xref: /linux/net/ipv4/tcp_input.c (revision 3f1c07fc21c68bd3bd2df9d2c9441f6485e934d9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:
24  *		Pedro Roque	:	Fast Retransmit/Recovery.
25  *					Two receive queues.
26  *					Retransmit queue handled by TCP.
27  *					Better retransmit timer handling.
28  *					New congestion avoidance.
29  *					Header prediction.
30  *					Variable renaming.
31  *
32  *		Eric		:	Fast Retransmit.
33  *		Randy Scott	:	MSS option defines.
34  *		Eric Schenk	:	Fixes to slow start algorithm.
35  *		Eric Schenk	:	Yet another double ACK bug.
36  *		Eric Schenk	:	Delayed ACK bug fixes.
37  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
38  *		David S. Miller	:	Don't allow zero congestion window.
39  *		Eric Schenk	:	Fix retransmitter so that it sends
40  *					next packet on ack of previous packet.
41  *		Andi Kleen	:	Moved open_request checking here
42  *					and process RSTs for open_requests.
43  *		Andi Kleen	:	Better prune_queue, and other fixes.
44  *		Andrey Savochkin:	Fix RTT measurements in the presence of
45  *					timestamps.
46  *		Andrey Savochkin:	Check sequence numbers correctly when
47  *					removing SACKs due to in sequence incoming
48  *					data segments.
49  *		Andi Kleen:		Make sure we never ack data there is not
50  *					enough room for. Also make this condition
51  *					a fatal error if it might still happen.
52  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
53  *					connections with MSS<min(MTU,ann. MSS)
54  *					work without delayed acks.
55  *		Andi Kleen:		Process packets with PSH set in the
56  *					fast path.
57  *		J Hadi Salim:		ECN support
58  *	 	Andrei Gurtov,
59  *		Pasi Sarolahti,
60  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
61  *					engine. Lots of bugs are found.
62  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
63  */
64 
65 #define pr_fmt(fmt) "TCP: " fmt
66 
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <linux/bitops.h>
74 #include <net/dst.h>
75 #include <net/tcp.h>
76 #include <net/tcp_ecn.h>
77 #include <net/proto_memory.h>
78 #include <net/inet_common.h>
79 #include <linux/ipsec.h>
80 #include <linux/unaligned.h>
81 #include <linux/errqueue.h>
82 #include <trace/events/tcp.h>
83 #include <linux/jump_label_ratelimit.h>
84 #include <net/busy_poll.h>
85 #include <net/mptcp.h>
86 
87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88 
89 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
90 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
91 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
92 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
93 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
94 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
95 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
96 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
97 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
98 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
99 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
100 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
101 #define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
102 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
103 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
104 #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
105 #define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
106 #define FLAG_DSACK_TLP		0x20000 /* DSACK for tail loss probe */
107 #define FLAG_TS_PROGRESS	0x40000 /* Positive timestamp delta */
108 
109 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
110 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
111 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
112 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
113 
114 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
115 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
116 
117 #define REXMIT_NONE	0 /* no loss recovery to do */
118 #define REXMIT_LOST	1 /* retransmit packets marked lost */
119 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
120 
121 #if IS_ENABLED(CONFIG_TLS_DEVICE)
122 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
123 
clean_acked_data_enable(struct tcp_sock * tp,void (* cad)(struct sock * sk,u32 ack_seq))124 void clean_acked_data_enable(struct tcp_sock *tp,
125 			     void (*cad)(struct sock *sk, u32 ack_seq))
126 {
127 	tp->tcp_clean_acked = cad;
128 	static_branch_deferred_inc(&clean_acked_data_enabled);
129 }
130 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
131 
clean_acked_data_disable(struct tcp_sock * tp)132 void clean_acked_data_disable(struct tcp_sock *tp)
133 {
134 	static_branch_slow_dec_deferred(&clean_acked_data_enabled);
135 	tp->tcp_clean_acked = NULL;
136 }
137 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
138 
clean_acked_data_flush(void)139 void clean_acked_data_flush(void)
140 {
141 	static_key_deferred_flush(&clean_acked_data_enabled);
142 }
143 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
144 #endif
145 
146 #ifdef CONFIG_CGROUP_BPF
bpf_skops_parse_hdr(struct sock * sk,struct sk_buff * skb)147 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
148 {
149 	bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
150 		BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
151 				       BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
152 	bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
153 						    BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
154 	struct bpf_sock_ops_kern sock_ops;
155 
156 	if (likely(!unknown_opt && !parse_all_opt))
157 		return;
158 
159 	/* The skb will be handled in the
160 	 * bpf_skops_established() or
161 	 * bpf_skops_write_hdr_opt().
162 	 */
163 	switch (sk->sk_state) {
164 	case TCP_SYN_RECV:
165 	case TCP_SYN_SENT:
166 	case TCP_LISTEN:
167 		return;
168 	}
169 
170 	sock_owned_by_me(sk);
171 
172 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
173 	sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
174 	sock_ops.is_fullsock = 1;
175 	sock_ops.is_locked_tcp_sock = 1;
176 	sock_ops.sk = sk;
177 	bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
178 
179 	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
180 }
181 
bpf_skops_established(struct sock * sk,int bpf_op,struct sk_buff * skb)182 static void bpf_skops_established(struct sock *sk, int bpf_op,
183 				  struct sk_buff *skb)
184 {
185 	struct bpf_sock_ops_kern sock_ops;
186 
187 	sock_owned_by_me(sk);
188 
189 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
190 	sock_ops.op = bpf_op;
191 	sock_ops.is_fullsock = 1;
192 	sock_ops.is_locked_tcp_sock = 1;
193 	sock_ops.sk = sk;
194 	/* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
195 	if (skb)
196 		bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
197 
198 	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
199 }
200 #else
bpf_skops_parse_hdr(struct sock * sk,struct sk_buff * skb)201 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
202 {
203 }
204 
bpf_skops_established(struct sock * sk,int bpf_op,struct sk_buff * skb)205 static void bpf_skops_established(struct sock *sk, int bpf_op,
206 				  struct sk_buff *skb)
207 {
208 }
209 #endif
210 
tcp_gro_dev_warn(const struct sock * sk,const struct sk_buff * skb,unsigned int len)211 static __cold void tcp_gro_dev_warn(const struct sock *sk, const struct sk_buff *skb,
212 				    unsigned int len)
213 {
214 	struct net_device *dev;
215 
216 	rcu_read_lock();
217 	dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
218 	if (!dev || len >= READ_ONCE(dev->mtu))
219 		pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
220 			dev ? dev->name : "Unknown driver");
221 	rcu_read_unlock();
222 }
223 
224 /* Adapt the MSS value used to make delayed ack decision to the
225  * real world.
226  */
tcp_measure_rcv_mss(struct sock * sk,const struct sk_buff * skb)227 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
228 {
229 	struct inet_connection_sock *icsk = inet_csk(sk);
230 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
231 	unsigned int len;
232 
233 	icsk->icsk_ack.last_seg_size = 0;
234 
235 	/* skb->len may jitter because of SACKs, even if peer
236 	 * sends good full-sized frames.
237 	 */
238 	len = skb_shinfo(skb)->gso_size ? : skb->len;
239 	if (len >= icsk->icsk_ack.rcv_mss) {
240 		/* Note: divides are still a bit expensive.
241 		 * For the moment, only adjust scaling_ratio
242 		 * when we update icsk_ack.rcv_mss.
243 		 */
244 		if (unlikely(len != icsk->icsk_ack.rcv_mss)) {
245 			u64 val = (u64)skb->len << TCP_RMEM_TO_WIN_SCALE;
246 			u8 old_ratio = tcp_sk(sk)->scaling_ratio;
247 
248 			do_div(val, skb->truesize);
249 			tcp_sk(sk)->scaling_ratio = val ? val : 1;
250 
251 			if (old_ratio != tcp_sk(sk)->scaling_ratio) {
252 				struct tcp_sock *tp = tcp_sk(sk);
253 
254 				val = tcp_win_from_space(sk, sk->sk_rcvbuf);
255 				tcp_set_window_clamp(sk, val);
256 
257 				if (tp->window_clamp < tp->rcvq_space.space)
258 					tp->rcvq_space.space = tp->window_clamp;
259 			}
260 		}
261 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
262 					       tcp_sk(sk)->advmss);
263 		/* Account for possibly-removed options */
264 		DO_ONCE_LITE_IF(len > icsk->icsk_ack.rcv_mss + MAX_TCP_OPTION_SPACE,
265 				tcp_gro_dev_warn, sk, skb, len);
266 		/* If the skb has a len of exactly 1*MSS and has the PSH bit
267 		 * set then it is likely the end of an application write. So
268 		 * more data may not be arriving soon, and yet the data sender
269 		 * may be waiting for an ACK if cwnd-bound or using TX zero
270 		 * copy. So we set ICSK_ACK_PUSHED here so that
271 		 * tcp_cleanup_rbuf() will send an ACK immediately if the app
272 		 * reads all of the data and is not ping-pong. If len > MSS
273 		 * then this logic does not matter (and does not hurt) because
274 		 * tcp_cleanup_rbuf() will always ACK immediately if the app
275 		 * reads data and there is more than an MSS of unACKed data.
276 		 */
277 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_PSH)
278 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
279 	} else {
280 		/* Otherwise, we make more careful check taking into account,
281 		 * that SACKs block is variable.
282 		 *
283 		 * "len" is invariant segment length, including TCP header.
284 		 */
285 		len += skb->data - skb_transport_header(skb);
286 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
287 		    /* If PSH is not set, packet should be
288 		     * full sized, provided peer TCP is not badly broken.
289 		     * This observation (if it is correct 8)) allows
290 		     * to handle super-low mtu links fairly.
291 		     */
292 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
293 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
294 			/* Subtract also invariant (if peer is RFC compliant),
295 			 * tcp header plus fixed timestamp option length.
296 			 * Resulting "len" is MSS free of SACK jitter.
297 			 */
298 			len -= tcp_sk(sk)->tcp_header_len;
299 			icsk->icsk_ack.last_seg_size = len;
300 			if (len == lss) {
301 				icsk->icsk_ack.rcv_mss = len;
302 				return;
303 			}
304 		}
305 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
306 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
307 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
308 	}
309 }
310 
tcp_incr_quickack(struct sock * sk,unsigned int max_quickacks)311 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
312 {
313 	struct inet_connection_sock *icsk = inet_csk(sk);
314 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
315 
316 	if (quickacks == 0)
317 		quickacks = 2;
318 	quickacks = min(quickacks, max_quickacks);
319 	if (quickacks > icsk->icsk_ack.quick)
320 		icsk->icsk_ack.quick = quickacks;
321 }
322 
tcp_enter_quickack_mode(struct sock * sk,unsigned int max_quickacks)323 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
324 {
325 	struct inet_connection_sock *icsk = inet_csk(sk);
326 
327 	tcp_incr_quickack(sk, max_quickacks);
328 	inet_csk_exit_pingpong_mode(sk);
329 	icsk->icsk_ack.ato = TCP_ATO_MIN;
330 }
331 
332 /* Send ACKs quickly, if "quick" count is not exhausted
333  * and the session is not interactive.
334  */
335 
tcp_in_quickack_mode(struct sock * sk)336 static bool tcp_in_quickack_mode(struct sock *sk)
337 {
338 	const struct inet_connection_sock *icsk = inet_csk(sk);
339 
340 	return icsk->icsk_ack.dst_quick_ack ||
341 		(icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
342 }
343 
tcp_data_ecn_check(struct sock * sk,const struct sk_buff * skb)344 static void tcp_data_ecn_check(struct sock *sk, const struct sk_buff *skb)
345 {
346 	struct tcp_sock *tp = tcp_sk(sk);
347 
348 	if (tcp_ecn_disabled(tp))
349 		return;
350 
351 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
352 	case INET_ECN_NOT_ECT:
353 		/* Funny extension: if ECT is not set on a segment,
354 		 * and we already seen ECT on a previous segment,
355 		 * it is probably a retransmit.
356 		 */
357 		if (tp->ecn_flags & TCP_ECN_SEEN)
358 			tcp_enter_quickack_mode(sk, 2);
359 		break;
360 	case INET_ECN_CE:
361 		if (tcp_ca_needs_ecn(sk))
362 			tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
363 
364 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR) &&
365 		    tcp_ecn_mode_rfc3168(tp)) {
366 			/* Better not delay acks, sender can have a very low cwnd */
367 			tcp_enter_quickack_mode(sk, 2);
368 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
369 		}
370 		/* As for RFC3168 ECN, the TCP_ECN_SEEN flag is set by
371 		 * tcp_data_ecn_check() when the ECN codepoint of
372 		 * received TCP data contains ECT(0), ECT(1), or CE.
373 		 */
374 		if (!tcp_ecn_mode_rfc3168(tp))
375 			break;
376 		tp->ecn_flags |= TCP_ECN_SEEN;
377 		break;
378 	default:
379 		if (tcp_ca_needs_ecn(sk))
380 			tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
381 		if (!tcp_ecn_mode_rfc3168(tp))
382 			break;
383 		tp->ecn_flags |= TCP_ECN_SEEN;
384 		break;
385 	}
386 }
387 
388 /* Returns true if the byte counters can be used */
tcp_accecn_process_option(struct tcp_sock * tp,const struct sk_buff * skb,u32 delivered_bytes,int flag)389 static bool tcp_accecn_process_option(struct tcp_sock *tp,
390 				      const struct sk_buff *skb,
391 				      u32 delivered_bytes, int flag)
392 {
393 	u8 estimate_ecnfield = tp->est_ecnfield;
394 	bool ambiguous_ecn_bytes_incr = false;
395 	bool first_changed = false;
396 	unsigned int optlen;
397 	bool order1, res;
398 	unsigned int i;
399 	u8 *ptr;
400 
401 	if (tcp_accecn_opt_fail_recv(tp))
402 		return false;
403 
404 	if (!(flag & FLAG_SLOWPATH) || !tp->rx_opt.accecn) {
405 		if (!tp->saw_accecn_opt) {
406 			/* Too late to enable after this point due to
407 			 * potential counter wraps
408 			 */
409 			if (tp->bytes_sent >= (1 << 23) - 1) {
410 				u8 saw_opt = TCP_ACCECN_OPT_FAIL_SEEN;
411 
412 				tcp_accecn_saw_opt_fail_recv(tp, saw_opt);
413 			}
414 			return false;
415 		}
416 
417 		if (estimate_ecnfield) {
418 			u8 ecnfield = estimate_ecnfield - 1;
419 
420 			tp->delivered_ecn_bytes[ecnfield] += delivered_bytes;
421 			return true;
422 		}
423 		return false;
424 	}
425 
426 	ptr = skb_transport_header(skb) + tp->rx_opt.accecn;
427 	optlen = ptr[1] - 2;
428 	if (WARN_ON_ONCE(ptr[0] != TCPOPT_ACCECN0 && ptr[0] != TCPOPT_ACCECN1))
429 		return false;
430 	order1 = (ptr[0] == TCPOPT_ACCECN1);
431 	ptr += 2;
432 
433 	if (tp->saw_accecn_opt < TCP_ACCECN_OPT_COUNTER_SEEN) {
434 		tp->saw_accecn_opt = tcp_accecn_option_init(skb,
435 							    tp->rx_opt.accecn);
436 		if (tp->saw_accecn_opt == TCP_ACCECN_OPT_FAIL_SEEN)
437 			tcp_accecn_fail_mode_set(tp, TCP_ACCECN_OPT_FAIL_RECV);
438 	}
439 
440 	res = !!estimate_ecnfield;
441 	for (i = 0; i < 3; i++) {
442 		u32 init_offset;
443 		u8 ecnfield;
444 		s32 delta;
445 		u32 *cnt;
446 
447 		if (optlen < TCPOLEN_ACCECN_PERFIELD)
448 			break;
449 
450 		ecnfield = tcp_accecn_optfield_to_ecnfield(i, order1);
451 		init_offset = tcp_accecn_field_init_offset(ecnfield);
452 		cnt = &tp->delivered_ecn_bytes[ecnfield - 1];
453 		delta = tcp_update_ecn_bytes(cnt, ptr, init_offset);
454 		if (delta && delta < 0) {
455 			res = false;
456 			ambiguous_ecn_bytes_incr = true;
457 		}
458 		if (delta && ecnfield != estimate_ecnfield) {
459 			if (!first_changed) {
460 				tp->est_ecnfield = ecnfield;
461 				first_changed = true;
462 			} else {
463 				res = false;
464 				ambiguous_ecn_bytes_incr = true;
465 			}
466 		}
467 
468 		optlen -= TCPOLEN_ACCECN_PERFIELD;
469 		ptr += TCPOLEN_ACCECN_PERFIELD;
470 	}
471 	if (ambiguous_ecn_bytes_incr)
472 		tp->est_ecnfield = 0;
473 
474 	return res;
475 }
476 
tcp_count_delivered_ce(struct tcp_sock * tp,u32 ecn_count)477 static void tcp_count_delivered_ce(struct tcp_sock *tp, u32 ecn_count)
478 {
479 	tp->delivered_ce += ecn_count;
480 }
481 
482 /* Updates the delivered and delivered_ce counts */
tcp_count_delivered(struct tcp_sock * tp,u32 delivered,bool ece_ack)483 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
484 				bool ece_ack)
485 {
486 	tp->delivered += delivered;
487 	if (tcp_ecn_mode_rfc3168(tp) && ece_ack)
488 		tcp_count_delivered_ce(tp, delivered);
489 }
490 
491 /* Returns the ECN CE delta */
__tcp_accecn_process(struct sock * sk,const struct sk_buff * skb,u32 delivered_pkts,u32 delivered_bytes,int flag)492 static u32 __tcp_accecn_process(struct sock *sk, const struct sk_buff *skb,
493 				u32 delivered_pkts, u32 delivered_bytes,
494 				int flag)
495 {
496 	u32 old_ceb = tcp_sk(sk)->delivered_ecn_bytes[INET_ECN_CE - 1];
497 	const struct tcphdr *th = tcp_hdr(skb);
498 	struct tcp_sock *tp = tcp_sk(sk);
499 	u32 delta, safe_delta, d_ceb;
500 	bool opt_deltas_valid;
501 	u32 corrected_ace;
502 
503 	/* Reordered ACK or uncertain due to lack of data to send and ts */
504 	if (!(flag & (FLAG_FORWARD_PROGRESS | FLAG_TS_PROGRESS)))
505 		return 0;
506 
507 	opt_deltas_valid = tcp_accecn_process_option(tp, skb,
508 						     delivered_bytes, flag);
509 
510 	if (!(flag & FLAG_SLOWPATH)) {
511 		/* AccECN counter might overflow on large ACKs */
512 		if (delivered_pkts <= TCP_ACCECN_CEP_ACE_MASK)
513 			return 0;
514 	}
515 
516 	/* ACE field is not available during handshake */
517 	if (flag & FLAG_SYN_ACKED)
518 		return 0;
519 
520 	if (tp->received_ce_pending >= TCP_ACCECN_ACE_MAX_DELTA)
521 		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
522 
523 	corrected_ace = tcp_accecn_ace(th) - TCP_ACCECN_CEP_INIT_OFFSET;
524 	delta = (corrected_ace - tp->delivered_ce) & TCP_ACCECN_CEP_ACE_MASK;
525 	if (delivered_pkts <= TCP_ACCECN_CEP_ACE_MASK)
526 		return delta;
527 
528 	safe_delta = delivered_pkts -
529 		     ((delivered_pkts - delta) & TCP_ACCECN_CEP_ACE_MASK);
530 
531 	if (opt_deltas_valid) {
532 		d_ceb = tp->delivered_ecn_bytes[INET_ECN_CE - 1] - old_ceb;
533 		if (!d_ceb)
534 			return delta;
535 
536 		if ((delivered_pkts >= (TCP_ACCECN_CEP_ACE_MASK + 1) * 2) &&
537 		    (tcp_is_sack(tp) ||
538 		     ((1 << inet_csk(sk)->icsk_ca_state) &
539 		      (TCPF_CA_Open | TCPF_CA_CWR)))) {
540 			u32 est_d_cep;
541 
542 			if (delivered_bytes <= d_ceb)
543 				return safe_delta;
544 
545 			est_d_cep = DIV_ROUND_UP_ULL((u64)d_ceb *
546 						     delivered_pkts,
547 						     delivered_bytes);
548 			return min(safe_delta,
549 				   delta +
550 				   (est_d_cep & ~TCP_ACCECN_CEP_ACE_MASK));
551 		}
552 
553 		if (d_ceb > delta * tp->mss_cache)
554 			return safe_delta;
555 		if (d_ceb <
556 		    safe_delta * tp->mss_cache >> TCP_ACCECN_SAFETY_SHIFT)
557 			return delta;
558 	}
559 
560 	return safe_delta;
561 }
562 
tcp_accecn_process(struct sock * sk,const struct sk_buff * skb,u32 delivered_pkts,u32 delivered_bytes,int * flag)563 static u32 tcp_accecn_process(struct sock *sk, const struct sk_buff *skb,
564 			      u32 delivered_pkts, u32 delivered_bytes,
565 			      int *flag)
566 {
567 	struct tcp_sock *tp = tcp_sk(sk);
568 	u32 delta;
569 
570 	delta = __tcp_accecn_process(sk, skb, delivered_pkts,
571 				     delivered_bytes, *flag);
572 	if (delta > 0) {
573 		tcp_count_delivered_ce(tp, delta);
574 		*flag |= FLAG_ECE;
575 		/* Recalculate header predictor */
576 		if (tp->pred_flags)
577 			tcp_fast_path_on(tp);
578 	}
579 	return delta;
580 }
581 
582 /* Buffer size and advertised window tuning.
583  *
584  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
585  */
586 
tcp_sndbuf_expand(struct sock * sk)587 static void tcp_sndbuf_expand(struct sock *sk)
588 {
589 	const struct tcp_sock *tp = tcp_sk(sk);
590 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
591 	int sndmem, per_mss;
592 	u32 nr_segs;
593 
594 	/* Worst case is non GSO/TSO : each frame consumes one skb
595 	 * and skb->head is kmalloced using power of two area of memory
596 	 */
597 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
598 		  MAX_TCP_HEADER +
599 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
600 
601 	per_mss = roundup_pow_of_two(per_mss) +
602 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
603 
604 	nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp));
605 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
606 
607 	/* Fast Recovery (RFC 5681 3.2) :
608 	 * Cubic needs 1.7 factor, rounded to 2 to include
609 	 * extra cushion (application might react slowly to EPOLLOUT)
610 	 */
611 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
612 	sndmem *= nr_segs * per_mss;
613 
614 	if (sk->sk_sndbuf < sndmem)
615 		WRITE_ONCE(sk->sk_sndbuf,
616 			   min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2])));
617 }
618 
619 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
620  *
621  * All tcp_full_space() is split to two parts: "network" buffer, allocated
622  * forward and advertised in receiver window (tp->rcv_wnd) and
623  * "application buffer", required to isolate scheduling/application
624  * latencies from network.
625  * window_clamp is maximal advertised window. It can be less than
626  * tcp_full_space(), in this case tcp_full_space() - window_clamp
627  * is reserved for "application" buffer. The less window_clamp is
628  * the smoother our behaviour from viewpoint of network, but the lower
629  * throughput and the higher sensitivity of the connection to losses. 8)
630  *
631  * rcv_ssthresh is more strict window_clamp used at "slow start"
632  * phase to predict further behaviour of this connection.
633  * It is used for two goals:
634  * - to enforce header prediction at sender, even when application
635  *   requires some significant "application buffer". It is check #1.
636  * - to prevent pruning of receive queue because of misprediction
637  *   of receiver window. Check #2.
638  *
639  * The scheme does not work when sender sends good segments opening
640  * window and then starts to feed us spaghetti. But it should work
641  * in common situations. Otherwise, we have to rely on queue collapsing.
642  */
643 
644 /* Slow part of check#2. */
__tcp_grow_window(const struct sock * sk,const struct sk_buff * skb,unsigned int skbtruesize)645 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb,
646 			     unsigned int skbtruesize)
647 {
648 	const struct tcp_sock *tp = tcp_sk(sk);
649 	/* Optimize this! */
650 	int truesize = tcp_win_from_space(sk, skbtruesize) >> 1;
651 	int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1;
652 
653 	while (tp->rcv_ssthresh <= window) {
654 		if (truesize <= skb->len)
655 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
656 
657 		truesize >>= 1;
658 		window >>= 1;
659 	}
660 	return 0;
661 }
662 
663 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing
664  * can play nice with us, as sk_buff and skb->head might be either
665  * freed or shared with up to MAX_SKB_FRAGS segments.
666  * Only give a boost to drivers using page frag(s) to hold the frame(s),
667  * and if no payload was pulled in skb->head before reaching us.
668  */
truesize_adjust(bool adjust,const struct sk_buff * skb)669 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb)
670 {
671 	u32 truesize = skb->truesize;
672 
673 	if (adjust && !skb_headlen(skb)) {
674 		truesize -= SKB_TRUESIZE(skb_end_offset(skb));
675 		/* paranoid check, some drivers might be buggy */
676 		if (unlikely((int)truesize < (int)skb->len))
677 			truesize = skb->truesize;
678 	}
679 	return truesize;
680 }
681 
tcp_grow_window(struct sock * sk,const struct sk_buff * skb,bool adjust)682 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb,
683 			    bool adjust)
684 {
685 	struct tcp_sock *tp = tcp_sk(sk);
686 	int room;
687 
688 	room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
689 
690 	if (room <= 0)
691 		return;
692 
693 	/* Check #1 */
694 	if (!tcp_under_memory_pressure(sk)) {
695 		unsigned int truesize = truesize_adjust(adjust, skb);
696 		int incr;
697 
698 		/* Check #2. Increase window, if skb with such overhead
699 		 * will fit to rcvbuf in future.
700 		 */
701 		if (tcp_win_from_space(sk, truesize) <= skb->len)
702 			incr = 2 * tp->advmss;
703 		else
704 			incr = __tcp_grow_window(sk, skb, truesize);
705 
706 		if (incr) {
707 			incr = max_t(int, incr, 2 * skb->len);
708 			tp->rcv_ssthresh += min(room, incr);
709 			inet_csk(sk)->icsk_ack.quick |= 1;
710 		}
711 	} else {
712 		/* Under pressure:
713 		 * Adjust rcv_ssthresh according to reserved mem
714 		 */
715 		tcp_adjust_rcv_ssthresh(sk);
716 	}
717 }
718 
719 /* 3. Try to fixup all. It is made immediately after connection enters
720  *    established state.
721  */
tcp_init_buffer_space(struct sock * sk)722 static void tcp_init_buffer_space(struct sock *sk)
723 {
724 	int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win);
725 	struct tcp_sock *tp = tcp_sk(sk);
726 	int maxwin;
727 
728 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
729 		tcp_sndbuf_expand(sk);
730 
731 	tcp_mstamp_refresh(tp);
732 	tp->rcvq_space.time = tp->tcp_mstamp;
733 	tp->rcvq_space.seq = tp->copied_seq;
734 
735 	maxwin = tcp_full_space(sk);
736 
737 	if (tp->window_clamp >= maxwin) {
738 		WRITE_ONCE(tp->window_clamp, maxwin);
739 
740 		if (tcp_app_win && maxwin > 4 * tp->advmss)
741 			WRITE_ONCE(tp->window_clamp,
742 				   max(maxwin - (maxwin >> tcp_app_win),
743 				       4 * tp->advmss));
744 	}
745 
746 	/* Force reservation of one segment. */
747 	if (tcp_app_win &&
748 	    tp->window_clamp > 2 * tp->advmss &&
749 	    tp->window_clamp + tp->advmss > maxwin)
750 		WRITE_ONCE(tp->window_clamp,
751 			   max(2 * tp->advmss, maxwin - tp->advmss));
752 
753 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
754 	tp->snd_cwnd_stamp = tcp_jiffies32;
755 	tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
756 				    (u32)TCP_INIT_CWND * tp->advmss);
757 }
758 
759 /* 4. Recalculate window clamp after socket hit its memory bounds. */
tcp_clamp_window(struct sock * sk)760 static void tcp_clamp_window(struct sock *sk)
761 {
762 	struct tcp_sock *tp = tcp_sk(sk);
763 	struct inet_connection_sock *icsk = inet_csk(sk);
764 	struct net *net = sock_net(sk);
765 	int rmem2;
766 
767 	icsk->icsk_ack.quick = 0;
768 	rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]);
769 
770 	if (sk->sk_rcvbuf < rmem2 &&
771 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
772 	    !tcp_under_memory_pressure(sk) &&
773 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
774 		WRITE_ONCE(sk->sk_rcvbuf,
775 			   min(atomic_read(&sk->sk_rmem_alloc), rmem2));
776 	}
777 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
778 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
779 }
780 
781 /* Initialize RCV_MSS value.
782  * RCV_MSS is an our guess about MSS used by the peer.
783  * We haven't any direct information about the MSS.
784  * It's better to underestimate the RCV_MSS rather than overestimate.
785  * Overestimations make us ACKing less frequently than needed.
786  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
787  */
tcp_initialize_rcv_mss(struct sock * sk)788 void tcp_initialize_rcv_mss(struct sock *sk)
789 {
790 	const struct tcp_sock *tp = tcp_sk(sk);
791 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
792 
793 	hint = min(hint, tp->rcv_wnd / 2);
794 	hint = min(hint, TCP_MSS_DEFAULT);
795 	hint = max(hint, TCP_MIN_MSS);
796 
797 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
798 }
799 EXPORT_IPV6_MOD(tcp_initialize_rcv_mss);
800 
801 /* Receiver "autotuning" code.
802  *
803  * The algorithm for RTT estimation w/o timestamps is based on
804  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
805  * <https://public.lanl.gov/radiant/pubs.html#DRS>
806  *
807  * More detail on this code can be found at
808  * <http://staff.psc.edu/jheffner/>,
809  * though this reference is out of date.  A new paper
810  * is pending.
811  */
tcp_rcv_rtt_update(struct tcp_sock * tp,u32 sample,int win_dep)812 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
813 {
814 	u32 new_sample, old_sample = tp->rcv_rtt_est.rtt_us;
815 	long m = sample << 3;
816 
817 	if (old_sample == 0 || m < old_sample) {
818 		new_sample = m;
819 	} else {
820 		/* If we sample in larger samples in the non-timestamp
821 		 * case, we could grossly overestimate the RTT especially
822 		 * with chatty applications or bulk transfer apps which
823 		 * are stalled on filesystem I/O.
824 		 *
825 		 * Also, since we are only going for a minimum in the
826 		 * non-timestamp case, we do not smooth things out
827 		 * else with timestamps disabled convergence takes too
828 		 * long.
829 		 */
830 		if (win_dep)
831 			return;
832 		/* Do not use this sample if receive queue is not empty. */
833 		if (tp->rcv_nxt != tp->copied_seq)
834 			return;
835 		new_sample = old_sample - (old_sample >> 3) + sample;
836 	}
837 
838 	tp->rcv_rtt_est.rtt_us = new_sample;
839 }
840 
tcp_rcv_rtt_measure(struct tcp_sock * tp)841 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
842 {
843 	u32 delta_us;
844 
845 	if (tp->rcv_rtt_est.time == 0)
846 		goto new_measure;
847 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
848 		return;
849 	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
850 	if (!delta_us)
851 		delta_us = 1;
852 	tcp_rcv_rtt_update(tp, delta_us, 1);
853 
854 new_measure:
855 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
856 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
857 }
858 
tcp_rtt_tsopt_us(const struct tcp_sock * tp,u32 min_delta)859 static s32 tcp_rtt_tsopt_us(const struct tcp_sock *tp, u32 min_delta)
860 {
861 	u32 delta, delta_us;
862 
863 	delta = tcp_time_stamp_ts(tp) - tp->rx_opt.rcv_tsecr;
864 	if (tp->tcp_usec_ts)
865 		return delta;
866 
867 	if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
868 		if (!delta)
869 			delta = min_delta;
870 		delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
871 		return delta_us;
872 	}
873 	return -1;
874 }
875 
tcp_rcv_rtt_measure_ts(struct sock * sk,const struct sk_buff * skb)876 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
877 					  const struct sk_buff *skb)
878 {
879 	struct tcp_sock *tp = tcp_sk(sk);
880 
881 	if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
882 		return;
883 	tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
884 
885 	if (TCP_SKB_CB(skb)->end_seq -
886 	    TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
887 		s32 delta = tcp_rtt_tsopt_us(tp, 0);
888 
889 		if (delta > 0)
890 			tcp_rcv_rtt_update(tp, delta, 0);
891 	}
892 }
893 
tcp_rcvbuf_grow(struct sock * sk,u32 newval)894 void tcp_rcvbuf_grow(struct sock *sk, u32 newval)
895 {
896 	const struct net *net = sock_net(sk);
897 	struct tcp_sock *tp = tcp_sk(sk);
898 	u32 rcvwin, rcvbuf, cap, oldval;
899 	u32 rtt_threshold, rtt_us;
900 	u64 grow;
901 
902 	oldval = tp->rcvq_space.space;
903 	tp->rcvq_space.space = newval;
904 
905 	if (!READ_ONCE(net->ipv4.sysctl_tcp_moderate_rcvbuf) ||
906 	    (sk->sk_userlocks & SOCK_RCVBUF_LOCK))
907 		return;
908 
909 	/* DRS is always one RTT late. */
910 	rcvwin = newval << 1;
911 
912 	rtt_us = tp->rcv_rtt_est.rtt_us >> 3;
913 	rtt_threshold = READ_ONCE(net->ipv4.sysctl_tcp_rcvbuf_low_rtt);
914 	if (rtt_us < rtt_threshold) {
915 		/* For small RTT, we set @grow to rcvwin * rtt_us/rtt_threshold.
916 		 * It might take few additional ms to reach 'line rate',
917 		 * but will avoid sk_rcvbuf inflation and poor cache use.
918 		 */
919 		grow = div_u64((u64)rcvwin * rtt_us, rtt_threshold);
920 	} else {
921 		/* slow start: allow the sender to double its rate. */
922 		grow = div_u64(((u64)rcvwin << 1) * (newval - oldval), oldval);
923 	}
924 	rcvwin += grow;
925 
926 	if (!RB_EMPTY_ROOT(&tp->out_of_order_queue))
927 		rcvwin += TCP_SKB_CB(tp->ooo_last_skb)->end_seq - tp->rcv_nxt;
928 
929 	cap = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]);
930 
931 	rcvbuf = min_t(u32, tcp_space_from_win(sk, rcvwin), cap);
932 	if (rcvbuf > sk->sk_rcvbuf) {
933 		WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
934 		/* Make the window clamp follow along.  */
935 		WRITE_ONCE(tp->window_clamp,
936 			   tcp_win_from_space(sk, rcvbuf));
937 	}
938 }
939 /*
940  * This function should be called every time data is copied to user space.
941  * It calculates the appropriate TCP receive buffer space.
942  */
tcp_rcv_space_adjust(struct sock * sk)943 void tcp_rcv_space_adjust(struct sock *sk)
944 {
945 	struct tcp_sock *tp = tcp_sk(sk);
946 	int time, inq, copied;
947 
948 	trace_tcp_rcv_space_adjust(sk);
949 
950 	if (unlikely(!tp->rcv_rtt_est.rtt_us))
951 		return;
952 
953 	/* We do not refresh tp->tcp_mstamp here.
954 	 * Some platforms have expensive ktime_get() implementations.
955 	 * Using the last cached value is enough for DRS.
956 	 */
957 	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
958 	if (time < (tp->rcv_rtt_est.rtt_us >> 3))
959 		return;
960 
961 	/* Number of bytes copied to user in last RTT */
962 	copied = tp->copied_seq - tp->rcvq_space.seq;
963 	/* Number of bytes in receive queue. */
964 	inq = tp->rcv_nxt - tp->copied_seq;
965 	copied -= inq;
966 	if (copied <= tp->rcvq_space.space)
967 		goto new_measure;
968 
969 	trace_tcp_rcvbuf_grow(sk, time);
970 
971 	tcp_rcvbuf_grow(sk, copied);
972 
973 new_measure:
974 	tp->rcvq_space.seq = tp->copied_seq;
975 	tp->rcvq_space.time = tp->tcp_mstamp;
976 }
977 
tcp_save_lrcv_flowlabel(struct sock * sk,const struct sk_buff * skb)978 static void tcp_save_lrcv_flowlabel(struct sock *sk, const struct sk_buff *skb)
979 {
980 #if IS_ENABLED(CONFIG_IPV6)
981 	struct inet_connection_sock *icsk = inet_csk(sk);
982 
983 	if (skb->protocol == htons(ETH_P_IPV6))
984 		icsk->icsk_ack.lrcv_flowlabel = ntohl(ip6_flowlabel(ipv6_hdr(skb)));
985 #endif
986 }
987 
988 /* There is something which you must keep in mind when you analyze the
989  * behavior of the tp->ato delayed ack timeout interval.  When a
990  * connection starts up, we want to ack as quickly as possible.  The
991  * problem is that "good" TCP's do slow start at the beginning of data
992  * transmission.  The means that until we send the first few ACK's the
993  * sender will sit on his end and only queue most of his data, because
994  * he can only send snd_cwnd unacked packets at any given time.  For
995  * each ACK we send, he increments snd_cwnd and transmits more of his
996  * queue.  -DaveM
997  */
tcp_event_data_recv(struct sock * sk,struct sk_buff * skb)998 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
999 {
1000 	struct tcp_sock *tp = tcp_sk(sk);
1001 	struct inet_connection_sock *icsk = inet_csk(sk);
1002 	u32 now;
1003 
1004 	inet_csk_schedule_ack(sk);
1005 
1006 	tcp_measure_rcv_mss(sk, skb);
1007 
1008 	tcp_rcv_rtt_measure(tp);
1009 
1010 	now = tcp_jiffies32;
1011 
1012 	if (!icsk->icsk_ack.ato) {
1013 		/* The _first_ data packet received, initialize
1014 		 * delayed ACK engine.
1015 		 */
1016 		tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
1017 		icsk->icsk_ack.ato = TCP_ATO_MIN;
1018 	} else {
1019 		int m = now - icsk->icsk_ack.lrcvtime;
1020 
1021 		if (m <= TCP_ATO_MIN / 2) {
1022 			/* The fastest case is the first. */
1023 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
1024 		} else if (m < icsk->icsk_ack.ato) {
1025 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
1026 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
1027 				icsk->icsk_ack.ato = icsk->icsk_rto;
1028 		} else if (m > icsk->icsk_rto) {
1029 			/* Too long gap. Apparently sender failed to
1030 			 * restart window, so that we send ACKs quickly.
1031 			 */
1032 			tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
1033 		}
1034 	}
1035 	icsk->icsk_ack.lrcvtime = now;
1036 	tcp_save_lrcv_flowlabel(sk, skb);
1037 
1038 	tcp_data_ecn_check(sk, skb);
1039 
1040 	if (skb->len >= 128)
1041 		tcp_grow_window(sk, skb, true);
1042 }
1043 
1044 /* Called to compute a smoothed rtt estimate. The data fed to this
1045  * routine either comes from timestamps, or from segments that were
1046  * known _not_ to have been retransmitted [see Karn/Partridge
1047  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
1048  * piece by Van Jacobson.
1049  * NOTE: the next three routines used to be one big routine.
1050  * To save cycles in the RFC 1323 implementation it was better to break
1051  * it up into three procedures. -- erics
1052  */
tcp_rtt_estimator(struct sock * sk,long mrtt_us)1053 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
1054 {
1055 	struct tcp_sock *tp = tcp_sk(sk);
1056 	long m = mrtt_us; /* RTT */
1057 	u32 srtt = tp->srtt_us;
1058 
1059 	/*	The following amusing code comes from Jacobson's
1060 	 *	article in SIGCOMM '88.  Note that rtt and mdev
1061 	 *	are scaled versions of rtt and mean deviation.
1062 	 *	This is designed to be as fast as possible
1063 	 *	m stands for "measurement".
1064 	 *
1065 	 *	On a 1990 paper the rto value is changed to:
1066 	 *	RTO = rtt + 4 * mdev
1067 	 *
1068 	 * Funny. This algorithm seems to be very broken.
1069 	 * These formulae increase RTO, when it should be decreased, increase
1070 	 * too slowly, when it should be increased quickly, decrease too quickly
1071 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
1072 	 * does not matter how to _calculate_ it. Seems, it was trap
1073 	 * that VJ failed to avoid. 8)
1074 	 */
1075 	if (srtt != 0) {
1076 		m -= (srtt >> 3);	/* m is now error in rtt est */
1077 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
1078 		if (m < 0) {
1079 			m = -m;		/* m is now abs(error) */
1080 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
1081 			/* This is similar to one of Eifel findings.
1082 			 * Eifel blocks mdev updates when rtt decreases.
1083 			 * This solution is a bit different: we use finer gain
1084 			 * for mdev in this case (alpha*beta).
1085 			 * Like Eifel it also prevents growth of rto,
1086 			 * but also it limits too fast rto decreases,
1087 			 * happening in pure Eifel.
1088 			 */
1089 			if (m > 0)
1090 				m >>= 3;
1091 		} else {
1092 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
1093 		}
1094 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
1095 		if (tp->mdev_us > tp->mdev_max_us) {
1096 			tp->mdev_max_us = tp->mdev_us;
1097 			if (tp->mdev_max_us > tp->rttvar_us)
1098 				tp->rttvar_us = tp->mdev_max_us;
1099 		}
1100 		if (after(tp->snd_una, tp->rtt_seq)) {
1101 			if (tp->mdev_max_us < tp->rttvar_us)
1102 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
1103 			tp->rtt_seq = tp->snd_nxt;
1104 			tp->mdev_max_us = tcp_rto_min_us(sk);
1105 
1106 			tcp_bpf_rtt(sk, mrtt_us, srtt);
1107 		}
1108 	} else {
1109 		/* no previous measure. */
1110 		srtt = m << 3;		/* take the measured time to be rtt */
1111 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
1112 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
1113 		tp->mdev_max_us = tp->rttvar_us;
1114 		tp->rtt_seq = tp->snd_nxt;
1115 
1116 		tcp_bpf_rtt(sk, mrtt_us, srtt);
1117 	}
1118 	tp->srtt_us = max(1U, srtt);
1119 }
1120 
tcp_update_pacing_rate(struct sock * sk)1121 void tcp_update_pacing_rate(struct sock *sk)
1122 {
1123 	const struct tcp_sock *tp = tcp_sk(sk);
1124 	u64 rate;
1125 
1126 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
1127 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
1128 
1129 	/* current rate is (cwnd * mss) / srtt
1130 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
1131 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
1132 	 *
1133 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
1134 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
1135 	 *	 end of slow start and should slow down.
1136 	 */
1137 	if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2)
1138 		rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio);
1139 	else
1140 		rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio);
1141 
1142 	rate *= max(tcp_snd_cwnd(tp), tp->packets_out);
1143 
1144 	if (likely(tp->srtt_us))
1145 		do_div(rate, tp->srtt_us);
1146 
1147 	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
1148 	 * without any lock. We want to make sure compiler wont store
1149 	 * intermediate values in this location.
1150 	 */
1151 	WRITE_ONCE(sk->sk_pacing_rate,
1152 		   min_t(u64, rate, READ_ONCE(sk->sk_max_pacing_rate)));
1153 }
1154 
1155 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
1156  * routine referred to above.
1157  */
tcp_set_rto(struct sock * sk)1158 void tcp_set_rto(struct sock *sk)
1159 {
1160 	const struct tcp_sock *tp = tcp_sk(sk);
1161 	/* Old crap is replaced with new one. 8)
1162 	 *
1163 	 * More seriously:
1164 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
1165 	 *    It cannot be less due to utterly erratic ACK generation made
1166 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
1167 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
1168 	 *    is invisible. Actually, Linux-2.4 also generates erratic
1169 	 *    ACKs in some circumstances.
1170 	 */
1171 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
1172 
1173 	/* 2. Fixups made earlier cannot be right.
1174 	 *    If we do not estimate RTO correctly without them,
1175 	 *    all the algo is pure shit and should be replaced
1176 	 *    with correct one. It is exactly, which we pretend to do.
1177 	 */
1178 
1179 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
1180 	 * guarantees that rto is higher.
1181 	 */
1182 	tcp_bound_rto(sk);
1183 }
1184 
tcp_init_cwnd(const struct tcp_sock * tp,const struct dst_entry * dst)1185 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
1186 {
1187 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
1188 
1189 	if (!cwnd)
1190 		cwnd = TCP_INIT_CWND;
1191 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
1192 }
1193 
1194 struct tcp_sacktag_state {
1195 	/* Timestamps for earliest and latest never-retransmitted segment
1196 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1197 	 * but congestion control should still get an accurate delay signal.
1198 	 */
1199 	u64	first_sackt;
1200 	u64	last_sackt;
1201 	u32	reord;
1202 	u32	sack_delivered;
1203 	u32	delivered_bytes;
1204 	int	flag;
1205 	unsigned int mss_now;
1206 	struct rate_sample *rate;
1207 };
1208 
1209 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery
1210  * and spurious retransmission information if this DSACK is unlikely caused by
1211  * sender's action:
1212  * - DSACKed sequence range is larger than maximum receiver's window.
1213  * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
1214  */
tcp_dsack_seen(struct tcp_sock * tp,u32 start_seq,u32 end_seq,struct tcp_sacktag_state * state)1215 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
1216 			  u32 end_seq, struct tcp_sacktag_state *state)
1217 {
1218 	u32 seq_len, dup_segs = 1;
1219 
1220 	if (!before(start_seq, end_seq))
1221 		return 0;
1222 
1223 	seq_len = end_seq - start_seq;
1224 	/* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
1225 	if (seq_len > tp->max_window)
1226 		return 0;
1227 	if (seq_len > tp->mss_cache)
1228 		dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
1229 	else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq)
1230 		state->flag |= FLAG_DSACK_TLP;
1231 
1232 	tp->dsack_dups += dup_segs;
1233 	/* Skip the DSACK if dup segs weren't retransmitted by sender */
1234 	if (tp->dsack_dups > tp->total_retrans)
1235 		return 0;
1236 
1237 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
1238 	/* We increase the RACK ordering window in rounds where we receive
1239 	 * DSACKs that may have been due to reordering causing RACK to trigger
1240 	 * a spurious fast recovery. Thus RACK ignores DSACKs that happen
1241 	 * without having seen reordering, or that match TLP probes (TLP
1242 	 * is timer-driven, not triggered by RACK).
1243 	 */
1244 	if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP))
1245 		tp->rack.dsack_seen = 1;
1246 
1247 	state->flag |= FLAG_DSACKING_ACK;
1248 	/* A spurious retransmission is delivered */
1249 	state->sack_delivered += dup_segs;
1250 
1251 	return dup_segs;
1252 }
1253 
1254 /* It's reordering when higher sequence was delivered (i.e. sacked) before
1255  * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
1256  * distance is approximated in full-mss packet distance ("reordering").
1257  */
tcp_check_sack_reordering(struct sock * sk,const u32 low_seq,const int ts)1258 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
1259 				      const int ts)
1260 {
1261 	struct tcp_sock *tp = tcp_sk(sk);
1262 	const u32 mss = tp->mss_cache;
1263 	u32 fack, metric;
1264 
1265 	fack = tcp_highest_sack_seq(tp);
1266 	if (!before(low_seq, fack))
1267 		return;
1268 
1269 	metric = fack - low_seq;
1270 	if ((metric > tp->reordering * mss) && mss) {
1271 #if FASTRETRANS_DEBUG > 1
1272 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
1273 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1274 			 tp->reordering,
1275 			 0,
1276 			 tp->sacked_out,
1277 			 tp->undo_marker ? tp->undo_retrans : 0);
1278 #endif
1279 		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
1280 				       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
1281 	}
1282 
1283 	/* This exciting event is worth to be remembered. 8) */
1284 	tp->reord_seen++;
1285 	NET_INC_STATS(sock_net(sk),
1286 		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1287 }
1288 
1289  /* This must be called before lost_out or retrans_out are updated
1290   * on a new loss, because we want to know if all skbs previously
1291   * known to be lost have already been retransmitted, indicating
1292   * that this newly lost skb is our next skb to retransmit.
1293   */
tcp_verify_retransmit_hint(struct tcp_sock * tp,struct sk_buff * skb)1294 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1295 {
1296 	if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
1297 	    (tp->retransmit_skb_hint &&
1298 	     before(TCP_SKB_CB(skb)->seq,
1299 		    TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
1300 		tp->retransmit_skb_hint = skb;
1301 }
1302 
1303 /* Sum the number of packets on the wire we have marked as lost, and
1304  * notify the congestion control module that the given skb was marked lost.
1305  */
tcp_notify_skb_loss_event(struct tcp_sock * tp,const struct sk_buff * skb)1306 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
1307 {
1308 	tp->lost += tcp_skb_pcount(skb);
1309 }
1310 
tcp_mark_skb_lost(struct sock * sk,struct sk_buff * skb)1311 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
1312 {
1313 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
1314 	struct tcp_sock *tp = tcp_sk(sk);
1315 
1316 	if (sacked & TCPCB_SACKED_ACKED)
1317 		return;
1318 
1319 	tcp_verify_retransmit_hint(tp, skb);
1320 	if (sacked & TCPCB_LOST) {
1321 		if (sacked & TCPCB_SACKED_RETRANS) {
1322 			/* Account for retransmits that are lost again */
1323 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1324 			tp->retrans_out -= tcp_skb_pcount(skb);
1325 			NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
1326 				      tcp_skb_pcount(skb));
1327 			tcp_notify_skb_loss_event(tp, skb);
1328 		}
1329 	} else {
1330 		tp->lost_out += tcp_skb_pcount(skb);
1331 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1332 		tcp_notify_skb_loss_event(tp, skb);
1333 	}
1334 }
1335 
1336 /* This procedure tags the retransmission queue when SACKs arrive.
1337  *
1338  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1339  * Packets in queue with these bits set are counted in variables
1340  * sacked_out, retrans_out and lost_out, correspondingly.
1341  *
1342  * Valid combinations are:
1343  * Tag  InFlight	Description
1344  * 0	1		- orig segment is in flight.
1345  * S	0		- nothing flies, orig reached receiver.
1346  * L	0		- nothing flies, orig lost by net.
1347  * R	2		- both orig and retransmit are in flight.
1348  * L|R	1		- orig is lost, retransmit is in flight.
1349  * S|R  1		- orig reached receiver, retrans is still in flight.
1350  * (L|S|R is logically valid, it could occur when L|R is sacked,
1351  *  but it is equivalent to plain S and code short-circuits it to S.
1352  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1353  *
1354  * These 6 states form finite state machine, controlled by the following events:
1355  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1356  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1357  * 3. Loss detection event of two flavors:
1358  *	A. Scoreboard estimator decided the packet is lost.
1359  *	   A'. Reno "three dupacks" marks head of queue lost.
1360  *	B. SACK arrives sacking SND.NXT at the moment, when the
1361  *	   segment was retransmitted.
1362  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1363  *
1364  * It is pleasant to note, that state diagram turns out to be commutative,
1365  * so that we are allowed not to be bothered by order of our actions,
1366  * when multiple events arrive simultaneously. (see the function below).
1367  *
1368  * Reordering detection.
1369  * --------------------
1370  * Reordering metric is maximal distance, which a packet can be displaced
1371  * in packet stream. With SACKs we can estimate it:
1372  *
1373  * 1. SACK fills old hole and the corresponding segment was not
1374  *    ever retransmitted -> reordering. Alas, we cannot use it
1375  *    when segment was retransmitted.
1376  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1377  *    for retransmitted and already SACKed segment -> reordering..
1378  * Both of these heuristics are not used in Loss state, when we cannot
1379  * account for retransmits accurately.
1380  *
1381  * SACK block validation.
1382  * ----------------------
1383  *
1384  * SACK block range validation checks that the received SACK block fits to
1385  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1386  * Note that SND.UNA is not included to the range though being valid because
1387  * it means that the receiver is rather inconsistent with itself reporting
1388  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1389  * perfectly valid, however, in light of RFC2018 which explicitly states
1390  * that "SACK block MUST reflect the newest segment.  Even if the newest
1391  * segment is going to be discarded ...", not that it looks very clever
1392  * in case of head skb. Due to potentional receiver driven attacks, we
1393  * choose to avoid immediate execution of a walk in write queue due to
1394  * reneging and defer head skb's loss recovery to standard loss recovery
1395  * procedure that will eventually trigger (nothing forbids us doing this).
1396  *
1397  * Implements also blockage to start_seq wrap-around. Problem lies in the
1398  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1399  * there's no guarantee that it will be before snd_nxt (n). The problem
1400  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1401  * wrap (s_w):
1402  *
1403  *         <- outs wnd ->                          <- wrapzone ->
1404  *         u     e      n                         u_w   e_w  s n_w
1405  *         |     |      |                          |     |   |  |
1406  * |<------------+------+----- TCP seqno space --------------+---------->|
1407  * ...-- <2^31 ->|                                           |<--------...
1408  * ...---- >2^31 ------>|                                    |<--------...
1409  *
1410  * Current code wouldn't be vulnerable but it's better still to discard such
1411  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1412  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1413  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1414  * equal to the ideal case (infinite seqno space without wrap caused issues).
1415  *
1416  * With D-SACK the lower bound is extended to cover sequence space below
1417  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1418  * again, D-SACK block must not to go across snd_una (for the same reason as
1419  * for the normal SACK blocks, explained above). But there all simplicity
1420  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1421  * fully below undo_marker they do not affect behavior in anyway and can
1422  * therefore be safely ignored. In rare cases (which are more or less
1423  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1424  * fragmentation and packet reordering past skb's retransmission. To consider
1425  * them correctly, the acceptable range must be extended even more though
1426  * the exact amount is rather hard to quantify. However, tp->max_window can
1427  * be used as an exaggerated estimate.
1428  */
tcp_is_sackblock_valid(struct tcp_sock * tp,bool is_dsack,u32 start_seq,u32 end_seq)1429 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1430 				   u32 start_seq, u32 end_seq)
1431 {
1432 	/* Too far in future, or reversed (interpretation is ambiguous) */
1433 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1434 		return false;
1435 
1436 	/* Nasty start_seq wrap-around check (see comments above) */
1437 	if (!before(start_seq, tp->snd_nxt))
1438 		return false;
1439 
1440 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1441 	 * start_seq == snd_una is non-sensical (see comments above)
1442 	 */
1443 	if (after(start_seq, tp->snd_una))
1444 		return true;
1445 
1446 	if (!is_dsack || !tp->undo_marker)
1447 		return false;
1448 
1449 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1450 	if (after(end_seq, tp->snd_una))
1451 		return false;
1452 
1453 	if (!before(start_seq, tp->undo_marker))
1454 		return true;
1455 
1456 	/* Too old */
1457 	if (!after(end_seq, tp->undo_marker))
1458 		return false;
1459 
1460 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1461 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1462 	 */
1463 	return !before(start_seq, end_seq - tp->max_window);
1464 }
1465 
tcp_check_dsack(struct sock * sk,const struct sk_buff * ack_skb,struct tcp_sack_block_wire * sp,int num_sacks,u32 prior_snd_una,struct tcp_sacktag_state * state)1466 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1467 			    struct tcp_sack_block_wire *sp, int num_sacks,
1468 			    u32 prior_snd_una, struct tcp_sacktag_state *state)
1469 {
1470 	struct tcp_sock *tp = tcp_sk(sk);
1471 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1472 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1473 	u32 dup_segs;
1474 
1475 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1476 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1477 	} else if (num_sacks > 1) {
1478 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1479 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1480 
1481 		if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1482 			return false;
1483 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1484 	} else {
1485 		return false;
1486 	}
1487 
1488 	dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1489 	if (!dup_segs) {	/* Skip dubious DSACK */
1490 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
1491 		return false;
1492 	}
1493 
1494 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1495 
1496 	/* D-SACK for already forgotten data... Do dumb counting. */
1497 	if (tp->undo_marker && tp->undo_retrans > 0 &&
1498 	    !after(end_seq_0, prior_snd_una) &&
1499 	    after(end_seq_0, tp->undo_marker))
1500 		tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1501 
1502 	return true;
1503 }
1504 
1505 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1506  * the incoming SACK may not exactly match but we can find smaller MSS
1507  * aligned portion of it that matches. Therefore we might need to fragment
1508  * which may fail and creates some hassle (caller must handle error case
1509  * returns).
1510  *
1511  * FIXME: this could be merged to shift decision code
1512  */
tcp_match_skb_to_sack(struct sock * sk,struct sk_buff * skb,u32 start_seq,u32 end_seq)1513 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1514 				  u32 start_seq, u32 end_seq)
1515 {
1516 	int err;
1517 	bool in_sack;
1518 	unsigned int pkt_len;
1519 	unsigned int mss;
1520 
1521 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1522 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1523 
1524 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1525 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1526 		mss = tcp_skb_mss(skb);
1527 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1528 
1529 		if (!in_sack) {
1530 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1531 			if (pkt_len < mss)
1532 				pkt_len = mss;
1533 		} else {
1534 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1535 			if (pkt_len < mss)
1536 				return -EINVAL;
1537 		}
1538 
1539 		/* Round if necessary so that SACKs cover only full MSSes
1540 		 * and/or the remaining small portion (if present)
1541 		 */
1542 		if (pkt_len > mss) {
1543 			unsigned int new_len = (pkt_len / mss) * mss;
1544 			if (!in_sack && new_len < pkt_len)
1545 				new_len += mss;
1546 			pkt_len = new_len;
1547 		}
1548 
1549 		if (pkt_len >= skb->len && !in_sack)
1550 			return 0;
1551 
1552 		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1553 				   pkt_len, mss, GFP_ATOMIC);
1554 		if (err < 0)
1555 			return err;
1556 	}
1557 
1558 	return in_sack;
1559 }
1560 
1561 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
tcp_sacktag_one(struct sock * sk,struct tcp_sacktag_state * state,u8 sacked,u32 start_seq,u32 end_seq,int dup_sack,int pcount,u32 plen,u64 xmit_time)1562 static u8 tcp_sacktag_one(struct sock *sk,
1563 			  struct tcp_sacktag_state *state, u8 sacked,
1564 			  u32 start_seq, u32 end_seq,
1565 			  int dup_sack, int pcount, u32 plen,
1566 			  u64 xmit_time)
1567 {
1568 	struct tcp_sock *tp = tcp_sk(sk);
1569 
1570 	/* Account D-SACK for retransmitted packet. */
1571 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1572 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1573 		    after(end_seq, tp->undo_marker))
1574 			tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount);
1575 		if ((sacked & TCPCB_SACKED_ACKED) &&
1576 		    before(start_seq, state->reord))
1577 				state->reord = start_seq;
1578 	}
1579 
1580 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1581 	if (!after(end_seq, tp->snd_una))
1582 		return sacked;
1583 
1584 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1585 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1586 
1587 		if (sacked & TCPCB_SACKED_RETRANS) {
1588 			/* If the segment is not tagged as lost,
1589 			 * we do not clear RETRANS, believing
1590 			 * that retransmission is still in flight.
1591 			 */
1592 			if (sacked & TCPCB_LOST) {
1593 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1594 				tp->lost_out -= pcount;
1595 				tp->retrans_out -= pcount;
1596 			}
1597 		} else {
1598 			if (!(sacked & TCPCB_RETRANS)) {
1599 				/* New sack for not retransmitted frame,
1600 				 * which was in hole. It is reordering.
1601 				 */
1602 				if (before(start_seq,
1603 					   tcp_highest_sack_seq(tp)) &&
1604 				    before(start_seq, state->reord))
1605 					state->reord = start_seq;
1606 
1607 				if (!after(end_seq, tp->high_seq))
1608 					state->flag |= FLAG_ORIG_SACK_ACKED;
1609 				if (state->first_sackt == 0)
1610 					state->first_sackt = xmit_time;
1611 				state->last_sackt = xmit_time;
1612 			}
1613 
1614 			if (sacked & TCPCB_LOST) {
1615 				sacked &= ~TCPCB_LOST;
1616 				tp->lost_out -= pcount;
1617 			}
1618 		}
1619 
1620 		sacked |= TCPCB_SACKED_ACKED;
1621 		state->flag |= FLAG_DATA_SACKED;
1622 		tp->sacked_out += pcount;
1623 		/* Out-of-order packets delivered */
1624 		state->sack_delivered += pcount;
1625 		state->delivered_bytes += plen;
1626 	}
1627 
1628 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1629 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1630 	 * are accounted above as well.
1631 	 */
1632 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1633 		sacked &= ~TCPCB_SACKED_RETRANS;
1634 		tp->retrans_out -= pcount;
1635 	}
1636 
1637 	return sacked;
1638 }
1639 
1640 /* Shift newly-SACKed bytes from this skb to the immediately previous
1641  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1642  */
tcp_shifted_skb(struct sock * sk,struct sk_buff * prev,struct sk_buff * skb,struct tcp_sacktag_state * state,unsigned int pcount,int shifted,int mss,bool dup_sack)1643 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1644 			    struct sk_buff *skb,
1645 			    struct tcp_sacktag_state *state,
1646 			    unsigned int pcount, int shifted, int mss,
1647 			    bool dup_sack)
1648 {
1649 	struct tcp_sock *tp = tcp_sk(sk);
1650 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1651 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1652 
1653 	BUG_ON(!pcount);
1654 
1655 	/* Adjust counters and hints for the newly sacked sequence
1656 	 * range but discard the return value since prev is already
1657 	 * marked. We must tag the range first because the seq
1658 	 * advancement below implicitly advances
1659 	 * tcp_highest_sack_seq() when skb is highest_sack.
1660 	 */
1661 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1662 			start_seq, end_seq, dup_sack, pcount, skb->len,
1663 			tcp_skb_timestamp_us(skb));
1664 	tcp_rate_skb_delivered(sk, skb, state->rate);
1665 
1666 	TCP_SKB_CB(prev)->end_seq += shifted;
1667 	TCP_SKB_CB(skb)->seq += shifted;
1668 
1669 	tcp_skb_pcount_add(prev, pcount);
1670 	WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1671 	tcp_skb_pcount_add(skb, -pcount);
1672 
1673 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1674 	 * in theory this shouldn't be necessary but as long as DSACK
1675 	 * code can come after this skb later on it's better to keep
1676 	 * setting gso_size to something.
1677 	 */
1678 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1679 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1680 
1681 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1682 	if (tcp_skb_pcount(skb) <= 1)
1683 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1684 
1685 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1686 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1687 
1688 	if (skb->len > 0) {
1689 		BUG_ON(!tcp_skb_pcount(skb));
1690 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1691 		return false;
1692 	}
1693 
1694 	/* Whole SKB was eaten :-) */
1695 
1696 	if (skb == tp->retransmit_skb_hint)
1697 		tp->retransmit_skb_hint = prev;
1698 
1699 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1700 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1701 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1702 		TCP_SKB_CB(prev)->end_seq++;
1703 
1704 	if (skb == tcp_highest_sack(sk))
1705 		tcp_advance_highest_sack(sk, skb);
1706 
1707 	tcp_skb_collapse_tstamp(prev, skb);
1708 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1709 		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1710 
1711 	tcp_rtx_queue_unlink_and_free(skb, sk);
1712 
1713 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1714 
1715 	return true;
1716 }
1717 
1718 /* I wish gso_size would have a bit more sane initialization than
1719  * something-or-zero which complicates things
1720  */
tcp_skb_seglen(const struct sk_buff * skb)1721 static int tcp_skb_seglen(const struct sk_buff *skb)
1722 {
1723 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1724 }
1725 
1726 /* Shifting pages past head area doesn't work */
skb_can_shift(const struct sk_buff * skb)1727 static int skb_can_shift(const struct sk_buff *skb)
1728 {
1729 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1730 }
1731 
tcp_skb_shift(struct sk_buff * to,struct sk_buff * from,int pcount,int shiftlen)1732 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1733 		  int pcount, int shiftlen)
1734 {
1735 	/* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1736 	 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1737 	 * to make sure not storing more than 65535 * 8 bytes per skb,
1738 	 * even if current MSS is bigger.
1739 	 */
1740 	if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1741 		return 0;
1742 	if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1743 		return 0;
1744 	return skb_shift(to, from, shiftlen);
1745 }
1746 
1747 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1748  * skb.
1749  */
tcp_shift_skb_data(struct sock * sk,struct sk_buff * skb,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack)1750 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1751 					  struct tcp_sacktag_state *state,
1752 					  u32 start_seq, u32 end_seq,
1753 					  bool dup_sack)
1754 {
1755 	struct tcp_sock *tp = tcp_sk(sk);
1756 	struct sk_buff *prev;
1757 	int mss;
1758 	int pcount = 0;
1759 	int len;
1760 	int in_sack;
1761 
1762 	/* Normally R but no L won't result in plain S */
1763 	if (!dup_sack &&
1764 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1765 		goto fallback;
1766 	if (!skb_can_shift(skb))
1767 		goto fallback;
1768 	/* This frame is about to be dropped (was ACKed). */
1769 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1770 		goto fallback;
1771 
1772 	/* Can only happen with delayed DSACK + discard craziness */
1773 	prev = skb_rb_prev(skb);
1774 	if (!prev)
1775 		goto fallback;
1776 
1777 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1778 		goto fallback;
1779 
1780 	if (!tcp_skb_can_collapse(prev, skb))
1781 		goto fallback;
1782 
1783 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1784 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1785 
1786 	if (in_sack) {
1787 		len = skb->len;
1788 		pcount = tcp_skb_pcount(skb);
1789 		mss = tcp_skb_seglen(skb);
1790 
1791 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1792 		 * drop this restriction as unnecessary
1793 		 */
1794 		if (mss != tcp_skb_seglen(prev))
1795 			goto fallback;
1796 	} else {
1797 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1798 			goto noop;
1799 		/* CHECKME: This is non-MSS split case only?, this will
1800 		 * cause skipped skbs due to advancing loop btw, original
1801 		 * has that feature too
1802 		 */
1803 		if (tcp_skb_pcount(skb) <= 1)
1804 			goto noop;
1805 
1806 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1807 		if (!in_sack) {
1808 			/* TODO: head merge to next could be attempted here
1809 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1810 			 * though it might not be worth of the additional hassle
1811 			 *
1812 			 * ...we can probably just fallback to what was done
1813 			 * previously. We could try merging non-SACKed ones
1814 			 * as well but it probably isn't going to buy off
1815 			 * because later SACKs might again split them, and
1816 			 * it would make skb timestamp tracking considerably
1817 			 * harder problem.
1818 			 */
1819 			goto fallback;
1820 		}
1821 
1822 		len = end_seq - TCP_SKB_CB(skb)->seq;
1823 		BUG_ON(len < 0);
1824 		BUG_ON(len > skb->len);
1825 
1826 		/* MSS boundaries should be honoured or else pcount will
1827 		 * severely break even though it makes things bit trickier.
1828 		 * Optimize common case to avoid most of the divides
1829 		 */
1830 		mss = tcp_skb_mss(skb);
1831 
1832 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1833 		 * drop this restriction as unnecessary
1834 		 */
1835 		if (mss != tcp_skb_seglen(prev))
1836 			goto fallback;
1837 
1838 		if (len == mss) {
1839 			pcount = 1;
1840 		} else if (len < mss) {
1841 			goto noop;
1842 		} else {
1843 			pcount = len / mss;
1844 			len = pcount * mss;
1845 		}
1846 	}
1847 
1848 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1849 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1850 		goto fallback;
1851 
1852 	if (!tcp_skb_shift(prev, skb, pcount, len))
1853 		goto fallback;
1854 	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1855 		goto out;
1856 
1857 	/* Hole filled allows collapsing with the next as well, this is very
1858 	 * useful when hole on every nth skb pattern happens
1859 	 */
1860 	skb = skb_rb_next(prev);
1861 	if (!skb)
1862 		goto out;
1863 
1864 	if (!skb_can_shift(skb) ||
1865 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1866 	    (mss != tcp_skb_seglen(skb)))
1867 		goto out;
1868 
1869 	if (!tcp_skb_can_collapse(prev, skb))
1870 		goto out;
1871 	len = skb->len;
1872 	pcount = tcp_skb_pcount(skb);
1873 	if (tcp_skb_shift(prev, skb, pcount, len))
1874 		tcp_shifted_skb(sk, prev, skb, state, pcount,
1875 				len, mss, 0);
1876 
1877 out:
1878 	return prev;
1879 
1880 noop:
1881 	return skb;
1882 
1883 fallback:
1884 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1885 	return NULL;
1886 }
1887 
tcp_sacktag_walk(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack_in)1888 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1889 					struct tcp_sack_block *next_dup,
1890 					struct tcp_sacktag_state *state,
1891 					u32 start_seq, u32 end_seq,
1892 					bool dup_sack_in)
1893 {
1894 	struct tcp_sock *tp = tcp_sk(sk);
1895 	struct sk_buff *tmp;
1896 
1897 	skb_rbtree_walk_from(skb) {
1898 		int in_sack = 0;
1899 		bool dup_sack = dup_sack_in;
1900 
1901 		/* queue is in-order => we can short-circuit the walk early */
1902 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1903 			break;
1904 
1905 		if (next_dup  &&
1906 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1907 			in_sack = tcp_match_skb_to_sack(sk, skb,
1908 							next_dup->start_seq,
1909 							next_dup->end_seq);
1910 			if (in_sack > 0)
1911 				dup_sack = true;
1912 		}
1913 
1914 		/* skb reference here is a bit tricky to get right, since
1915 		 * shifting can eat and free both this skb and the next,
1916 		 * so not even _safe variant of the loop is enough.
1917 		 */
1918 		if (in_sack <= 0) {
1919 			tmp = tcp_shift_skb_data(sk, skb, state,
1920 						 start_seq, end_seq, dup_sack);
1921 			if (tmp) {
1922 				if (tmp != skb) {
1923 					skb = tmp;
1924 					continue;
1925 				}
1926 
1927 				in_sack = 0;
1928 			} else {
1929 				in_sack = tcp_match_skb_to_sack(sk, skb,
1930 								start_seq,
1931 								end_seq);
1932 			}
1933 		}
1934 
1935 		if (unlikely(in_sack < 0))
1936 			break;
1937 
1938 		if (in_sack) {
1939 			TCP_SKB_CB(skb)->sacked =
1940 				tcp_sacktag_one(sk,
1941 						state,
1942 						TCP_SKB_CB(skb)->sacked,
1943 						TCP_SKB_CB(skb)->seq,
1944 						TCP_SKB_CB(skb)->end_seq,
1945 						dup_sack,
1946 						tcp_skb_pcount(skb),
1947 						skb->len,
1948 						tcp_skb_timestamp_us(skb));
1949 			tcp_rate_skb_delivered(sk, skb, state->rate);
1950 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1951 				list_del_init(&skb->tcp_tsorted_anchor);
1952 
1953 			if (!before(TCP_SKB_CB(skb)->seq,
1954 				    tcp_highest_sack_seq(tp)))
1955 				tcp_advance_highest_sack(sk, skb);
1956 		}
1957 	}
1958 	return skb;
1959 }
1960 
tcp_sacktag_bsearch(struct sock * sk,u32 seq)1961 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1962 {
1963 	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1964 	struct sk_buff *skb;
1965 
1966 	while (*p) {
1967 		parent = *p;
1968 		skb = rb_to_skb(parent);
1969 		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1970 			p = &parent->rb_left;
1971 			continue;
1972 		}
1973 		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1974 			p = &parent->rb_right;
1975 			continue;
1976 		}
1977 		return skb;
1978 	}
1979 	return NULL;
1980 }
1981 
tcp_sacktag_skip(struct sk_buff * skb,struct sock * sk,u32 skip_to_seq)1982 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1983 					u32 skip_to_seq)
1984 {
1985 	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1986 		return skb;
1987 
1988 	return tcp_sacktag_bsearch(sk, skip_to_seq);
1989 }
1990 
tcp_maybe_skipping_dsack(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 skip_to_seq)1991 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1992 						struct sock *sk,
1993 						struct tcp_sack_block *next_dup,
1994 						struct tcp_sacktag_state *state,
1995 						u32 skip_to_seq)
1996 {
1997 	if (!next_dup)
1998 		return skb;
1999 
2000 	if (before(next_dup->start_seq, skip_to_seq)) {
2001 		skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
2002 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
2003 				       next_dup->start_seq, next_dup->end_seq,
2004 				       1);
2005 	}
2006 
2007 	return skb;
2008 }
2009 
tcp_sack_cache_ok(const struct tcp_sock * tp,const struct tcp_sack_block * cache)2010 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
2011 {
2012 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
2013 }
2014 
2015 static int
tcp_sacktag_write_queue(struct sock * sk,const struct sk_buff * ack_skb,u32 prior_snd_una,struct tcp_sacktag_state * state)2016 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
2017 			u32 prior_snd_una, struct tcp_sacktag_state *state)
2018 {
2019 	struct tcp_sock *tp = tcp_sk(sk);
2020 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
2021 				    TCP_SKB_CB(ack_skb)->sacked);
2022 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
2023 	struct tcp_sack_block sp[TCP_NUM_SACKS];
2024 	struct tcp_sack_block *cache;
2025 	struct sk_buff *skb;
2026 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
2027 	int used_sacks;
2028 	bool found_dup_sack = false;
2029 	int i, j;
2030 	int first_sack_index;
2031 
2032 	state->flag = 0;
2033 	state->reord = tp->snd_nxt;
2034 
2035 	if (!tp->sacked_out)
2036 		tcp_highest_sack_reset(sk);
2037 
2038 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
2039 					 num_sacks, prior_snd_una, state);
2040 
2041 	/* Eliminate too old ACKs, but take into
2042 	 * account more or less fresh ones, they can
2043 	 * contain valid SACK info.
2044 	 */
2045 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
2046 		return 0;
2047 
2048 	if (!tp->packets_out)
2049 		goto out;
2050 
2051 	used_sacks = 0;
2052 	first_sack_index = 0;
2053 	for (i = 0; i < num_sacks; i++) {
2054 		bool dup_sack = !i && found_dup_sack;
2055 
2056 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
2057 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
2058 
2059 		if (!tcp_is_sackblock_valid(tp, dup_sack,
2060 					    sp[used_sacks].start_seq,
2061 					    sp[used_sacks].end_seq)) {
2062 			int mib_idx;
2063 
2064 			if (dup_sack) {
2065 				if (!tp->undo_marker)
2066 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
2067 				else
2068 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
2069 			} else {
2070 				/* Don't count olds caused by ACK reordering */
2071 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
2072 				    !after(sp[used_sacks].end_seq, tp->snd_una))
2073 					continue;
2074 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
2075 			}
2076 
2077 			NET_INC_STATS(sock_net(sk), mib_idx);
2078 			if (i == 0)
2079 				first_sack_index = -1;
2080 			continue;
2081 		}
2082 
2083 		/* Ignore very old stuff early */
2084 		if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
2085 			if (i == 0)
2086 				first_sack_index = -1;
2087 			continue;
2088 		}
2089 
2090 		used_sacks++;
2091 	}
2092 
2093 	/* order SACK blocks to allow in order walk of the retrans queue */
2094 	for (i = used_sacks - 1; i > 0; i--) {
2095 		for (j = 0; j < i; j++) {
2096 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
2097 				swap(sp[j], sp[j + 1]);
2098 
2099 				/* Track where the first SACK block goes to */
2100 				if (j == first_sack_index)
2101 					first_sack_index = j + 1;
2102 			}
2103 		}
2104 	}
2105 
2106 	state->mss_now = tcp_current_mss(sk);
2107 	skb = NULL;
2108 	i = 0;
2109 
2110 	if (!tp->sacked_out) {
2111 		/* It's already past, so skip checking against it */
2112 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
2113 	} else {
2114 		cache = tp->recv_sack_cache;
2115 		/* Skip empty blocks in at head of the cache */
2116 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
2117 		       !cache->end_seq)
2118 			cache++;
2119 	}
2120 
2121 	while (i < used_sacks) {
2122 		u32 start_seq = sp[i].start_seq;
2123 		u32 end_seq = sp[i].end_seq;
2124 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
2125 		struct tcp_sack_block *next_dup = NULL;
2126 
2127 		if (found_dup_sack && ((i + 1) == first_sack_index))
2128 			next_dup = &sp[i + 1];
2129 
2130 		/* Skip too early cached blocks */
2131 		while (tcp_sack_cache_ok(tp, cache) &&
2132 		       !before(start_seq, cache->end_seq))
2133 			cache++;
2134 
2135 		/* Can skip some work by looking recv_sack_cache? */
2136 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
2137 		    after(end_seq, cache->start_seq)) {
2138 
2139 			/* Head todo? */
2140 			if (before(start_seq, cache->start_seq)) {
2141 				skb = tcp_sacktag_skip(skb, sk, start_seq);
2142 				skb = tcp_sacktag_walk(skb, sk, next_dup,
2143 						       state,
2144 						       start_seq,
2145 						       cache->start_seq,
2146 						       dup_sack);
2147 			}
2148 
2149 			/* Rest of the block already fully processed? */
2150 			if (!after(end_seq, cache->end_seq))
2151 				goto advance_sp;
2152 
2153 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
2154 						       state,
2155 						       cache->end_seq);
2156 
2157 			/* ...tail remains todo... */
2158 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
2159 				/* ...but better entrypoint exists! */
2160 				skb = tcp_highest_sack(sk);
2161 				if (!skb)
2162 					break;
2163 				cache++;
2164 				goto walk;
2165 			}
2166 
2167 			skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
2168 			/* Check overlap against next cached too (past this one already) */
2169 			cache++;
2170 			continue;
2171 		}
2172 
2173 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
2174 			skb = tcp_highest_sack(sk);
2175 			if (!skb)
2176 				break;
2177 		}
2178 		skb = tcp_sacktag_skip(skb, sk, start_seq);
2179 
2180 walk:
2181 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
2182 				       start_seq, end_seq, dup_sack);
2183 
2184 advance_sp:
2185 		i++;
2186 	}
2187 
2188 	/* Clear the head of the cache sack blocks so we can skip it next time */
2189 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
2190 		tp->recv_sack_cache[i].start_seq = 0;
2191 		tp->recv_sack_cache[i].end_seq = 0;
2192 	}
2193 	for (j = 0; j < used_sacks; j++)
2194 		tp->recv_sack_cache[i++] = sp[j];
2195 
2196 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
2197 		tcp_check_sack_reordering(sk, state->reord, 0);
2198 
2199 	tcp_verify_left_out(tp);
2200 out:
2201 
2202 #if FASTRETRANS_DEBUG > 0
2203 	WARN_ON((int)tp->sacked_out < 0);
2204 	WARN_ON((int)tp->lost_out < 0);
2205 	WARN_ON((int)tp->retrans_out < 0);
2206 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
2207 #endif
2208 	return state->flag;
2209 }
2210 
2211 /* Limits sacked_out so that sum with lost_out isn't ever larger than
2212  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
2213  */
tcp_limit_reno_sacked(struct tcp_sock * tp)2214 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
2215 {
2216 	u32 holes;
2217 
2218 	holes = max(tp->lost_out, 1U);
2219 	holes = min(holes, tp->packets_out);
2220 
2221 	if ((tp->sacked_out + holes) > tp->packets_out) {
2222 		tp->sacked_out = tp->packets_out - holes;
2223 		return true;
2224 	}
2225 	return false;
2226 }
2227 
2228 /* If we receive more dupacks than we expected counting segments
2229  * in assumption of absent reordering, interpret this as reordering.
2230  * The only another reason could be bug in receiver TCP.
2231  */
tcp_check_reno_reordering(struct sock * sk,const int addend)2232 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
2233 {
2234 	struct tcp_sock *tp = tcp_sk(sk);
2235 
2236 	if (!tcp_limit_reno_sacked(tp))
2237 		return;
2238 
2239 	tp->reordering = min_t(u32, tp->packets_out + addend,
2240 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
2241 	tp->reord_seen++;
2242 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
2243 }
2244 
2245 /* Emulate SACKs for SACKless connection: account for a new dupack. */
2246 
tcp_add_reno_sack(struct sock * sk,int num_dupack,bool ece_ack)2247 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
2248 {
2249 	if (num_dupack) {
2250 		struct tcp_sock *tp = tcp_sk(sk);
2251 		u32 prior_sacked = tp->sacked_out;
2252 		s32 delivered;
2253 
2254 		tp->sacked_out += num_dupack;
2255 		tcp_check_reno_reordering(sk, 0);
2256 		delivered = tp->sacked_out - prior_sacked;
2257 		if (delivered > 0)
2258 			tcp_count_delivered(tp, delivered, ece_ack);
2259 		tcp_verify_left_out(tp);
2260 	}
2261 }
2262 
2263 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2264 
tcp_remove_reno_sacks(struct sock * sk,int acked,bool ece_ack)2265 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
2266 {
2267 	struct tcp_sock *tp = tcp_sk(sk);
2268 
2269 	if (acked > 0) {
2270 		/* One ACK acked hole. The rest eat duplicate ACKs. */
2271 		tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
2272 				    ece_ack);
2273 		if (acked - 1 >= tp->sacked_out)
2274 			tp->sacked_out = 0;
2275 		else
2276 			tp->sacked_out -= acked - 1;
2277 	}
2278 	tcp_check_reno_reordering(sk, acked);
2279 	tcp_verify_left_out(tp);
2280 }
2281 
tcp_reset_reno_sack(struct tcp_sock * tp)2282 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2283 {
2284 	tp->sacked_out = 0;
2285 }
2286 
tcp_clear_retrans(struct tcp_sock * tp)2287 void tcp_clear_retrans(struct tcp_sock *tp)
2288 {
2289 	tp->retrans_out = 0;
2290 	tp->lost_out = 0;
2291 	tp->undo_marker = 0;
2292 	tp->undo_retrans = -1;
2293 	tp->sacked_out = 0;
2294 	tp->rto_stamp = 0;
2295 	tp->total_rto = 0;
2296 	tp->total_rto_recoveries = 0;
2297 	tp->total_rto_time = 0;
2298 }
2299 
tcp_init_undo(struct tcp_sock * tp)2300 static inline void tcp_init_undo(struct tcp_sock *tp)
2301 {
2302 	tp->undo_marker = tp->snd_una;
2303 
2304 	/* Retransmission still in flight may cause DSACKs later. */
2305 	/* First, account for regular retransmits in flight: */
2306 	tp->undo_retrans = tp->retrans_out;
2307 	/* Next, account for TLP retransmits in flight: */
2308 	if (tp->tlp_high_seq && tp->tlp_retrans)
2309 		tp->undo_retrans++;
2310 	/* Finally, avoid 0, because undo_retrans==0 means "can undo now": */
2311 	if (!tp->undo_retrans)
2312 		tp->undo_retrans = -1;
2313 }
2314 
2315 /* If we detect SACK reneging, forget all SACK information
2316  * and reset tags completely, otherwise preserve SACKs. If receiver
2317  * dropped its ofo queue, we will know this due to reneging detection.
2318  */
tcp_timeout_mark_lost(struct sock * sk)2319 static void tcp_timeout_mark_lost(struct sock *sk)
2320 {
2321 	struct tcp_sock *tp = tcp_sk(sk);
2322 	struct sk_buff *skb, *head;
2323 	bool is_reneg;			/* is receiver reneging on SACKs? */
2324 
2325 	head = tcp_rtx_queue_head(sk);
2326 	is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
2327 	if (is_reneg) {
2328 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2329 		tp->sacked_out = 0;
2330 		/* Mark SACK reneging until we recover from this loss event. */
2331 		tp->is_sack_reneg = 1;
2332 	} else if (tcp_is_reno(tp)) {
2333 		tcp_reset_reno_sack(tp);
2334 	}
2335 
2336 	skb = head;
2337 	skb_rbtree_walk_from(skb) {
2338 		if (is_reneg)
2339 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2340 		else if (skb != head && tcp_rack_skb_timeout(tp, skb, 0) > 0)
2341 			continue; /* Don't mark recently sent ones lost yet */
2342 		tcp_mark_skb_lost(sk, skb);
2343 	}
2344 	tcp_verify_left_out(tp);
2345 	tcp_clear_all_retrans_hints(tp);
2346 }
2347 
2348 /* Enter Loss state. */
tcp_enter_loss(struct sock * sk)2349 void tcp_enter_loss(struct sock *sk)
2350 {
2351 	const struct inet_connection_sock *icsk = inet_csk(sk);
2352 	struct tcp_sock *tp = tcp_sk(sk);
2353 	struct net *net = sock_net(sk);
2354 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2355 	u8 reordering;
2356 
2357 	tcp_timeout_mark_lost(sk);
2358 
2359 	/* Reduce ssthresh if it has not yet been made inside this window. */
2360 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2361 	    !after(tp->high_seq, tp->snd_una) ||
2362 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2363 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2364 		tp->prior_cwnd = tcp_snd_cwnd(tp);
2365 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2366 		tcp_ca_event(sk, CA_EVENT_LOSS);
2367 		tcp_init_undo(tp);
2368 	}
2369 	tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1);
2370 	tp->snd_cwnd_cnt   = 0;
2371 	tp->snd_cwnd_stamp = tcp_jiffies32;
2372 
2373 	/* Timeout in disordered state after receiving substantial DUPACKs
2374 	 * suggests that the degree of reordering is over-estimated.
2375 	 */
2376 	reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering);
2377 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2378 	    tp->sacked_out >= reordering)
2379 		tp->reordering = min_t(unsigned int, tp->reordering,
2380 				       reordering);
2381 
2382 	tcp_set_ca_state(sk, TCP_CA_Loss);
2383 	tp->high_seq = tp->snd_nxt;
2384 	tp->tlp_high_seq = 0;
2385 	tcp_ecn_queue_cwr(tp);
2386 
2387 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2388 	 * loss recovery is underway except recurring timeout(s) on
2389 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2390 	 */
2391 	tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) &&
2392 		   (new_recovery || icsk->icsk_retransmits) &&
2393 		   !inet_csk(sk)->icsk_mtup.probe_size;
2394 }
2395 
2396 /* If ACK arrived pointing to a remembered SACK, it means that our
2397  * remembered SACKs do not reflect real state of receiver i.e.
2398  * receiver _host_ is heavily congested (or buggy).
2399  *
2400  * To avoid big spurious retransmission bursts due to transient SACK
2401  * scoreboard oddities that look like reneging, we give the receiver a
2402  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2403  * restore sanity to the SACK scoreboard. If the apparent reneging
2404  * persists until this RTO then we'll clear the SACK scoreboard.
2405  */
tcp_check_sack_reneging(struct sock * sk,int * ack_flag)2406 static bool tcp_check_sack_reneging(struct sock *sk, int *ack_flag)
2407 {
2408 	if (*ack_flag & FLAG_SACK_RENEGING &&
2409 	    *ack_flag & FLAG_SND_UNA_ADVANCED) {
2410 		struct tcp_sock *tp = tcp_sk(sk);
2411 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2412 					  msecs_to_jiffies(10));
2413 
2414 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, delay, false);
2415 		*ack_flag &= ~FLAG_SET_XMIT_TIMER;
2416 		return true;
2417 	}
2418 	return false;
2419 }
2420 
2421 /* Linux NewReno/SACK/ECN state machine.
2422  * --------------------------------------
2423  *
2424  * "Open"	Normal state, no dubious events, fast path.
2425  * "Disorder"   In all the respects it is "Open",
2426  *		but requires a bit more attention. It is entered when
2427  *		we see some SACKs or dupacks. It is split of "Open"
2428  *		mainly to move some processing from fast path to slow one.
2429  * "CWR"	CWND was reduced due to some Congestion Notification event.
2430  *		It can be ECN, ICMP source quench, local device congestion.
2431  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2432  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2433  *
2434  * tcp_fastretrans_alert() is entered:
2435  * - each incoming ACK, if state is not "Open"
2436  * - when arrived ACK is unusual, namely:
2437  *	* SACK
2438  *	* Duplicate ACK.
2439  *	* ECN ECE.
2440  *
2441  * Counting packets in flight is pretty simple.
2442  *
2443  *	in_flight = packets_out - left_out + retrans_out
2444  *
2445  *	packets_out is SND.NXT-SND.UNA counted in packets.
2446  *
2447  *	retrans_out is number of retransmitted segments.
2448  *
2449  *	left_out is number of segments left network, but not ACKed yet.
2450  *
2451  *		left_out = sacked_out + lost_out
2452  *
2453  *     sacked_out: Packets, which arrived to receiver out of order
2454  *		   and hence not ACKed. With SACKs this number is simply
2455  *		   amount of SACKed data. Even without SACKs
2456  *		   it is easy to give pretty reliable estimate of this number,
2457  *		   counting duplicate ACKs.
2458  *
2459  *       lost_out: Packets lost by network. TCP has no explicit
2460  *		   "loss notification" feedback from network (for now).
2461  *		   It means that this number can be only _guessed_.
2462  *		   Actually, it is the heuristics to predict lossage that
2463  *		   distinguishes different algorithms.
2464  *
2465  *	F.e. after RTO, when all the queue is considered as lost,
2466  *	lost_out = packets_out and in_flight = retrans_out.
2467  *
2468  *		Essentially, we have now a few algorithms detecting
2469  *		lost packets.
2470  *
2471  *		If the receiver supports SACK:
2472  *
2473  *		RACK (RFC8985): RACK is a newer loss detection algorithm
2474  *		(2017-) that checks timing instead of counting DUPACKs.
2475  *		Essentially a packet is considered lost if it's not S/ACKed
2476  *		after RTT + reordering_window, where both metrics are
2477  *		dynamically measured and adjusted. This is implemented in
2478  *		tcp_rack_mark_lost.
2479  *
2480  *		If the receiver does not support SACK:
2481  *
2482  *		NewReno (RFC6582): in Recovery we assume that one segment
2483  *		is lost (classic Reno). While we are in Recovery and
2484  *		a partial ACK arrives, we assume that one more packet
2485  *		is lost (NewReno). This heuristics are the same in NewReno
2486  *		and SACK.
2487  *
2488  * The really tricky (and requiring careful tuning) part of the algorithm
2489  * is hidden in the RACK code in tcp_recovery.c and tcp_xmit_retransmit_queue().
2490  * The first determines the moment _when_ we should reduce CWND and,
2491  * hence, slow down forward transmission. In fact, it determines the moment
2492  * when we decide that hole is caused by loss, rather than by a reorder.
2493  *
2494  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2495  * holes, caused by lost packets.
2496  *
2497  * And the most logically complicated part of algorithm is undo
2498  * heuristics. We detect false retransmits due to both too early
2499  * fast retransmit (reordering) and underestimated RTO, analyzing
2500  * timestamps and D-SACKs. When we detect that some segments were
2501  * retransmitted by mistake and CWND reduction was wrong, we undo
2502  * window reduction and abort recovery phase. This logic is hidden
2503  * inside several functions named tcp_try_undo_<something>.
2504  */
2505 
2506 /* This function decides, when we should leave Disordered state
2507  * and enter Recovery phase, reducing congestion window.
2508  *
2509  * Main question: may we further continue forward transmission
2510  * with the same cwnd?
2511  */
tcp_time_to_recover(const struct tcp_sock * tp)2512 static bool tcp_time_to_recover(const struct tcp_sock *tp)
2513 {
2514 	/* Has loss detection marked at least one packet lost? */
2515 	return tp->lost_out != 0;
2516 }
2517 
tcp_tsopt_ecr_before(const struct tcp_sock * tp,u32 when)2518 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2519 {
2520 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2521 	       before(tp->rx_opt.rcv_tsecr, when);
2522 }
2523 
2524 /* skb is spurious retransmitted if the returned timestamp echo
2525  * reply is prior to the skb transmission time
2526  */
tcp_skb_spurious_retrans(const struct tcp_sock * tp,const struct sk_buff * skb)2527 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2528 				     const struct sk_buff *skb)
2529 {
2530 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2531 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb));
2532 }
2533 
2534 /* Nothing was retransmitted or returned timestamp is less
2535  * than timestamp of the first retransmission.
2536  */
tcp_packet_delayed(const struct tcp_sock * tp)2537 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2538 {
2539 	const struct sock *sk = (const struct sock *)tp;
2540 
2541 	/* Received an echoed timestamp before the first retransmission? */
2542 	if (tp->retrans_stamp)
2543 		return tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2544 
2545 	/* We set tp->retrans_stamp upon the first retransmission of a loss
2546 	 * recovery episode, so normally if tp->retrans_stamp is 0 then no
2547 	 * retransmission has happened yet (likely due to TSQ, which can cause
2548 	 * fast retransmits to be delayed). So if snd_una advanced while
2549 	 * (tp->retrans_stamp is 0 then apparently a packet was merely delayed,
2550 	 * not lost. But there are exceptions where we retransmit but then
2551 	 * clear tp->retrans_stamp, so we check for those exceptions.
2552 	 */
2553 
2554 	/* (1) For non-SACK connections, tcp_is_non_sack_preventing_reopen()
2555 	 * clears tp->retrans_stamp when snd_una == high_seq.
2556 	 */
2557 	if (!tcp_is_sack(tp) && !before(tp->snd_una, tp->high_seq))
2558 		return false;
2559 
2560 	/* (2) In TCP_SYN_SENT tcp_clean_rtx_queue() clears tp->retrans_stamp
2561 	 * when setting FLAG_SYN_ACKED is set, even if the SYN was
2562 	 * retransmitted.
2563 	 */
2564 	if (sk->sk_state == TCP_SYN_SENT)
2565 		return false;
2566 
2567 	return true;	/* tp->retrans_stamp is zero; no retransmit yet */
2568 }
2569 
2570 /* Undo procedures. */
2571 
2572 /* We can clear retrans_stamp when there are no retransmissions in the
2573  * window. It would seem that it is trivially available for us in
2574  * tp->retrans_out, however, that kind of assumptions doesn't consider
2575  * what will happen if errors occur when sending retransmission for the
2576  * second time. ...It could the that such segment has only
2577  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2578  * the head skb is enough except for some reneging corner cases that
2579  * are not worth the effort.
2580  *
2581  * Main reason for all this complexity is the fact that connection dying
2582  * time now depends on the validity of the retrans_stamp, in particular,
2583  * that successive retransmissions of a segment must not advance
2584  * retrans_stamp under any conditions.
2585  */
tcp_any_retrans_done(const struct sock * sk)2586 static bool tcp_any_retrans_done(const struct sock *sk)
2587 {
2588 	const struct tcp_sock *tp = tcp_sk(sk);
2589 	struct sk_buff *skb;
2590 
2591 	if (tp->retrans_out)
2592 		return true;
2593 
2594 	skb = tcp_rtx_queue_head(sk);
2595 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2596 		return true;
2597 
2598 	return false;
2599 }
2600 
2601 /* If loss recovery is finished and there are no retransmits out in the
2602  * network, then we clear retrans_stamp so that upon the next loss recovery
2603  * retransmits_timed_out() and timestamp-undo are using the correct value.
2604  */
tcp_retrans_stamp_cleanup(struct sock * sk)2605 static void tcp_retrans_stamp_cleanup(struct sock *sk)
2606 {
2607 	if (!tcp_any_retrans_done(sk))
2608 		tcp_sk(sk)->retrans_stamp = 0;
2609 }
2610 
DBGUNDO(struct sock * sk,const char * msg)2611 static void DBGUNDO(struct sock *sk, const char *msg)
2612 {
2613 #if FASTRETRANS_DEBUG > 1
2614 	struct tcp_sock *tp = tcp_sk(sk);
2615 	struct inet_sock *inet = inet_sk(sk);
2616 
2617 	if (sk->sk_family == AF_INET) {
2618 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2619 			 msg,
2620 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2621 			 tcp_snd_cwnd(tp), tcp_left_out(tp),
2622 			 tp->snd_ssthresh, tp->prior_ssthresh,
2623 			 tp->packets_out);
2624 	}
2625 #if IS_ENABLED(CONFIG_IPV6)
2626 	else if (sk->sk_family == AF_INET6) {
2627 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2628 			 msg,
2629 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2630 			 tcp_snd_cwnd(tp), tcp_left_out(tp),
2631 			 tp->snd_ssthresh, tp->prior_ssthresh,
2632 			 tp->packets_out);
2633 	}
2634 #endif
2635 #endif
2636 }
2637 
tcp_undo_cwnd_reduction(struct sock * sk,bool unmark_loss)2638 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2639 {
2640 	struct tcp_sock *tp = tcp_sk(sk);
2641 
2642 	if (unmark_loss) {
2643 		struct sk_buff *skb;
2644 
2645 		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2646 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2647 		}
2648 		tp->lost_out = 0;
2649 		tcp_clear_all_retrans_hints(tp);
2650 	}
2651 
2652 	if (tp->prior_ssthresh) {
2653 		const struct inet_connection_sock *icsk = inet_csk(sk);
2654 
2655 		tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk));
2656 
2657 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2658 			tp->snd_ssthresh = tp->prior_ssthresh;
2659 			tcp_ecn_withdraw_cwr(tp);
2660 		}
2661 	}
2662 	tp->snd_cwnd_stamp = tcp_jiffies32;
2663 	tp->undo_marker = 0;
2664 	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2665 }
2666 
tcp_may_undo(const struct tcp_sock * tp)2667 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2668 {
2669 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2670 }
2671 
tcp_is_non_sack_preventing_reopen(struct sock * sk)2672 static bool tcp_is_non_sack_preventing_reopen(struct sock *sk)
2673 {
2674 	struct tcp_sock *tp = tcp_sk(sk);
2675 
2676 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2677 		/* Hold old state until something *above* high_seq
2678 		 * is ACKed. For Reno it is MUST to prevent false
2679 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2680 		if (!tcp_any_retrans_done(sk))
2681 			tp->retrans_stamp = 0;
2682 		return true;
2683 	}
2684 	return false;
2685 }
2686 
2687 /* People celebrate: "We love our President!" */
tcp_try_undo_recovery(struct sock * sk)2688 static bool tcp_try_undo_recovery(struct sock *sk)
2689 {
2690 	struct tcp_sock *tp = tcp_sk(sk);
2691 
2692 	if (tcp_may_undo(tp)) {
2693 		int mib_idx;
2694 
2695 		/* Happy end! We did not retransmit anything
2696 		 * or our original transmission succeeded.
2697 		 */
2698 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2699 		tcp_undo_cwnd_reduction(sk, false);
2700 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2701 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2702 		else
2703 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2704 
2705 		NET_INC_STATS(sock_net(sk), mib_idx);
2706 	} else if (tp->rack.reo_wnd_persist) {
2707 		tp->rack.reo_wnd_persist--;
2708 	}
2709 	if (tcp_is_non_sack_preventing_reopen(sk))
2710 		return true;
2711 	tcp_set_ca_state(sk, TCP_CA_Open);
2712 	tp->is_sack_reneg = 0;
2713 	return false;
2714 }
2715 
2716 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
tcp_try_undo_dsack(struct sock * sk)2717 static bool tcp_try_undo_dsack(struct sock *sk)
2718 {
2719 	struct tcp_sock *tp = tcp_sk(sk);
2720 
2721 	if (tp->undo_marker && !tp->undo_retrans) {
2722 		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2723 					       tp->rack.reo_wnd_persist + 1);
2724 		DBGUNDO(sk, "D-SACK");
2725 		tcp_undo_cwnd_reduction(sk, false);
2726 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2727 		return true;
2728 	}
2729 	return false;
2730 }
2731 
2732 /* Undo during loss recovery after partial ACK or using F-RTO. */
tcp_try_undo_loss(struct sock * sk,bool frto_undo)2733 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2734 {
2735 	struct tcp_sock *tp = tcp_sk(sk);
2736 
2737 	if (frto_undo || tcp_may_undo(tp)) {
2738 		tcp_undo_cwnd_reduction(sk, true);
2739 
2740 		DBGUNDO(sk, "partial loss");
2741 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2742 		if (frto_undo)
2743 			NET_INC_STATS(sock_net(sk),
2744 					LINUX_MIB_TCPSPURIOUSRTOS);
2745 		WRITE_ONCE(inet_csk(sk)->icsk_retransmits, 0);
2746 		if (tcp_is_non_sack_preventing_reopen(sk))
2747 			return true;
2748 		if (frto_undo || tcp_is_sack(tp)) {
2749 			tcp_set_ca_state(sk, TCP_CA_Open);
2750 			tp->is_sack_reneg = 0;
2751 		}
2752 		return true;
2753 	}
2754 	return false;
2755 }
2756 
2757 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2758  * It computes the number of packets to send (sndcnt) based on packets newly
2759  * delivered:
2760  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2761  *	cwnd reductions across a full RTT.
2762  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2763  *      But when SND_UNA is acked without further losses,
2764  *      slow starts cwnd up to ssthresh to speed up the recovery.
2765  */
tcp_init_cwnd_reduction(struct sock * sk)2766 static void tcp_init_cwnd_reduction(struct sock *sk)
2767 {
2768 	struct tcp_sock *tp = tcp_sk(sk);
2769 
2770 	tp->high_seq = tp->snd_nxt;
2771 	tp->tlp_high_seq = 0;
2772 	tp->snd_cwnd_cnt = 0;
2773 	tp->prior_cwnd = tcp_snd_cwnd(tp);
2774 	tp->prr_delivered = 0;
2775 	tp->prr_out = 0;
2776 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2777 	tcp_ecn_queue_cwr(tp);
2778 }
2779 
tcp_cwnd_reduction(struct sock * sk,int newly_acked_sacked,int newly_lost,int flag)2780 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag)
2781 {
2782 	struct tcp_sock *tp = tcp_sk(sk);
2783 	int sndcnt = 0;
2784 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2785 
2786 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2787 		return;
2788 
2789 	trace_tcp_cwnd_reduction_tp(sk, newly_acked_sacked, newly_lost, flag);
2790 
2791 	tp->prr_delivered += newly_acked_sacked;
2792 	if (delta < 0) {
2793 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2794 			       tp->prior_cwnd - 1;
2795 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2796 	} else {
2797 		sndcnt = max_t(int, tp->prr_delivered - tp->prr_out,
2798 			       newly_acked_sacked);
2799 		if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost)
2800 			sndcnt++;
2801 		sndcnt = min(delta, sndcnt);
2802 	}
2803 	/* Force a fast retransmit upon entering fast recovery */
2804 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2805 	tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt);
2806 }
2807 
tcp_end_cwnd_reduction(struct sock * sk)2808 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2809 {
2810 	struct tcp_sock *tp = tcp_sk(sk);
2811 
2812 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2813 		return;
2814 
2815 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2816 	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2817 	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2818 		tcp_snd_cwnd_set(tp, tp->snd_ssthresh);
2819 		tp->snd_cwnd_stamp = tcp_jiffies32;
2820 	}
2821 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2822 }
2823 
2824 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
tcp_enter_cwr(struct sock * sk)2825 void tcp_enter_cwr(struct sock *sk)
2826 {
2827 	struct tcp_sock *tp = tcp_sk(sk);
2828 
2829 	tp->prior_ssthresh = 0;
2830 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2831 		tp->undo_marker = 0;
2832 		tcp_init_cwnd_reduction(sk);
2833 		tcp_set_ca_state(sk, TCP_CA_CWR);
2834 	}
2835 }
2836 EXPORT_SYMBOL(tcp_enter_cwr);
2837 
tcp_try_keep_open(struct sock * sk)2838 static void tcp_try_keep_open(struct sock *sk)
2839 {
2840 	struct tcp_sock *tp = tcp_sk(sk);
2841 	int state = TCP_CA_Open;
2842 
2843 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2844 		state = TCP_CA_Disorder;
2845 
2846 	if (inet_csk(sk)->icsk_ca_state != state) {
2847 		tcp_set_ca_state(sk, state);
2848 		tp->high_seq = tp->snd_nxt;
2849 	}
2850 }
2851 
tcp_try_to_open(struct sock * sk,int flag)2852 static void tcp_try_to_open(struct sock *sk, int flag)
2853 {
2854 	struct tcp_sock *tp = tcp_sk(sk);
2855 
2856 	tcp_verify_left_out(tp);
2857 
2858 	if (!tcp_any_retrans_done(sk))
2859 		tp->retrans_stamp = 0;
2860 
2861 	if (flag & FLAG_ECE)
2862 		tcp_enter_cwr(sk);
2863 
2864 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2865 		tcp_try_keep_open(sk);
2866 	}
2867 }
2868 
tcp_mtup_probe_failed(struct sock * sk)2869 static void tcp_mtup_probe_failed(struct sock *sk)
2870 {
2871 	struct inet_connection_sock *icsk = inet_csk(sk);
2872 
2873 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2874 	icsk->icsk_mtup.probe_size = 0;
2875 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2876 }
2877 
tcp_mtup_probe_success(struct sock * sk)2878 static void tcp_mtup_probe_success(struct sock *sk)
2879 {
2880 	struct tcp_sock *tp = tcp_sk(sk);
2881 	struct inet_connection_sock *icsk = inet_csk(sk);
2882 	u64 val;
2883 
2884 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2885 
2886 	val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache);
2887 	do_div(val, icsk->icsk_mtup.probe_size);
2888 	DEBUG_NET_WARN_ON_ONCE((u32)val != val);
2889 	tcp_snd_cwnd_set(tp, max_t(u32, 1U, val));
2890 
2891 	tp->snd_cwnd_cnt = 0;
2892 	tp->snd_cwnd_stamp = tcp_jiffies32;
2893 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2894 
2895 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2896 	icsk->icsk_mtup.probe_size = 0;
2897 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2898 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2899 }
2900 
2901 /* Sometimes we deduce that packets have been dropped due to reasons other than
2902  * congestion, like path MTU reductions or failed client TFO attempts. In these
2903  * cases we call this function to retransmit as many packets as cwnd allows,
2904  * without reducing cwnd. Given that retransmits will set retrans_stamp to a
2905  * non-zero value (and may do so in a later calling context due to TSQ), we
2906  * also enter CA_Loss so that we track when all retransmitted packets are ACKed
2907  * and clear retrans_stamp when that happens (to ensure later recurring RTOs
2908  * are using the correct retrans_stamp and don't declare ETIMEDOUT
2909  * prematurely).
2910  */
tcp_non_congestion_loss_retransmit(struct sock * sk)2911 static void tcp_non_congestion_loss_retransmit(struct sock *sk)
2912 {
2913 	const struct inet_connection_sock *icsk = inet_csk(sk);
2914 	struct tcp_sock *tp = tcp_sk(sk);
2915 
2916 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2917 		tp->high_seq = tp->snd_nxt;
2918 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2919 		tp->prior_ssthresh = 0;
2920 		tp->undo_marker = 0;
2921 		tcp_set_ca_state(sk, TCP_CA_Loss);
2922 	}
2923 	tcp_xmit_retransmit_queue(sk);
2924 }
2925 
2926 /* Do a simple retransmit without using the backoff mechanisms in
2927  * tcp_timer. This is used for path mtu discovery.
2928  * The socket is already locked here.
2929  */
tcp_simple_retransmit(struct sock * sk)2930 void tcp_simple_retransmit(struct sock *sk)
2931 {
2932 	struct tcp_sock *tp = tcp_sk(sk);
2933 	struct sk_buff *skb;
2934 	int mss;
2935 
2936 	/* A fastopen SYN request is stored as two separate packets within
2937 	 * the retransmit queue, this is done by tcp_send_syn_data().
2938 	 * As a result simply checking the MSS of the frames in the queue
2939 	 * will not work for the SYN packet.
2940 	 *
2941 	 * Us being here is an indication of a path MTU issue so we can
2942 	 * assume that the fastopen SYN was lost and just mark all the
2943 	 * frames in the retransmit queue as lost. We will use an MSS of
2944 	 * -1 to mark all frames as lost, otherwise compute the current MSS.
2945 	 */
2946 	if (tp->syn_data && sk->sk_state == TCP_SYN_SENT)
2947 		mss = -1;
2948 	else
2949 		mss = tcp_current_mss(sk);
2950 
2951 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2952 		if (tcp_skb_seglen(skb) > mss)
2953 			tcp_mark_skb_lost(sk, skb);
2954 	}
2955 
2956 	if (!tp->lost_out)
2957 		return;
2958 
2959 	if (tcp_is_reno(tp))
2960 		tcp_limit_reno_sacked(tp);
2961 
2962 	tcp_verify_left_out(tp);
2963 
2964 	/* Don't muck with the congestion window here.
2965 	 * Reason is that we do not increase amount of _data_
2966 	 * in network, but units changed and effective
2967 	 * cwnd/ssthresh really reduced now.
2968 	 */
2969 	tcp_non_congestion_loss_retransmit(sk);
2970 }
2971 EXPORT_IPV6_MOD(tcp_simple_retransmit);
2972 
tcp_enter_recovery(struct sock * sk,bool ece_ack)2973 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2974 {
2975 	struct tcp_sock *tp = tcp_sk(sk);
2976 	int mib_idx;
2977 
2978 	/* Start the clock with our fast retransmit, for undo and ETIMEDOUT. */
2979 	tcp_retrans_stamp_cleanup(sk);
2980 
2981 	if (tcp_is_reno(tp))
2982 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2983 	else
2984 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2985 
2986 	NET_INC_STATS(sock_net(sk), mib_idx);
2987 
2988 	tp->prior_ssthresh = 0;
2989 	tcp_init_undo(tp);
2990 
2991 	if (!tcp_in_cwnd_reduction(sk)) {
2992 		if (!ece_ack)
2993 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2994 		tcp_init_cwnd_reduction(sk);
2995 	}
2996 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2997 }
2998 
tcp_update_rto_time(struct tcp_sock * tp)2999 static void tcp_update_rto_time(struct tcp_sock *tp)
3000 {
3001 	if (tp->rto_stamp) {
3002 		tp->total_rto_time += tcp_time_stamp_ms(tp) - tp->rto_stamp;
3003 		tp->rto_stamp = 0;
3004 	}
3005 }
3006 
3007 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
3008  * recovered or spurious. Otherwise retransmits more on partial ACKs.
3009  */
tcp_process_loss(struct sock * sk,int flag,int num_dupack,int * rexmit)3010 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
3011 			     int *rexmit)
3012 {
3013 	struct tcp_sock *tp = tcp_sk(sk);
3014 	bool recovered = !before(tp->snd_una, tp->high_seq);
3015 
3016 	if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
3017 	    tcp_try_undo_loss(sk, false))
3018 		return;
3019 
3020 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
3021 		/* Step 3.b. A timeout is spurious if not all data are
3022 		 * lost, i.e., never-retransmitted data are (s)acked.
3023 		 */
3024 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
3025 		    tcp_try_undo_loss(sk, true))
3026 			return;
3027 
3028 		if (after(tp->snd_nxt, tp->high_seq)) {
3029 			if (flag & FLAG_DATA_SACKED || num_dupack)
3030 				tp->frto = 0; /* Step 3.a. loss was real */
3031 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
3032 			tp->high_seq = tp->snd_nxt;
3033 			/* Step 2.b. Try send new data (but deferred until cwnd
3034 			 * is updated in tcp_ack()). Otherwise fall back to
3035 			 * the conventional recovery.
3036 			 */
3037 			if (!tcp_write_queue_empty(sk) &&
3038 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
3039 				*rexmit = REXMIT_NEW;
3040 				return;
3041 			}
3042 			tp->frto = 0;
3043 		}
3044 	}
3045 
3046 	if (recovered) {
3047 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
3048 		tcp_try_undo_recovery(sk);
3049 		return;
3050 	}
3051 	if (tcp_is_reno(tp)) {
3052 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
3053 		 * delivered. Lower inflight to clock out (re)transmissions.
3054 		 */
3055 		if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
3056 			tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
3057 		else if (flag & FLAG_SND_UNA_ADVANCED)
3058 			tcp_reset_reno_sack(tp);
3059 	}
3060 	*rexmit = REXMIT_LOST;
3061 }
3062 
3063 /* Undo during fast recovery after partial ACK. */
tcp_try_undo_partial(struct sock * sk,u32 prior_snd_una)3064 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una)
3065 {
3066 	struct tcp_sock *tp = tcp_sk(sk);
3067 
3068 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
3069 		/* Plain luck! Hole if filled with delayed
3070 		 * packet, rather than with a retransmit. Check reordering.
3071 		 */
3072 		tcp_check_sack_reordering(sk, prior_snd_una, 1);
3073 
3074 		/* We are getting evidence that the reordering degree is higher
3075 		 * than we realized. If there are no retransmits out then we
3076 		 * can undo. Otherwise we clock out new packets but do not
3077 		 * mark more packets lost or retransmit more.
3078 		 */
3079 		if (tp->retrans_out)
3080 			return true;
3081 
3082 		if (!tcp_any_retrans_done(sk))
3083 			tp->retrans_stamp = 0;
3084 
3085 		DBGUNDO(sk, "partial recovery");
3086 		tcp_undo_cwnd_reduction(sk, true);
3087 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
3088 		tcp_try_keep_open(sk);
3089 	}
3090 	return false;
3091 }
3092 
tcp_identify_packet_loss(struct sock * sk,int * ack_flag)3093 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
3094 {
3095 	struct tcp_sock *tp = tcp_sk(sk);
3096 
3097 	if (tcp_rtx_queue_empty(sk))
3098 		return;
3099 
3100 	if (unlikely(tcp_is_reno(tp))) {
3101 		tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
3102 	} else {
3103 		u32 prior_retrans = tp->retrans_out;
3104 
3105 		if (tcp_rack_mark_lost(sk))
3106 			*ack_flag &= ~FLAG_SET_XMIT_TIMER;
3107 		if (prior_retrans > tp->retrans_out)
3108 			*ack_flag |= FLAG_LOST_RETRANS;
3109 	}
3110 }
3111 
3112 /* Process an event, which can update packets-in-flight not trivially.
3113  * Main goal of this function is to calculate new estimate for left_out,
3114  * taking into account both packets sitting in receiver's buffer and
3115  * packets lost by network.
3116  *
3117  * Besides that it updates the congestion state when packet loss or ECN
3118  * is detected. But it does not reduce the cwnd, it is done by the
3119  * congestion control later.
3120  *
3121  * It does _not_ decide what to send, it is made in function
3122  * tcp_xmit_retransmit_queue().
3123  */
tcp_fastretrans_alert(struct sock * sk,const u32 prior_snd_una,int num_dupack,int * ack_flag,int * rexmit)3124 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
3125 				  int num_dupack, int *ack_flag, int *rexmit)
3126 {
3127 	struct inet_connection_sock *icsk = inet_csk(sk);
3128 	struct tcp_sock *tp = tcp_sk(sk);
3129 	int flag = *ack_flag;
3130 	bool ece_ack = flag & FLAG_ECE;
3131 
3132 	if (!tp->packets_out && tp->sacked_out)
3133 		tp->sacked_out = 0;
3134 
3135 	/* Now state machine starts.
3136 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3137 	if (ece_ack)
3138 		tp->prior_ssthresh = 0;
3139 
3140 	/* B. In all the states check for reneging SACKs. */
3141 	if (tcp_check_sack_reneging(sk, ack_flag))
3142 		return;
3143 
3144 	/* C. Check consistency of the current state. */
3145 	tcp_verify_left_out(tp);
3146 
3147 	/* D. Check state exit conditions. State can be terminated
3148 	 *    when high_seq is ACKed. */
3149 	if (icsk->icsk_ca_state == TCP_CA_Open) {
3150 		WARN_ON(tp->retrans_out != 0 && !tp->syn_data);
3151 		tp->retrans_stamp = 0;
3152 	} else if (!before(tp->snd_una, tp->high_seq)) {
3153 		switch (icsk->icsk_ca_state) {
3154 		case TCP_CA_CWR:
3155 			/* CWR is to be held something *above* high_seq
3156 			 * is ACKed for CWR bit to reach receiver. */
3157 			if (tp->snd_una != tp->high_seq) {
3158 				tcp_end_cwnd_reduction(sk);
3159 				tcp_set_ca_state(sk, TCP_CA_Open);
3160 			}
3161 			break;
3162 
3163 		case TCP_CA_Recovery:
3164 			if (tcp_is_reno(tp))
3165 				tcp_reset_reno_sack(tp);
3166 			if (tcp_try_undo_recovery(sk))
3167 				return;
3168 			tcp_end_cwnd_reduction(sk);
3169 			break;
3170 		}
3171 	}
3172 
3173 	/* E. Process state. */
3174 	switch (icsk->icsk_ca_state) {
3175 	case TCP_CA_Recovery:
3176 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3177 			if (tcp_is_reno(tp))
3178 				tcp_add_reno_sack(sk, num_dupack, ece_ack);
3179 		} else if (tcp_try_undo_partial(sk, prior_snd_una))
3180 			return;
3181 
3182 		if (tcp_try_undo_dsack(sk))
3183 			tcp_try_to_open(sk, flag);
3184 
3185 		tcp_identify_packet_loss(sk, ack_flag);
3186 		if (icsk->icsk_ca_state != TCP_CA_Recovery) {
3187 			if (!tcp_time_to_recover(tp))
3188 				return;
3189 			/* Undo reverts the recovery state. If loss is evident,
3190 			 * starts a new recovery (e.g. reordering then loss);
3191 			 */
3192 			tcp_enter_recovery(sk, ece_ack);
3193 		}
3194 		break;
3195 	case TCP_CA_Loss:
3196 		tcp_process_loss(sk, flag, num_dupack, rexmit);
3197 		if (icsk->icsk_ca_state != TCP_CA_Loss)
3198 			tcp_update_rto_time(tp);
3199 		tcp_identify_packet_loss(sk, ack_flag);
3200 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
3201 		      (*ack_flag & FLAG_LOST_RETRANS)))
3202 			return;
3203 		/* Change state if cwnd is undone or retransmits are lost */
3204 		fallthrough;
3205 	default:
3206 		if (tcp_is_reno(tp)) {
3207 			if (flag & FLAG_SND_UNA_ADVANCED)
3208 				tcp_reset_reno_sack(tp);
3209 			tcp_add_reno_sack(sk, num_dupack, ece_ack);
3210 		}
3211 
3212 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3213 			tcp_try_undo_dsack(sk);
3214 
3215 		tcp_identify_packet_loss(sk, ack_flag);
3216 		if (!tcp_time_to_recover(tp)) {
3217 			tcp_try_to_open(sk, flag);
3218 			return;
3219 		}
3220 
3221 		/* MTU probe failure: don't reduce cwnd */
3222 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
3223 		    icsk->icsk_mtup.probe_size &&
3224 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3225 			tcp_mtup_probe_failed(sk);
3226 			/* Restores the reduction we did in tcp_mtup_probe() */
3227 			tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1);
3228 			tcp_simple_retransmit(sk);
3229 			return;
3230 		}
3231 
3232 		/* Otherwise enter Recovery state */
3233 		tcp_enter_recovery(sk, ece_ack);
3234 	}
3235 
3236 	*rexmit = REXMIT_LOST;
3237 }
3238 
tcp_update_rtt_min(struct sock * sk,u32 rtt_us,const int flag)3239 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
3240 {
3241 	u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ;
3242 	struct tcp_sock *tp = tcp_sk(sk);
3243 
3244 	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
3245 		/* If the remote keeps returning delayed ACKs, eventually
3246 		 * the min filter would pick it up and overestimate the
3247 		 * prop. delay when it expires. Skip suspected delayed ACKs.
3248 		 */
3249 		return;
3250 	}
3251 	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
3252 			   rtt_us ? : jiffies_to_usecs(1));
3253 }
3254 
tcp_ack_update_rtt(struct sock * sk,const int flag,long seq_rtt_us,long sack_rtt_us,long ca_rtt_us,struct rate_sample * rs)3255 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
3256 			       long seq_rtt_us, long sack_rtt_us,
3257 			       long ca_rtt_us, struct rate_sample *rs)
3258 {
3259 	const struct tcp_sock *tp = tcp_sk(sk);
3260 
3261 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
3262 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
3263 	 * Karn's algorithm forbids taking RTT if some retransmitted data
3264 	 * is acked (RFC6298).
3265 	 */
3266 	if (seq_rtt_us < 0)
3267 		seq_rtt_us = sack_rtt_us;
3268 
3269 	/* RTTM Rule: A TSecr value received in a segment is used to
3270 	 * update the averaged RTT measurement only if the segment
3271 	 * acknowledges some new data, i.e., only if it advances the
3272 	 * left edge of the send window.
3273 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3274 	 */
3275 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp &&
3276 	    tp->rx_opt.rcv_tsecr && flag & FLAG_ACKED)
3277 		seq_rtt_us = ca_rtt_us = tcp_rtt_tsopt_us(tp, 1);
3278 
3279 	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
3280 	if (seq_rtt_us < 0)
3281 		return false;
3282 
3283 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3284 	 * always taken together with ACK, SACK, or TS-opts. Any negative
3285 	 * values will be skipped with the seq_rtt_us < 0 check above.
3286 	 */
3287 	tcp_update_rtt_min(sk, ca_rtt_us, flag);
3288 	tcp_rtt_estimator(sk, seq_rtt_us);
3289 	tcp_set_rto(sk);
3290 
3291 	/* RFC6298: only reset backoff on valid RTT measurement. */
3292 	inet_csk(sk)->icsk_backoff = 0;
3293 	return true;
3294 }
3295 
3296 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
tcp_synack_rtt_meas(struct sock * sk,struct request_sock * req)3297 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3298 {
3299 	struct rate_sample rs;
3300 	long rtt_us = -1L;
3301 
3302 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3303 		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3304 
3305 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3306 }
3307 
3308 
tcp_cong_avoid(struct sock * sk,u32 ack,u32 acked)3309 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3310 {
3311 	const struct inet_connection_sock *icsk = inet_csk(sk);
3312 
3313 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3314 	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3315 }
3316 
3317 /* Restart timer after forward progress on connection.
3318  * RFC2988 recommends to restart timer to now+rto.
3319  */
tcp_rearm_rto(struct sock * sk)3320 void tcp_rearm_rto(struct sock *sk)
3321 {
3322 	const struct inet_connection_sock *icsk = inet_csk(sk);
3323 	struct tcp_sock *tp = tcp_sk(sk);
3324 
3325 	/* If the retrans timer is currently being used by Fast Open
3326 	 * for SYN-ACK retrans purpose, stay put.
3327 	 */
3328 	if (rcu_access_pointer(tp->fastopen_rsk))
3329 		return;
3330 
3331 	if (!tp->packets_out) {
3332 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3333 	} else {
3334 		u32 rto = inet_csk(sk)->icsk_rto;
3335 		/* Offset the time elapsed after installing regular RTO */
3336 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3337 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3338 			s64 delta_us = tcp_rto_delta_us(sk);
3339 			/* delta_us may not be positive if the socket is locked
3340 			 * when the retrans timer fires and is rescheduled.
3341 			 */
3342 			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3343 		}
3344 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, true);
3345 	}
3346 }
3347 
3348 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
tcp_set_xmit_timer(struct sock * sk)3349 static void tcp_set_xmit_timer(struct sock *sk)
3350 {
3351 	if (!tcp_schedule_loss_probe(sk, true))
3352 		tcp_rearm_rto(sk);
3353 }
3354 
3355 /* If we get here, the whole TSO packet has not been acked. */
tcp_tso_acked(struct sock * sk,struct sk_buff * skb)3356 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3357 {
3358 	struct tcp_sock *tp = tcp_sk(sk);
3359 	u32 packets_acked;
3360 
3361 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3362 
3363 	packets_acked = tcp_skb_pcount(skb);
3364 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3365 		return 0;
3366 	packets_acked -= tcp_skb_pcount(skb);
3367 
3368 	if (packets_acked) {
3369 		BUG_ON(tcp_skb_pcount(skb) == 0);
3370 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3371 	}
3372 
3373 	return packets_acked;
3374 }
3375 
tcp_ack_tstamp(struct sock * sk,struct sk_buff * skb,const struct sk_buff * ack_skb,u32 prior_snd_una)3376 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3377 			   const struct sk_buff *ack_skb, u32 prior_snd_una)
3378 {
3379 	const struct skb_shared_info *shinfo;
3380 
3381 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3382 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3383 		return;
3384 
3385 	shinfo = skb_shinfo(skb);
3386 	if (!before(shinfo->tskey, prior_snd_una) &&
3387 	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3388 		tcp_skb_tsorted_save(skb) {
3389 			__skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK);
3390 		} tcp_skb_tsorted_restore(skb);
3391 	}
3392 }
3393 
3394 /* Remove acknowledged frames from the retransmission queue. If our packet
3395  * is before the ack sequence we can discard it as it's confirmed to have
3396  * arrived at the other end.
3397  */
tcp_clean_rtx_queue(struct sock * sk,const struct sk_buff * ack_skb,u32 prior_fack,u32 prior_snd_una,struct tcp_sacktag_state * sack,bool ece_ack)3398 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb,
3399 			       u32 prior_fack, u32 prior_snd_una,
3400 			       struct tcp_sacktag_state *sack, bool ece_ack)
3401 {
3402 	const struct inet_connection_sock *icsk = inet_csk(sk);
3403 	u64 first_ackt, last_ackt;
3404 	struct tcp_sock *tp = tcp_sk(sk);
3405 	u32 prior_sacked = tp->sacked_out;
3406 	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3407 	struct sk_buff *skb, *next;
3408 	bool fully_acked = true;
3409 	long sack_rtt_us = -1L;
3410 	long seq_rtt_us = -1L;
3411 	long ca_rtt_us = -1L;
3412 	u32 pkts_acked = 0;
3413 	bool rtt_update;
3414 	int flag = 0;
3415 
3416 	first_ackt = 0;
3417 
3418 	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3419 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3420 		const u32 start_seq = scb->seq;
3421 		u8 sacked = scb->sacked;
3422 		u32 acked_pcount;
3423 
3424 		/* Determine how many packets and what bytes were acked, tso and else */
3425 		if (after(scb->end_seq, tp->snd_una)) {
3426 			if (tcp_skb_pcount(skb) == 1 ||
3427 			    !after(tp->snd_una, scb->seq))
3428 				break;
3429 
3430 			acked_pcount = tcp_tso_acked(sk, skb);
3431 			if (!acked_pcount)
3432 				break;
3433 			fully_acked = false;
3434 		} else {
3435 			acked_pcount = tcp_skb_pcount(skb);
3436 		}
3437 
3438 		if (unlikely(sacked & TCPCB_RETRANS)) {
3439 			if (sacked & TCPCB_SACKED_RETRANS)
3440 				tp->retrans_out -= acked_pcount;
3441 			flag |= FLAG_RETRANS_DATA_ACKED;
3442 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3443 			last_ackt = tcp_skb_timestamp_us(skb);
3444 			WARN_ON_ONCE(last_ackt == 0);
3445 			if (!first_ackt)
3446 				first_ackt = last_ackt;
3447 
3448 			if (before(start_seq, reord))
3449 				reord = start_seq;
3450 			if (!after(scb->end_seq, tp->high_seq))
3451 				flag |= FLAG_ORIG_SACK_ACKED;
3452 		}
3453 
3454 		if (sacked & TCPCB_SACKED_ACKED) {
3455 			tp->sacked_out -= acked_pcount;
3456 			/* snd_una delta covers these skbs */
3457 			sack->delivered_bytes -= skb->len;
3458 		} else if (tcp_is_sack(tp)) {
3459 			tcp_count_delivered(tp, acked_pcount, ece_ack);
3460 			if (!tcp_skb_spurious_retrans(tp, skb))
3461 				tcp_rack_advance(tp, sacked, scb->end_seq,
3462 						 tcp_skb_timestamp_us(skb));
3463 		}
3464 		if (sacked & TCPCB_LOST)
3465 			tp->lost_out -= acked_pcount;
3466 
3467 		tp->packets_out -= acked_pcount;
3468 		pkts_acked += acked_pcount;
3469 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3470 
3471 		/* Initial outgoing SYN's get put onto the write_queue
3472 		 * just like anything else we transmit.  It is not
3473 		 * true data, and if we misinform our callers that
3474 		 * this ACK acks real data, we will erroneously exit
3475 		 * connection startup slow start one packet too
3476 		 * quickly.  This is severely frowned upon behavior.
3477 		 */
3478 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3479 			flag |= FLAG_DATA_ACKED;
3480 		} else {
3481 			flag |= FLAG_SYN_ACKED;
3482 			tp->retrans_stamp = 0;
3483 		}
3484 
3485 		if (!fully_acked)
3486 			break;
3487 
3488 		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3489 
3490 		next = skb_rb_next(skb);
3491 		if (unlikely(skb == tp->retransmit_skb_hint))
3492 			tp->retransmit_skb_hint = NULL;
3493 		tcp_highest_sack_replace(sk, skb, next);
3494 		tcp_rtx_queue_unlink_and_free(skb, sk);
3495 	}
3496 
3497 	if (!skb)
3498 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3499 
3500 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3501 		tp->snd_up = tp->snd_una;
3502 
3503 	if (skb) {
3504 		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3505 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3506 			flag |= FLAG_SACK_RENEGING;
3507 	}
3508 
3509 	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3510 		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3511 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3512 
3513 		if (pkts_acked == 1 && fully_acked && !prior_sacked &&
3514 		    (tp->snd_una - prior_snd_una) < tp->mss_cache &&
3515 		    sack->rate->prior_delivered + 1 == tp->delivered &&
3516 		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3517 			/* Conservatively mark a delayed ACK. It's typically
3518 			 * from a lone runt packet over the round trip to
3519 			 * a receiver w/o out-of-order or CE events.
3520 			 */
3521 			flag |= FLAG_ACK_MAYBE_DELAYED;
3522 		}
3523 	}
3524 	if (sack->first_sackt) {
3525 		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3526 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3527 	}
3528 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3529 					ca_rtt_us, sack->rate);
3530 
3531 	if (flag & FLAG_ACKED) {
3532 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3533 		if (unlikely(icsk->icsk_mtup.probe_size &&
3534 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3535 			tcp_mtup_probe_success(sk);
3536 		}
3537 
3538 		if (tcp_is_reno(tp)) {
3539 			tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3540 
3541 			/* If any of the cumulatively ACKed segments was
3542 			 * retransmitted, non-SACK case cannot confirm that
3543 			 * progress was due to original transmission due to
3544 			 * lack of TCPCB_SACKED_ACKED bits even if some of
3545 			 * the packets may have been never retransmitted.
3546 			 */
3547 			if (flag & FLAG_RETRANS_DATA_ACKED)
3548 				flag &= ~FLAG_ORIG_SACK_ACKED;
3549 		} else {
3550 			/* Non-retransmitted hole got filled? That's reordering */
3551 			if (before(reord, prior_fack))
3552 				tcp_check_sack_reordering(sk, reord, 0);
3553 		}
3554 
3555 		sack->delivered_bytes = (skb ?
3556 					 TCP_SKB_CB(skb)->seq : tp->snd_una) -
3557 					 prior_snd_una;
3558 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3559 		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3560 						    tcp_skb_timestamp_us(skb))) {
3561 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3562 		 * after when the head was last (re)transmitted. Otherwise the
3563 		 * timeout may continue to extend in loss recovery.
3564 		 */
3565 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3566 	}
3567 
3568 	if (icsk->icsk_ca_ops->pkts_acked) {
3569 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3570 					     .rtt_us = sack->rate->rtt_us };
3571 
3572 		sample.in_flight = tp->mss_cache *
3573 			(tp->delivered - sack->rate->prior_delivered);
3574 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3575 	}
3576 
3577 #if FASTRETRANS_DEBUG > 0
3578 	WARN_ON((int)tp->sacked_out < 0);
3579 	WARN_ON((int)tp->lost_out < 0);
3580 	WARN_ON((int)tp->retrans_out < 0);
3581 	if (!tp->packets_out && tcp_is_sack(tp)) {
3582 		icsk = inet_csk(sk);
3583 		if (tp->lost_out) {
3584 			pr_debug("Leak l=%u %d\n",
3585 				 tp->lost_out, icsk->icsk_ca_state);
3586 			tp->lost_out = 0;
3587 		}
3588 		if (tp->sacked_out) {
3589 			pr_debug("Leak s=%u %d\n",
3590 				 tp->sacked_out, icsk->icsk_ca_state);
3591 			tp->sacked_out = 0;
3592 		}
3593 		if (tp->retrans_out) {
3594 			pr_debug("Leak r=%u %d\n",
3595 				 tp->retrans_out, icsk->icsk_ca_state);
3596 			tp->retrans_out = 0;
3597 		}
3598 	}
3599 #endif
3600 	return flag;
3601 }
3602 
tcp_ack_probe(struct sock * sk)3603 static void tcp_ack_probe(struct sock *sk)
3604 {
3605 	struct inet_connection_sock *icsk = inet_csk(sk);
3606 	struct sk_buff *head = tcp_send_head(sk);
3607 	const struct tcp_sock *tp = tcp_sk(sk);
3608 
3609 	/* Was it a usable window open? */
3610 	if (!head)
3611 		return;
3612 	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3613 		icsk->icsk_backoff = 0;
3614 		icsk->icsk_probes_tstamp = 0;
3615 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3616 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3617 		 * This function is not for random using!
3618 		 */
3619 	} else {
3620 		unsigned long when = tcp_probe0_when(sk, tcp_rto_max(sk));
3621 
3622 		when = tcp_clamp_probe0_to_user_timeout(sk, when);
3623 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, true);
3624 	}
3625 }
3626 
tcp_ack_is_dubious(const struct sock * sk,const int flag)3627 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3628 {
3629 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3630 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3631 }
3632 
3633 /* Decide wheather to run the increase function of congestion control. */
tcp_may_raise_cwnd(const struct sock * sk,const int flag)3634 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3635 {
3636 	/* If reordering is high then always grow cwnd whenever data is
3637 	 * delivered regardless of its ordering. Otherwise stay conservative
3638 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3639 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3640 	 * cwnd in tcp_fastretrans_alert() based on more states.
3641 	 */
3642 	if (tcp_sk(sk)->reordering >
3643 	    READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering))
3644 		return flag & FLAG_FORWARD_PROGRESS;
3645 
3646 	return flag & FLAG_DATA_ACKED;
3647 }
3648 
3649 /* The "ultimate" congestion control function that aims to replace the rigid
3650  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3651  * It's called toward the end of processing an ACK with precise rate
3652  * information. All transmission or retransmission are delayed afterwards.
3653  */
tcp_cong_control(struct sock * sk,u32 ack,u32 acked_sacked,int flag,const struct rate_sample * rs)3654 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3655 			     int flag, const struct rate_sample *rs)
3656 {
3657 	const struct inet_connection_sock *icsk = inet_csk(sk);
3658 
3659 	if (icsk->icsk_ca_ops->cong_control) {
3660 		icsk->icsk_ca_ops->cong_control(sk, ack, flag, rs);
3661 		return;
3662 	}
3663 
3664 	if (tcp_in_cwnd_reduction(sk)) {
3665 		/* Reduce cwnd if state mandates */
3666 		tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag);
3667 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3668 		/* Advance cwnd if state allows */
3669 		tcp_cong_avoid(sk, ack, acked_sacked);
3670 	}
3671 	tcp_update_pacing_rate(sk);
3672 }
3673 
3674 /* Check that window update is acceptable.
3675  * The function assumes that snd_una<=ack<=snd_next.
3676  */
tcp_may_update_window(const struct tcp_sock * tp,const u32 ack,const u32 ack_seq,const u32 nwin)3677 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3678 					const u32 ack, const u32 ack_seq,
3679 					const u32 nwin)
3680 {
3681 	return	after(ack, tp->snd_una) ||
3682 		after(ack_seq, tp->snd_wl1) ||
3683 		(ack_seq == tp->snd_wl1 && (nwin > tp->snd_wnd || !nwin));
3684 }
3685 
tcp_snd_sne_update(struct tcp_sock * tp,u32 ack)3686 static void tcp_snd_sne_update(struct tcp_sock *tp, u32 ack)
3687 {
3688 #ifdef CONFIG_TCP_AO
3689 	struct tcp_ao_info *ao;
3690 
3691 	if (!static_branch_unlikely(&tcp_ao_needed.key))
3692 		return;
3693 
3694 	ao = rcu_dereference_protected(tp->ao_info,
3695 				       lockdep_sock_is_held((struct sock *)tp));
3696 	if (ao && ack < tp->snd_una) {
3697 		ao->snd_sne++;
3698 		trace_tcp_ao_snd_sne_update((struct sock *)tp, ao->snd_sne);
3699 	}
3700 #endif
3701 }
3702 
3703 /* If we update tp->snd_una, also update tp->bytes_acked */
tcp_snd_una_update(struct tcp_sock * tp,u32 ack)3704 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3705 {
3706 	u32 delta = ack - tp->snd_una;
3707 
3708 	sock_owned_by_me((struct sock *)tp);
3709 	tp->bytes_acked += delta;
3710 	tcp_snd_sne_update(tp, ack);
3711 	tp->snd_una = ack;
3712 }
3713 
tcp_rcv_sne_update(struct tcp_sock * tp,u32 seq)3714 static void tcp_rcv_sne_update(struct tcp_sock *tp, u32 seq)
3715 {
3716 #ifdef CONFIG_TCP_AO
3717 	struct tcp_ao_info *ao;
3718 
3719 	if (!static_branch_unlikely(&tcp_ao_needed.key))
3720 		return;
3721 
3722 	ao = rcu_dereference_protected(tp->ao_info,
3723 				       lockdep_sock_is_held((struct sock *)tp));
3724 	if (ao && seq < tp->rcv_nxt) {
3725 		ao->rcv_sne++;
3726 		trace_tcp_ao_rcv_sne_update((struct sock *)tp, ao->rcv_sne);
3727 	}
3728 #endif
3729 }
3730 
3731 /* If we update tp->rcv_nxt, also update tp->bytes_received */
tcp_rcv_nxt_update(struct tcp_sock * tp,u32 seq)3732 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3733 {
3734 	u32 delta = seq - tp->rcv_nxt;
3735 
3736 	sock_owned_by_me((struct sock *)tp);
3737 	tp->bytes_received += delta;
3738 	tcp_rcv_sne_update(tp, seq);
3739 	WRITE_ONCE(tp->rcv_nxt, seq);
3740 }
3741 
3742 /* Update our send window.
3743  *
3744  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3745  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3746  */
tcp_ack_update_window(struct sock * sk,const struct sk_buff * skb,u32 ack,u32 ack_seq)3747 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3748 				 u32 ack_seq)
3749 {
3750 	struct tcp_sock *tp = tcp_sk(sk);
3751 	int flag = 0;
3752 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3753 
3754 	if (likely(!tcp_hdr(skb)->syn))
3755 		nwin <<= tp->rx_opt.snd_wscale;
3756 
3757 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3758 		flag |= FLAG_WIN_UPDATE;
3759 		tcp_update_wl(tp, ack_seq);
3760 
3761 		if (tp->snd_wnd != nwin) {
3762 			tp->snd_wnd = nwin;
3763 
3764 			/* Note, it is the only place, where
3765 			 * fast path is recovered for sending TCP.
3766 			 */
3767 			tp->pred_flags = 0;
3768 			tcp_fast_path_check(sk);
3769 
3770 			if (!tcp_write_queue_empty(sk))
3771 				tcp_slow_start_after_idle_check(sk);
3772 
3773 			if (nwin > tp->max_window) {
3774 				tp->max_window = nwin;
3775 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3776 			}
3777 		}
3778 	}
3779 
3780 	tcp_snd_una_update(tp, ack);
3781 
3782 	return flag;
3783 }
3784 
__tcp_oow_rate_limited(struct net * net,int mib_idx,u32 * last_oow_ack_time)3785 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3786 				   u32 *last_oow_ack_time)
3787 {
3788 	/* Paired with the WRITE_ONCE() in this function. */
3789 	u32 val = READ_ONCE(*last_oow_ack_time);
3790 
3791 	if (val) {
3792 		s32 elapsed = (s32)(tcp_jiffies32 - val);
3793 
3794 		if (0 <= elapsed &&
3795 		    elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) {
3796 			NET_INC_STATS(net, mib_idx);
3797 			return true;	/* rate-limited: don't send yet! */
3798 		}
3799 	}
3800 
3801 	/* Paired with the prior READ_ONCE() and with itself,
3802 	 * as we might be lockless.
3803 	 */
3804 	WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32);
3805 
3806 	return false;	/* not rate-limited: go ahead, send dupack now! */
3807 }
3808 
3809 /* Return true if we're currently rate-limiting out-of-window ACKs and
3810  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3811  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3812  * attacks that send repeated SYNs or ACKs for the same connection. To
3813  * do this, we do not send a duplicate SYNACK or ACK if the remote
3814  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3815  */
tcp_oow_rate_limited(struct net * net,const struct sk_buff * skb,int mib_idx,u32 * last_oow_ack_time)3816 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3817 			  int mib_idx, u32 *last_oow_ack_time)
3818 {
3819 	/* Data packets without SYNs are not likely part of an ACK loop. */
3820 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3821 	    !tcp_hdr(skb)->syn)
3822 		return false;
3823 
3824 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3825 }
3826 
tcp_send_ack_reflect_ect(struct sock * sk,bool accecn_reflector)3827 static void tcp_send_ack_reflect_ect(struct sock *sk, bool accecn_reflector)
3828 {
3829 	struct tcp_sock *tp = tcp_sk(sk);
3830 	u16 flags = 0;
3831 
3832 	if (accecn_reflector)
3833 		flags = tcp_accecn_reflector_flags(tp->syn_ect_rcv);
3834 	__tcp_send_ack(sk, tp->rcv_nxt, flags);
3835 }
3836 
3837 /* RFC 5961 7 [ACK Throttling] */
tcp_send_challenge_ack(struct sock * sk,bool accecn_reflector)3838 static void tcp_send_challenge_ack(struct sock *sk, bool accecn_reflector)
3839 {
3840 	struct tcp_sock *tp = tcp_sk(sk);
3841 	struct net *net = sock_net(sk);
3842 	u32 count, now, ack_limit;
3843 
3844 	/* First check our per-socket dupack rate limit. */
3845 	if (__tcp_oow_rate_limited(net,
3846 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3847 				   &tp->last_oow_ack_time))
3848 		return;
3849 
3850 	ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit);
3851 	if (ack_limit == INT_MAX)
3852 		goto send_ack;
3853 
3854 	/* Then check host-wide RFC 5961 rate limit. */
3855 	now = jiffies / HZ;
3856 	if (now != READ_ONCE(net->ipv4.tcp_challenge_timestamp)) {
3857 		u32 half = (ack_limit + 1) >> 1;
3858 
3859 		WRITE_ONCE(net->ipv4.tcp_challenge_timestamp, now);
3860 		WRITE_ONCE(net->ipv4.tcp_challenge_count,
3861 			   get_random_u32_inclusive(half, ack_limit + half - 1));
3862 	}
3863 	count = READ_ONCE(net->ipv4.tcp_challenge_count);
3864 	if (count > 0) {
3865 		WRITE_ONCE(net->ipv4.tcp_challenge_count, count - 1);
3866 send_ack:
3867 		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3868 		tcp_send_ack_reflect_ect(sk, accecn_reflector);
3869 	}
3870 }
3871 
tcp_store_ts_recent(struct tcp_sock * tp)3872 static void tcp_store_ts_recent(struct tcp_sock *tp)
3873 {
3874 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3875 	tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3876 }
3877 
__tcp_replace_ts_recent(struct tcp_sock * tp,s32 tstamp_delta)3878 static int __tcp_replace_ts_recent(struct tcp_sock *tp, s32 tstamp_delta)
3879 {
3880 	tcp_store_ts_recent(tp);
3881 	return tstamp_delta > 0 ? FLAG_TS_PROGRESS : 0;
3882 }
3883 
tcp_replace_ts_recent(struct tcp_sock * tp,u32 seq)3884 static int tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3885 {
3886 	s32 delta;
3887 
3888 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3889 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3890 		 * extra check below makes sure this can only happen
3891 		 * for pure ACK frames.  -DaveM
3892 		 *
3893 		 * Not only, also it occurs for expired timestamps.
3894 		 */
3895 
3896 		if (tcp_paws_check(&tp->rx_opt, 0)) {
3897 			delta = tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent;
3898 			return __tcp_replace_ts_recent(tp, delta);
3899 		}
3900 	}
3901 
3902 	return 0;
3903 }
3904 
3905 /* This routine deals with acks during a TLP episode and ends an episode by
3906  * resetting tlp_high_seq. Ref: TLP algorithm in RFC8985
3907  */
tcp_process_tlp_ack(struct sock * sk,u32 ack,int flag)3908 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3909 {
3910 	struct tcp_sock *tp = tcp_sk(sk);
3911 
3912 	if (before(ack, tp->tlp_high_seq))
3913 		return;
3914 
3915 	if (!tp->tlp_retrans) {
3916 		/* TLP of new data has been acknowledged */
3917 		tp->tlp_high_seq = 0;
3918 	} else if (flag & FLAG_DSACK_TLP) {
3919 		/* This DSACK means original and TLP probe arrived; no loss */
3920 		tp->tlp_high_seq = 0;
3921 	} else if (after(ack, tp->tlp_high_seq)) {
3922 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3923 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3924 		 */
3925 		tcp_init_cwnd_reduction(sk);
3926 		tcp_set_ca_state(sk, TCP_CA_CWR);
3927 		tcp_end_cwnd_reduction(sk);
3928 		tcp_try_keep_open(sk);
3929 		NET_INC_STATS(sock_net(sk),
3930 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3931 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3932 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3933 		/* Pure dupack: original and TLP probe arrived; no loss */
3934 		tp->tlp_high_seq = 0;
3935 	}
3936 }
3937 
tcp_in_ack_event(struct sock * sk,int flag)3938 static void tcp_in_ack_event(struct sock *sk, int flag)
3939 {
3940 	const struct inet_connection_sock *icsk = inet_csk(sk);
3941 
3942 	if (icsk->icsk_ca_ops->in_ack_event) {
3943 		u32 ack_ev_flags = 0;
3944 
3945 		if (flag & FLAG_WIN_UPDATE)
3946 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3947 		if (flag & FLAG_SLOWPATH) {
3948 			ack_ev_flags |= CA_ACK_SLOWPATH;
3949 			if (flag & FLAG_ECE)
3950 				ack_ev_flags |= CA_ACK_ECE;
3951 		}
3952 
3953 		icsk->icsk_ca_ops->in_ack_event(sk, ack_ev_flags);
3954 	}
3955 }
3956 
3957 /* Congestion control has updated the cwnd already. So if we're in
3958  * loss recovery then now we do any new sends (for FRTO) or
3959  * retransmits (for CA_Loss or CA_recovery) that make sense.
3960  */
tcp_xmit_recovery(struct sock * sk,int rexmit)3961 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3962 {
3963 	struct tcp_sock *tp = tcp_sk(sk);
3964 
3965 	if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3966 		return;
3967 
3968 	if (unlikely(rexmit == REXMIT_NEW)) {
3969 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3970 					  TCP_NAGLE_OFF);
3971 		if (after(tp->snd_nxt, tp->high_seq))
3972 			return;
3973 		tp->frto = 0;
3974 	}
3975 	tcp_xmit_retransmit_queue(sk);
3976 }
3977 
3978 /* Returns the number of packets newly acked or sacked by the current ACK */
tcp_newly_delivered(struct sock * sk,u32 prior_delivered,u32 ecn_count,int flag)3979 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered,
3980 			       u32 ecn_count, int flag)
3981 {
3982 	const struct net *net = sock_net(sk);
3983 	struct tcp_sock *tp = tcp_sk(sk);
3984 	u32 delivered;
3985 
3986 	delivered = tp->delivered - prior_delivered;
3987 	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3988 
3989 	if (flag & FLAG_ECE) {
3990 		if (tcp_ecn_mode_rfc3168(tp))
3991 			ecn_count = delivered;
3992 		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, ecn_count);
3993 	}
3994 
3995 	return delivered;
3996 }
3997 
3998 /* This routine deals with incoming acks, but not outgoing ones. */
tcp_ack(struct sock * sk,const struct sk_buff * skb,int flag)3999 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
4000 {
4001 	struct inet_connection_sock *icsk = inet_csk(sk);
4002 	struct tcp_sock *tp = tcp_sk(sk);
4003 	struct tcp_sacktag_state sack_state;
4004 	struct rate_sample rs = { .prior_delivered = 0 };
4005 	u32 prior_snd_una = tp->snd_una;
4006 	bool is_sack_reneg = tp->is_sack_reneg;
4007 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
4008 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4009 	int num_dupack = 0;
4010 	int prior_packets = tp->packets_out;
4011 	u32 delivered = tp->delivered;
4012 	u32 lost = tp->lost;
4013 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
4014 	u32 ecn_count = 0;	  /* Did we receive ECE/an AccECN ACE update? */
4015 	u32 prior_fack;
4016 
4017 	sack_state.first_sackt = 0;
4018 	sack_state.rate = &rs;
4019 	sack_state.sack_delivered = 0;
4020 	sack_state.delivered_bytes = 0;
4021 
4022 	/* We very likely will need to access rtx queue. */
4023 	prefetch(sk->tcp_rtx_queue.rb_node);
4024 
4025 	/* If the ack is older than previous acks
4026 	 * then we can probably ignore it.
4027 	 */
4028 	if (before(ack, prior_snd_una)) {
4029 		u32 max_window;
4030 
4031 		/* do not accept ACK for bytes we never sent. */
4032 		max_window = min_t(u64, tp->max_window, tp->bytes_acked);
4033 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
4034 		if (before(ack, prior_snd_una - max_window)) {
4035 			if (!(flag & FLAG_NO_CHALLENGE_ACK))
4036 				tcp_send_challenge_ack(sk, false);
4037 			return -SKB_DROP_REASON_TCP_TOO_OLD_ACK;
4038 		}
4039 		goto old_ack;
4040 	}
4041 
4042 	/* If the ack includes data we haven't sent yet, discard
4043 	 * this segment (RFC793 Section 3.9).
4044 	 */
4045 	if (after(ack, tp->snd_nxt))
4046 		return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA;
4047 
4048 	if (after(ack, prior_snd_una)) {
4049 		flag |= FLAG_SND_UNA_ADVANCED;
4050 		WRITE_ONCE(icsk->icsk_retransmits, 0);
4051 
4052 #if IS_ENABLED(CONFIG_TLS_DEVICE)
4053 		if (static_branch_unlikely(&clean_acked_data_enabled.key))
4054 			if (tp->tcp_clean_acked)
4055 				tp->tcp_clean_acked(sk, ack);
4056 #endif
4057 	}
4058 
4059 	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
4060 	rs.prior_in_flight = tcp_packets_in_flight(tp);
4061 
4062 	/* ts_recent update must be made after we are sure that the packet
4063 	 * is in window.
4064 	 */
4065 	if (flag & FLAG_UPDATE_TS_RECENT)
4066 		flag |= tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4067 
4068 	if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
4069 	    FLAG_SND_UNA_ADVANCED) {
4070 		/* Window is constant, pure forward advance.
4071 		 * No more checks are required.
4072 		 * Note, we use the fact that SND.UNA>=SND.WL2.
4073 		 */
4074 		tcp_update_wl(tp, ack_seq);
4075 		tcp_snd_una_update(tp, ack);
4076 		flag |= FLAG_WIN_UPDATE;
4077 
4078 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
4079 	} else {
4080 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
4081 			flag |= FLAG_DATA;
4082 		else
4083 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
4084 
4085 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
4086 
4087 		if (TCP_SKB_CB(skb)->sacked)
4088 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
4089 							&sack_state);
4090 
4091 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb)))
4092 			flag |= FLAG_ECE;
4093 
4094 		if (sack_state.sack_delivered)
4095 			tcp_count_delivered(tp, sack_state.sack_delivered,
4096 					    flag & FLAG_ECE);
4097 	}
4098 
4099 	/* This is a deviation from RFC3168 since it states that:
4100 	 * "When the TCP data sender is ready to set the CWR bit after reducing
4101 	 * the congestion window, it SHOULD set the CWR bit only on the first
4102 	 * new data packet that it transmits."
4103 	 * We accept CWR on pure ACKs to be more robust
4104 	 * with widely-deployed TCP implementations that do this.
4105 	 */
4106 	tcp_ecn_accept_cwr(sk, skb);
4107 
4108 	/* We passed data and got it acked, remove any soft error
4109 	 * log. Something worked...
4110 	 */
4111 	if (READ_ONCE(sk->sk_err_soft))
4112 		WRITE_ONCE(sk->sk_err_soft, 0);
4113 	WRITE_ONCE(icsk->icsk_probes_out, 0);
4114 	tp->rcv_tstamp = tcp_jiffies32;
4115 	if (!prior_packets)
4116 		goto no_queue;
4117 
4118 	/* See if we can take anything off of the retransmit queue. */
4119 	flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una,
4120 				    &sack_state, flag & FLAG_ECE);
4121 
4122 	tcp_rack_update_reo_wnd(sk, &rs);
4123 
4124 	if (tcp_ecn_mode_accecn(tp))
4125 		ecn_count = tcp_accecn_process(sk, skb,
4126 					       tp->delivered - delivered,
4127 					       sack_state.delivered_bytes,
4128 					       &flag);
4129 
4130 	tcp_in_ack_event(sk, flag);
4131 
4132 	if (tp->tlp_high_seq)
4133 		tcp_process_tlp_ack(sk, ack, flag);
4134 
4135 	if (tcp_ack_is_dubious(sk, flag)) {
4136 		if (!(flag & (FLAG_SND_UNA_ADVANCED |
4137 			      FLAG_NOT_DUP | FLAG_DSACKING_ACK))) {
4138 			num_dupack = 1;
4139 			/* Consider if pure acks were aggregated in tcp_add_backlog() */
4140 			if (!(flag & FLAG_DATA))
4141 				num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4142 		}
4143 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4144 				      &rexmit);
4145 	}
4146 
4147 	/* If needed, reset TLP/RTO timer when RACK doesn't set. */
4148 	if (flag & FLAG_SET_XMIT_TIMER)
4149 		tcp_set_xmit_timer(sk);
4150 
4151 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
4152 		sk_dst_confirm(sk);
4153 
4154 	delivered = tcp_newly_delivered(sk, delivered, ecn_count, flag);
4155 
4156 	lost = tp->lost - lost;			/* freshly marked lost */
4157 	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
4158 	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
4159 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
4160 	tcp_xmit_recovery(sk, rexmit);
4161 	return 1;
4162 
4163 no_queue:
4164 	if (tcp_ecn_mode_accecn(tp))
4165 		ecn_count = tcp_accecn_process(sk, skb,
4166 					       tp->delivered - delivered,
4167 					       sack_state.delivered_bytes,
4168 					       &flag);
4169 	tcp_in_ack_event(sk, flag);
4170 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
4171 	if (flag & FLAG_DSACKING_ACK) {
4172 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4173 				      &rexmit);
4174 		tcp_newly_delivered(sk, delivered, ecn_count, flag);
4175 	}
4176 	/* If this ack opens up a zero window, clear backoff.  It was
4177 	 * being used to time the probes, and is probably far higher than
4178 	 * it needs to be for normal retransmission.
4179 	 */
4180 	tcp_ack_probe(sk);
4181 
4182 	if (tp->tlp_high_seq)
4183 		tcp_process_tlp_ack(sk, ack, flag);
4184 	return 1;
4185 
4186 old_ack:
4187 	/* If data was SACKed, tag it and see if we should send more data.
4188 	 * If data was DSACKed, see if we can undo a cwnd reduction.
4189 	 */
4190 	if (TCP_SKB_CB(skb)->sacked) {
4191 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
4192 						&sack_state);
4193 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4194 				      &rexmit);
4195 		tcp_newly_delivered(sk, delivered, ecn_count, flag);
4196 		tcp_xmit_recovery(sk, rexmit);
4197 	}
4198 
4199 	return 0;
4200 }
4201 
tcp_parse_fastopen_option(int len,const unsigned char * cookie,bool syn,struct tcp_fastopen_cookie * foc,bool exp_opt)4202 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
4203 				      bool syn, struct tcp_fastopen_cookie *foc,
4204 				      bool exp_opt)
4205 {
4206 	/* Valid only in SYN or SYN-ACK with an even length.  */
4207 	if (!foc || !syn || len < 0 || (len & 1))
4208 		return;
4209 
4210 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
4211 	    len <= TCP_FASTOPEN_COOKIE_MAX)
4212 		memcpy(foc->val, cookie, len);
4213 	else if (len != 0)
4214 		len = -1;
4215 	foc->len = len;
4216 	foc->exp = exp_opt;
4217 }
4218 
smc_parse_options(const struct tcphdr * th,struct tcp_options_received * opt_rx,const unsigned char * ptr,int opsize)4219 static bool smc_parse_options(const struct tcphdr *th,
4220 			      struct tcp_options_received *opt_rx,
4221 			      const unsigned char *ptr,
4222 			      int opsize)
4223 {
4224 #if IS_ENABLED(CONFIG_SMC)
4225 	if (static_branch_unlikely(&tcp_have_smc)) {
4226 		if (th->syn && !(opsize & 1) &&
4227 		    opsize >= TCPOLEN_EXP_SMC_BASE &&
4228 		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) {
4229 			opt_rx->smc_ok = 1;
4230 			return true;
4231 		}
4232 	}
4233 #endif
4234 	return false;
4235 }
4236 
4237 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
4238  * value on success.
4239  */
tcp_parse_mss_option(const struct tcphdr * th,u16 user_mss)4240 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
4241 {
4242 	const unsigned char *ptr = (const unsigned char *)(th + 1);
4243 	int length = (th->doff * 4) - sizeof(struct tcphdr);
4244 	u16 mss = 0;
4245 
4246 	while (length > 0) {
4247 		int opcode = *ptr++;
4248 		int opsize;
4249 
4250 		switch (opcode) {
4251 		case TCPOPT_EOL:
4252 			return mss;
4253 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
4254 			length--;
4255 			continue;
4256 		default:
4257 			if (length < 2)
4258 				return mss;
4259 			opsize = *ptr++;
4260 			if (opsize < 2) /* "silly options" */
4261 				return mss;
4262 			if (opsize > length)
4263 				return mss;	/* fail on partial options */
4264 			if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
4265 				u16 in_mss = get_unaligned_be16(ptr);
4266 
4267 				if (in_mss) {
4268 					if (user_mss && user_mss < in_mss)
4269 						in_mss = user_mss;
4270 					mss = in_mss;
4271 				}
4272 			}
4273 			ptr += opsize - 2;
4274 			length -= opsize;
4275 		}
4276 	}
4277 	return mss;
4278 }
4279 
4280 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
4281  * But, this can also be called on packets in the established flow when
4282  * the fast version below fails.
4283  */
tcp_parse_options(const struct net * net,const struct sk_buff * skb,struct tcp_options_received * opt_rx,int estab,struct tcp_fastopen_cookie * foc)4284 void tcp_parse_options(const struct net *net,
4285 		       const struct sk_buff *skb,
4286 		       struct tcp_options_received *opt_rx, int estab,
4287 		       struct tcp_fastopen_cookie *foc)
4288 {
4289 	const unsigned char *ptr;
4290 	const struct tcphdr *th = tcp_hdr(skb);
4291 	int length = (th->doff * 4) - sizeof(struct tcphdr);
4292 
4293 	ptr = (const unsigned char *)(th + 1);
4294 	opt_rx->saw_tstamp = 0;
4295 	opt_rx->accecn = 0;
4296 	opt_rx->saw_unknown = 0;
4297 
4298 	while (length > 0) {
4299 		int opcode = *ptr++;
4300 		int opsize;
4301 
4302 		switch (opcode) {
4303 		case TCPOPT_EOL:
4304 			return;
4305 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
4306 			length--;
4307 			continue;
4308 		default:
4309 			if (length < 2)
4310 				return;
4311 			opsize = *ptr++;
4312 			if (opsize < 2) /* "silly options" */
4313 				return;
4314 			if (opsize > length)
4315 				return;	/* don't parse partial options */
4316 			switch (opcode) {
4317 			case TCPOPT_MSS:
4318 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
4319 					u16 in_mss = get_unaligned_be16(ptr);
4320 					if (in_mss) {
4321 						if (opt_rx->user_mss &&
4322 						    opt_rx->user_mss < in_mss)
4323 							in_mss = opt_rx->user_mss;
4324 						opt_rx->mss_clamp = in_mss;
4325 					}
4326 				}
4327 				break;
4328 			case TCPOPT_WINDOW:
4329 				if (opsize == TCPOLEN_WINDOW && th->syn &&
4330 				    !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) {
4331 					__u8 snd_wscale = *(__u8 *)ptr;
4332 					opt_rx->wscale_ok = 1;
4333 					if (snd_wscale > TCP_MAX_WSCALE) {
4334 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
4335 								     __func__,
4336 								     snd_wscale,
4337 								     TCP_MAX_WSCALE);
4338 						snd_wscale = TCP_MAX_WSCALE;
4339 					}
4340 					opt_rx->snd_wscale = snd_wscale;
4341 				}
4342 				break;
4343 			case TCPOPT_TIMESTAMP:
4344 				if ((opsize == TCPOLEN_TIMESTAMP) &&
4345 				    ((estab && opt_rx->tstamp_ok) ||
4346 				     (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) {
4347 					opt_rx->saw_tstamp = 1;
4348 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
4349 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
4350 				}
4351 				break;
4352 			case TCPOPT_SACK_PERM:
4353 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
4354 				    !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) {
4355 					opt_rx->sack_ok = TCP_SACK_SEEN;
4356 					tcp_sack_reset(opt_rx);
4357 				}
4358 				break;
4359 
4360 			case TCPOPT_SACK:
4361 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
4362 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
4363 				   opt_rx->sack_ok) {
4364 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
4365 				}
4366 				break;
4367 #ifdef CONFIG_TCP_MD5SIG
4368 			case TCPOPT_MD5SIG:
4369 				/* The MD5 Hash has already been
4370 				 * checked (see tcp_v{4,6}_rcv()).
4371 				 */
4372 				break;
4373 #endif
4374 #ifdef CONFIG_TCP_AO
4375 			case TCPOPT_AO:
4376 				/* TCP AO has already been checked
4377 				 * (see tcp_inbound_ao_hash()).
4378 				 */
4379 				break;
4380 #endif
4381 			case TCPOPT_FASTOPEN:
4382 				tcp_parse_fastopen_option(
4383 					opsize - TCPOLEN_FASTOPEN_BASE,
4384 					ptr, th->syn, foc, false);
4385 				break;
4386 
4387 			case TCPOPT_ACCECN0:
4388 			case TCPOPT_ACCECN1:
4389 				/* Save offset of AccECN option in TCP header */
4390 				opt_rx->accecn = (ptr - 2) - (__u8 *)th;
4391 				break;
4392 
4393 			case TCPOPT_EXP:
4394 				/* Fast Open option shares code 254 using a
4395 				 * 16 bits magic number.
4396 				 */
4397 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4398 				    get_unaligned_be16(ptr) ==
4399 				    TCPOPT_FASTOPEN_MAGIC) {
4400 					tcp_parse_fastopen_option(opsize -
4401 						TCPOLEN_EXP_FASTOPEN_BASE,
4402 						ptr + 2, th->syn, foc, true);
4403 					break;
4404 				}
4405 
4406 				if (smc_parse_options(th, opt_rx, ptr, opsize))
4407 					break;
4408 
4409 				opt_rx->saw_unknown = 1;
4410 				break;
4411 
4412 			default:
4413 				opt_rx->saw_unknown = 1;
4414 			}
4415 			ptr += opsize-2;
4416 			length -= opsize;
4417 		}
4418 	}
4419 }
4420 EXPORT_SYMBOL(tcp_parse_options);
4421 
tcp_parse_aligned_timestamp(struct tcp_sock * tp,const struct tcphdr * th)4422 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4423 {
4424 	const __be32 *ptr = (const __be32 *)(th + 1);
4425 
4426 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4427 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4428 		tp->rx_opt.saw_tstamp = 1;
4429 		++ptr;
4430 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
4431 		++ptr;
4432 		if (*ptr)
4433 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4434 		else
4435 			tp->rx_opt.rcv_tsecr = 0;
4436 		return true;
4437 	}
4438 	return false;
4439 }
4440 
4441 /* Fast parse options. This hopes to only see timestamps.
4442  * If it is wrong it falls back on tcp_parse_options().
4443  */
tcp_fast_parse_options(const struct net * net,const struct sk_buff * skb,const struct tcphdr * th,struct tcp_sock * tp)4444 static bool tcp_fast_parse_options(const struct net *net,
4445 				   const struct sk_buff *skb,
4446 				   const struct tcphdr *th, struct tcp_sock *tp)
4447 {
4448 	/* In the spirit of fast parsing, compare doff directly to constant
4449 	 * values.  Because equality is used, short doff can be ignored here.
4450 	 */
4451 	if (th->doff == (sizeof(*th) / 4)) {
4452 		tp->rx_opt.saw_tstamp = 0;
4453 		tp->rx_opt.accecn = 0;
4454 		return false;
4455 	} else if (tp->rx_opt.tstamp_ok &&
4456 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4457 		if (tcp_parse_aligned_timestamp(tp, th)) {
4458 			tp->rx_opt.accecn = 0;
4459 			return true;
4460 		}
4461 	}
4462 
4463 	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4464 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4465 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4466 
4467 	return true;
4468 }
4469 
4470 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
4471 /*
4472  * Parse Signature options
4473  */
tcp_do_parse_auth_options(const struct tcphdr * th,const u8 ** md5_hash,const u8 ** ao_hash)4474 int tcp_do_parse_auth_options(const struct tcphdr *th,
4475 			      const u8 **md5_hash, const u8 **ao_hash)
4476 {
4477 	int length = (th->doff << 2) - sizeof(*th);
4478 	const u8 *ptr = (const u8 *)(th + 1);
4479 	unsigned int minlen = TCPOLEN_MD5SIG;
4480 
4481 	if (IS_ENABLED(CONFIG_TCP_AO))
4482 		minlen = sizeof(struct tcp_ao_hdr) + 1;
4483 
4484 	*md5_hash = NULL;
4485 	*ao_hash = NULL;
4486 
4487 	/* If not enough data remaining, we can short cut */
4488 	while (length >= minlen) {
4489 		int opcode = *ptr++;
4490 		int opsize;
4491 
4492 		switch (opcode) {
4493 		case TCPOPT_EOL:
4494 			return 0;
4495 		case TCPOPT_NOP:
4496 			length--;
4497 			continue;
4498 		default:
4499 			opsize = *ptr++;
4500 			if (opsize < 2 || opsize > length)
4501 				return -EINVAL;
4502 			if (opcode == TCPOPT_MD5SIG) {
4503 				if (opsize != TCPOLEN_MD5SIG)
4504 					return -EINVAL;
4505 				if (unlikely(*md5_hash || *ao_hash))
4506 					return -EEXIST;
4507 				*md5_hash = ptr;
4508 			} else if (opcode == TCPOPT_AO) {
4509 				if (opsize <= sizeof(struct tcp_ao_hdr))
4510 					return -EINVAL;
4511 				if (unlikely(*md5_hash || *ao_hash))
4512 					return -EEXIST;
4513 				*ao_hash = ptr;
4514 			}
4515 		}
4516 		ptr += opsize - 2;
4517 		length -= opsize;
4518 	}
4519 	return 0;
4520 }
4521 EXPORT_SYMBOL(tcp_do_parse_auth_options);
4522 #endif
4523 
4524 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4525  *
4526  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4527  * it can pass through stack. So, the following predicate verifies that
4528  * this segment is not used for anything but congestion avoidance or
4529  * fast retransmit. Moreover, we even are able to eliminate most of such
4530  * second order effects, if we apply some small "replay" window (~RTO)
4531  * to timestamp space.
4532  *
4533  * All these measures still do not guarantee that we reject wrapped ACKs
4534  * on networks with high bandwidth, when sequence space is recycled fastly,
4535  * but it guarantees that such events will be very rare and do not affect
4536  * connection seriously. This doesn't look nice, but alas, PAWS is really
4537  * buggy extension.
4538  *
4539  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4540  * states that events when retransmit arrives after original data are rare.
4541  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4542  * the biggest problem on large power networks even with minor reordering.
4543  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4544  * up to bandwidth of 18Gigabit/sec. 8) ]
4545  */
4546 
4547 /* Estimates max number of increments of remote peer TSval in
4548  * a replay window (based on our current RTO estimation).
4549  */
tcp_tsval_replay(const struct sock * sk)4550 static u32 tcp_tsval_replay(const struct sock *sk)
4551 {
4552 	/* If we use usec TS resolution,
4553 	 * then expect the remote peer to use the same resolution.
4554 	 */
4555 	if (tcp_sk(sk)->tcp_usec_ts)
4556 		return inet_csk(sk)->icsk_rto * (USEC_PER_SEC / HZ);
4557 
4558 	/* RFC 7323 recommends a TSval clock between 1ms and 1sec.
4559 	 * We know that some OS (including old linux) can use 1200 Hz.
4560 	 */
4561 	return inet_csk(sk)->icsk_rto * 1200 / HZ;
4562 }
4563 
tcp_disordered_ack_check(const struct sock * sk,const struct sk_buff * skb)4564 static enum skb_drop_reason tcp_disordered_ack_check(const struct sock *sk,
4565 						     const struct sk_buff *skb)
4566 {
4567 	const struct tcp_sock *tp = tcp_sk(sk);
4568 	const struct tcphdr *th = tcp_hdr(skb);
4569 	SKB_DR_INIT(reason, TCP_RFC7323_PAWS);
4570 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4571 	u32 seq = TCP_SKB_CB(skb)->seq;
4572 
4573 	/* 1. Is this not a pure ACK ? */
4574 	if (!th->ack || seq != TCP_SKB_CB(skb)->end_seq)
4575 		return reason;
4576 
4577 	/* 2. Is its sequence not the expected one ? */
4578 	if (seq != tp->rcv_nxt)
4579 		return before(seq, tp->rcv_nxt) ?
4580 			SKB_DROP_REASON_TCP_RFC7323_PAWS_ACK :
4581 			reason;
4582 
4583 	/* 3. Is this not a duplicate ACK ? */
4584 	if (ack != tp->snd_una)
4585 		return reason;
4586 
4587 	/* 4. Is this updating the window ? */
4588 	if (tcp_may_update_window(tp, ack, seq, ntohs(th->window) <<
4589 						tp->rx_opt.snd_wscale))
4590 		return reason;
4591 
4592 	/* 5. Is this not in the replay window ? */
4593 	if ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) >
4594 	    tcp_tsval_replay(sk))
4595 		return reason;
4596 
4597 	return 0;
4598 }
4599 
4600 /* Check segment sequence number for validity.
4601  *
4602  * Segment controls are considered valid, if the segment
4603  * fits to the window after truncation to the window. Acceptability
4604  * of data (and SYN, FIN, of course) is checked separately.
4605  * See tcp_data_queue(), for example.
4606  *
4607  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4608  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4609  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4610  * (borrowed from freebsd)
4611  */
4612 
tcp_sequence(const struct sock * sk,u32 seq,u32 end_seq)4613 static enum skb_drop_reason tcp_sequence(const struct sock *sk,
4614 					 u32 seq, u32 end_seq)
4615 {
4616 	const struct tcp_sock *tp = tcp_sk(sk);
4617 
4618 	if (before(end_seq, tp->rcv_wup))
4619 		return SKB_DROP_REASON_TCP_OLD_SEQUENCE;
4620 
4621 	if (after(end_seq, tp->rcv_nxt + tcp_receive_window(tp))) {
4622 		if (after(seq, tp->rcv_nxt + tcp_receive_window(tp)))
4623 			return SKB_DROP_REASON_TCP_INVALID_SEQUENCE;
4624 
4625 		/* Only accept this packet if receive queue is empty. */
4626 		if (skb_queue_len(&sk->sk_receive_queue))
4627 			return SKB_DROP_REASON_TCP_INVALID_END_SEQUENCE;
4628 	}
4629 
4630 	return SKB_NOT_DROPPED_YET;
4631 }
4632 
4633 
tcp_done_with_error(struct sock * sk,int err)4634 void tcp_done_with_error(struct sock *sk, int err)
4635 {
4636 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4637 	WRITE_ONCE(sk->sk_err, err);
4638 	smp_wmb();
4639 
4640 	tcp_write_queue_purge(sk);
4641 	tcp_done(sk);
4642 
4643 	if (!sock_flag(sk, SOCK_DEAD))
4644 		sk_error_report(sk);
4645 }
4646 EXPORT_IPV6_MOD(tcp_done_with_error);
4647 
4648 /* When we get a reset we do this. */
tcp_reset(struct sock * sk,struct sk_buff * skb)4649 void tcp_reset(struct sock *sk, struct sk_buff *skb)
4650 {
4651 	int err;
4652 
4653 	trace_tcp_receive_reset(sk);
4654 
4655 	/* mptcp can't tell us to ignore reset pkts,
4656 	 * so just ignore the return value of mptcp_incoming_options().
4657 	 */
4658 	if (sk_is_mptcp(sk))
4659 		mptcp_incoming_options(sk, skb);
4660 
4661 	/* We want the right error as BSD sees it (and indeed as we do). */
4662 	switch (sk->sk_state) {
4663 	case TCP_SYN_SENT:
4664 		err = ECONNREFUSED;
4665 		break;
4666 	case TCP_CLOSE_WAIT:
4667 		err = EPIPE;
4668 		break;
4669 	case TCP_CLOSE:
4670 		return;
4671 	default:
4672 		err = ECONNRESET;
4673 	}
4674 	tcp_done_with_error(sk, err);
4675 }
4676 
4677 /*
4678  * 	Process the FIN bit. This now behaves as it is supposed to work
4679  *	and the FIN takes effect when it is validly part of sequence
4680  *	space. Not before when we get holes.
4681  *
4682  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4683  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4684  *	TIME-WAIT)
4685  *
4686  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4687  *	close and we go into CLOSING (and later onto TIME-WAIT)
4688  *
4689  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4690  */
tcp_fin(struct sock * sk)4691 void tcp_fin(struct sock *sk)
4692 {
4693 	struct tcp_sock *tp = tcp_sk(sk);
4694 
4695 	inet_csk_schedule_ack(sk);
4696 
4697 	WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
4698 	sock_set_flag(sk, SOCK_DONE);
4699 
4700 	switch (sk->sk_state) {
4701 	case TCP_SYN_RECV:
4702 	case TCP_ESTABLISHED:
4703 		/* Move to CLOSE_WAIT */
4704 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4705 		inet_csk_enter_pingpong_mode(sk);
4706 		break;
4707 
4708 	case TCP_CLOSE_WAIT:
4709 	case TCP_CLOSING:
4710 		/* Received a retransmission of the FIN, do
4711 		 * nothing.
4712 		 */
4713 		break;
4714 	case TCP_LAST_ACK:
4715 		/* RFC793: Remain in the LAST-ACK state. */
4716 		break;
4717 
4718 	case TCP_FIN_WAIT1:
4719 		/* This case occurs when a simultaneous close
4720 		 * happens, we must ack the received FIN and
4721 		 * enter the CLOSING state.
4722 		 */
4723 		tcp_send_ack(sk);
4724 		tcp_set_state(sk, TCP_CLOSING);
4725 		break;
4726 	case TCP_FIN_WAIT2:
4727 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4728 		tcp_send_ack(sk);
4729 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4730 		break;
4731 	default:
4732 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4733 		 * cases we should never reach this piece of code.
4734 		 */
4735 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4736 		       __func__, sk->sk_state);
4737 		break;
4738 	}
4739 
4740 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4741 	 * Probably, we should reset in this case. For now drop them.
4742 	 */
4743 	skb_rbtree_purge(&tp->out_of_order_queue);
4744 	if (tcp_is_sack(tp))
4745 		tcp_sack_reset(&tp->rx_opt);
4746 
4747 	if (!sock_flag(sk, SOCK_DEAD)) {
4748 		sk->sk_state_change(sk);
4749 
4750 		/* Do not send POLL_HUP for half duplex close. */
4751 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4752 		    sk->sk_state == TCP_CLOSE)
4753 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4754 		else
4755 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4756 	}
4757 }
4758 
tcp_sack_extend(struct tcp_sack_block * sp,u32 seq,u32 end_seq)4759 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4760 				  u32 end_seq)
4761 {
4762 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4763 		if (before(seq, sp->start_seq))
4764 			sp->start_seq = seq;
4765 		if (after(end_seq, sp->end_seq))
4766 			sp->end_seq = end_seq;
4767 		return true;
4768 	}
4769 	return false;
4770 }
4771 
tcp_dsack_set(struct sock * sk,u32 seq,u32 end_seq)4772 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4773 {
4774 	struct tcp_sock *tp = tcp_sk(sk);
4775 
4776 	if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4777 		int mib_idx;
4778 
4779 		if (before(seq, tp->rcv_nxt))
4780 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4781 		else
4782 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4783 
4784 		NET_INC_STATS(sock_net(sk), mib_idx);
4785 
4786 		tp->rx_opt.dsack = 1;
4787 		tp->duplicate_sack[0].start_seq = seq;
4788 		tp->duplicate_sack[0].end_seq = end_seq;
4789 	}
4790 }
4791 
tcp_dsack_extend(struct sock * sk,u32 seq,u32 end_seq)4792 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4793 {
4794 	struct tcp_sock *tp = tcp_sk(sk);
4795 
4796 	if (!tp->rx_opt.dsack)
4797 		tcp_dsack_set(sk, seq, end_seq);
4798 	else
4799 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4800 }
4801 
tcp_rcv_spurious_retrans(struct sock * sk,const struct sk_buff * skb)4802 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4803 {
4804 	/* When the ACK path fails or drops most ACKs, the sender would
4805 	 * timeout and spuriously retransmit the same segment repeatedly.
4806 	 * If it seems our ACKs are not reaching the other side,
4807 	 * based on receiving a duplicate data segment with new flowlabel
4808 	 * (suggesting the sender suffered an RTO), and we are not already
4809 	 * repathing due to our own RTO, then rehash the socket to repath our
4810 	 * packets.
4811 	 */
4812 #if IS_ENABLED(CONFIG_IPV6)
4813 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss &&
4814 	    skb->protocol == htons(ETH_P_IPV6) &&
4815 	    (tcp_sk(sk)->inet_conn.icsk_ack.lrcv_flowlabel !=
4816 	     ntohl(ip6_flowlabel(ipv6_hdr(skb)))) &&
4817 	    sk_rethink_txhash(sk))
4818 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4819 
4820 	/* Save last flowlabel after a spurious retrans. */
4821 	tcp_save_lrcv_flowlabel(sk, skb);
4822 #endif
4823 }
4824 
tcp_send_dupack(struct sock * sk,const struct sk_buff * skb)4825 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4826 {
4827 	struct tcp_sock *tp = tcp_sk(sk);
4828 
4829 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4830 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4831 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4832 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4833 
4834 		if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4835 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4836 
4837 			tcp_rcv_spurious_retrans(sk, skb);
4838 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4839 				end_seq = tp->rcv_nxt;
4840 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4841 		}
4842 	}
4843 
4844 	tcp_send_ack(sk);
4845 }
4846 
4847 /* These routines update the SACK block as out-of-order packets arrive or
4848  * in-order packets close up the sequence space.
4849  */
tcp_sack_maybe_coalesce(struct tcp_sock * tp)4850 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4851 {
4852 	int this_sack;
4853 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4854 	struct tcp_sack_block *swalk = sp + 1;
4855 
4856 	/* See if the recent change to the first SACK eats into
4857 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4858 	 */
4859 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4860 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4861 			int i;
4862 
4863 			/* Zap SWALK, by moving every further SACK up by one slot.
4864 			 * Decrease num_sacks.
4865 			 */
4866 			tp->rx_opt.num_sacks--;
4867 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4868 				sp[i] = sp[i + 1];
4869 			continue;
4870 		}
4871 		this_sack++;
4872 		swalk++;
4873 	}
4874 }
4875 
tcp_sack_compress_send_ack(struct sock * sk)4876 void tcp_sack_compress_send_ack(struct sock *sk)
4877 {
4878 	struct tcp_sock *tp = tcp_sk(sk);
4879 
4880 	if (!tp->compressed_ack)
4881 		return;
4882 
4883 	if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4884 		__sock_put(sk);
4885 
4886 	/* Since we have to send one ack finally,
4887 	 * substract one from tp->compressed_ack to keep
4888 	 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4889 	 */
4890 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4891 		      tp->compressed_ack - 1);
4892 
4893 	tp->compressed_ack = 0;
4894 	tcp_send_ack(sk);
4895 }
4896 
4897 /* Reasonable amount of sack blocks included in TCP SACK option
4898  * The max is 4, but this becomes 3 if TCP timestamps are there.
4899  * Given that SACK packets might be lost, be conservative and use 2.
4900  */
4901 #define TCP_SACK_BLOCKS_EXPECTED 2
4902 
tcp_sack_new_ofo_skb(struct sock * sk,u32 seq,u32 end_seq)4903 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4904 {
4905 	struct tcp_sock *tp = tcp_sk(sk);
4906 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4907 	int cur_sacks = tp->rx_opt.num_sacks;
4908 	int this_sack;
4909 
4910 	if (!cur_sacks)
4911 		goto new_sack;
4912 
4913 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4914 		if (tcp_sack_extend(sp, seq, end_seq)) {
4915 			if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4916 				tcp_sack_compress_send_ack(sk);
4917 			/* Rotate this_sack to the first one. */
4918 			for (; this_sack > 0; this_sack--, sp--)
4919 				swap(*sp, *(sp - 1));
4920 			if (cur_sacks > 1)
4921 				tcp_sack_maybe_coalesce(tp);
4922 			return;
4923 		}
4924 	}
4925 
4926 	if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4927 		tcp_sack_compress_send_ack(sk);
4928 
4929 	/* Could not find an adjacent existing SACK, build a new one,
4930 	 * put it at the front, and shift everyone else down.  We
4931 	 * always know there is at least one SACK present already here.
4932 	 *
4933 	 * If the sack array is full, forget about the last one.
4934 	 */
4935 	if (this_sack >= TCP_NUM_SACKS) {
4936 		this_sack--;
4937 		tp->rx_opt.num_sacks--;
4938 		sp--;
4939 	}
4940 	for (; this_sack > 0; this_sack--, sp--)
4941 		*sp = *(sp - 1);
4942 
4943 new_sack:
4944 	/* Build the new head SACK, and we're done. */
4945 	sp->start_seq = seq;
4946 	sp->end_seq = end_seq;
4947 	tp->rx_opt.num_sacks++;
4948 }
4949 
4950 /* RCV.NXT advances, some SACKs should be eaten. */
4951 
tcp_sack_remove(struct tcp_sock * tp)4952 static void tcp_sack_remove(struct tcp_sock *tp)
4953 {
4954 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4955 	int num_sacks = tp->rx_opt.num_sacks;
4956 	int this_sack;
4957 
4958 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4959 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4960 		tp->rx_opt.num_sacks = 0;
4961 		return;
4962 	}
4963 
4964 	for (this_sack = 0; this_sack < num_sacks;) {
4965 		/* Check if the start of the sack is covered by RCV.NXT. */
4966 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4967 			int i;
4968 
4969 			/* RCV.NXT must cover all the block! */
4970 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4971 
4972 			/* Zap this SACK, by moving forward any other SACKS. */
4973 			for (i = this_sack+1; i < num_sacks; i++)
4974 				tp->selective_acks[i-1] = tp->selective_acks[i];
4975 			num_sacks--;
4976 			continue;
4977 		}
4978 		this_sack++;
4979 		sp++;
4980 	}
4981 	tp->rx_opt.num_sacks = num_sacks;
4982 }
4983 
4984 /**
4985  * tcp_try_coalesce - try to merge skb to prior one
4986  * @sk: socket
4987  * @to: prior buffer
4988  * @from: buffer to add in queue
4989  * @fragstolen: pointer to boolean
4990  *
4991  * Before queueing skb @from after @to, try to merge them
4992  * to reduce overall memory use and queue lengths, if cost is small.
4993  * Packets in ofo or receive queues can stay a long time.
4994  * Better try to coalesce them right now to avoid future collapses.
4995  * Returns true if caller should free @from instead of queueing it
4996  */
tcp_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4997 static bool tcp_try_coalesce(struct sock *sk,
4998 			     struct sk_buff *to,
4999 			     struct sk_buff *from,
5000 			     bool *fragstolen)
5001 {
5002 	int delta;
5003 
5004 	*fragstolen = false;
5005 
5006 	/* Its possible this segment overlaps with prior segment in queue */
5007 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
5008 		return false;
5009 
5010 	if (!tcp_skb_can_collapse_rx(to, from))
5011 		return false;
5012 
5013 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
5014 		return false;
5015 
5016 	atomic_add(delta, &sk->sk_rmem_alloc);
5017 	sk_mem_charge(sk, delta);
5018 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
5019 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
5020 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
5021 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
5022 
5023 	if (TCP_SKB_CB(from)->has_rxtstamp) {
5024 		TCP_SKB_CB(to)->has_rxtstamp = true;
5025 		to->tstamp = from->tstamp;
5026 		skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
5027 	}
5028 
5029 	return true;
5030 }
5031 
tcp_ooo_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)5032 static bool tcp_ooo_try_coalesce(struct sock *sk,
5033 			     struct sk_buff *to,
5034 			     struct sk_buff *from,
5035 			     bool *fragstolen)
5036 {
5037 	bool res = tcp_try_coalesce(sk, to, from, fragstolen);
5038 
5039 	/* In case tcp_drop_reason() is called later, update to->gso_segs */
5040 	if (res) {
5041 		u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
5042 			       max_t(u16, 1, skb_shinfo(from)->gso_segs);
5043 
5044 		skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
5045 	}
5046 	return res;
5047 }
5048 
5049 noinline_for_tracing static void
tcp_drop_reason(struct sock * sk,struct sk_buff * skb,enum skb_drop_reason reason)5050 tcp_drop_reason(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason reason)
5051 {
5052 	sk_drops_skbadd(sk, skb);
5053 	sk_skb_reason_drop(sk, skb, reason);
5054 }
5055 
5056 /* This one checks to see if we can put data from the
5057  * out_of_order queue into the receive_queue.
5058  */
tcp_ofo_queue(struct sock * sk)5059 static void tcp_ofo_queue(struct sock *sk)
5060 {
5061 	struct tcp_sock *tp = tcp_sk(sk);
5062 	__u32 dsack_high = tp->rcv_nxt;
5063 	bool fin, fragstolen, eaten;
5064 	struct sk_buff *skb, *tail;
5065 	struct rb_node *p;
5066 
5067 	p = rb_first(&tp->out_of_order_queue);
5068 	while (p) {
5069 		skb = rb_to_skb(p);
5070 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5071 			break;
5072 
5073 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
5074 			__u32 dsack = dsack_high;
5075 
5076 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
5077 				dsack = TCP_SKB_CB(skb)->end_seq;
5078 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
5079 		}
5080 		p = rb_next(p);
5081 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
5082 
5083 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
5084 			tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP);
5085 			continue;
5086 		}
5087 
5088 		tail = skb_peek_tail(&sk->sk_receive_queue);
5089 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
5090 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
5091 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
5092 		if (!eaten)
5093 			tcp_add_receive_queue(sk, skb);
5094 		else
5095 			kfree_skb_partial(skb, fragstolen);
5096 
5097 		if (unlikely(fin)) {
5098 			tcp_fin(sk);
5099 			/* tcp_fin() purges tp->out_of_order_queue,
5100 			 * so we must end this loop right now.
5101 			 */
5102 			break;
5103 		}
5104 	}
5105 }
5106 
5107 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb);
5108 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb);
5109 
5110 /* Check if this incoming skb can be added to socket receive queues
5111  * while satisfying sk->sk_rcvbuf limit.
5112  *
5113  * In theory we should use skb->truesize, but this can cause problems
5114  * when applications use too small SO_RCVBUF values.
5115  * When LRO / hw gro is used, the socket might have a high tp->scaling_ratio,
5116  * allowing RWIN to be close to available space.
5117  * Whenever the receive queue gets full, we can receive a small packet
5118  * filling RWIN, but with a high skb->truesize, because most NIC use 4K page
5119  * plus sk_buff metadata even when receiving less than 1500 bytes of payload.
5120  *
5121  * Note that we use skb->len to decide to accept or drop this packet,
5122  * but sk->sk_rmem_alloc is the sum of all skb->truesize.
5123  */
tcp_can_ingest(const struct sock * sk,const struct sk_buff * skb)5124 static bool tcp_can_ingest(const struct sock *sk, const struct sk_buff *skb)
5125 {
5126 	unsigned int rmem = atomic_read(&sk->sk_rmem_alloc);
5127 
5128 	return rmem + skb->len <= sk->sk_rcvbuf;
5129 }
5130 
tcp_try_rmem_schedule(struct sock * sk,const struct sk_buff * skb,unsigned int size)5131 static int tcp_try_rmem_schedule(struct sock *sk, const struct sk_buff *skb,
5132 				 unsigned int size)
5133 {
5134 	if (!tcp_can_ingest(sk, skb) ||
5135 	    !sk_rmem_schedule(sk, skb, size)) {
5136 
5137 		if (tcp_prune_queue(sk, skb) < 0)
5138 			return -1;
5139 
5140 		while (!sk_rmem_schedule(sk, skb, size)) {
5141 			if (!tcp_prune_ofo_queue(sk, skb))
5142 				return -1;
5143 		}
5144 	}
5145 	return 0;
5146 }
5147 
tcp_data_queue_ofo(struct sock * sk,struct sk_buff * skb)5148 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
5149 {
5150 	struct tcp_sock *tp = tcp_sk(sk);
5151 	struct rb_node **p, *parent;
5152 	struct sk_buff *skb1;
5153 	u32 seq, end_seq;
5154 	bool fragstolen;
5155 
5156 	tcp_save_lrcv_flowlabel(sk, skb);
5157 	tcp_data_ecn_check(sk, skb);
5158 
5159 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
5160 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
5161 		sk->sk_data_ready(sk);
5162 		tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM);
5163 		return;
5164 	}
5165 
5166 	tcp_measure_rcv_mss(sk, skb);
5167 	/* Disable header prediction. */
5168 	tp->pred_flags = 0;
5169 	inet_csk_schedule_ack(sk);
5170 
5171 	tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
5172 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
5173 	seq = TCP_SKB_CB(skb)->seq;
5174 	end_seq = TCP_SKB_CB(skb)->end_seq;
5175 
5176 	p = &tp->out_of_order_queue.rb_node;
5177 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5178 		/* Initial out of order segment, build 1 SACK. */
5179 		if (tcp_is_sack(tp)) {
5180 			tp->rx_opt.num_sacks = 1;
5181 			tp->selective_acks[0].start_seq = seq;
5182 			tp->selective_acks[0].end_seq = end_seq;
5183 		}
5184 		rb_link_node(&skb->rbnode, NULL, p);
5185 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
5186 		tp->ooo_last_skb = skb;
5187 		goto end;
5188 	}
5189 
5190 	/* In the typical case, we are adding an skb to the end of the list.
5191 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
5192 	 */
5193 	if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
5194 				 skb, &fragstolen)) {
5195 coalesce_done:
5196 		/* For non sack flows, do not grow window to force DUPACK
5197 		 * and trigger fast retransmit.
5198 		 */
5199 		if (tcp_is_sack(tp))
5200 			tcp_grow_window(sk, skb, true);
5201 		kfree_skb_partial(skb, fragstolen);
5202 		skb = NULL;
5203 		goto add_sack;
5204 	}
5205 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
5206 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
5207 		parent = &tp->ooo_last_skb->rbnode;
5208 		p = &parent->rb_right;
5209 		goto insert;
5210 	}
5211 
5212 	/* Find place to insert this segment. Handle overlaps on the way. */
5213 	parent = NULL;
5214 	while (*p) {
5215 		parent = *p;
5216 		skb1 = rb_to_skb(parent);
5217 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
5218 			p = &parent->rb_left;
5219 			continue;
5220 		}
5221 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
5222 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
5223 				/* All the bits are present. Drop. */
5224 				NET_INC_STATS(sock_net(sk),
5225 					      LINUX_MIB_TCPOFOMERGE);
5226 				tcp_drop_reason(sk, skb,
5227 						SKB_DROP_REASON_TCP_OFOMERGE);
5228 				skb = NULL;
5229 				tcp_dsack_set(sk, seq, end_seq);
5230 				goto add_sack;
5231 			}
5232 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
5233 				/* Partial overlap. */
5234 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
5235 			} else {
5236 				/* skb's seq == skb1's seq and skb covers skb1.
5237 				 * Replace skb1 with skb.
5238 				 */
5239 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
5240 						&tp->out_of_order_queue);
5241 				tcp_dsack_extend(sk,
5242 						 TCP_SKB_CB(skb1)->seq,
5243 						 TCP_SKB_CB(skb1)->end_seq);
5244 				NET_INC_STATS(sock_net(sk),
5245 					      LINUX_MIB_TCPOFOMERGE);
5246 				tcp_drop_reason(sk, skb1,
5247 						SKB_DROP_REASON_TCP_OFOMERGE);
5248 				goto merge_right;
5249 			}
5250 		} else if (tcp_ooo_try_coalesce(sk, skb1,
5251 						skb, &fragstolen)) {
5252 			goto coalesce_done;
5253 		}
5254 		p = &parent->rb_right;
5255 	}
5256 insert:
5257 	/* Insert segment into RB tree. */
5258 	rb_link_node(&skb->rbnode, parent, p);
5259 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
5260 
5261 merge_right:
5262 	/* Remove other segments covered by skb. */
5263 	while ((skb1 = skb_rb_next(skb)) != NULL) {
5264 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
5265 			break;
5266 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
5267 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
5268 					 end_seq);
5269 			break;
5270 		}
5271 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
5272 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
5273 				 TCP_SKB_CB(skb1)->end_seq);
5274 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
5275 		tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE);
5276 	}
5277 	/* If there is no skb after us, we are the last_skb ! */
5278 	if (!skb1)
5279 		tp->ooo_last_skb = skb;
5280 
5281 add_sack:
5282 	if (tcp_is_sack(tp))
5283 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
5284 end:
5285 	if (skb) {
5286 		/* For non sack flows, do not grow window to force DUPACK
5287 		 * and trigger fast retransmit.
5288 		 */
5289 		if (tcp_is_sack(tp))
5290 			tcp_grow_window(sk, skb, false);
5291 		skb_condense(skb);
5292 		skb_set_owner_r(skb, sk);
5293 	}
5294 	/* do not grow rcvbuf for not-yet-accepted or orphaned sockets. */
5295 	if (sk->sk_socket)
5296 		tcp_rcvbuf_grow(sk, tp->rcvq_space.space);
5297 }
5298 
tcp_queue_rcv(struct sock * sk,struct sk_buff * skb,bool * fragstolen)5299 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
5300 				      bool *fragstolen)
5301 {
5302 	int eaten;
5303 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
5304 
5305 	eaten = (tail &&
5306 		 tcp_try_coalesce(sk, tail,
5307 				  skb, fragstolen)) ? 1 : 0;
5308 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
5309 	if (!eaten) {
5310 		tcp_add_receive_queue(sk, skb);
5311 		skb_set_owner_r(skb, sk);
5312 	}
5313 	return eaten;
5314 }
5315 
tcp_send_rcvq(struct sock * sk,struct msghdr * msg,size_t size)5316 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
5317 {
5318 	struct sk_buff *skb;
5319 	int err = -ENOMEM;
5320 	int data_len = 0;
5321 	bool fragstolen;
5322 
5323 	if (size == 0)
5324 		return 0;
5325 
5326 	if (size > PAGE_SIZE) {
5327 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
5328 
5329 		data_len = npages << PAGE_SHIFT;
5330 		size = data_len + (size & ~PAGE_MASK);
5331 	}
5332 	skb = alloc_skb_with_frags(size - data_len, data_len,
5333 				   PAGE_ALLOC_COSTLY_ORDER,
5334 				   &err, sk->sk_allocation);
5335 	if (!skb)
5336 		goto err;
5337 
5338 	skb_put(skb, size - data_len);
5339 	skb->data_len = data_len;
5340 	skb->len = size;
5341 
5342 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5343 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5344 		goto err_free;
5345 	}
5346 
5347 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
5348 	if (err)
5349 		goto err_free;
5350 
5351 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
5352 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
5353 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
5354 
5355 	if (tcp_queue_rcv(sk, skb, &fragstolen)) {
5356 		WARN_ON_ONCE(fragstolen); /* should not happen */
5357 		__kfree_skb(skb);
5358 	}
5359 	return size;
5360 
5361 err_free:
5362 	kfree_skb(skb);
5363 err:
5364 	return err;
5365 
5366 }
5367 
tcp_data_ready(struct sock * sk)5368 void tcp_data_ready(struct sock *sk)
5369 {
5370 	if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE))
5371 		sk->sk_data_ready(sk);
5372 }
5373 
tcp_data_queue(struct sock * sk,struct sk_buff * skb)5374 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
5375 {
5376 	struct tcp_sock *tp = tcp_sk(sk);
5377 	enum skb_drop_reason reason;
5378 	bool fragstolen;
5379 	int eaten;
5380 
5381 	/* If a subflow has been reset, the packet should not continue
5382 	 * to be processed, drop the packet.
5383 	 */
5384 	if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) {
5385 		__kfree_skb(skb);
5386 		return;
5387 	}
5388 
5389 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
5390 		__kfree_skb(skb);
5391 		return;
5392 	}
5393 	tcp_cleanup_skb(skb);
5394 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
5395 
5396 	reason = SKB_DROP_REASON_NOT_SPECIFIED;
5397 	tp->rx_opt.dsack = 0;
5398 
5399 	/*  Queue data for delivery to the user.
5400 	 *  Packets in sequence go to the receive queue.
5401 	 *  Out of sequence packets to the out_of_order_queue.
5402 	 */
5403 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5404 		if (tcp_receive_window(tp) == 0) {
5405 			/* Some stacks are known to send bare FIN packets
5406 			 * in a loop even if we send RWIN 0 in our ACK.
5407 			 * Accepting this FIN does not hurt memory pressure
5408 			 * because the FIN flag will simply be merged to the
5409 			 * receive queue tail skb in most cases.
5410 			 */
5411 			if (!skb->len &&
5412 			    (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
5413 				goto queue_and_out;
5414 
5415 			reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5416 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5417 			goto out_of_window;
5418 		}
5419 
5420 		/* Ok. In sequence. In window. */
5421 queue_and_out:
5422 		if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5423 			/* TODO: maybe ratelimit these WIN 0 ACK ? */
5424 			inet_csk(sk)->icsk_ack.pending |=
5425 					(ICSK_ACK_NOMEM | ICSK_ACK_NOW);
5426 			inet_csk_schedule_ack(sk);
5427 			sk->sk_data_ready(sk);
5428 
5429 			if (skb_queue_len(&sk->sk_receive_queue) && skb->len) {
5430 				reason = SKB_DROP_REASON_PROTO_MEM;
5431 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5432 				goto drop;
5433 			}
5434 			sk_forced_mem_schedule(sk, skb->truesize);
5435 		}
5436 
5437 		eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5438 		if (skb->len)
5439 			tcp_event_data_recv(sk, skb);
5440 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
5441 			tcp_fin(sk);
5442 
5443 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5444 			tcp_ofo_queue(sk);
5445 
5446 			/* RFC5681. 4.2. SHOULD send immediate ACK, when
5447 			 * gap in queue is filled.
5448 			 */
5449 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5450 				inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
5451 		}
5452 
5453 		if (tp->rx_opt.num_sacks)
5454 			tcp_sack_remove(tp);
5455 
5456 		tcp_fast_path_check(sk);
5457 
5458 		if (eaten > 0)
5459 			kfree_skb_partial(skb, fragstolen);
5460 		if (!sock_flag(sk, SOCK_DEAD))
5461 			tcp_data_ready(sk);
5462 		return;
5463 	}
5464 
5465 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
5466 		tcp_rcv_spurious_retrans(sk, skb);
5467 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
5468 		reason = SKB_DROP_REASON_TCP_OLD_DATA;
5469 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
5470 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5471 
5472 out_of_window:
5473 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5474 		inet_csk_schedule_ack(sk);
5475 drop:
5476 		tcp_drop_reason(sk, skb, reason);
5477 		return;
5478 	}
5479 
5480 	/* Out of window. F.e. zero window probe. */
5481 	if (!before(TCP_SKB_CB(skb)->seq,
5482 		    tp->rcv_nxt + tcp_receive_window(tp))) {
5483 		reason = SKB_DROP_REASON_TCP_OVERWINDOW;
5484 		goto out_of_window;
5485 	}
5486 
5487 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5488 		/* Partial packet, seq < rcv_next < end_seq */
5489 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
5490 
5491 		/* If window is closed, drop tail of packet. But after
5492 		 * remembering D-SACK for its head made in previous line.
5493 		 */
5494 		if (!tcp_receive_window(tp)) {
5495 			reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5496 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5497 			goto out_of_window;
5498 		}
5499 		goto queue_and_out;
5500 	}
5501 
5502 	tcp_data_queue_ofo(sk, skb);
5503 }
5504 
tcp_skb_next(struct sk_buff * skb,struct sk_buff_head * list)5505 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
5506 {
5507 	if (list)
5508 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
5509 
5510 	return skb_rb_next(skb);
5511 }
5512 
tcp_collapse_one(struct sock * sk,struct sk_buff * skb,struct sk_buff_head * list,struct rb_root * root)5513 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
5514 					struct sk_buff_head *list,
5515 					struct rb_root *root)
5516 {
5517 	struct sk_buff *next = tcp_skb_next(skb, list);
5518 
5519 	if (list)
5520 		__skb_unlink(skb, list);
5521 	else
5522 		rb_erase(&skb->rbnode, root);
5523 
5524 	__kfree_skb(skb);
5525 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
5526 
5527 	return next;
5528 }
5529 
5530 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
tcp_rbtree_insert(struct rb_root * root,struct sk_buff * skb)5531 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
5532 {
5533 	struct rb_node **p = &root->rb_node;
5534 	struct rb_node *parent = NULL;
5535 	struct sk_buff *skb1;
5536 
5537 	while (*p) {
5538 		parent = *p;
5539 		skb1 = rb_to_skb(parent);
5540 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
5541 			p = &parent->rb_left;
5542 		else
5543 			p = &parent->rb_right;
5544 	}
5545 	rb_link_node(&skb->rbnode, parent, p);
5546 	rb_insert_color(&skb->rbnode, root);
5547 }
5548 
5549 /* Collapse contiguous sequence of skbs head..tail with
5550  * sequence numbers start..end.
5551  *
5552  * If tail is NULL, this means until the end of the queue.
5553  *
5554  * Segments with FIN/SYN are not collapsed (only because this
5555  * simplifies code)
5556  */
5557 static void
tcp_collapse(struct sock * sk,struct sk_buff_head * list,struct rb_root * root,struct sk_buff * head,struct sk_buff * tail,u32 start,u32 end)5558 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5559 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
5560 {
5561 	struct sk_buff *skb = head, *n;
5562 	struct sk_buff_head tmp;
5563 	bool end_of_skbs;
5564 
5565 	/* First, check that queue is collapsible and find
5566 	 * the point where collapsing can be useful.
5567 	 */
5568 restart:
5569 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5570 		n = tcp_skb_next(skb, list);
5571 
5572 		if (!skb_frags_readable(skb))
5573 			goto skip_this;
5574 
5575 		/* No new bits? It is possible on ofo queue. */
5576 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5577 			skb = tcp_collapse_one(sk, skb, list, root);
5578 			if (!skb)
5579 				break;
5580 			goto restart;
5581 		}
5582 
5583 		/* The first skb to collapse is:
5584 		 * - not SYN/FIN and
5585 		 * - bloated or contains data before "start" or
5586 		 *   overlaps to the next one and mptcp allow collapsing.
5587 		 */
5588 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5589 		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5590 		     before(TCP_SKB_CB(skb)->seq, start))) {
5591 			end_of_skbs = false;
5592 			break;
5593 		}
5594 
5595 		if (n && n != tail && skb_frags_readable(n) &&
5596 		    tcp_skb_can_collapse_rx(skb, n) &&
5597 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5598 			end_of_skbs = false;
5599 			break;
5600 		}
5601 
5602 skip_this:
5603 		/* Decided to skip this, advance start seq. */
5604 		start = TCP_SKB_CB(skb)->end_seq;
5605 	}
5606 	if (end_of_skbs ||
5607 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) ||
5608 	    !skb_frags_readable(skb))
5609 		return;
5610 
5611 	__skb_queue_head_init(&tmp);
5612 
5613 	while (before(start, end)) {
5614 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5615 		struct sk_buff *nskb;
5616 
5617 		nskb = alloc_skb(copy, GFP_ATOMIC);
5618 		if (!nskb)
5619 			break;
5620 
5621 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5622 		skb_copy_decrypted(nskb, skb);
5623 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5624 		if (list)
5625 			__skb_queue_before(list, skb, nskb);
5626 		else
5627 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5628 		skb_set_owner_r(nskb, sk);
5629 		mptcp_skb_ext_move(nskb, skb);
5630 
5631 		/* Copy data, releasing collapsed skbs. */
5632 		while (copy > 0) {
5633 			int offset = start - TCP_SKB_CB(skb)->seq;
5634 			int size = TCP_SKB_CB(skb)->end_seq - start;
5635 
5636 			BUG_ON(offset < 0);
5637 			if (size > 0) {
5638 				size = min(copy, size);
5639 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5640 					BUG();
5641 				TCP_SKB_CB(nskb)->end_seq += size;
5642 				copy -= size;
5643 				start += size;
5644 			}
5645 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5646 				skb = tcp_collapse_one(sk, skb, list, root);
5647 				if (!skb ||
5648 				    skb == tail ||
5649 				    !tcp_skb_can_collapse_rx(nskb, skb) ||
5650 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) ||
5651 				    !skb_frags_readable(skb))
5652 					goto end;
5653 			}
5654 		}
5655 	}
5656 end:
5657 	skb_queue_walk_safe(&tmp, skb, n)
5658 		tcp_rbtree_insert(root, skb);
5659 }
5660 
5661 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5662  * and tcp_collapse() them until all the queue is collapsed.
5663  */
tcp_collapse_ofo_queue(struct sock * sk)5664 static void tcp_collapse_ofo_queue(struct sock *sk)
5665 {
5666 	struct tcp_sock *tp = tcp_sk(sk);
5667 	u32 range_truesize, sum_tiny = 0;
5668 	struct sk_buff *skb, *head;
5669 	u32 start, end;
5670 
5671 	skb = skb_rb_first(&tp->out_of_order_queue);
5672 new_range:
5673 	if (!skb) {
5674 		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5675 		return;
5676 	}
5677 	start = TCP_SKB_CB(skb)->seq;
5678 	end = TCP_SKB_CB(skb)->end_seq;
5679 	range_truesize = skb->truesize;
5680 
5681 	for (head = skb;;) {
5682 		skb = skb_rb_next(skb);
5683 
5684 		/* Range is terminated when we see a gap or when
5685 		 * we are at the queue end.
5686 		 */
5687 		if (!skb ||
5688 		    after(TCP_SKB_CB(skb)->seq, end) ||
5689 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
5690 			/* Do not attempt collapsing tiny skbs */
5691 			if (range_truesize != head->truesize ||
5692 			    end - start >= SKB_WITH_OVERHEAD(PAGE_SIZE)) {
5693 				tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5694 					     head, skb, start, end);
5695 			} else {
5696 				sum_tiny += range_truesize;
5697 				if (sum_tiny > sk->sk_rcvbuf >> 3)
5698 					return;
5699 			}
5700 			goto new_range;
5701 		}
5702 
5703 		range_truesize += skb->truesize;
5704 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5705 			start = TCP_SKB_CB(skb)->seq;
5706 		if (after(TCP_SKB_CB(skb)->end_seq, end))
5707 			end = TCP_SKB_CB(skb)->end_seq;
5708 	}
5709 }
5710 
5711 /*
5712  * Clean the out-of-order queue to make room.
5713  * We drop high sequences packets to :
5714  * 1) Let a chance for holes to be filled.
5715  *    This means we do not drop packets from ooo queue if their sequence
5716  *    is before incoming packet sequence.
5717  * 2) not add too big latencies if thousands of packets sit there.
5718  *    (But if application shrinks SO_RCVBUF, we could still end up
5719  *     freeing whole queue here)
5720  * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5721  *
5722  * Return true if queue has shrunk.
5723  */
tcp_prune_ofo_queue(struct sock * sk,const struct sk_buff * in_skb)5724 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb)
5725 {
5726 	struct tcp_sock *tp = tcp_sk(sk);
5727 	struct rb_node *node, *prev;
5728 	bool pruned = false;
5729 	int goal;
5730 
5731 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5732 		return false;
5733 
5734 	goal = sk->sk_rcvbuf >> 3;
5735 	node = &tp->ooo_last_skb->rbnode;
5736 
5737 	do {
5738 		struct sk_buff *skb = rb_to_skb(node);
5739 
5740 		/* If incoming skb would land last in ofo queue, stop pruning. */
5741 		if (after(TCP_SKB_CB(in_skb)->seq, TCP_SKB_CB(skb)->seq))
5742 			break;
5743 		pruned = true;
5744 		prev = rb_prev(node);
5745 		rb_erase(node, &tp->out_of_order_queue);
5746 		goal -= skb->truesize;
5747 		tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE);
5748 		tp->ooo_last_skb = rb_to_skb(prev);
5749 		if (!prev || goal <= 0) {
5750 			if (tcp_can_ingest(sk, in_skb) &&
5751 			    !tcp_under_memory_pressure(sk))
5752 				break;
5753 			goal = sk->sk_rcvbuf >> 3;
5754 		}
5755 		node = prev;
5756 	} while (node);
5757 
5758 	if (pruned) {
5759 		NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5760 		/* Reset SACK state.  A conforming SACK implementation will
5761 		 * do the same at a timeout based retransmit.  When a connection
5762 		 * is in a sad state like this, we care only about integrity
5763 		 * of the connection not performance.
5764 		 */
5765 		if (tp->rx_opt.sack_ok)
5766 			tcp_sack_reset(&tp->rx_opt);
5767 	}
5768 	return pruned;
5769 }
5770 
5771 /* Reduce allocated memory if we can, trying to get
5772  * the socket within its memory limits again.
5773  *
5774  * Return less than zero if we should start dropping frames
5775  * until the socket owning process reads some of the data
5776  * to stabilize the situation.
5777  */
tcp_prune_queue(struct sock * sk,const struct sk_buff * in_skb)5778 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb)
5779 {
5780 	struct tcp_sock *tp = tcp_sk(sk);
5781 
5782 	/* Do nothing if our queues are empty. */
5783 	if (!atomic_read(&sk->sk_rmem_alloc))
5784 		return -1;
5785 
5786 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5787 
5788 	if (!tcp_can_ingest(sk, in_skb))
5789 		tcp_clamp_window(sk);
5790 	else if (tcp_under_memory_pressure(sk))
5791 		tcp_adjust_rcv_ssthresh(sk);
5792 
5793 	if (tcp_can_ingest(sk, in_skb))
5794 		return 0;
5795 
5796 	tcp_collapse_ofo_queue(sk);
5797 	if (!skb_queue_empty(&sk->sk_receive_queue))
5798 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5799 			     skb_peek(&sk->sk_receive_queue),
5800 			     NULL,
5801 			     tp->copied_seq, tp->rcv_nxt);
5802 
5803 	if (tcp_can_ingest(sk, in_skb))
5804 		return 0;
5805 
5806 	/* Collapsing did not help, destructive actions follow.
5807 	 * This must not ever occur. */
5808 
5809 	tcp_prune_ofo_queue(sk, in_skb);
5810 
5811 	if (tcp_can_ingest(sk, in_skb))
5812 		return 0;
5813 
5814 	/* If we are really being abused, tell the caller to silently
5815 	 * drop receive data on the floor.  It will get retransmitted
5816 	 * and hopefully then we'll have sufficient space.
5817 	 */
5818 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5819 
5820 	/* Massive buffer overcommit. */
5821 	tp->pred_flags = 0;
5822 	return -1;
5823 }
5824 
tcp_should_expand_sndbuf(struct sock * sk)5825 static bool tcp_should_expand_sndbuf(struct sock *sk)
5826 {
5827 	const struct tcp_sock *tp = tcp_sk(sk);
5828 
5829 	/* If the user specified a specific send buffer setting, do
5830 	 * not modify it.
5831 	 */
5832 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5833 		return false;
5834 
5835 	/* If we are under global TCP memory pressure, do not expand.  */
5836 	if (tcp_under_memory_pressure(sk)) {
5837 		int unused_mem = sk_unused_reserved_mem(sk);
5838 
5839 		/* Adjust sndbuf according to reserved mem. But make sure
5840 		 * it never goes below SOCK_MIN_SNDBUF.
5841 		 * See sk_stream_moderate_sndbuf() for more details.
5842 		 */
5843 		if (unused_mem > SOCK_MIN_SNDBUF)
5844 			WRITE_ONCE(sk->sk_sndbuf, unused_mem);
5845 
5846 		return false;
5847 	}
5848 
5849 	/* If we are under soft global TCP memory pressure, do not expand.  */
5850 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5851 		return false;
5852 
5853 	/* If we filled the congestion window, do not expand.  */
5854 	if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp))
5855 		return false;
5856 
5857 	return true;
5858 }
5859 
tcp_new_space(struct sock * sk)5860 static void tcp_new_space(struct sock *sk)
5861 {
5862 	struct tcp_sock *tp = tcp_sk(sk);
5863 
5864 	if (tcp_should_expand_sndbuf(sk)) {
5865 		tcp_sndbuf_expand(sk);
5866 		tp->snd_cwnd_stamp = tcp_jiffies32;
5867 	}
5868 
5869 	INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk);
5870 }
5871 
5872 /* Caller made space either from:
5873  * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced)
5874  * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt)
5875  *
5876  * We might be able to generate EPOLLOUT to the application if:
5877  * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2
5878  * 2) notsent amount (tp->write_seq - tp->snd_nxt) became
5879  *    small enough that tcp_stream_memory_free() decides it
5880  *    is time to generate EPOLLOUT.
5881  */
tcp_check_space(struct sock * sk)5882 void tcp_check_space(struct sock *sk)
5883 {
5884 	/* pairs with tcp_poll() */
5885 	smp_mb();
5886 	if (sk->sk_socket &&
5887 	    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5888 		tcp_new_space(sk);
5889 		if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5890 			tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5891 	}
5892 }
5893 
tcp_data_snd_check(struct sock * sk)5894 static inline void tcp_data_snd_check(struct sock *sk)
5895 {
5896 	tcp_push_pending_frames(sk);
5897 	tcp_check_space(sk);
5898 }
5899 
5900 /*
5901  * Check if sending an ack is needed.
5902  */
__tcp_ack_snd_check(struct sock * sk,int ofo_possible)5903 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5904 {
5905 	struct tcp_sock *tp = tcp_sk(sk);
5906 	struct net *net = sock_net(sk);
5907 	unsigned long rtt;
5908 	u64 delay;
5909 
5910 	    /* More than one full frame received... */
5911 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5912 	     /* ... and right edge of window advances far enough.
5913 	      * (tcp_recvmsg() will send ACK otherwise).
5914 	      * If application uses SO_RCVLOWAT, we want send ack now if
5915 	      * we have not received enough bytes to satisfy the condition.
5916 	      */
5917 	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5918 	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5919 	    /* We ACK each frame or... */
5920 	    tcp_in_quickack_mode(sk) ||
5921 	    /* Protocol state mandates a one-time immediate ACK */
5922 	    inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5923 		/* If we are running from __release_sock() in user context,
5924 		 * Defer the ack until tcp_release_cb().
5925 		 */
5926 		if (sock_owned_by_user_nocheck(sk) &&
5927 		    READ_ONCE(net->ipv4.sysctl_tcp_backlog_ack_defer)) {
5928 			set_bit(TCP_ACK_DEFERRED, &sk->sk_tsq_flags);
5929 			return;
5930 		}
5931 send_now:
5932 		tcp_send_ack(sk);
5933 		return;
5934 	}
5935 
5936 	if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5937 		tcp_send_delayed_ack(sk);
5938 		return;
5939 	}
5940 
5941 	if (!tcp_is_sack(tp) ||
5942 	    tp->compressed_ack >= READ_ONCE(net->ipv4.sysctl_tcp_comp_sack_nr))
5943 		goto send_now;
5944 
5945 	if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5946 		tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5947 		tp->dup_ack_counter = 0;
5948 	}
5949 	if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5950 		tp->dup_ack_counter++;
5951 		goto send_now;
5952 	}
5953 	tp->compressed_ack++;
5954 	if (hrtimer_is_queued(&tp->compressed_ack_timer))
5955 		return;
5956 
5957 	/* compress ack timer : comp_sack_rtt_percent of rtt,
5958 	 * but no more than tcp_comp_sack_delay_ns.
5959 	 */
5960 
5961 	rtt = tp->rcv_rtt_est.rtt_us;
5962 	if (tp->srtt_us && tp->srtt_us < rtt)
5963 		rtt = tp->srtt_us;
5964 
5965 	/* delay = (rtt >> 3) * NSEC_PER_USEC * comp_sack_rtt_percent / 100
5966 	 * ->
5967 	 * delay = rtt * 1.25 * comp_sack_rtt_percent
5968 	 */
5969 	delay = (u64)(rtt + (rtt >> 2)) *
5970 		READ_ONCE(net->ipv4.sysctl_tcp_comp_sack_rtt_percent);
5971 
5972 	delay = min(delay, READ_ONCE(net->ipv4.sysctl_tcp_comp_sack_delay_ns));
5973 
5974 	sock_hold(sk);
5975 	hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5976 			       READ_ONCE(net->ipv4.sysctl_tcp_comp_sack_slack_ns),
5977 			       HRTIMER_MODE_REL_PINNED_SOFT);
5978 }
5979 
tcp_ack_snd_check(struct sock * sk)5980 static inline void tcp_ack_snd_check(struct sock *sk)
5981 {
5982 	if (!inet_csk_ack_scheduled(sk)) {
5983 		/* We sent a data segment already. */
5984 		return;
5985 	}
5986 	__tcp_ack_snd_check(sk, 1);
5987 }
5988 
5989 /*
5990  *	This routine is only called when we have urgent data
5991  *	signaled. Its the 'slow' part of tcp_urg. It could be
5992  *	moved inline now as tcp_urg is only called from one
5993  *	place. We handle URGent data wrong. We have to - as
5994  *	BSD still doesn't use the correction from RFC961.
5995  *	For 1003.1g we should support a new option TCP_STDURG to permit
5996  *	either form (or just set the sysctl tcp_stdurg).
5997  */
5998 
tcp_check_urg(struct sock * sk,const struct tcphdr * th)5999 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
6000 {
6001 	struct tcp_sock *tp = tcp_sk(sk);
6002 	u32 ptr = ntohs(th->urg_ptr);
6003 
6004 	if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg))
6005 		ptr--;
6006 	ptr += ntohl(th->seq);
6007 
6008 	/* Ignore urgent data that we've already seen and read. */
6009 	if (after(tp->copied_seq, ptr))
6010 		return;
6011 
6012 	/* Do not replay urg ptr.
6013 	 *
6014 	 * NOTE: interesting situation not covered by specs.
6015 	 * Misbehaving sender may send urg ptr, pointing to segment,
6016 	 * which we already have in ofo queue. We are not able to fetch
6017 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
6018 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
6019 	 * situations. But it is worth to think about possibility of some
6020 	 * DoSes using some hypothetical application level deadlock.
6021 	 */
6022 	if (before(ptr, tp->rcv_nxt))
6023 		return;
6024 
6025 	/* Do we already have a newer (or duplicate) urgent pointer? */
6026 	if (tp->urg_data && !after(ptr, tp->urg_seq))
6027 		return;
6028 
6029 	/* Tell the world about our new urgent pointer. */
6030 	sk_send_sigurg(sk);
6031 
6032 	/* We may be adding urgent data when the last byte read was
6033 	 * urgent. To do this requires some care. We cannot just ignore
6034 	 * tp->copied_seq since we would read the last urgent byte again
6035 	 * as data, nor can we alter copied_seq until this data arrives
6036 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
6037 	 *
6038 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
6039 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
6040 	 * and expect that both A and B disappear from stream. This is _wrong_.
6041 	 * Though this happens in BSD with high probability, this is occasional.
6042 	 * Any application relying on this is buggy. Note also, that fix "works"
6043 	 * only in this artificial test. Insert some normal data between A and B and we will
6044 	 * decline of BSD again. Verdict: it is better to remove to trap
6045 	 * buggy users.
6046 	 */
6047 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
6048 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
6049 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
6050 		tp->copied_seq++;
6051 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
6052 			__skb_unlink(skb, &sk->sk_receive_queue);
6053 			__kfree_skb(skb);
6054 		}
6055 	}
6056 
6057 	WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET);
6058 	WRITE_ONCE(tp->urg_seq, ptr);
6059 
6060 	/* Disable header prediction. */
6061 	tp->pred_flags = 0;
6062 }
6063 
6064 /* This is the 'fast' part of urgent handling. */
tcp_urg(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)6065 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
6066 {
6067 	struct tcp_sock *tp = tcp_sk(sk);
6068 
6069 	/* Check if we get a new urgent pointer - normally not. */
6070 	if (unlikely(th->urg))
6071 		tcp_check_urg(sk, th);
6072 
6073 	/* Do we wait for any urgent data? - normally not... */
6074 	if (unlikely(tp->urg_data == TCP_URG_NOTYET)) {
6075 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
6076 			  th->syn;
6077 
6078 		/* Is the urgent pointer pointing into this packet? */
6079 		if (ptr < skb->len) {
6080 			u8 tmp;
6081 			if (skb_copy_bits(skb, ptr, &tmp, 1))
6082 				BUG();
6083 			WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp);
6084 			if (!sock_flag(sk, SOCK_DEAD))
6085 				sk->sk_data_ready(sk);
6086 		}
6087 	}
6088 }
6089 
6090 /* Accept RST for rcv_nxt - 1 after a FIN.
6091  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
6092  * FIN is sent followed by a RST packet. The RST is sent with the same
6093  * sequence number as the FIN, and thus according to RFC 5961 a challenge
6094  * ACK should be sent. However, Mac OSX rate limits replies to challenge
6095  * ACKs on the closed socket. In addition middleboxes can drop either the
6096  * challenge ACK or a subsequent RST.
6097  */
tcp_reset_check(const struct sock * sk,const struct sk_buff * skb)6098 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
6099 {
6100 	const struct tcp_sock *tp = tcp_sk(sk);
6101 
6102 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
6103 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
6104 					       TCPF_CLOSING));
6105 }
6106 
6107 /* Does PAWS and seqno based validation of an incoming segment, flags will
6108  * play significant role here.
6109  */
tcp_validate_incoming(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th,int syn_inerr)6110 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
6111 				  const struct tcphdr *th, int syn_inerr)
6112 {
6113 	struct tcp_sock *tp = tcp_sk(sk);
6114 	bool accecn_reflector = false;
6115 	SKB_DR(reason);
6116 
6117 	/* RFC1323: H1. Apply PAWS check first. */
6118 	if (!tcp_fast_parse_options(sock_net(sk), skb, th, tp) ||
6119 	    !tp->rx_opt.saw_tstamp ||
6120 	    tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW))
6121 		goto step1;
6122 
6123 	reason = tcp_disordered_ack_check(sk, skb);
6124 	if (!reason)
6125 		goto step1;
6126 	/* Reset is accepted even if it did not pass PAWS. */
6127 	if (th->rst)
6128 		goto step1;
6129 	if (unlikely(th->syn))
6130 		goto syn_challenge;
6131 
6132 	/* Old ACK are common, increment PAWS_OLD_ACK
6133 	 * and do not send a dupack.
6134 	 */
6135 	if (reason == SKB_DROP_REASON_TCP_RFC7323_PAWS_ACK) {
6136 		NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWS_OLD_ACK);
6137 		goto discard;
6138 	}
6139 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
6140 	if (!tcp_oow_rate_limited(sock_net(sk), skb,
6141 				  LINUX_MIB_TCPACKSKIPPEDPAWS,
6142 				  &tp->last_oow_ack_time))
6143 		tcp_send_dupack(sk, skb);
6144 	goto discard;
6145 
6146 step1:
6147 	/* Step 1: check sequence number */
6148 	reason = tcp_sequence(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
6149 	if (reason) {
6150 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
6151 		 * (RST) segments are validated by checking their SEQ-fields."
6152 		 * And page 69: "If an incoming segment is not acceptable,
6153 		 * an acknowledgment should be sent in reply (unless the RST
6154 		 * bit is set, if so drop the segment and return)".
6155 		 */
6156 		if (!th->rst) {
6157 			if (th->syn)
6158 				goto syn_challenge;
6159 
6160 			if (reason == SKB_DROP_REASON_TCP_INVALID_SEQUENCE ||
6161 			    reason == SKB_DROP_REASON_TCP_INVALID_END_SEQUENCE)
6162 				NET_INC_STATS(sock_net(sk),
6163 					      LINUX_MIB_BEYOND_WINDOW);
6164 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
6165 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
6166 						  &tp->last_oow_ack_time))
6167 				tcp_send_dupack(sk, skb);
6168 		} else if (tcp_reset_check(sk, skb)) {
6169 			goto reset;
6170 		}
6171 		goto discard;
6172 	}
6173 
6174 	/* Step 2: check RST bit */
6175 	if (th->rst) {
6176 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
6177 		 * FIN and SACK too if available):
6178 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
6179 		 * the right-most SACK block,
6180 		 * then
6181 		 *     RESET the connection
6182 		 * else
6183 		 *     Send a challenge ACK
6184 		 */
6185 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
6186 		    tcp_reset_check(sk, skb))
6187 			goto reset;
6188 
6189 		if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
6190 			struct tcp_sack_block *sp = &tp->selective_acks[0];
6191 			int max_sack = sp[0].end_seq;
6192 			int this_sack;
6193 
6194 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
6195 			     ++this_sack) {
6196 				max_sack = after(sp[this_sack].end_seq,
6197 						 max_sack) ?
6198 					sp[this_sack].end_seq : max_sack;
6199 			}
6200 
6201 			if (TCP_SKB_CB(skb)->seq == max_sack)
6202 				goto reset;
6203 		}
6204 
6205 		/* Disable TFO if RST is out-of-order
6206 		 * and no data has been received
6207 		 * for current active TFO socket
6208 		 */
6209 		if (tp->syn_fastopen && !tp->data_segs_in &&
6210 		    sk->sk_state == TCP_ESTABLISHED)
6211 			tcp_fastopen_active_disable(sk);
6212 		tcp_send_challenge_ack(sk, false);
6213 		SKB_DR_SET(reason, TCP_RESET);
6214 		goto discard;
6215 	}
6216 
6217 	/* step 3: check security and precedence [ignored] */
6218 
6219 	/* step 4: Check for a SYN
6220 	 * RFC 5961 4.2 : Send a challenge ack
6221 	 */
6222 	if (th->syn) {
6223 		if (tcp_ecn_mode_accecn(tp)) {
6224 			accecn_reflector = true;
6225 			if (tp->rx_opt.accecn &&
6226 			    tp->saw_accecn_opt < TCP_ACCECN_OPT_COUNTER_SEEN) {
6227 				u8 saw_opt = tcp_accecn_option_init(skb, tp->rx_opt.accecn);
6228 
6229 				tcp_accecn_saw_opt_fail_recv(tp, saw_opt);
6230 				tcp_accecn_opt_demand_min(sk, 1);
6231 			}
6232 		}
6233 		if (sk->sk_state == TCP_SYN_RECV && sk->sk_socket && th->ack &&
6234 		    TCP_SKB_CB(skb)->seq + 1 == TCP_SKB_CB(skb)->end_seq &&
6235 		    TCP_SKB_CB(skb)->seq + 1 == tp->rcv_nxt &&
6236 		    TCP_SKB_CB(skb)->ack_seq == tp->snd_nxt)
6237 			goto pass;
6238 syn_challenge:
6239 		if (syn_inerr)
6240 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6241 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
6242 		tcp_send_challenge_ack(sk, accecn_reflector);
6243 		SKB_DR_SET(reason, TCP_INVALID_SYN);
6244 		goto discard;
6245 	}
6246 
6247 pass:
6248 	bpf_skops_parse_hdr(sk, skb);
6249 
6250 	return true;
6251 
6252 discard:
6253 	tcp_drop_reason(sk, skb, reason);
6254 	return false;
6255 
6256 reset:
6257 	tcp_reset(sk, skb);
6258 	__kfree_skb(skb);
6259 	return false;
6260 }
6261 
6262 /*
6263  *	TCP receive function for the ESTABLISHED state.
6264  *
6265  *	It is split into a fast path and a slow path. The fast path is
6266  * 	disabled when:
6267  *	- A zero window was announced from us - zero window probing
6268  *        is only handled properly in the slow path.
6269  *	- Out of order segments arrived.
6270  *	- Urgent data is expected.
6271  *	- There is no buffer space left
6272  *	- Unexpected TCP flags/window values/header lengths are received
6273  *	  (detected by checking the TCP header against pred_flags)
6274  *	- Data is sent in both directions. Fast path only supports pure senders
6275  *	  or pure receivers (this means either the sequence number or the ack
6276  *	  value must stay constant)
6277  *	- Unexpected TCP option.
6278  *
6279  *	When these conditions are not satisfied it drops into a standard
6280  *	receive procedure patterned after RFC793 to handle all cases.
6281  *	The first three cases are guaranteed by proper pred_flags setting,
6282  *	the rest is checked inline. Fast processing is turned on in
6283  *	tcp_data_queue when everything is OK.
6284  */
tcp_rcv_established(struct sock * sk,struct sk_buff * skb)6285 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
6286 {
6287 	enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED;
6288 	const struct tcphdr *th = (const struct tcphdr *)skb->data;
6289 	struct tcp_sock *tp = tcp_sk(sk);
6290 	unsigned int len = skb->len;
6291 
6292 	/* TCP congestion window tracking */
6293 	trace_tcp_probe(sk, skb);
6294 
6295 	tcp_mstamp_refresh(tp);
6296 	if (unlikely(!rcu_access_pointer(sk->sk_rx_dst)))
6297 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
6298 	/*
6299 	 *	Header prediction.
6300 	 *	The code loosely follows the one in the famous
6301 	 *	"30 instruction TCP receive" Van Jacobson mail.
6302 	 *
6303 	 *	Van's trick is to deposit buffers into socket queue
6304 	 *	on a device interrupt, to call tcp_recv function
6305 	 *	on the receive process context and checksum and copy
6306 	 *	the buffer to user space. smart...
6307 	 *
6308 	 *	Our current scheme is not silly either but we take the
6309 	 *	extra cost of the net_bh soft interrupt processing...
6310 	 *	We do checksum and copy also but from device to kernel.
6311 	 */
6312 
6313 	tp->rx_opt.saw_tstamp = 0;
6314 	tp->rx_opt.accecn = 0;
6315 
6316 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
6317 	 *	if header_prediction is to be made
6318 	 *	'S' will always be tp->tcp_header_len >> 2
6319 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
6320 	 *  turn it off	(when there are holes in the receive
6321 	 *	 space for instance)
6322 	 *	PSH flag is ignored.
6323 	 */
6324 
6325 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
6326 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
6327 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6328 		int tcp_header_len = tp->tcp_header_len;
6329 		s32 delta = 0;
6330 		int flag = 0;
6331 
6332 		/* Timestamp header prediction: tcp_header_len
6333 		 * is automatically equal to th->doff*4 due to pred_flags
6334 		 * match.
6335 		 */
6336 
6337 		/* Check timestamp */
6338 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
6339 			/* No? Slow path! */
6340 			if (!tcp_parse_aligned_timestamp(tp, th))
6341 				goto slow_path;
6342 
6343 			delta = tp->rx_opt.rcv_tsval -
6344 				tp->rx_opt.ts_recent;
6345 			/* If PAWS failed, check it more carefully in slow path */
6346 			if (delta < 0)
6347 				goto slow_path;
6348 
6349 			/* DO NOT update ts_recent here, if checksum fails
6350 			 * and timestamp was corrupted part, it will result
6351 			 * in a hung connection since we will drop all
6352 			 * future packets due to the PAWS test.
6353 			 */
6354 		}
6355 
6356 		if (len <= tcp_header_len) {
6357 			/* Bulk data transfer: sender */
6358 			if (len == tcp_header_len) {
6359 				/* Predicted packet is in window by definition.
6360 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
6361 				 * Hence, check seq<=rcv_wup reduces to:
6362 				 */
6363 				if (tcp_header_len ==
6364 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
6365 				    tp->rcv_nxt == tp->rcv_wup)
6366 					flag |= __tcp_replace_ts_recent(tp,
6367 									delta);
6368 
6369 				tcp_ecn_received_counters(sk, skb, 0);
6370 
6371 				/* We know that such packets are checksummed
6372 				 * on entry.
6373 				 */
6374 				tcp_ack(sk, skb, flag);
6375 				__kfree_skb(skb);
6376 				tcp_data_snd_check(sk);
6377 				/* When receiving pure ack in fast path, update
6378 				 * last ts ecr directly instead of calling
6379 				 * tcp_rcv_rtt_measure_ts()
6380 				 */
6381 				tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
6382 				return;
6383 			} else { /* Header too small */
6384 				reason = SKB_DROP_REASON_PKT_TOO_SMALL;
6385 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6386 				goto discard;
6387 			}
6388 		} else {
6389 			int eaten = 0;
6390 			bool fragstolen = false;
6391 
6392 			if (tcp_checksum_complete(skb))
6393 				goto csum_error;
6394 
6395 			if (after(TCP_SKB_CB(skb)->end_seq,
6396 				  tp->rcv_nxt + tcp_receive_window(tp)))
6397 				goto validate;
6398 
6399 			if ((int)skb->truesize > sk->sk_forward_alloc)
6400 				goto step5;
6401 
6402 			/* Predicted packet is in window by definition.
6403 			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
6404 			 * Hence, check seq<=rcv_wup reduces to:
6405 			 */
6406 			if (tcp_header_len ==
6407 			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
6408 			    tp->rcv_nxt == tp->rcv_wup)
6409 				flag |= __tcp_replace_ts_recent(tp,
6410 								delta);
6411 
6412 			tcp_rcv_rtt_measure_ts(sk, skb);
6413 
6414 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
6415 
6416 			/* Bulk data transfer: receiver */
6417 			tcp_cleanup_skb(skb);
6418 			__skb_pull(skb, tcp_header_len);
6419 			tcp_ecn_received_counters(sk, skb,
6420 						  len - tcp_header_len);
6421 			eaten = tcp_queue_rcv(sk, skb, &fragstolen);
6422 
6423 			tcp_event_data_recv(sk, skb);
6424 
6425 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
6426 				/* Well, only one small jumplet in fast path... */
6427 				tcp_ack(sk, skb, flag | FLAG_DATA);
6428 				tcp_data_snd_check(sk);
6429 				if (!inet_csk_ack_scheduled(sk))
6430 					goto no_ack;
6431 			} else {
6432 				tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
6433 			}
6434 
6435 			__tcp_ack_snd_check(sk, 0);
6436 no_ack:
6437 			if (eaten)
6438 				kfree_skb_partial(skb, fragstolen);
6439 			tcp_data_ready(sk);
6440 			return;
6441 		}
6442 	}
6443 
6444 slow_path:
6445 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
6446 		goto csum_error;
6447 
6448 	if (!th->ack && !th->rst && !th->syn) {
6449 		reason = SKB_DROP_REASON_TCP_FLAGS;
6450 		goto discard;
6451 	}
6452 
6453 	/*
6454 	 *	Standard slow path.
6455 	 */
6456 validate:
6457 	if (!tcp_validate_incoming(sk, skb, th, 1))
6458 		return;
6459 
6460 step5:
6461 	tcp_ecn_received_counters_payload(sk, skb);
6462 
6463 	reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT);
6464 	if ((int)reason < 0) {
6465 		reason = -reason;
6466 		goto discard;
6467 	}
6468 	tcp_rcv_rtt_measure_ts(sk, skb);
6469 
6470 	/* Process urgent data. */
6471 	tcp_urg(sk, skb, th);
6472 
6473 	/* step 7: process the segment text */
6474 	tcp_data_queue(sk, skb);
6475 
6476 	tcp_data_snd_check(sk);
6477 	tcp_ack_snd_check(sk);
6478 	return;
6479 
6480 csum_error:
6481 	reason = SKB_DROP_REASON_TCP_CSUM;
6482 	trace_tcp_bad_csum(skb);
6483 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
6484 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6485 
6486 discard:
6487 	tcp_drop_reason(sk, skb, reason);
6488 }
6489 EXPORT_IPV6_MOD(tcp_rcv_established);
6490 
tcp_init_transfer(struct sock * sk,int bpf_op,struct sk_buff * skb)6491 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb)
6492 {
6493 	struct inet_connection_sock *icsk = inet_csk(sk);
6494 	struct tcp_sock *tp = tcp_sk(sk);
6495 
6496 	tcp_mtup_init(sk);
6497 	icsk->icsk_af_ops->rebuild_header(sk);
6498 	tcp_init_metrics(sk);
6499 
6500 	/* Initialize the congestion window to start the transfer.
6501 	 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
6502 	 * retransmitted. In light of RFC6298 more aggressive 1sec
6503 	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
6504 	 * retransmission has occurred.
6505 	 */
6506 	if (tp->total_retrans > 1 && tp->undo_marker)
6507 		tcp_snd_cwnd_set(tp, 1);
6508 	else
6509 		tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk)));
6510 	tp->snd_cwnd_stamp = tcp_jiffies32;
6511 
6512 	bpf_skops_established(sk, bpf_op, skb);
6513 	/* Initialize congestion control unless BPF initialized it already: */
6514 	if (!icsk->icsk_ca_initialized)
6515 		tcp_init_congestion_control(sk);
6516 	tcp_init_buffer_space(sk);
6517 }
6518 
tcp_finish_connect(struct sock * sk,struct sk_buff * skb)6519 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
6520 {
6521 	struct tcp_sock *tp = tcp_sk(sk);
6522 	struct inet_connection_sock *icsk = inet_csk(sk);
6523 
6524 	tcp_ao_finish_connect(sk, skb);
6525 	tcp_set_state(sk, TCP_ESTABLISHED);
6526 	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
6527 
6528 	if (skb) {
6529 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
6530 		security_inet_conn_established(sk, skb);
6531 		sk_mark_napi_id(sk, skb);
6532 	}
6533 
6534 	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb);
6535 
6536 	/* Prevent spurious tcp_cwnd_restart() on first data
6537 	 * packet.
6538 	 */
6539 	tp->lsndtime = tcp_jiffies32;
6540 
6541 	if (sock_flag(sk, SOCK_KEEPOPEN))
6542 		tcp_reset_keepalive_timer(sk, keepalive_time_when(tp));
6543 
6544 	if (!tp->rx_opt.snd_wscale)
6545 		__tcp_fast_path_on(tp, tp->snd_wnd);
6546 	else
6547 		tp->pred_flags = 0;
6548 }
6549 
tcp_rcv_fastopen_synack(struct sock * sk,struct sk_buff * synack,struct tcp_fastopen_cookie * cookie)6550 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
6551 				    struct tcp_fastopen_cookie *cookie)
6552 {
6553 	struct tcp_sock *tp = tcp_sk(sk);
6554 	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
6555 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
6556 	bool syn_drop = false;
6557 
6558 	if (mss == READ_ONCE(tp->rx_opt.user_mss)) {
6559 		struct tcp_options_received opt;
6560 
6561 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
6562 		tcp_clear_options(&opt);
6563 		opt.user_mss = opt.mss_clamp = 0;
6564 		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
6565 		mss = opt.mss_clamp;
6566 	}
6567 
6568 	if (!tp->syn_fastopen) {
6569 		/* Ignore an unsolicited cookie */
6570 		cookie->len = -1;
6571 	} else if (tp->total_retrans) {
6572 		/* SYN timed out and the SYN-ACK neither has a cookie nor
6573 		 * acknowledges data. Presumably the remote received only
6574 		 * the retransmitted (regular) SYNs: either the original
6575 		 * SYN-data or the corresponding SYN-ACK was dropped.
6576 		 */
6577 		syn_drop = (cookie->len < 0 && data);
6578 	} else if (cookie->len < 0 && !tp->syn_data) {
6579 		/* We requested a cookie but didn't get it. If we did not use
6580 		 * the (old) exp opt format then try so next time (try_exp=1).
6581 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
6582 		 */
6583 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
6584 	}
6585 
6586 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
6587 
6588 	if (data) { /* Retransmit unacked data in SYN */
6589 		if (tp->total_retrans)
6590 			tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
6591 		else
6592 			tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
6593 		skb_rbtree_walk_from(data)
6594 			 tcp_mark_skb_lost(sk, data);
6595 		tcp_non_congestion_loss_retransmit(sk);
6596 		NET_INC_STATS(sock_net(sk),
6597 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
6598 		return true;
6599 	}
6600 	tp->syn_data_acked = tp->syn_data;
6601 	if (tp->syn_data_acked) {
6602 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
6603 		/* SYN-data is counted as two separate packets in tcp_ack() */
6604 		if (tp->delivered > 1)
6605 			--tp->delivered;
6606 	}
6607 
6608 	tcp_fastopen_add_skb(sk, synack);
6609 
6610 	return false;
6611 }
6612 
smc_check_reset_syn(struct tcp_sock * tp)6613 static void smc_check_reset_syn(struct tcp_sock *tp)
6614 {
6615 #if IS_ENABLED(CONFIG_SMC)
6616 	if (static_branch_unlikely(&tcp_have_smc)) {
6617 		if (tp->syn_smc && !tp->rx_opt.smc_ok)
6618 			tp->syn_smc = 0;
6619 	}
6620 #endif
6621 }
6622 
tcp_try_undo_spurious_syn(struct sock * sk)6623 static void tcp_try_undo_spurious_syn(struct sock *sk)
6624 {
6625 	struct tcp_sock *tp = tcp_sk(sk);
6626 	u32 syn_stamp;
6627 
6628 	/* undo_marker is set when SYN or SYNACK times out. The timeout is
6629 	 * spurious if the ACK's timestamp option echo value matches the
6630 	 * original SYN timestamp.
6631 	 */
6632 	syn_stamp = tp->retrans_stamp;
6633 	if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
6634 	    syn_stamp == tp->rx_opt.rcv_tsecr)
6635 		tp->undo_marker = 0;
6636 }
6637 
tcp_rcv_synsent_state_process(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)6638 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
6639 					 const struct tcphdr *th)
6640 {
6641 	struct inet_connection_sock *icsk = inet_csk(sk);
6642 	struct tcp_sock *tp = tcp_sk(sk);
6643 	struct tcp_fastopen_cookie foc = { .len = -1 };
6644 	int saved_clamp = tp->rx_opt.mss_clamp;
6645 	bool fastopen_fail;
6646 	SKB_DR(reason);
6647 
6648 	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
6649 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
6650 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
6651 
6652 	if (th->ack) {
6653 		/* rfc793:
6654 		 * "If the state is SYN-SENT then
6655 		 *    first check the ACK bit
6656 		 *      If the ACK bit is set
6657 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6658 		 *        a reset (unless the RST bit is set, if so drop
6659 		 *        the segment and return)"
6660 		 */
6661 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
6662 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6663 			/* Previous FIN/ACK or RST/ACK might be ignored. */
6664 			if (icsk->icsk_retransmits == 0)
6665 				tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
6666 						     TCP_TIMEOUT_MIN, false);
6667 			SKB_DR_SET(reason, TCP_INVALID_ACK_SEQUENCE);
6668 			goto reset_and_undo;
6669 		}
6670 
6671 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
6672 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
6673 			     tcp_time_stamp_ts(tp))) {
6674 			NET_INC_STATS(sock_net(sk),
6675 					LINUX_MIB_PAWSACTIVEREJECTED);
6676 			SKB_DR_SET(reason, TCP_RFC7323_PAWS);
6677 			goto reset_and_undo;
6678 		}
6679 
6680 		/* Now ACK is acceptable.
6681 		 *
6682 		 * "If the RST bit is set
6683 		 *    If the ACK was acceptable then signal the user "error:
6684 		 *    connection reset", drop the segment, enter CLOSED state,
6685 		 *    delete TCB, and return."
6686 		 */
6687 
6688 		if (th->rst) {
6689 			tcp_reset(sk, skb);
6690 consume:
6691 			__kfree_skb(skb);
6692 			return 0;
6693 		}
6694 
6695 		/* rfc793:
6696 		 *   "fifth, if neither of the SYN or RST bits is set then
6697 		 *    drop the segment and return."
6698 		 *
6699 		 *    See note below!
6700 		 *                                        --ANK(990513)
6701 		 */
6702 		if (!th->syn) {
6703 			SKB_DR_SET(reason, TCP_FLAGS);
6704 			goto discard_and_undo;
6705 		}
6706 		/* rfc793:
6707 		 *   "If the SYN bit is on ...
6708 		 *    are acceptable then ...
6709 		 *    (our SYN has been ACKed), change the connection
6710 		 *    state to ESTABLISHED..."
6711 		 */
6712 
6713 		if (tcp_ecn_mode_any(tp))
6714 			tcp_ecn_rcv_synack(sk, skb, th,
6715 					   TCP_SKB_CB(skb)->ip_dsfield);
6716 
6717 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6718 		tcp_try_undo_spurious_syn(sk);
6719 		tcp_ack(sk, skb, FLAG_SLOWPATH);
6720 
6721 		/* Ok.. it's good. Set up sequence numbers and
6722 		 * move to established.
6723 		 */
6724 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6725 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6726 
6727 		/* RFC1323: The window in SYN & SYN/ACK segments is
6728 		 * never scaled.
6729 		 */
6730 		tp->snd_wnd = ntohs(th->window);
6731 
6732 		if (!tp->rx_opt.wscale_ok) {
6733 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6734 			WRITE_ONCE(tp->window_clamp,
6735 				   min(tp->window_clamp, 65535U));
6736 		}
6737 
6738 		if (tp->rx_opt.saw_tstamp) {
6739 			tp->rx_opt.tstamp_ok	   = 1;
6740 			tp->tcp_header_len =
6741 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6742 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
6743 			tcp_store_ts_recent(tp);
6744 		} else {
6745 			tp->tcp_header_len = sizeof(struct tcphdr);
6746 		}
6747 
6748 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6749 		tcp_initialize_rcv_mss(sk);
6750 
6751 		/* Remember, tcp_poll() does not lock socket!
6752 		 * Change state from SYN-SENT only after copied_seq
6753 		 * is initialized. */
6754 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6755 
6756 		smc_check_reset_syn(tp);
6757 
6758 		smp_mb();
6759 
6760 		tcp_finish_connect(sk, skb);
6761 
6762 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6763 				tcp_rcv_fastopen_synack(sk, skb, &foc);
6764 
6765 		if (!sock_flag(sk, SOCK_DEAD)) {
6766 			sk->sk_state_change(sk);
6767 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6768 		}
6769 		if (fastopen_fail)
6770 			return -1;
6771 		if (sk->sk_write_pending ||
6772 		    READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept) ||
6773 		    inet_csk_in_pingpong_mode(sk)) {
6774 			/* Save one ACK. Data will be ready after
6775 			 * several ticks, if write_pending is set.
6776 			 *
6777 			 * It may be deleted, but with this feature tcpdumps
6778 			 * look so _wonderfully_ clever, that I was not able
6779 			 * to stand against the temptation 8)     --ANK
6780 			 */
6781 			inet_csk_schedule_ack(sk);
6782 			tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6783 			tcp_reset_xmit_timer(sk, ICSK_TIME_DACK,
6784 					     TCP_DELACK_MAX, false);
6785 			goto consume;
6786 		}
6787 		tcp_send_ack_reflect_ect(sk, tcp_ecn_mode_accecn(tp));
6788 		return -1;
6789 	}
6790 
6791 	/* No ACK in the segment */
6792 
6793 	if (th->rst) {
6794 		/* rfc793:
6795 		 * "If the RST bit is set
6796 		 *
6797 		 *      Otherwise (no ACK) drop the segment and return."
6798 		 */
6799 		SKB_DR_SET(reason, TCP_RESET);
6800 		goto discard_and_undo;
6801 	}
6802 
6803 	/* PAWS check. */
6804 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6805 	    tcp_paws_reject(&tp->rx_opt, 0)) {
6806 		SKB_DR_SET(reason, TCP_RFC7323_PAWS);
6807 		goto discard_and_undo;
6808 	}
6809 	if (th->syn) {
6810 		/* We see SYN without ACK. It is attempt of
6811 		 * simultaneous connect with crossed SYNs.
6812 		 * Particularly, it can be connect to self.
6813 		 */
6814 #ifdef CONFIG_TCP_AO
6815 		struct tcp_ao_info *ao;
6816 
6817 		ao = rcu_dereference_protected(tp->ao_info,
6818 					       lockdep_sock_is_held(sk));
6819 		if (ao) {
6820 			WRITE_ONCE(ao->risn, th->seq);
6821 			ao->rcv_sne = 0;
6822 		}
6823 #endif
6824 		tcp_set_state(sk, TCP_SYN_RECV);
6825 
6826 		if (tp->rx_opt.saw_tstamp) {
6827 			tp->rx_opt.tstamp_ok = 1;
6828 			tcp_store_ts_recent(tp);
6829 			tp->tcp_header_len =
6830 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6831 		} else {
6832 			tp->tcp_header_len = sizeof(struct tcphdr);
6833 		}
6834 
6835 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6836 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6837 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6838 
6839 		/* RFC1323: The window in SYN & SYN/ACK segments is
6840 		 * never scaled.
6841 		 */
6842 		tp->snd_wnd    = ntohs(th->window);
6843 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
6844 		tp->max_window = tp->snd_wnd;
6845 
6846 		tcp_ecn_rcv_syn(tp, th, skb);
6847 
6848 		tcp_mtup_init(sk);
6849 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6850 		tcp_initialize_rcv_mss(sk);
6851 
6852 		tcp_send_synack(sk);
6853 #if 0
6854 		/* Note, we could accept data and URG from this segment.
6855 		 * There are no obstacles to make this (except that we must
6856 		 * either change tcp_recvmsg() to prevent it from returning data
6857 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6858 		 *
6859 		 * However, if we ignore data in ACKless segments sometimes,
6860 		 * we have no reasons to accept it sometimes.
6861 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6862 		 * is not flawless. So, discard packet for sanity.
6863 		 * Uncomment this return to process the data.
6864 		 */
6865 		return -1;
6866 #else
6867 		goto consume;
6868 #endif
6869 	}
6870 	/* "fifth, if neither of the SYN or RST bits is set then
6871 	 * drop the segment and return."
6872 	 */
6873 
6874 discard_and_undo:
6875 	tcp_clear_options(&tp->rx_opt);
6876 	tp->rx_opt.mss_clamp = saved_clamp;
6877 	tcp_drop_reason(sk, skb, reason);
6878 	return 0;
6879 
6880 reset_and_undo:
6881 	tcp_clear_options(&tp->rx_opt);
6882 	tp->rx_opt.mss_clamp = saved_clamp;
6883 	/* we can reuse/return @reason to its caller to handle the exception */
6884 	return reason;
6885 }
6886 
tcp_rcv_synrecv_state_fastopen(struct sock * sk)6887 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6888 {
6889 	struct tcp_sock *tp = tcp_sk(sk);
6890 	struct request_sock *req;
6891 
6892 	/* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6893 	 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6894 	 */
6895 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss && !tp->packets_out)
6896 		tcp_try_undo_recovery(sk);
6897 
6898 	tcp_update_rto_time(tp);
6899 	WRITE_ONCE(inet_csk(sk)->icsk_retransmits, 0);
6900 	/* In tcp_fastopen_synack_timer() on the first SYNACK RTO we set
6901 	 * retrans_stamp but don't enter CA_Loss, so in case that happened we
6902 	 * need to zero retrans_stamp here to prevent spurious
6903 	 * retransmits_timed_out(). However, if the ACK of our SYNACK caused us
6904 	 * to enter CA_Recovery then we need to leave retrans_stamp as it was
6905 	 * set entering CA_Recovery, for correct retransmits_timed_out() and
6906 	 * undo behavior.
6907 	 */
6908 	tcp_retrans_stamp_cleanup(sk);
6909 
6910 	/* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6911 	 * we no longer need req so release it.
6912 	 */
6913 	req = rcu_dereference_protected(tp->fastopen_rsk,
6914 					lockdep_sock_is_held(sk));
6915 	reqsk_fastopen_remove(sk, req, false);
6916 
6917 	/* Re-arm the timer because data may have been sent out.
6918 	 * This is similar to the regular data transmission case
6919 	 * when new data has just been ack'ed.
6920 	 *
6921 	 * (TFO) - we could try to be more aggressive and
6922 	 * retransmitting any data sooner based on when they
6923 	 * are sent out.
6924 	 */
6925 	tcp_rearm_rto(sk);
6926 }
6927 
6928 /*
6929  *	This function implements the receiving procedure of RFC 793 for
6930  *	all states except ESTABLISHED and TIME_WAIT.
6931  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6932  *	address independent.
6933  */
6934 
6935 enum skb_drop_reason
tcp_rcv_state_process(struct sock * sk,struct sk_buff * skb)6936 tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6937 {
6938 	struct tcp_sock *tp = tcp_sk(sk);
6939 	struct inet_connection_sock *icsk = inet_csk(sk);
6940 	const struct tcphdr *th = tcp_hdr(skb);
6941 	struct request_sock *req;
6942 	int queued = 0;
6943 	SKB_DR(reason);
6944 
6945 	switch (sk->sk_state) {
6946 	case TCP_CLOSE:
6947 		SKB_DR_SET(reason, TCP_CLOSE);
6948 		goto discard;
6949 
6950 	case TCP_LISTEN:
6951 		if (th->ack)
6952 			return SKB_DROP_REASON_TCP_FLAGS;
6953 
6954 		if (th->rst) {
6955 			SKB_DR_SET(reason, TCP_RESET);
6956 			goto discard;
6957 		}
6958 		if (th->syn) {
6959 			if (th->fin) {
6960 				SKB_DR_SET(reason, TCP_FLAGS);
6961 				goto discard;
6962 			}
6963 			/* It is possible that we process SYN packets from backlog,
6964 			 * so we need to make sure to disable BH and RCU right there.
6965 			 */
6966 			rcu_read_lock();
6967 			local_bh_disable();
6968 			icsk->icsk_af_ops->conn_request(sk, skb);
6969 			local_bh_enable();
6970 			rcu_read_unlock();
6971 
6972 			consume_skb(skb);
6973 			return 0;
6974 		}
6975 		SKB_DR_SET(reason, TCP_FLAGS);
6976 		goto discard;
6977 
6978 	case TCP_SYN_SENT:
6979 		tp->rx_opt.saw_tstamp = 0;
6980 		tcp_mstamp_refresh(tp);
6981 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
6982 		if (queued >= 0)
6983 			return queued;
6984 
6985 		/* Do step6 onward by hand. */
6986 		tcp_urg(sk, skb, th);
6987 		__kfree_skb(skb);
6988 		tcp_data_snd_check(sk);
6989 		return 0;
6990 	}
6991 
6992 	tcp_mstamp_refresh(tp);
6993 	tp->rx_opt.saw_tstamp = 0;
6994 	req = rcu_dereference_protected(tp->fastopen_rsk,
6995 					lockdep_sock_is_held(sk));
6996 	if (req) {
6997 		bool req_stolen;
6998 
6999 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
7000 		    sk->sk_state != TCP_FIN_WAIT1);
7001 
7002 		SKB_DR_SET(reason, TCP_FASTOPEN);
7003 		if (!tcp_check_req(sk, skb, req, true, &req_stolen, &reason))
7004 			goto discard;
7005 	}
7006 
7007 	if (!th->ack && !th->rst && !th->syn) {
7008 		SKB_DR_SET(reason, TCP_FLAGS);
7009 		goto discard;
7010 	}
7011 	if (!tcp_validate_incoming(sk, skb, th, 0))
7012 		return 0;
7013 
7014 	/* step 5: check the ACK field */
7015 	reason = tcp_ack(sk, skb, FLAG_SLOWPATH |
7016 				  FLAG_UPDATE_TS_RECENT |
7017 				  FLAG_NO_CHALLENGE_ACK);
7018 
7019 	if ((int)reason <= 0) {
7020 		if (sk->sk_state == TCP_SYN_RECV) {
7021 			/* send one RST */
7022 			if (!reason)
7023 				return SKB_DROP_REASON_TCP_OLD_ACK;
7024 			return -reason;
7025 		}
7026 		/* accept old ack during closing */
7027 		if ((int)reason < 0) {
7028 			tcp_send_challenge_ack(sk, false);
7029 			reason = -reason;
7030 			goto discard;
7031 		}
7032 	}
7033 	SKB_DR_SET(reason, NOT_SPECIFIED);
7034 	switch (sk->sk_state) {
7035 	case TCP_SYN_RECV:
7036 		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
7037 		if (!tp->srtt_us)
7038 			tcp_synack_rtt_meas(sk, req);
7039 
7040 		if (tp->rx_opt.tstamp_ok)
7041 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
7042 
7043 		if (req) {
7044 			tcp_rcv_synrecv_state_fastopen(sk);
7045 		} else {
7046 			tcp_try_undo_spurious_syn(sk);
7047 			tp->retrans_stamp = 0;
7048 			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,
7049 					  skb);
7050 			WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
7051 		}
7052 		tcp_ao_established(sk);
7053 		smp_mb();
7054 		tcp_set_state(sk, TCP_ESTABLISHED);
7055 		sk->sk_state_change(sk);
7056 
7057 		/* Note, that this wakeup is only for marginal crossed SYN case.
7058 		 * Passively open sockets are not waked up, because
7059 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
7060 		 */
7061 		if (sk->sk_socket)
7062 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
7063 
7064 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
7065 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
7066 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
7067 
7068 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
7069 			tcp_update_pacing_rate(sk);
7070 
7071 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
7072 		tp->lsndtime = tcp_jiffies32;
7073 
7074 		tcp_initialize_rcv_mss(sk);
7075 		if (tcp_ecn_mode_accecn(tp))
7076 			tcp_accecn_third_ack(sk, skb, tp->syn_ect_snt);
7077 		tcp_fast_path_on(tp);
7078 		if (sk->sk_shutdown & SEND_SHUTDOWN)
7079 			tcp_shutdown(sk, SEND_SHUTDOWN);
7080 
7081 		break;
7082 
7083 	case TCP_FIN_WAIT1: {
7084 		int tmo;
7085 
7086 		if (req)
7087 			tcp_rcv_synrecv_state_fastopen(sk);
7088 
7089 		if (tp->snd_una != tp->write_seq)
7090 			break;
7091 
7092 		tcp_set_state(sk, TCP_FIN_WAIT2);
7093 		WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN);
7094 
7095 		sk_dst_confirm(sk);
7096 
7097 		if (!sock_flag(sk, SOCK_DEAD)) {
7098 			/* Wake up lingering close() */
7099 			sk->sk_state_change(sk);
7100 			break;
7101 		}
7102 
7103 		if (READ_ONCE(tp->linger2) < 0) {
7104 			tcp_done(sk);
7105 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
7106 			return SKB_DROP_REASON_TCP_ABORT_ON_DATA;
7107 		}
7108 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
7109 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
7110 			/* Receive out of order FIN after close() */
7111 			if (tp->syn_fastopen && th->fin)
7112 				tcp_fastopen_active_disable(sk);
7113 			tcp_done(sk);
7114 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
7115 			return SKB_DROP_REASON_TCP_ABORT_ON_DATA;
7116 		}
7117 
7118 		tmo = tcp_fin_time(sk);
7119 		if (tmo > TCP_TIMEWAIT_LEN) {
7120 			tcp_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
7121 		} else if (th->fin || sock_owned_by_user(sk)) {
7122 			/* Bad case. We could lose such FIN otherwise.
7123 			 * It is not a big problem, but it looks confusing
7124 			 * and not so rare event. We still can lose it now,
7125 			 * if it spins in bh_lock_sock(), but it is really
7126 			 * marginal case.
7127 			 */
7128 			tcp_reset_keepalive_timer(sk, tmo);
7129 		} else {
7130 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
7131 			goto consume;
7132 		}
7133 		break;
7134 	}
7135 
7136 	case TCP_CLOSING:
7137 		if (tp->snd_una == tp->write_seq) {
7138 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
7139 			goto consume;
7140 		}
7141 		break;
7142 
7143 	case TCP_LAST_ACK:
7144 		if (tp->snd_una == tp->write_seq) {
7145 			tcp_update_metrics(sk);
7146 			tcp_done(sk);
7147 			goto consume;
7148 		}
7149 		break;
7150 	}
7151 
7152 	/* step 6: check the URG bit */
7153 	tcp_urg(sk, skb, th);
7154 
7155 	/* step 7: process the segment text */
7156 	switch (sk->sk_state) {
7157 	case TCP_CLOSE_WAIT:
7158 	case TCP_CLOSING:
7159 	case TCP_LAST_ACK:
7160 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
7161 			/* If a subflow has been reset, the packet should not
7162 			 * continue to be processed, drop the packet.
7163 			 */
7164 			if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb))
7165 				goto discard;
7166 			break;
7167 		}
7168 		fallthrough;
7169 	case TCP_FIN_WAIT1:
7170 	case TCP_FIN_WAIT2:
7171 		/* RFC 793 says to queue data in these states,
7172 		 * RFC 1122 says we MUST send a reset.
7173 		 * BSD 4.4 also does reset.
7174 		 */
7175 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
7176 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
7177 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
7178 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
7179 				tcp_reset(sk, skb);
7180 				return SKB_DROP_REASON_TCP_ABORT_ON_DATA;
7181 			}
7182 		}
7183 		fallthrough;
7184 	case TCP_ESTABLISHED:
7185 		tcp_data_queue(sk, skb);
7186 		queued = 1;
7187 		break;
7188 	}
7189 
7190 	/* tcp_data could move socket to TIME-WAIT */
7191 	if (sk->sk_state != TCP_CLOSE) {
7192 		tcp_data_snd_check(sk);
7193 		tcp_ack_snd_check(sk);
7194 	}
7195 
7196 	if (!queued) {
7197 discard:
7198 		tcp_drop_reason(sk, skb, reason);
7199 	}
7200 	return 0;
7201 
7202 consume:
7203 	__kfree_skb(skb);
7204 	return 0;
7205 }
7206 EXPORT_IPV6_MOD(tcp_rcv_state_process);
7207 
pr_drop_req(struct request_sock * req,__u16 port,int family)7208 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
7209 {
7210 	struct inet_request_sock *ireq = inet_rsk(req);
7211 
7212 	if (family == AF_INET)
7213 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
7214 				    &ireq->ir_rmt_addr, port);
7215 #if IS_ENABLED(CONFIG_IPV6)
7216 	else if (family == AF_INET6)
7217 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
7218 				    &ireq->ir_v6_rmt_addr, port);
7219 #endif
7220 }
7221 
7222 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
7223  *
7224  * If we receive a SYN packet with these bits set, it means a
7225  * network is playing bad games with TOS bits. In order to
7226  * avoid possible false congestion notifications, we disable
7227  * TCP ECN negotiation.
7228  *
7229  * Exception: tcp_ca wants ECN. This is required for DCTCP
7230  * congestion control: Linux DCTCP asserts ECT on all packets,
7231  * including SYN, which is most optimal solution; however,
7232  * others, such as FreeBSD do not.
7233  *
7234  * Exception: At least one of the reserved bits of the TCP header (th->res1) is
7235  * set, indicating the use of a future TCP extension (such as AccECN). See
7236  * RFC8311 §4.3 which updates RFC3168 to allow the development of such
7237  * extensions.
7238  */
tcp_ecn_create_request(struct request_sock * req,const struct sk_buff * skb,const struct sock * listen_sk,const struct dst_entry * dst)7239 static void tcp_ecn_create_request(struct request_sock *req,
7240 				   const struct sk_buff *skb,
7241 				   const struct sock *listen_sk,
7242 				   const struct dst_entry *dst)
7243 {
7244 	const struct tcphdr *th = tcp_hdr(skb);
7245 	const struct net *net = sock_net(listen_sk);
7246 	bool th_ecn = th->ece && th->cwr;
7247 	bool ect, ecn_ok;
7248 	u32 ecn_ok_dst;
7249 
7250 	if (tcp_accecn_syn_requested(th) &&
7251 	    READ_ONCE(net->ipv4.sysctl_tcp_ecn) >= 3) {
7252 		inet_rsk(req)->ecn_ok = 1;
7253 		tcp_rsk(req)->accecn_ok = 1;
7254 		tcp_rsk(req)->syn_ect_rcv = TCP_SKB_CB(skb)->ip_dsfield &
7255 					    INET_ECN_MASK;
7256 		return;
7257 	}
7258 
7259 	if (!th_ecn)
7260 		return;
7261 
7262 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
7263 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
7264 	ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst;
7265 
7266 	if (((!ect || th->res1 || th->ae) && ecn_ok) ||
7267 	    tcp_ca_needs_ecn(listen_sk) ||
7268 	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
7269 	    tcp_bpf_ca_needs_ecn((struct sock *)req))
7270 		inet_rsk(req)->ecn_ok = 1;
7271 }
7272 
tcp_openreq_init(struct request_sock * req,const struct tcp_options_received * rx_opt,struct sk_buff * skb,const struct sock * sk)7273 static void tcp_openreq_init(struct request_sock *req,
7274 			     const struct tcp_options_received *rx_opt,
7275 			     struct sk_buff *skb, const struct sock *sk)
7276 {
7277 	struct inet_request_sock *ireq = inet_rsk(req);
7278 
7279 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
7280 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
7281 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
7282 	tcp_rsk(req)->snt_synack = 0;
7283 	tcp_rsk(req)->snt_tsval_first = 0;
7284 	tcp_rsk(req)->last_oow_ack_time = 0;
7285 	tcp_rsk(req)->accecn_ok = 0;
7286 	tcp_rsk(req)->saw_accecn_opt = TCP_ACCECN_OPT_NOT_SEEN;
7287 	tcp_rsk(req)->accecn_fail_mode = 0;
7288 	tcp_rsk(req)->syn_ect_rcv = 0;
7289 	tcp_rsk(req)->syn_ect_snt = 0;
7290 	req->mss = rx_opt->mss_clamp;
7291 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
7292 	ireq->tstamp_ok = rx_opt->tstamp_ok;
7293 	ireq->sack_ok = rx_opt->sack_ok;
7294 	ireq->snd_wscale = rx_opt->snd_wscale;
7295 	ireq->wscale_ok = rx_opt->wscale_ok;
7296 	ireq->acked = 0;
7297 	ireq->ecn_ok = 0;
7298 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
7299 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
7300 	ireq->ir_mark = inet_request_mark(sk, skb);
7301 #if IS_ENABLED(CONFIG_SMC)
7302 	ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested &&
7303 			tcp_sk(sk)->smc_hs_congested(sk));
7304 #endif
7305 }
7306 
7307 /*
7308  * Return true if a syncookie should be sent
7309  */
tcp_syn_flood_action(struct sock * sk,const char * proto)7310 static bool tcp_syn_flood_action(struct sock *sk, const char *proto)
7311 {
7312 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
7313 	const char *msg = "Dropping request";
7314 	struct net *net = sock_net(sk);
7315 	bool want_cookie = false;
7316 	u8 syncookies;
7317 
7318 	syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
7319 
7320 #ifdef CONFIG_SYN_COOKIES
7321 	if (syncookies) {
7322 		msg = "Sending cookies";
7323 		want_cookie = true;
7324 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
7325 	} else
7326 #endif
7327 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
7328 
7329 	if (syncookies != 2 && !READ_ONCE(queue->synflood_warned)) {
7330 		WRITE_ONCE(queue->synflood_warned, 1);
7331 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_family == AF_INET6) {
7332 			net_info_ratelimited("%s: Possible SYN flooding on port [%pI6c]:%u. %s.\n",
7333 					proto, inet6_rcv_saddr(sk),
7334 					sk->sk_num, msg);
7335 		} else {
7336 			net_info_ratelimited("%s: Possible SYN flooding on port %pI4:%u. %s.\n",
7337 					proto, &sk->sk_rcv_saddr,
7338 					sk->sk_num, msg);
7339 		}
7340 	}
7341 
7342 	return want_cookie;
7343 }
7344 
tcp_reqsk_record_syn(const struct sock * sk,struct request_sock * req,const struct sk_buff * skb)7345 static void tcp_reqsk_record_syn(const struct sock *sk,
7346 				 struct request_sock *req,
7347 				 const struct sk_buff *skb)
7348 {
7349 	if (tcp_sk(sk)->save_syn) {
7350 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
7351 		struct saved_syn *saved_syn;
7352 		u32 mac_hdrlen;
7353 		void *base;
7354 
7355 		if (tcp_sk(sk)->save_syn == 2) {  /* Save full header. */
7356 			base = skb_mac_header(skb);
7357 			mac_hdrlen = skb_mac_header_len(skb);
7358 			len += mac_hdrlen;
7359 		} else {
7360 			base = skb_network_header(skb);
7361 			mac_hdrlen = 0;
7362 		}
7363 
7364 		saved_syn = kmalloc(struct_size(saved_syn, data, len),
7365 				    GFP_ATOMIC);
7366 		if (saved_syn) {
7367 			saved_syn->mac_hdrlen = mac_hdrlen;
7368 			saved_syn->network_hdrlen = skb_network_header_len(skb);
7369 			saved_syn->tcp_hdrlen = tcp_hdrlen(skb);
7370 			memcpy(saved_syn->data, base, len);
7371 			req->saved_syn = saved_syn;
7372 		}
7373 	}
7374 }
7375 
7376 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
7377  * used for SYN cookie generation.
7378  */
tcp_get_syncookie_mss(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct tcphdr * th)7379 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
7380 			  const struct tcp_request_sock_ops *af_ops,
7381 			  struct sock *sk, struct tcphdr *th)
7382 {
7383 	struct tcp_sock *tp = tcp_sk(sk);
7384 	u16 mss;
7385 
7386 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 &&
7387 	    !inet_csk_reqsk_queue_is_full(sk))
7388 		return 0;
7389 
7390 	if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
7391 		return 0;
7392 
7393 	if (sk_acceptq_is_full(sk)) {
7394 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
7395 		return 0;
7396 	}
7397 
7398 	mss = tcp_parse_mss_option(th, READ_ONCE(tp->rx_opt.user_mss));
7399 	if (!mss)
7400 		mss = af_ops->mss_clamp;
7401 
7402 	return mss;
7403 }
7404 EXPORT_IPV6_MOD_GPL(tcp_get_syncookie_mss);
7405 
tcp_conn_request(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct sk_buff * skb)7406 int tcp_conn_request(struct request_sock_ops *rsk_ops,
7407 		     const struct tcp_request_sock_ops *af_ops,
7408 		     struct sock *sk, struct sk_buff *skb)
7409 {
7410 	struct tcp_fastopen_cookie foc = { .len = -1 };
7411 	struct tcp_options_received tmp_opt;
7412 	const struct tcp_sock *tp = tcp_sk(sk);
7413 	struct net *net = sock_net(sk);
7414 	struct sock *fastopen_sk = NULL;
7415 	struct request_sock *req;
7416 	bool want_cookie = false;
7417 	struct dst_entry *dst;
7418 	struct flowi fl;
7419 	u8 syncookies;
7420 	u32 isn;
7421 
7422 #ifdef CONFIG_TCP_AO
7423 	const struct tcp_ao_hdr *aoh;
7424 #endif
7425 
7426 	isn = __this_cpu_read(tcp_tw_isn);
7427 	if (isn) {
7428 		/* TW buckets are converted to open requests without
7429 		 * limitations, they conserve resources and peer is
7430 		 * evidently real one.
7431 		 */
7432 		__this_cpu_write(tcp_tw_isn, 0);
7433 	} else {
7434 		syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
7435 
7436 		if (syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) {
7437 			want_cookie = tcp_syn_flood_action(sk,
7438 							   rsk_ops->slab_name);
7439 			if (!want_cookie)
7440 				goto drop;
7441 		}
7442 	}
7443 
7444 	if (sk_acceptq_is_full(sk)) {
7445 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
7446 		goto drop;
7447 	}
7448 
7449 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
7450 	if (!req)
7451 		goto drop;
7452 
7453 	req->syncookie = want_cookie;
7454 	tcp_rsk(req)->af_specific = af_ops;
7455 	tcp_rsk(req)->ts_off = 0;
7456 	tcp_rsk(req)->req_usec_ts = false;
7457 #if IS_ENABLED(CONFIG_MPTCP)
7458 	tcp_rsk(req)->is_mptcp = 0;
7459 #endif
7460 
7461 	tcp_clear_options(&tmp_opt);
7462 	tmp_opt.mss_clamp = af_ops->mss_clamp;
7463 	tmp_opt.user_mss  = READ_ONCE(tp->rx_opt.user_mss);
7464 	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
7465 			  want_cookie ? NULL : &foc);
7466 
7467 	if (want_cookie && !tmp_opt.saw_tstamp)
7468 		tcp_clear_options(&tmp_opt);
7469 
7470 	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
7471 		tmp_opt.smc_ok = 0;
7472 
7473 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
7474 	tcp_openreq_init(req, &tmp_opt, skb, sk);
7475 	inet_rsk(req)->no_srccheck = inet_test_bit(TRANSPARENT, sk);
7476 
7477 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
7478 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
7479 
7480 	dst = af_ops->route_req(sk, skb, &fl, req, isn);
7481 	if (!dst)
7482 		goto drop_and_free;
7483 
7484 	if (tmp_opt.tstamp_ok) {
7485 		tcp_rsk(req)->req_usec_ts = dst_tcp_usec_ts(dst);
7486 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
7487 	}
7488 	if (!want_cookie && !isn) {
7489 		int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog);
7490 
7491 		/* Kill the following clause, if you dislike this way. */
7492 		if (!syncookies &&
7493 		    (max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
7494 		     (max_syn_backlog >> 2)) &&
7495 		    !tcp_peer_is_proven(req, dst)) {
7496 			/* Without syncookies last quarter of
7497 			 * backlog is filled with destinations,
7498 			 * proven to be alive.
7499 			 * It means that we continue to communicate
7500 			 * to destinations, already remembered
7501 			 * to the moment of synflood.
7502 			 */
7503 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
7504 				    rsk_ops->family);
7505 			goto drop_and_release;
7506 		}
7507 
7508 		isn = af_ops->init_seq(skb);
7509 	}
7510 
7511 	tcp_ecn_create_request(req, skb, sk, dst);
7512 
7513 	if (want_cookie) {
7514 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
7515 		if (!tmp_opt.tstamp_ok)
7516 			inet_rsk(req)->ecn_ok = 0;
7517 	}
7518 
7519 #ifdef CONFIG_TCP_AO
7520 	if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh))
7521 		goto drop_and_release; /* Invalid TCP options */
7522 	if (aoh) {
7523 		tcp_rsk(req)->used_tcp_ao = true;
7524 		tcp_rsk(req)->ao_rcv_next = aoh->keyid;
7525 		tcp_rsk(req)->ao_keyid = aoh->rnext_keyid;
7526 
7527 	} else {
7528 		tcp_rsk(req)->used_tcp_ao = false;
7529 	}
7530 #endif
7531 	tcp_rsk(req)->snt_isn = isn;
7532 	tcp_rsk(req)->txhash = net_tx_rndhash();
7533 	tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
7534 	tcp_openreq_init_rwin(req, sk, dst);
7535 	sk_rx_queue_set(req_to_sk(req), skb);
7536 	if (!want_cookie) {
7537 		tcp_reqsk_record_syn(sk, req, skb);
7538 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
7539 	}
7540 	if (fastopen_sk) {
7541 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
7542 				    &foc, TCP_SYNACK_FASTOPEN, skb);
7543 		/* Add the child socket directly into the accept queue */
7544 		if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
7545 			bh_unlock_sock(fastopen_sk);
7546 			sock_put(fastopen_sk);
7547 			goto drop_and_free;
7548 		}
7549 		sk->sk_data_ready(sk);
7550 		bh_unlock_sock(fastopen_sk);
7551 		sock_put(fastopen_sk);
7552 	} else {
7553 		tcp_rsk(req)->tfo_listener = false;
7554 		if (!want_cookie &&
7555 		    unlikely(!inet_csk_reqsk_queue_hash_add(sk, req))) {
7556 			reqsk_free(req);
7557 			dst_release(dst);
7558 			return 0;
7559 		}
7560 		af_ops->send_synack(sk, dst, &fl, req, &foc,
7561 				    !want_cookie ? TCP_SYNACK_NORMAL :
7562 						   TCP_SYNACK_COOKIE,
7563 				    skb);
7564 		if (want_cookie) {
7565 			reqsk_free(req);
7566 			return 0;
7567 		}
7568 	}
7569 	reqsk_put(req);
7570 	return 0;
7571 
7572 drop_and_release:
7573 	dst_release(dst);
7574 drop_and_free:
7575 	__reqsk_free(req);
7576 drop:
7577 	tcp_listendrop(sk);
7578 	return 0;
7579 }
7580 EXPORT_IPV6_MOD(tcp_conn_request);
7581