916 * differs from the BPF value. If this ever happens, then we will
2917 * need to remap the internal value to the BPF value before calling
2918 * tcp_call_bpf_2arg.
2919 */
2920 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2921 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2922 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2923 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2924 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2925 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2926 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2927 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2928 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2929 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2930 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2931 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2932 BUILD_BUG_ON((int)BPF_TCP_BOUND_INACTIVE != (int)TCP_BOUND_INACTIVE);
2933 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2934
2935 /* bpf uapi header bpf.h defines an anonymous enum with values
2936 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2937 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2938 * But clang built vmlinux does not have this enum in DWARF
2939 * since clang removes the above code before generating IR/debuginfo.
2940 * Let us explicitly emit the type debuginfo to ensure the
2941 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2942 * regardless of which compiler is used.
2943 */
2944 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2945
2946 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2947 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2948
2949 switch (state) {
2950 case TCP_ESTABLISHED:
2951 if (oldstate != TCP_ESTABLISHED)
2952 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2953 break;
2954 case TCP_CLOSE_WAIT:
2955 if (oldstate == TCP_SYN_RECV)
2956 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2957 break;
2958
2959 case TCP_CLOSE:
2960 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2961 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2962
2963 sk->sk_prot->unhash(sk);
2964 if (inet_csk(sk)->icsk_bind_hash &&
2965 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2966 inet_put_port(sk);
2967 fallthrough;
2968 default:
2969 if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT)
2970 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2971 }
2972
2973 /* Change state AFTER socket is unhashed to avoid closed
2974 * socket sitting in hash tables.
2975 */
2976 inet_sk_state_store(sk, state);
2977 }
2978 EXPORT_SYMBOL_GPL(tcp_set_state);
2979
2980 /*
2981 * State processing on a close. This implements the state shift for
2982 * sending our FIN frame. Note that we only send a FIN for some
2983 * states. A shutdown() may have already sent the FIN, or we may be
2984 * closed.
2985 */
2986
2987 static const unsigned char new_state[16] = {
2988 /* current state: new state: action: */
2989 [0 /* (Invalid) */] = TCP_CLOSE,
2990 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2991 [TCP_SYN_SENT] = TCP_CLOSE,
2992 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2993 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
2994 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
2995 [TCP_TIME_WAIT] = TCP_CLOSE,
2996 [TCP_CLOSE] = TCP_CLOSE,
2997 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
2998 [TCP_LAST_ACK] = TCP_LAST_ACK,
2999 [TCP_LISTEN] = TCP_CLOSE,
3000 [TCP_CLOSING] = TCP_CLOSING,
3001 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
3002 };
3003
tcp_close_state(struct sock * sk)3004 static int tcp_close_state(struct sock *sk)
3005 {
3006 int next = (int)new_state[sk->sk_state];
3007 int ns = next & TCP_STATE_MASK;
3008
3009 tcp_set_state(sk, ns);
3010
3011 return next & TCP_ACTION_FIN;
3012 }
3013
3014 /*
3015 * Shutdown the sending side of a connection. Much like close except
3016 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
3017 */
3018
tcp_shutdown(struct sock * sk,int how)3019 void tcp_shutdown(struct sock *sk, int how)
3020 {
3021 /* We need to grab some memory, and put together a FIN,
3022 * and then put it into the queue to be sent.
3023 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
3024 */
3025 if (!(how & SEND_SHUTDOWN))
3026 return;
3027
3028 /* If we've already sent a FIN, or it's a closed state, skip this. */
3029 if ((1 << sk->sk_state) &
3030 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
3031 TCPF_CLOSE_WAIT)) {
3032 /* Clear out any half completed packets. FIN if needed. */
3033 if (tcp_close_state(sk))
3034 tcp_send_fin(sk);
3035 }
3036 }
3037 EXPORT_IPV6_MOD(tcp_shutdown);
3038
tcp_orphan_count_sum(void)3039 int tcp_orphan_count_sum(void)
3040 {
3041 int i, total = 0;
3042
3043 for_each_possible_cpu(i)
3044 total += per_cpu(tcp_orphan_count, i);
3045
3046 return max(total, 0);
3047 }
3048
3049 static int tcp_orphan_cache;
3050 static struct timer_list tcp_orphan_timer;
3051 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
3052
tcp_orphan_update(struct timer_list * unused)3053 static void tcp_orphan_update(struct timer_list *unused)
3054 {
3055 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
3056 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
3057 }
3058
tcp_too_many_orphans(int shift)3059 static bool tcp_too_many_orphans(int shift)
3060 {
3061 return READ_ONCE(tcp_orphan_cache) << shift >
3062 READ_ONCE(sysctl_tcp_max_orphans);
3063 }
3064
tcp_out_of_memory(const struct sock * sk)3065 static bool tcp_out_of_memory(const struct sock *sk)
3066 {
3067 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
3068 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
3069 return true;
3070 return false;
3071 }
3072
tcp_check_oom(const struct sock * sk,int shift)3073 bool tcp_check_oom(const struct sock *sk, int shift)
3074 {
3075 bool too_many_orphans, out_of_socket_memory;
3076
3077 too_many_orphans = tcp_too_many_orphans(shift);
3078 out_of_socket_memory = tcp_out_of_memory(sk);
3079
3080 if (too_many_orphans)
3081 net_info_ratelimited("too many orphaned sockets\n");
3082 if (out_of_socket_memory)
3083 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
3084 return too_many_orphans || out_of_socket_memory;
3085 }
3086
__tcp_close(struct sock * sk,long timeout)3087 void __tcp_close(struct sock *sk, long timeout)
3088 {
3089 struct sk_buff *skb;
3090 int data_was_unread = 0;
3091 int state;
3092
3093 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
3094
3095 if (sk->sk_state == TCP_LISTEN) {
3096 tcp_set_state(sk, TCP_CLOSE);
3097
3098 /* Special case. */
3099 inet_csk_listen_stop(sk);
3100
3101 goto adjudge_to_death;
3102 }
3103
3104 /* We need to flush the recv. buffs. We do this only on the
3105 * descriptor close, not protocol-sourced closes, because the
3106 * reader process may not have drained the data yet!
3107 */
3108 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
3109 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
3110
3111 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
3112 len--;
3113 data_was_unread += len;
3114 __kfree_skb(skb);
3115 }
3116
3117 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
3118 if (sk->sk_state == TCP_CLOSE)
3119 goto adjudge_to_death;
3120
3121 /* As outlined in RFC 2525, section 2.17, we send a RST here because
3122 * data was lost. To witness the awful effects of the old behavior of
3123 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
3124 * GET in an FTP client, suspend the process, wait for the client to
3125 * advertise a zero window, then kill -9 the FTP client, wheee...
3126 * Note: timeout is always zero in such a case.
3127 */
3128 if (unlikely(tcp_sk(sk)->repair)) {
3129 sk->sk_prot->disconnect(sk, 0);
3130 } else if (data_was_unread) {
3131 /* Unread data was tossed, zap the connection. */
3132 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
3133 tcp_set_state(sk, TCP_CLOSE);
3134 tcp_send_active_reset(sk, sk->sk_allocation,
3135 SK_RST_REASON_TCP_ABORT_ON_CLOSE);
3136 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
3137 /* Check zero linger _after_ checking for unread data. */
3138 sk->sk_prot->disconnect(sk, 0);
3139 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
3140 } else if (tcp_close_state(sk)) {
3141 /* We FIN if the application ate all the data before
3142 * zapping the connection.
3143 */
3144
3145 /* RED-PEN. Formally speaking, we have broken TCP state
3146 * machine. State transitions:
3147 *
3148 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
3149 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (it is difficult)
3150 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
3151 *
3152 * are legal only when FIN has been sent (i.e. in window),
3153 * rather than queued out of window. Purists blame.
3154 *
3155 * F.e. "RFC state" is ESTABLISHED,
3156 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
3157 *
3158 * The visible declinations are that sometimes
3159 * we enter time-wait state, when it is not required really
3160 * (harmless), do not send active resets, when they are
3161 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
3162 * they look as CLOSING or LAST_ACK for Linux)
3163 * Probably, I missed some more holelets.
3164 * --ANK
3165 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
3166 * in a single packet! (May consider it later but will
3167 * probably need API support or TCP_CORK SYN-ACK until
3168 * data is written and socket is closed.)
3169 */
3170 tcp_send_fin(sk);
3171 }
3172
3173 sk_stream_wait_close(sk, timeout);
3174
3175 adjudge_to_death:
3176 state = sk->sk_state;
3177 sock_hold(sk);
3178 sock_orphan(sk);
3179
3180 local_bh_disable();
3181 bh_lock_sock(sk);
3182 /* remove backlog if any, without releasing ownership. */
3183 __release_sock(sk);
3184
3185 this_cpu_inc(tcp_orphan_count);
3186
3187 /* Have we already been destroyed by a softirq or backlog? */
3188 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
3189 goto out;
3190
3191 /* This is a (useful) BSD violating of the RFC. There is a
3192 * problem with TCP as specified in that the other end could
3193 * keep a socket open forever with no application left this end.
3194 * We use a 1 minute timeout (about the same as BSD) then kill
3195 * our end. If they send after that then tough - BUT: long enough
3196 * that we won't make the old 4*rto = almost no time - whoops
3197 * reset mistake.
3198 *
3199 * Nope, it was not mistake. It is really desired behaviour
3200 * f.e. on http servers, when such sockets are useless, but
3201 * consume significant resources. Let's do it with special
3202 * linger2 option. --ANK
3203 */
3204
3205 if (sk->sk_state == TCP_FIN_WAIT2) {
3206 struct tcp_sock *tp = tcp_sk(sk);
3207 if (READ_ONCE(tp->linger2) < 0) {
3208 tcp_set_state(sk, TCP_CLOSE);
3209 tcp_send_active_reset(sk, GFP_ATOMIC,
3210 SK_RST_REASON_TCP_ABORT_ON_LINGER);
3211 __NET_INC_STATS(sock_net(sk),
3212 LINUX_MIB_TCPABORTONLINGER);
3213 } else {
3214 const int tmo = tcp_fin_time(sk);
3215
3216 if (tmo > TCP_TIMEWAIT_LEN) {
3217 tcp_reset_keepalive_timer(sk,
3218 tmo - TCP_TIMEWAIT_LEN);
3219 } else {
3220 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
3221 goto out;
3222 }
3223 }
3224 }
3225 if (sk->sk_state != TCP_CLOSE) {
3226 if (tcp_check_oom(sk, 0)) {
3227 tcp_set_state(sk, TCP_CLOSE);
3228 tcp_send_active_reset(sk, GFP_ATOMIC,
3229 SK_RST_REASON_TCP_ABORT_ON_MEMORY);
3230 __NET_INC_STATS(sock_net(sk),
3231 LINUX_MIB_TCPABORTONMEMORY);
3232 } else if (!check_net(sock_net(sk))) {
3233 /* Not possible to send reset; just close */
3234 tcp_set_state(sk, TCP_CLOSE);
3235 }
3236 }
3237
3238 if (sk->sk_state == TCP_CLOSE) {
3239 struct request_sock *req;
3240
3241 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
3242 lockdep_sock_is_held(sk));
3243 /* We could get here with a non-NULL req if the socket is
3244 * aborted (e.g., closed with unread data) before 3WHS
3245 * finishes.
3246 */
3247 if (req)
3248 reqsk_fastopen_remove(sk, req, false);
3249 inet_csk_destroy_sock(sk);
3250 }
3251 /* Otherwise, socket is reprieved until protocol close. */
3252
3253 out:
3254 bh_unlock_sock(sk);
3255 local_bh_enable();
3256 }
3257
tcp_close(struct sock * sk,long timeout)3258 void tcp_close(struct sock *sk, long timeout)
3259 {
3260 lock_sock(sk);
3261 __tcp_close(sk, timeout);
3262 release_sock(sk);
3263 if (!sk->sk_net_refcnt)
3264 inet_csk_clear_xmit_timers_sync(sk);
3265 sock_put(sk);
3266 }
3267 EXPORT_SYMBOL(tcp_close);
3268
3269 /* These states need RST on ABORT according to RFC793 */
3270
tcp_need_reset(int state)3271 static inline bool tcp_need_reset(int state)
3272 {
3273 return (1 << state) &
3274 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
3275 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
3276 }
3277
tcp_rtx_queue_purge(struct sock * sk)3278 static void tcp_rtx_queue_purge(struct sock *sk)
3279 {
3280 struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
3281
3282 tcp_sk(sk)->highest_sack = NULL;
3283 while (p) {
3284 struct sk_buff *skb = rb_to_skb(p);
3285
3286 p = rb_next(p);
3287 /* Since we are deleting whole queue, no need to
3288 * list_del(&skb->tcp_tsorted_anchor)
3289 */
3290 tcp_rtx_queue_unlink(skb, sk);
3291 tcp_wmem_free_skb(sk, skb);
3292 }
3293 }
3294
tcp_write_queue_purge(struct sock * sk)3295 void tcp_write_queue_purge(struct sock *sk)
3296 {
3297 struct sk_buff *skb;
3298
3299 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3300 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
3301 tcp_skb_tsorted_anchor_cleanup(skb);
3302 tcp_wmem_free_skb(sk, skb);
3303 }
3304 tcp_rtx_queue_purge(sk);
3305 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
3306 tcp_clear_all_retrans_hints(tcp_sk(sk));
3307 tcp_sk(sk)->packets_out = 0;
3308 inet_csk(sk)->icsk_backoff = 0;
3309 }
3310
tcp_disconnect(struct sock * sk,int flags)3311 int tcp_disconnect(struct sock *sk, int flags)
3312 {
3313 struct inet_sock *inet = inet_sk(sk);
3314 struct inet_connection_sock *icsk = inet_csk(sk);
3315 struct tcp_sock *tp = tcp_sk(sk);
3316 int old_state = sk->sk_state;
3317 u32 seq;
3318
3319 if (old_state != TCP_CLOSE)
3320 tcp_set_state(sk, TCP_CLOSE);
3321
3322 /* ABORT function of RFC793 */
3323 if (old_state == TCP_LISTEN) {
3324 inet_csk_listen_stop(sk);
3325 } else if (unlikely(tp->repair)) {
3326 WRITE_ONCE(sk->sk_err, ECONNABORTED);
3327 } else if (tcp_need_reset(old_state)) {
3328 tcp_send_active_reset(sk, gfp_any(), SK_RST_REASON_TCP_STATE);
3329 WRITE_ONCE(sk->sk_err, ECONNRESET);
3330 } else if (tp->snd_nxt != tp->write_seq &&
3331 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK)) {
3332 /* The last check adjusts for discrepancy of Linux wrt. RFC
3333 * states
3334 */
3335 tcp_send_active_reset(sk, gfp_any(),
3336 SK_RST_REASON_TCP_DISCONNECT_WITH_DATA);
3337 WRITE_ONCE(sk->sk_err, ECONNRESET);
3338 } else if (old_state == TCP_SYN_SENT)
3339 WRITE_ONCE(sk->sk_err, ECONNRESET);
3340
3341 tcp_clear_xmit_timers(sk);
3342 __skb_queue_purge(&sk->sk_receive_queue);
3343 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3344 WRITE_ONCE(tp->urg_data, 0);
3345 sk_set_peek_off(sk, -1);
3346 tcp_write_queue_purge(sk);
3347 tcp_fastopen_active_disable_ofo_check(sk);
3348 skb_rbtree_purge(&tp->out_of_order_queue);
3349
3350 inet->inet_dport = 0;
3351
3352 inet_bhash2_reset_saddr(sk);
3353
3354 WRITE_ONCE(sk->sk_shutdown, 0);
3355 sock_reset_flag(sk, SOCK_DONE);
3356 tp->srtt_us = 0;
3357 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
3358 tp->rcv_rtt_last_tsecr = 0;
3359
3360 seq = tp->write_seq + tp->max_window + 2;
3361 if (!seq)
3362 seq = 1;
3363 WRITE_ONCE(tp->write_seq, seq);
3364
3365 icsk->icsk_backoff = 0;
3366 icsk->icsk_probes_out = 0;
3367 icsk->icsk_probes_tstamp = 0;
3368 icsk->icsk_rto = TCP_TIMEOUT_INIT;
3369 WRITE_ONCE(icsk->icsk_rto_min, TCP_RTO_MIN);
3370 WRITE_ONCE(icsk->icsk_delack_max, TCP_DELACK_MAX);
3371 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
3372 tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
3373 tp->snd_cwnd_cnt = 0;
3374 tp->is_cwnd_limited = 0;
3375 tp->max_packets_out = 0;
3376 tp->window_clamp = 0;
3377 tp->delivered = 0;
3378 tp->delivered_ce = 0;
3379 if (icsk->icsk_ca_initialized && icsk->icsk_ca_ops->release)
3380 icsk->icsk_ca_ops->release(sk);
3381 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3382 icsk->icsk_ca_initialized = 0;
3383 tcp_set_ca_state(sk, TCP_CA_Open);
3384 tp->is_sack_reneg = 0;
3385 tcp_clear_retrans(tp);
3386 tp->total_retrans = 0;
3387 inet_csk_delack_init(sk);
3388 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3389 * issue in __tcp_select_window()
3390 */
3391 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3392 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3393 __sk_dst_reset(sk);
3394 dst_release(unrcu_pointer(xchg(&sk->sk_rx_dst, NULL)));
3395 tcp_saved_syn_free(tp);
3396 tp->compressed_ack = 0;
3397 tp->segs_in = 0;
3398 tp->segs_out = 0;
3399 tp->bytes_sent = 0;
3400 tp->bytes_acked = 0;
3401 tp->bytes_received = 0;
3402 tp->bytes_retrans = 0;
3403 tp->data_segs_in = 0;
3404 tp->data_segs_out = 0;
3405 tp->duplicate_sack[0].start_seq = 0;
3406 tp->duplicate_sack[0].end_seq = 0;
3407 tp->dsack_dups = 0;
3408 tp->reord_seen = 0;
3409 tp->retrans_out = 0;
3410 tp->sacked_out = 0;
3411 tp->tlp_high_seq = 0;
3412 tp->last_oow_ack_time = 0;
3413 tp->plb_rehash = 0;
3414 /* There's a bubble in the pipe until at least the first ACK. */
3415 tp->app_limited = ~0U;
3416 tp->rate_app_limited = 1;
3417 tp->rack.mstamp = 0;
3418 tp->rack.advanced = 0;
3419 tp->rack.reo_wnd_steps = 1;
3420 tp->rack.last_delivered = 0;
3421 tp->rack.reo_wnd_persist = 0;
3422 tp->rack.dsack_seen = 0;
3423 tp->syn_data_acked = 0;
3424 tp->rx_opt.saw_tstamp = 0;
3425 tp->rx_opt.dsack = 0;
3426 tp->rx_opt.num_sacks = 0;
3427 tp->rcv_ooopack = 0;
3428
3429
3430 /* Clean up fastopen related fields */
3431 tcp_free_fastopen_req(tp);
3432 inet_clear_bit(DEFER_CONNECT, sk);
3433 tp->fastopen_client_fail = 0;
3434
3435 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3436
3437 if (sk->sk_frag.page) {
3438 put_page(sk->sk_frag.page);
3439 sk->sk_frag.page = NULL;
3440 sk->sk_frag.offset = 0;
3441 }
3442 sk_error_report(sk);
3443 return 0;
3444 }
3445 EXPORT_SYMBOL(tcp_disconnect);
3446
tcp_can_repair_sock(const struct sock * sk)3447 static inline bool tcp_can_repair_sock(const struct sock *sk)
3448 {
3449 return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3450 (sk->sk_state != TCP_LISTEN);
3451 }
3452
tcp_repair_set_window(struct tcp_sock * tp,sockptr_t optbuf,int len)3453 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3454 {
3455 struct tcp_repair_window opt;
3456
3457 if (!tp->repair)
3458 return -EPERM;
3459
3460 if (len != sizeof(opt))
3461 return -EINVAL;
3462
3463 if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3464 return -EFAULT;
3465
3466 if (opt.max_window < opt.snd_wnd)
3467 return -EINVAL;
3468
3469 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3470 return -EINVAL;
3471
3472 if (after(opt.rcv_wup, tp->rcv_nxt))
3473 return -EINVAL;
3474
3475 tp->snd_wl1 = opt.snd_wl1;
3476 tp->snd_wnd = opt.snd_wnd;
3477 tp->max_window = opt.max_window;
3478
3479 tp->rcv_wnd = opt.rcv_wnd;
3480 tp->rcv_wup = opt.rcv_wup;
3481
3482 return 0;
3483 }
3484
tcp_repair_options_est(struct sock * sk,sockptr_t optbuf,unsigned int len)3485 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3486 unsigned int len)
3487 {
3488 struct tcp_sock *tp = tcp_sk(sk);
3489 struct tcp_repair_opt opt;
3490 size_t offset = 0;
3491
3492 while (len >= sizeof(opt)) {
3493 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3494 return -EFAULT;
3495
3496 offset += sizeof(opt);
3497 len -= sizeof(opt);
3498
3499 switch (opt.opt_code) {
3500 case TCPOPT_MSS:
3501 tp->rx_opt.mss_clamp = opt.opt_val;
3502 tcp_mtup_init(sk);
3503 break;
3504 case TCPOPT_WINDOW:
3505 {
3506 u16 snd_wscale = opt.opt_val & 0xFFFF;
3507 u16 rcv_wscale = opt.opt_val >> 16;
3508
3509 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3510 return -EFBIG;
3511
3512 tp->rx_opt.snd_wscale = snd_wscale;
3513 tp->rx_opt.rcv_wscale = rcv_wscale;
3514 tp->rx_opt.wscale_ok = 1;
3515 }
3516 break;
3517 case TCPOPT_SACK_PERM:
3518 if (opt.opt_val != 0)
3519 return -EINVAL;
3520
3521 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3522 break;
3523 case TCPOPT_TIMESTAMP:
3524 if (opt.opt_val != 0)
3525 return -EINVAL;
3526
3527 tp->rx_opt.tstamp_ok = 1;
3528 break;
3529 }
3530 }
3531
3532 return 0;
3533 }
3534
3535 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3536 EXPORT_IPV6_MOD(tcp_tx_delay_enabled);
3537
tcp_enable_tx_delay(void)3538 static void tcp_enable_tx_delay(void)
3539 {
3540 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3541 static int __tcp_tx_delay_enabled = 0;
3542
3543 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3544 static_branch_enable(&tcp_tx_delay_enabled);
3545 pr_info("TCP_TX_DELAY enabled\n");
3546 }
3547 }
3548 }
3549
3550 /* When set indicates to always queue non-full frames. Later the user clears
3551 * this option and we transmit any pending partial frames in the queue. This is
3552 * meant to be used alongside sendfile() to get properly filled frames when the
3553 * user (for example) must write out headers with a write() call first and then
3554 * use sendfile to send out the data parts.
3555 *
3556 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3557 * TCP_NODELAY.
3558 */
__tcp_sock_set_cork(struct sock * sk,bool on)3559 void __tcp_sock_set_cork(struct sock *sk, bool on)
3560 {
3561 struct tcp_sock *tp = tcp_sk(sk);
3562
3563 if (on) {
3564 tp->nonagle |= TCP_NAGLE_CORK;
3565 } else {
3566 tp->nonagle &= ~TCP_NAGLE_CORK;
3567 if (tp->nonagle & TCP_NAGLE_OFF)
3568 tp->nonagle |= TCP_NAGLE_PUSH;
3569 tcp_push_pending_frames(sk);
3570 }
3571 }
3572
tcp_sock_set_cork(struct sock * sk,bool on)3573 void tcp_sock_set_cork(struct sock *sk, bool on)
3574 {
3575 lock_sock(sk);
3576 __tcp_sock_set_cork(sk, on);
3577 release_sock(sk);
3578 }
3579 EXPORT_SYMBOL(tcp_sock_set_cork);
3580
3581 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3582 * remembered, but it is not activated until cork is cleared.
3583 *
3584 * However, when TCP_NODELAY is set we make an explicit push, which overrides
3585 * even TCP_CORK for currently queued segments.
3586 */
__tcp_sock_set_nodelay(struct sock * sk,bool on)3587 void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3588 {
3589 if (on) {
3590 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3591 tcp_push_pending_frames(sk);
3592 } else {
3593 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3594 }
3595 }
3596
tcp_sock_set_nodelay(struct sock * sk)3597 void tcp_sock_set_nodelay(struct sock *sk)
3598 {
3599 lock_sock(sk);
3600 __tcp_sock_set_nodelay(sk, true);
3601 release_sock(sk);
3602 }
3603 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3604
__tcp_sock_set_quickack(struct sock * sk,int val)3605 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3606 {
3607 if (!val) {
3608 inet_csk_enter_pingpong_mode(sk);
3609 return;
3610 }
3611
3612 inet_csk_exit_pingpong_mode(sk);
3613 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3614 inet_csk_ack_scheduled(sk)) {
3615 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3616 tcp_cleanup_rbuf(sk, 1);
3617 if (!(val & 1))
3618 inet_csk_enter_pingpong_mode(sk);
3619 }
3620 }
3621
tcp_sock_set_quickack(struct sock * sk,int val)3622 void tcp_sock_set_quickack(struct sock *sk, int val)
3623 {
3624 lock_sock(sk);
3625 __tcp_sock_set_quickack(sk, val);
3626 release_sock(sk);
3627 }
3628 EXPORT_SYMBOL(tcp_sock_set_quickack);
3629
tcp_sock_set_syncnt(struct sock * sk,int val)3630 int tcp_sock_set_syncnt(struct sock *sk, int val)
3631 {
3632 if (val < 1 || val > MAX_TCP_SYNCNT)
3633 return -EINVAL;
3634
3635 WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val);
3636 return 0;
3637 }
3638 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3639
tcp_sock_set_user_timeout(struct sock * sk,int val)3640 int tcp_sock_set_user_timeout(struct sock *sk, int val)
3641 {
3642 /* Cap the max time in ms TCP will retry or probe the window
3643 * before giving up and aborting (ETIMEDOUT) a connection.
3644 */
3645 if (val < 0)
3646 return -EINVAL;
3647
3648 WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val);
3649 return 0;
3650 }
3651 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3652
tcp_sock_set_keepidle_locked(struct sock * sk,int val)3653 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3654 {
3655 struct tcp_sock *tp = tcp_sk(sk);
3656
3657 if (val < 1 || val > MAX_TCP_KEEPIDLE)
3658 return -EINVAL;
3659
3660 /* Paired with WRITE_ONCE() in keepalive_time_when() */
3661 WRITE_ONCE(tp->keepalive_time, val * HZ);
3662 if (sock_flag(sk, SOCK_KEEPOPEN) &&
3663 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3664 u32 elapsed = keepalive_time_elapsed(tp);
3665
3666 if (tp->keepalive_time > elapsed)
3667 elapsed = tp->keepalive_time - elapsed;
3668 else
3669 elapsed = 0;
3670 tcp_reset_keepalive_timer(sk, elapsed);
3671 }
3672
3673 return 0;
3674 }
3675
tcp_sock_set_keepidle(struct sock * sk,int val)3676 int tcp_sock_set_keepidle(struct sock *sk, int val)
3677 {
3678 int err;
3679
3680 lock_sock(sk);
3681 err = tcp_sock_set_keepidle_locked(sk, val);
3682 release_sock(sk);
3683 return err;
3684 }
3685 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3686
tcp_sock_set_keepintvl(struct sock * sk,int val)3687 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3688 {
3689 if (val < 1 || val > MAX_TCP_KEEPINTVL)
3690 return -EINVAL;
3691
3692 WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ);
3693 return 0;
3694 }
3695 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3696
tcp_sock_set_keepcnt(struct sock * sk,int val)3697 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3698 {
3699 if (val < 1 || val > MAX_TCP_KEEPCNT)
3700 return -EINVAL;
3701
3702 /* Paired with READ_ONCE() in keepalive_probes() */
3703 WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val);
3704 return 0;
3705 }
3706 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3707
tcp_set_window_clamp(struct sock * sk,int val)3708 int tcp_set_window_clamp(struct sock *sk, int val)
3709 {
3710 u32 old_window_clamp, new_window_clamp, new_rcv_ssthresh;
3711 struct tcp_sock *tp = tcp_sk(sk);
3712
3713 if (!val) {
3714 if (sk->sk_state != TCP_CLOSE)
3715 return -EINVAL;
3716 WRITE_ONCE(tp->window_clamp, 0);
3717 return 0;
3718 }
3719
3720 old_window_clamp = tp->window_clamp;
3721 new_window_clamp = max_t(int, SOCK_MIN_RCVBUF / 2, val);
3722
3723 if (new_window_clamp == old_window_clamp)
3724 return 0;
3725
3726 WRITE_ONCE(tp->window_clamp, new_window_clamp);
3727
3728 /* Need to apply the reserved mem provisioning only
3729 * when shrinking the window clamp.
3730 */
3731 if (new_window_clamp < old_window_clamp) {
3732 __tcp_adjust_rcv_ssthresh(sk, new_window_clamp);
3733 } else {
3734 new_rcv_ssthresh = min(tp->rcv_wnd, new_window_clamp);
3735 tp->rcv_ssthresh = max(new_rcv_ssthresh, tp->rcv_ssthresh);
3736 }
3737 return 0;
3738 }
3739
3740 /*
3741 * Socket option code for TCP.
3742 */
do_tcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)3743 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3744 sockptr_t optval, unsigned int optlen)
3745 {
3746 struct tcp_sock *tp = tcp_sk(sk);
3747 struct inet_connection_sock *icsk = inet_csk(sk);
3748 struct net *net = sock_net(sk);
3749 int val;
3750 int err = 0;
3751
3752 /* These are data/string values, all the others are ints */
3753 switch (optname) {
3754 case TCP_CONGESTION: {
3755 char name[TCP_CA_NAME_MAX];
3756
3757 if (optlen < 1)
3758 return -EINVAL;
3759
3760 val = strncpy_from_sockptr(name, optval,
3761 min_t(long, TCP_CA_NAME_MAX-1, optlen));
3762 if (val < 0)
3763 return -EFAULT;
3764 name[val] = 0;
3765
3766 sockopt_lock_sock(sk);
3767 err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(),
3768 sockopt_ns_capable(sock_net(sk)->user_ns,
3769 CAP_NET_ADMIN));
3770 sockopt_release_sock(sk);
3771 return err;
3772 }
3773 case TCP_ULP: {
3774 char name[TCP_ULP_NAME_MAX];
3775
3776 if (optlen < 1)
3777 return -EINVAL;
3778
3779 val = strncpy_from_sockptr(name, optval,
3780 min_t(long, TCP_ULP_NAME_MAX - 1,
3781 optlen));
3782 if (val < 0)
3783 return -EFAULT;
3784 name[val] = 0;
3785
3786 sockopt_lock_sock(sk);
3787 err = tcp_set_ulp(sk, name);
3788 sockopt_release_sock(sk);
3789 return err;
3790 }
3791 case TCP_FASTOPEN_KEY: {
3792 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3793 __u8 *backup_key = NULL;
3794
3795 /* Allow a backup key as well to facilitate key rotation
3796 * First key is the active one.
3797 */
3798 if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3799 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3800 return -EINVAL;
3801
3802 if (copy_from_sockptr(key, optval, optlen))
3803 return -EFAULT;
3804
3805 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3806 backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3807
3808 return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3809 }
3810 default:
3811 /* fallthru */
3812 break;
3813 }
3814
3815 if (optlen < sizeof(int))
3816 return -EINVAL;
3817
3818 if (copy_from_sockptr(&val, optval, sizeof(val)))
3819 return -EFAULT;
3820
3821 /* Handle options that can be set without locking the socket. */
3822 switch (optname) {
3823 case TCP_SYNCNT:
3824 return tcp_sock_set_syncnt(sk, val);
3825 case TCP_USER_TIMEOUT:
3826 return tcp_sock_set_user_timeout(sk, val);
3827 case TCP_KEEPINTVL:
3828 return tcp_sock_set_keepintvl(sk, val);
3829 case TCP_KEEPCNT:
3830 return tcp_sock_set_keepcnt(sk, val);
3831 case TCP_LINGER2:
3832 if (val < 0)
3833 WRITE_ONCE(tp->linger2, -1);
3834 else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3835 WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX);
3836 else
3837 WRITE_ONCE(tp->linger2, val * HZ);
3838 return 0;
3839 case TCP_DEFER_ACCEPT:
3840 /* Translate value in seconds to number of retransmits */
3841 WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept,
3842 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3843 TCP_RTO_MAX / HZ));
3844 return 0;
3845 case TCP_RTO_MAX_MS:
3846 if (val < MSEC_PER_SEC || val > TCP_RTO_MAX_SEC * MSEC_PER_SEC)
3847 return -EINVAL;
3848 WRITE_ONCE(inet_csk(sk)->icsk_rto_max, msecs_to_jiffies(val));
3849 return 0;
3850 case TCP_RTO_MIN_US: {
3851 int rto_min = usecs_to_jiffies(val);
3852
3853 if (rto_min > TCP_RTO_MIN || rto_min < TCP_TIMEOUT_MIN)
3854 return -EINVAL;
3855 WRITE_ONCE(inet_csk(sk)->icsk_rto_min, rto_min);
3856 return 0;
3857 }
3858 case TCP_DELACK_MAX_US: {
3859 int delack_max = usecs_to_jiffies(val);
3860
3861 if (delack_max > TCP_DELACK_MAX || delack_max < TCP_TIMEOUT_MIN)
3862 return -EINVAL;
3863 WRITE_ONCE(inet_csk(sk)->icsk_delack_max, delack_max);
3864 return 0;
3865 }
3866 }
3867
3868 sockopt_lock_sock(sk);
3869
3870 switch (optname) {
3871 case TCP_MAXSEG:
3872 /* Values greater than interface MTU won't take effect. However
3873 * at the point when this call is done we typically don't yet
3874 * know which interface is going to be used
3875 */
3876 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3877 err = -EINVAL;
3878 break;
3879 }
3880 tp->rx_opt.user_mss = val;
3881 break;
3882
3883 case TCP_NODELAY:
3884 __tcp_sock_set_nodelay(sk, val);
3885 break;
3886
3887 case TCP_THIN_LINEAR_TIMEOUTS:
3888 if (val < 0 || val > 1)
3889 err = -EINVAL;
3890 else
3891 tp->thin_lto = val;
3892 break;
3893
3894 case TCP_THIN_DUPACK:
3895 if (val < 0 || val > 1)
3896 err = -EINVAL;
3897 break;
3898
3899 case TCP_REPAIR:
3900 if (!tcp_can_repair_sock(sk))
3901 err = -EPERM;
3902 else if (val == TCP_REPAIR_ON) {
3903 tp->repair = 1;
3904 sk->sk_reuse = SK_FORCE_REUSE;
3905 tp->repair_queue = TCP_NO_QUEUE;
3906 } else if (val == TCP_REPAIR_OFF) {
3907 tp->repair = 0;
3908 sk->sk_reuse = SK_NO_REUSE;
3909 tcp_send_window_probe(sk);
3910 } else if (val == TCP_REPAIR_OFF_NO_WP) {
3911 tp->repair = 0;
3912 sk->sk_reuse = SK_NO_REUSE;
3913 } else
3914 err = -EINVAL;
3915
3916 break;
3917
3918 case TCP_REPAIR_QUEUE:
3919 if (!tp->repair)
3920 err = -EPERM;
3921 else if ((unsigned int)val < TCP_QUEUES_NR)
3922 tp->repair_queue = val;
3923 else
3924 err = -EINVAL;
3925 break;
3926
3927 case TCP_QUEUE_SEQ:
3928 if (sk->sk_state != TCP_CLOSE) {
3929 err = -EPERM;
3930 } else if (tp->repair_queue == TCP_SEND_QUEUE) {
3931 if (!tcp_rtx_queue_empty(sk))
3932 err = -EPERM;
3933 else
3934 WRITE_ONCE(tp->write_seq, val);
3935 } else if (tp->repair_queue == TCP_RECV_QUEUE) {
3936 if (tp->rcv_nxt != tp->copied_seq) {
3937 err = -EPERM;
3938 } else {
3939 WRITE_ONCE(tp->rcv_nxt, val);
3940 WRITE_ONCE(tp->copied_seq, val);
3941 }
3942 } else {
3943 err = -EINVAL;
3944 }
3945 break;
3946
3947 case TCP_REPAIR_OPTIONS:
3948 if (!tp->repair)
3949 err = -EINVAL;
3950 else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent)
3951 err = tcp_repair_options_est(sk, optval, optlen);
3952 else
3953 err = -EPERM;
3954 break;
3955
3956 case TCP_CORK:
3957 __tcp_sock_set_cork(sk, val);
3958 break;
3959
3960 case TCP_KEEPIDLE:
3961 err = tcp_sock_set_keepidle_locked(sk, val);
3962 break;
3963 case TCP_SAVE_SYN:
3964 /* 0: disable, 1: enable, 2: start from ether_header */
3965 if (val < 0 || val > 2)
3966 err = -EINVAL;
3967 else
3968 tp->save_syn = val;
3969 break;
3970
3971 case TCP_WINDOW_CLAMP:
3972 err = tcp_set_window_clamp(sk, val);
3973 break;
3974
3975 case TCP_QUICKACK:
3976 __tcp_sock_set_quickack(sk, val);
3977 break;
3978
3979 case TCP_AO_REPAIR:
3980 if (!tcp_can_repair_sock(sk)) {
3981 err = -EPERM;
3982 break;
3983 }
3984 err = tcp_ao_set_repair(sk, optval, optlen);
3985 break;
3986 #ifdef CONFIG_TCP_AO
3987 case TCP_AO_ADD_KEY:
3988 case TCP_AO_DEL_KEY:
3989 case TCP_AO_INFO: {
3990 /* If this is the first TCP-AO setsockopt() on the socket,
3991 * sk_state has to be LISTEN or CLOSE. Allow TCP_REPAIR
3992 * in any state.
3993 */
3994 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
3995 goto ao_parse;
3996 if (rcu_dereference_protected(tcp_sk(sk)->ao_info,
3997 lockdep_sock_is_held(sk)))
3998 goto ao_parse;
3999 if (tp->repair)
4000 goto ao_parse;
4001 err = -EISCONN;
4002 break;
4003 ao_parse:
4004 err = tp->af_specific->ao_parse(sk, optname, optval, optlen);
4005 break;
4006 }
4007 #endif
4008 #ifdef CONFIG_TCP_MD5SIG
4009 case TCP_MD5SIG:
4010 case TCP_MD5SIG_EXT:
4011 err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
4012 break;
4013 #endif
4014 case TCP_FASTOPEN:
4015 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
4016 TCPF_LISTEN))) {
4017 tcp_fastopen_init_key_once(net);
4018
4019 fastopen_queue_tune(sk, val);
4020 } else {
4021 err = -EINVAL;
4022 }
4023 break;
4024 case TCP_FASTOPEN_CONNECT:
4025 if (val > 1 || val < 0) {
4026 err = -EINVAL;
4027 } else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
4028 TFO_CLIENT_ENABLE) {
4029 if (sk->sk_state == TCP_CLOSE)
4030 tp->fastopen_connect = val;
4031 else
4032 err = -EINVAL;
4033 } else {
4034 err = -EOPNOTSUPP;
4035 }
4036 break;
4037 case TCP_FASTOPEN_NO_COOKIE:
4038 if (val > 1 || val < 0)
4039 err = -EINVAL;
4040 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
4041 err = -EINVAL;
4042 else
4043 tp->fastopen_no_cookie = val;
4044 break;
4045 case TCP_TIMESTAMP:
4046 if (!tp->repair) {
4047 err = -EPERM;
4048 break;
4049 }
4050 /* val is an opaque field,
4051 * and low order bit contains usec_ts enable bit.
4052 * Its a best effort, and we do not care if user makes an error.
4053 */
4054 tp->tcp_usec_ts = val & 1;
4055 WRITE_ONCE(tp->tsoffset, val - tcp_clock_ts(tp->tcp_usec_ts));
4056 break;
4057 case TCP_REPAIR_WINDOW:
4058 err = tcp_repair_set_window(tp, optval, optlen);
4059 break;
4060 case TCP_NOTSENT_LOWAT:
4061 WRITE_ONCE(tp->notsent_lowat, val);
4062 sk->sk_write_space(sk);
4063 break;
4064 case TCP_INQ:
4065 if (val > 1 || val < 0)
4066 err = -EINVAL;
4067 else
4068 tp->recvmsg_inq = val;
4069 break;
4070 case TCP_TX_DELAY:
4071 if (val)
4072 tcp_enable_tx_delay();
4073 WRITE_ONCE(tp->tcp_tx_delay, val);
4074 break;
4075 default:
4076 err = -ENOPROTOOPT;
4077 break;
4078 }
4079
4080 sockopt_release_sock(sk);
4081 return err;
4082 }
4083
tcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)4084 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
4085 unsigned int optlen)
4086 {
4087 const struct inet_connection_sock *icsk = inet_csk(sk);
4088
4089 if (level != SOL_TCP)
4090 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4091 return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname,
4092 optval, optlen);
4093 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
4094 }
4095 EXPORT_IPV6_MOD(tcp_setsockopt);
4096
tcp_get_info_chrono_stats(const struct tcp_sock * tp,struct tcp_info * info)4097 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
4098 struct tcp_info *info)
4099 {
4100 u64 stats[__TCP_CHRONO_MAX], total = 0;
4101 enum tcp_chrono i;
4102
4103 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
4104 stats[i] = tp->chrono_stat[i - 1];
4105 if (i == tp->chrono_type)
4106 stats[i] += tcp_jiffies32 - tp->chrono_start;
4107 stats[i] *= USEC_PER_SEC / HZ;
4108 total += stats[i];
4109 }
4110
4111 info->tcpi_busy_time = total;
4112 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
4113 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
4114 }
4115
4116 /* Return information about state of tcp endpoint in API format. */
tcp_get_info(struct sock * sk,struct tcp_info * info)4117 void tcp_get_info(struct sock *sk, struct tcp_info *info)
4118 {
4119 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
4120 const struct inet_connection_sock *icsk = inet_csk(sk);
4121 unsigned long rate;
4122 u32 now;
4123 u64 rate64;
4124 bool slow;
4125
4126 memset(info, 0, sizeof(*info));
4127 if (sk->sk_type != SOCK_STREAM)
4128 return;
4129
4130 info->tcpi_state = inet_sk_state_load(sk);
4131
4132 /* Report meaningful fields for all TCP states, including listeners */
4133 rate = READ_ONCE(sk->sk_pacing_rate);
4134 rate64 = (rate != ~0UL) ? rate : ~0ULL;
4135 info->tcpi_pacing_rate = rate64;
4136
4137 rate = READ_ONCE(sk->sk_max_pacing_rate);
4138 rate64 = (rate != ~0UL) ? rate : ~0ULL;
4139 info->tcpi_max_pacing_rate = rate64;
4140
4141 info->tcpi_reordering = tp->reordering;
4142 info->tcpi_snd_cwnd = tcp_snd_cwnd(tp);
4143
4144 if (info->tcpi_state == TCP_LISTEN) {
4145 /* listeners aliased fields :
4146 * tcpi_unacked -> Number of children ready for accept()
4147 * tcpi_sacked -> max backlog
4148 */
4149 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
4150 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
4151 return;
4152 }
4153
4154 slow = lock_sock_fast(sk);
4155
4156 info->tcpi_ca_state = icsk->icsk_ca_state;
4157 info->tcpi_retransmits = icsk->icsk_retransmits;
4158 info->tcpi_probes = icsk->icsk_probes_out;
4159 info->tcpi_backoff = icsk->icsk_backoff;
4160
4161 if (tp->rx_opt.tstamp_ok)
4162 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
4163 if (tcp_is_sack(tp))
4164 info->tcpi_options |= TCPI_OPT_SACK;
4165 if (tp->rx_opt.wscale_ok) {
4166 info->tcpi_options |= TCPI_OPT_WSCALE;
4167 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
4168 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
4169 }
4170
4171 if (tcp_ecn_mode_any(tp))
4172 info->tcpi_options |= TCPI_OPT_ECN;
4173 if (tp->ecn_flags & TCP_ECN_SEEN)
4174 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
4175 if (tp->syn_data_acked)
4176 info->tcpi_options |= TCPI_OPT_SYN_DATA;
4177 if (tp->tcp_usec_ts)
4178 info->tcpi_options |= TCPI_OPT_USEC_TS;
4179
4180 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
4181 info->tcpi_ato = jiffies_to_usecs(min_t(u32, icsk->icsk_ack.ato,
4182 tcp_delack_max(sk)));
4183 info->tcpi_snd_mss = tp->mss_cache;
4184 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
4185
4186 info->tcpi_unacked = tp->packets_out;
4187 info->tcpi_sacked = tp->sacked_out;
4188
4189 info->tcpi_lost = tp->lost_out;
4190 info->tcpi_retrans = tp->retrans_out;
4191
4192 now = tcp_jiffies32;
4193 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
4194 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
4195 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
4196
4197 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
4198 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
4199 info->tcpi_rtt = tp->srtt_us >> 3;
4200 info->tcpi_rttvar = tp->mdev_us >> 2;
4201 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
4202 info->tcpi_advmss = tp->advmss;
4203
4204 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
4205 info->tcpi_rcv_space = tp->rcvq_space.space;
4206
4207 info->tcpi_total_retrans = tp->total_retrans;
4208
4209 info->tcpi_bytes_acked = tp->bytes_acked;
4210 info->tcpi_bytes_received = tp->bytes_received;
4211 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
4212 tcp_get_info_chrono_stats(tp, info);
4213
4214 info->tcpi_segs_out = tp->segs_out;
4215
4216 /* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */
4217 info->tcpi_segs_in = READ_ONCE(tp->segs_in);
4218 info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in);
4219
4220 info->tcpi_min_rtt = tcp_min_rtt(tp);
4221 info->tcpi_data_segs_out = tp->data_segs_out;
4222
4223 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
4224 rate64 = tcp_compute_delivery_rate(tp);
4225 if (rate64)
4226 info->tcpi_delivery_rate = rate64;
4227 info->tcpi_delivered = tp->delivered;
4228 info->tcpi_delivered_ce = tp->delivered_ce;
4229 info->tcpi_bytes_sent = tp->bytes_sent;
4230 info->tcpi_bytes_retrans = tp->bytes_retrans;
4231 info->tcpi_dsack_dups = tp->dsack_dups;
4232 info->tcpi_reord_seen = tp->reord_seen;
4233 info->tcpi_rcv_ooopack = tp->rcv_ooopack;
4234 info->tcpi_snd_wnd = tp->snd_wnd;
4235 info->tcpi_rcv_wnd = tp->rcv_wnd;
4236 info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash;
4237 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
4238
4239 info->tcpi_total_rto = tp->total_rto;
4240 info->tcpi_total_rto_recoveries = tp->total_rto_recoveries;
4241 info->tcpi_total_rto_time = tp->total_rto_time;
4242 if (tp->rto_stamp)
4243 info->tcpi_total_rto_time += tcp_clock_ms() - tp->rto_stamp;
4244
4245 unlock_sock_fast(sk, slow);
4246 }
4247 EXPORT_SYMBOL_GPL(tcp_get_info);
4248
tcp_opt_stats_get_size(void)4249 static size_t tcp_opt_stats_get_size(void)
4250 {
4251 return
4252 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
4253 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
4254 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
4255 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
4256 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
4257 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
4258 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
4259 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
4260 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
4261 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
4262 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
4263 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
4264 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
4265 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
4266 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
4267 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
4268 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
4269 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
4270 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
4271 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
4272 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
4273 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
4274 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
4275 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
4276 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
4277 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
4278 nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */
4279 0;
4280 }
4281
4282 /* Returns TTL or hop limit of an incoming packet from skb. */
tcp_skb_ttl_or_hop_limit(const struct sk_buff * skb)4283 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
4284 {
4285 if (skb->protocol == htons(ETH_P_IP))
4286 return ip_hdr(skb)->ttl;
4287 else if (skb->protocol == htons(ETH_P_IPV6))
4288 return ipv6_hdr(skb)->hop_limit;
4289 else
4290 return 0;
4291 }
4292
tcp_get_timestamping_opt_stats(const struct sock * sk,const struct sk_buff * orig_skb,const struct sk_buff * ack_skb)4293 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
4294 const struct sk_buff *orig_skb,
4295 const struct sk_buff *ack_skb)
4296 {
4297 const struct tcp_sock *tp = tcp_sk(sk);
4298 struct sk_buff *stats;
4299 struct tcp_info info;
4300 unsigned long rate;
4301 u64 rate64;
4302
4303 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
4304 if (!stats)
4305 return NULL;
4306
4307 tcp_get_info_chrono_stats(tp, &info);
4308 nla_put_u64_64bit(stats, TCP_NLA_BUSY,
4309 info.tcpi_busy_time, TCP_NLA_PAD);
4310 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
4311 info.tcpi_rwnd_limited, TCP_NLA_PAD);
4312 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
4313 info.tcpi_sndbuf_limited, TCP_NLA_PAD);
4314 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
4315 tp->data_segs_out, TCP_NLA_PAD);
4316 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
4317 tp->total_retrans, TCP_NLA_PAD);
4318
4319 rate = READ_ONCE(sk->sk_pacing_rate);
4320 rate64 = (rate != ~0UL) ? rate : ~0ULL;
4321 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
4322
4323 rate64 = tcp_compute_delivery_rate(tp);
4324 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
4325
4326 nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp));
4327 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
4328 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
4329
4330 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
4331 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
4332 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
4333 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
4334 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
4335
4336 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
4337 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
4338
4339 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
4340 TCP_NLA_PAD);
4341 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
4342 TCP_NLA_PAD);
4343 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
4344 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
4345 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
4346 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
4347 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
4348 max_t(int, 0, tp->write_seq - tp->snd_nxt));
4349 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
4350 TCP_NLA_PAD);
4351 if (ack_skb)
4352 nla_put_u8(stats, TCP_NLA_TTL,
4353 tcp_skb_ttl_or_hop_limit(ack_skb));
4354
4355 nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash);
4356 return stats;
4357 }
4358
do_tcp_getsockopt(struct sock * sk,int level,int optname,sockptr_t optval,sockptr_t optlen)4359 int do_tcp_getsockopt(struct sock *sk, int level,
4360 int optname, sockptr_t optval, sockptr_t optlen)
4361 {
4362 struct inet_connection_sock *icsk = inet_csk(sk);
4363 struct tcp_sock *tp = tcp_sk(sk);
4364 struct net *net = sock_net(sk);
4365 int val, len;
4366
4367 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4368 return -EFAULT;
4369
4370 if (len < 0)
4371 return -EINVAL;
4372
4373 len = min_t(unsigned int, len, sizeof(int));
4374
4375 switch (optname) {
4376 case TCP_MAXSEG:
4377 val = tp->mss_cache;
4378 if (tp->rx_opt.user_mss &&
4379 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
4380 val = tp->rx_opt.user_mss;
4381 if (tp->repair)
4382 val = tp->rx_opt.mss_clamp;
4383 break;
4384 case TCP_NODELAY:
4385 val = !!(tp->nonagle&TCP_NAGLE_OFF);
4386 break;
4387 case TCP_CORK:
4388 val = !!(tp->nonagle&TCP_NAGLE_CORK);
4389 break;
4390 case TCP_KEEPIDLE:
4391 val = keepalive_time_when(tp) / HZ;
4392 break;
4393 case TCP_KEEPINTVL:
4394 val = keepalive_intvl_when(tp) / HZ;
4395 break;
4396 case TCP_KEEPCNT:
4397 val = keepalive_probes(tp);
4398 break;
4399 case TCP_SYNCNT:
4400 val = READ_ONCE(icsk->icsk_syn_retries) ? :
4401 READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
4402 break;
4403 case TCP_LINGER2:
4404 val = READ_ONCE(tp->linger2);
4405 if (val >= 0)
4406 val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
4407 break;
4408 case TCP_DEFER_ACCEPT:
4409 val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept);
4410 val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ,
4411 TCP_RTO_MAX / HZ);
4412 break;
4413 case TCP_WINDOW_CLAMP:
4414 val = READ_ONCE(tp->window_clamp);
4415 break;
4416 case TCP_INFO: {
4417 struct tcp_info info;
4418
4419 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4420 return -EFAULT;
4421
4422 tcp_get_info(sk, &info);
4423
4424 len = min_t(unsigned int, len, sizeof(info));
4425 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4426 return -EFAULT;
4427 if (copy_to_sockptr(optval, &info, len))
4428 return -EFAULT;
4429 return 0;
4430 }
4431 case TCP_CC_INFO: {
4432 const struct tcp_congestion_ops *ca_ops;
4433 union tcp_cc_info info;
4434 size_t sz = 0;
4435 int attr;
4436
4437 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4438 return -EFAULT;
4439
4440 ca_ops = icsk->icsk_ca_ops;
4441 if (ca_ops && ca_ops->get_info)
4442 sz = ca_ops->get_info(sk, ~0U, &attr, &info);
4443
4444 len = min_t(unsigned int, len, sz);
4445 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4446 return -EFAULT;
4447 if (copy_to_sockptr(optval, &info, len))
4448 return -EFAULT;
4449 return 0;
4450 }
4451 case TCP_QUICKACK:
4452 val = !inet_csk_in_pingpong_mode(sk);
4453 break;
4454
4455 case TCP_CONGESTION:
4456 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4457 return -EFAULT;
4458 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4459 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4460 return -EFAULT;
4461 if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len))
4462 return -EFAULT;
4463 return 0;
4464
4465 case TCP_ULP:
4466 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4467 return -EFAULT;
4468 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4469 if (!icsk->icsk_ulp_ops) {
4470 len = 0;
4471 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4472 return -EFAULT;
4473 return 0;
4474 }
4475 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4476 return -EFAULT;
4477 if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len))
4478 return -EFAULT;
4479 return 0;
4480
4481 case TCP_FASTOPEN_KEY: {
4482 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4483 unsigned int key_len;
4484
4485 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4486 return -EFAULT;
4487
4488 key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4489 TCP_FASTOPEN_KEY_LENGTH;
4490 len = min_t(unsigned int, len, key_len);
4491 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4492 return -EFAULT;
4493 if (copy_to_sockptr(optval, key, len))
4494 return -EFAULT;
4495 return 0;
4496 }
4497 case TCP_THIN_LINEAR_TIMEOUTS:
4498 val = tp->thin_lto;
4499 break;
4500
4501 case TCP_THIN_DUPACK:
4502 val = 0;
4503 break;
4504
4505 case TCP_REPAIR:
4506 val = tp->repair;
4507 break;
4508
4509 case TCP_REPAIR_QUEUE:
4510 if (tp->repair)
4511 val = tp->repair_queue;
4512 else
4513 return -EINVAL;
4514 break;
4515
4516 case TCP_REPAIR_WINDOW: {
4517 struct tcp_repair_window opt;
4518
4519 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4520 return -EFAULT;
4521
4522 if (len != sizeof(opt))
4523 return -EINVAL;
4524
4525 if (!tp->repair)
4526 return -EPERM;
4527
4528 opt.snd_wl1 = tp->snd_wl1;
4529 opt.snd_wnd = tp->snd_wnd;
4530 opt.max_window = tp->max_window;
4531 opt.rcv_wnd = tp->rcv_wnd;
4532 opt.rcv_wup = tp->rcv_wup;
4533
4534 if (copy_to_sockptr(optval, &opt, len))
4535 return -EFAULT;
4536 return 0;
4537 }
4538 case TCP_QUEUE_SEQ:
4539 if (tp->repair_queue == TCP_SEND_QUEUE)
4540 val = tp->write_seq;
4541 else if (tp->repair_queue == TCP_RECV_QUEUE)
4542 val = tp->rcv_nxt;
4543 else
4544 return -EINVAL;
4545 break;
4546
4547 case TCP_USER_TIMEOUT:
4548 val = READ_ONCE(icsk->icsk_user_timeout);
4549 break;
4550
4551 case TCP_FASTOPEN:
4552 val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen);
4553 break;
4554
4555 case TCP_FASTOPEN_CONNECT:
4556 val = tp->fastopen_connect;
4557 break;
4558
4559 case TCP_FASTOPEN_NO_COOKIE:
4560 val = tp->fastopen_no_cookie;
4561 break;
4562
4563 case TCP_TX_DELAY:
4564 val = READ_ONCE(tp->tcp_tx_delay);
4565 break;
4566
4567 case TCP_TIMESTAMP:
4568 val = tcp_clock_ts(tp->tcp_usec_ts) + READ_ONCE(tp->tsoffset);
4569 if (tp->tcp_usec_ts)
4570 val |= 1;
4571 else
4572 val &= ~1;
4573 break;
4574 case TCP_NOTSENT_LOWAT:
4575 val = READ_ONCE(tp->notsent_lowat);
4576 break;
4577 case TCP_INQ:
4578 val = tp->recvmsg_inq;
4579 break;
4580 case TCP_SAVE_SYN:
4581 val = tp->save_syn;
4582 break;
4583 case TCP_SAVED_SYN: {
4584 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4585 return -EFAULT;
4586
4587 sockopt_lock_sock(sk);
4588 if (tp->saved_syn) {
4589 if (len < tcp_saved_syn_len(tp->saved_syn)) {
4590 len = tcp_saved_syn_len(tp->saved_syn);
4591 if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4592 sockopt_release_sock(sk);
4593 return -EFAULT;
4594 }
4595 sockopt_release_sock(sk);
4596 return -EINVAL;
4597 }
4598 len = tcp_saved_syn_len(tp->saved_syn);
4599 if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4600 sockopt_release_sock(sk);
4601 return -EFAULT;
4602 }
4603 if (copy_to_sockptr(optval, tp->saved_syn->data, len)) {
4604 sockopt_release_sock(sk);
4605 return -EFAULT;
4606 }
4607 tcp_saved_syn_free(tp);
4608 sockopt_release_sock(sk);
4609 } else {
4610 sockopt_release_sock(sk);
4611 len = 0;
4612 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4613 return -EFAULT;
4614 }
4615 return 0;
4616 }
4617 #ifdef CONFIG_MMU
4618 case TCP_ZEROCOPY_RECEIVE: {
4619 struct scm_timestamping_internal tss;
4620 struct tcp_zerocopy_receive zc = {};
4621 int err;
4622
4623 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4624 return -EFAULT;
4625 if (len < 0 ||
4626 len < offsetofend(struct tcp_zerocopy_receive, length))
4627 return -EINVAL;
4628 if (unlikely(len > sizeof(zc))) {
4629 err = check_zeroed_sockptr(optval, sizeof(zc),
4630 len - sizeof(zc));
4631 if (err < 1)
4632 return err == 0 ? -EINVAL : err;
4633 len = sizeof(zc);
4634 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4635 return -EFAULT;
4636 }
4637 if (copy_from_sockptr(&zc, optval, len))
4638 return -EFAULT;
4639 if (zc.reserved)
4640 return -EINVAL;
4641 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS))
4642 return -EINVAL;
4643 sockopt_lock_sock(sk);
4644 err = tcp_zerocopy_receive(sk, &zc, &tss);
4645 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4646 &zc, &len, err);
4647 sockopt_release_sock(sk);
4648 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4649 goto zerocopy_rcv_cmsg;
4650 switch (len) {
4651 case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4652 goto zerocopy_rcv_cmsg;
4653 case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4654 case offsetofend(struct tcp_zerocopy_receive, msg_control):
4655 case offsetofend(struct tcp_zerocopy_receive, flags):
4656 case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4657 case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4658 case offsetofend(struct tcp_zerocopy_receive, err):
4659 goto zerocopy_rcv_sk_err;
4660 case offsetofend(struct tcp_zerocopy_receive, inq):
4661 goto zerocopy_rcv_inq;
4662 case offsetofend(struct tcp_zerocopy_receive, length):
4663 default:
4664 goto zerocopy_rcv_out;
4665 }
4666 zerocopy_rcv_cmsg:
4667 if (zc.msg_flags & TCP_CMSG_TS)
4668 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4669 else
4670 zc.msg_flags = 0;
4671 zerocopy_rcv_sk_err:
4672 if (!err)
4673 zc.err = sock_error(sk);
4674 zerocopy_rcv_inq:
4675 zc.inq = tcp_inq_hint(sk);
4676 zerocopy_rcv_out:
4677 if (!err && copy_to_sockptr(optval, &zc, len))
4678 err = -EFAULT;
4679 return err;
4680 }
4681 #endif
4682 case TCP_AO_REPAIR:
4683 if (!tcp_can_repair_sock(sk))
4684 return -EPERM;
4685 return tcp_ao_get_repair(sk, optval, optlen);
4686 case TCP_AO_GET_KEYS:
4687 case TCP_AO_INFO: {
4688 int err;
4689
4690 sockopt_lock_sock(sk);
4691 if (optname == TCP_AO_GET_KEYS)
4692 err = tcp_ao_get_mkts(sk, optval, optlen);
4693 else
4694 err = tcp_ao_get_sock_info(sk, optval, optlen);
4695 sockopt_release_sock(sk);
4696
4697 return err;
4698 }
4699 case TCP_IS_MPTCP:
4700 val = 0;
4701 break;
4702 case TCP_RTO_MAX_MS:
4703 val = jiffies_to_msecs(tcp_rto_max(sk));
4704 break;
4705 case TCP_RTO_MIN_US:
4706 val = jiffies_to_usecs(READ_ONCE(inet_csk(sk)->icsk_rto_min));
4707 break;
4708 case TCP_DELACK_MAX_US:
4709 val = jiffies_to_usecs(READ_ONCE(inet_csk(sk)->icsk_delack_max));
4710 break;
4711 default:
4712 return -ENOPROTOOPT;
4713 }
4714
4715 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4716 return -EFAULT;
4717 if (copy_to_sockptr(optval, &val, len))
4718 return -EFAULT;
4719 return 0;
4720 }
4721
tcp_bpf_bypass_getsockopt(int level,int optname)4722 bool tcp_bpf_bypass_getsockopt(int level, int optname)
4723 {
4724 /* TCP do_tcp_getsockopt has optimized getsockopt implementation
4725 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4726 */
4727 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4728 return true;
4729
4730 return false;
4731 }
4732 EXPORT_IPV6_MOD(tcp_bpf_bypass_getsockopt);
4733
tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)4734 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4735 int __user *optlen)
4736 {
4737 struct inet_connection_sock *icsk = inet_csk(sk);
4738
4739 if (level != SOL_TCP)
4740 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4741 return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname,
4742 optval, optlen);
4743 return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval),
4744 USER_SOCKPTR(optlen));
4745 }
4746 EXPORT_IPV6_MOD(tcp_getsockopt);
4747
4748 #ifdef CONFIG_TCP_MD5SIG
4749 int tcp_md5_sigpool_id = -1;
4750 EXPORT_IPV6_MOD_GPL(tcp_md5_sigpool_id);
4751
tcp_md5_alloc_sigpool(void)4752 int tcp_md5_alloc_sigpool(void)
4753 {
4754 size_t scratch_size;
4755 int ret;
4756
4757 scratch_size = sizeof(union tcp_md5sum_block) + sizeof(struct tcphdr);
4758 ret = tcp_sigpool_alloc_ahash("md5", scratch_size);
4759 if (ret >= 0) {
4760 /* As long as any md5 sigpool was allocated, the return
4761 * id would stay the same. Re-write the id only for the case
4762 * when previously all MD5 keys were deleted and this call
4763 * allocates the first MD5 key, which may return a different
4764 * sigpool id than was used previously.
4765 */
4766 WRITE_ONCE(tcp_md5_sigpool_id, ret); /* Avoids the compiler potentially being smart here */
4767 return 0;
4768 }
4769 return ret;
4770 }
4771
tcp_md5_release_sigpool(void)4772 void tcp_md5_release_sigpool(void)
4773 {
4774 tcp_sigpool_release(READ_ONCE(tcp_md5_sigpool_id));
4775 }
4776
tcp_md5_add_sigpool(void)4777 void tcp_md5_add_sigpool(void)
4778 {
4779 tcp_sigpool_get(READ_ONCE(tcp_md5_sigpool_id));
4780 }
4781
tcp_md5_hash_key(struct tcp_sigpool * hp,const struct tcp_md5sig_key * key)4782 int tcp_md5_hash_key(struct tcp_sigpool *hp,
4783 const struct tcp_md5sig_key *key)
4784 {
4785 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4786 struct scatterlist sg;
4787
4788 sg_init_one(&sg, key->key, keylen);
4789 ahash_request_set_crypt(hp->req, &sg, NULL, keylen);
4790
4791 /* We use data_race() because tcp_md5_do_add() might change
4792 * key->key under us
4793 */
4794 return data_race(crypto_ahash_update(hp->req));
4795 }
4796 EXPORT_IPV6_MOD(tcp_md5_hash_key);
4797
4798 /* Called with rcu_read_lock() */
4799 static enum skb_drop_reason
tcp_inbound_md5_hash(const struct sock * sk,const struct sk_buff * skb,const void * saddr,const void * daddr,int family,int l3index,const __u8 * hash_location)4800 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4801 const void *saddr, const void *daddr,
4802 int family, int l3index, const __u8 *hash_location)
4803 {
4804 /* This gets called for each TCP segment that has TCP-MD5 option.
4805 * We have 3 drop cases:
4806 * o No MD5 hash and one expected.
4807 * o MD5 hash and we're not expecting one.
4808 * o MD5 hash and its wrong.
4809 */
4810 const struct tcp_sock *tp = tcp_sk(sk);
4811 struct tcp_md5sig_key *key;
4812 u8 newhash[16];
4813 int genhash;
4814
4815 key = tcp_md5_do_lookup(sk, l3index, saddr, family);
4816
4817 if (!key && hash_location) {
4818 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
4819 trace_tcp_hash_md5_unexpected(sk, skb);
4820 return SKB_DROP_REASON_TCP_MD5UNEXPECTED;
4821 }
4822
4823 /* Check the signature.
4824 * To support dual stack listeners, we need to handle
4825 * IPv4-mapped case.
4826 */
4827 if (family == AF_INET)
4828 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
4829 else
4830 genhash = tp->af_specific->calc_md5_hash(newhash, key,
4831 NULL, skb);
4832 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
4833 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
4834 trace_tcp_hash_md5_mismatch(sk, skb);
4835 return SKB_DROP_REASON_TCP_MD5FAILURE;
4836 }
4837 return SKB_NOT_DROPPED_YET;
4838 }
4839 #else
4840 static inline enum skb_drop_reason
tcp_inbound_md5_hash(const struct sock * sk,const struct sk_buff * skb,const void * saddr,const void * daddr,int family,int l3index,const __u8 * hash_location)4841 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4842 const void *saddr, const void *daddr,
4843 int family, int l3index, const __u8 *hash_location)
4844 {
4845 return SKB_NOT_DROPPED_YET;
4846 }
4847
4848 #endif
4849
4850 /* Called with rcu_read_lock() */
4851 enum skb_drop_reason
tcp_inbound_hash(struct sock * sk,const struct request_sock * req,const struct sk_buff * skb,const void * saddr,const void * daddr,int family,int dif,int sdif)4852 tcp_inbound_hash(struct sock *sk, const struct request_sock *req,
4853 const struct sk_buff *skb,
4854 const void *saddr, const void *daddr,
4855 int family, int dif, int sdif)
4856 {
4857 const struct tcphdr *th = tcp_hdr(skb);
4858 const struct tcp_ao_hdr *aoh;
4859 const __u8 *md5_location;
4860 int l3index;
4861
4862 /* Invalid option or two times meet any of auth options */
4863 if (tcp_parse_auth_options(th, &md5_location, &aoh)) {
4864 trace_tcp_hash_bad_header(sk, skb);
4865 return SKB_DROP_REASON_TCP_AUTH_HDR;
4866 }
4867
4868 if (req) {
4869 if (tcp_rsk_used_ao(req) != !!aoh) {
4870 u8 keyid, rnext, maclen;
4871
4872 if (aoh) {
4873 keyid = aoh->keyid;
4874 rnext = aoh->rnext_keyid;
4875 maclen = tcp_ao_hdr_maclen(aoh);
4876 } else {
4877 keyid = rnext = maclen = 0;
4878 }
4879
4880 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOBAD);
4881 trace_tcp_ao_handshake_failure(sk, skb, keyid, rnext, maclen);
4882 return SKB_DROP_REASON_TCP_AOFAILURE;
4883 }
4884 }
4885
4886 /* sdif set, means packet ingressed via a device
4887 * in an L3 domain and dif is set to the l3mdev
4888 */
4889 l3index = sdif ? dif : 0;
4890
4891 /* Fast path: unsigned segments */
4892 if (likely(!md5_location && !aoh)) {
4893 /* Drop if there's TCP-MD5 or TCP-AO key with any rcvid/sndid
4894 * for the remote peer. On TCP-AO established connection
4895 * the last key is impossible to remove, so there's
4896 * always at least one current_key.
4897 */
4898 if (tcp_ao_required(sk, saddr, family, l3index, true)) {
4899 trace_tcp_hash_ao_required(sk, skb);
4900 return SKB_DROP_REASON_TCP_AONOTFOUND;
4901 }
4902 if (unlikely(tcp_md5_do_lookup(sk, l3index, saddr, family))) {
4903 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
4904 trace_tcp_hash_md5_required(sk, skb);
4905 return SKB_DROP_REASON_TCP_MD5NOTFOUND;
4906 }
4907 return SKB_NOT_DROPPED_YET;
4908 }
4909
4910 if (aoh)
4911 return tcp_inbound_ao_hash(sk, skb, family, req, l3index, aoh);
4912
4913 return tcp_inbound_md5_hash(sk, skb, saddr, daddr, family,
4914 l3index, md5_location);
4915 }
4916 EXPORT_IPV6_MOD_GPL(tcp_inbound_hash);
4917
tcp_done(struct sock * sk)4918 void tcp_done(struct sock *sk)
4919 {
4920 struct request_sock *req;
4921
4922 /* We might be called with a new socket, after
4923 * inet_csk_prepare_forced_close() has been called
4924 * so we can not use lockdep_sock_is_held(sk)
4925 */
4926 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4927
4928 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4929 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4930
4931 tcp_set_state(sk, TCP_CLOSE);
4932 tcp_clear_xmit_timers(sk);
4933 if (req)
4934 reqsk_fastopen_remove(sk, req, false);
4935
4936 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
4937
4938 if (!sock_flag(sk, SOCK_DEAD))
4939 sk->sk_state_change(sk);
4940 else
4941 inet_csk_destroy_sock(sk);
4942 }
4943 EXPORT_SYMBOL_GPL(tcp_done);
4944
tcp_abort(struct sock * sk,int err)4945 int tcp_abort(struct sock *sk, int err)
4946 {
4947 int state = inet_sk_state_load(sk);
4948
4949 if (state == TCP_NEW_SYN_RECV) {
4950 struct request_sock *req = inet_reqsk(sk);
4951
4952 local_bh_disable();
4953 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4954 local_bh_enable();
4955 return 0;
4956 }
4957 if (state == TCP_TIME_WAIT) {
4958 struct inet_timewait_sock *tw = inet_twsk(sk);
4959
4960 refcount_inc(&tw->tw_refcnt);
4961 local_bh_disable();
4962 inet_twsk_deschedule_put(tw);
4963 local_bh_enable();
4964 return 0;
4965 }
4966
4967 /* BPF context ensures sock locking. */
4968 if (!has_current_bpf_ctx())
4969 /* Don't race with userspace socket closes such as tcp_close. */
4970 lock_sock(sk);
4971
4972 /* Avoid closing the same socket twice. */
4973 if (sk->sk_state == TCP_CLOSE) {
4974 if (!has_current_bpf_ctx())
4975 release_sock(sk);
4976 return -ENOENT;
4977 }
4978
4979 if (sk->sk_state == TCP_LISTEN) {
4980 tcp_set_state(sk, TCP_CLOSE);
4981 inet_csk_listen_stop(sk);
4982 }
4983
4984 /* Don't race with BH socket closes such as inet_csk_listen_stop. */
4985 local_bh_disable();
4986 bh_lock_sock(sk);
4987
4988 if (tcp_need_reset(sk->sk_state))
4989 tcp_send_active_reset(sk, GFP_ATOMIC,
4990 SK_RST_REASON_TCP_STATE);
4991 tcp_done_with_error(sk, err);
4992
4993 bh_unlock_sock(sk);
4994 local_bh_enable();
4995 if (!has_current_bpf_ctx())
4996 release_sock(sk);
4997 return 0;
4998 }
4999 EXPORT_SYMBOL_GPL(tcp_abort);
5000
5001 extern struct tcp_congestion_ops tcp_reno;
5002
5003 static __initdata unsigned long thash_entries;
set_thash_entries(char * str)5004 static int __init set_thash_entries(char *str)
5005 {
5006 ssize_t ret;
5007
5008 if (!str)
5009 return 0;
5010
5011 ret = kstrtoul(str, 0, &thash_entries);
5012 if (ret)
5013 return 0;
5014
5015 return 1;
5016 }
5017 __setup("thash_entries=", set_thash_entries);
5018
tcp_init_mem(void)5019 static void __init tcp_init_mem(void)
5020 {
5021 unsigned long limit = nr_free_buffer_pages() / 16;
5022
5023 limit = max(limit, 128UL);
5024 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */
5025 sysctl_tcp_mem[1] = limit; /* 6.25 % */
5026 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */
5027 }
5028
tcp_struct_check(void)5029 static void __init tcp_struct_check(void)
5030 {
5031 /* TX read-mostly hotpath cache lines */
5032 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, max_window);
5033 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, rcv_ssthresh);
5034 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, reordering);
5035 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, notsent_lowat);
5036 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, gso_segs);
5037 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, lost_skb_hint);
5038 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, retransmit_skb_hint);
5039 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_tx, 40);
5040
5041 /* TXRX read-mostly hotpath cache lines */
5042 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, tsoffset);
5043 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_wnd);
5044 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, mss_cache);
5045 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_cwnd);
5046 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, prr_out);
5047 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, lost_out);
5048 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, sacked_out);
5049 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, scaling_ratio);
5050 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_txrx, 32);
5051
5052 /* RX read-mostly hotpath cache lines */
5053 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, copied_seq);
5054 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rcv_tstamp);
5055 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_wl1);
5056 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, tlp_high_seq);
5057 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rttvar_us);
5058 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, retrans_out);
5059 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, advmss);
5060 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, urg_data);
5061 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, lost);
5062 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rtt_min);
5063 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, out_of_order_queue);
5064 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_ssthresh);
5065 #if IS_ENABLED(CONFIG_TLS_DEVICE)
5066 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, tcp_clean_acked);
5067 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_rx, 77);
5068 #else
5069 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_rx, 69);
5070 #endif
5071
5072 /* TX read-write hotpath cache lines */
5073 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, segs_out);
5074 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, data_segs_out);
5075 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, bytes_sent);
5076 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, snd_sml);
5077 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_start);
5078 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_stat);
5079 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, write_seq);
5080 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, pushed_seq);
5081 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, lsndtime);
5082 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, mdev_us);
5083 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tcp_wstamp_ns);
5084 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, rtt_seq);
5085 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tsorted_sent_queue);
5086 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, highest_sack);
5087 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, ecn_flags);
5088 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_tx, 89);
5089
5090 /* TXRX read-write hotpath cache lines */
5091 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, pred_flags);
5092 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_clock_cache);
5093 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_mstamp);
5094 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_nxt);
5095 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_nxt);
5096 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_una);
5097 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, window_clamp);
5098 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, srtt_us);
5099 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, packets_out);
5100 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_up);
5101 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered);
5102 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered_ce);
5103 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, app_limited);
5104 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_wnd);
5105 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rx_opt);
5106
5107 /* 32bit arches with 8byte alignment on u64 fields might need padding
5108 * before tcp_clock_cache.
5109 */
5110 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_txrx, 92 + 4);
5111
5112 /* RX read-write hotpath cache lines */
5113 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_received);
5114 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, segs_in);
5115 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, data_segs_in);
5116 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_wup);
5117 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, max_packets_out);
5118 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, cwnd_usage_seq);
5119 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_delivered);
5120 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_interval_us);
5121 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_last_tsecr);
5122 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, first_tx_mstamp);
5123 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, delivered_mstamp);
5124 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_acked);
5125 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_est);
5126 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcvq_space);
5127 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_rx, 99);
5128 }
5129
tcp_init(void)5130 void __init tcp_init(void)
5131 {
5132 int max_rshare, max_wshare, cnt;
5133 unsigned long limit;
5134 unsigned int i;
5135
5136 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
5137 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
5138 sizeof_field(struct sk_buff, cb));
5139
5140 tcp_struct_check();
5141
5142 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
5143
5144 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
5145 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
5146
5147 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
5148 thash_entries, 21, /* one slot per 2 MB*/
5149 0, 64 * 1024);
5150 tcp_hashinfo.bind_bucket_cachep =
5151 kmem_cache_create("tcp_bind_bucket",
5152 sizeof(struct inet_bind_bucket), 0,
5153 SLAB_HWCACHE_ALIGN | SLAB_PANIC |
5154 SLAB_ACCOUNT,
5155 NULL);
5156 tcp_hashinfo.bind2_bucket_cachep =
5157 kmem_cache_create("tcp_bind2_bucket",
5158 sizeof(struct inet_bind2_bucket), 0,
5159 SLAB_HWCACHE_ALIGN | SLAB_PANIC |
5160 SLAB_ACCOUNT,
5161 NULL);
5162
5163 /* Size and allocate the main established and bind bucket
5164 * hash tables.
5165 *
5166 * The methodology is similar to that of the buffer cache.
5167 */
5168 tcp_hashinfo.ehash =
5169 alloc_large_system_hash("TCP established",
5170 sizeof(struct inet_ehash_bucket),
5171 thash_entries,
5172 17, /* one slot per 128 KB of memory */
5173 0,
5174 NULL,
5175 &tcp_hashinfo.ehash_mask,
5176 0,
5177 thash_entries ? 0 : 512 * 1024);
5178 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
5179 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
5180
5181 if (inet_ehash_locks_alloc(&tcp_hashinfo))
5182 panic("TCP: failed to alloc ehash_locks");
5183 tcp_hashinfo.bhash =
5184 alloc_large_system_hash("TCP bind",
5185 2 * sizeof(struct inet_bind_hashbucket),
5186 tcp_hashinfo.ehash_mask + 1,
5187 17, /* one slot per 128 KB of memory */
5188 0,
5189 &tcp_hashinfo.bhash_size,
5190 NULL,
5191 0,
5192 64 * 1024);
5193 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
5194 tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size;
5195 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
5196 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
5197 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
5198 spin_lock_init(&tcp_hashinfo.bhash2[i].lock);
5199 INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain);
5200 }
5201
5202 tcp_hashinfo.pernet = false;
5203
5204 cnt = tcp_hashinfo.ehash_mask + 1;
5205 sysctl_tcp_max_orphans = cnt / 2;
5206
5207 tcp_init_mem();
5208 /* Set per-socket limits to no more than 1/128 the pressure threshold */
5209 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
5210 max_wshare = min(4UL*1024*1024, limit);
5211 max_rshare = min(6UL*1024*1024, limit);
5212
5213 init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE;
5214 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
5215 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
5216
5217 init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE;
5218 init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
5219 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
5220
5221 pr_info("Hash tables configured (established %u bind %u)\n",
5222 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
5223
5224 tcp_v4_init();
5225 tcp_metrics_init();
5226 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
5227 tcp_tasklet_init();
5228 mptcp_init();
5229 }
5230