xref: /linux/net/ipv4/tcp.c (revision 9410645520e9b820069761f3450ef6661418e279)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  *
21  * Fixes:
22  *		Alan Cox	:	Numerous verify_area() calls
23  *		Alan Cox	:	Set the ACK bit on a reset
24  *		Alan Cox	:	Stopped it crashing if it closed while
25  *					sk->inuse=1 and was trying to connect
26  *					(tcp_err()).
27  *		Alan Cox	:	All icmp error handling was broken
28  *					pointers passed where wrong and the
29  *					socket was looked up backwards. Nobody
30  *					tested any icmp error code obviously.
31  *		Alan Cox	:	tcp_err() now handled properly. It
32  *					wakes people on errors. poll
33  *					behaves and the icmp error race
34  *					has gone by moving it into sock.c
35  *		Alan Cox	:	tcp_send_reset() fixed to work for
36  *					everything not just packets for
37  *					unknown sockets.
38  *		Alan Cox	:	tcp option processing.
39  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
40  *					syn rule wrong]
41  *		Herp Rosmanith  :	More reset fixes
42  *		Alan Cox	:	No longer acks invalid rst frames.
43  *					Acking any kind of RST is right out.
44  *		Alan Cox	:	Sets an ignore me flag on an rst
45  *					receive otherwise odd bits of prattle
46  *					escape still
47  *		Alan Cox	:	Fixed another acking RST frame bug.
48  *					Should stop LAN workplace lockups.
49  *		Alan Cox	: 	Some tidyups using the new skb list
50  *					facilities
51  *		Alan Cox	:	sk->keepopen now seems to work
52  *		Alan Cox	:	Pulls options out correctly on accepts
53  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
54  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
55  *					bit to skb ops.
56  *		Alan Cox	:	Tidied tcp_data to avoid a potential
57  *					nasty.
58  *		Alan Cox	:	Added some better commenting, as the
59  *					tcp is hard to follow
60  *		Alan Cox	:	Removed incorrect check for 20 * psh
61  *	Michael O'Reilly	:	ack < copied bug fix.
62  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
63  *		Alan Cox	:	FIN with no memory -> CRASH
64  *		Alan Cox	:	Added socket option proto entries.
65  *					Also added awareness of them to accept.
66  *		Alan Cox	:	Added TCP options (SOL_TCP)
67  *		Alan Cox	:	Switched wakeup calls to callbacks,
68  *					so the kernel can layer network
69  *					sockets.
70  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
71  *		Alan Cox	:	Handle FIN (more) properly (we hope).
72  *		Alan Cox	:	RST frames sent on unsynchronised
73  *					state ack error.
74  *		Alan Cox	:	Put in missing check for SYN bit.
75  *		Alan Cox	:	Added tcp_select_window() aka NET2E
76  *					window non shrink trick.
77  *		Alan Cox	:	Added a couple of small NET2E timer
78  *					fixes
79  *		Charles Hedrick :	TCP fixes
80  *		Toomas Tamm	:	TCP window fixes
81  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
82  *		Charles Hedrick	:	Rewrote most of it to actually work
83  *		Linus		:	Rewrote tcp_read() and URG handling
84  *					completely
85  *		Gerhard Koerting:	Fixed some missing timer handling
86  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
87  *		Gerhard Koerting:	PC/TCP workarounds
88  *		Adam Caldwell	:	Assorted timer/timing errors
89  *		Matthew Dillon	:	Fixed another RST bug
90  *		Alan Cox	:	Move to kernel side addressing changes.
91  *		Alan Cox	:	Beginning work on TCP fastpathing
92  *					(not yet usable)
93  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
94  *		Alan Cox	:	TCP fast path debugging
95  *		Alan Cox	:	Window clamping
96  *		Michael Riepe	:	Bug in tcp_check()
97  *		Matt Dillon	:	More TCP improvements and RST bug fixes
98  *		Matt Dillon	:	Yet more small nasties remove from the
99  *					TCP code (Be very nice to this man if
100  *					tcp finally works 100%) 8)
101  *		Alan Cox	:	BSD accept semantics.
102  *		Alan Cox	:	Reset on closedown bug.
103  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
104  *		Michael Pall	:	Handle poll() after URG properly in
105  *					all cases.
106  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
107  *					(multi URG PUSH broke rlogin).
108  *		Michael Pall	:	Fix the multi URG PUSH problem in
109  *					tcp_readable(), poll() after URG
110  *					works now.
111  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
112  *					BSD api.
113  *		Alan Cox	:	Changed the semantics of sk->socket to
114  *					fix a race and a signal problem with
115  *					accept() and async I/O.
116  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
117  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
118  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
119  *					clients/servers which listen in on
120  *					fixed ports.
121  *		Alan Cox	:	Cleaned the above up and shrank it to
122  *					a sensible code size.
123  *		Alan Cox	:	Self connect lockup fix.
124  *		Alan Cox	:	No connect to multicast.
125  *		Ross Biro	:	Close unaccepted children on master
126  *					socket close.
127  *		Alan Cox	:	Reset tracing code.
128  *		Alan Cox	:	Spurious resets on shutdown.
129  *		Alan Cox	:	Giant 15 minute/60 second timer error
130  *		Alan Cox	:	Small whoops in polling before an
131  *					accept.
132  *		Alan Cox	:	Kept the state trace facility since
133  *					it's handy for debugging.
134  *		Alan Cox	:	More reset handler fixes.
135  *		Alan Cox	:	Started rewriting the code based on
136  *					the RFC's for other useful protocol
137  *					references see: Comer, KA9Q NOS, and
138  *					for a reference on the difference
139  *					between specifications and how BSD
140  *					works see the 4.4lite source.
141  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
142  *					close.
143  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
144  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
145  *		Alan Cox	:	Reimplemented timers as per the RFC
146  *					and using multiple timers for sanity.
147  *		Alan Cox	:	Small bug fixes, and a lot of new
148  *					comments.
149  *		Alan Cox	:	Fixed dual reader crash by locking
150  *					the buffers (much like datagram.c)
151  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
152  *					now gets fed up of retrying without
153  *					(even a no space) answer.
154  *		Alan Cox	:	Extracted closing code better
155  *		Alan Cox	:	Fixed the closing state machine to
156  *					resemble the RFC.
157  *		Alan Cox	:	More 'per spec' fixes.
158  *		Jorge Cwik	:	Even faster checksumming.
159  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
160  *					only frames. At least one pc tcp stack
161  *					generates them.
162  *		Alan Cox	:	Cache last socket.
163  *		Alan Cox	:	Per route irtt.
164  *		Matt Day	:	poll()->select() match BSD precisely on error
165  *		Alan Cox	:	New buffers
166  *		Marc Tamsky	:	Various sk->prot->retransmits and
167  *					sk->retransmits misupdating fixed.
168  *					Fixed tcp_write_timeout: stuck close,
169  *					and TCP syn retries gets used now.
170  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
171  *					ack if state is TCP_CLOSED.
172  *		Alan Cox	:	Look up device on a retransmit - routes may
173  *					change. Doesn't yet cope with MSS shrink right
174  *					but it's a start!
175  *		Marc Tamsky	:	Closing in closing fixes.
176  *		Mike Shaver	:	RFC1122 verifications.
177  *		Alan Cox	:	rcv_saddr errors.
178  *		Alan Cox	:	Block double connect().
179  *		Alan Cox	:	Small hooks for enSKIP.
180  *		Alexey Kuznetsov:	Path MTU discovery.
181  *		Alan Cox	:	Support soft errors.
182  *		Alan Cox	:	Fix MTU discovery pathological case
183  *					when the remote claims no mtu!
184  *		Marc Tamsky	:	TCP_CLOSE fix.
185  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
186  *					window but wrong (fixes NT lpd problems)
187  *		Pedro Roque	:	Better TCP window handling, delayed ack.
188  *		Joerg Reuter	:	No modification of locked buffers in
189  *					tcp_do_retransmit()
190  *		Eric Schenk	:	Changed receiver side silly window
191  *					avoidance algorithm to BSD style
192  *					algorithm. This doubles throughput
193  *					against machines running Solaris,
194  *					and seems to result in general
195  *					improvement.
196  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
197  *	Willy Konynenberg	:	Transparent proxying support.
198  *	Mike McLagan		:	Routing by source
199  *		Keith Owens	:	Do proper merging with partial SKB's in
200  *					tcp_do_sendmsg to avoid burstiness.
201  *		Eric Schenk	:	Fix fast close down bug with
202  *					shutdown() followed by close().
203  *		Andi Kleen 	:	Make poll agree with SIGIO
204  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
205  *					lingertime == 0 (RFC 793 ABORT Call)
206  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
207  *					csum_and_copy_from_user() if possible.
208  *
209  * Description of States:
210  *
211  *	TCP_SYN_SENT		sent a connection request, waiting for ack
212  *
213  *	TCP_SYN_RECV		received a connection request, sent ack,
214  *				waiting for final ack in three-way handshake.
215  *
216  *	TCP_ESTABLISHED		connection established
217  *
218  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
219  *				transmission of remaining buffered data
220  *
221  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
222  *				to shutdown
223  *
224  *	TCP_CLOSING		both sides have shutdown but we still have
225  *				data we have to finish sending
226  *
227  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
228  *				closed, can only be entered from FIN_WAIT2
229  *				or CLOSING.  Required because the other end
230  *				may not have gotten our last ACK causing it
231  *				to retransmit the data packet (which we ignore)
232  *
233  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
234  *				us to finish writing our data and to shutdown
235  *				(we have to close() to move on to LAST_ACK)
236  *
237  *	TCP_LAST_ACK		out side has shutdown after remote has
238  *				shutdown.  There may still be data in our
239  *				buffer that we have to finish sending
240  *
241  *	TCP_CLOSE		socket is finished
242  */
243 
244 #define pr_fmt(fmt) "TCP: " fmt
245 
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/cache.h>
264 #include <linux/err.h>
265 #include <linux/time.h>
266 #include <linux/slab.h>
267 #include <linux/errqueue.h>
268 #include <linux/static_key.h>
269 #include <linux/btf.h>
270 
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/mptcp.h>
275 #include <net/proto_memory.h>
276 #include <net/xfrm.h>
277 #include <net/ip.h>
278 #include <net/sock.h>
279 #include <net/rstreason.h>
280 
281 #include <linux/uaccess.h>
282 #include <asm/ioctls.h>
283 #include <net/busy_poll.h>
284 #include <net/hotdata.h>
285 #include <trace/events/tcp.h>
286 #include <net/rps.h>
287 
288 #include "../core/devmem.h"
289 
290 /* Track pending CMSGs. */
291 enum {
292 	TCP_CMSG_INQ = 1,
293 	TCP_CMSG_TS = 2
294 };
295 
296 DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
297 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
298 
299 DEFINE_PER_CPU(u32, tcp_tw_isn);
300 EXPORT_PER_CPU_SYMBOL_GPL(tcp_tw_isn);
301 
302 long sysctl_tcp_mem[3] __read_mostly;
303 EXPORT_SYMBOL(sysctl_tcp_mem);
304 
305 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp;	/* Current allocated memory. */
306 EXPORT_SYMBOL(tcp_memory_allocated);
307 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
308 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc);
309 
310 #if IS_ENABLED(CONFIG_SMC)
311 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
312 EXPORT_SYMBOL(tcp_have_smc);
313 #endif
314 
315 /*
316  * Current number of TCP sockets.
317  */
318 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp;
319 EXPORT_SYMBOL(tcp_sockets_allocated);
320 
321 /*
322  * TCP splice context
323  */
324 struct tcp_splice_state {
325 	struct pipe_inode_info *pipe;
326 	size_t len;
327 	unsigned int flags;
328 };
329 
330 /*
331  * Pressure flag: try to collapse.
332  * Technical note: it is used by multiple contexts non atomically.
333  * All the __sk_mem_schedule() is of this nature: accounting
334  * is strict, actions are advisory and have some latency.
335  */
336 unsigned long tcp_memory_pressure __read_mostly;
337 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
338 
tcp_enter_memory_pressure(struct sock * sk)339 void tcp_enter_memory_pressure(struct sock *sk)
340 {
341 	unsigned long val;
342 
343 	if (READ_ONCE(tcp_memory_pressure))
344 		return;
345 	val = jiffies;
346 
347 	if (!val)
348 		val--;
349 	if (!cmpxchg(&tcp_memory_pressure, 0, val))
350 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
351 }
352 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
353 
tcp_leave_memory_pressure(struct sock * sk)354 void tcp_leave_memory_pressure(struct sock *sk)
355 {
356 	unsigned long val;
357 
358 	if (!READ_ONCE(tcp_memory_pressure))
359 		return;
360 	val = xchg(&tcp_memory_pressure, 0);
361 	if (val)
362 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
363 			      jiffies_to_msecs(jiffies - val));
364 }
365 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
366 
367 /* Convert seconds to retransmits based on initial and max timeout */
secs_to_retrans(int seconds,int timeout,int rto_max)368 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
369 {
370 	u8 res = 0;
371 
372 	if (seconds > 0) {
373 		int period = timeout;
374 
375 		res = 1;
376 		while (seconds > period && res < 255) {
377 			res++;
378 			timeout <<= 1;
379 			if (timeout > rto_max)
380 				timeout = rto_max;
381 			period += timeout;
382 		}
383 	}
384 	return res;
385 }
386 
387 /* Convert retransmits to seconds based on initial and max timeout */
retrans_to_secs(u8 retrans,int timeout,int rto_max)388 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
389 {
390 	int period = 0;
391 
392 	if (retrans > 0) {
393 		period = timeout;
394 		while (--retrans) {
395 			timeout <<= 1;
396 			if (timeout > rto_max)
397 				timeout = rto_max;
398 			period += timeout;
399 		}
400 	}
401 	return period;
402 }
403 
tcp_compute_delivery_rate(const struct tcp_sock * tp)404 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
405 {
406 	u32 rate = READ_ONCE(tp->rate_delivered);
407 	u32 intv = READ_ONCE(tp->rate_interval_us);
408 	u64 rate64 = 0;
409 
410 	if (rate && intv) {
411 		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
412 		do_div(rate64, intv);
413 	}
414 	return rate64;
415 }
416 
417 /* Address-family independent initialization for a tcp_sock.
418  *
419  * NOTE: A lot of things set to zero explicitly by call to
420  *       sk_alloc() so need not be done here.
421  */
tcp_init_sock(struct sock * sk)422 void tcp_init_sock(struct sock *sk)
423 {
424 	struct inet_connection_sock *icsk = inet_csk(sk);
425 	struct tcp_sock *tp = tcp_sk(sk);
426 	int rto_min_us;
427 
428 	tp->out_of_order_queue = RB_ROOT;
429 	sk->tcp_rtx_queue = RB_ROOT;
430 	tcp_init_xmit_timers(sk);
431 	INIT_LIST_HEAD(&tp->tsq_node);
432 	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
433 
434 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
435 	rto_min_us = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rto_min_us);
436 	icsk->icsk_rto_min = usecs_to_jiffies(rto_min_us);
437 	icsk->icsk_delack_max = TCP_DELACK_MAX;
438 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
439 	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
440 
441 	/* So many TCP implementations out there (incorrectly) count the
442 	 * initial SYN frame in their delayed-ACK and congestion control
443 	 * algorithms that we must have the following bandaid to talk
444 	 * efficiently to them.  -DaveM
445 	 */
446 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
447 
448 	/* There's a bubble in the pipe until at least the first ACK. */
449 	tp->app_limited = ~0U;
450 	tp->rate_app_limited = 1;
451 
452 	/* See draft-stevens-tcpca-spec-01 for discussion of the
453 	 * initialization of these values.
454 	 */
455 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
456 	tp->snd_cwnd_clamp = ~0;
457 	tp->mss_cache = TCP_MSS_DEFAULT;
458 
459 	tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
460 	tcp_assign_congestion_control(sk);
461 
462 	tp->tsoffset = 0;
463 	tp->rack.reo_wnd_steps = 1;
464 
465 	sk->sk_write_space = sk_stream_write_space;
466 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
467 
468 	icsk->icsk_sync_mss = tcp_sync_mss;
469 
470 	WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
471 	WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
472 	tcp_scaling_ratio_init(sk);
473 
474 	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
475 	sk_sockets_allocated_inc(sk);
476 	xa_init_flags(&sk->sk_user_frags, XA_FLAGS_ALLOC1);
477 }
478 EXPORT_SYMBOL(tcp_init_sock);
479 
tcp_tx_timestamp(struct sock * sk,u16 tsflags)480 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
481 {
482 	struct sk_buff *skb = tcp_write_queue_tail(sk);
483 
484 	if (tsflags && skb) {
485 		struct skb_shared_info *shinfo = skb_shinfo(skb);
486 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
487 
488 		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
489 		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
490 			tcb->txstamp_ack = 1;
491 		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
492 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
493 	}
494 }
495 
tcp_stream_is_readable(struct sock * sk,int target)496 static bool tcp_stream_is_readable(struct sock *sk, int target)
497 {
498 	if (tcp_epollin_ready(sk, target))
499 		return true;
500 	return sk_is_readable(sk);
501 }
502 
503 /*
504  *	Wait for a TCP event.
505  *
506  *	Note that we don't need to lock the socket, as the upper poll layers
507  *	take care of normal races (between the test and the event) and we don't
508  *	go look at any of the socket buffers directly.
509  */
tcp_poll(struct file * file,struct socket * sock,poll_table * wait)510 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
511 {
512 	__poll_t mask;
513 	struct sock *sk = sock->sk;
514 	const struct tcp_sock *tp = tcp_sk(sk);
515 	u8 shutdown;
516 	int state;
517 
518 	sock_poll_wait(file, sock, wait);
519 
520 	state = inet_sk_state_load(sk);
521 	if (state == TCP_LISTEN)
522 		return inet_csk_listen_poll(sk);
523 
524 	/* Socket is not locked. We are protected from async events
525 	 * by poll logic and correct handling of state changes
526 	 * made by other threads is impossible in any case.
527 	 */
528 
529 	mask = 0;
530 
531 	/*
532 	 * EPOLLHUP is certainly not done right. But poll() doesn't
533 	 * have a notion of HUP in just one direction, and for a
534 	 * socket the read side is more interesting.
535 	 *
536 	 * Some poll() documentation says that EPOLLHUP is incompatible
537 	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
538 	 * all. But careful, it tends to be safer to return too many
539 	 * bits than too few, and you can easily break real applications
540 	 * if you don't tell them that something has hung up!
541 	 *
542 	 * Check-me.
543 	 *
544 	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
545 	 * our fs/select.c). It means that after we received EOF,
546 	 * poll always returns immediately, making impossible poll() on write()
547 	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
548 	 * if and only if shutdown has been made in both directions.
549 	 * Actually, it is interesting to look how Solaris and DUX
550 	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
551 	 * then we could set it on SND_SHUTDOWN. BTW examples given
552 	 * in Stevens' books assume exactly this behaviour, it explains
553 	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
554 	 *
555 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
556 	 * blocking on fresh not-connected or disconnected socket. --ANK
557 	 */
558 	shutdown = READ_ONCE(sk->sk_shutdown);
559 	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
560 		mask |= EPOLLHUP;
561 	if (shutdown & RCV_SHUTDOWN)
562 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
563 
564 	/* Connected or passive Fast Open socket? */
565 	if (state != TCP_SYN_SENT &&
566 	    (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
567 		int target = sock_rcvlowat(sk, 0, INT_MAX);
568 		u16 urg_data = READ_ONCE(tp->urg_data);
569 
570 		if (unlikely(urg_data) &&
571 		    READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
572 		    !sock_flag(sk, SOCK_URGINLINE))
573 			target++;
574 
575 		if (tcp_stream_is_readable(sk, target))
576 			mask |= EPOLLIN | EPOLLRDNORM;
577 
578 		if (!(shutdown & SEND_SHUTDOWN)) {
579 			if (__sk_stream_is_writeable(sk, 1)) {
580 				mask |= EPOLLOUT | EPOLLWRNORM;
581 			} else {  /* send SIGIO later */
582 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
583 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
584 
585 				/* Race breaker. If space is freed after
586 				 * wspace test but before the flags are set,
587 				 * IO signal will be lost. Memory barrier
588 				 * pairs with the input side.
589 				 */
590 				smp_mb__after_atomic();
591 				if (__sk_stream_is_writeable(sk, 1))
592 					mask |= EPOLLOUT | EPOLLWRNORM;
593 			}
594 		} else
595 			mask |= EPOLLOUT | EPOLLWRNORM;
596 
597 		if (urg_data & TCP_URG_VALID)
598 			mask |= EPOLLPRI;
599 	} else if (state == TCP_SYN_SENT &&
600 		   inet_test_bit(DEFER_CONNECT, sk)) {
601 		/* Active TCP fastopen socket with defer_connect
602 		 * Return EPOLLOUT so application can call write()
603 		 * in order for kernel to generate SYN+data
604 		 */
605 		mask |= EPOLLOUT | EPOLLWRNORM;
606 	}
607 	/* This barrier is coupled with smp_wmb() in tcp_done_with_error() */
608 	smp_rmb();
609 	if (READ_ONCE(sk->sk_err) ||
610 	    !skb_queue_empty_lockless(&sk->sk_error_queue))
611 		mask |= EPOLLERR;
612 
613 	return mask;
614 }
615 EXPORT_SYMBOL(tcp_poll);
616 
tcp_ioctl(struct sock * sk,int cmd,int * karg)617 int tcp_ioctl(struct sock *sk, int cmd, int *karg)
618 {
619 	struct tcp_sock *tp = tcp_sk(sk);
620 	int answ;
621 	bool slow;
622 
623 	switch (cmd) {
624 	case SIOCINQ:
625 		if (sk->sk_state == TCP_LISTEN)
626 			return -EINVAL;
627 
628 		slow = lock_sock_fast(sk);
629 		answ = tcp_inq(sk);
630 		unlock_sock_fast(sk, slow);
631 		break;
632 	case SIOCATMARK:
633 		answ = READ_ONCE(tp->urg_data) &&
634 		       READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
635 		break;
636 	case SIOCOUTQ:
637 		if (sk->sk_state == TCP_LISTEN)
638 			return -EINVAL;
639 
640 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
641 			answ = 0;
642 		else
643 			answ = READ_ONCE(tp->write_seq) - tp->snd_una;
644 		break;
645 	case SIOCOUTQNSD:
646 		if (sk->sk_state == TCP_LISTEN)
647 			return -EINVAL;
648 
649 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
650 			answ = 0;
651 		else
652 			answ = READ_ONCE(tp->write_seq) -
653 			       READ_ONCE(tp->snd_nxt);
654 		break;
655 	default:
656 		return -ENOIOCTLCMD;
657 	}
658 
659 	*karg = answ;
660 	return 0;
661 }
662 EXPORT_SYMBOL(tcp_ioctl);
663 
tcp_mark_push(struct tcp_sock * tp,struct sk_buff * skb)664 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
665 {
666 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
667 	tp->pushed_seq = tp->write_seq;
668 }
669 
forced_push(const struct tcp_sock * tp)670 static inline bool forced_push(const struct tcp_sock *tp)
671 {
672 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
673 }
674 
tcp_skb_entail(struct sock * sk,struct sk_buff * skb)675 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
676 {
677 	struct tcp_sock *tp = tcp_sk(sk);
678 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
679 
680 	tcb->seq     = tcb->end_seq = tp->write_seq;
681 	tcb->tcp_flags = TCPHDR_ACK;
682 	__skb_header_release(skb);
683 	tcp_add_write_queue_tail(sk, skb);
684 	sk_wmem_queued_add(sk, skb->truesize);
685 	sk_mem_charge(sk, skb->truesize);
686 	if (tp->nonagle & TCP_NAGLE_PUSH)
687 		tp->nonagle &= ~TCP_NAGLE_PUSH;
688 
689 	tcp_slow_start_after_idle_check(sk);
690 }
691 
tcp_mark_urg(struct tcp_sock * tp,int flags)692 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
693 {
694 	if (flags & MSG_OOB)
695 		tp->snd_up = tp->write_seq;
696 }
697 
698 /* If a not yet filled skb is pushed, do not send it if
699  * we have data packets in Qdisc or NIC queues :
700  * Because TX completion will happen shortly, it gives a chance
701  * to coalesce future sendmsg() payload into this skb, without
702  * need for a timer, and with no latency trade off.
703  * As packets containing data payload have a bigger truesize
704  * than pure acks (dataless) packets, the last checks prevent
705  * autocorking if we only have an ACK in Qdisc/NIC queues,
706  * or if TX completion was delayed after we processed ACK packet.
707  */
tcp_should_autocork(struct sock * sk,struct sk_buff * skb,int size_goal)708 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
709 				int size_goal)
710 {
711 	return skb->len < size_goal &&
712 	       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
713 	       !tcp_rtx_queue_empty(sk) &&
714 	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize &&
715 	       tcp_skb_can_collapse_to(skb);
716 }
717 
tcp_push(struct sock * sk,int flags,int mss_now,int nonagle,int size_goal)718 void tcp_push(struct sock *sk, int flags, int mss_now,
719 	      int nonagle, int size_goal)
720 {
721 	struct tcp_sock *tp = tcp_sk(sk);
722 	struct sk_buff *skb;
723 
724 	skb = tcp_write_queue_tail(sk);
725 	if (!skb)
726 		return;
727 	if (!(flags & MSG_MORE) || forced_push(tp))
728 		tcp_mark_push(tp, skb);
729 
730 	tcp_mark_urg(tp, flags);
731 
732 	if (tcp_should_autocork(sk, skb, size_goal)) {
733 
734 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
735 		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
736 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
737 			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
738 			smp_mb__after_atomic();
739 		}
740 		/* It is possible TX completion already happened
741 		 * before we set TSQ_THROTTLED.
742 		 */
743 		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
744 			return;
745 	}
746 
747 	if (flags & MSG_MORE)
748 		nonagle = TCP_NAGLE_CORK;
749 
750 	__tcp_push_pending_frames(sk, mss_now, nonagle);
751 }
752 
tcp_splice_data_recv(read_descriptor_t * rd_desc,struct sk_buff * skb,unsigned int offset,size_t len)753 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
754 				unsigned int offset, size_t len)
755 {
756 	struct tcp_splice_state *tss = rd_desc->arg.data;
757 	int ret;
758 
759 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
760 			      min(rd_desc->count, len), tss->flags);
761 	if (ret > 0)
762 		rd_desc->count -= ret;
763 	return ret;
764 }
765 
__tcp_splice_read(struct sock * sk,struct tcp_splice_state * tss)766 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
767 {
768 	/* Store TCP splice context information in read_descriptor_t. */
769 	read_descriptor_t rd_desc = {
770 		.arg.data = tss,
771 		.count	  = tss->len,
772 	};
773 
774 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
775 }
776 
777 /**
778  *  tcp_splice_read - splice data from TCP socket to a pipe
779  * @sock:	socket to splice from
780  * @ppos:	position (not valid)
781  * @pipe:	pipe to splice to
782  * @len:	number of bytes to splice
783  * @flags:	splice modifier flags
784  *
785  * Description:
786  *    Will read pages from given socket and fill them into a pipe.
787  *
788  **/
tcp_splice_read(struct socket * sock,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)789 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
790 			struct pipe_inode_info *pipe, size_t len,
791 			unsigned int flags)
792 {
793 	struct sock *sk = sock->sk;
794 	struct tcp_splice_state tss = {
795 		.pipe = pipe,
796 		.len = len,
797 		.flags = flags,
798 	};
799 	long timeo;
800 	ssize_t spliced;
801 	int ret;
802 
803 	sock_rps_record_flow(sk);
804 	/*
805 	 * We can't seek on a socket input
806 	 */
807 	if (unlikely(*ppos))
808 		return -ESPIPE;
809 
810 	ret = spliced = 0;
811 
812 	lock_sock(sk);
813 
814 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
815 	while (tss.len) {
816 		ret = __tcp_splice_read(sk, &tss);
817 		if (ret < 0)
818 			break;
819 		else if (!ret) {
820 			if (spliced)
821 				break;
822 			if (sock_flag(sk, SOCK_DONE))
823 				break;
824 			if (sk->sk_err) {
825 				ret = sock_error(sk);
826 				break;
827 			}
828 			if (sk->sk_shutdown & RCV_SHUTDOWN)
829 				break;
830 			if (sk->sk_state == TCP_CLOSE) {
831 				/*
832 				 * This occurs when user tries to read
833 				 * from never connected socket.
834 				 */
835 				ret = -ENOTCONN;
836 				break;
837 			}
838 			if (!timeo) {
839 				ret = -EAGAIN;
840 				break;
841 			}
842 			/* if __tcp_splice_read() got nothing while we have
843 			 * an skb in receive queue, we do not want to loop.
844 			 * This might happen with URG data.
845 			 */
846 			if (!skb_queue_empty(&sk->sk_receive_queue))
847 				break;
848 			ret = sk_wait_data(sk, &timeo, NULL);
849 			if (ret < 0)
850 				break;
851 			if (signal_pending(current)) {
852 				ret = sock_intr_errno(timeo);
853 				break;
854 			}
855 			continue;
856 		}
857 		tss.len -= ret;
858 		spliced += ret;
859 
860 		if (!tss.len || !timeo)
861 			break;
862 		release_sock(sk);
863 		lock_sock(sk);
864 
865 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
866 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
867 		    signal_pending(current))
868 			break;
869 	}
870 
871 	release_sock(sk);
872 
873 	if (spliced)
874 		return spliced;
875 
876 	return ret;
877 }
878 EXPORT_SYMBOL(tcp_splice_read);
879 
tcp_stream_alloc_skb(struct sock * sk,gfp_t gfp,bool force_schedule)880 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
881 				     bool force_schedule)
882 {
883 	struct sk_buff *skb;
884 
885 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
886 	if (likely(skb)) {
887 		bool mem_scheduled;
888 
889 		skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
890 		if (force_schedule) {
891 			mem_scheduled = true;
892 			sk_forced_mem_schedule(sk, skb->truesize);
893 		} else {
894 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
895 		}
896 		if (likely(mem_scheduled)) {
897 			skb_reserve(skb, MAX_TCP_HEADER);
898 			skb->ip_summed = CHECKSUM_PARTIAL;
899 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
900 			return skb;
901 		}
902 		__kfree_skb(skb);
903 	} else {
904 		sk->sk_prot->enter_memory_pressure(sk);
905 		sk_stream_moderate_sndbuf(sk);
906 	}
907 	return NULL;
908 }
909 
tcp_xmit_size_goal(struct sock * sk,u32 mss_now,int large_allowed)910 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
911 				       int large_allowed)
912 {
913 	struct tcp_sock *tp = tcp_sk(sk);
914 	u32 new_size_goal, size_goal;
915 
916 	if (!large_allowed)
917 		return mss_now;
918 
919 	/* Note : tcp_tso_autosize() will eventually split this later */
920 	new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size);
921 
922 	/* We try hard to avoid divides here */
923 	size_goal = tp->gso_segs * mss_now;
924 	if (unlikely(new_size_goal < size_goal ||
925 		     new_size_goal >= size_goal + mss_now)) {
926 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
927 				     sk->sk_gso_max_segs);
928 		size_goal = tp->gso_segs * mss_now;
929 	}
930 
931 	return max(size_goal, mss_now);
932 }
933 
tcp_send_mss(struct sock * sk,int * size_goal,int flags)934 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
935 {
936 	int mss_now;
937 
938 	mss_now = tcp_current_mss(sk);
939 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
940 
941 	return mss_now;
942 }
943 
944 /* In some cases, sendmsg() could have added an skb to the write queue,
945  * but failed adding payload on it. We need to remove it to consume less
946  * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger
947  * epoll() users. Another reason is that tcp_write_xmit() does not like
948  * finding an empty skb in the write queue.
949  */
tcp_remove_empty_skb(struct sock * sk)950 void tcp_remove_empty_skb(struct sock *sk)
951 {
952 	struct sk_buff *skb = tcp_write_queue_tail(sk);
953 
954 	if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
955 		tcp_unlink_write_queue(skb, sk);
956 		if (tcp_write_queue_empty(sk))
957 			tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
958 		tcp_wmem_free_skb(sk, skb);
959 	}
960 }
961 
962 /* skb changing from pure zc to mixed, must charge zc */
tcp_downgrade_zcopy_pure(struct sock * sk,struct sk_buff * skb)963 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb)
964 {
965 	if (unlikely(skb_zcopy_pure(skb))) {
966 		u32 extra = skb->truesize -
967 			    SKB_TRUESIZE(skb_end_offset(skb));
968 
969 		if (!sk_wmem_schedule(sk, extra))
970 			return -ENOMEM;
971 
972 		sk_mem_charge(sk, extra);
973 		skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY;
974 	}
975 	return 0;
976 }
977 
978 
tcp_wmem_schedule(struct sock * sk,int copy)979 int tcp_wmem_schedule(struct sock *sk, int copy)
980 {
981 	int left;
982 
983 	if (likely(sk_wmem_schedule(sk, copy)))
984 		return copy;
985 
986 	/* We could be in trouble if we have nothing queued.
987 	 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0]
988 	 * to guarantee some progress.
989 	 */
990 	left = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[0]) - sk->sk_wmem_queued;
991 	if (left > 0)
992 		sk_forced_mem_schedule(sk, min(left, copy));
993 	return min(copy, sk->sk_forward_alloc);
994 }
995 
tcp_free_fastopen_req(struct tcp_sock * tp)996 void tcp_free_fastopen_req(struct tcp_sock *tp)
997 {
998 	if (tp->fastopen_req) {
999 		kfree(tp->fastopen_req);
1000 		tp->fastopen_req = NULL;
1001 	}
1002 }
1003 
tcp_sendmsg_fastopen(struct sock * sk,struct msghdr * msg,int * copied,size_t size,struct ubuf_info * uarg)1004 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
1005 			 size_t size, struct ubuf_info *uarg)
1006 {
1007 	struct tcp_sock *tp = tcp_sk(sk);
1008 	struct inet_sock *inet = inet_sk(sk);
1009 	struct sockaddr *uaddr = msg->msg_name;
1010 	int err, flags;
1011 
1012 	if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
1013 	      TFO_CLIENT_ENABLE) ||
1014 	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1015 	     uaddr->sa_family == AF_UNSPEC))
1016 		return -EOPNOTSUPP;
1017 	if (tp->fastopen_req)
1018 		return -EALREADY; /* Another Fast Open is in progress */
1019 
1020 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1021 				   sk->sk_allocation);
1022 	if (unlikely(!tp->fastopen_req))
1023 		return -ENOBUFS;
1024 	tp->fastopen_req->data = msg;
1025 	tp->fastopen_req->size = size;
1026 	tp->fastopen_req->uarg = uarg;
1027 
1028 	if (inet_test_bit(DEFER_CONNECT, sk)) {
1029 		err = tcp_connect(sk);
1030 		/* Same failure procedure as in tcp_v4/6_connect */
1031 		if (err) {
1032 			tcp_set_state(sk, TCP_CLOSE);
1033 			inet->inet_dport = 0;
1034 			sk->sk_route_caps = 0;
1035 		}
1036 	}
1037 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1038 	err = __inet_stream_connect(sk->sk_socket, uaddr,
1039 				    msg->msg_namelen, flags, 1);
1040 	/* fastopen_req could already be freed in __inet_stream_connect
1041 	 * if the connection times out or gets rst
1042 	 */
1043 	if (tp->fastopen_req) {
1044 		*copied = tp->fastopen_req->copied;
1045 		tcp_free_fastopen_req(tp);
1046 		inet_clear_bit(DEFER_CONNECT, sk);
1047 	}
1048 	return err;
1049 }
1050 
tcp_sendmsg_locked(struct sock * sk,struct msghdr * msg,size_t size)1051 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1052 {
1053 	struct tcp_sock *tp = tcp_sk(sk);
1054 	struct ubuf_info *uarg = NULL;
1055 	struct sk_buff *skb;
1056 	struct sockcm_cookie sockc;
1057 	int flags, err, copied = 0;
1058 	int mss_now = 0, size_goal, copied_syn = 0;
1059 	int process_backlog = 0;
1060 	int zc = 0;
1061 	long timeo;
1062 
1063 	flags = msg->msg_flags;
1064 
1065 	if ((flags & MSG_ZEROCOPY) && size) {
1066 		if (msg->msg_ubuf) {
1067 			uarg = msg->msg_ubuf;
1068 			if (sk->sk_route_caps & NETIF_F_SG)
1069 				zc = MSG_ZEROCOPY;
1070 		} else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1071 			skb = tcp_write_queue_tail(sk);
1072 			uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb));
1073 			if (!uarg) {
1074 				err = -ENOBUFS;
1075 				goto out_err;
1076 			}
1077 			if (sk->sk_route_caps & NETIF_F_SG)
1078 				zc = MSG_ZEROCOPY;
1079 			else
1080 				uarg_to_msgzc(uarg)->zerocopy = 0;
1081 		}
1082 	} else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) {
1083 		if (sk->sk_route_caps & NETIF_F_SG)
1084 			zc = MSG_SPLICE_PAGES;
1085 	}
1086 
1087 	if (unlikely(flags & MSG_FASTOPEN ||
1088 		     inet_test_bit(DEFER_CONNECT, sk)) &&
1089 	    !tp->repair) {
1090 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1091 		if (err == -EINPROGRESS && copied_syn > 0)
1092 			goto out;
1093 		else if (err)
1094 			goto out_err;
1095 	}
1096 
1097 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1098 
1099 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1100 
1101 	/* Wait for a connection to finish. One exception is TCP Fast Open
1102 	 * (passive side) where data is allowed to be sent before a connection
1103 	 * is fully established.
1104 	 */
1105 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1106 	    !tcp_passive_fastopen(sk)) {
1107 		err = sk_stream_wait_connect(sk, &timeo);
1108 		if (err != 0)
1109 			goto do_error;
1110 	}
1111 
1112 	if (unlikely(tp->repair)) {
1113 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1114 			copied = tcp_send_rcvq(sk, msg, size);
1115 			goto out_nopush;
1116 		}
1117 
1118 		err = -EINVAL;
1119 		if (tp->repair_queue == TCP_NO_QUEUE)
1120 			goto out_err;
1121 
1122 		/* 'common' sending to sendq */
1123 	}
1124 
1125 	sockcm_init(&sockc, sk);
1126 	if (msg->msg_controllen) {
1127 		err = sock_cmsg_send(sk, msg, &sockc);
1128 		if (unlikely(err)) {
1129 			err = -EINVAL;
1130 			goto out_err;
1131 		}
1132 	}
1133 
1134 	/* This should be in poll */
1135 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1136 
1137 	/* Ok commence sending. */
1138 	copied = 0;
1139 
1140 restart:
1141 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1142 
1143 	err = -EPIPE;
1144 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1145 		goto do_error;
1146 
1147 	while (msg_data_left(msg)) {
1148 		ssize_t copy = 0;
1149 
1150 		skb = tcp_write_queue_tail(sk);
1151 		if (skb)
1152 			copy = size_goal - skb->len;
1153 
1154 		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1155 			bool first_skb;
1156 
1157 new_segment:
1158 			if (!sk_stream_memory_free(sk))
1159 				goto wait_for_space;
1160 
1161 			if (unlikely(process_backlog >= 16)) {
1162 				process_backlog = 0;
1163 				if (sk_flush_backlog(sk))
1164 					goto restart;
1165 			}
1166 			first_skb = tcp_rtx_and_write_queues_empty(sk);
1167 			skb = tcp_stream_alloc_skb(sk, sk->sk_allocation,
1168 						   first_skb);
1169 			if (!skb)
1170 				goto wait_for_space;
1171 
1172 			process_backlog++;
1173 
1174 #ifdef CONFIG_SKB_DECRYPTED
1175 			skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
1176 #endif
1177 			tcp_skb_entail(sk, skb);
1178 			copy = size_goal;
1179 
1180 			/* All packets are restored as if they have
1181 			 * already been sent. skb_mstamp_ns isn't set to
1182 			 * avoid wrong rtt estimation.
1183 			 */
1184 			if (tp->repair)
1185 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1186 		}
1187 
1188 		/* Try to append data to the end of skb. */
1189 		if (copy > msg_data_left(msg))
1190 			copy = msg_data_left(msg);
1191 
1192 		if (zc == 0) {
1193 			bool merge = true;
1194 			int i = skb_shinfo(skb)->nr_frags;
1195 			struct page_frag *pfrag = sk_page_frag(sk);
1196 
1197 			if (!sk_page_frag_refill(sk, pfrag))
1198 				goto wait_for_space;
1199 
1200 			if (!skb_can_coalesce(skb, i, pfrag->page,
1201 					      pfrag->offset)) {
1202 				if (i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) {
1203 					tcp_mark_push(tp, skb);
1204 					goto new_segment;
1205 				}
1206 				merge = false;
1207 			}
1208 
1209 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1210 
1211 			if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) {
1212 				if (tcp_downgrade_zcopy_pure(sk, skb))
1213 					goto wait_for_space;
1214 				skb_zcopy_downgrade_managed(skb);
1215 			}
1216 
1217 			copy = tcp_wmem_schedule(sk, copy);
1218 			if (!copy)
1219 				goto wait_for_space;
1220 
1221 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1222 						       pfrag->page,
1223 						       pfrag->offset,
1224 						       copy);
1225 			if (err)
1226 				goto do_error;
1227 
1228 			/* Update the skb. */
1229 			if (merge) {
1230 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1231 			} else {
1232 				skb_fill_page_desc(skb, i, pfrag->page,
1233 						   pfrag->offset, copy);
1234 				page_ref_inc(pfrag->page);
1235 			}
1236 			pfrag->offset += copy;
1237 		} else if (zc == MSG_ZEROCOPY)  {
1238 			/* First append to a fragless skb builds initial
1239 			 * pure zerocopy skb
1240 			 */
1241 			if (!skb->len)
1242 				skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY;
1243 
1244 			if (!skb_zcopy_pure(skb)) {
1245 				copy = tcp_wmem_schedule(sk, copy);
1246 				if (!copy)
1247 					goto wait_for_space;
1248 			}
1249 
1250 			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1251 			if (err == -EMSGSIZE || err == -EEXIST) {
1252 				tcp_mark_push(tp, skb);
1253 				goto new_segment;
1254 			}
1255 			if (err < 0)
1256 				goto do_error;
1257 			copy = err;
1258 		} else if (zc == MSG_SPLICE_PAGES) {
1259 			/* Splice in data if we can; copy if we can't. */
1260 			if (tcp_downgrade_zcopy_pure(sk, skb))
1261 				goto wait_for_space;
1262 			copy = tcp_wmem_schedule(sk, copy);
1263 			if (!copy)
1264 				goto wait_for_space;
1265 
1266 			err = skb_splice_from_iter(skb, &msg->msg_iter, copy,
1267 						   sk->sk_allocation);
1268 			if (err < 0) {
1269 				if (err == -EMSGSIZE) {
1270 					tcp_mark_push(tp, skb);
1271 					goto new_segment;
1272 				}
1273 				goto do_error;
1274 			}
1275 			copy = err;
1276 
1277 			if (!(flags & MSG_NO_SHARED_FRAGS))
1278 				skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1279 
1280 			sk_wmem_queued_add(sk, copy);
1281 			sk_mem_charge(sk, copy);
1282 		}
1283 
1284 		if (!copied)
1285 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1286 
1287 		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1288 		TCP_SKB_CB(skb)->end_seq += copy;
1289 		tcp_skb_pcount_set(skb, 0);
1290 
1291 		copied += copy;
1292 		if (!msg_data_left(msg)) {
1293 			if (unlikely(flags & MSG_EOR))
1294 				TCP_SKB_CB(skb)->eor = 1;
1295 			goto out;
1296 		}
1297 
1298 		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1299 			continue;
1300 
1301 		if (forced_push(tp)) {
1302 			tcp_mark_push(tp, skb);
1303 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1304 		} else if (skb == tcp_send_head(sk))
1305 			tcp_push_one(sk, mss_now);
1306 		continue;
1307 
1308 wait_for_space:
1309 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1310 		tcp_remove_empty_skb(sk);
1311 		if (copied)
1312 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1313 				 TCP_NAGLE_PUSH, size_goal);
1314 
1315 		err = sk_stream_wait_memory(sk, &timeo);
1316 		if (err != 0)
1317 			goto do_error;
1318 
1319 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1320 	}
1321 
1322 out:
1323 	if (copied) {
1324 		tcp_tx_timestamp(sk, sockc.tsflags);
1325 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1326 	}
1327 out_nopush:
1328 	/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1329 	if (uarg && !msg->msg_ubuf)
1330 		net_zcopy_put(uarg);
1331 	return copied + copied_syn;
1332 
1333 do_error:
1334 	tcp_remove_empty_skb(sk);
1335 
1336 	if (copied + copied_syn)
1337 		goto out;
1338 out_err:
1339 	/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1340 	if (uarg && !msg->msg_ubuf)
1341 		net_zcopy_put_abort(uarg, true);
1342 	err = sk_stream_error(sk, flags, err);
1343 	/* make sure we wake any epoll edge trigger waiter */
1344 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1345 		sk->sk_write_space(sk);
1346 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1347 	}
1348 	return err;
1349 }
1350 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1351 
tcp_sendmsg(struct sock * sk,struct msghdr * msg,size_t size)1352 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1353 {
1354 	int ret;
1355 
1356 	lock_sock(sk);
1357 	ret = tcp_sendmsg_locked(sk, msg, size);
1358 	release_sock(sk);
1359 
1360 	return ret;
1361 }
1362 EXPORT_SYMBOL(tcp_sendmsg);
1363 
tcp_splice_eof(struct socket * sock)1364 void tcp_splice_eof(struct socket *sock)
1365 {
1366 	struct sock *sk = sock->sk;
1367 	struct tcp_sock *tp = tcp_sk(sk);
1368 	int mss_now, size_goal;
1369 
1370 	if (!tcp_write_queue_tail(sk))
1371 		return;
1372 
1373 	lock_sock(sk);
1374 	mss_now = tcp_send_mss(sk, &size_goal, 0);
1375 	tcp_push(sk, 0, mss_now, tp->nonagle, size_goal);
1376 	release_sock(sk);
1377 }
1378 EXPORT_SYMBOL_GPL(tcp_splice_eof);
1379 
1380 /*
1381  *	Handle reading urgent data. BSD has very simple semantics for
1382  *	this, no blocking and very strange errors 8)
1383  */
1384 
tcp_recv_urg(struct sock * sk,struct msghdr * msg,int len,int flags)1385 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1386 {
1387 	struct tcp_sock *tp = tcp_sk(sk);
1388 
1389 	/* No URG data to read. */
1390 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1391 	    tp->urg_data == TCP_URG_READ)
1392 		return -EINVAL;	/* Yes this is right ! */
1393 
1394 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1395 		return -ENOTCONN;
1396 
1397 	if (tp->urg_data & TCP_URG_VALID) {
1398 		int err = 0;
1399 		char c = tp->urg_data;
1400 
1401 		if (!(flags & MSG_PEEK))
1402 			WRITE_ONCE(tp->urg_data, TCP_URG_READ);
1403 
1404 		/* Read urgent data. */
1405 		msg->msg_flags |= MSG_OOB;
1406 
1407 		if (len > 0) {
1408 			if (!(flags & MSG_TRUNC))
1409 				err = memcpy_to_msg(msg, &c, 1);
1410 			len = 1;
1411 		} else
1412 			msg->msg_flags |= MSG_TRUNC;
1413 
1414 		return err ? -EFAULT : len;
1415 	}
1416 
1417 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1418 		return 0;
1419 
1420 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1421 	 * the available implementations agree in this case:
1422 	 * this call should never block, independent of the
1423 	 * blocking state of the socket.
1424 	 * Mike <pall@rz.uni-karlsruhe.de>
1425 	 */
1426 	return -EAGAIN;
1427 }
1428 
tcp_peek_sndq(struct sock * sk,struct msghdr * msg,int len)1429 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1430 {
1431 	struct sk_buff *skb;
1432 	int copied = 0, err = 0;
1433 
1434 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1435 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1436 		if (err)
1437 			return err;
1438 		copied += skb->len;
1439 	}
1440 
1441 	skb_queue_walk(&sk->sk_write_queue, skb) {
1442 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1443 		if (err)
1444 			break;
1445 
1446 		copied += skb->len;
1447 	}
1448 
1449 	return err ?: copied;
1450 }
1451 
1452 /* Clean up the receive buffer for full frames taken by the user,
1453  * then send an ACK if necessary.  COPIED is the number of bytes
1454  * tcp_recvmsg has given to the user so far, it speeds up the
1455  * calculation of whether or not we must ACK for the sake of
1456  * a window update.
1457  */
__tcp_cleanup_rbuf(struct sock * sk,int copied)1458 void __tcp_cleanup_rbuf(struct sock *sk, int copied)
1459 {
1460 	struct tcp_sock *tp = tcp_sk(sk);
1461 	bool time_to_ack = false;
1462 
1463 	if (inet_csk_ack_scheduled(sk)) {
1464 		const struct inet_connection_sock *icsk = inet_csk(sk);
1465 
1466 		if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1467 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1468 		    /*
1469 		     * If this read emptied read buffer, we send ACK, if
1470 		     * connection is not bidirectional, user drained
1471 		     * receive buffer and there was a small segment
1472 		     * in queue.
1473 		     */
1474 		    (copied > 0 &&
1475 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1476 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1477 		       !inet_csk_in_pingpong_mode(sk))) &&
1478 		      !atomic_read(&sk->sk_rmem_alloc)))
1479 			time_to_ack = true;
1480 	}
1481 
1482 	/* We send an ACK if we can now advertise a non-zero window
1483 	 * which has been raised "significantly".
1484 	 *
1485 	 * Even if window raised up to infinity, do not send window open ACK
1486 	 * in states, where we will not receive more. It is useless.
1487 	 */
1488 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1489 		__u32 rcv_window_now = tcp_receive_window(tp);
1490 
1491 		/* Optimize, __tcp_select_window() is not cheap. */
1492 		if (2*rcv_window_now <= tp->window_clamp) {
1493 			__u32 new_window = __tcp_select_window(sk);
1494 
1495 			/* Send ACK now, if this read freed lots of space
1496 			 * in our buffer. Certainly, new_window is new window.
1497 			 * We can advertise it now, if it is not less than current one.
1498 			 * "Lots" means "at least twice" here.
1499 			 */
1500 			if (new_window && new_window >= 2 * rcv_window_now)
1501 				time_to_ack = true;
1502 		}
1503 	}
1504 	if (time_to_ack)
1505 		tcp_send_ack(sk);
1506 }
1507 
tcp_cleanup_rbuf(struct sock * sk,int copied)1508 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1509 {
1510 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1511 	struct tcp_sock *tp = tcp_sk(sk);
1512 
1513 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1514 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1515 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1516 	__tcp_cleanup_rbuf(sk, copied);
1517 }
1518 
tcp_eat_recv_skb(struct sock * sk,struct sk_buff * skb)1519 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb)
1520 {
1521 	__skb_unlink(skb, &sk->sk_receive_queue);
1522 	if (likely(skb->destructor == sock_rfree)) {
1523 		sock_rfree(skb);
1524 		skb->destructor = NULL;
1525 		skb->sk = NULL;
1526 		return skb_attempt_defer_free(skb);
1527 	}
1528 	__kfree_skb(skb);
1529 }
1530 
tcp_recv_skb(struct sock * sk,u32 seq,u32 * off)1531 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1532 {
1533 	struct sk_buff *skb;
1534 	u32 offset;
1535 
1536 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1537 		offset = seq - TCP_SKB_CB(skb)->seq;
1538 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1539 			pr_err_once("%s: found a SYN, please report !\n", __func__);
1540 			offset--;
1541 		}
1542 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1543 			*off = offset;
1544 			return skb;
1545 		}
1546 		/* This looks weird, but this can happen if TCP collapsing
1547 		 * splitted a fat GRO packet, while we released socket lock
1548 		 * in skb_splice_bits()
1549 		 */
1550 		tcp_eat_recv_skb(sk, skb);
1551 	}
1552 	return NULL;
1553 }
1554 EXPORT_SYMBOL(tcp_recv_skb);
1555 
1556 /*
1557  * This routine provides an alternative to tcp_recvmsg() for routines
1558  * that would like to handle copying from skbuffs directly in 'sendfile'
1559  * fashion.
1560  * Note:
1561  *	- It is assumed that the socket was locked by the caller.
1562  *	- The routine does not block.
1563  *	- At present, there is no support for reading OOB data
1564  *	  or for 'peeking' the socket using this routine
1565  *	  (although both would be easy to implement).
1566  */
tcp_read_sock(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t recv_actor)1567 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1568 		  sk_read_actor_t recv_actor)
1569 {
1570 	struct sk_buff *skb;
1571 	struct tcp_sock *tp = tcp_sk(sk);
1572 	u32 seq = tp->copied_seq;
1573 	u32 offset;
1574 	int copied = 0;
1575 
1576 	if (sk->sk_state == TCP_LISTEN)
1577 		return -ENOTCONN;
1578 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1579 		if (offset < skb->len) {
1580 			int used;
1581 			size_t len;
1582 
1583 			len = skb->len - offset;
1584 			/* Stop reading if we hit a patch of urgent data */
1585 			if (unlikely(tp->urg_data)) {
1586 				u32 urg_offset = tp->urg_seq - seq;
1587 				if (urg_offset < len)
1588 					len = urg_offset;
1589 				if (!len)
1590 					break;
1591 			}
1592 			used = recv_actor(desc, skb, offset, len);
1593 			if (used <= 0) {
1594 				if (!copied)
1595 					copied = used;
1596 				break;
1597 			}
1598 			if (WARN_ON_ONCE(used > len))
1599 				used = len;
1600 			seq += used;
1601 			copied += used;
1602 			offset += used;
1603 
1604 			/* If recv_actor drops the lock (e.g. TCP splice
1605 			 * receive) the skb pointer might be invalid when
1606 			 * getting here: tcp_collapse might have deleted it
1607 			 * while aggregating skbs from the socket queue.
1608 			 */
1609 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1610 			if (!skb)
1611 				break;
1612 			/* TCP coalescing might have appended data to the skb.
1613 			 * Try to splice more frags
1614 			 */
1615 			if (offset + 1 != skb->len)
1616 				continue;
1617 		}
1618 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1619 			tcp_eat_recv_skb(sk, skb);
1620 			++seq;
1621 			break;
1622 		}
1623 		tcp_eat_recv_skb(sk, skb);
1624 		if (!desc->count)
1625 			break;
1626 		WRITE_ONCE(tp->copied_seq, seq);
1627 	}
1628 	WRITE_ONCE(tp->copied_seq, seq);
1629 
1630 	tcp_rcv_space_adjust(sk);
1631 
1632 	/* Clean up data we have read: This will do ACK frames. */
1633 	if (copied > 0) {
1634 		tcp_recv_skb(sk, seq, &offset);
1635 		tcp_cleanup_rbuf(sk, copied);
1636 	}
1637 	return copied;
1638 }
1639 EXPORT_SYMBOL(tcp_read_sock);
1640 
tcp_read_skb(struct sock * sk,skb_read_actor_t recv_actor)1641 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1642 {
1643 	struct sk_buff *skb;
1644 	int copied = 0;
1645 
1646 	if (sk->sk_state == TCP_LISTEN)
1647 		return -ENOTCONN;
1648 
1649 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1650 		u8 tcp_flags;
1651 		int used;
1652 
1653 		__skb_unlink(skb, &sk->sk_receive_queue);
1654 		WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1655 		tcp_flags = TCP_SKB_CB(skb)->tcp_flags;
1656 		used = recv_actor(sk, skb);
1657 		if (used < 0) {
1658 			if (!copied)
1659 				copied = used;
1660 			break;
1661 		}
1662 		copied += used;
1663 
1664 		if (tcp_flags & TCPHDR_FIN)
1665 			break;
1666 	}
1667 	return copied;
1668 }
1669 EXPORT_SYMBOL(tcp_read_skb);
1670 
tcp_read_done(struct sock * sk,size_t len)1671 void tcp_read_done(struct sock *sk, size_t len)
1672 {
1673 	struct tcp_sock *tp = tcp_sk(sk);
1674 	u32 seq = tp->copied_seq;
1675 	struct sk_buff *skb;
1676 	size_t left;
1677 	u32 offset;
1678 
1679 	if (sk->sk_state == TCP_LISTEN)
1680 		return;
1681 
1682 	left = len;
1683 	while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1684 		int used;
1685 
1686 		used = min_t(size_t, skb->len - offset, left);
1687 		seq += used;
1688 		left -= used;
1689 
1690 		if (skb->len > offset + used)
1691 			break;
1692 
1693 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1694 			tcp_eat_recv_skb(sk, skb);
1695 			++seq;
1696 			break;
1697 		}
1698 		tcp_eat_recv_skb(sk, skb);
1699 	}
1700 	WRITE_ONCE(tp->copied_seq, seq);
1701 
1702 	tcp_rcv_space_adjust(sk);
1703 
1704 	/* Clean up data we have read: This will do ACK frames. */
1705 	if (left != len)
1706 		tcp_cleanup_rbuf(sk, len - left);
1707 }
1708 EXPORT_SYMBOL(tcp_read_done);
1709 
tcp_peek_len(struct socket * sock)1710 int tcp_peek_len(struct socket *sock)
1711 {
1712 	return tcp_inq(sock->sk);
1713 }
1714 EXPORT_SYMBOL(tcp_peek_len);
1715 
1716 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
tcp_set_rcvlowat(struct sock * sk,int val)1717 int tcp_set_rcvlowat(struct sock *sk, int val)
1718 {
1719 	int space, cap;
1720 
1721 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1722 		cap = sk->sk_rcvbuf >> 1;
1723 	else
1724 		cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1725 	val = min(val, cap);
1726 	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1727 
1728 	/* Check if we need to signal EPOLLIN right now */
1729 	tcp_data_ready(sk);
1730 
1731 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1732 		return 0;
1733 
1734 	space = tcp_space_from_win(sk, val);
1735 	if (space > sk->sk_rcvbuf) {
1736 		WRITE_ONCE(sk->sk_rcvbuf, space);
1737 		WRITE_ONCE(tcp_sk(sk)->window_clamp, val);
1738 	}
1739 	return 0;
1740 }
1741 EXPORT_SYMBOL(tcp_set_rcvlowat);
1742 
tcp_update_recv_tstamps(struct sk_buff * skb,struct scm_timestamping_internal * tss)1743 void tcp_update_recv_tstamps(struct sk_buff *skb,
1744 			     struct scm_timestamping_internal *tss)
1745 {
1746 	if (skb->tstamp)
1747 		tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1748 	else
1749 		tss->ts[0] = (struct timespec64) {0};
1750 
1751 	if (skb_hwtstamps(skb)->hwtstamp)
1752 		tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1753 	else
1754 		tss->ts[2] = (struct timespec64) {0};
1755 }
1756 
1757 #ifdef CONFIG_MMU
1758 static const struct vm_operations_struct tcp_vm_ops = {
1759 };
1760 
tcp_mmap(struct file * file,struct socket * sock,struct vm_area_struct * vma)1761 int tcp_mmap(struct file *file, struct socket *sock,
1762 	     struct vm_area_struct *vma)
1763 {
1764 	if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1765 		return -EPERM;
1766 	vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC);
1767 
1768 	/* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1769 	vm_flags_set(vma, VM_MIXEDMAP);
1770 
1771 	vma->vm_ops = &tcp_vm_ops;
1772 	return 0;
1773 }
1774 EXPORT_SYMBOL(tcp_mmap);
1775 
skb_advance_to_frag(struct sk_buff * skb,u32 offset_skb,u32 * offset_frag)1776 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1777 				       u32 *offset_frag)
1778 {
1779 	skb_frag_t *frag;
1780 
1781 	if (unlikely(offset_skb >= skb->len))
1782 		return NULL;
1783 
1784 	offset_skb -= skb_headlen(skb);
1785 	if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1786 		return NULL;
1787 
1788 	frag = skb_shinfo(skb)->frags;
1789 	while (offset_skb) {
1790 		if (skb_frag_size(frag) > offset_skb) {
1791 			*offset_frag = offset_skb;
1792 			return frag;
1793 		}
1794 		offset_skb -= skb_frag_size(frag);
1795 		++frag;
1796 	}
1797 	*offset_frag = 0;
1798 	return frag;
1799 }
1800 
can_map_frag(const skb_frag_t * frag)1801 static bool can_map_frag(const skb_frag_t *frag)
1802 {
1803 	struct page *page;
1804 
1805 	if (skb_frag_size(frag) != PAGE_SIZE || skb_frag_off(frag))
1806 		return false;
1807 
1808 	page = skb_frag_page(frag);
1809 
1810 	if (PageCompound(page) || page->mapping)
1811 		return false;
1812 
1813 	return true;
1814 }
1815 
find_next_mappable_frag(const skb_frag_t * frag,int remaining_in_skb)1816 static int find_next_mappable_frag(const skb_frag_t *frag,
1817 				   int remaining_in_skb)
1818 {
1819 	int offset = 0;
1820 
1821 	if (likely(can_map_frag(frag)))
1822 		return 0;
1823 
1824 	while (offset < remaining_in_skb && !can_map_frag(frag)) {
1825 		offset += skb_frag_size(frag);
1826 		++frag;
1827 	}
1828 	return offset;
1829 }
1830 
tcp_zerocopy_set_hint_for_skb(struct sock * sk,struct tcp_zerocopy_receive * zc,struct sk_buff * skb,u32 offset)1831 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1832 					  struct tcp_zerocopy_receive *zc,
1833 					  struct sk_buff *skb, u32 offset)
1834 {
1835 	u32 frag_offset, partial_frag_remainder = 0;
1836 	int mappable_offset;
1837 	skb_frag_t *frag;
1838 
1839 	/* worst case: skip to next skb. try to improve on this case below */
1840 	zc->recv_skip_hint = skb->len - offset;
1841 
1842 	/* Find the frag containing this offset (and how far into that frag) */
1843 	frag = skb_advance_to_frag(skb, offset, &frag_offset);
1844 	if (!frag)
1845 		return;
1846 
1847 	if (frag_offset) {
1848 		struct skb_shared_info *info = skb_shinfo(skb);
1849 
1850 		/* We read part of the last frag, must recvmsg() rest of skb. */
1851 		if (frag == &info->frags[info->nr_frags - 1])
1852 			return;
1853 
1854 		/* Else, we must at least read the remainder in this frag. */
1855 		partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1856 		zc->recv_skip_hint -= partial_frag_remainder;
1857 		++frag;
1858 	}
1859 
1860 	/* partial_frag_remainder: If part way through a frag, must read rest.
1861 	 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1862 	 * in partial_frag_remainder.
1863 	 */
1864 	mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1865 	zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1866 }
1867 
1868 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1869 			      int flags, struct scm_timestamping_internal *tss,
1870 			      int *cmsg_flags);
receive_fallback_to_copy(struct sock * sk,struct tcp_zerocopy_receive * zc,int inq,struct scm_timestamping_internal * tss)1871 static int receive_fallback_to_copy(struct sock *sk,
1872 				    struct tcp_zerocopy_receive *zc, int inq,
1873 				    struct scm_timestamping_internal *tss)
1874 {
1875 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1876 	struct msghdr msg = {};
1877 	int err;
1878 
1879 	zc->length = 0;
1880 	zc->recv_skip_hint = 0;
1881 
1882 	if (copy_address != zc->copybuf_address)
1883 		return -EINVAL;
1884 
1885 	err = import_ubuf(ITER_DEST, (void __user *)copy_address, inq,
1886 			  &msg.msg_iter);
1887 	if (err)
1888 		return err;
1889 
1890 	err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT,
1891 				 tss, &zc->msg_flags);
1892 	if (err < 0)
1893 		return err;
1894 
1895 	zc->copybuf_len = err;
1896 	if (likely(zc->copybuf_len)) {
1897 		struct sk_buff *skb;
1898 		u32 offset;
1899 
1900 		skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
1901 		if (skb)
1902 			tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
1903 	}
1904 	return 0;
1905 }
1906 
tcp_copy_straggler_data(struct tcp_zerocopy_receive * zc,struct sk_buff * skb,u32 copylen,u32 * offset,u32 * seq)1907 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1908 				   struct sk_buff *skb, u32 copylen,
1909 				   u32 *offset, u32 *seq)
1910 {
1911 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1912 	struct msghdr msg = {};
1913 	int err;
1914 
1915 	if (copy_address != zc->copybuf_address)
1916 		return -EINVAL;
1917 
1918 	err = import_ubuf(ITER_DEST, (void __user *)copy_address, copylen,
1919 			  &msg.msg_iter);
1920 	if (err)
1921 		return err;
1922 	err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1923 	if (err)
1924 		return err;
1925 	zc->recv_skip_hint -= copylen;
1926 	*offset += copylen;
1927 	*seq += copylen;
1928 	return (__s32)copylen;
1929 }
1930 
tcp_zc_handle_leftover(struct tcp_zerocopy_receive * zc,struct sock * sk,struct sk_buff * skb,u32 * seq,s32 copybuf_len,struct scm_timestamping_internal * tss)1931 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
1932 				  struct sock *sk,
1933 				  struct sk_buff *skb,
1934 				  u32 *seq,
1935 				  s32 copybuf_len,
1936 				  struct scm_timestamping_internal *tss)
1937 {
1938 	u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
1939 
1940 	if (!copylen)
1941 		return 0;
1942 	/* skb is null if inq < PAGE_SIZE. */
1943 	if (skb) {
1944 		offset = *seq - TCP_SKB_CB(skb)->seq;
1945 	} else {
1946 		skb = tcp_recv_skb(sk, *seq, &offset);
1947 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
1948 			tcp_update_recv_tstamps(skb, tss);
1949 			zc->msg_flags |= TCP_CMSG_TS;
1950 		}
1951 	}
1952 
1953 	zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
1954 						  seq);
1955 	return zc->copybuf_len < 0 ? 0 : copylen;
1956 }
1957 
tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct * vma,struct page ** pending_pages,unsigned long pages_remaining,unsigned long * address,u32 * length,u32 * seq,struct tcp_zerocopy_receive * zc,u32 total_bytes_to_map,int err)1958 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
1959 					      struct page **pending_pages,
1960 					      unsigned long pages_remaining,
1961 					      unsigned long *address,
1962 					      u32 *length,
1963 					      u32 *seq,
1964 					      struct tcp_zerocopy_receive *zc,
1965 					      u32 total_bytes_to_map,
1966 					      int err)
1967 {
1968 	/* At least one page did not map. Try zapping if we skipped earlier. */
1969 	if (err == -EBUSY &&
1970 	    zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
1971 		u32 maybe_zap_len;
1972 
1973 		maybe_zap_len = total_bytes_to_map -  /* All bytes to map */
1974 				*length + /* Mapped or pending */
1975 				(pages_remaining * PAGE_SIZE); /* Failed map. */
1976 		zap_page_range_single(vma, *address, maybe_zap_len, NULL);
1977 		err = 0;
1978 	}
1979 
1980 	if (!err) {
1981 		unsigned long leftover_pages = pages_remaining;
1982 		int bytes_mapped;
1983 
1984 		/* We called zap_page_range_single, try to reinsert. */
1985 		err = vm_insert_pages(vma, *address,
1986 				      pending_pages,
1987 				      &pages_remaining);
1988 		bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
1989 		*seq += bytes_mapped;
1990 		*address += bytes_mapped;
1991 	}
1992 	if (err) {
1993 		/* Either we were unable to zap, OR we zapped, retried an
1994 		 * insert, and still had an issue. Either ways, pages_remaining
1995 		 * is the number of pages we were unable to map, and we unroll
1996 		 * some state we speculatively touched before.
1997 		 */
1998 		const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
1999 
2000 		*length -= bytes_not_mapped;
2001 		zc->recv_skip_hint += bytes_not_mapped;
2002 	}
2003 	return err;
2004 }
2005 
tcp_zerocopy_vm_insert_batch(struct vm_area_struct * vma,struct page ** pages,unsigned int pages_to_map,unsigned long * address,u32 * length,u32 * seq,struct tcp_zerocopy_receive * zc,u32 total_bytes_to_map)2006 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
2007 					struct page **pages,
2008 					unsigned int pages_to_map,
2009 					unsigned long *address,
2010 					u32 *length,
2011 					u32 *seq,
2012 					struct tcp_zerocopy_receive *zc,
2013 					u32 total_bytes_to_map)
2014 {
2015 	unsigned long pages_remaining = pages_to_map;
2016 	unsigned int pages_mapped;
2017 	unsigned int bytes_mapped;
2018 	int err;
2019 
2020 	err = vm_insert_pages(vma, *address, pages, &pages_remaining);
2021 	pages_mapped = pages_to_map - (unsigned int)pages_remaining;
2022 	bytes_mapped = PAGE_SIZE * pages_mapped;
2023 	/* Even if vm_insert_pages fails, it may have partially succeeded in
2024 	 * mapping (some but not all of the pages).
2025 	 */
2026 	*seq += bytes_mapped;
2027 	*address += bytes_mapped;
2028 
2029 	if (likely(!err))
2030 		return 0;
2031 
2032 	/* Error: maybe zap and retry + rollback state for failed inserts. */
2033 	return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2034 		pages_remaining, address, length, seq, zc, total_bytes_to_map,
2035 		err);
2036 }
2037 
2038 #define TCP_VALID_ZC_MSG_FLAGS   (TCP_CMSG_TS)
tcp_zc_finalize_rx_tstamp(struct sock * sk,struct tcp_zerocopy_receive * zc,struct scm_timestamping_internal * tss)2039 static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2040 				      struct tcp_zerocopy_receive *zc,
2041 				      struct scm_timestamping_internal *tss)
2042 {
2043 	unsigned long msg_control_addr;
2044 	struct msghdr cmsg_dummy;
2045 
2046 	msg_control_addr = (unsigned long)zc->msg_control;
2047 	cmsg_dummy.msg_control_user = (void __user *)msg_control_addr;
2048 	cmsg_dummy.msg_controllen =
2049 		(__kernel_size_t)zc->msg_controllen;
2050 	cmsg_dummy.msg_flags = in_compat_syscall()
2051 		? MSG_CMSG_COMPAT : 0;
2052 	cmsg_dummy.msg_control_is_user = true;
2053 	zc->msg_flags = 0;
2054 	if (zc->msg_control == msg_control_addr &&
2055 	    zc->msg_controllen == cmsg_dummy.msg_controllen) {
2056 		tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2057 		zc->msg_control = (__u64)
2058 			((uintptr_t)cmsg_dummy.msg_control_user);
2059 		zc->msg_controllen =
2060 			(__u64)cmsg_dummy.msg_controllen;
2061 		zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2062 	}
2063 }
2064 
find_tcp_vma(struct mm_struct * mm,unsigned long address,bool * mmap_locked)2065 static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm,
2066 					   unsigned long address,
2067 					   bool *mmap_locked)
2068 {
2069 	struct vm_area_struct *vma = lock_vma_under_rcu(mm, address);
2070 
2071 	if (vma) {
2072 		if (vma->vm_ops != &tcp_vm_ops) {
2073 			vma_end_read(vma);
2074 			return NULL;
2075 		}
2076 		*mmap_locked = false;
2077 		return vma;
2078 	}
2079 
2080 	mmap_read_lock(mm);
2081 	vma = vma_lookup(mm, address);
2082 	if (!vma || vma->vm_ops != &tcp_vm_ops) {
2083 		mmap_read_unlock(mm);
2084 		return NULL;
2085 	}
2086 	*mmap_locked = true;
2087 	return vma;
2088 }
2089 
2090 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
tcp_zerocopy_receive(struct sock * sk,struct tcp_zerocopy_receive * zc,struct scm_timestamping_internal * tss)2091 static int tcp_zerocopy_receive(struct sock *sk,
2092 				struct tcp_zerocopy_receive *zc,
2093 				struct scm_timestamping_internal *tss)
2094 {
2095 	u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2096 	unsigned long address = (unsigned long)zc->address;
2097 	struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2098 	s32 copybuf_len = zc->copybuf_len;
2099 	struct tcp_sock *tp = tcp_sk(sk);
2100 	const skb_frag_t *frags = NULL;
2101 	unsigned int pages_to_map = 0;
2102 	struct vm_area_struct *vma;
2103 	struct sk_buff *skb = NULL;
2104 	u32 seq = tp->copied_seq;
2105 	u32 total_bytes_to_map;
2106 	int inq = tcp_inq(sk);
2107 	bool mmap_locked;
2108 	int ret;
2109 
2110 	zc->copybuf_len = 0;
2111 	zc->msg_flags = 0;
2112 
2113 	if (address & (PAGE_SIZE - 1) || address != zc->address)
2114 		return -EINVAL;
2115 
2116 	if (sk->sk_state == TCP_LISTEN)
2117 		return -ENOTCONN;
2118 
2119 	sock_rps_record_flow(sk);
2120 
2121 	if (inq && inq <= copybuf_len)
2122 		return receive_fallback_to_copy(sk, zc, inq, tss);
2123 
2124 	if (inq < PAGE_SIZE) {
2125 		zc->length = 0;
2126 		zc->recv_skip_hint = inq;
2127 		if (!inq && sock_flag(sk, SOCK_DONE))
2128 			return -EIO;
2129 		return 0;
2130 	}
2131 
2132 	vma = find_tcp_vma(current->mm, address, &mmap_locked);
2133 	if (!vma)
2134 		return -EINVAL;
2135 
2136 	vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2137 	avail_len = min_t(u32, vma_len, inq);
2138 	total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2139 	if (total_bytes_to_map) {
2140 		if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2141 			zap_page_range_single(vma, address, total_bytes_to_map,
2142 					      NULL);
2143 		zc->length = total_bytes_to_map;
2144 		zc->recv_skip_hint = 0;
2145 	} else {
2146 		zc->length = avail_len;
2147 		zc->recv_skip_hint = avail_len;
2148 	}
2149 	ret = 0;
2150 	while (length + PAGE_SIZE <= zc->length) {
2151 		int mappable_offset;
2152 		struct page *page;
2153 
2154 		if (zc->recv_skip_hint < PAGE_SIZE) {
2155 			u32 offset_frag;
2156 
2157 			if (skb) {
2158 				if (zc->recv_skip_hint > 0)
2159 					break;
2160 				skb = skb->next;
2161 				offset = seq - TCP_SKB_CB(skb)->seq;
2162 			} else {
2163 				skb = tcp_recv_skb(sk, seq, &offset);
2164 			}
2165 
2166 			if (!skb_frags_readable(skb))
2167 				break;
2168 
2169 			if (TCP_SKB_CB(skb)->has_rxtstamp) {
2170 				tcp_update_recv_tstamps(skb, tss);
2171 				zc->msg_flags |= TCP_CMSG_TS;
2172 			}
2173 			zc->recv_skip_hint = skb->len - offset;
2174 			frags = skb_advance_to_frag(skb, offset, &offset_frag);
2175 			if (!frags || offset_frag)
2176 				break;
2177 		}
2178 
2179 		mappable_offset = find_next_mappable_frag(frags,
2180 							  zc->recv_skip_hint);
2181 		if (mappable_offset) {
2182 			zc->recv_skip_hint = mappable_offset;
2183 			break;
2184 		}
2185 		page = skb_frag_page(frags);
2186 		if (WARN_ON_ONCE(!page))
2187 			break;
2188 
2189 		prefetchw(page);
2190 		pages[pages_to_map++] = page;
2191 		length += PAGE_SIZE;
2192 		zc->recv_skip_hint -= PAGE_SIZE;
2193 		frags++;
2194 		if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2195 		    zc->recv_skip_hint < PAGE_SIZE) {
2196 			/* Either full batch, or we're about to go to next skb
2197 			 * (and we cannot unroll failed ops across skbs).
2198 			 */
2199 			ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2200 							   pages_to_map,
2201 							   &address, &length,
2202 							   &seq, zc,
2203 							   total_bytes_to_map);
2204 			if (ret)
2205 				goto out;
2206 			pages_to_map = 0;
2207 		}
2208 	}
2209 	if (pages_to_map) {
2210 		ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2211 						   &address, &length, &seq,
2212 						   zc, total_bytes_to_map);
2213 	}
2214 out:
2215 	if (mmap_locked)
2216 		mmap_read_unlock(current->mm);
2217 	else
2218 		vma_end_read(vma);
2219 	/* Try to copy straggler data. */
2220 	if (!ret)
2221 		copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2222 
2223 	if (length + copylen) {
2224 		WRITE_ONCE(tp->copied_seq, seq);
2225 		tcp_rcv_space_adjust(sk);
2226 
2227 		/* Clean up data we have read: This will do ACK frames. */
2228 		tcp_recv_skb(sk, seq, &offset);
2229 		tcp_cleanup_rbuf(sk, length + copylen);
2230 		ret = 0;
2231 		if (length == zc->length)
2232 			zc->recv_skip_hint = 0;
2233 	} else {
2234 		if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2235 			ret = -EIO;
2236 	}
2237 	zc->length = length;
2238 	return ret;
2239 }
2240 #endif
2241 
2242 /* Similar to __sock_recv_timestamp, but does not require an skb */
tcp_recv_timestamp(struct msghdr * msg,const struct sock * sk,struct scm_timestamping_internal * tss)2243 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2244 			struct scm_timestamping_internal *tss)
2245 {
2246 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2247 	u32 tsflags = READ_ONCE(sk->sk_tsflags);
2248 	bool has_timestamping = false;
2249 
2250 	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2251 		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2252 			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2253 				if (new_tstamp) {
2254 					struct __kernel_timespec kts = {
2255 						.tv_sec = tss->ts[0].tv_sec,
2256 						.tv_nsec = tss->ts[0].tv_nsec,
2257 					};
2258 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2259 						 sizeof(kts), &kts);
2260 				} else {
2261 					struct __kernel_old_timespec ts_old = {
2262 						.tv_sec = tss->ts[0].tv_sec,
2263 						.tv_nsec = tss->ts[0].tv_nsec,
2264 					};
2265 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2266 						 sizeof(ts_old), &ts_old);
2267 				}
2268 			} else {
2269 				if (new_tstamp) {
2270 					struct __kernel_sock_timeval stv = {
2271 						.tv_sec = tss->ts[0].tv_sec,
2272 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2273 					};
2274 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2275 						 sizeof(stv), &stv);
2276 				} else {
2277 					struct __kernel_old_timeval tv = {
2278 						.tv_sec = tss->ts[0].tv_sec,
2279 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2280 					};
2281 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2282 						 sizeof(tv), &tv);
2283 				}
2284 			}
2285 		}
2286 
2287 		if (tsflags & SOF_TIMESTAMPING_SOFTWARE &&
2288 		    (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE ||
2289 		     !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER)))
2290 			has_timestamping = true;
2291 		else
2292 			tss->ts[0] = (struct timespec64) {0};
2293 	}
2294 
2295 	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2296 		if (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE &&
2297 		    (tsflags & SOF_TIMESTAMPING_RX_HARDWARE ||
2298 		     !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER)))
2299 			has_timestamping = true;
2300 		else
2301 			tss->ts[2] = (struct timespec64) {0};
2302 	}
2303 
2304 	if (has_timestamping) {
2305 		tss->ts[1] = (struct timespec64) {0};
2306 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
2307 			put_cmsg_scm_timestamping64(msg, tss);
2308 		else
2309 			put_cmsg_scm_timestamping(msg, tss);
2310 	}
2311 }
2312 
tcp_inq_hint(struct sock * sk)2313 static int tcp_inq_hint(struct sock *sk)
2314 {
2315 	const struct tcp_sock *tp = tcp_sk(sk);
2316 	u32 copied_seq = READ_ONCE(tp->copied_seq);
2317 	u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2318 	int inq;
2319 
2320 	inq = rcv_nxt - copied_seq;
2321 	if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2322 		lock_sock(sk);
2323 		inq = tp->rcv_nxt - tp->copied_seq;
2324 		release_sock(sk);
2325 	}
2326 	/* After receiving a FIN, tell the user-space to continue reading
2327 	 * by returning a non-zero inq.
2328 	 */
2329 	if (inq == 0 && sock_flag(sk, SOCK_DONE))
2330 		inq = 1;
2331 	return inq;
2332 }
2333 
2334 /* batch __xa_alloc() calls and reduce xa_lock()/xa_unlock() overhead. */
2335 struct tcp_xa_pool {
2336 	u8		max; /* max <= MAX_SKB_FRAGS */
2337 	u8		idx; /* idx <= max */
2338 	__u32		tokens[MAX_SKB_FRAGS];
2339 	netmem_ref	netmems[MAX_SKB_FRAGS];
2340 };
2341 
tcp_xa_pool_commit_locked(struct sock * sk,struct tcp_xa_pool * p)2342 static void tcp_xa_pool_commit_locked(struct sock *sk, struct tcp_xa_pool *p)
2343 {
2344 	int i;
2345 
2346 	/* Commit part that has been copied to user space. */
2347 	for (i = 0; i < p->idx; i++)
2348 		__xa_cmpxchg(&sk->sk_user_frags, p->tokens[i], XA_ZERO_ENTRY,
2349 			     (__force void *)p->netmems[i], GFP_KERNEL);
2350 	/* Rollback what has been pre-allocated and is no longer needed. */
2351 	for (; i < p->max; i++)
2352 		__xa_erase(&sk->sk_user_frags, p->tokens[i]);
2353 
2354 	p->max = 0;
2355 	p->idx = 0;
2356 }
2357 
tcp_xa_pool_commit(struct sock * sk,struct tcp_xa_pool * p)2358 static void tcp_xa_pool_commit(struct sock *sk, struct tcp_xa_pool *p)
2359 {
2360 	if (!p->max)
2361 		return;
2362 
2363 	xa_lock_bh(&sk->sk_user_frags);
2364 
2365 	tcp_xa_pool_commit_locked(sk, p);
2366 
2367 	xa_unlock_bh(&sk->sk_user_frags);
2368 }
2369 
tcp_xa_pool_refill(struct sock * sk,struct tcp_xa_pool * p,unsigned int max_frags)2370 static int tcp_xa_pool_refill(struct sock *sk, struct tcp_xa_pool *p,
2371 			      unsigned int max_frags)
2372 {
2373 	int err, k;
2374 
2375 	if (p->idx < p->max)
2376 		return 0;
2377 
2378 	xa_lock_bh(&sk->sk_user_frags);
2379 
2380 	tcp_xa_pool_commit_locked(sk, p);
2381 
2382 	for (k = 0; k < max_frags; k++) {
2383 		err = __xa_alloc(&sk->sk_user_frags, &p->tokens[k],
2384 				 XA_ZERO_ENTRY, xa_limit_31b, GFP_KERNEL);
2385 		if (err)
2386 			break;
2387 	}
2388 
2389 	xa_unlock_bh(&sk->sk_user_frags);
2390 
2391 	p->max = k;
2392 	p->idx = 0;
2393 	return k ? 0 : err;
2394 }
2395 
2396 /* On error, returns the -errno. On success, returns number of bytes sent to the
2397  * user. May not consume all of @remaining_len.
2398  */
tcp_recvmsg_dmabuf(struct sock * sk,const struct sk_buff * skb,unsigned int offset,struct msghdr * msg,int remaining_len)2399 static int tcp_recvmsg_dmabuf(struct sock *sk, const struct sk_buff *skb,
2400 			      unsigned int offset, struct msghdr *msg,
2401 			      int remaining_len)
2402 {
2403 	struct dmabuf_cmsg dmabuf_cmsg = { 0 };
2404 	struct tcp_xa_pool tcp_xa_pool;
2405 	unsigned int start;
2406 	int i, copy, n;
2407 	int sent = 0;
2408 	int err = 0;
2409 
2410 	tcp_xa_pool.max = 0;
2411 	tcp_xa_pool.idx = 0;
2412 	do {
2413 		start = skb_headlen(skb);
2414 
2415 		if (skb_frags_readable(skb)) {
2416 			err = -ENODEV;
2417 			goto out;
2418 		}
2419 
2420 		/* Copy header. */
2421 		copy = start - offset;
2422 		if (copy > 0) {
2423 			copy = min(copy, remaining_len);
2424 
2425 			n = copy_to_iter(skb->data + offset, copy,
2426 					 &msg->msg_iter);
2427 			if (n != copy) {
2428 				err = -EFAULT;
2429 				goto out;
2430 			}
2431 
2432 			offset += copy;
2433 			remaining_len -= copy;
2434 
2435 			/* First a dmabuf_cmsg for # bytes copied to user
2436 			 * buffer.
2437 			 */
2438 			memset(&dmabuf_cmsg, 0, sizeof(dmabuf_cmsg));
2439 			dmabuf_cmsg.frag_size = copy;
2440 			err = put_cmsg(msg, SOL_SOCKET, SO_DEVMEM_LINEAR,
2441 				       sizeof(dmabuf_cmsg), &dmabuf_cmsg);
2442 			if (err || msg->msg_flags & MSG_CTRUNC) {
2443 				msg->msg_flags &= ~MSG_CTRUNC;
2444 				if (!err)
2445 					err = -ETOOSMALL;
2446 				goto out;
2447 			}
2448 
2449 			sent += copy;
2450 
2451 			if (remaining_len == 0)
2452 				goto out;
2453 		}
2454 
2455 		/* after that, send information of dmabuf pages through a
2456 		 * sequence of cmsg
2457 		 */
2458 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2459 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2460 			struct net_iov *niov;
2461 			u64 frag_offset;
2462 			int end;
2463 
2464 			/* !skb_frags_readable() should indicate that ALL the
2465 			 * frags in this skb are dmabuf net_iovs. We're checking
2466 			 * for that flag above, but also check individual frags
2467 			 * here. If the tcp stack is not setting
2468 			 * skb_frags_readable() correctly, we still don't want
2469 			 * to crash here.
2470 			 */
2471 			if (!skb_frag_net_iov(frag)) {
2472 				net_err_ratelimited("Found non-dmabuf skb with net_iov");
2473 				err = -ENODEV;
2474 				goto out;
2475 			}
2476 
2477 			niov = skb_frag_net_iov(frag);
2478 			end = start + skb_frag_size(frag);
2479 			copy = end - offset;
2480 
2481 			if (copy > 0) {
2482 				copy = min(copy, remaining_len);
2483 
2484 				frag_offset = net_iov_virtual_addr(niov) +
2485 					      skb_frag_off(frag) + offset -
2486 					      start;
2487 				dmabuf_cmsg.frag_offset = frag_offset;
2488 				dmabuf_cmsg.frag_size = copy;
2489 				err = tcp_xa_pool_refill(sk, &tcp_xa_pool,
2490 							 skb_shinfo(skb)->nr_frags - i);
2491 				if (err)
2492 					goto out;
2493 
2494 				/* Will perform the exchange later */
2495 				dmabuf_cmsg.frag_token = tcp_xa_pool.tokens[tcp_xa_pool.idx];
2496 				dmabuf_cmsg.dmabuf_id = net_iov_binding_id(niov);
2497 
2498 				offset += copy;
2499 				remaining_len -= copy;
2500 
2501 				err = put_cmsg(msg, SOL_SOCKET,
2502 					       SO_DEVMEM_DMABUF,
2503 					       sizeof(dmabuf_cmsg),
2504 					       &dmabuf_cmsg);
2505 				if (err || msg->msg_flags & MSG_CTRUNC) {
2506 					msg->msg_flags &= ~MSG_CTRUNC;
2507 					if (!err)
2508 						err = -ETOOSMALL;
2509 					goto out;
2510 				}
2511 
2512 				atomic_long_inc(&niov->pp_ref_count);
2513 				tcp_xa_pool.netmems[tcp_xa_pool.idx++] = skb_frag_netmem(frag);
2514 
2515 				sent += copy;
2516 
2517 				if (remaining_len == 0)
2518 					goto out;
2519 			}
2520 			start = end;
2521 		}
2522 
2523 		tcp_xa_pool_commit(sk, &tcp_xa_pool);
2524 		if (!remaining_len)
2525 			goto out;
2526 
2527 		/* if remaining_len is not satisfied yet, we need to go to the
2528 		 * next frag in the frag_list to satisfy remaining_len.
2529 		 */
2530 		skb = skb_shinfo(skb)->frag_list ?: skb->next;
2531 
2532 		offset = offset - start;
2533 	} while (skb);
2534 
2535 	if (remaining_len) {
2536 		err = -EFAULT;
2537 		goto out;
2538 	}
2539 
2540 out:
2541 	tcp_xa_pool_commit(sk, &tcp_xa_pool);
2542 	if (!sent)
2543 		sent = err;
2544 
2545 	return sent;
2546 }
2547 
2548 /*
2549  *	This routine copies from a sock struct into the user buffer.
2550  *
2551  *	Technical note: in 2.3 we work on _locked_ socket, so that
2552  *	tricks with *seq access order and skb->users are not required.
2553  *	Probably, code can be easily improved even more.
2554  */
2555 
tcp_recvmsg_locked(struct sock * sk,struct msghdr * msg,size_t len,int flags,struct scm_timestamping_internal * tss,int * cmsg_flags)2556 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2557 			      int flags, struct scm_timestamping_internal *tss,
2558 			      int *cmsg_flags)
2559 {
2560 	struct tcp_sock *tp = tcp_sk(sk);
2561 	int last_copied_dmabuf = -1; /* uninitialized */
2562 	int copied = 0;
2563 	u32 peek_seq;
2564 	u32 *seq;
2565 	unsigned long used;
2566 	int err;
2567 	int target;		/* Read at least this many bytes */
2568 	long timeo;
2569 	struct sk_buff *skb, *last;
2570 	u32 peek_offset = 0;
2571 	u32 urg_hole = 0;
2572 
2573 	err = -ENOTCONN;
2574 	if (sk->sk_state == TCP_LISTEN)
2575 		goto out;
2576 
2577 	if (tp->recvmsg_inq) {
2578 		*cmsg_flags = TCP_CMSG_INQ;
2579 		msg->msg_get_inq = 1;
2580 	}
2581 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2582 
2583 	/* Urgent data needs to be handled specially. */
2584 	if (flags & MSG_OOB)
2585 		goto recv_urg;
2586 
2587 	if (unlikely(tp->repair)) {
2588 		err = -EPERM;
2589 		if (!(flags & MSG_PEEK))
2590 			goto out;
2591 
2592 		if (tp->repair_queue == TCP_SEND_QUEUE)
2593 			goto recv_sndq;
2594 
2595 		err = -EINVAL;
2596 		if (tp->repair_queue == TCP_NO_QUEUE)
2597 			goto out;
2598 
2599 		/* 'common' recv queue MSG_PEEK-ing */
2600 	}
2601 
2602 	seq = &tp->copied_seq;
2603 	if (flags & MSG_PEEK) {
2604 		peek_offset = max(sk_peek_offset(sk, flags), 0);
2605 		peek_seq = tp->copied_seq + peek_offset;
2606 		seq = &peek_seq;
2607 	}
2608 
2609 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2610 
2611 	do {
2612 		u32 offset;
2613 
2614 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2615 		if (unlikely(tp->urg_data) && tp->urg_seq == *seq) {
2616 			if (copied)
2617 				break;
2618 			if (signal_pending(current)) {
2619 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2620 				break;
2621 			}
2622 		}
2623 
2624 		/* Next get a buffer. */
2625 
2626 		last = skb_peek_tail(&sk->sk_receive_queue);
2627 		skb_queue_walk(&sk->sk_receive_queue, skb) {
2628 			last = skb;
2629 			/* Now that we have two receive queues this
2630 			 * shouldn't happen.
2631 			 */
2632 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2633 				 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2634 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2635 				 flags))
2636 				break;
2637 
2638 			offset = *seq - TCP_SKB_CB(skb)->seq;
2639 			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2640 				pr_err_once("%s: found a SYN, please report !\n", __func__);
2641 				offset--;
2642 			}
2643 			if (offset < skb->len)
2644 				goto found_ok_skb;
2645 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2646 				goto found_fin_ok;
2647 			WARN(!(flags & MSG_PEEK),
2648 			     "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2649 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2650 		}
2651 
2652 		/* Well, if we have backlog, try to process it now yet. */
2653 
2654 		if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2655 			break;
2656 
2657 		if (copied) {
2658 			if (!timeo ||
2659 			    sk->sk_err ||
2660 			    sk->sk_state == TCP_CLOSE ||
2661 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2662 			    signal_pending(current))
2663 				break;
2664 		} else {
2665 			if (sock_flag(sk, SOCK_DONE))
2666 				break;
2667 
2668 			if (sk->sk_err) {
2669 				copied = sock_error(sk);
2670 				break;
2671 			}
2672 
2673 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2674 				break;
2675 
2676 			if (sk->sk_state == TCP_CLOSE) {
2677 				/* This occurs when user tries to read
2678 				 * from never connected socket.
2679 				 */
2680 				copied = -ENOTCONN;
2681 				break;
2682 			}
2683 
2684 			if (!timeo) {
2685 				copied = -EAGAIN;
2686 				break;
2687 			}
2688 
2689 			if (signal_pending(current)) {
2690 				copied = sock_intr_errno(timeo);
2691 				break;
2692 			}
2693 		}
2694 
2695 		if (copied >= target) {
2696 			/* Do not sleep, just process backlog. */
2697 			__sk_flush_backlog(sk);
2698 		} else {
2699 			tcp_cleanup_rbuf(sk, copied);
2700 			err = sk_wait_data(sk, &timeo, last);
2701 			if (err < 0) {
2702 				err = copied ? : err;
2703 				goto out;
2704 			}
2705 		}
2706 
2707 		if ((flags & MSG_PEEK) &&
2708 		    (peek_seq - peek_offset - copied - urg_hole != tp->copied_seq)) {
2709 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2710 					    current->comm,
2711 					    task_pid_nr(current));
2712 			peek_seq = tp->copied_seq + peek_offset;
2713 		}
2714 		continue;
2715 
2716 found_ok_skb:
2717 		/* Ok so how much can we use? */
2718 		used = skb->len - offset;
2719 		if (len < used)
2720 			used = len;
2721 
2722 		/* Do we have urgent data here? */
2723 		if (unlikely(tp->urg_data)) {
2724 			u32 urg_offset = tp->urg_seq - *seq;
2725 			if (urg_offset < used) {
2726 				if (!urg_offset) {
2727 					if (!sock_flag(sk, SOCK_URGINLINE)) {
2728 						WRITE_ONCE(*seq, *seq + 1);
2729 						urg_hole++;
2730 						offset++;
2731 						used--;
2732 						if (!used)
2733 							goto skip_copy;
2734 					}
2735 				} else
2736 					used = urg_offset;
2737 			}
2738 		}
2739 
2740 		if (!(flags & MSG_TRUNC)) {
2741 			if (last_copied_dmabuf != -1 &&
2742 			    last_copied_dmabuf != !skb_frags_readable(skb))
2743 				break;
2744 
2745 			if (skb_frags_readable(skb)) {
2746 				err = skb_copy_datagram_msg(skb, offset, msg,
2747 							    used);
2748 				if (err) {
2749 					/* Exception. Bailout! */
2750 					if (!copied)
2751 						copied = -EFAULT;
2752 					break;
2753 				}
2754 			} else {
2755 				if (!(flags & MSG_SOCK_DEVMEM)) {
2756 					/* dmabuf skbs can only be received
2757 					 * with the MSG_SOCK_DEVMEM flag.
2758 					 */
2759 					if (!copied)
2760 						copied = -EFAULT;
2761 
2762 					break;
2763 				}
2764 
2765 				err = tcp_recvmsg_dmabuf(sk, skb, offset, msg,
2766 							 used);
2767 				if (err <= 0) {
2768 					if (!copied)
2769 						copied = -EFAULT;
2770 
2771 					break;
2772 				}
2773 				used = err;
2774 			}
2775 		}
2776 
2777 		last_copied_dmabuf = !skb_frags_readable(skb);
2778 
2779 		WRITE_ONCE(*seq, *seq + used);
2780 		copied += used;
2781 		len -= used;
2782 		if (flags & MSG_PEEK)
2783 			sk_peek_offset_fwd(sk, used);
2784 		else
2785 			sk_peek_offset_bwd(sk, used);
2786 		tcp_rcv_space_adjust(sk);
2787 
2788 skip_copy:
2789 		if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) {
2790 			WRITE_ONCE(tp->urg_data, 0);
2791 			tcp_fast_path_check(sk);
2792 		}
2793 
2794 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2795 			tcp_update_recv_tstamps(skb, tss);
2796 			*cmsg_flags |= TCP_CMSG_TS;
2797 		}
2798 
2799 		if (used + offset < skb->len)
2800 			continue;
2801 
2802 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2803 			goto found_fin_ok;
2804 		if (!(flags & MSG_PEEK))
2805 			tcp_eat_recv_skb(sk, skb);
2806 		continue;
2807 
2808 found_fin_ok:
2809 		/* Process the FIN. */
2810 		WRITE_ONCE(*seq, *seq + 1);
2811 		if (!(flags & MSG_PEEK))
2812 			tcp_eat_recv_skb(sk, skb);
2813 		break;
2814 	} while (len > 0);
2815 
2816 	/* According to UNIX98, msg_name/msg_namelen are ignored
2817 	 * on connected socket. I was just happy when found this 8) --ANK
2818 	 */
2819 
2820 	/* Clean up data we have read: This will do ACK frames. */
2821 	tcp_cleanup_rbuf(sk, copied);
2822 	return copied;
2823 
2824 out:
2825 	return err;
2826 
2827 recv_urg:
2828 	err = tcp_recv_urg(sk, msg, len, flags);
2829 	goto out;
2830 
2831 recv_sndq:
2832 	err = tcp_peek_sndq(sk, msg, len);
2833 	goto out;
2834 }
2835 
tcp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags,int * addr_len)2836 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2837 		int *addr_len)
2838 {
2839 	int cmsg_flags = 0, ret;
2840 	struct scm_timestamping_internal tss;
2841 
2842 	if (unlikely(flags & MSG_ERRQUEUE))
2843 		return inet_recv_error(sk, msg, len, addr_len);
2844 
2845 	if (sk_can_busy_loop(sk) &&
2846 	    skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2847 	    sk->sk_state == TCP_ESTABLISHED)
2848 		sk_busy_loop(sk, flags & MSG_DONTWAIT);
2849 
2850 	lock_sock(sk);
2851 	ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags);
2852 	release_sock(sk);
2853 
2854 	if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) {
2855 		if (cmsg_flags & TCP_CMSG_TS)
2856 			tcp_recv_timestamp(msg, sk, &tss);
2857 		if (msg->msg_get_inq) {
2858 			msg->msg_inq = tcp_inq_hint(sk);
2859 			if (cmsg_flags & TCP_CMSG_INQ)
2860 				put_cmsg(msg, SOL_TCP, TCP_CM_INQ,
2861 					 sizeof(msg->msg_inq), &msg->msg_inq);
2862 		}
2863 	}
2864 	return ret;
2865 }
2866 EXPORT_SYMBOL(tcp_recvmsg);
2867 
tcp_set_state(struct sock * sk,int state)2868 void tcp_set_state(struct sock *sk, int state)
2869 {
2870 	int oldstate = sk->sk_state;
2871 
2872 	/* We defined a new enum for TCP states that are exported in BPF
2873 	 * so as not force the internal TCP states to be frozen. The
2874 	 * following checks will detect if an internal state value ever
2875 	 * differs from the BPF value. If this ever happens, then we will
2876 	 * need to remap the internal value to the BPF value before calling
2877 	 * tcp_call_bpf_2arg.
2878 	 */
2879 	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2880 	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2881 	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2882 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2883 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2884 	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2885 	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2886 	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2887 	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2888 	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2889 	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2890 	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2891 	BUILD_BUG_ON((int)BPF_TCP_BOUND_INACTIVE != (int)TCP_BOUND_INACTIVE);
2892 	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2893 
2894 	/* bpf uapi header bpf.h defines an anonymous enum with values
2895 	 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2896 	 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2897 	 * But clang built vmlinux does not have this enum in DWARF
2898 	 * since clang removes the above code before generating IR/debuginfo.
2899 	 * Let us explicitly emit the type debuginfo to ensure the
2900 	 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2901 	 * regardless of which compiler is used.
2902 	 */
2903 	BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2904 
2905 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2906 		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2907 
2908 	switch (state) {
2909 	case TCP_ESTABLISHED:
2910 		if (oldstate != TCP_ESTABLISHED)
2911 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2912 		break;
2913 	case TCP_CLOSE_WAIT:
2914 		if (oldstate == TCP_SYN_RECV)
2915 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2916 		break;
2917 
2918 	case TCP_CLOSE:
2919 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2920 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2921 
2922 		sk->sk_prot->unhash(sk);
2923 		if (inet_csk(sk)->icsk_bind_hash &&
2924 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2925 			inet_put_port(sk);
2926 		fallthrough;
2927 	default:
2928 		if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT)
2929 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2930 	}
2931 
2932 	/* Change state AFTER socket is unhashed to avoid closed
2933 	 * socket sitting in hash tables.
2934 	 */
2935 	inet_sk_state_store(sk, state);
2936 }
2937 EXPORT_SYMBOL_GPL(tcp_set_state);
2938 
2939 /*
2940  *	State processing on a close. This implements the state shift for
2941  *	sending our FIN frame. Note that we only send a FIN for some
2942  *	states. A shutdown() may have already sent the FIN, or we may be
2943  *	closed.
2944  */
2945 
2946 static const unsigned char new_state[16] = {
2947   /* current state:        new state:      action:	*/
2948   [0 /* (Invalid) */]	= TCP_CLOSE,
2949   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2950   [TCP_SYN_SENT]	= TCP_CLOSE,
2951   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2952   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2953   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2954   [TCP_TIME_WAIT]	= TCP_CLOSE,
2955   [TCP_CLOSE]		= TCP_CLOSE,
2956   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2957   [TCP_LAST_ACK]	= TCP_LAST_ACK,
2958   [TCP_LISTEN]		= TCP_CLOSE,
2959   [TCP_CLOSING]		= TCP_CLOSING,
2960   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2961 };
2962 
tcp_close_state(struct sock * sk)2963 static int tcp_close_state(struct sock *sk)
2964 {
2965 	int next = (int)new_state[sk->sk_state];
2966 	int ns = next & TCP_STATE_MASK;
2967 
2968 	tcp_set_state(sk, ns);
2969 
2970 	return next & TCP_ACTION_FIN;
2971 }
2972 
2973 /*
2974  *	Shutdown the sending side of a connection. Much like close except
2975  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2976  */
2977 
tcp_shutdown(struct sock * sk,int how)2978 void tcp_shutdown(struct sock *sk, int how)
2979 {
2980 	/*	We need to grab some memory, and put together a FIN,
2981 	 *	and then put it into the queue to be sent.
2982 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2983 	 */
2984 	if (!(how & SEND_SHUTDOWN))
2985 		return;
2986 
2987 	/* If we've already sent a FIN, or it's a closed state, skip this. */
2988 	if ((1 << sk->sk_state) &
2989 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2990 	     TCPF_CLOSE_WAIT)) {
2991 		/* Clear out any half completed packets.  FIN if needed. */
2992 		if (tcp_close_state(sk))
2993 			tcp_send_fin(sk);
2994 	}
2995 }
2996 EXPORT_SYMBOL(tcp_shutdown);
2997 
tcp_orphan_count_sum(void)2998 int tcp_orphan_count_sum(void)
2999 {
3000 	int i, total = 0;
3001 
3002 	for_each_possible_cpu(i)
3003 		total += per_cpu(tcp_orphan_count, i);
3004 
3005 	return max(total, 0);
3006 }
3007 
3008 static int tcp_orphan_cache;
3009 static struct timer_list tcp_orphan_timer;
3010 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
3011 
tcp_orphan_update(struct timer_list * unused)3012 static void tcp_orphan_update(struct timer_list *unused)
3013 {
3014 	WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
3015 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
3016 }
3017 
tcp_too_many_orphans(int shift)3018 static bool tcp_too_many_orphans(int shift)
3019 {
3020 	return READ_ONCE(tcp_orphan_cache) << shift >
3021 		READ_ONCE(sysctl_tcp_max_orphans);
3022 }
3023 
tcp_out_of_memory(const struct sock * sk)3024 static bool tcp_out_of_memory(const struct sock *sk)
3025 {
3026 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
3027 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
3028 		return true;
3029 	return false;
3030 }
3031 
tcp_check_oom(const struct sock * sk,int shift)3032 bool tcp_check_oom(const struct sock *sk, int shift)
3033 {
3034 	bool too_many_orphans, out_of_socket_memory;
3035 
3036 	too_many_orphans = tcp_too_many_orphans(shift);
3037 	out_of_socket_memory = tcp_out_of_memory(sk);
3038 
3039 	if (too_many_orphans)
3040 		net_info_ratelimited("too many orphaned sockets\n");
3041 	if (out_of_socket_memory)
3042 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
3043 	return too_many_orphans || out_of_socket_memory;
3044 }
3045 
__tcp_close(struct sock * sk,long timeout)3046 void __tcp_close(struct sock *sk, long timeout)
3047 {
3048 	struct sk_buff *skb;
3049 	int data_was_unread = 0;
3050 	int state;
3051 
3052 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
3053 
3054 	if (sk->sk_state == TCP_LISTEN) {
3055 		tcp_set_state(sk, TCP_CLOSE);
3056 
3057 		/* Special case. */
3058 		inet_csk_listen_stop(sk);
3059 
3060 		goto adjudge_to_death;
3061 	}
3062 
3063 	/*  We need to flush the recv. buffs.  We do this only on the
3064 	 *  descriptor close, not protocol-sourced closes, because the
3065 	 *  reader process may not have drained the data yet!
3066 	 */
3067 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
3068 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
3069 
3070 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
3071 			len--;
3072 		data_was_unread += len;
3073 		__kfree_skb(skb);
3074 	}
3075 
3076 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
3077 	if (sk->sk_state == TCP_CLOSE)
3078 		goto adjudge_to_death;
3079 
3080 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
3081 	 * data was lost. To witness the awful effects of the old behavior of
3082 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
3083 	 * GET in an FTP client, suspend the process, wait for the client to
3084 	 * advertise a zero window, then kill -9 the FTP client, wheee...
3085 	 * Note: timeout is always zero in such a case.
3086 	 */
3087 	if (unlikely(tcp_sk(sk)->repair)) {
3088 		sk->sk_prot->disconnect(sk, 0);
3089 	} else if (data_was_unread) {
3090 		/* Unread data was tossed, zap the connection. */
3091 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
3092 		tcp_set_state(sk, TCP_CLOSE);
3093 		tcp_send_active_reset(sk, sk->sk_allocation,
3094 				      SK_RST_REASON_TCP_ABORT_ON_CLOSE);
3095 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
3096 		/* Check zero linger _after_ checking for unread data. */
3097 		sk->sk_prot->disconnect(sk, 0);
3098 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
3099 	} else if (tcp_close_state(sk)) {
3100 		/* We FIN if the application ate all the data before
3101 		 * zapping the connection.
3102 		 */
3103 
3104 		/* RED-PEN. Formally speaking, we have broken TCP state
3105 		 * machine. State transitions:
3106 		 *
3107 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
3108 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (it is difficult)
3109 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
3110 		 *
3111 		 * are legal only when FIN has been sent (i.e. in window),
3112 		 * rather than queued out of window. Purists blame.
3113 		 *
3114 		 * F.e. "RFC state" is ESTABLISHED,
3115 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
3116 		 *
3117 		 * The visible declinations are that sometimes
3118 		 * we enter time-wait state, when it is not required really
3119 		 * (harmless), do not send active resets, when they are
3120 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
3121 		 * they look as CLOSING or LAST_ACK for Linux)
3122 		 * Probably, I missed some more holelets.
3123 		 * 						--ANK
3124 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
3125 		 * in a single packet! (May consider it later but will
3126 		 * probably need API support or TCP_CORK SYN-ACK until
3127 		 * data is written and socket is closed.)
3128 		 */
3129 		tcp_send_fin(sk);
3130 	}
3131 
3132 	sk_stream_wait_close(sk, timeout);
3133 
3134 adjudge_to_death:
3135 	state = sk->sk_state;
3136 	sock_hold(sk);
3137 	sock_orphan(sk);
3138 
3139 	local_bh_disable();
3140 	bh_lock_sock(sk);
3141 	/* remove backlog if any, without releasing ownership. */
3142 	__release_sock(sk);
3143 
3144 	this_cpu_inc(tcp_orphan_count);
3145 
3146 	/* Have we already been destroyed by a softirq or backlog? */
3147 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
3148 		goto out;
3149 
3150 	/*	This is a (useful) BSD violating of the RFC. There is a
3151 	 *	problem with TCP as specified in that the other end could
3152 	 *	keep a socket open forever with no application left this end.
3153 	 *	We use a 1 minute timeout (about the same as BSD) then kill
3154 	 *	our end. If they send after that then tough - BUT: long enough
3155 	 *	that we won't make the old 4*rto = almost no time - whoops
3156 	 *	reset mistake.
3157 	 *
3158 	 *	Nope, it was not mistake. It is really desired behaviour
3159 	 *	f.e. on http servers, when such sockets are useless, but
3160 	 *	consume significant resources. Let's do it with special
3161 	 *	linger2	option.					--ANK
3162 	 */
3163 
3164 	if (sk->sk_state == TCP_FIN_WAIT2) {
3165 		struct tcp_sock *tp = tcp_sk(sk);
3166 		if (READ_ONCE(tp->linger2) < 0) {
3167 			tcp_set_state(sk, TCP_CLOSE);
3168 			tcp_send_active_reset(sk, GFP_ATOMIC,
3169 					      SK_RST_REASON_TCP_ABORT_ON_LINGER);
3170 			__NET_INC_STATS(sock_net(sk),
3171 					LINUX_MIB_TCPABORTONLINGER);
3172 		} else {
3173 			const int tmo = tcp_fin_time(sk);
3174 
3175 			if (tmo > TCP_TIMEWAIT_LEN) {
3176 				inet_csk_reset_keepalive_timer(sk,
3177 						tmo - TCP_TIMEWAIT_LEN);
3178 			} else {
3179 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
3180 				goto out;
3181 			}
3182 		}
3183 	}
3184 	if (sk->sk_state != TCP_CLOSE) {
3185 		if (tcp_check_oom(sk, 0)) {
3186 			tcp_set_state(sk, TCP_CLOSE);
3187 			tcp_send_active_reset(sk, GFP_ATOMIC,
3188 					      SK_RST_REASON_TCP_ABORT_ON_MEMORY);
3189 			__NET_INC_STATS(sock_net(sk),
3190 					LINUX_MIB_TCPABORTONMEMORY);
3191 		} else if (!check_net(sock_net(sk))) {
3192 			/* Not possible to send reset; just close */
3193 			tcp_set_state(sk, TCP_CLOSE);
3194 		}
3195 	}
3196 
3197 	if (sk->sk_state == TCP_CLOSE) {
3198 		struct request_sock *req;
3199 
3200 		req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
3201 						lockdep_sock_is_held(sk));
3202 		/* We could get here with a non-NULL req if the socket is
3203 		 * aborted (e.g., closed with unread data) before 3WHS
3204 		 * finishes.
3205 		 */
3206 		if (req)
3207 			reqsk_fastopen_remove(sk, req, false);
3208 		inet_csk_destroy_sock(sk);
3209 	}
3210 	/* Otherwise, socket is reprieved until protocol close. */
3211 
3212 out:
3213 	bh_unlock_sock(sk);
3214 	local_bh_enable();
3215 }
3216 
tcp_close(struct sock * sk,long timeout)3217 void tcp_close(struct sock *sk, long timeout)
3218 {
3219 	lock_sock(sk);
3220 	__tcp_close(sk, timeout);
3221 	release_sock(sk);
3222 	if (!sk->sk_net_refcnt)
3223 		inet_csk_clear_xmit_timers_sync(sk);
3224 	sock_put(sk);
3225 }
3226 EXPORT_SYMBOL(tcp_close);
3227 
3228 /* These states need RST on ABORT according to RFC793 */
3229 
tcp_need_reset(int state)3230 static inline bool tcp_need_reset(int state)
3231 {
3232 	return (1 << state) &
3233 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
3234 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
3235 }
3236 
tcp_rtx_queue_purge(struct sock * sk)3237 static void tcp_rtx_queue_purge(struct sock *sk)
3238 {
3239 	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
3240 
3241 	tcp_sk(sk)->highest_sack = NULL;
3242 	while (p) {
3243 		struct sk_buff *skb = rb_to_skb(p);
3244 
3245 		p = rb_next(p);
3246 		/* Since we are deleting whole queue, no need to
3247 		 * list_del(&skb->tcp_tsorted_anchor)
3248 		 */
3249 		tcp_rtx_queue_unlink(skb, sk);
3250 		tcp_wmem_free_skb(sk, skb);
3251 	}
3252 }
3253 
tcp_write_queue_purge(struct sock * sk)3254 void tcp_write_queue_purge(struct sock *sk)
3255 {
3256 	struct sk_buff *skb;
3257 
3258 	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3259 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
3260 		tcp_skb_tsorted_anchor_cleanup(skb);
3261 		tcp_wmem_free_skb(sk, skb);
3262 	}
3263 	tcp_rtx_queue_purge(sk);
3264 	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
3265 	tcp_clear_all_retrans_hints(tcp_sk(sk));
3266 	tcp_sk(sk)->packets_out = 0;
3267 	inet_csk(sk)->icsk_backoff = 0;
3268 }
3269 
tcp_disconnect(struct sock * sk,int flags)3270 int tcp_disconnect(struct sock *sk, int flags)
3271 {
3272 	struct inet_sock *inet = inet_sk(sk);
3273 	struct inet_connection_sock *icsk = inet_csk(sk);
3274 	struct tcp_sock *tp = tcp_sk(sk);
3275 	int old_state = sk->sk_state;
3276 	u32 seq;
3277 
3278 	if (old_state != TCP_CLOSE)
3279 		tcp_set_state(sk, TCP_CLOSE);
3280 
3281 	/* ABORT function of RFC793 */
3282 	if (old_state == TCP_LISTEN) {
3283 		inet_csk_listen_stop(sk);
3284 	} else if (unlikely(tp->repair)) {
3285 		WRITE_ONCE(sk->sk_err, ECONNABORTED);
3286 	} else if (tcp_need_reset(old_state)) {
3287 		tcp_send_active_reset(sk, gfp_any(), SK_RST_REASON_TCP_STATE);
3288 		WRITE_ONCE(sk->sk_err, ECONNRESET);
3289 	} else if (tp->snd_nxt != tp->write_seq &&
3290 		   (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK)) {
3291 		/* The last check adjusts for discrepancy of Linux wrt. RFC
3292 		 * states
3293 		 */
3294 		tcp_send_active_reset(sk, gfp_any(),
3295 				      SK_RST_REASON_TCP_DISCONNECT_WITH_DATA);
3296 		WRITE_ONCE(sk->sk_err, ECONNRESET);
3297 	} else if (old_state == TCP_SYN_SENT)
3298 		WRITE_ONCE(sk->sk_err, ECONNRESET);
3299 
3300 	tcp_clear_xmit_timers(sk);
3301 	__skb_queue_purge(&sk->sk_receive_queue);
3302 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3303 	WRITE_ONCE(tp->urg_data, 0);
3304 	sk_set_peek_off(sk, -1);
3305 	tcp_write_queue_purge(sk);
3306 	tcp_fastopen_active_disable_ofo_check(sk);
3307 	skb_rbtree_purge(&tp->out_of_order_queue);
3308 
3309 	inet->inet_dport = 0;
3310 
3311 	inet_bhash2_reset_saddr(sk);
3312 
3313 	WRITE_ONCE(sk->sk_shutdown, 0);
3314 	sock_reset_flag(sk, SOCK_DONE);
3315 	tp->srtt_us = 0;
3316 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
3317 	tp->rcv_rtt_last_tsecr = 0;
3318 
3319 	seq = tp->write_seq + tp->max_window + 2;
3320 	if (!seq)
3321 		seq = 1;
3322 	WRITE_ONCE(tp->write_seq, seq);
3323 
3324 	icsk->icsk_backoff = 0;
3325 	icsk->icsk_probes_out = 0;
3326 	icsk->icsk_probes_tstamp = 0;
3327 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
3328 	icsk->icsk_rto_min = TCP_RTO_MIN;
3329 	icsk->icsk_delack_max = TCP_DELACK_MAX;
3330 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
3331 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
3332 	tp->snd_cwnd_cnt = 0;
3333 	tp->is_cwnd_limited = 0;
3334 	tp->max_packets_out = 0;
3335 	tp->window_clamp = 0;
3336 	tp->delivered = 0;
3337 	tp->delivered_ce = 0;
3338 	if (icsk->icsk_ca_ops->release)
3339 		icsk->icsk_ca_ops->release(sk);
3340 	memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3341 	icsk->icsk_ca_initialized = 0;
3342 	tcp_set_ca_state(sk, TCP_CA_Open);
3343 	tp->is_sack_reneg = 0;
3344 	tcp_clear_retrans(tp);
3345 	tp->total_retrans = 0;
3346 	inet_csk_delack_init(sk);
3347 	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3348 	 * issue in __tcp_select_window()
3349 	 */
3350 	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3351 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3352 	__sk_dst_reset(sk);
3353 	dst_release(unrcu_pointer(xchg(&sk->sk_rx_dst, NULL)));
3354 	tcp_saved_syn_free(tp);
3355 	tp->compressed_ack = 0;
3356 	tp->segs_in = 0;
3357 	tp->segs_out = 0;
3358 	tp->bytes_sent = 0;
3359 	tp->bytes_acked = 0;
3360 	tp->bytes_received = 0;
3361 	tp->bytes_retrans = 0;
3362 	tp->data_segs_in = 0;
3363 	tp->data_segs_out = 0;
3364 	tp->duplicate_sack[0].start_seq = 0;
3365 	tp->duplicate_sack[0].end_seq = 0;
3366 	tp->dsack_dups = 0;
3367 	tp->reord_seen = 0;
3368 	tp->retrans_out = 0;
3369 	tp->sacked_out = 0;
3370 	tp->tlp_high_seq = 0;
3371 	tp->last_oow_ack_time = 0;
3372 	tp->plb_rehash = 0;
3373 	/* There's a bubble in the pipe until at least the first ACK. */
3374 	tp->app_limited = ~0U;
3375 	tp->rate_app_limited = 1;
3376 	tp->rack.mstamp = 0;
3377 	tp->rack.advanced = 0;
3378 	tp->rack.reo_wnd_steps = 1;
3379 	tp->rack.last_delivered = 0;
3380 	tp->rack.reo_wnd_persist = 0;
3381 	tp->rack.dsack_seen = 0;
3382 	tp->syn_data_acked = 0;
3383 	tp->rx_opt.saw_tstamp = 0;
3384 	tp->rx_opt.dsack = 0;
3385 	tp->rx_opt.num_sacks = 0;
3386 	tp->rcv_ooopack = 0;
3387 
3388 
3389 	/* Clean up fastopen related fields */
3390 	tcp_free_fastopen_req(tp);
3391 	inet_clear_bit(DEFER_CONNECT, sk);
3392 	tp->fastopen_client_fail = 0;
3393 
3394 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3395 
3396 	if (sk->sk_frag.page) {
3397 		put_page(sk->sk_frag.page);
3398 		sk->sk_frag.page = NULL;
3399 		sk->sk_frag.offset = 0;
3400 	}
3401 	sk_error_report(sk);
3402 	return 0;
3403 }
3404 EXPORT_SYMBOL(tcp_disconnect);
3405 
tcp_can_repair_sock(const struct sock * sk)3406 static inline bool tcp_can_repair_sock(const struct sock *sk)
3407 {
3408 	return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3409 		(sk->sk_state != TCP_LISTEN);
3410 }
3411 
tcp_repair_set_window(struct tcp_sock * tp,sockptr_t optbuf,int len)3412 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3413 {
3414 	struct tcp_repair_window opt;
3415 
3416 	if (!tp->repair)
3417 		return -EPERM;
3418 
3419 	if (len != sizeof(opt))
3420 		return -EINVAL;
3421 
3422 	if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3423 		return -EFAULT;
3424 
3425 	if (opt.max_window < opt.snd_wnd)
3426 		return -EINVAL;
3427 
3428 	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3429 		return -EINVAL;
3430 
3431 	if (after(opt.rcv_wup, tp->rcv_nxt))
3432 		return -EINVAL;
3433 
3434 	tp->snd_wl1	= opt.snd_wl1;
3435 	tp->snd_wnd	= opt.snd_wnd;
3436 	tp->max_window	= opt.max_window;
3437 
3438 	tp->rcv_wnd	= opt.rcv_wnd;
3439 	tp->rcv_wup	= opt.rcv_wup;
3440 
3441 	return 0;
3442 }
3443 
tcp_repair_options_est(struct sock * sk,sockptr_t optbuf,unsigned int len)3444 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3445 		unsigned int len)
3446 {
3447 	struct tcp_sock *tp = tcp_sk(sk);
3448 	struct tcp_repair_opt opt;
3449 	size_t offset = 0;
3450 
3451 	while (len >= sizeof(opt)) {
3452 		if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3453 			return -EFAULT;
3454 
3455 		offset += sizeof(opt);
3456 		len -= sizeof(opt);
3457 
3458 		switch (opt.opt_code) {
3459 		case TCPOPT_MSS:
3460 			tp->rx_opt.mss_clamp = opt.opt_val;
3461 			tcp_mtup_init(sk);
3462 			break;
3463 		case TCPOPT_WINDOW:
3464 			{
3465 				u16 snd_wscale = opt.opt_val & 0xFFFF;
3466 				u16 rcv_wscale = opt.opt_val >> 16;
3467 
3468 				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3469 					return -EFBIG;
3470 
3471 				tp->rx_opt.snd_wscale = snd_wscale;
3472 				tp->rx_opt.rcv_wscale = rcv_wscale;
3473 				tp->rx_opt.wscale_ok = 1;
3474 			}
3475 			break;
3476 		case TCPOPT_SACK_PERM:
3477 			if (opt.opt_val != 0)
3478 				return -EINVAL;
3479 
3480 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3481 			break;
3482 		case TCPOPT_TIMESTAMP:
3483 			if (opt.opt_val != 0)
3484 				return -EINVAL;
3485 
3486 			tp->rx_opt.tstamp_ok = 1;
3487 			break;
3488 		}
3489 	}
3490 
3491 	return 0;
3492 }
3493 
3494 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3495 EXPORT_SYMBOL(tcp_tx_delay_enabled);
3496 
tcp_enable_tx_delay(void)3497 static void tcp_enable_tx_delay(void)
3498 {
3499 	if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3500 		static int __tcp_tx_delay_enabled = 0;
3501 
3502 		if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3503 			static_branch_enable(&tcp_tx_delay_enabled);
3504 			pr_info("TCP_TX_DELAY enabled\n");
3505 		}
3506 	}
3507 }
3508 
3509 /* When set indicates to always queue non-full frames.  Later the user clears
3510  * this option and we transmit any pending partial frames in the queue.  This is
3511  * meant to be used alongside sendfile() to get properly filled frames when the
3512  * user (for example) must write out headers with a write() call first and then
3513  * use sendfile to send out the data parts.
3514  *
3515  * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3516  * TCP_NODELAY.
3517  */
__tcp_sock_set_cork(struct sock * sk,bool on)3518 void __tcp_sock_set_cork(struct sock *sk, bool on)
3519 {
3520 	struct tcp_sock *tp = tcp_sk(sk);
3521 
3522 	if (on) {
3523 		tp->nonagle |= TCP_NAGLE_CORK;
3524 	} else {
3525 		tp->nonagle &= ~TCP_NAGLE_CORK;
3526 		if (tp->nonagle & TCP_NAGLE_OFF)
3527 			tp->nonagle |= TCP_NAGLE_PUSH;
3528 		tcp_push_pending_frames(sk);
3529 	}
3530 }
3531 
tcp_sock_set_cork(struct sock * sk,bool on)3532 void tcp_sock_set_cork(struct sock *sk, bool on)
3533 {
3534 	lock_sock(sk);
3535 	__tcp_sock_set_cork(sk, on);
3536 	release_sock(sk);
3537 }
3538 EXPORT_SYMBOL(tcp_sock_set_cork);
3539 
3540 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3541  * remembered, but it is not activated until cork is cleared.
3542  *
3543  * However, when TCP_NODELAY is set we make an explicit push, which overrides
3544  * even TCP_CORK for currently queued segments.
3545  */
__tcp_sock_set_nodelay(struct sock * sk,bool on)3546 void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3547 {
3548 	if (on) {
3549 		tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3550 		tcp_push_pending_frames(sk);
3551 	} else {
3552 		tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3553 	}
3554 }
3555 
tcp_sock_set_nodelay(struct sock * sk)3556 void tcp_sock_set_nodelay(struct sock *sk)
3557 {
3558 	lock_sock(sk);
3559 	__tcp_sock_set_nodelay(sk, true);
3560 	release_sock(sk);
3561 }
3562 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3563 
__tcp_sock_set_quickack(struct sock * sk,int val)3564 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3565 {
3566 	if (!val) {
3567 		inet_csk_enter_pingpong_mode(sk);
3568 		return;
3569 	}
3570 
3571 	inet_csk_exit_pingpong_mode(sk);
3572 	if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3573 	    inet_csk_ack_scheduled(sk)) {
3574 		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3575 		tcp_cleanup_rbuf(sk, 1);
3576 		if (!(val & 1))
3577 			inet_csk_enter_pingpong_mode(sk);
3578 	}
3579 }
3580 
tcp_sock_set_quickack(struct sock * sk,int val)3581 void tcp_sock_set_quickack(struct sock *sk, int val)
3582 {
3583 	lock_sock(sk);
3584 	__tcp_sock_set_quickack(sk, val);
3585 	release_sock(sk);
3586 }
3587 EXPORT_SYMBOL(tcp_sock_set_quickack);
3588 
tcp_sock_set_syncnt(struct sock * sk,int val)3589 int tcp_sock_set_syncnt(struct sock *sk, int val)
3590 {
3591 	if (val < 1 || val > MAX_TCP_SYNCNT)
3592 		return -EINVAL;
3593 
3594 	WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val);
3595 	return 0;
3596 }
3597 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3598 
tcp_sock_set_user_timeout(struct sock * sk,int val)3599 int tcp_sock_set_user_timeout(struct sock *sk, int val)
3600 {
3601 	/* Cap the max time in ms TCP will retry or probe the window
3602 	 * before giving up and aborting (ETIMEDOUT) a connection.
3603 	 */
3604 	if (val < 0)
3605 		return -EINVAL;
3606 
3607 	WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val);
3608 	return 0;
3609 }
3610 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3611 
tcp_sock_set_keepidle_locked(struct sock * sk,int val)3612 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3613 {
3614 	struct tcp_sock *tp = tcp_sk(sk);
3615 
3616 	if (val < 1 || val > MAX_TCP_KEEPIDLE)
3617 		return -EINVAL;
3618 
3619 	/* Paired with WRITE_ONCE() in keepalive_time_when() */
3620 	WRITE_ONCE(tp->keepalive_time, val * HZ);
3621 	if (sock_flag(sk, SOCK_KEEPOPEN) &&
3622 	    !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3623 		u32 elapsed = keepalive_time_elapsed(tp);
3624 
3625 		if (tp->keepalive_time > elapsed)
3626 			elapsed = tp->keepalive_time - elapsed;
3627 		else
3628 			elapsed = 0;
3629 		inet_csk_reset_keepalive_timer(sk, elapsed);
3630 	}
3631 
3632 	return 0;
3633 }
3634 
tcp_sock_set_keepidle(struct sock * sk,int val)3635 int tcp_sock_set_keepidle(struct sock *sk, int val)
3636 {
3637 	int err;
3638 
3639 	lock_sock(sk);
3640 	err = tcp_sock_set_keepidle_locked(sk, val);
3641 	release_sock(sk);
3642 	return err;
3643 }
3644 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3645 
tcp_sock_set_keepintvl(struct sock * sk,int val)3646 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3647 {
3648 	if (val < 1 || val > MAX_TCP_KEEPINTVL)
3649 		return -EINVAL;
3650 
3651 	WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ);
3652 	return 0;
3653 }
3654 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3655 
tcp_sock_set_keepcnt(struct sock * sk,int val)3656 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3657 {
3658 	if (val < 1 || val > MAX_TCP_KEEPCNT)
3659 		return -EINVAL;
3660 
3661 	/* Paired with READ_ONCE() in keepalive_probes() */
3662 	WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val);
3663 	return 0;
3664 }
3665 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3666 
tcp_set_window_clamp(struct sock * sk,int val)3667 int tcp_set_window_clamp(struct sock *sk, int val)
3668 {
3669 	struct tcp_sock *tp = tcp_sk(sk);
3670 
3671 	if (!val) {
3672 		if (sk->sk_state != TCP_CLOSE)
3673 			return -EINVAL;
3674 		WRITE_ONCE(tp->window_clamp, 0);
3675 	} else {
3676 		u32 new_rcv_ssthresh, old_window_clamp = tp->window_clamp;
3677 		u32 new_window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3678 						SOCK_MIN_RCVBUF / 2 : val;
3679 
3680 		if (new_window_clamp == old_window_clamp)
3681 			return 0;
3682 
3683 		WRITE_ONCE(tp->window_clamp, new_window_clamp);
3684 		if (new_window_clamp < old_window_clamp) {
3685 			/* need to apply the reserved mem provisioning only
3686 			 * when shrinking the window clamp
3687 			 */
3688 			__tcp_adjust_rcv_ssthresh(sk, tp->window_clamp);
3689 
3690 		} else {
3691 			new_rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp);
3692 			tp->rcv_ssthresh = max(new_rcv_ssthresh,
3693 					       tp->rcv_ssthresh);
3694 		}
3695 	}
3696 	return 0;
3697 }
3698 
3699 /*
3700  *	Socket option code for TCP.
3701  */
do_tcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)3702 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3703 		      sockptr_t optval, unsigned int optlen)
3704 {
3705 	struct tcp_sock *tp = tcp_sk(sk);
3706 	struct inet_connection_sock *icsk = inet_csk(sk);
3707 	struct net *net = sock_net(sk);
3708 	int val;
3709 	int err = 0;
3710 
3711 	/* These are data/string values, all the others are ints */
3712 	switch (optname) {
3713 	case TCP_CONGESTION: {
3714 		char name[TCP_CA_NAME_MAX];
3715 
3716 		if (optlen < 1)
3717 			return -EINVAL;
3718 
3719 		val = strncpy_from_sockptr(name, optval,
3720 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
3721 		if (val < 0)
3722 			return -EFAULT;
3723 		name[val] = 0;
3724 
3725 		sockopt_lock_sock(sk);
3726 		err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(),
3727 						 sockopt_ns_capable(sock_net(sk)->user_ns,
3728 								    CAP_NET_ADMIN));
3729 		sockopt_release_sock(sk);
3730 		return err;
3731 	}
3732 	case TCP_ULP: {
3733 		char name[TCP_ULP_NAME_MAX];
3734 
3735 		if (optlen < 1)
3736 			return -EINVAL;
3737 
3738 		val = strncpy_from_sockptr(name, optval,
3739 					min_t(long, TCP_ULP_NAME_MAX - 1,
3740 					      optlen));
3741 		if (val < 0)
3742 			return -EFAULT;
3743 		name[val] = 0;
3744 
3745 		sockopt_lock_sock(sk);
3746 		err = tcp_set_ulp(sk, name);
3747 		sockopt_release_sock(sk);
3748 		return err;
3749 	}
3750 	case TCP_FASTOPEN_KEY: {
3751 		__u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3752 		__u8 *backup_key = NULL;
3753 
3754 		/* Allow a backup key as well to facilitate key rotation
3755 		 * First key is the active one.
3756 		 */
3757 		if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3758 		    optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3759 			return -EINVAL;
3760 
3761 		if (copy_from_sockptr(key, optval, optlen))
3762 			return -EFAULT;
3763 
3764 		if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3765 			backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3766 
3767 		return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3768 	}
3769 	default:
3770 		/* fallthru */
3771 		break;
3772 	}
3773 
3774 	if (optlen < sizeof(int))
3775 		return -EINVAL;
3776 
3777 	if (copy_from_sockptr(&val, optval, sizeof(val)))
3778 		return -EFAULT;
3779 
3780 	/* Handle options that can be set without locking the socket. */
3781 	switch (optname) {
3782 	case TCP_SYNCNT:
3783 		return tcp_sock_set_syncnt(sk, val);
3784 	case TCP_USER_TIMEOUT:
3785 		return tcp_sock_set_user_timeout(sk, val);
3786 	case TCP_KEEPINTVL:
3787 		return tcp_sock_set_keepintvl(sk, val);
3788 	case TCP_KEEPCNT:
3789 		return tcp_sock_set_keepcnt(sk, val);
3790 	case TCP_LINGER2:
3791 		if (val < 0)
3792 			WRITE_ONCE(tp->linger2, -1);
3793 		else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3794 			WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX);
3795 		else
3796 			WRITE_ONCE(tp->linger2, val * HZ);
3797 		return 0;
3798 	case TCP_DEFER_ACCEPT:
3799 		/* Translate value in seconds to number of retransmits */
3800 		WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept,
3801 			   secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3802 					   TCP_RTO_MAX / HZ));
3803 		return 0;
3804 	}
3805 
3806 	sockopt_lock_sock(sk);
3807 
3808 	switch (optname) {
3809 	case TCP_MAXSEG:
3810 		/* Values greater than interface MTU won't take effect. However
3811 		 * at the point when this call is done we typically don't yet
3812 		 * know which interface is going to be used
3813 		 */
3814 		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3815 			err = -EINVAL;
3816 			break;
3817 		}
3818 		tp->rx_opt.user_mss = val;
3819 		break;
3820 
3821 	case TCP_NODELAY:
3822 		__tcp_sock_set_nodelay(sk, val);
3823 		break;
3824 
3825 	case TCP_THIN_LINEAR_TIMEOUTS:
3826 		if (val < 0 || val > 1)
3827 			err = -EINVAL;
3828 		else
3829 			tp->thin_lto = val;
3830 		break;
3831 
3832 	case TCP_THIN_DUPACK:
3833 		if (val < 0 || val > 1)
3834 			err = -EINVAL;
3835 		break;
3836 
3837 	case TCP_REPAIR:
3838 		if (!tcp_can_repair_sock(sk))
3839 			err = -EPERM;
3840 		else if (val == TCP_REPAIR_ON) {
3841 			tp->repair = 1;
3842 			sk->sk_reuse = SK_FORCE_REUSE;
3843 			tp->repair_queue = TCP_NO_QUEUE;
3844 		} else if (val == TCP_REPAIR_OFF) {
3845 			tp->repair = 0;
3846 			sk->sk_reuse = SK_NO_REUSE;
3847 			tcp_send_window_probe(sk);
3848 		} else if (val == TCP_REPAIR_OFF_NO_WP) {
3849 			tp->repair = 0;
3850 			sk->sk_reuse = SK_NO_REUSE;
3851 		} else
3852 			err = -EINVAL;
3853 
3854 		break;
3855 
3856 	case TCP_REPAIR_QUEUE:
3857 		if (!tp->repair)
3858 			err = -EPERM;
3859 		else if ((unsigned int)val < TCP_QUEUES_NR)
3860 			tp->repair_queue = val;
3861 		else
3862 			err = -EINVAL;
3863 		break;
3864 
3865 	case TCP_QUEUE_SEQ:
3866 		if (sk->sk_state != TCP_CLOSE) {
3867 			err = -EPERM;
3868 		} else if (tp->repair_queue == TCP_SEND_QUEUE) {
3869 			if (!tcp_rtx_queue_empty(sk))
3870 				err = -EPERM;
3871 			else
3872 				WRITE_ONCE(tp->write_seq, val);
3873 		} else if (tp->repair_queue == TCP_RECV_QUEUE) {
3874 			if (tp->rcv_nxt != tp->copied_seq) {
3875 				err = -EPERM;
3876 			} else {
3877 				WRITE_ONCE(tp->rcv_nxt, val);
3878 				WRITE_ONCE(tp->copied_seq, val);
3879 			}
3880 		} else {
3881 			err = -EINVAL;
3882 		}
3883 		break;
3884 
3885 	case TCP_REPAIR_OPTIONS:
3886 		if (!tp->repair)
3887 			err = -EINVAL;
3888 		else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent)
3889 			err = tcp_repair_options_est(sk, optval, optlen);
3890 		else
3891 			err = -EPERM;
3892 		break;
3893 
3894 	case TCP_CORK:
3895 		__tcp_sock_set_cork(sk, val);
3896 		break;
3897 
3898 	case TCP_KEEPIDLE:
3899 		err = tcp_sock_set_keepidle_locked(sk, val);
3900 		break;
3901 	case TCP_SAVE_SYN:
3902 		/* 0: disable, 1: enable, 2: start from ether_header */
3903 		if (val < 0 || val > 2)
3904 			err = -EINVAL;
3905 		else
3906 			tp->save_syn = val;
3907 		break;
3908 
3909 	case TCP_WINDOW_CLAMP:
3910 		err = tcp_set_window_clamp(sk, val);
3911 		break;
3912 
3913 	case TCP_QUICKACK:
3914 		__tcp_sock_set_quickack(sk, val);
3915 		break;
3916 
3917 	case TCP_AO_REPAIR:
3918 		if (!tcp_can_repair_sock(sk)) {
3919 			err = -EPERM;
3920 			break;
3921 		}
3922 		err = tcp_ao_set_repair(sk, optval, optlen);
3923 		break;
3924 #ifdef CONFIG_TCP_AO
3925 	case TCP_AO_ADD_KEY:
3926 	case TCP_AO_DEL_KEY:
3927 	case TCP_AO_INFO: {
3928 		/* If this is the first TCP-AO setsockopt() on the socket,
3929 		 * sk_state has to be LISTEN or CLOSE. Allow TCP_REPAIR
3930 		 * in any state.
3931 		 */
3932 		if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
3933 			goto ao_parse;
3934 		if (rcu_dereference_protected(tcp_sk(sk)->ao_info,
3935 					      lockdep_sock_is_held(sk)))
3936 			goto ao_parse;
3937 		if (tp->repair)
3938 			goto ao_parse;
3939 		err = -EISCONN;
3940 		break;
3941 ao_parse:
3942 		err = tp->af_specific->ao_parse(sk, optname, optval, optlen);
3943 		break;
3944 	}
3945 #endif
3946 #ifdef CONFIG_TCP_MD5SIG
3947 	case TCP_MD5SIG:
3948 	case TCP_MD5SIG_EXT:
3949 		err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3950 		break;
3951 #endif
3952 	case TCP_FASTOPEN:
3953 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3954 		    TCPF_LISTEN))) {
3955 			tcp_fastopen_init_key_once(net);
3956 
3957 			fastopen_queue_tune(sk, val);
3958 		} else {
3959 			err = -EINVAL;
3960 		}
3961 		break;
3962 	case TCP_FASTOPEN_CONNECT:
3963 		if (val > 1 || val < 0) {
3964 			err = -EINVAL;
3965 		} else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
3966 			   TFO_CLIENT_ENABLE) {
3967 			if (sk->sk_state == TCP_CLOSE)
3968 				tp->fastopen_connect = val;
3969 			else
3970 				err = -EINVAL;
3971 		} else {
3972 			err = -EOPNOTSUPP;
3973 		}
3974 		break;
3975 	case TCP_FASTOPEN_NO_COOKIE:
3976 		if (val > 1 || val < 0)
3977 			err = -EINVAL;
3978 		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3979 			err = -EINVAL;
3980 		else
3981 			tp->fastopen_no_cookie = val;
3982 		break;
3983 	case TCP_TIMESTAMP:
3984 		if (!tp->repair) {
3985 			err = -EPERM;
3986 			break;
3987 		}
3988 		/* val is an opaque field,
3989 		 * and low order bit contains usec_ts enable bit.
3990 		 * Its a best effort, and we do not care if user makes an error.
3991 		 */
3992 		tp->tcp_usec_ts = val & 1;
3993 		WRITE_ONCE(tp->tsoffset, val - tcp_clock_ts(tp->tcp_usec_ts));
3994 		break;
3995 	case TCP_REPAIR_WINDOW:
3996 		err = tcp_repair_set_window(tp, optval, optlen);
3997 		break;
3998 	case TCP_NOTSENT_LOWAT:
3999 		WRITE_ONCE(tp->notsent_lowat, val);
4000 		sk->sk_write_space(sk);
4001 		break;
4002 	case TCP_INQ:
4003 		if (val > 1 || val < 0)
4004 			err = -EINVAL;
4005 		else
4006 			tp->recvmsg_inq = val;
4007 		break;
4008 	case TCP_TX_DELAY:
4009 		if (val)
4010 			tcp_enable_tx_delay();
4011 		WRITE_ONCE(tp->tcp_tx_delay, val);
4012 		break;
4013 	default:
4014 		err = -ENOPROTOOPT;
4015 		break;
4016 	}
4017 
4018 	sockopt_release_sock(sk);
4019 	return err;
4020 }
4021 
tcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)4022 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
4023 		   unsigned int optlen)
4024 {
4025 	const struct inet_connection_sock *icsk = inet_csk(sk);
4026 
4027 	if (level != SOL_TCP)
4028 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4029 		return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname,
4030 								optval, optlen);
4031 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
4032 }
4033 EXPORT_SYMBOL(tcp_setsockopt);
4034 
tcp_get_info_chrono_stats(const struct tcp_sock * tp,struct tcp_info * info)4035 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
4036 				      struct tcp_info *info)
4037 {
4038 	u64 stats[__TCP_CHRONO_MAX], total = 0;
4039 	enum tcp_chrono i;
4040 
4041 	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
4042 		stats[i] = tp->chrono_stat[i - 1];
4043 		if (i == tp->chrono_type)
4044 			stats[i] += tcp_jiffies32 - tp->chrono_start;
4045 		stats[i] *= USEC_PER_SEC / HZ;
4046 		total += stats[i];
4047 	}
4048 
4049 	info->tcpi_busy_time = total;
4050 	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
4051 	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
4052 }
4053 
4054 /* Return information about state of tcp endpoint in API format. */
tcp_get_info(struct sock * sk,struct tcp_info * info)4055 void tcp_get_info(struct sock *sk, struct tcp_info *info)
4056 {
4057 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
4058 	const struct inet_connection_sock *icsk = inet_csk(sk);
4059 	unsigned long rate;
4060 	u32 now;
4061 	u64 rate64;
4062 	bool slow;
4063 
4064 	memset(info, 0, sizeof(*info));
4065 	if (sk->sk_type != SOCK_STREAM)
4066 		return;
4067 
4068 	info->tcpi_state = inet_sk_state_load(sk);
4069 
4070 	/* Report meaningful fields for all TCP states, including listeners */
4071 	rate = READ_ONCE(sk->sk_pacing_rate);
4072 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
4073 	info->tcpi_pacing_rate = rate64;
4074 
4075 	rate = READ_ONCE(sk->sk_max_pacing_rate);
4076 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
4077 	info->tcpi_max_pacing_rate = rate64;
4078 
4079 	info->tcpi_reordering = tp->reordering;
4080 	info->tcpi_snd_cwnd = tcp_snd_cwnd(tp);
4081 
4082 	if (info->tcpi_state == TCP_LISTEN) {
4083 		/* listeners aliased fields :
4084 		 * tcpi_unacked -> Number of children ready for accept()
4085 		 * tcpi_sacked  -> max backlog
4086 		 */
4087 		info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
4088 		info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
4089 		return;
4090 	}
4091 
4092 	slow = lock_sock_fast(sk);
4093 
4094 	info->tcpi_ca_state = icsk->icsk_ca_state;
4095 	info->tcpi_retransmits = icsk->icsk_retransmits;
4096 	info->tcpi_probes = icsk->icsk_probes_out;
4097 	info->tcpi_backoff = icsk->icsk_backoff;
4098 
4099 	if (tp->rx_opt.tstamp_ok)
4100 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
4101 	if (tcp_is_sack(tp))
4102 		info->tcpi_options |= TCPI_OPT_SACK;
4103 	if (tp->rx_opt.wscale_ok) {
4104 		info->tcpi_options |= TCPI_OPT_WSCALE;
4105 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
4106 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
4107 	}
4108 
4109 	if (tp->ecn_flags & TCP_ECN_OK)
4110 		info->tcpi_options |= TCPI_OPT_ECN;
4111 	if (tp->ecn_flags & TCP_ECN_SEEN)
4112 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
4113 	if (tp->syn_data_acked)
4114 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
4115 	if (tp->tcp_usec_ts)
4116 		info->tcpi_options |= TCPI_OPT_USEC_TS;
4117 
4118 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
4119 	info->tcpi_ato = jiffies_to_usecs(min_t(u32, icsk->icsk_ack.ato,
4120 						tcp_delack_max(sk)));
4121 	info->tcpi_snd_mss = tp->mss_cache;
4122 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
4123 
4124 	info->tcpi_unacked = tp->packets_out;
4125 	info->tcpi_sacked = tp->sacked_out;
4126 
4127 	info->tcpi_lost = tp->lost_out;
4128 	info->tcpi_retrans = tp->retrans_out;
4129 
4130 	now = tcp_jiffies32;
4131 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
4132 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
4133 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
4134 
4135 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
4136 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
4137 	info->tcpi_rtt = tp->srtt_us >> 3;
4138 	info->tcpi_rttvar = tp->mdev_us >> 2;
4139 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
4140 	info->tcpi_advmss = tp->advmss;
4141 
4142 	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
4143 	info->tcpi_rcv_space = tp->rcvq_space.space;
4144 
4145 	info->tcpi_total_retrans = tp->total_retrans;
4146 
4147 	info->tcpi_bytes_acked = tp->bytes_acked;
4148 	info->tcpi_bytes_received = tp->bytes_received;
4149 	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
4150 	tcp_get_info_chrono_stats(tp, info);
4151 
4152 	info->tcpi_segs_out = tp->segs_out;
4153 
4154 	/* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */
4155 	info->tcpi_segs_in = READ_ONCE(tp->segs_in);
4156 	info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in);
4157 
4158 	info->tcpi_min_rtt = tcp_min_rtt(tp);
4159 	info->tcpi_data_segs_out = tp->data_segs_out;
4160 
4161 	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
4162 	rate64 = tcp_compute_delivery_rate(tp);
4163 	if (rate64)
4164 		info->tcpi_delivery_rate = rate64;
4165 	info->tcpi_delivered = tp->delivered;
4166 	info->tcpi_delivered_ce = tp->delivered_ce;
4167 	info->tcpi_bytes_sent = tp->bytes_sent;
4168 	info->tcpi_bytes_retrans = tp->bytes_retrans;
4169 	info->tcpi_dsack_dups = tp->dsack_dups;
4170 	info->tcpi_reord_seen = tp->reord_seen;
4171 	info->tcpi_rcv_ooopack = tp->rcv_ooopack;
4172 	info->tcpi_snd_wnd = tp->snd_wnd;
4173 	info->tcpi_rcv_wnd = tp->rcv_wnd;
4174 	info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash;
4175 	info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
4176 
4177 	info->tcpi_total_rto = tp->total_rto;
4178 	info->tcpi_total_rto_recoveries = tp->total_rto_recoveries;
4179 	info->tcpi_total_rto_time = tp->total_rto_time;
4180 	if (tp->rto_stamp)
4181 		info->tcpi_total_rto_time += tcp_clock_ms() - tp->rto_stamp;
4182 
4183 	unlock_sock_fast(sk, slow);
4184 }
4185 EXPORT_SYMBOL_GPL(tcp_get_info);
4186 
tcp_opt_stats_get_size(void)4187 static size_t tcp_opt_stats_get_size(void)
4188 {
4189 	return
4190 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
4191 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
4192 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
4193 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
4194 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
4195 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
4196 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
4197 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
4198 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
4199 		nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
4200 		nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
4201 		nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
4202 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
4203 		nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
4204 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
4205 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
4206 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
4207 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
4208 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
4209 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
4210 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
4211 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
4212 		nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
4213 		nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
4214 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
4215 		nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
4216 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */
4217 		0;
4218 }
4219 
4220 /* Returns TTL or hop limit of an incoming packet from skb. */
tcp_skb_ttl_or_hop_limit(const struct sk_buff * skb)4221 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
4222 {
4223 	if (skb->protocol == htons(ETH_P_IP))
4224 		return ip_hdr(skb)->ttl;
4225 	else if (skb->protocol == htons(ETH_P_IPV6))
4226 		return ipv6_hdr(skb)->hop_limit;
4227 	else
4228 		return 0;
4229 }
4230 
tcp_get_timestamping_opt_stats(const struct sock * sk,const struct sk_buff * orig_skb,const struct sk_buff * ack_skb)4231 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
4232 					       const struct sk_buff *orig_skb,
4233 					       const struct sk_buff *ack_skb)
4234 {
4235 	const struct tcp_sock *tp = tcp_sk(sk);
4236 	struct sk_buff *stats;
4237 	struct tcp_info info;
4238 	unsigned long rate;
4239 	u64 rate64;
4240 
4241 	stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
4242 	if (!stats)
4243 		return NULL;
4244 
4245 	tcp_get_info_chrono_stats(tp, &info);
4246 	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
4247 			  info.tcpi_busy_time, TCP_NLA_PAD);
4248 	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
4249 			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
4250 	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
4251 			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
4252 	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
4253 			  tp->data_segs_out, TCP_NLA_PAD);
4254 	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
4255 			  tp->total_retrans, TCP_NLA_PAD);
4256 
4257 	rate = READ_ONCE(sk->sk_pacing_rate);
4258 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
4259 	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
4260 
4261 	rate64 = tcp_compute_delivery_rate(tp);
4262 	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
4263 
4264 	nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp));
4265 	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
4266 	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
4267 
4268 	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
4269 	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
4270 	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
4271 	nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
4272 	nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
4273 
4274 	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
4275 	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
4276 
4277 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
4278 			  TCP_NLA_PAD);
4279 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
4280 			  TCP_NLA_PAD);
4281 	nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
4282 	nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
4283 	nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
4284 	nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
4285 	nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
4286 		    max_t(int, 0, tp->write_seq - tp->snd_nxt));
4287 	nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
4288 			  TCP_NLA_PAD);
4289 	if (ack_skb)
4290 		nla_put_u8(stats, TCP_NLA_TTL,
4291 			   tcp_skb_ttl_or_hop_limit(ack_skb));
4292 
4293 	nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash);
4294 	return stats;
4295 }
4296 
do_tcp_getsockopt(struct sock * sk,int level,int optname,sockptr_t optval,sockptr_t optlen)4297 int do_tcp_getsockopt(struct sock *sk, int level,
4298 		      int optname, sockptr_t optval, sockptr_t optlen)
4299 {
4300 	struct inet_connection_sock *icsk = inet_csk(sk);
4301 	struct tcp_sock *tp = tcp_sk(sk);
4302 	struct net *net = sock_net(sk);
4303 	int val, len;
4304 
4305 	if (copy_from_sockptr(&len, optlen, sizeof(int)))
4306 		return -EFAULT;
4307 
4308 	if (len < 0)
4309 		return -EINVAL;
4310 
4311 	len = min_t(unsigned int, len, sizeof(int));
4312 
4313 	switch (optname) {
4314 	case TCP_MAXSEG:
4315 		val = tp->mss_cache;
4316 		if (tp->rx_opt.user_mss &&
4317 		    ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
4318 			val = tp->rx_opt.user_mss;
4319 		if (tp->repair)
4320 			val = tp->rx_opt.mss_clamp;
4321 		break;
4322 	case TCP_NODELAY:
4323 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
4324 		break;
4325 	case TCP_CORK:
4326 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
4327 		break;
4328 	case TCP_KEEPIDLE:
4329 		val = keepalive_time_when(tp) / HZ;
4330 		break;
4331 	case TCP_KEEPINTVL:
4332 		val = keepalive_intvl_when(tp) / HZ;
4333 		break;
4334 	case TCP_KEEPCNT:
4335 		val = keepalive_probes(tp);
4336 		break;
4337 	case TCP_SYNCNT:
4338 		val = READ_ONCE(icsk->icsk_syn_retries) ? :
4339 			READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
4340 		break;
4341 	case TCP_LINGER2:
4342 		val = READ_ONCE(tp->linger2);
4343 		if (val >= 0)
4344 			val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
4345 		break;
4346 	case TCP_DEFER_ACCEPT:
4347 		val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept);
4348 		val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ,
4349 				      TCP_RTO_MAX / HZ);
4350 		break;
4351 	case TCP_WINDOW_CLAMP:
4352 		val = READ_ONCE(tp->window_clamp);
4353 		break;
4354 	case TCP_INFO: {
4355 		struct tcp_info info;
4356 
4357 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4358 			return -EFAULT;
4359 
4360 		tcp_get_info(sk, &info);
4361 
4362 		len = min_t(unsigned int, len, sizeof(info));
4363 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4364 			return -EFAULT;
4365 		if (copy_to_sockptr(optval, &info, len))
4366 			return -EFAULT;
4367 		return 0;
4368 	}
4369 	case TCP_CC_INFO: {
4370 		const struct tcp_congestion_ops *ca_ops;
4371 		union tcp_cc_info info;
4372 		size_t sz = 0;
4373 		int attr;
4374 
4375 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4376 			return -EFAULT;
4377 
4378 		ca_ops = icsk->icsk_ca_ops;
4379 		if (ca_ops && ca_ops->get_info)
4380 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
4381 
4382 		len = min_t(unsigned int, len, sz);
4383 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4384 			return -EFAULT;
4385 		if (copy_to_sockptr(optval, &info, len))
4386 			return -EFAULT;
4387 		return 0;
4388 	}
4389 	case TCP_QUICKACK:
4390 		val = !inet_csk_in_pingpong_mode(sk);
4391 		break;
4392 
4393 	case TCP_CONGESTION:
4394 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4395 			return -EFAULT;
4396 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4397 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4398 			return -EFAULT;
4399 		if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len))
4400 			return -EFAULT;
4401 		return 0;
4402 
4403 	case TCP_ULP:
4404 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4405 			return -EFAULT;
4406 		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4407 		if (!icsk->icsk_ulp_ops) {
4408 			len = 0;
4409 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4410 				return -EFAULT;
4411 			return 0;
4412 		}
4413 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4414 			return -EFAULT;
4415 		if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len))
4416 			return -EFAULT;
4417 		return 0;
4418 
4419 	case TCP_FASTOPEN_KEY: {
4420 		u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4421 		unsigned int key_len;
4422 
4423 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4424 			return -EFAULT;
4425 
4426 		key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4427 				TCP_FASTOPEN_KEY_LENGTH;
4428 		len = min_t(unsigned int, len, key_len);
4429 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4430 			return -EFAULT;
4431 		if (copy_to_sockptr(optval, key, len))
4432 			return -EFAULT;
4433 		return 0;
4434 	}
4435 	case TCP_THIN_LINEAR_TIMEOUTS:
4436 		val = tp->thin_lto;
4437 		break;
4438 
4439 	case TCP_THIN_DUPACK:
4440 		val = 0;
4441 		break;
4442 
4443 	case TCP_REPAIR:
4444 		val = tp->repair;
4445 		break;
4446 
4447 	case TCP_REPAIR_QUEUE:
4448 		if (tp->repair)
4449 			val = tp->repair_queue;
4450 		else
4451 			return -EINVAL;
4452 		break;
4453 
4454 	case TCP_REPAIR_WINDOW: {
4455 		struct tcp_repair_window opt;
4456 
4457 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4458 			return -EFAULT;
4459 
4460 		if (len != sizeof(opt))
4461 			return -EINVAL;
4462 
4463 		if (!tp->repair)
4464 			return -EPERM;
4465 
4466 		opt.snd_wl1	= tp->snd_wl1;
4467 		opt.snd_wnd	= tp->snd_wnd;
4468 		opt.max_window	= tp->max_window;
4469 		opt.rcv_wnd	= tp->rcv_wnd;
4470 		opt.rcv_wup	= tp->rcv_wup;
4471 
4472 		if (copy_to_sockptr(optval, &opt, len))
4473 			return -EFAULT;
4474 		return 0;
4475 	}
4476 	case TCP_QUEUE_SEQ:
4477 		if (tp->repair_queue == TCP_SEND_QUEUE)
4478 			val = tp->write_seq;
4479 		else if (tp->repair_queue == TCP_RECV_QUEUE)
4480 			val = tp->rcv_nxt;
4481 		else
4482 			return -EINVAL;
4483 		break;
4484 
4485 	case TCP_USER_TIMEOUT:
4486 		val = READ_ONCE(icsk->icsk_user_timeout);
4487 		break;
4488 
4489 	case TCP_FASTOPEN:
4490 		val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen);
4491 		break;
4492 
4493 	case TCP_FASTOPEN_CONNECT:
4494 		val = tp->fastopen_connect;
4495 		break;
4496 
4497 	case TCP_FASTOPEN_NO_COOKIE:
4498 		val = tp->fastopen_no_cookie;
4499 		break;
4500 
4501 	case TCP_TX_DELAY:
4502 		val = READ_ONCE(tp->tcp_tx_delay);
4503 		break;
4504 
4505 	case TCP_TIMESTAMP:
4506 		val = tcp_clock_ts(tp->tcp_usec_ts) + READ_ONCE(tp->tsoffset);
4507 		if (tp->tcp_usec_ts)
4508 			val |= 1;
4509 		else
4510 			val &= ~1;
4511 		break;
4512 	case TCP_NOTSENT_LOWAT:
4513 		val = READ_ONCE(tp->notsent_lowat);
4514 		break;
4515 	case TCP_INQ:
4516 		val = tp->recvmsg_inq;
4517 		break;
4518 	case TCP_SAVE_SYN:
4519 		val = tp->save_syn;
4520 		break;
4521 	case TCP_SAVED_SYN: {
4522 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4523 			return -EFAULT;
4524 
4525 		sockopt_lock_sock(sk);
4526 		if (tp->saved_syn) {
4527 			if (len < tcp_saved_syn_len(tp->saved_syn)) {
4528 				len = tcp_saved_syn_len(tp->saved_syn);
4529 				if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4530 					sockopt_release_sock(sk);
4531 					return -EFAULT;
4532 				}
4533 				sockopt_release_sock(sk);
4534 				return -EINVAL;
4535 			}
4536 			len = tcp_saved_syn_len(tp->saved_syn);
4537 			if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4538 				sockopt_release_sock(sk);
4539 				return -EFAULT;
4540 			}
4541 			if (copy_to_sockptr(optval, tp->saved_syn->data, len)) {
4542 				sockopt_release_sock(sk);
4543 				return -EFAULT;
4544 			}
4545 			tcp_saved_syn_free(tp);
4546 			sockopt_release_sock(sk);
4547 		} else {
4548 			sockopt_release_sock(sk);
4549 			len = 0;
4550 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4551 				return -EFAULT;
4552 		}
4553 		return 0;
4554 	}
4555 #ifdef CONFIG_MMU
4556 	case TCP_ZEROCOPY_RECEIVE: {
4557 		struct scm_timestamping_internal tss;
4558 		struct tcp_zerocopy_receive zc = {};
4559 		int err;
4560 
4561 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4562 			return -EFAULT;
4563 		if (len < 0 ||
4564 		    len < offsetofend(struct tcp_zerocopy_receive, length))
4565 			return -EINVAL;
4566 		if (unlikely(len > sizeof(zc))) {
4567 			err = check_zeroed_sockptr(optval, sizeof(zc),
4568 						   len - sizeof(zc));
4569 			if (err < 1)
4570 				return err == 0 ? -EINVAL : err;
4571 			len = sizeof(zc);
4572 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4573 				return -EFAULT;
4574 		}
4575 		if (copy_from_sockptr(&zc, optval, len))
4576 			return -EFAULT;
4577 		if (zc.reserved)
4578 			return -EINVAL;
4579 		if (zc.msg_flags &  ~(TCP_VALID_ZC_MSG_FLAGS))
4580 			return -EINVAL;
4581 		sockopt_lock_sock(sk);
4582 		err = tcp_zerocopy_receive(sk, &zc, &tss);
4583 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4584 							  &zc, &len, err);
4585 		sockopt_release_sock(sk);
4586 		if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4587 			goto zerocopy_rcv_cmsg;
4588 		switch (len) {
4589 		case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4590 			goto zerocopy_rcv_cmsg;
4591 		case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4592 		case offsetofend(struct tcp_zerocopy_receive, msg_control):
4593 		case offsetofend(struct tcp_zerocopy_receive, flags):
4594 		case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4595 		case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4596 		case offsetofend(struct tcp_zerocopy_receive, err):
4597 			goto zerocopy_rcv_sk_err;
4598 		case offsetofend(struct tcp_zerocopy_receive, inq):
4599 			goto zerocopy_rcv_inq;
4600 		case offsetofend(struct tcp_zerocopy_receive, length):
4601 		default:
4602 			goto zerocopy_rcv_out;
4603 		}
4604 zerocopy_rcv_cmsg:
4605 		if (zc.msg_flags & TCP_CMSG_TS)
4606 			tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4607 		else
4608 			zc.msg_flags = 0;
4609 zerocopy_rcv_sk_err:
4610 		if (!err)
4611 			zc.err = sock_error(sk);
4612 zerocopy_rcv_inq:
4613 		zc.inq = tcp_inq_hint(sk);
4614 zerocopy_rcv_out:
4615 		if (!err && copy_to_sockptr(optval, &zc, len))
4616 			err = -EFAULT;
4617 		return err;
4618 	}
4619 #endif
4620 	case TCP_AO_REPAIR:
4621 		if (!tcp_can_repair_sock(sk))
4622 			return -EPERM;
4623 		return tcp_ao_get_repair(sk, optval, optlen);
4624 	case TCP_AO_GET_KEYS:
4625 	case TCP_AO_INFO: {
4626 		int err;
4627 
4628 		sockopt_lock_sock(sk);
4629 		if (optname == TCP_AO_GET_KEYS)
4630 			err = tcp_ao_get_mkts(sk, optval, optlen);
4631 		else
4632 			err = tcp_ao_get_sock_info(sk, optval, optlen);
4633 		sockopt_release_sock(sk);
4634 
4635 		return err;
4636 	}
4637 	case TCP_IS_MPTCP:
4638 		val = 0;
4639 		break;
4640 	default:
4641 		return -ENOPROTOOPT;
4642 	}
4643 
4644 	if (copy_to_sockptr(optlen, &len, sizeof(int)))
4645 		return -EFAULT;
4646 	if (copy_to_sockptr(optval, &val, len))
4647 		return -EFAULT;
4648 	return 0;
4649 }
4650 
tcp_bpf_bypass_getsockopt(int level,int optname)4651 bool tcp_bpf_bypass_getsockopt(int level, int optname)
4652 {
4653 	/* TCP do_tcp_getsockopt has optimized getsockopt implementation
4654 	 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4655 	 */
4656 	if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4657 		return true;
4658 
4659 	return false;
4660 }
4661 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt);
4662 
tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)4663 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4664 		   int __user *optlen)
4665 {
4666 	struct inet_connection_sock *icsk = inet_csk(sk);
4667 
4668 	if (level != SOL_TCP)
4669 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4670 		return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname,
4671 								optval, optlen);
4672 	return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval),
4673 				 USER_SOCKPTR(optlen));
4674 }
4675 EXPORT_SYMBOL(tcp_getsockopt);
4676 
4677 #ifdef CONFIG_TCP_MD5SIG
4678 int tcp_md5_sigpool_id = -1;
4679 EXPORT_SYMBOL_GPL(tcp_md5_sigpool_id);
4680 
tcp_md5_alloc_sigpool(void)4681 int tcp_md5_alloc_sigpool(void)
4682 {
4683 	size_t scratch_size;
4684 	int ret;
4685 
4686 	scratch_size = sizeof(union tcp_md5sum_block) + sizeof(struct tcphdr);
4687 	ret = tcp_sigpool_alloc_ahash("md5", scratch_size);
4688 	if (ret >= 0) {
4689 		/* As long as any md5 sigpool was allocated, the return
4690 		 * id would stay the same. Re-write the id only for the case
4691 		 * when previously all MD5 keys were deleted and this call
4692 		 * allocates the first MD5 key, which may return a different
4693 		 * sigpool id than was used previously.
4694 		 */
4695 		WRITE_ONCE(tcp_md5_sigpool_id, ret); /* Avoids the compiler potentially being smart here */
4696 		return 0;
4697 	}
4698 	return ret;
4699 }
4700 
tcp_md5_release_sigpool(void)4701 void tcp_md5_release_sigpool(void)
4702 {
4703 	tcp_sigpool_release(READ_ONCE(tcp_md5_sigpool_id));
4704 }
4705 
tcp_md5_add_sigpool(void)4706 void tcp_md5_add_sigpool(void)
4707 {
4708 	tcp_sigpool_get(READ_ONCE(tcp_md5_sigpool_id));
4709 }
4710 
tcp_md5_hash_key(struct tcp_sigpool * hp,const struct tcp_md5sig_key * key)4711 int tcp_md5_hash_key(struct tcp_sigpool *hp,
4712 		     const struct tcp_md5sig_key *key)
4713 {
4714 	u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4715 	struct scatterlist sg;
4716 
4717 	sg_init_one(&sg, key->key, keylen);
4718 	ahash_request_set_crypt(hp->req, &sg, NULL, keylen);
4719 
4720 	/* We use data_race() because tcp_md5_do_add() might change
4721 	 * key->key under us
4722 	 */
4723 	return data_race(crypto_ahash_update(hp->req));
4724 }
4725 EXPORT_SYMBOL(tcp_md5_hash_key);
4726 
4727 /* Called with rcu_read_lock() */
4728 static enum skb_drop_reason
tcp_inbound_md5_hash(const struct sock * sk,const struct sk_buff * skb,const void * saddr,const void * daddr,int family,int l3index,const __u8 * hash_location)4729 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4730 		     const void *saddr, const void *daddr,
4731 		     int family, int l3index, const __u8 *hash_location)
4732 {
4733 	/* This gets called for each TCP segment that has TCP-MD5 option.
4734 	 * We have 3 drop cases:
4735 	 * o No MD5 hash and one expected.
4736 	 * o MD5 hash and we're not expecting one.
4737 	 * o MD5 hash and its wrong.
4738 	 */
4739 	const struct tcp_sock *tp = tcp_sk(sk);
4740 	struct tcp_md5sig_key *key;
4741 	u8 newhash[16];
4742 	int genhash;
4743 
4744 	key = tcp_md5_do_lookup(sk, l3index, saddr, family);
4745 
4746 	if (!key && hash_location) {
4747 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
4748 		trace_tcp_hash_md5_unexpected(sk, skb);
4749 		return SKB_DROP_REASON_TCP_MD5UNEXPECTED;
4750 	}
4751 
4752 	/* Check the signature.
4753 	 * To support dual stack listeners, we need to handle
4754 	 * IPv4-mapped case.
4755 	 */
4756 	if (family == AF_INET)
4757 		genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
4758 	else
4759 		genhash = tp->af_specific->calc_md5_hash(newhash, key,
4760 							 NULL, skb);
4761 	if (genhash || memcmp(hash_location, newhash, 16) != 0) {
4762 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
4763 		trace_tcp_hash_md5_mismatch(sk, skb);
4764 		return SKB_DROP_REASON_TCP_MD5FAILURE;
4765 	}
4766 	return SKB_NOT_DROPPED_YET;
4767 }
4768 #else
4769 static inline enum skb_drop_reason
tcp_inbound_md5_hash(const struct sock * sk,const struct sk_buff * skb,const void * saddr,const void * daddr,int family,int l3index,const __u8 * hash_location)4770 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4771 		     const void *saddr, const void *daddr,
4772 		     int family, int l3index, const __u8 *hash_location)
4773 {
4774 	return SKB_NOT_DROPPED_YET;
4775 }
4776 
4777 #endif
4778 
4779 /* Called with rcu_read_lock() */
4780 enum skb_drop_reason
tcp_inbound_hash(struct sock * sk,const struct request_sock * req,const struct sk_buff * skb,const void * saddr,const void * daddr,int family,int dif,int sdif)4781 tcp_inbound_hash(struct sock *sk, const struct request_sock *req,
4782 		 const struct sk_buff *skb,
4783 		 const void *saddr, const void *daddr,
4784 		 int family, int dif, int sdif)
4785 {
4786 	const struct tcphdr *th = tcp_hdr(skb);
4787 	const struct tcp_ao_hdr *aoh;
4788 	const __u8 *md5_location;
4789 	int l3index;
4790 
4791 	/* Invalid option or two times meet any of auth options */
4792 	if (tcp_parse_auth_options(th, &md5_location, &aoh)) {
4793 		trace_tcp_hash_bad_header(sk, skb);
4794 		return SKB_DROP_REASON_TCP_AUTH_HDR;
4795 	}
4796 
4797 	if (req) {
4798 		if (tcp_rsk_used_ao(req) != !!aoh) {
4799 			u8 keyid, rnext, maclen;
4800 
4801 			if (aoh) {
4802 				keyid = aoh->keyid;
4803 				rnext = aoh->rnext_keyid;
4804 				maclen = tcp_ao_hdr_maclen(aoh);
4805 			} else {
4806 				keyid = rnext = maclen = 0;
4807 			}
4808 
4809 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOBAD);
4810 			trace_tcp_ao_handshake_failure(sk, skb, keyid, rnext, maclen);
4811 			return SKB_DROP_REASON_TCP_AOFAILURE;
4812 		}
4813 	}
4814 
4815 	/* sdif set, means packet ingressed via a device
4816 	 * in an L3 domain and dif is set to the l3mdev
4817 	 */
4818 	l3index = sdif ? dif : 0;
4819 
4820 	/* Fast path: unsigned segments */
4821 	if (likely(!md5_location && !aoh)) {
4822 		/* Drop if there's TCP-MD5 or TCP-AO key with any rcvid/sndid
4823 		 * for the remote peer. On TCP-AO established connection
4824 		 * the last key is impossible to remove, so there's
4825 		 * always at least one current_key.
4826 		 */
4827 		if (tcp_ao_required(sk, saddr, family, l3index, true)) {
4828 			trace_tcp_hash_ao_required(sk, skb);
4829 			return SKB_DROP_REASON_TCP_AONOTFOUND;
4830 		}
4831 		if (unlikely(tcp_md5_do_lookup(sk, l3index, saddr, family))) {
4832 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
4833 			trace_tcp_hash_md5_required(sk, skb);
4834 			return SKB_DROP_REASON_TCP_MD5NOTFOUND;
4835 		}
4836 		return SKB_NOT_DROPPED_YET;
4837 	}
4838 
4839 	if (aoh)
4840 		return tcp_inbound_ao_hash(sk, skb, family, req, l3index, aoh);
4841 
4842 	return tcp_inbound_md5_hash(sk, skb, saddr, daddr, family,
4843 				    l3index, md5_location);
4844 }
4845 EXPORT_SYMBOL_GPL(tcp_inbound_hash);
4846 
tcp_done(struct sock * sk)4847 void tcp_done(struct sock *sk)
4848 {
4849 	struct request_sock *req;
4850 
4851 	/* We might be called with a new socket, after
4852 	 * inet_csk_prepare_forced_close() has been called
4853 	 * so we can not use lockdep_sock_is_held(sk)
4854 	 */
4855 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4856 
4857 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4858 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4859 
4860 	tcp_set_state(sk, TCP_CLOSE);
4861 	tcp_clear_xmit_timers(sk);
4862 	if (req)
4863 		reqsk_fastopen_remove(sk, req, false);
4864 
4865 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
4866 
4867 	if (!sock_flag(sk, SOCK_DEAD))
4868 		sk->sk_state_change(sk);
4869 	else
4870 		inet_csk_destroy_sock(sk);
4871 }
4872 EXPORT_SYMBOL_GPL(tcp_done);
4873 
tcp_abort(struct sock * sk,int err)4874 int tcp_abort(struct sock *sk, int err)
4875 {
4876 	int state = inet_sk_state_load(sk);
4877 
4878 	if (state == TCP_NEW_SYN_RECV) {
4879 		struct request_sock *req = inet_reqsk(sk);
4880 
4881 		local_bh_disable();
4882 		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4883 		local_bh_enable();
4884 		return 0;
4885 	}
4886 	if (state == TCP_TIME_WAIT) {
4887 		struct inet_timewait_sock *tw = inet_twsk(sk);
4888 
4889 		refcount_inc(&tw->tw_refcnt);
4890 		local_bh_disable();
4891 		inet_twsk_deschedule_put(tw);
4892 		local_bh_enable();
4893 		return 0;
4894 	}
4895 
4896 	/* BPF context ensures sock locking. */
4897 	if (!has_current_bpf_ctx())
4898 		/* Don't race with userspace socket closes such as tcp_close. */
4899 		lock_sock(sk);
4900 
4901 	/* Avoid closing the same socket twice. */
4902 	if (sk->sk_state == TCP_CLOSE) {
4903 		if (!has_current_bpf_ctx())
4904 			release_sock(sk);
4905 		return -ENOENT;
4906 	}
4907 
4908 	if (sk->sk_state == TCP_LISTEN) {
4909 		tcp_set_state(sk, TCP_CLOSE);
4910 		inet_csk_listen_stop(sk);
4911 	}
4912 
4913 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
4914 	local_bh_disable();
4915 	bh_lock_sock(sk);
4916 
4917 	if (tcp_need_reset(sk->sk_state))
4918 		tcp_send_active_reset(sk, GFP_ATOMIC,
4919 				      SK_RST_REASON_TCP_STATE);
4920 	tcp_done_with_error(sk, err);
4921 
4922 	bh_unlock_sock(sk);
4923 	local_bh_enable();
4924 	if (!has_current_bpf_ctx())
4925 		release_sock(sk);
4926 	return 0;
4927 }
4928 EXPORT_SYMBOL_GPL(tcp_abort);
4929 
4930 extern struct tcp_congestion_ops tcp_reno;
4931 
4932 static __initdata unsigned long thash_entries;
set_thash_entries(char * str)4933 static int __init set_thash_entries(char *str)
4934 {
4935 	ssize_t ret;
4936 
4937 	if (!str)
4938 		return 0;
4939 
4940 	ret = kstrtoul(str, 0, &thash_entries);
4941 	if (ret)
4942 		return 0;
4943 
4944 	return 1;
4945 }
4946 __setup("thash_entries=", set_thash_entries);
4947 
tcp_init_mem(void)4948 static void __init tcp_init_mem(void)
4949 {
4950 	unsigned long limit = nr_free_buffer_pages() / 16;
4951 
4952 	limit = max(limit, 128UL);
4953 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
4954 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
4955 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
4956 }
4957 
tcp_struct_check(void)4958 static void __init tcp_struct_check(void)
4959 {
4960 	/* TX read-mostly hotpath cache lines */
4961 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, max_window);
4962 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, rcv_ssthresh);
4963 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, reordering);
4964 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, notsent_lowat);
4965 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, gso_segs);
4966 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, lost_skb_hint);
4967 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, retransmit_skb_hint);
4968 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_tx, 40);
4969 
4970 	/* TXRX read-mostly hotpath cache lines */
4971 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, tsoffset);
4972 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_wnd);
4973 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, mss_cache);
4974 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_cwnd);
4975 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, prr_out);
4976 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, lost_out);
4977 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, sacked_out);
4978 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, scaling_ratio);
4979 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_txrx, 32);
4980 
4981 	/* RX read-mostly hotpath cache lines */
4982 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, copied_seq);
4983 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rcv_tstamp);
4984 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_wl1);
4985 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, tlp_high_seq);
4986 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rttvar_us);
4987 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, retrans_out);
4988 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, advmss);
4989 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, urg_data);
4990 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, lost);
4991 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rtt_min);
4992 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, out_of_order_queue);
4993 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_ssthresh);
4994 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_rx, 69);
4995 
4996 	/* TX read-write hotpath cache lines */
4997 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, segs_out);
4998 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, data_segs_out);
4999 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, bytes_sent);
5000 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, snd_sml);
5001 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_start);
5002 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_stat);
5003 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, write_seq);
5004 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, pushed_seq);
5005 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, lsndtime);
5006 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, mdev_us);
5007 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tcp_wstamp_ns);
5008 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, rtt_seq);
5009 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tsorted_sent_queue);
5010 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, highest_sack);
5011 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, ecn_flags);
5012 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_tx, 89);
5013 
5014 	/* TXRX read-write hotpath cache lines */
5015 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, pred_flags);
5016 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_clock_cache);
5017 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_mstamp);
5018 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_nxt);
5019 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_nxt);
5020 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_una);
5021 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, window_clamp);
5022 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, srtt_us);
5023 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, packets_out);
5024 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_up);
5025 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered);
5026 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered_ce);
5027 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, app_limited);
5028 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_wnd);
5029 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rx_opt);
5030 
5031 	/* 32bit arches with 8byte alignment on u64 fields might need padding
5032 	 * before tcp_clock_cache.
5033 	 */
5034 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_txrx, 92 + 4);
5035 
5036 	/* RX read-write hotpath cache lines */
5037 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_received);
5038 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, segs_in);
5039 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, data_segs_in);
5040 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_wup);
5041 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, max_packets_out);
5042 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, cwnd_usage_seq);
5043 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_delivered);
5044 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_interval_us);
5045 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_last_tsecr);
5046 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, first_tx_mstamp);
5047 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, delivered_mstamp);
5048 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_acked);
5049 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_est);
5050 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcvq_space);
5051 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_rx, 99);
5052 }
5053 
tcp_init(void)5054 void __init tcp_init(void)
5055 {
5056 	int max_rshare, max_wshare, cnt;
5057 	unsigned long limit;
5058 	unsigned int i;
5059 
5060 	BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
5061 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
5062 		     sizeof_field(struct sk_buff, cb));
5063 
5064 	tcp_struct_check();
5065 
5066 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
5067 
5068 	timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
5069 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
5070 
5071 	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
5072 			    thash_entries, 21,  /* one slot per 2 MB*/
5073 			    0, 64 * 1024);
5074 	tcp_hashinfo.bind_bucket_cachep =
5075 		kmem_cache_create("tcp_bind_bucket",
5076 				  sizeof(struct inet_bind_bucket), 0,
5077 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
5078 				  SLAB_ACCOUNT,
5079 				  NULL);
5080 	tcp_hashinfo.bind2_bucket_cachep =
5081 		kmem_cache_create("tcp_bind2_bucket",
5082 				  sizeof(struct inet_bind2_bucket), 0,
5083 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
5084 				  SLAB_ACCOUNT,
5085 				  NULL);
5086 
5087 	/* Size and allocate the main established and bind bucket
5088 	 * hash tables.
5089 	 *
5090 	 * The methodology is similar to that of the buffer cache.
5091 	 */
5092 	tcp_hashinfo.ehash =
5093 		alloc_large_system_hash("TCP established",
5094 					sizeof(struct inet_ehash_bucket),
5095 					thash_entries,
5096 					17, /* one slot per 128 KB of memory */
5097 					0,
5098 					NULL,
5099 					&tcp_hashinfo.ehash_mask,
5100 					0,
5101 					thash_entries ? 0 : 512 * 1024);
5102 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
5103 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
5104 
5105 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
5106 		panic("TCP: failed to alloc ehash_locks");
5107 	tcp_hashinfo.bhash =
5108 		alloc_large_system_hash("TCP bind",
5109 					2 * sizeof(struct inet_bind_hashbucket),
5110 					tcp_hashinfo.ehash_mask + 1,
5111 					17, /* one slot per 128 KB of memory */
5112 					0,
5113 					&tcp_hashinfo.bhash_size,
5114 					NULL,
5115 					0,
5116 					64 * 1024);
5117 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
5118 	tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size;
5119 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
5120 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
5121 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
5122 		spin_lock_init(&tcp_hashinfo.bhash2[i].lock);
5123 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain);
5124 	}
5125 
5126 	tcp_hashinfo.pernet = false;
5127 
5128 	cnt = tcp_hashinfo.ehash_mask + 1;
5129 	sysctl_tcp_max_orphans = cnt / 2;
5130 
5131 	tcp_init_mem();
5132 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
5133 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
5134 	max_wshare = min(4UL*1024*1024, limit);
5135 	max_rshare = min(6UL*1024*1024, limit);
5136 
5137 	init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE;
5138 	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
5139 	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
5140 
5141 	init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE;
5142 	init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
5143 	init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
5144 
5145 	pr_info("Hash tables configured (established %u bind %u)\n",
5146 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
5147 
5148 	tcp_v4_init();
5149 	tcp_metrics_init();
5150 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
5151 	tcp_tasklet_init();
5152 	mptcp_init();
5153 }
5154