1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 */
21
22 /*
23 * Changes:
24 * Pedro Roque : Fast Retransmit/Recovery.
25 * Two receive queues.
26 * Retransmit queue handled by TCP.
27 * Better retransmit timer handling.
28 * New congestion avoidance.
29 * Header prediction.
30 * Variable renaming.
31 *
32 * Eric : Fast Retransmit.
33 * Randy Scott : MSS option defines.
34 * Eric Schenk : Fixes to slow start algorithm.
35 * Eric Schenk : Yet another double ACK bug.
36 * Eric Schenk : Delayed ACK bug fixes.
37 * Eric Schenk : Floyd style fast retrans war avoidance.
38 * David S. Miller : Don't allow zero congestion window.
39 * Eric Schenk : Fix retransmitter so that it sends
40 * next packet on ack of previous packet.
41 * Andi Kleen : Moved open_request checking here
42 * and process RSTs for open_requests.
43 * Andi Kleen : Better prune_queue, and other fixes.
44 * Andrey Savochkin: Fix RTT measurements in the presence of
45 * timestamps.
46 * Andrey Savochkin: Check sequence numbers correctly when
47 * removing SACKs due to in sequence incoming
48 * data segments.
49 * Andi Kleen: Make sure we never ack data there is not
50 * enough room for. Also make this condition
51 * a fatal error if it might still happen.
52 * Andi Kleen: Add tcp_measure_rcv_mss to make
53 * connections with MSS<min(MTU,ann. MSS)
54 * work without delayed acks.
55 * Andi Kleen: Process packets with PSH set in the
56 * fast path.
57 * J Hadi Salim: ECN support
58 * Andrei Gurtov,
59 * Pasi Sarolahti,
60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
61 * engine. Lots of bugs are found.
62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
63 */
64
65 #define pr_fmt(fmt) "TCP: " fmt
66
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/proto_memory.h>
76 #include <net/inet_common.h>
77 #include <linux/ipsec.h>
78 #include <linux/unaligned.h>
79 #include <linux/errqueue.h>
80 #include <trace/events/tcp.h>
81 #include <linux/jump_label_ratelimit.h>
82 #include <net/busy_poll.h>
83 #include <net/mptcp.h>
84
85 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
86
87 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
88 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
89 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
90 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
91 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
92 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
93 #define FLAG_ECE 0x40 /* ECE in this ACK */
94 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
95 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
96 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
97 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
98 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
99 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
100 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
101 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
102 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
103 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */
104 #define FLAG_DSACK_TLP 0x20000 /* DSACK for tail loss probe */
105 #define FLAG_TS_PROGRESS 0x40000 /* Positive timestamp delta */
106
107 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
108 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
109 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
110 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
111
112 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
113 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
114
115 #define REXMIT_NONE 0 /* no loss recovery to do */
116 #define REXMIT_LOST 1 /* retransmit packets marked lost */
117 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
118
119 #if IS_ENABLED(CONFIG_TLS_DEVICE)
120 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
121
clean_acked_data_enable(struct tcp_sock * tp,void (* cad)(struct sock * sk,u32 ack_seq))122 void clean_acked_data_enable(struct tcp_sock *tp,
123 void (*cad)(struct sock *sk, u32 ack_seq))
124 {
125 tp->tcp_clean_acked = cad;
126 static_branch_deferred_inc(&clean_acked_data_enabled);
127 }
128 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
129
clean_acked_data_disable(struct tcp_sock * tp)130 void clean_acked_data_disable(struct tcp_sock *tp)
131 {
132 static_branch_slow_dec_deferred(&clean_acked_data_enabled);
133 tp->tcp_clean_acked = NULL;
134 }
135 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
136
clean_acked_data_flush(void)137 void clean_acked_data_flush(void)
138 {
139 static_key_deferred_flush(&clean_acked_data_enabled);
140 }
141 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
142 #endif
143
144 #ifdef CONFIG_CGROUP_BPF
bpf_skops_parse_hdr(struct sock * sk,struct sk_buff * skb)145 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
146 {
147 bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
148 BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
149 BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
150 bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
151 BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
152 struct bpf_sock_ops_kern sock_ops;
153
154 if (likely(!unknown_opt && !parse_all_opt))
155 return;
156
157 /* The skb will be handled in the
158 * bpf_skops_established() or
159 * bpf_skops_write_hdr_opt().
160 */
161 switch (sk->sk_state) {
162 case TCP_SYN_RECV:
163 case TCP_SYN_SENT:
164 case TCP_LISTEN:
165 return;
166 }
167
168 sock_owned_by_me(sk);
169
170 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
171 sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
172 sock_ops.is_fullsock = 1;
173 sock_ops.is_locked_tcp_sock = 1;
174 sock_ops.sk = sk;
175 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
176
177 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
178 }
179
bpf_skops_established(struct sock * sk,int bpf_op,struct sk_buff * skb)180 static void bpf_skops_established(struct sock *sk, int bpf_op,
181 struct sk_buff *skb)
182 {
183 struct bpf_sock_ops_kern sock_ops;
184
185 sock_owned_by_me(sk);
186
187 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
188 sock_ops.op = bpf_op;
189 sock_ops.is_fullsock = 1;
190 sock_ops.is_locked_tcp_sock = 1;
191 sock_ops.sk = sk;
192 /* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
193 if (skb)
194 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
195
196 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
197 }
198 #else
bpf_skops_parse_hdr(struct sock * sk,struct sk_buff * skb)199 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
200 {
201 }
202
bpf_skops_established(struct sock * sk,int bpf_op,struct sk_buff * skb)203 static void bpf_skops_established(struct sock *sk, int bpf_op,
204 struct sk_buff *skb)
205 {
206 }
207 #endif
208
tcp_gro_dev_warn(const struct sock * sk,const struct sk_buff * skb,unsigned int len)209 static __cold void tcp_gro_dev_warn(const struct sock *sk, const struct sk_buff *skb,
210 unsigned int len)
211 {
212 struct net_device *dev;
213
214 rcu_read_lock();
215 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
216 if (!dev || len >= READ_ONCE(dev->mtu))
217 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
218 dev ? dev->name : "Unknown driver");
219 rcu_read_unlock();
220 }
221
222 /* Adapt the MSS value used to make delayed ack decision to the
223 * real world.
224 */
tcp_measure_rcv_mss(struct sock * sk,const struct sk_buff * skb)225 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
226 {
227 struct inet_connection_sock *icsk = inet_csk(sk);
228 const unsigned int lss = icsk->icsk_ack.last_seg_size;
229 unsigned int len;
230
231 icsk->icsk_ack.last_seg_size = 0;
232
233 /* skb->len may jitter because of SACKs, even if peer
234 * sends good full-sized frames.
235 */
236 len = skb_shinfo(skb)->gso_size ? : skb->len;
237 if (len >= icsk->icsk_ack.rcv_mss) {
238 /* Note: divides are still a bit expensive.
239 * For the moment, only adjust scaling_ratio
240 * when we update icsk_ack.rcv_mss.
241 */
242 if (unlikely(len != icsk->icsk_ack.rcv_mss)) {
243 u64 val = (u64)skb->len << TCP_RMEM_TO_WIN_SCALE;
244 u8 old_ratio = tcp_sk(sk)->scaling_ratio;
245
246 do_div(val, skb->truesize);
247 tcp_sk(sk)->scaling_ratio = val ? val : 1;
248
249 if (old_ratio != tcp_sk(sk)->scaling_ratio) {
250 struct tcp_sock *tp = tcp_sk(sk);
251
252 val = tcp_win_from_space(sk, sk->sk_rcvbuf);
253 tcp_set_window_clamp(sk, val);
254
255 if (tp->window_clamp < tp->rcvq_space.space)
256 tp->rcvq_space.space = tp->window_clamp;
257 }
258 }
259 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
260 tcp_sk(sk)->advmss);
261 /* Account for possibly-removed options */
262 DO_ONCE_LITE_IF(len > icsk->icsk_ack.rcv_mss + MAX_TCP_OPTION_SPACE,
263 tcp_gro_dev_warn, sk, skb, len);
264 /* If the skb has a len of exactly 1*MSS and has the PSH bit
265 * set then it is likely the end of an application write. So
266 * more data may not be arriving soon, and yet the data sender
267 * may be waiting for an ACK if cwnd-bound or using TX zero
268 * copy. So we set ICSK_ACK_PUSHED here so that
269 * tcp_cleanup_rbuf() will send an ACK immediately if the app
270 * reads all of the data and is not ping-pong. If len > MSS
271 * then this logic does not matter (and does not hurt) because
272 * tcp_cleanup_rbuf() will always ACK immediately if the app
273 * reads data and there is more than an MSS of unACKed data.
274 */
275 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_PSH)
276 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
277 } else {
278 /* Otherwise, we make more careful check taking into account,
279 * that SACKs block is variable.
280 *
281 * "len" is invariant segment length, including TCP header.
282 */
283 len += skb->data - skb_transport_header(skb);
284 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
285 /* If PSH is not set, packet should be
286 * full sized, provided peer TCP is not badly broken.
287 * This observation (if it is correct 8)) allows
288 * to handle super-low mtu links fairly.
289 */
290 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
291 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
292 /* Subtract also invariant (if peer is RFC compliant),
293 * tcp header plus fixed timestamp option length.
294 * Resulting "len" is MSS free of SACK jitter.
295 */
296 len -= tcp_sk(sk)->tcp_header_len;
297 icsk->icsk_ack.last_seg_size = len;
298 if (len == lss) {
299 icsk->icsk_ack.rcv_mss = len;
300 return;
301 }
302 }
303 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
304 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
305 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
306 }
307 }
308
tcp_incr_quickack(struct sock * sk,unsigned int max_quickacks)309 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
310 {
311 struct inet_connection_sock *icsk = inet_csk(sk);
312 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
313
314 if (quickacks == 0)
315 quickacks = 2;
316 quickacks = min(quickacks, max_quickacks);
317 if (quickacks > icsk->icsk_ack.quick)
318 icsk->icsk_ack.quick = quickacks;
319 }
320
tcp_enter_quickack_mode(struct sock * sk,unsigned int max_quickacks)321 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
322 {
323 struct inet_connection_sock *icsk = inet_csk(sk);
324
325 tcp_incr_quickack(sk, max_quickacks);
326 inet_csk_exit_pingpong_mode(sk);
327 icsk->icsk_ack.ato = TCP_ATO_MIN;
328 }
329
330 /* Send ACKs quickly, if "quick" count is not exhausted
331 * and the session is not interactive.
332 */
333
tcp_in_quickack_mode(struct sock * sk)334 static bool tcp_in_quickack_mode(struct sock *sk)
335 {
336 const struct inet_connection_sock *icsk = inet_csk(sk);
337
338 return icsk->icsk_ack.dst_quick_ack ||
339 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
340 }
341
tcp_ecn_queue_cwr(struct tcp_sock * tp)342 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
343 {
344 if (tcp_ecn_mode_rfc3168(tp))
345 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
346 }
347
tcp_ecn_accept_cwr(struct sock * sk,const struct sk_buff * skb)348 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
349 {
350 if (tcp_hdr(skb)->cwr) {
351 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
352
353 /* If the sender is telling us it has entered CWR, then its
354 * cwnd may be very low (even just 1 packet), so we should ACK
355 * immediately.
356 */
357 if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
358 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
359 }
360 }
361
tcp_ecn_withdraw_cwr(struct tcp_sock * tp)362 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
363 {
364 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
365 }
366
tcp_data_ecn_check(struct sock * sk,const struct sk_buff * skb)367 static void tcp_data_ecn_check(struct sock *sk, const struct sk_buff *skb)
368 {
369 struct tcp_sock *tp = tcp_sk(sk);
370
371 if (tcp_ecn_disabled(tp))
372 return;
373
374 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
375 case INET_ECN_NOT_ECT:
376 /* Funny extension: if ECT is not set on a segment,
377 * and we already seen ECT on a previous segment,
378 * it is probably a retransmit.
379 */
380 if (tp->ecn_flags & TCP_ECN_SEEN)
381 tcp_enter_quickack_mode(sk, 2);
382 break;
383 case INET_ECN_CE:
384 if (tcp_ca_needs_ecn(sk))
385 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
386
387 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
388 /* Better not delay acks, sender can have a very low cwnd */
389 tcp_enter_quickack_mode(sk, 2);
390 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
391 }
392 tp->ecn_flags |= TCP_ECN_SEEN;
393 break;
394 default:
395 if (tcp_ca_needs_ecn(sk))
396 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
397 tp->ecn_flags |= TCP_ECN_SEEN;
398 break;
399 }
400 }
401
tcp_ecn_rcv_synack(struct tcp_sock * tp,const struct tcphdr * th)402 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
403 {
404 if (tcp_ecn_mode_rfc3168(tp) && (!th->ece || th->cwr))
405 tcp_ecn_mode_set(tp, TCP_ECN_DISABLED);
406 }
407
tcp_ecn_rcv_syn(struct tcp_sock * tp,const struct tcphdr * th)408 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
409 {
410 if (tcp_ecn_mode_rfc3168(tp) && (!th->ece || !th->cwr))
411 tcp_ecn_mode_set(tp, TCP_ECN_DISABLED);
412 }
413
tcp_ecn_rcv_ecn_echo(const struct tcp_sock * tp,const struct tcphdr * th)414 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
415 {
416 if (th->ece && !th->syn && tcp_ecn_mode_rfc3168(tp))
417 return true;
418 return false;
419 }
420
tcp_count_delivered_ce(struct tcp_sock * tp,u32 ecn_count)421 static void tcp_count_delivered_ce(struct tcp_sock *tp, u32 ecn_count)
422 {
423 tp->delivered_ce += ecn_count;
424 }
425
426 /* Updates the delivered and delivered_ce counts */
tcp_count_delivered(struct tcp_sock * tp,u32 delivered,bool ece_ack)427 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
428 bool ece_ack)
429 {
430 tp->delivered += delivered;
431 if (ece_ack)
432 tcp_count_delivered_ce(tp, delivered);
433 }
434
435 /* Buffer size and advertised window tuning.
436 *
437 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
438 */
439
tcp_sndbuf_expand(struct sock * sk)440 static void tcp_sndbuf_expand(struct sock *sk)
441 {
442 const struct tcp_sock *tp = tcp_sk(sk);
443 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
444 int sndmem, per_mss;
445 u32 nr_segs;
446
447 /* Worst case is non GSO/TSO : each frame consumes one skb
448 * and skb->head is kmalloced using power of two area of memory
449 */
450 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
451 MAX_TCP_HEADER +
452 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
453
454 per_mss = roundup_pow_of_two(per_mss) +
455 SKB_DATA_ALIGN(sizeof(struct sk_buff));
456
457 nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp));
458 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
459
460 /* Fast Recovery (RFC 5681 3.2) :
461 * Cubic needs 1.7 factor, rounded to 2 to include
462 * extra cushion (application might react slowly to EPOLLOUT)
463 */
464 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
465 sndmem *= nr_segs * per_mss;
466
467 if (sk->sk_sndbuf < sndmem)
468 WRITE_ONCE(sk->sk_sndbuf,
469 min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2])));
470 }
471
472 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
473 *
474 * All tcp_full_space() is split to two parts: "network" buffer, allocated
475 * forward and advertised in receiver window (tp->rcv_wnd) and
476 * "application buffer", required to isolate scheduling/application
477 * latencies from network.
478 * window_clamp is maximal advertised window. It can be less than
479 * tcp_full_space(), in this case tcp_full_space() - window_clamp
480 * is reserved for "application" buffer. The less window_clamp is
481 * the smoother our behaviour from viewpoint of network, but the lower
482 * throughput and the higher sensitivity of the connection to losses. 8)
483 *
484 * rcv_ssthresh is more strict window_clamp used at "slow start"
485 * phase to predict further behaviour of this connection.
486 * It is used for two goals:
487 * - to enforce header prediction at sender, even when application
488 * requires some significant "application buffer". It is check #1.
489 * - to prevent pruning of receive queue because of misprediction
490 * of receiver window. Check #2.
491 *
492 * The scheme does not work when sender sends good segments opening
493 * window and then starts to feed us spaghetti. But it should work
494 * in common situations. Otherwise, we have to rely on queue collapsing.
495 */
496
497 /* Slow part of check#2. */
__tcp_grow_window(const struct sock * sk,const struct sk_buff * skb,unsigned int skbtruesize)498 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb,
499 unsigned int skbtruesize)
500 {
501 const struct tcp_sock *tp = tcp_sk(sk);
502 /* Optimize this! */
503 int truesize = tcp_win_from_space(sk, skbtruesize) >> 1;
504 int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1;
505
506 while (tp->rcv_ssthresh <= window) {
507 if (truesize <= skb->len)
508 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
509
510 truesize >>= 1;
511 window >>= 1;
512 }
513 return 0;
514 }
515
516 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing
517 * can play nice with us, as sk_buff and skb->head might be either
518 * freed or shared with up to MAX_SKB_FRAGS segments.
519 * Only give a boost to drivers using page frag(s) to hold the frame(s),
520 * and if no payload was pulled in skb->head before reaching us.
521 */
truesize_adjust(bool adjust,const struct sk_buff * skb)522 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb)
523 {
524 u32 truesize = skb->truesize;
525
526 if (adjust && !skb_headlen(skb)) {
527 truesize -= SKB_TRUESIZE(skb_end_offset(skb));
528 /* paranoid check, some drivers might be buggy */
529 if (unlikely((int)truesize < (int)skb->len))
530 truesize = skb->truesize;
531 }
532 return truesize;
533 }
534
tcp_grow_window(struct sock * sk,const struct sk_buff * skb,bool adjust)535 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb,
536 bool adjust)
537 {
538 struct tcp_sock *tp = tcp_sk(sk);
539 int room;
540
541 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
542
543 if (room <= 0)
544 return;
545
546 /* Check #1 */
547 if (!tcp_under_memory_pressure(sk)) {
548 unsigned int truesize = truesize_adjust(adjust, skb);
549 int incr;
550
551 /* Check #2. Increase window, if skb with such overhead
552 * will fit to rcvbuf in future.
553 */
554 if (tcp_win_from_space(sk, truesize) <= skb->len)
555 incr = 2 * tp->advmss;
556 else
557 incr = __tcp_grow_window(sk, skb, truesize);
558
559 if (incr) {
560 incr = max_t(int, incr, 2 * skb->len);
561 tp->rcv_ssthresh += min(room, incr);
562 inet_csk(sk)->icsk_ack.quick |= 1;
563 }
564 } else {
565 /* Under pressure:
566 * Adjust rcv_ssthresh according to reserved mem
567 */
568 tcp_adjust_rcv_ssthresh(sk);
569 }
570 }
571
572 /* 3. Try to fixup all. It is made immediately after connection enters
573 * established state.
574 */
tcp_init_buffer_space(struct sock * sk)575 static void tcp_init_buffer_space(struct sock *sk)
576 {
577 int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win);
578 struct tcp_sock *tp = tcp_sk(sk);
579 int maxwin;
580
581 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
582 tcp_sndbuf_expand(sk);
583
584 tcp_mstamp_refresh(tp);
585 tp->rcvq_space.time = tp->tcp_mstamp;
586 tp->rcvq_space.seq = tp->copied_seq;
587
588 maxwin = tcp_full_space(sk);
589
590 if (tp->window_clamp >= maxwin) {
591 WRITE_ONCE(tp->window_clamp, maxwin);
592
593 if (tcp_app_win && maxwin > 4 * tp->advmss)
594 WRITE_ONCE(tp->window_clamp,
595 max(maxwin - (maxwin >> tcp_app_win),
596 4 * tp->advmss));
597 }
598
599 /* Force reservation of one segment. */
600 if (tcp_app_win &&
601 tp->window_clamp > 2 * tp->advmss &&
602 tp->window_clamp + tp->advmss > maxwin)
603 WRITE_ONCE(tp->window_clamp,
604 max(2 * tp->advmss, maxwin - tp->advmss));
605
606 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
607 tp->snd_cwnd_stamp = tcp_jiffies32;
608 tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
609 (u32)TCP_INIT_CWND * tp->advmss);
610 }
611
612 /* 4. Recalculate window clamp after socket hit its memory bounds. */
tcp_clamp_window(struct sock * sk)613 static void tcp_clamp_window(struct sock *sk)
614 {
615 struct tcp_sock *tp = tcp_sk(sk);
616 struct inet_connection_sock *icsk = inet_csk(sk);
617 struct net *net = sock_net(sk);
618 int rmem2;
619
620 icsk->icsk_ack.quick = 0;
621 rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]);
622
623 if (sk->sk_rcvbuf < rmem2 &&
624 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
625 !tcp_under_memory_pressure(sk) &&
626 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
627 WRITE_ONCE(sk->sk_rcvbuf,
628 min(atomic_read(&sk->sk_rmem_alloc), rmem2));
629 }
630 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
631 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
632 }
633
634 /* Initialize RCV_MSS value.
635 * RCV_MSS is an our guess about MSS used by the peer.
636 * We haven't any direct information about the MSS.
637 * It's better to underestimate the RCV_MSS rather than overestimate.
638 * Overestimations make us ACKing less frequently than needed.
639 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
640 */
tcp_initialize_rcv_mss(struct sock * sk)641 void tcp_initialize_rcv_mss(struct sock *sk)
642 {
643 const struct tcp_sock *tp = tcp_sk(sk);
644 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
645
646 hint = min(hint, tp->rcv_wnd / 2);
647 hint = min(hint, TCP_MSS_DEFAULT);
648 hint = max(hint, TCP_MIN_MSS);
649
650 inet_csk(sk)->icsk_ack.rcv_mss = hint;
651 }
652 EXPORT_IPV6_MOD(tcp_initialize_rcv_mss);
653
654 /* Receiver "autotuning" code.
655 *
656 * The algorithm for RTT estimation w/o timestamps is based on
657 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
658 * <https://public.lanl.gov/radiant/pubs.html#DRS>
659 *
660 * More detail on this code can be found at
661 * <http://staff.psc.edu/jheffner/>,
662 * though this reference is out of date. A new paper
663 * is pending.
664 */
tcp_rcv_rtt_update(struct tcp_sock * tp,u32 sample,int win_dep)665 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
666 {
667 u32 new_sample, old_sample = tp->rcv_rtt_est.rtt_us;
668 long m = sample << 3;
669
670 if (old_sample == 0 || m < old_sample) {
671 new_sample = m;
672 } else {
673 /* If we sample in larger samples in the non-timestamp
674 * case, we could grossly overestimate the RTT especially
675 * with chatty applications or bulk transfer apps which
676 * are stalled on filesystem I/O.
677 *
678 * Also, since we are only going for a minimum in the
679 * non-timestamp case, we do not smooth things out
680 * else with timestamps disabled convergence takes too
681 * long.
682 */
683 if (win_dep)
684 return;
685 /* Do not use this sample if receive queue is not empty. */
686 if (tp->rcv_nxt != tp->copied_seq)
687 return;
688 new_sample = old_sample - (old_sample >> 3) + sample;
689 }
690
691 tp->rcv_rtt_est.rtt_us = new_sample;
692 }
693
tcp_rcv_rtt_measure(struct tcp_sock * tp)694 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
695 {
696 u32 delta_us;
697
698 if (tp->rcv_rtt_est.time == 0)
699 goto new_measure;
700 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
701 return;
702 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
703 if (!delta_us)
704 delta_us = 1;
705 tcp_rcv_rtt_update(tp, delta_us, 1);
706
707 new_measure:
708 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
709 tp->rcv_rtt_est.time = tp->tcp_mstamp;
710 }
711
tcp_rtt_tsopt_us(const struct tcp_sock * tp,u32 min_delta)712 static s32 tcp_rtt_tsopt_us(const struct tcp_sock *tp, u32 min_delta)
713 {
714 u32 delta, delta_us;
715
716 delta = tcp_time_stamp_ts(tp) - tp->rx_opt.rcv_tsecr;
717 if (tp->tcp_usec_ts)
718 return delta;
719
720 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
721 if (!delta)
722 delta = min_delta;
723 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
724 return delta_us;
725 }
726 return -1;
727 }
728
tcp_rcv_rtt_measure_ts(struct sock * sk,const struct sk_buff * skb)729 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
730 const struct sk_buff *skb)
731 {
732 struct tcp_sock *tp = tcp_sk(sk);
733
734 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
735 return;
736 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
737
738 if (TCP_SKB_CB(skb)->end_seq -
739 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
740 s32 delta = tcp_rtt_tsopt_us(tp, 0);
741
742 if (delta > 0)
743 tcp_rcv_rtt_update(tp, delta, 0);
744 }
745 }
746
tcp_rcvbuf_grow(struct sock * sk)747 static void tcp_rcvbuf_grow(struct sock *sk)
748 {
749 const struct net *net = sock_net(sk);
750 struct tcp_sock *tp = tcp_sk(sk);
751 int rcvwin, rcvbuf, cap;
752
753 if (!READ_ONCE(net->ipv4.sysctl_tcp_moderate_rcvbuf) ||
754 (sk->sk_userlocks & SOCK_RCVBUF_LOCK))
755 return;
756
757 /* slow start: allow the sender to double its rate. */
758 rcvwin = tp->rcvq_space.space << 1;
759
760 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue))
761 rcvwin += TCP_SKB_CB(tp->ooo_last_skb)->end_seq - tp->rcv_nxt;
762
763 cap = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]);
764
765 rcvbuf = min_t(u32, tcp_space_from_win(sk, rcvwin), cap);
766 if (rcvbuf > sk->sk_rcvbuf) {
767 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
768 /* Make the window clamp follow along. */
769 WRITE_ONCE(tp->window_clamp,
770 tcp_win_from_space(sk, rcvbuf));
771 }
772 }
773 /*
774 * This function should be called every time data is copied to user space.
775 * It calculates the appropriate TCP receive buffer space.
776 */
tcp_rcv_space_adjust(struct sock * sk)777 void tcp_rcv_space_adjust(struct sock *sk)
778 {
779 struct tcp_sock *tp = tcp_sk(sk);
780 int time, inq, copied;
781
782 trace_tcp_rcv_space_adjust(sk);
783
784 tcp_mstamp_refresh(tp);
785 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
786 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
787 return;
788
789 /* Number of bytes copied to user in last RTT */
790 copied = tp->copied_seq - tp->rcvq_space.seq;
791 /* Number of bytes in receive queue. */
792 inq = tp->rcv_nxt - tp->copied_seq;
793 copied -= inq;
794 if (copied <= tp->rcvq_space.space)
795 goto new_measure;
796
797 trace_tcp_rcvbuf_grow(sk, time);
798
799 tp->rcvq_space.space = copied;
800
801 tcp_rcvbuf_grow(sk);
802
803 new_measure:
804 tp->rcvq_space.seq = tp->copied_seq;
805 tp->rcvq_space.time = tp->tcp_mstamp;
806 }
807
tcp_save_lrcv_flowlabel(struct sock * sk,const struct sk_buff * skb)808 static void tcp_save_lrcv_flowlabel(struct sock *sk, const struct sk_buff *skb)
809 {
810 #if IS_ENABLED(CONFIG_IPV6)
811 struct inet_connection_sock *icsk = inet_csk(sk);
812
813 if (skb->protocol == htons(ETH_P_IPV6))
814 icsk->icsk_ack.lrcv_flowlabel = ntohl(ip6_flowlabel(ipv6_hdr(skb)));
815 #endif
816 }
817
818 /* There is something which you must keep in mind when you analyze the
819 * behavior of the tp->ato delayed ack timeout interval. When a
820 * connection starts up, we want to ack as quickly as possible. The
821 * problem is that "good" TCP's do slow start at the beginning of data
822 * transmission. The means that until we send the first few ACK's the
823 * sender will sit on his end and only queue most of his data, because
824 * he can only send snd_cwnd unacked packets at any given time. For
825 * each ACK we send, he increments snd_cwnd and transmits more of his
826 * queue. -DaveM
827 */
tcp_event_data_recv(struct sock * sk,struct sk_buff * skb)828 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
829 {
830 struct tcp_sock *tp = tcp_sk(sk);
831 struct inet_connection_sock *icsk = inet_csk(sk);
832 u32 now;
833
834 inet_csk_schedule_ack(sk);
835
836 tcp_measure_rcv_mss(sk, skb);
837
838 tcp_rcv_rtt_measure(tp);
839
840 now = tcp_jiffies32;
841
842 if (!icsk->icsk_ack.ato) {
843 /* The _first_ data packet received, initialize
844 * delayed ACK engine.
845 */
846 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
847 icsk->icsk_ack.ato = TCP_ATO_MIN;
848 } else {
849 int m = now - icsk->icsk_ack.lrcvtime;
850
851 if (m <= TCP_ATO_MIN / 2) {
852 /* The fastest case is the first. */
853 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
854 } else if (m < icsk->icsk_ack.ato) {
855 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
856 if (icsk->icsk_ack.ato > icsk->icsk_rto)
857 icsk->icsk_ack.ato = icsk->icsk_rto;
858 } else if (m > icsk->icsk_rto) {
859 /* Too long gap. Apparently sender failed to
860 * restart window, so that we send ACKs quickly.
861 */
862 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
863 }
864 }
865 icsk->icsk_ack.lrcvtime = now;
866 tcp_save_lrcv_flowlabel(sk, skb);
867
868 tcp_data_ecn_check(sk, skb);
869
870 if (skb->len >= 128)
871 tcp_grow_window(sk, skb, true);
872 }
873
874 /* Called to compute a smoothed rtt estimate. The data fed to this
875 * routine either comes from timestamps, or from segments that were
876 * known _not_ to have been retransmitted [see Karn/Partridge
877 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
878 * piece by Van Jacobson.
879 * NOTE: the next three routines used to be one big routine.
880 * To save cycles in the RFC 1323 implementation it was better to break
881 * it up into three procedures. -- erics
882 */
tcp_rtt_estimator(struct sock * sk,long mrtt_us)883 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
884 {
885 struct tcp_sock *tp = tcp_sk(sk);
886 long m = mrtt_us; /* RTT */
887 u32 srtt = tp->srtt_us;
888
889 /* The following amusing code comes from Jacobson's
890 * article in SIGCOMM '88. Note that rtt and mdev
891 * are scaled versions of rtt and mean deviation.
892 * This is designed to be as fast as possible
893 * m stands for "measurement".
894 *
895 * On a 1990 paper the rto value is changed to:
896 * RTO = rtt + 4 * mdev
897 *
898 * Funny. This algorithm seems to be very broken.
899 * These formulae increase RTO, when it should be decreased, increase
900 * too slowly, when it should be increased quickly, decrease too quickly
901 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
902 * does not matter how to _calculate_ it. Seems, it was trap
903 * that VJ failed to avoid. 8)
904 */
905 if (srtt != 0) {
906 m -= (srtt >> 3); /* m is now error in rtt est */
907 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
908 if (m < 0) {
909 m = -m; /* m is now abs(error) */
910 m -= (tp->mdev_us >> 2); /* similar update on mdev */
911 /* This is similar to one of Eifel findings.
912 * Eifel blocks mdev updates when rtt decreases.
913 * This solution is a bit different: we use finer gain
914 * for mdev in this case (alpha*beta).
915 * Like Eifel it also prevents growth of rto,
916 * but also it limits too fast rto decreases,
917 * happening in pure Eifel.
918 */
919 if (m > 0)
920 m >>= 3;
921 } else {
922 m -= (tp->mdev_us >> 2); /* similar update on mdev */
923 }
924 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
925 if (tp->mdev_us > tp->mdev_max_us) {
926 tp->mdev_max_us = tp->mdev_us;
927 if (tp->mdev_max_us > tp->rttvar_us)
928 tp->rttvar_us = tp->mdev_max_us;
929 }
930 if (after(tp->snd_una, tp->rtt_seq)) {
931 if (tp->mdev_max_us < tp->rttvar_us)
932 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
933 tp->rtt_seq = tp->snd_nxt;
934 tp->mdev_max_us = tcp_rto_min_us(sk);
935
936 tcp_bpf_rtt(sk, mrtt_us, srtt);
937 }
938 } else {
939 /* no previous measure. */
940 srtt = m << 3; /* take the measured time to be rtt */
941 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
942 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
943 tp->mdev_max_us = tp->rttvar_us;
944 tp->rtt_seq = tp->snd_nxt;
945
946 tcp_bpf_rtt(sk, mrtt_us, srtt);
947 }
948 tp->srtt_us = max(1U, srtt);
949 }
950
tcp_update_pacing_rate(struct sock * sk)951 static void tcp_update_pacing_rate(struct sock *sk)
952 {
953 const struct tcp_sock *tp = tcp_sk(sk);
954 u64 rate;
955
956 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
957 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
958
959 /* current rate is (cwnd * mss) / srtt
960 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
961 * In Congestion Avoidance phase, set it to 120 % the current rate.
962 *
963 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
964 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
965 * end of slow start and should slow down.
966 */
967 if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2)
968 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio);
969 else
970 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio);
971
972 rate *= max(tcp_snd_cwnd(tp), tp->packets_out);
973
974 if (likely(tp->srtt_us))
975 do_div(rate, tp->srtt_us);
976
977 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
978 * without any lock. We want to make sure compiler wont store
979 * intermediate values in this location.
980 */
981 WRITE_ONCE(sk->sk_pacing_rate,
982 min_t(u64, rate, READ_ONCE(sk->sk_max_pacing_rate)));
983 }
984
985 /* Calculate rto without backoff. This is the second half of Van Jacobson's
986 * routine referred to above.
987 */
tcp_set_rto(struct sock * sk)988 static void tcp_set_rto(struct sock *sk)
989 {
990 const struct tcp_sock *tp = tcp_sk(sk);
991 /* Old crap is replaced with new one. 8)
992 *
993 * More seriously:
994 * 1. If rtt variance happened to be less 50msec, it is hallucination.
995 * It cannot be less due to utterly erratic ACK generation made
996 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
997 * to do with delayed acks, because at cwnd>2 true delack timeout
998 * is invisible. Actually, Linux-2.4 also generates erratic
999 * ACKs in some circumstances.
1000 */
1001 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
1002
1003 /* 2. Fixups made earlier cannot be right.
1004 * If we do not estimate RTO correctly without them,
1005 * all the algo is pure shit and should be replaced
1006 * with correct one. It is exactly, which we pretend to do.
1007 */
1008
1009 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
1010 * guarantees that rto is higher.
1011 */
1012 tcp_bound_rto(sk);
1013 }
1014
tcp_init_cwnd(const struct tcp_sock * tp,const struct dst_entry * dst)1015 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
1016 {
1017 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
1018
1019 if (!cwnd)
1020 cwnd = TCP_INIT_CWND;
1021 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
1022 }
1023
1024 struct tcp_sacktag_state {
1025 /* Timestamps for earliest and latest never-retransmitted segment
1026 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1027 * but congestion control should still get an accurate delay signal.
1028 */
1029 u64 first_sackt;
1030 u64 last_sackt;
1031 u32 reord;
1032 u32 sack_delivered;
1033 int flag;
1034 unsigned int mss_now;
1035 struct rate_sample *rate;
1036 };
1037
1038 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery
1039 * and spurious retransmission information if this DSACK is unlikely caused by
1040 * sender's action:
1041 * - DSACKed sequence range is larger than maximum receiver's window.
1042 * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
1043 */
tcp_dsack_seen(struct tcp_sock * tp,u32 start_seq,u32 end_seq,struct tcp_sacktag_state * state)1044 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
1045 u32 end_seq, struct tcp_sacktag_state *state)
1046 {
1047 u32 seq_len, dup_segs = 1;
1048
1049 if (!before(start_seq, end_seq))
1050 return 0;
1051
1052 seq_len = end_seq - start_seq;
1053 /* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
1054 if (seq_len > tp->max_window)
1055 return 0;
1056 if (seq_len > tp->mss_cache)
1057 dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
1058 else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq)
1059 state->flag |= FLAG_DSACK_TLP;
1060
1061 tp->dsack_dups += dup_segs;
1062 /* Skip the DSACK if dup segs weren't retransmitted by sender */
1063 if (tp->dsack_dups > tp->total_retrans)
1064 return 0;
1065
1066 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
1067 /* We increase the RACK ordering window in rounds where we receive
1068 * DSACKs that may have been due to reordering causing RACK to trigger
1069 * a spurious fast recovery. Thus RACK ignores DSACKs that happen
1070 * without having seen reordering, or that match TLP probes (TLP
1071 * is timer-driven, not triggered by RACK).
1072 */
1073 if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP))
1074 tp->rack.dsack_seen = 1;
1075
1076 state->flag |= FLAG_DSACKING_ACK;
1077 /* A spurious retransmission is delivered */
1078 state->sack_delivered += dup_segs;
1079
1080 return dup_segs;
1081 }
1082
1083 /* It's reordering when higher sequence was delivered (i.e. sacked) before
1084 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
1085 * distance is approximated in full-mss packet distance ("reordering").
1086 */
tcp_check_sack_reordering(struct sock * sk,const u32 low_seq,const int ts)1087 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
1088 const int ts)
1089 {
1090 struct tcp_sock *tp = tcp_sk(sk);
1091 const u32 mss = tp->mss_cache;
1092 u32 fack, metric;
1093
1094 fack = tcp_highest_sack_seq(tp);
1095 if (!before(low_seq, fack))
1096 return;
1097
1098 metric = fack - low_seq;
1099 if ((metric > tp->reordering * mss) && mss) {
1100 #if FASTRETRANS_DEBUG > 1
1101 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
1102 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1103 tp->reordering,
1104 0,
1105 tp->sacked_out,
1106 tp->undo_marker ? tp->undo_retrans : 0);
1107 #endif
1108 tp->reordering = min_t(u32, (metric + mss - 1) / mss,
1109 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
1110 }
1111
1112 /* This exciting event is worth to be remembered. 8) */
1113 tp->reord_seen++;
1114 NET_INC_STATS(sock_net(sk),
1115 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1116 }
1117
1118 /* This must be called before lost_out or retrans_out are updated
1119 * on a new loss, because we want to know if all skbs previously
1120 * known to be lost have already been retransmitted, indicating
1121 * that this newly lost skb is our next skb to retransmit.
1122 */
tcp_verify_retransmit_hint(struct tcp_sock * tp,struct sk_buff * skb)1123 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1124 {
1125 if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
1126 (tp->retransmit_skb_hint &&
1127 before(TCP_SKB_CB(skb)->seq,
1128 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
1129 tp->retransmit_skb_hint = skb;
1130 }
1131
1132 /* Sum the number of packets on the wire we have marked as lost, and
1133 * notify the congestion control module that the given skb was marked lost.
1134 */
tcp_notify_skb_loss_event(struct tcp_sock * tp,const struct sk_buff * skb)1135 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
1136 {
1137 tp->lost += tcp_skb_pcount(skb);
1138 }
1139
tcp_mark_skb_lost(struct sock * sk,struct sk_buff * skb)1140 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
1141 {
1142 __u8 sacked = TCP_SKB_CB(skb)->sacked;
1143 struct tcp_sock *tp = tcp_sk(sk);
1144
1145 if (sacked & TCPCB_SACKED_ACKED)
1146 return;
1147
1148 tcp_verify_retransmit_hint(tp, skb);
1149 if (sacked & TCPCB_LOST) {
1150 if (sacked & TCPCB_SACKED_RETRANS) {
1151 /* Account for retransmits that are lost again */
1152 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1153 tp->retrans_out -= tcp_skb_pcount(skb);
1154 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
1155 tcp_skb_pcount(skb));
1156 tcp_notify_skb_loss_event(tp, skb);
1157 }
1158 } else {
1159 tp->lost_out += tcp_skb_pcount(skb);
1160 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1161 tcp_notify_skb_loss_event(tp, skb);
1162 }
1163 }
1164
1165 /* This procedure tags the retransmission queue when SACKs arrive.
1166 *
1167 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1168 * Packets in queue with these bits set are counted in variables
1169 * sacked_out, retrans_out and lost_out, correspondingly.
1170 *
1171 * Valid combinations are:
1172 * Tag InFlight Description
1173 * 0 1 - orig segment is in flight.
1174 * S 0 - nothing flies, orig reached receiver.
1175 * L 0 - nothing flies, orig lost by net.
1176 * R 2 - both orig and retransmit are in flight.
1177 * L|R 1 - orig is lost, retransmit is in flight.
1178 * S|R 1 - orig reached receiver, retrans is still in flight.
1179 * (L|S|R is logically valid, it could occur when L|R is sacked,
1180 * but it is equivalent to plain S and code short-circuits it to S.
1181 * L|S is logically invalid, it would mean -1 packet in flight 8))
1182 *
1183 * These 6 states form finite state machine, controlled by the following events:
1184 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1185 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1186 * 3. Loss detection event of two flavors:
1187 * A. Scoreboard estimator decided the packet is lost.
1188 * A'. Reno "three dupacks" marks head of queue lost.
1189 * B. SACK arrives sacking SND.NXT at the moment, when the
1190 * segment was retransmitted.
1191 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1192 *
1193 * It is pleasant to note, that state diagram turns out to be commutative,
1194 * so that we are allowed not to be bothered by order of our actions,
1195 * when multiple events arrive simultaneously. (see the function below).
1196 *
1197 * Reordering detection.
1198 * --------------------
1199 * Reordering metric is maximal distance, which a packet can be displaced
1200 * in packet stream. With SACKs we can estimate it:
1201 *
1202 * 1. SACK fills old hole and the corresponding segment was not
1203 * ever retransmitted -> reordering. Alas, we cannot use it
1204 * when segment was retransmitted.
1205 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1206 * for retransmitted and already SACKed segment -> reordering..
1207 * Both of these heuristics are not used in Loss state, when we cannot
1208 * account for retransmits accurately.
1209 *
1210 * SACK block validation.
1211 * ----------------------
1212 *
1213 * SACK block range validation checks that the received SACK block fits to
1214 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1215 * Note that SND.UNA is not included to the range though being valid because
1216 * it means that the receiver is rather inconsistent with itself reporting
1217 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1218 * perfectly valid, however, in light of RFC2018 which explicitly states
1219 * that "SACK block MUST reflect the newest segment. Even if the newest
1220 * segment is going to be discarded ...", not that it looks very clever
1221 * in case of head skb. Due to potentional receiver driven attacks, we
1222 * choose to avoid immediate execution of a walk in write queue due to
1223 * reneging and defer head skb's loss recovery to standard loss recovery
1224 * procedure that will eventually trigger (nothing forbids us doing this).
1225 *
1226 * Implements also blockage to start_seq wrap-around. Problem lies in the
1227 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1228 * there's no guarantee that it will be before snd_nxt (n). The problem
1229 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1230 * wrap (s_w):
1231 *
1232 * <- outs wnd -> <- wrapzone ->
1233 * u e n u_w e_w s n_w
1234 * | | | | | | |
1235 * |<------------+------+----- TCP seqno space --------------+---------->|
1236 * ...-- <2^31 ->| |<--------...
1237 * ...---- >2^31 ------>| |<--------...
1238 *
1239 * Current code wouldn't be vulnerable but it's better still to discard such
1240 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1241 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1242 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1243 * equal to the ideal case (infinite seqno space without wrap caused issues).
1244 *
1245 * With D-SACK the lower bound is extended to cover sequence space below
1246 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1247 * again, D-SACK block must not to go across snd_una (for the same reason as
1248 * for the normal SACK blocks, explained above). But there all simplicity
1249 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1250 * fully below undo_marker they do not affect behavior in anyway and can
1251 * therefore be safely ignored. In rare cases (which are more or less
1252 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1253 * fragmentation and packet reordering past skb's retransmission. To consider
1254 * them correctly, the acceptable range must be extended even more though
1255 * the exact amount is rather hard to quantify. However, tp->max_window can
1256 * be used as an exaggerated estimate.
1257 */
tcp_is_sackblock_valid(struct tcp_sock * tp,bool is_dsack,u32 start_seq,u32 end_seq)1258 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1259 u32 start_seq, u32 end_seq)
1260 {
1261 /* Too far in future, or reversed (interpretation is ambiguous) */
1262 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1263 return false;
1264
1265 /* Nasty start_seq wrap-around check (see comments above) */
1266 if (!before(start_seq, tp->snd_nxt))
1267 return false;
1268
1269 /* In outstanding window? ...This is valid exit for D-SACKs too.
1270 * start_seq == snd_una is non-sensical (see comments above)
1271 */
1272 if (after(start_seq, tp->snd_una))
1273 return true;
1274
1275 if (!is_dsack || !tp->undo_marker)
1276 return false;
1277
1278 /* ...Then it's D-SACK, and must reside below snd_una completely */
1279 if (after(end_seq, tp->snd_una))
1280 return false;
1281
1282 if (!before(start_seq, tp->undo_marker))
1283 return true;
1284
1285 /* Too old */
1286 if (!after(end_seq, tp->undo_marker))
1287 return false;
1288
1289 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1290 * start_seq < undo_marker and end_seq >= undo_marker.
1291 */
1292 return !before(start_seq, end_seq - tp->max_window);
1293 }
1294
tcp_check_dsack(struct sock * sk,const struct sk_buff * ack_skb,struct tcp_sack_block_wire * sp,int num_sacks,u32 prior_snd_una,struct tcp_sacktag_state * state)1295 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1296 struct tcp_sack_block_wire *sp, int num_sacks,
1297 u32 prior_snd_una, struct tcp_sacktag_state *state)
1298 {
1299 struct tcp_sock *tp = tcp_sk(sk);
1300 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1301 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1302 u32 dup_segs;
1303
1304 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1305 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1306 } else if (num_sacks > 1) {
1307 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1308 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1309
1310 if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1311 return false;
1312 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1313 } else {
1314 return false;
1315 }
1316
1317 dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1318 if (!dup_segs) { /* Skip dubious DSACK */
1319 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
1320 return false;
1321 }
1322
1323 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1324
1325 /* D-SACK for already forgotten data... Do dumb counting. */
1326 if (tp->undo_marker && tp->undo_retrans > 0 &&
1327 !after(end_seq_0, prior_snd_una) &&
1328 after(end_seq_0, tp->undo_marker))
1329 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1330
1331 return true;
1332 }
1333
1334 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1335 * the incoming SACK may not exactly match but we can find smaller MSS
1336 * aligned portion of it that matches. Therefore we might need to fragment
1337 * which may fail and creates some hassle (caller must handle error case
1338 * returns).
1339 *
1340 * FIXME: this could be merged to shift decision code
1341 */
tcp_match_skb_to_sack(struct sock * sk,struct sk_buff * skb,u32 start_seq,u32 end_seq)1342 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1343 u32 start_seq, u32 end_seq)
1344 {
1345 int err;
1346 bool in_sack;
1347 unsigned int pkt_len;
1348 unsigned int mss;
1349
1350 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1351 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1352
1353 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1354 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1355 mss = tcp_skb_mss(skb);
1356 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1357
1358 if (!in_sack) {
1359 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1360 if (pkt_len < mss)
1361 pkt_len = mss;
1362 } else {
1363 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1364 if (pkt_len < mss)
1365 return -EINVAL;
1366 }
1367
1368 /* Round if necessary so that SACKs cover only full MSSes
1369 * and/or the remaining small portion (if present)
1370 */
1371 if (pkt_len > mss) {
1372 unsigned int new_len = (pkt_len / mss) * mss;
1373 if (!in_sack && new_len < pkt_len)
1374 new_len += mss;
1375 pkt_len = new_len;
1376 }
1377
1378 if (pkt_len >= skb->len && !in_sack)
1379 return 0;
1380
1381 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1382 pkt_len, mss, GFP_ATOMIC);
1383 if (err < 0)
1384 return err;
1385 }
1386
1387 return in_sack;
1388 }
1389
1390 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
tcp_sacktag_one(struct sock * sk,struct tcp_sacktag_state * state,u8 sacked,u32 start_seq,u32 end_seq,int dup_sack,int pcount,u64 xmit_time)1391 static u8 tcp_sacktag_one(struct sock *sk,
1392 struct tcp_sacktag_state *state, u8 sacked,
1393 u32 start_seq, u32 end_seq,
1394 int dup_sack, int pcount,
1395 u64 xmit_time)
1396 {
1397 struct tcp_sock *tp = tcp_sk(sk);
1398
1399 /* Account D-SACK for retransmitted packet. */
1400 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1401 if (tp->undo_marker && tp->undo_retrans > 0 &&
1402 after(end_seq, tp->undo_marker))
1403 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount);
1404 if ((sacked & TCPCB_SACKED_ACKED) &&
1405 before(start_seq, state->reord))
1406 state->reord = start_seq;
1407 }
1408
1409 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1410 if (!after(end_seq, tp->snd_una))
1411 return sacked;
1412
1413 if (!(sacked & TCPCB_SACKED_ACKED)) {
1414 tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1415
1416 if (sacked & TCPCB_SACKED_RETRANS) {
1417 /* If the segment is not tagged as lost,
1418 * we do not clear RETRANS, believing
1419 * that retransmission is still in flight.
1420 */
1421 if (sacked & TCPCB_LOST) {
1422 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1423 tp->lost_out -= pcount;
1424 tp->retrans_out -= pcount;
1425 }
1426 } else {
1427 if (!(sacked & TCPCB_RETRANS)) {
1428 /* New sack for not retransmitted frame,
1429 * which was in hole. It is reordering.
1430 */
1431 if (before(start_seq,
1432 tcp_highest_sack_seq(tp)) &&
1433 before(start_seq, state->reord))
1434 state->reord = start_seq;
1435
1436 if (!after(end_seq, tp->high_seq))
1437 state->flag |= FLAG_ORIG_SACK_ACKED;
1438 if (state->first_sackt == 0)
1439 state->first_sackt = xmit_time;
1440 state->last_sackt = xmit_time;
1441 }
1442
1443 if (sacked & TCPCB_LOST) {
1444 sacked &= ~TCPCB_LOST;
1445 tp->lost_out -= pcount;
1446 }
1447 }
1448
1449 sacked |= TCPCB_SACKED_ACKED;
1450 state->flag |= FLAG_DATA_SACKED;
1451 tp->sacked_out += pcount;
1452 /* Out-of-order packets delivered */
1453 state->sack_delivered += pcount;
1454
1455 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1456 if (tp->lost_skb_hint &&
1457 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1458 tp->lost_cnt_hint += pcount;
1459 }
1460
1461 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1462 * frames and clear it. undo_retrans is decreased above, L|R frames
1463 * are accounted above as well.
1464 */
1465 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1466 sacked &= ~TCPCB_SACKED_RETRANS;
1467 tp->retrans_out -= pcount;
1468 }
1469
1470 return sacked;
1471 }
1472
1473 /* Shift newly-SACKed bytes from this skb to the immediately previous
1474 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1475 */
tcp_shifted_skb(struct sock * sk,struct sk_buff * prev,struct sk_buff * skb,struct tcp_sacktag_state * state,unsigned int pcount,int shifted,int mss,bool dup_sack)1476 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1477 struct sk_buff *skb,
1478 struct tcp_sacktag_state *state,
1479 unsigned int pcount, int shifted, int mss,
1480 bool dup_sack)
1481 {
1482 struct tcp_sock *tp = tcp_sk(sk);
1483 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1484 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1485
1486 BUG_ON(!pcount);
1487
1488 /* Adjust counters and hints for the newly sacked sequence
1489 * range but discard the return value since prev is already
1490 * marked. We must tag the range first because the seq
1491 * advancement below implicitly advances
1492 * tcp_highest_sack_seq() when skb is highest_sack.
1493 */
1494 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1495 start_seq, end_seq, dup_sack, pcount,
1496 tcp_skb_timestamp_us(skb));
1497 tcp_rate_skb_delivered(sk, skb, state->rate);
1498
1499 if (skb == tp->lost_skb_hint)
1500 tp->lost_cnt_hint += pcount;
1501
1502 TCP_SKB_CB(prev)->end_seq += shifted;
1503 TCP_SKB_CB(skb)->seq += shifted;
1504
1505 tcp_skb_pcount_add(prev, pcount);
1506 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1507 tcp_skb_pcount_add(skb, -pcount);
1508
1509 /* When we're adding to gso_segs == 1, gso_size will be zero,
1510 * in theory this shouldn't be necessary but as long as DSACK
1511 * code can come after this skb later on it's better to keep
1512 * setting gso_size to something.
1513 */
1514 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1515 TCP_SKB_CB(prev)->tcp_gso_size = mss;
1516
1517 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1518 if (tcp_skb_pcount(skb) <= 1)
1519 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1520
1521 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1522 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1523
1524 if (skb->len > 0) {
1525 BUG_ON(!tcp_skb_pcount(skb));
1526 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1527 return false;
1528 }
1529
1530 /* Whole SKB was eaten :-) */
1531
1532 if (skb == tp->retransmit_skb_hint)
1533 tp->retransmit_skb_hint = prev;
1534 if (skb == tp->lost_skb_hint) {
1535 tp->lost_skb_hint = prev;
1536 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1537 }
1538
1539 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1540 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1541 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1542 TCP_SKB_CB(prev)->end_seq++;
1543
1544 if (skb == tcp_highest_sack(sk))
1545 tcp_advance_highest_sack(sk, skb);
1546
1547 tcp_skb_collapse_tstamp(prev, skb);
1548 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1549 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1550
1551 tcp_rtx_queue_unlink_and_free(skb, sk);
1552
1553 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1554
1555 return true;
1556 }
1557
1558 /* I wish gso_size would have a bit more sane initialization than
1559 * something-or-zero which complicates things
1560 */
tcp_skb_seglen(const struct sk_buff * skb)1561 static int tcp_skb_seglen(const struct sk_buff *skb)
1562 {
1563 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1564 }
1565
1566 /* Shifting pages past head area doesn't work */
skb_can_shift(const struct sk_buff * skb)1567 static int skb_can_shift(const struct sk_buff *skb)
1568 {
1569 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1570 }
1571
tcp_skb_shift(struct sk_buff * to,struct sk_buff * from,int pcount,int shiftlen)1572 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1573 int pcount, int shiftlen)
1574 {
1575 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1576 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1577 * to make sure not storing more than 65535 * 8 bytes per skb,
1578 * even if current MSS is bigger.
1579 */
1580 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1581 return 0;
1582 if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1583 return 0;
1584 return skb_shift(to, from, shiftlen);
1585 }
1586
1587 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1588 * skb.
1589 */
tcp_shift_skb_data(struct sock * sk,struct sk_buff * skb,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack)1590 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1591 struct tcp_sacktag_state *state,
1592 u32 start_seq, u32 end_seq,
1593 bool dup_sack)
1594 {
1595 struct tcp_sock *tp = tcp_sk(sk);
1596 struct sk_buff *prev;
1597 int mss;
1598 int pcount = 0;
1599 int len;
1600 int in_sack;
1601
1602 /* Normally R but no L won't result in plain S */
1603 if (!dup_sack &&
1604 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1605 goto fallback;
1606 if (!skb_can_shift(skb))
1607 goto fallback;
1608 /* This frame is about to be dropped (was ACKed). */
1609 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1610 goto fallback;
1611
1612 /* Can only happen with delayed DSACK + discard craziness */
1613 prev = skb_rb_prev(skb);
1614 if (!prev)
1615 goto fallback;
1616
1617 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1618 goto fallback;
1619
1620 if (!tcp_skb_can_collapse(prev, skb))
1621 goto fallback;
1622
1623 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1624 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1625
1626 if (in_sack) {
1627 len = skb->len;
1628 pcount = tcp_skb_pcount(skb);
1629 mss = tcp_skb_seglen(skb);
1630
1631 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1632 * drop this restriction as unnecessary
1633 */
1634 if (mss != tcp_skb_seglen(prev))
1635 goto fallback;
1636 } else {
1637 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1638 goto noop;
1639 /* CHECKME: This is non-MSS split case only?, this will
1640 * cause skipped skbs due to advancing loop btw, original
1641 * has that feature too
1642 */
1643 if (tcp_skb_pcount(skb) <= 1)
1644 goto noop;
1645
1646 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1647 if (!in_sack) {
1648 /* TODO: head merge to next could be attempted here
1649 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1650 * though it might not be worth of the additional hassle
1651 *
1652 * ...we can probably just fallback to what was done
1653 * previously. We could try merging non-SACKed ones
1654 * as well but it probably isn't going to buy off
1655 * because later SACKs might again split them, and
1656 * it would make skb timestamp tracking considerably
1657 * harder problem.
1658 */
1659 goto fallback;
1660 }
1661
1662 len = end_seq - TCP_SKB_CB(skb)->seq;
1663 BUG_ON(len < 0);
1664 BUG_ON(len > skb->len);
1665
1666 /* MSS boundaries should be honoured or else pcount will
1667 * severely break even though it makes things bit trickier.
1668 * Optimize common case to avoid most of the divides
1669 */
1670 mss = tcp_skb_mss(skb);
1671
1672 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1673 * drop this restriction as unnecessary
1674 */
1675 if (mss != tcp_skb_seglen(prev))
1676 goto fallback;
1677
1678 if (len == mss) {
1679 pcount = 1;
1680 } else if (len < mss) {
1681 goto noop;
1682 } else {
1683 pcount = len / mss;
1684 len = pcount * mss;
1685 }
1686 }
1687
1688 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1689 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1690 goto fallback;
1691
1692 if (!tcp_skb_shift(prev, skb, pcount, len))
1693 goto fallback;
1694 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1695 goto out;
1696
1697 /* Hole filled allows collapsing with the next as well, this is very
1698 * useful when hole on every nth skb pattern happens
1699 */
1700 skb = skb_rb_next(prev);
1701 if (!skb)
1702 goto out;
1703
1704 if (!skb_can_shift(skb) ||
1705 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1706 (mss != tcp_skb_seglen(skb)))
1707 goto out;
1708
1709 if (!tcp_skb_can_collapse(prev, skb))
1710 goto out;
1711 len = skb->len;
1712 pcount = tcp_skb_pcount(skb);
1713 if (tcp_skb_shift(prev, skb, pcount, len))
1714 tcp_shifted_skb(sk, prev, skb, state, pcount,
1715 len, mss, 0);
1716
1717 out:
1718 return prev;
1719
1720 noop:
1721 return skb;
1722
1723 fallback:
1724 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1725 return NULL;
1726 }
1727
tcp_sacktag_walk(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack_in)1728 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1729 struct tcp_sack_block *next_dup,
1730 struct tcp_sacktag_state *state,
1731 u32 start_seq, u32 end_seq,
1732 bool dup_sack_in)
1733 {
1734 struct tcp_sock *tp = tcp_sk(sk);
1735 struct sk_buff *tmp;
1736
1737 skb_rbtree_walk_from(skb) {
1738 int in_sack = 0;
1739 bool dup_sack = dup_sack_in;
1740
1741 /* queue is in-order => we can short-circuit the walk early */
1742 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1743 break;
1744
1745 if (next_dup &&
1746 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1747 in_sack = tcp_match_skb_to_sack(sk, skb,
1748 next_dup->start_seq,
1749 next_dup->end_seq);
1750 if (in_sack > 0)
1751 dup_sack = true;
1752 }
1753
1754 /* skb reference here is a bit tricky to get right, since
1755 * shifting can eat and free both this skb and the next,
1756 * so not even _safe variant of the loop is enough.
1757 */
1758 if (in_sack <= 0) {
1759 tmp = tcp_shift_skb_data(sk, skb, state,
1760 start_seq, end_seq, dup_sack);
1761 if (tmp) {
1762 if (tmp != skb) {
1763 skb = tmp;
1764 continue;
1765 }
1766
1767 in_sack = 0;
1768 } else {
1769 in_sack = tcp_match_skb_to_sack(sk, skb,
1770 start_seq,
1771 end_seq);
1772 }
1773 }
1774
1775 if (unlikely(in_sack < 0))
1776 break;
1777
1778 if (in_sack) {
1779 TCP_SKB_CB(skb)->sacked =
1780 tcp_sacktag_one(sk,
1781 state,
1782 TCP_SKB_CB(skb)->sacked,
1783 TCP_SKB_CB(skb)->seq,
1784 TCP_SKB_CB(skb)->end_seq,
1785 dup_sack,
1786 tcp_skb_pcount(skb),
1787 tcp_skb_timestamp_us(skb));
1788 tcp_rate_skb_delivered(sk, skb, state->rate);
1789 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1790 list_del_init(&skb->tcp_tsorted_anchor);
1791
1792 if (!before(TCP_SKB_CB(skb)->seq,
1793 tcp_highest_sack_seq(tp)))
1794 tcp_advance_highest_sack(sk, skb);
1795 }
1796 }
1797 return skb;
1798 }
1799
tcp_sacktag_bsearch(struct sock * sk,u32 seq)1800 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1801 {
1802 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1803 struct sk_buff *skb;
1804
1805 while (*p) {
1806 parent = *p;
1807 skb = rb_to_skb(parent);
1808 if (before(seq, TCP_SKB_CB(skb)->seq)) {
1809 p = &parent->rb_left;
1810 continue;
1811 }
1812 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1813 p = &parent->rb_right;
1814 continue;
1815 }
1816 return skb;
1817 }
1818 return NULL;
1819 }
1820
tcp_sacktag_skip(struct sk_buff * skb,struct sock * sk,u32 skip_to_seq)1821 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1822 u32 skip_to_seq)
1823 {
1824 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1825 return skb;
1826
1827 return tcp_sacktag_bsearch(sk, skip_to_seq);
1828 }
1829
tcp_maybe_skipping_dsack(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 skip_to_seq)1830 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1831 struct sock *sk,
1832 struct tcp_sack_block *next_dup,
1833 struct tcp_sacktag_state *state,
1834 u32 skip_to_seq)
1835 {
1836 if (!next_dup)
1837 return skb;
1838
1839 if (before(next_dup->start_seq, skip_to_seq)) {
1840 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1841 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1842 next_dup->start_seq, next_dup->end_seq,
1843 1);
1844 }
1845
1846 return skb;
1847 }
1848
tcp_sack_cache_ok(const struct tcp_sock * tp,const struct tcp_sack_block * cache)1849 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1850 {
1851 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1852 }
1853
1854 static int
tcp_sacktag_write_queue(struct sock * sk,const struct sk_buff * ack_skb,u32 prior_snd_una,struct tcp_sacktag_state * state)1855 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1856 u32 prior_snd_una, struct tcp_sacktag_state *state)
1857 {
1858 struct tcp_sock *tp = tcp_sk(sk);
1859 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1860 TCP_SKB_CB(ack_skb)->sacked);
1861 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1862 struct tcp_sack_block sp[TCP_NUM_SACKS];
1863 struct tcp_sack_block *cache;
1864 struct sk_buff *skb;
1865 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1866 int used_sacks;
1867 bool found_dup_sack = false;
1868 int i, j;
1869 int first_sack_index;
1870
1871 state->flag = 0;
1872 state->reord = tp->snd_nxt;
1873
1874 if (!tp->sacked_out)
1875 tcp_highest_sack_reset(sk);
1876
1877 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1878 num_sacks, prior_snd_una, state);
1879
1880 /* Eliminate too old ACKs, but take into
1881 * account more or less fresh ones, they can
1882 * contain valid SACK info.
1883 */
1884 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1885 return 0;
1886
1887 if (!tp->packets_out)
1888 goto out;
1889
1890 used_sacks = 0;
1891 first_sack_index = 0;
1892 for (i = 0; i < num_sacks; i++) {
1893 bool dup_sack = !i && found_dup_sack;
1894
1895 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1896 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1897
1898 if (!tcp_is_sackblock_valid(tp, dup_sack,
1899 sp[used_sacks].start_seq,
1900 sp[used_sacks].end_seq)) {
1901 int mib_idx;
1902
1903 if (dup_sack) {
1904 if (!tp->undo_marker)
1905 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1906 else
1907 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1908 } else {
1909 /* Don't count olds caused by ACK reordering */
1910 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1911 !after(sp[used_sacks].end_seq, tp->snd_una))
1912 continue;
1913 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1914 }
1915
1916 NET_INC_STATS(sock_net(sk), mib_idx);
1917 if (i == 0)
1918 first_sack_index = -1;
1919 continue;
1920 }
1921
1922 /* Ignore very old stuff early */
1923 if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1924 if (i == 0)
1925 first_sack_index = -1;
1926 continue;
1927 }
1928
1929 used_sacks++;
1930 }
1931
1932 /* order SACK blocks to allow in order walk of the retrans queue */
1933 for (i = used_sacks - 1; i > 0; i--) {
1934 for (j = 0; j < i; j++) {
1935 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1936 swap(sp[j], sp[j + 1]);
1937
1938 /* Track where the first SACK block goes to */
1939 if (j == first_sack_index)
1940 first_sack_index = j + 1;
1941 }
1942 }
1943 }
1944
1945 state->mss_now = tcp_current_mss(sk);
1946 skb = NULL;
1947 i = 0;
1948
1949 if (!tp->sacked_out) {
1950 /* It's already past, so skip checking against it */
1951 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1952 } else {
1953 cache = tp->recv_sack_cache;
1954 /* Skip empty blocks in at head of the cache */
1955 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1956 !cache->end_seq)
1957 cache++;
1958 }
1959
1960 while (i < used_sacks) {
1961 u32 start_seq = sp[i].start_seq;
1962 u32 end_seq = sp[i].end_seq;
1963 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1964 struct tcp_sack_block *next_dup = NULL;
1965
1966 if (found_dup_sack && ((i + 1) == first_sack_index))
1967 next_dup = &sp[i + 1];
1968
1969 /* Skip too early cached blocks */
1970 while (tcp_sack_cache_ok(tp, cache) &&
1971 !before(start_seq, cache->end_seq))
1972 cache++;
1973
1974 /* Can skip some work by looking recv_sack_cache? */
1975 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1976 after(end_seq, cache->start_seq)) {
1977
1978 /* Head todo? */
1979 if (before(start_seq, cache->start_seq)) {
1980 skb = tcp_sacktag_skip(skb, sk, start_seq);
1981 skb = tcp_sacktag_walk(skb, sk, next_dup,
1982 state,
1983 start_seq,
1984 cache->start_seq,
1985 dup_sack);
1986 }
1987
1988 /* Rest of the block already fully processed? */
1989 if (!after(end_seq, cache->end_seq))
1990 goto advance_sp;
1991
1992 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1993 state,
1994 cache->end_seq);
1995
1996 /* ...tail remains todo... */
1997 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1998 /* ...but better entrypoint exists! */
1999 skb = tcp_highest_sack(sk);
2000 if (!skb)
2001 break;
2002 cache++;
2003 goto walk;
2004 }
2005
2006 skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
2007 /* Check overlap against next cached too (past this one already) */
2008 cache++;
2009 continue;
2010 }
2011
2012 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
2013 skb = tcp_highest_sack(sk);
2014 if (!skb)
2015 break;
2016 }
2017 skb = tcp_sacktag_skip(skb, sk, start_seq);
2018
2019 walk:
2020 skb = tcp_sacktag_walk(skb, sk, next_dup, state,
2021 start_seq, end_seq, dup_sack);
2022
2023 advance_sp:
2024 i++;
2025 }
2026
2027 /* Clear the head of the cache sack blocks so we can skip it next time */
2028 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
2029 tp->recv_sack_cache[i].start_seq = 0;
2030 tp->recv_sack_cache[i].end_seq = 0;
2031 }
2032 for (j = 0; j < used_sacks; j++)
2033 tp->recv_sack_cache[i++] = sp[j];
2034
2035 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
2036 tcp_check_sack_reordering(sk, state->reord, 0);
2037
2038 tcp_verify_left_out(tp);
2039 out:
2040
2041 #if FASTRETRANS_DEBUG > 0
2042 WARN_ON((int)tp->sacked_out < 0);
2043 WARN_ON((int)tp->lost_out < 0);
2044 WARN_ON((int)tp->retrans_out < 0);
2045 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
2046 #endif
2047 return state->flag;
2048 }
2049
2050 /* Limits sacked_out so that sum with lost_out isn't ever larger than
2051 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
2052 */
tcp_limit_reno_sacked(struct tcp_sock * tp)2053 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
2054 {
2055 u32 holes;
2056
2057 holes = max(tp->lost_out, 1U);
2058 holes = min(holes, tp->packets_out);
2059
2060 if ((tp->sacked_out + holes) > tp->packets_out) {
2061 tp->sacked_out = tp->packets_out - holes;
2062 return true;
2063 }
2064 return false;
2065 }
2066
2067 /* If we receive more dupacks than we expected counting segments
2068 * in assumption of absent reordering, interpret this as reordering.
2069 * The only another reason could be bug in receiver TCP.
2070 */
tcp_check_reno_reordering(struct sock * sk,const int addend)2071 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
2072 {
2073 struct tcp_sock *tp = tcp_sk(sk);
2074
2075 if (!tcp_limit_reno_sacked(tp))
2076 return;
2077
2078 tp->reordering = min_t(u32, tp->packets_out + addend,
2079 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
2080 tp->reord_seen++;
2081 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
2082 }
2083
2084 /* Emulate SACKs for SACKless connection: account for a new dupack. */
2085
tcp_add_reno_sack(struct sock * sk,int num_dupack,bool ece_ack)2086 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
2087 {
2088 if (num_dupack) {
2089 struct tcp_sock *tp = tcp_sk(sk);
2090 u32 prior_sacked = tp->sacked_out;
2091 s32 delivered;
2092
2093 tp->sacked_out += num_dupack;
2094 tcp_check_reno_reordering(sk, 0);
2095 delivered = tp->sacked_out - prior_sacked;
2096 if (delivered > 0)
2097 tcp_count_delivered(tp, delivered, ece_ack);
2098 tcp_verify_left_out(tp);
2099 }
2100 }
2101
2102 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2103
tcp_remove_reno_sacks(struct sock * sk,int acked,bool ece_ack)2104 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
2105 {
2106 struct tcp_sock *tp = tcp_sk(sk);
2107
2108 if (acked > 0) {
2109 /* One ACK acked hole. The rest eat duplicate ACKs. */
2110 tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
2111 ece_ack);
2112 if (acked - 1 >= tp->sacked_out)
2113 tp->sacked_out = 0;
2114 else
2115 tp->sacked_out -= acked - 1;
2116 }
2117 tcp_check_reno_reordering(sk, acked);
2118 tcp_verify_left_out(tp);
2119 }
2120
tcp_reset_reno_sack(struct tcp_sock * tp)2121 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2122 {
2123 tp->sacked_out = 0;
2124 }
2125
tcp_clear_retrans(struct tcp_sock * tp)2126 void tcp_clear_retrans(struct tcp_sock *tp)
2127 {
2128 tp->retrans_out = 0;
2129 tp->lost_out = 0;
2130 tp->undo_marker = 0;
2131 tp->undo_retrans = -1;
2132 tp->sacked_out = 0;
2133 tp->rto_stamp = 0;
2134 tp->total_rto = 0;
2135 tp->total_rto_recoveries = 0;
2136 tp->total_rto_time = 0;
2137 }
2138
tcp_init_undo(struct tcp_sock * tp)2139 static inline void tcp_init_undo(struct tcp_sock *tp)
2140 {
2141 tp->undo_marker = tp->snd_una;
2142
2143 /* Retransmission still in flight may cause DSACKs later. */
2144 /* First, account for regular retransmits in flight: */
2145 tp->undo_retrans = tp->retrans_out;
2146 /* Next, account for TLP retransmits in flight: */
2147 if (tp->tlp_high_seq && tp->tlp_retrans)
2148 tp->undo_retrans++;
2149 /* Finally, avoid 0, because undo_retrans==0 means "can undo now": */
2150 if (!tp->undo_retrans)
2151 tp->undo_retrans = -1;
2152 }
2153
tcp_is_rack(const struct sock * sk)2154 static bool tcp_is_rack(const struct sock *sk)
2155 {
2156 return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) &
2157 TCP_RACK_LOSS_DETECTION;
2158 }
2159
2160 /* If we detect SACK reneging, forget all SACK information
2161 * and reset tags completely, otherwise preserve SACKs. If receiver
2162 * dropped its ofo queue, we will know this due to reneging detection.
2163 */
tcp_timeout_mark_lost(struct sock * sk)2164 static void tcp_timeout_mark_lost(struct sock *sk)
2165 {
2166 struct tcp_sock *tp = tcp_sk(sk);
2167 struct sk_buff *skb, *head;
2168 bool is_reneg; /* is receiver reneging on SACKs? */
2169
2170 head = tcp_rtx_queue_head(sk);
2171 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
2172 if (is_reneg) {
2173 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2174 tp->sacked_out = 0;
2175 /* Mark SACK reneging until we recover from this loss event. */
2176 tp->is_sack_reneg = 1;
2177 } else if (tcp_is_reno(tp)) {
2178 tcp_reset_reno_sack(tp);
2179 }
2180
2181 skb = head;
2182 skb_rbtree_walk_from(skb) {
2183 if (is_reneg)
2184 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2185 else if (tcp_is_rack(sk) && skb != head &&
2186 tcp_rack_skb_timeout(tp, skb, 0) > 0)
2187 continue; /* Don't mark recently sent ones lost yet */
2188 tcp_mark_skb_lost(sk, skb);
2189 }
2190 tcp_verify_left_out(tp);
2191 tcp_clear_all_retrans_hints(tp);
2192 }
2193
2194 /* Enter Loss state. */
tcp_enter_loss(struct sock * sk)2195 void tcp_enter_loss(struct sock *sk)
2196 {
2197 const struct inet_connection_sock *icsk = inet_csk(sk);
2198 struct tcp_sock *tp = tcp_sk(sk);
2199 struct net *net = sock_net(sk);
2200 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2201 u8 reordering;
2202
2203 tcp_timeout_mark_lost(sk);
2204
2205 /* Reduce ssthresh if it has not yet been made inside this window. */
2206 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2207 !after(tp->high_seq, tp->snd_una) ||
2208 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2209 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2210 tp->prior_cwnd = tcp_snd_cwnd(tp);
2211 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2212 tcp_ca_event(sk, CA_EVENT_LOSS);
2213 tcp_init_undo(tp);
2214 }
2215 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1);
2216 tp->snd_cwnd_cnt = 0;
2217 tp->snd_cwnd_stamp = tcp_jiffies32;
2218
2219 /* Timeout in disordered state after receiving substantial DUPACKs
2220 * suggests that the degree of reordering is over-estimated.
2221 */
2222 reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering);
2223 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2224 tp->sacked_out >= reordering)
2225 tp->reordering = min_t(unsigned int, tp->reordering,
2226 reordering);
2227
2228 tcp_set_ca_state(sk, TCP_CA_Loss);
2229 tp->high_seq = tp->snd_nxt;
2230 tp->tlp_high_seq = 0;
2231 tcp_ecn_queue_cwr(tp);
2232
2233 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2234 * loss recovery is underway except recurring timeout(s) on
2235 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2236 */
2237 tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) &&
2238 (new_recovery || icsk->icsk_retransmits) &&
2239 !inet_csk(sk)->icsk_mtup.probe_size;
2240 }
2241
2242 /* If ACK arrived pointing to a remembered SACK, it means that our
2243 * remembered SACKs do not reflect real state of receiver i.e.
2244 * receiver _host_ is heavily congested (or buggy).
2245 *
2246 * To avoid big spurious retransmission bursts due to transient SACK
2247 * scoreboard oddities that look like reneging, we give the receiver a
2248 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2249 * restore sanity to the SACK scoreboard. If the apparent reneging
2250 * persists until this RTO then we'll clear the SACK scoreboard.
2251 */
tcp_check_sack_reneging(struct sock * sk,int * ack_flag)2252 static bool tcp_check_sack_reneging(struct sock *sk, int *ack_flag)
2253 {
2254 if (*ack_flag & FLAG_SACK_RENEGING &&
2255 *ack_flag & FLAG_SND_UNA_ADVANCED) {
2256 struct tcp_sock *tp = tcp_sk(sk);
2257 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2258 msecs_to_jiffies(10));
2259
2260 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, delay, false);
2261 *ack_flag &= ~FLAG_SET_XMIT_TIMER;
2262 return true;
2263 }
2264 return false;
2265 }
2266
2267 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2268 * counter when SACK is enabled (without SACK, sacked_out is used for
2269 * that purpose).
2270 *
2271 * With reordering, holes may still be in flight, so RFC3517 recovery
2272 * uses pure sacked_out (total number of SACKed segments) even though
2273 * it violates the RFC that uses duplicate ACKs, often these are equal
2274 * but when e.g. out-of-window ACKs or packet duplication occurs,
2275 * they differ. Since neither occurs due to loss, TCP should really
2276 * ignore them.
2277 */
tcp_dupack_heuristics(const struct tcp_sock * tp)2278 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2279 {
2280 return tp->sacked_out + 1;
2281 }
2282
2283 /* Linux NewReno/SACK/ECN state machine.
2284 * --------------------------------------
2285 *
2286 * "Open" Normal state, no dubious events, fast path.
2287 * "Disorder" In all the respects it is "Open",
2288 * but requires a bit more attention. It is entered when
2289 * we see some SACKs or dupacks. It is split of "Open"
2290 * mainly to move some processing from fast path to slow one.
2291 * "CWR" CWND was reduced due to some Congestion Notification event.
2292 * It can be ECN, ICMP source quench, local device congestion.
2293 * "Recovery" CWND was reduced, we are fast-retransmitting.
2294 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2295 *
2296 * tcp_fastretrans_alert() is entered:
2297 * - each incoming ACK, if state is not "Open"
2298 * - when arrived ACK is unusual, namely:
2299 * * SACK
2300 * * Duplicate ACK.
2301 * * ECN ECE.
2302 *
2303 * Counting packets in flight is pretty simple.
2304 *
2305 * in_flight = packets_out - left_out + retrans_out
2306 *
2307 * packets_out is SND.NXT-SND.UNA counted in packets.
2308 *
2309 * retrans_out is number of retransmitted segments.
2310 *
2311 * left_out is number of segments left network, but not ACKed yet.
2312 *
2313 * left_out = sacked_out + lost_out
2314 *
2315 * sacked_out: Packets, which arrived to receiver out of order
2316 * and hence not ACKed. With SACKs this number is simply
2317 * amount of SACKed data. Even without SACKs
2318 * it is easy to give pretty reliable estimate of this number,
2319 * counting duplicate ACKs.
2320 *
2321 * lost_out: Packets lost by network. TCP has no explicit
2322 * "loss notification" feedback from network (for now).
2323 * It means that this number can be only _guessed_.
2324 * Actually, it is the heuristics to predict lossage that
2325 * distinguishes different algorithms.
2326 *
2327 * F.e. after RTO, when all the queue is considered as lost,
2328 * lost_out = packets_out and in_flight = retrans_out.
2329 *
2330 * Essentially, we have now a few algorithms detecting
2331 * lost packets.
2332 *
2333 * If the receiver supports SACK:
2334 *
2335 * RFC6675/3517: It is the conventional algorithm. A packet is
2336 * considered lost if the number of higher sequence packets
2337 * SACKed is greater than or equal the DUPACK thoreshold
2338 * (reordering). This is implemented in tcp_mark_head_lost and
2339 * tcp_update_scoreboard.
2340 *
2341 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2342 * (2017-) that checks timing instead of counting DUPACKs.
2343 * Essentially a packet is considered lost if it's not S/ACKed
2344 * after RTT + reordering_window, where both metrics are
2345 * dynamically measured and adjusted. This is implemented in
2346 * tcp_rack_mark_lost.
2347 *
2348 * If the receiver does not support SACK:
2349 *
2350 * NewReno (RFC6582): in Recovery we assume that one segment
2351 * is lost (classic Reno). While we are in Recovery and
2352 * a partial ACK arrives, we assume that one more packet
2353 * is lost (NewReno). This heuristics are the same in NewReno
2354 * and SACK.
2355 *
2356 * Really tricky (and requiring careful tuning) part of algorithm
2357 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2358 * The first determines the moment _when_ we should reduce CWND and,
2359 * hence, slow down forward transmission. In fact, it determines the moment
2360 * when we decide that hole is caused by loss, rather than by a reorder.
2361 *
2362 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2363 * holes, caused by lost packets.
2364 *
2365 * And the most logically complicated part of algorithm is undo
2366 * heuristics. We detect false retransmits due to both too early
2367 * fast retransmit (reordering) and underestimated RTO, analyzing
2368 * timestamps and D-SACKs. When we detect that some segments were
2369 * retransmitted by mistake and CWND reduction was wrong, we undo
2370 * window reduction and abort recovery phase. This logic is hidden
2371 * inside several functions named tcp_try_undo_<something>.
2372 */
2373
2374 /* This function decides, when we should leave Disordered state
2375 * and enter Recovery phase, reducing congestion window.
2376 *
2377 * Main question: may we further continue forward transmission
2378 * with the same cwnd?
2379 */
tcp_time_to_recover(struct sock * sk,int flag)2380 static bool tcp_time_to_recover(struct sock *sk, int flag)
2381 {
2382 struct tcp_sock *tp = tcp_sk(sk);
2383
2384 /* Trick#1: The loss is proven. */
2385 if (tp->lost_out)
2386 return true;
2387
2388 /* Not-A-Trick#2 : Classic rule... */
2389 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2390 return true;
2391
2392 return false;
2393 }
2394
2395 /* Detect loss in event "A" above by marking head of queue up as lost.
2396 * For RFC3517 SACK, a segment is considered lost if it
2397 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2398 * the maximum SACKed segments to pass before reaching this limit.
2399 */
tcp_mark_head_lost(struct sock * sk,int packets,int mark_head)2400 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2401 {
2402 struct tcp_sock *tp = tcp_sk(sk);
2403 struct sk_buff *skb;
2404 int cnt;
2405 /* Use SACK to deduce losses of new sequences sent during recovery */
2406 const u32 loss_high = tp->snd_nxt;
2407
2408 WARN_ON(packets > tp->packets_out);
2409 skb = tp->lost_skb_hint;
2410 if (skb) {
2411 /* Head already handled? */
2412 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2413 return;
2414 cnt = tp->lost_cnt_hint;
2415 } else {
2416 skb = tcp_rtx_queue_head(sk);
2417 cnt = 0;
2418 }
2419
2420 skb_rbtree_walk_from(skb) {
2421 /* TODO: do this better */
2422 /* this is not the most efficient way to do this... */
2423 tp->lost_skb_hint = skb;
2424 tp->lost_cnt_hint = cnt;
2425
2426 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2427 break;
2428
2429 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2430 cnt += tcp_skb_pcount(skb);
2431
2432 if (cnt > packets)
2433 break;
2434
2435 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST))
2436 tcp_mark_skb_lost(sk, skb);
2437
2438 if (mark_head)
2439 break;
2440 }
2441 tcp_verify_left_out(tp);
2442 }
2443
2444 /* Account newly detected lost packet(s) */
2445
tcp_update_scoreboard(struct sock * sk,int fast_rexmit)2446 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2447 {
2448 struct tcp_sock *tp = tcp_sk(sk);
2449
2450 if (tcp_is_sack(tp)) {
2451 int sacked_upto = tp->sacked_out - tp->reordering;
2452 if (sacked_upto >= 0)
2453 tcp_mark_head_lost(sk, sacked_upto, 0);
2454 else if (fast_rexmit)
2455 tcp_mark_head_lost(sk, 1, 1);
2456 }
2457 }
2458
tcp_tsopt_ecr_before(const struct tcp_sock * tp,u32 when)2459 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2460 {
2461 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2462 before(tp->rx_opt.rcv_tsecr, when);
2463 }
2464
2465 /* skb is spurious retransmitted if the returned timestamp echo
2466 * reply is prior to the skb transmission time
2467 */
tcp_skb_spurious_retrans(const struct tcp_sock * tp,const struct sk_buff * skb)2468 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2469 const struct sk_buff *skb)
2470 {
2471 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2472 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb));
2473 }
2474
2475 /* Nothing was retransmitted or returned timestamp is less
2476 * than timestamp of the first retransmission.
2477 */
tcp_packet_delayed(const struct tcp_sock * tp)2478 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2479 {
2480 const struct sock *sk = (const struct sock *)tp;
2481
2482 /* Received an echoed timestamp before the first retransmission? */
2483 if (tp->retrans_stamp)
2484 return tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2485
2486 /* We set tp->retrans_stamp upon the first retransmission of a loss
2487 * recovery episode, so normally if tp->retrans_stamp is 0 then no
2488 * retransmission has happened yet (likely due to TSQ, which can cause
2489 * fast retransmits to be delayed). So if snd_una advanced while
2490 * (tp->retrans_stamp is 0 then apparently a packet was merely delayed,
2491 * not lost. But there are exceptions where we retransmit but then
2492 * clear tp->retrans_stamp, so we check for those exceptions.
2493 */
2494
2495 /* (1) For non-SACK connections, tcp_is_non_sack_preventing_reopen()
2496 * clears tp->retrans_stamp when snd_una == high_seq.
2497 */
2498 if (!tcp_is_sack(tp) && !before(tp->snd_una, tp->high_seq))
2499 return false;
2500
2501 /* (2) In TCP_SYN_SENT tcp_clean_rtx_queue() clears tp->retrans_stamp
2502 * when setting FLAG_SYN_ACKED is set, even if the SYN was
2503 * retransmitted.
2504 */
2505 if (sk->sk_state == TCP_SYN_SENT)
2506 return false;
2507
2508 return true; /* tp->retrans_stamp is zero; no retransmit yet */
2509 }
2510
2511 /* Undo procedures. */
2512
2513 /* We can clear retrans_stamp when there are no retransmissions in the
2514 * window. It would seem that it is trivially available for us in
2515 * tp->retrans_out, however, that kind of assumptions doesn't consider
2516 * what will happen if errors occur when sending retransmission for the
2517 * second time. ...It could the that such segment has only
2518 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2519 * the head skb is enough except for some reneging corner cases that
2520 * are not worth the effort.
2521 *
2522 * Main reason for all this complexity is the fact that connection dying
2523 * time now depends on the validity of the retrans_stamp, in particular,
2524 * that successive retransmissions of a segment must not advance
2525 * retrans_stamp under any conditions.
2526 */
tcp_any_retrans_done(const struct sock * sk)2527 static bool tcp_any_retrans_done(const struct sock *sk)
2528 {
2529 const struct tcp_sock *tp = tcp_sk(sk);
2530 struct sk_buff *skb;
2531
2532 if (tp->retrans_out)
2533 return true;
2534
2535 skb = tcp_rtx_queue_head(sk);
2536 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2537 return true;
2538
2539 return false;
2540 }
2541
2542 /* If loss recovery is finished and there are no retransmits out in the
2543 * network, then we clear retrans_stamp so that upon the next loss recovery
2544 * retransmits_timed_out() and timestamp-undo are using the correct value.
2545 */
tcp_retrans_stamp_cleanup(struct sock * sk)2546 static void tcp_retrans_stamp_cleanup(struct sock *sk)
2547 {
2548 if (!tcp_any_retrans_done(sk))
2549 tcp_sk(sk)->retrans_stamp = 0;
2550 }
2551
DBGUNDO(struct sock * sk,const char * msg)2552 static void DBGUNDO(struct sock *sk, const char *msg)
2553 {
2554 #if FASTRETRANS_DEBUG > 1
2555 struct tcp_sock *tp = tcp_sk(sk);
2556 struct inet_sock *inet = inet_sk(sk);
2557
2558 if (sk->sk_family == AF_INET) {
2559 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2560 msg,
2561 &inet->inet_daddr, ntohs(inet->inet_dport),
2562 tcp_snd_cwnd(tp), tcp_left_out(tp),
2563 tp->snd_ssthresh, tp->prior_ssthresh,
2564 tp->packets_out);
2565 }
2566 #if IS_ENABLED(CONFIG_IPV6)
2567 else if (sk->sk_family == AF_INET6) {
2568 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2569 msg,
2570 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2571 tcp_snd_cwnd(tp), tcp_left_out(tp),
2572 tp->snd_ssthresh, tp->prior_ssthresh,
2573 tp->packets_out);
2574 }
2575 #endif
2576 #endif
2577 }
2578
tcp_undo_cwnd_reduction(struct sock * sk,bool unmark_loss)2579 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2580 {
2581 struct tcp_sock *tp = tcp_sk(sk);
2582
2583 if (unmark_loss) {
2584 struct sk_buff *skb;
2585
2586 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2587 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2588 }
2589 tp->lost_out = 0;
2590 tcp_clear_all_retrans_hints(tp);
2591 }
2592
2593 if (tp->prior_ssthresh) {
2594 const struct inet_connection_sock *icsk = inet_csk(sk);
2595
2596 tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk));
2597
2598 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2599 tp->snd_ssthresh = tp->prior_ssthresh;
2600 tcp_ecn_withdraw_cwr(tp);
2601 }
2602 }
2603 tp->snd_cwnd_stamp = tcp_jiffies32;
2604 tp->undo_marker = 0;
2605 tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2606 }
2607
tcp_may_undo(const struct tcp_sock * tp)2608 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2609 {
2610 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2611 }
2612
tcp_is_non_sack_preventing_reopen(struct sock * sk)2613 static bool tcp_is_non_sack_preventing_reopen(struct sock *sk)
2614 {
2615 struct tcp_sock *tp = tcp_sk(sk);
2616
2617 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2618 /* Hold old state until something *above* high_seq
2619 * is ACKed. For Reno it is MUST to prevent false
2620 * fast retransmits (RFC2582). SACK TCP is safe. */
2621 if (!tcp_any_retrans_done(sk))
2622 tp->retrans_stamp = 0;
2623 return true;
2624 }
2625 return false;
2626 }
2627
2628 /* People celebrate: "We love our President!" */
tcp_try_undo_recovery(struct sock * sk)2629 static bool tcp_try_undo_recovery(struct sock *sk)
2630 {
2631 struct tcp_sock *tp = tcp_sk(sk);
2632
2633 if (tcp_may_undo(tp)) {
2634 int mib_idx;
2635
2636 /* Happy end! We did not retransmit anything
2637 * or our original transmission succeeded.
2638 */
2639 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2640 tcp_undo_cwnd_reduction(sk, false);
2641 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2642 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2643 else
2644 mib_idx = LINUX_MIB_TCPFULLUNDO;
2645
2646 NET_INC_STATS(sock_net(sk), mib_idx);
2647 } else if (tp->rack.reo_wnd_persist) {
2648 tp->rack.reo_wnd_persist--;
2649 }
2650 if (tcp_is_non_sack_preventing_reopen(sk))
2651 return true;
2652 tcp_set_ca_state(sk, TCP_CA_Open);
2653 tp->is_sack_reneg = 0;
2654 return false;
2655 }
2656
2657 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
tcp_try_undo_dsack(struct sock * sk)2658 static bool tcp_try_undo_dsack(struct sock *sk)
2659 {
2660 struct tcp_sock *tp = tcp_sk(sk);
2661
2662 if (tp->undo_marker && !tp->undo_retrans) {
2663 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2664 tp->rack.reo_wnd_persist + 1);
2665 DBGUNDO(sk, "D-SACK");
2666 tcp_undo_cwnd_reduction(sk, false);
2667 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2668 return true;
2669 }
2670 return false;
2671 }
2672
2673 /* Undo during loss recovery after partial ACK or using F-RTO. */
tcp_try_undo_loss(struct sock * sk,bool frto_undo)2674 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2675 {
2676 struct tcp_sock *tp = tcp_sk(sk);
2677
2678 if (frto_undo || tcp_may_undo(tp)) {
2679 tcp_undo_cwnd_reduction(sk, true);
2680
2681 DBGUNDO(sk, "partial loss");
2682 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2683 if (frto_undo)
2684 NET_INC_STATS(sock_net(sk),
2685 LINUX_MIB_TCPSPURIOUSRTOS);
2686 inet_csk(sk)->icsk_retransmits = 0;
2687 if (tcp_is_non_sack_preventing_reopen(sk))
2688 return true;
2689 if (frto_undo || tcp_is_sack(tp)) {
2690 tcp_set_ca_state(sk, TCP_CA_Open);
2691 tp->is_sack_reneg = 0;
2692 }
2693 return true;
2694 }
2695 return false;
2696 }
2697
2698 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2699 * It computes the number of packets to send (sndcnt) based on packets newly
2700 * delivered:
2701 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2702 * cwnd reductions across a full RTT.
2703 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2704 * But when SND_UNA is acked without further losses,
2705 * slow starts cwnd up to ssthresh to speed up the recovery.
2706 */
tcp_init_cwnd_reduction(struct sock * sk)2707 static void tcp_init_cwnd_reduction(struct sock *sk)
2708 {
2709 struct tcp_sock *tp = tcp_sk(sk);
2710
2711 tp->high_seq = tp->snd_nxt;
2712 tp->tlp_high_seq = 0;
2713 tp->snd_cwnd_cnt = 0;
2714 tp->prior_cwnd = tcp_snd_cwnd(tp);
2715 tp->prr_delivered = 0;
2716 tp->prr_out = 0;
2717 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2718 tcp_ecn_queue_cwr(tp);
2719 }
2720
tcp_cwnd_reduction(struct sock * sk,int newly_acked_sacked,int newly_lost,int flag)2721 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag)
2722 {
2723 struct tcp_sock *tp = tcp_sk(sk);
2724 int sndcnt = 0;
2725 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2726
2727 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2728 return;
2729
2730 trace_tcp_cwnd_reduction_tp(sk, newly_acked_sacked, newly_lost, flag);
2731
2732 tp->prr_delivered += newly_acked_sacked;
2733 if (delta < 0) {
2734 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2735 tp->prior_cwnd - 1;
2736 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2737 } else {
2738 sndcnt = max_t(int, tp->prr_delivered - tp->prr_out,
2739 newly_acked_sacked);
2740 if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost)
2741 sndcnt++;
2742 sndcnt = min(delta, sndcnt);
2743 }
2744 /* Force a fast retransmit upon entering fast recovery */
2745 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2746 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt);
2747 }
2748
tcp_end_cwnd_reduction(struct sock * sk)2749 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2750 {
2751 struct tcp_sock *tp = tcp_sk(sk);
2752
2753 if (inet_csk(sk)->icsk_ca_ops->cong_control)
2754 return;
2755
2756 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2757 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2758 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2759 tcp_snd_cwnd_set(tp, tp->snd_ssthresh);
2760 tp->snd_cwnd_stamp = tcp_jiffies32;
2761 }
2762 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2763 }
2764
2765 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
tcp_enter_cwr(struct sock * sk)2766 void tcp_enter_cwr(struct sock *sk)
2767 {
2768 struct tcp_sock *tp = tcp_sk(sk);
2769
2770 tp->prior_ssthresh = 0;
2771 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2772 tp->undo_marker = 0;
2773 tcp_init_cwnd_reduction(sk);
2774 tcp_set_ca_state(sk, TCP_CA_CWR);
2775 }
2776 }
2777 EXPORT_SYMBOL(tcp_enter_cwr);
2778
tcp_try_keep_open(struct sock * sk)2779 static void tcp_try_keep_open(struct sock *sk)
2780 {
2781 struct tcp_sock *tp = tcp_sk(sk);
2782 int state = TCP_CA_Open;
2783
2784 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2785 state = TCP_CA_Disorder;
2786
2787 if (inet_csk(sk)->icsk_ca_state != state) {
2788 tcp_set_ca_state(sk, state);
2789 tp->high_seq = tp->snd_nxt;
2790 }
2791 }
2792
tcp_try_to_open(struct sock * sk,int flag)2793 static void tcp_try_to_open(struct sock *sk, int flag)
2794 {
2795 struct tcp_sock *tp = tcp_sk(sk);
2796
2797 tcp_verify_left_out(tp);
2798
2799 if (!tcp_any_retrans_done(sk))
2800 tp->retrans_stamp = 0;
2801
2802 if (flag & FLAG_ECE)
2803 tcp_enter_cwr(sk);
2804
2805 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2806 tcp_try_keep_open(sk);
2807 }
2808 }
2809
tcp_mtup_probe_failed(struct sock * sk)2810 static void tcp_mtup_probe_failed(struct sock *sk)
2811 {
2812 struct inet_connection_sock *icsk = inet_csk(sk);
2813
2814 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2815 icsk->icsk_mtup.probe_size = 0;
2816 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2817 }
2818
tcp_mtup_probe_success(struct sock * sk)2819 static void tcp_mtup_probe_success(struct sock *sk)
2820 {
2821 struct tcp_sock *tp = tcp_sk(sk);
2822 struct inet_connection_sock *icsk = inet_csk(sk);
2823 u64 val;
2824
2825 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2826
2827 val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache);
2828 do_div(val, icsk->icsk_mtup.probe_size);
2829 DEBUG_NET_WARN_ON_ONCE((u32)val != val);
2830 tcp_snd_cwnd_set(tp, max_t(u32, 1U, val));
2831
2832 tp->snd_cwnd_cnt = 0;
2833 tp->snd_cwnd_stamp = tcp_jiffies32;
2834 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2835
2836 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2837 icsk->icsk_mtup.probe_size = 0;
2838 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2839 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2840 }
2841
2842 /* Sometimes we deduce that packets have been dropped due to reasons other than
2843 * congestion, like path MTU reductions or failed client TFO attempts. In these
2844 * cases we call this function to retransmit as many packets as cwnd allows,
2845 * without reducing cwnd. Given that retransmits will set retrans_stamp to a
2846 * non-zero value (and may do so in a later calling context due to TSQ), we
2847 * also enter CA_Loss so that we track when all retransmitted packets are ACKed
2848 * and clear retrans_stamp when that happens (to ensure later recurring RTOs
2849 * are using the correct retrans_stamp and don't declare ETIMEDOUT
2850 * prematurely).
2851 */
tcp_non_congestion_loss_retransmit(struct sock * sk)2852 static void tcp_non_congestion_loss_retransmit(struct sock *sk)
2853 {
2854 const struct inet_connection_sock *icsk = inet_csk(sk);
2855 struct tcp_sock *tp = tcp_sk(sk);
2856
2857 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2858 tp->high_seq = tp->snd_nxt;
2859 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2860 tp->prior_ssthresh = 0;
2861 tp->undo_marker = 0;
2862 tcp_set_ca_state(sk, TCP_CA_Loss);
2863 }
2864 tcp_xmit_retransmit_queue(sk);
2865 }
2866
2867 /* Do a simple retransmit without using the backoff mechanisms in
2868 * tcp_timer. This is used for path mtu discovery.
2869 * The socket is already locked here.
2870 */
tcp_simple_retransmit(struct sock * sk)2871 void tcp_simple_retransmit(struct sock *sk)
2872 {
2873 struct tcp_sock *tp = tcp_sk(sk);
2874 struct sk_buff *skb;
2875 int mss;
2876
2877 /* A fastopen SYN request is stored as two separate packets within
2878 * the retransmit queue, this is done by tcp_send_syn_data().
2879 * As a result simply checking the MSS of the frames in the queue
2880 * will not work for the SYN packet.
2881 *
2882 * Us being here is an indication of a path MTU issue so we can
2883 * assume that the fastopen SYN was lost and just mark all the
2884 * frames in the retransmit queue as lost. We will use an MSS of
2885 * -1 to mark all frames as lost, otherwise compute the current MSS.
2886 */
2887 if (tp->syn_data && sk->sk_state == TCP_SYN_SENT)
2888 mss = -1;
2889 else
2890 mss = tcp_current_mss(sk);
2891
2892 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2893 if (tcp_skb_seglen(skb) > mss)
2894 tcp_mark_skb_lost(sk, skb);
2895 }
2896
2897 tcp_clear_retrans_hints_partial(tp);
2898
2899 if (!tp->lost_out)
2900 return;
2901
2902 if (tcp_is_reno(tp))
2903 tcp_limit_reno_sacked(tp);
2904
2905 tcp_verify_left_out(tp);
2906
2907 /* Don't muck with the congestion window here.
2908 * Reason is that we do not increase amount of _data_
2909 * in network, but units changed and effective
2910 * cwnd/ssthresh really reduced now.
2911 */
2912 tcp_non_congestion_loss_retransmit(sk);
2913 }
2914 EXPORT_IPV6_MOD(tcp_simple_retransmit);
2915
tcp_enter_recovery(struct sock * sk,bool ece_ack)2916 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2917 {
2918 struct tcp_sock *tp = tcp_sk(sk);
2919 int mib_idx;
2920
2921 /* Start the clock with our fast retransmit, for undo and ETIMEDOUT. */
2922 tcp_retrans_stamp_cleanup(sk);
2923
2924 if (tcp_is_reno(tp))
2925 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2926 else
2927 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2928
2929 NET_INC_STATS(sock_net(sk), mib_idx);
2930
2931 tp->prior_ssthresh = 0;
2932 tcp_init_undo(tp);
2933
2934 if (!tcp_in_cwnd_reduction(sk)) {
2935 if (!ece_ack)
2936 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2937 tcp_init_cwnd_reduction(sk);
2938 }
2939 tcp_set_ca_state(sk, TCP_CA_Recovery);
2940 }
2941
tcp_update_rto_time(struct tcp_sock * tp)2942 static void tcp_update_rto_time(struct tcp_sock *tp)
2943 {
2944 if (tp->rto_stamp) {
2945 tp->total_rto_time += tcp_time_stamp_ms(tp) - tp->rto_stamp;
2946 tp->rto_stamp = 0;
2947 }
2948 }
2949
2950 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2951 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2952 */
tcp_process_loss(struct sock * sk,int flag,int num_dupack,int * rexmit)2953 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2954 int *rexmit)
2955 {
2956 struct tcp_sock *tp = tcp_sk(sk);
2957 bool recovered = !before(tp->snd_una, tp->high_seq);
2958
2959 if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2960 tcp_try_undo_loss(sk, false))
2961 return;
2962
2963 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2964 /* Step 3.b. A timeout is spurious if not all data are
2965 * lost, i.e., never-retransmitted data are (s)acked.
2966 */
2967 if ((flag & FLAG_ORIG_SACK_ACKED) &&
2968 tcp_try_undo_loss(sk, true))
2969 return;
2970
2971 if (after(tp->snd_nxt, tp->high_seq)) {
2972 if (flag & FLAG_DATA_SACKED || num_dupack)
2973 tp->frto = 0; /* Step 3.a. loss was real */
2974 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2975 tp->high_seq = tp->snd_nxt;
2976 /* Step 2.b. Try send new data (but deferred until cwnd
2977 * is updated in tcp_ack()). Otherwise fall back to
2978 * the conventional recovery.
2979 */
2980 if (!tcp_write_queue_empty(sk) &&
2981 after(tcp_wnd_end(tp), tp->snd_nxt)) {
2982 *rexmit = REXMIT_NEW;
2983 return;
2984 }
2985 tp->frto = 0;
2986 }
2987 }
2988
2989 if (recovered) {
2990 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2991 tcp_try_undo_recovery(sk);
2992 return;
2993 }
2994 if (tcp_is_reno(tp)) {
2995 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2996 * delivered. Lower inflight to clock out (re)transmissions.
2997 */
2998 if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2999 tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
3000 else if (flag & FLAG_SND_UNA_ADVANCED)
3001 tcp_reset_reno_sack(tp);
3002 }
3003 *rexmit = REXMIT_LOST;
3004 }
3005
tcp_force_fast_retransmit(struct sock * sk)3006 static bool tcp_force_fast_retransmit(struct sock *sk)
3007 {
3008 struct tcp_sock *tp = tcp_sk(sk);
3009
3010 return after(tcp_highest_sack_seq(tp),
3011 tp->snd_una + tp->reordering * tp->mss_cache);
3012 }
3013
3014 /* Undo during fast recovery after partial ACK. */
tcp_try_undo_partial(struct sock * sk,u32 prior_snd_una,bool * do_lost)3015 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una,
3016 bool *do_lost)
3017 {
3018 struct tcp_sock *tp = tcp_sk(sk);
3019
3020 if (tp->undo_marker && tcp_packet_delayed(tp)) {
3021 /* Plain luck! Hole if filled with delayed
3022 * packet, rather than with a retransmit. Check reordering.
3023 */
3024 tcp_check_sack_reordering(sk, prior_snd_una, 1);
3025
3026 /* We are getting evidence that the reordering degree is higher
3027 * than we realized. If there are no retransmits out then we
3028 * can undo. Otherwise we clock out new packets but do not
3029 * mark more packets lost or retransmit more.
3030 */
3031 if (tp->retrans_out)
3032 return true;
3033
3034 if (!tcp_any_retrans_done(sk))
3035 tp->retrans_stamp = 0;
3036
3037 DBGUNDO(sk, "partial recovery");
3038 tcp_undo_cwnd_reduction(sk, true);
3039 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
3040 tcp_try_keep_open(sk);
3041 } else {
3042 /* Partial ACK arrived. Force fast retransmit. */
3043 *do_lost = tcp_force_fast_retransmit(sk);
3044 }
3045 return false;
3046 }
3047
tcp_identify_packet_loss(struct sock * sk,int * ack_flag)3048 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
3049 {
3050 struct tcp_sock *tp = tcp_sk(sk);
3051
3052 if (tcp_rtx_queue_empty(sk))
3053 return;
3054
3055 if (unlikely(tcp_is_reno(tp))) {
3056 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
3057 } else if (tcp_is_rack(sk)) {
3058 u32 prior_retrans = tp->retrans_out;
3059
3060 if (tcp_rack_mark_lost(sk))
3061 *ack_flag &= ~FLAG_SET_XMIT_TIMER;
3062 if (prior_retrans > tp->retrans_out)
3063 *ack_flag |= FLAG_LOST_RETRANS;
3064 }
3065 }
3066
3067 /* Process an event, which can update packets-in-flight not trivially.
3068 * Main goal of this function is to calculate new estimate for left_out,
3069 * taking into account both packets sitting in receiver's buffer and
3070 * packets lost by network.
3071 *
3072 * Besides that it updates the congestion state when packet loss or ECN
3073 * is detected. But it does not reduce the cwnd, it is done by the
3074 * congestion control later.
3075 *
3076 * It does _not_ decide what to send, it is made in function
3077 * tcp_xmit_retransmit_queue().
3078 */
tcp_fastretrans_alert(struct sock * sk,const u32 prior_snd_una,int num_dupack,int * ack_flag,int * rexmit)3079 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
3080 int num_dupack, int *ack_flag, int *rexmit)
3081 {
3082 struct inet_connection_sock *icsk = inet_csk(sk);
3083 struct tcp_sock *tp = tcp_sk(sk);
3084 int fast_rexmit = 0, flag = *ack_flag;
3085 bool ece_ack = flag & FLAG_ECE;
3086 bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
3087 tcp_force_fast_retransmit(sk));
3088
3089 if (!tp->packets_out && tp->sacked_out)
3090 tp->sacked_out = 0;
3091
3092 /* Now state machine starts.
3093 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3094 if (ece_ack)
3095 tp->prior_ssthresh = 0;
3096
3097 /* B. In all the states check for reneging SACKs. */
3098 if (tcp_check_sack_reneging(sk, ack_flag))
3099 return;
3100
3101 /* C. Check consistency of the current state. */
3102 tcp_verify_left_out(tp);
3103
3104 /* D. Check state exit conditions. State can be terminated
3105 * when high_seq is ACKed. */
3106 if (icsk->icsk_ca_state == TCP_CA_Open) {
3107 WARN_ON(tp->retrans_out != 0 && !tp->syn_data);
3108 tp->retrans_stamp = 0;
3109 } else if (!before(tp->snd_una, tp->high_seq)) {
3110 switch (icsk->icsk_ca_state) {
3111 case TCP_CA_CWR:
3112 /* CWR is to be held something *above* high_seq
3113 * is ACKed for CWR bit to reach receiver. */
3114 if (tp->snd_una != tp->high_seq) {
3115 tcp_end_cwnd_reduction(sk);
3116 tcp_set_ca_state(sk, TCP_CA_Open);
3117 }
3118 break;
3119
3120 case TCP_CA_Recovery:
3121 if (tcp_is_reno(tp))
3122 tcp_reset_reno_sack(tp);
3123 if (tcp_try_undo_recovery(sk))
3124 return;
3125 tcp_end_cwnd_reduction(sk);
3126 break;
3127 }
3128 }
3129
3130 /* E. Process state. */
3131 switch (icsk->icsk_ca_state) {
3132 case TCP_CA_Recovery:
3133 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3134 if (tcp_is_reno(tp))
3135 tcp_add_reno_sack(sk, num_dupack, ece_ack);
3136 } else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost))
3137 return;
3138
3139 if (tcp_try_undo_dsack(sk))
3140 tcp_try_to_open(sk, flag);
3141
3142 tcp_identify_packet_loss(sk, ack_flag);
3143 if (icsk->icsk_ca_state != TCP_CA_Recovery) {
3144 if (!tcp_time_to_recover(sk, flag))
3145 return;
3146 /* Undo reverts the recovery state. If loss is evident,
3147 * starts a new recovery (e.g. reordering then loss);
3148 */
3149 tcp_enter_recovery(sk, ece_ack);
3150 }
3151 break;
3152 case TCP_CA_Loss:
3153 tcp_process_loss(sk, flag, num_dupack, rexmit);
3154 if (icsk->icsk_ca_state != TCP_CA_Loss)
3155 tcp_update_rto_time(tp);
3156 tcp_identify_packet_loss(sk, ack_flag);
3157 if (!(icsk->icsk_ca_state == TCP_CA_Open ||
3158 (*ack_flag & FLAG_LOST_RETRANS)))
3159 return;
3160 /* Change state if cwnd is undone or retransmits are lost */
3161 fallthrough;
3162 default:
3163 if (tcp_is_reno(tp)) {
3164 if (flag & FLAG_SND_UNA_ADVANCED)
3165 tcp_reset_reno_sack(tp);
3166 tcp_add_reno_sack(sk, num_dupack, ece_ack);
3167 }
3168
3169 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3170 tcp_try_undo_dsack(sk);
3171
3172 tcp_identify_packet_loss(sk, ack_flag);
3173 if (!tcp_time_to_recover(sk, flag)) {
3174 tcp_try_to_open(sk, flag);
3175 return;
3176 }
3177
3178 /* MTU probe failure: don't reduce cwnd */
3179 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3180 icsk->icsk_mtup.probe_size &&
3181 tp->snd_una == tp->mtu_probe.probe_seq_start) {
3182 tcp_mtup_probe_failed(sk);
3183 /* Restores the reduction we did in tcp_mtup_probe() */
3184 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1);
3185 tcp_simple_retransmit(sk);
3186 return;
3187 }
3188
3189 /* Otherwise enter Recovery state */
3190 tcp_enter_recovery(sk, ece_ack);
3191 fast_rexmit = 1;
3192 }
3193
3194 if (!tcp_is_rack(sk) && do_lost)
3195 tcp_update_scoreboard(sk, fast_rexmit);
3196 *rexmit = REXMIT_LOST;
3197 }
3198
tcp_update_rtt_min(struct sock * sk,u32 rtt_us,const int flag)3199 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
3200 {
3201 u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ;
3202 struct tcp_sock *tp = tcp_sk(sk);
3203
3204 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
3205 /* If the remote keeps returning delayed ACKs, eventually
3206 * the min filter would pick it up and overestimate the
3207 * prop. delay when it expires. Skip suspected delayed ACKs.
3208 */
3209 return;
3210 }
3211 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
3212 rtt_us ? : jiffies_to_usecs(1));
3213 }
3214
tcp_ack_update_rtt(struct sock * sk,const int flag,long seq_rtt_us,long sack_rtt_us,long ca_rtt_us,struct rate_sample * rs)3215 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
3216 long seq_rtt_us, long sack_rtt_us,
3217 long ca_rtt_us, struct rate_sample *rs)
3218 {
3219 const struct tcp_sock *tp = tcp_sk(sk);
3220
3221 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
3222 * broken middle-boxes or peers may corrupt TS-ECR fields. But
3223 * Karn's algorithm forbids taking RTT if some retransmitted data
3224 * is acked (RFC6298).
3225 */
3226 if (seq_rtt_us < 0)
3227 seq_rtt_us = sack_rtt_us;
3228
3229 /* RTTM Rule: A TSecr value received in a segment is used to
3230 * update the averaged RTT measurement only if the segment
3231 * acknowledges some new data, i.e., only if it advances the
3232 * left edge of the send window.
3233 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3234 */
3235 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp &&
3236 tp->rx_opt.rcv_tsecr && flag & FLAG_ACKED)
3237 seq_rtt_us = ca_rtt_us = tcp_rtt_tsopt_us(tp, 1);
3238
3239 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
3240 if (seq_rtt_us < 0)
3241 return false;
3242
3243 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3244 * always taken together with ACK, SACK, or TS-opts. Any negative
3245 * values will be skipped with the seq_rtt_us < 0 check above.
3246 */
3247 tcp_update_rtt_min(sk, ca_rtt_us, flag);
3248 tcp_rtt_estimator(sk, seq_rtt_us);
3249 tcp_set_rto(sk);
3250
3251 /* RFC6298: only reset backoff on valid RTT measurement. */
3252 inet_csk(sk)->icsk_backoff = 0;
3253 return true;
3254 }
3255
3256 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
tcp_synack_rtt_meas(struct sock * sk,struct request_sock * req)3257 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3258 {
3259 struct rate_sample rs;
3260 long rtt_us = -1L;
3261
3262 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3263 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3264
3265 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3266 }
3267
3268
tcp_cong_avoid(struct sock * sk,u32 ack,u32 acked)3269 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3270 {
3271 const struct inet_connection_sock *icsk = inet_csk(sk);
3272
3273 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3274 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3275 }
3276
3277 /* Restart timer after forward progress on connection.
3278 * RFC2988 recommends to restart timer to now+rto.
3279 */
tcp_rearm_rto(struct sock * sk)3280 void tcp_rearm_rto(struct sock *sk)
3281 {
3282 const struct inet_connection_sock *icsk = inet_csk(sk);
3283 struct tcp_sock *tp = tcp_sk(sk);
3284
3285 /* If the retrans timer is currently being used by Fast Open
3286 * for SYN-ACK retrans purpose, stay put.
3287 */
3288 if (rcu_access_pointer(tp->fastopen_rsk))
3289 return;
3290
3291 if (!tp->packets_out) {
3292 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3293 } else {
3294 u32 rto = inet_csk(sk)->icsk_rto;
3295 /* Offset the time elapsed after installing regular RTO */
3296 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3297 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3298 s64 delta_us = tcp_rto_delta_us(sk);
3299 /* delta_us may not be positive if the socket is locked
3300 * when the retrans timer fires and is rescheduled.
3301 */
3302 rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3303 }
3304 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, true);
3305 }
3306 }
3307
3308 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
tcp_set_xmit_timer(struct sock * sk)3309 static void tcp_set_xmit_timer(struct sock *sk)
3310 {
3311 if (!tcp_schedule_loss_probe(sk, true))
3312 tcp_rearm_rto(sk);
3313 }
3314
3315 /* If we get here, the whole TSO packet has not been acked. */
tcp_tso_acked(struct sock * sk,struct sk_buff * skb)3316 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3317 {
3318 struct tcp_sock *tp = tcp_sk(sk);
3319 u32 packets_acked;
3320
3321 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3322
3323 packets_acked = tcp_skb_pcount(skb);
3324 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3325 return 0;
3326 packets_acked -= tcp_skb_pcount(skb);
3327
3328 if (packets_acked) {
3329 BUG_ON(tcp_skb_pcount(skb) == 0);
3330 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3331 }
3332
3333 return packets_acked;
3334 }
3335
tcp_ack_tstamp(struct sock * sk,struct sk_buff * skb,const struct sk_buff * ack_skb,u32 prior_snd_una)3336 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3337 const struct sk_buff *ack_skb, u32 prior_snd_una)
3338 {
3339 const struct skb_shared_info *shinfo;
3340
3341 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3342 if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3343 return;
3344
3345 shinfo = skb_shinfo(skb);
3346 if (!before(shinfo->tskey, prior_snd_una) &&
3347 before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3348 tcp_skb_tsorted_save(skb) {
3349 __skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK);
3350 } tcp_skb_tsorted_restore(skb);
3351 }
3352 }
3353
3354 /* Remove acknowledged frames from the retransmission queue. If our packet
3355 * is before the ack sequence we can discard it as it's confirmed to have
3356 * arrived at the other end.
3357 */
tcp_clean_rtx_queue(struct sock * sk,const struct sk_buff * ack_skb,u32 prior_fack,u32 prior_snd_una,struct tcp_sacktag_state * sack,bool ece_ack)3358 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb,
3359 u32 prior_fack, u32 prior_snd_una,
3360 struct tcp_sacktag_state *sack, bool ece_ack)
3361 {
3362 const struct inet_connection_sock *icsk = inet_csk(sk);
3363 u64 first_ackt, last_ackt;
3364 struct tcp_sock *tp = tcp_sk(sk);
3365 u32 prior_sacked = tp->sacked_out;
3366 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3367 struct sk_buff *skb, *next;
3368 bool fully_acked = true;
3369 long sack_rtt_us = -1L;
3370 long seq_rtt_us = -1L;
3371 long ca_rtt_us = -1L;
3372 u32 pkts_acked = 0;
3373 bool rtt_update;
3374 int flag = 0;
3375
3376 first_ackt = 0;
3377
3378 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3379 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3380 const u32 start_seq = scb->seq;
3381 u8 sacked = scb->sacked;
3382 u32 acked_pcount;
3383
3384 /* Determine how many packets and what bytes were acked, tso and else */
3385 if (after(scb->end_seq, tp->snd_una)) {
3386 if (tcp_skb_pcount(skb) == 1 ||
3387 !after(tp->snd_una, scb->seq))
3388 break;
3389
3390 acked_pcount = tcp_tso_acked(sk, skb);
3391 if (!acked_pcount)
3392 break;
3393 fully_acked = false;
3394 } else {
3395 acked_pcount = tcp_skb_pcount(skb);
3396 }
3397
3398 if (unlikely(sacked & TCPCB_RETRANS)) {
3399 if (sacked & TCPCB_SACKED_RETRANS)
3400 tp->retrans_out -= acked_pcount;
3401 flag |= FLAG_RETRANS_DATA_ACKED;
3402 } else if (!(sacked & TCPCB_SACKED_ACKED)) {
3403 last_ackt = tcp_skb_timestamp_us(skb);
3404 WARN_ON_ONCE(last_ackt == 0);
3405 if (!first_ackt)
3406 first_ackt = last_ackt;
3407
3408 if (before(start_seq, reord))
3409 reord = start_seq;
3410 if (!after(scb->end_seq, tp->high_seq))
3411 flag |= FLAG_ORIG_SACK_ACKED;
3412 }
3413
3414 if (sacked & TCPCB_SACKED_ACKED) {
3415 tp->sacked_out -= acked_pcount;
3416 } else if (tcp_is_sack(tp)) {
3417 tcp_count_delivered(tp, acked_pcount, ece_ack);
3418 if (!tcp_skb_spurious_retrans(tp, skb))
3419 tcp_rack_advance(tp, sacked, scb->end_seq,
3420 tcp_skb_timestamp_us(skb));
3421 }
3422 if (sacked & TCPCB_LOST)
3423 tp->lost_out -= acked_pcount;
3424
3425 tp->packets_out -= acked_pcount;
3426 pkts_acked += acked_pcount;
3427 tcp_rate_skb_delivered(sk, skb, sack->rate);
3428
3429 /* Initial outgoing SYN's get put onto the write_queue
3430 * just like anything else we transmit. It is not
3431 * true data, and if we misinform our callers that
3432 * this ACK acks real data, we will erroneously exit
3433 * connection startup slow start one packet too
3434 * quickly. This is severely frowned upon behavior.
3435 */
3436 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3437 flag |= FLAG_DATA_ACKED;
3438 } else {
3439 flag |= FLAG_SYN_ACKED;
3440 tp->retrans_stamp = 0;
3441 }
3442
3443 if (!fully_acked)
3444 break;
3445
3446 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3447
3448 next = skb_rb_next(skb);
3449 if (unlikely(skb == tp->retransmit_skb_hint))
3450 tp->retransmit_skb_hint = NULL;
3451 if (unlikely(skb == tp->lost_skb_hint))
3452 tp->lost_skb_hint = NULL;
3453 tcp_highest_sack_replace(sk, skb, next);
3454 tcp_rtx_queue_unlink_and_free(skb, sk);
3455 }
3456
3457 if (!skb)
3458 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3459
3460 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3461 tp->snd_up = tp->snd_una;
3462
3463 if (skb) {
3464 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3465 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3466 flag |= FLAG_SACK_RENEGING;
3467 }
3468
3469 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3470 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3471 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3472
3473 if (pkts_acked == 1 && fully_acked && !prior_sacked &&
3474 (tp->snd_una - prior_snd_una) < tp->mss_cache &&
3475 sack->rate->prior_delivered + 1 == tp->delivered &&
3476 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3477 /* Conservatively mark a delayed ACK. It's typically
3478 * from a lone runt packet over the round trip to
3479 * a receiver w/o out-of-order or CE events.
3480 */
3481 flag |= FLAG_ACK_MAYBE_DELAYED;
3482 }
3483 }
3484 if (sack->first_sackt) {
3485 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3486 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3487 }
3488 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3489 ca_rtt_us, sack->rate);
3490
3491 if (flag & FLAG_ACKED) {
3492 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3493 if (unlikely(icsk->icsk_mtup.probe_size &&
3494 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3495 tcp_mtup_probe_success(sk);
3496 }
3497
3498 if (tcp_is_reno(tp)) {
3499 tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3500
3501 /* If any of the cumulatively ACKed segments was
3502 * retransmitted, non-SACK case cannot confirm that
3503 * progress was due to original transmission due to
3504 * lack of TCPCB_SACKED_ACKED bits even if some of
3505 * the packets may have been never retransmitted.
3506 */
3507 if (flag & FLAG_RETRANS_DATA_ACKED)
3508 flag &= ~FLAG_ORIG_SACK_ACKED;
3509 } else {
3510 int delta;
3511
3512 /* Non-retransmitted hole got filled? That's reordering */
3513 if (before(reord, prior_fack))
3514 tcp_check_sack_reordering(sk, reord, 0);
3515
3516 delta = prior_sacked - tp->sacked_out;
3517 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3518 }
3519 } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3520 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3521 tcp_skb_timestamp_us(skb))) {
3522 /* Do not re-arm RTO if the sack RTT is measured from data sent
3523 * after when the head was last (re)transmitted. Otherwise the
3524 * timeout may continue to extend in loss recovery.
3525 */
3526 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3527 }
3528
3529 if (icsk->icsk_ca_ops->pkts_acked) {
3530 struct ack_sample sample = { .pkts_acked = pkts_acked,
3531 .rtt_us = sack->rate->rtt_us };
3532
3533 sample.in_flight = tp->mss_cache *
3534 (tp->delivered - sack->rate->prior_delivered);
3535 icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3536 }
3537
3538 #if FASTRETRANS_DEBUG > 0
3539 WARN_ON((int)tp->sacked_out < 0);
3540 WARN_ON((int)tp->lost_out < 0);
3541 WARN_ON((int)tp->retrans_out < 0);
3542 if (!tp->packets_out && tcp_is_sack(tp)) {
3543 icsk = inet_csk(sk);
3544 if (tp->lost_out) {
3545 pr_debug("Leak l=%u %d\n",
3546 tp->lost_out, icsk->icsk_ca_state);
3547 tp->lost_out = 0;
3548 }
3549 if (tp->sacked_out) {
3550 pr_debug("Leak s=%u %d\n",
3551 tp->sacked_out, icsk->icsk_ca_state);
3552 tp->sacked_out = 0;
3553 }
3554 if (tp->retrans_out) {
3555 pr_debug("Leak r=%u %d\n",
3556 tp->retrans_out, icsk->icsk_ca_state);
3557 tp->retrans_out = 0;
3558 }
3559 }
3560 #endif
3561 return flag;
3562 }
3563
tcp_ack_probe(struct sock * sk)3564 static void tcp_ack_probe(struct sock *sk)
3565 {
3566 struct inet_connection_sock *icsk = inet_csk(sk);
3567 struct sk_buff *head = tcp_send_head(sk);
3568 const struct tcp_sock *tp = tcp_sk(sk);
3569
3570 /* Was it a usable window open? */
3571 if (!head)
3572 return;
3573 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3574 icsk->icsk_backoff = 0;
3575 icsk->icsk_probes_tstamp = 0;
3576 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3577 /* Socket must be waked up by subsequent tcp_data_snd_check().
3578 * This function is not for random using!
3579 */
3580 } else {
3581 unsigned long when = tcp_probe0_when(sk, tcp_rto_max(sk));
3582
3583 when = tcp_clamp_probe0_to_user_timeout(sk, when);
3584 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, true);
3585 }
3586 }
3587
tcp_ack_is_dubious(const struct sock * sk,const int flag)3588 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3589 {
3590 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3591 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3592 }
3593
3594 /* Decide wheather to run the increase function of congestion control. */
tcp_may_raise_cwnd(const struct sock * sk,const int flag)3595 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3596 {
3597 /* If reordering is high then always grow cwnd whenever data is
3598 * delivered regardless of its ordering. Otherwise stay conservative
3599 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3600 * new SACK or ECE mark may first advance cwnd here and later reduce
3601 * cwnd in tcp_fastretrans_alert() based on more states.
3602 */
3603 if (tcp_sk(sk)->reordering >
3604 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering))
3605 return flag & FLAG_FORWARD_PROGRESS;
3606
3607 return flag & FLAG_DATA_ACKED;
3608 }
3609
3610 /* The "ultimate" congestion control function that aims to replace the rigid
3611 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3612 * It's called toward the end of processing an ACK with precise rate
3613 * information. All transmission or retransmission are delayed afterwards.
3614 */
tcp_cong_control(struct sock * sk,u32 ack,u32 acked_sacked,int flag,const struct rate_sample * rs)3615 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3616 int flag, const struct rate_sample *rs)
3617 {
3618 const struct inet_connection_sock *icsk = inet_csk(sk);
3619
3620 if (icsk->icsk_ca_ops->cong_control) {
3621 icsk->icsk_ca_ops->cong_control(sk, ack, flag, rs);
3622 return;
3623 }
3624
3625 if (tcp_in_cwnd_reduction(sk)) {
3626 /* Reduce cwnd if state mandates */
3627 tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag);
3628 } else if (tcp_may_raise_cwnd(sk, flag)) {
3629 /* Advance cwnd if state allows */
3630 tcp_cong_avoid(sk, ack, acked_sacked);
3631 }
3632 tcp_update_pacing_rate(sk);
3633 }
3634
3635 /* Check that window update is acceptable.
3636 * The function assumes that snd_una<=ack<=snd_next.
3637 */
tcp_may_update_window(const struct tcp_sock * tp,const u32 ack,const u32 ack_seq,const u32 nwin)3638 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3639 const u32 ack, const u32 ack_seq,
3640 const u32 nwin)
3641 {
3642 return after(ack, tp->snd_una) ||
3643 after(ack_seq, tp->snd_wl1) ||
3644 (ack_seq == tp->snd_wl1 && (nwin > tp->snd_wnd || !nwin));
3645 }
3646
tcp_snd_sne_update(struct tcp_sock * tp,u32 ack)3647 static void tcp_snd_sne_update(struct tcp_sock *tp, u32 ack)
3648 {
3649 #ifdef CONFIG_TCP_AO
3650 struct tcp_ao_info *ao;
3651
3652 if (!static_branch_unlikely(&tcp_ao_needed.key))
3653 return;
3654
3655 ao = rcu_dereference_protected(tp->ao_info,
3656 lockdep_sock_is_held((struct sock *)tp));
3657 if (ao && ack < tp->snd_una) {
3658 ao->snd_sne++;
3659 trace_tcp_ao_snd_sne_update((struct sock *)tp, ao->snd_sne);
3660 }
3661 #endif
3662 }
3663
3664 /* If we update tp->snd_una, also update tp->bytes_acked */
tcp_snd_una_update(struct tcp_sock * tp,u32 ack)3665 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3666 {
3667 u32 delta = ack - tp->snd_una;
3668
3669 sock_owned_by_me((struct sock *)tp);
3670 tp->bytes_acked += delta;
3671 tcp_snd_sne_update(tp, ack);
3672 tp->snd_una = ack;
3673 }
3674
tcp_rcv_sne_update(struct tcp_sock * tp,u32 seq)3675 static void tcp_rcv_sne_update(struct tcp_sock *tp, u32 seq)
3676 {
3677 #ifdef CONFIG_TCP_AO
3678 struct tcp_ao_info *ao;
3679
3680 if (!static_branch_unlikely(&tcp_ao_needed.key))
3681 return;
3682
3683 ao = rcu_dereference_protected(tp->ao_info,
3684 lockdep_sock_is_held((struct sock *)tp));
3685 if (ao && seq < tp->rcv_nxt) {
3686 ao->rcv_sne++;
3687 trace_tcp_ao_rcv_sne_update((struct sock *)tp, ao->rcv_sne);
3688 }
3689 #endif
3690 }
3691
3692 /* If we update tp->rcv_nxt, also update tp->bytes_received */
tcp_rcv_nxt_update(struct tcp_sock * tp,u32 seq)3693 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3694 {
3695 u32 delta = seq - tp->rcv_nxt;
3696
3697 sock_owned_by_me((struct sock *)tp);
3698 tp->bytes_received += delta;
3699 tcp_rcv_sne_update(tp, seq);
3700 WRITE_ONCE(tp->rcv_nxt, seq);
3701 }
3702
3703 /* Update our send window.
3704 *
3705 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3706 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3707 */
tcp_ack_update_window(struct sock * sk,const struct sk_buff * skb,u32 ack,u32 ack_seq)3708 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3709 u32 ack_seq)
3710 {
3711 struct tcp_sock *tp = tcp_sk(sk);
3712 int flag = 0;
3713 u32 nwin = ntohs(tcp_hdr(skb)->window);
3714
3715 if (likely(!tcp_hdr(skb)->syn))
3716 nwin <<= tp->rx_opt.snd_wscale;
3717
3718 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3719 flag |= FLAG_WIN_UPDATE;
3720 tcp_update_wl(tp, ack_seq);
3721
3722 if (tp->snd_wnd != nwin) {
3723 tp->snd_wnd = nwin;
3724
3725 /* Note, it is the only place, where
3726 * fast path is recovered for sending TCP.
3727 */
3728 tp->pred_flags = 0;
3729 tcp_fast_path_check(sk);
3730
3731 if (!tcp_write_queue_empty(sk))
3732 tcp_slow_start_after_idle_check(sk);
3733
3734 if (nwin > tp->max_window) {
3735 tp->max_window = nwin;
3736 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3737 }
3738 }
3739 }
3740
3741 tcp_snd_una_update(tp, ack);
3742
3743 return flag;
3744 }
3745
__tcp_oow_rate_limited(struct net * net,int mib_idx,u32 * last_oow_ack_time)3746 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3747 u32 *last_oow_ack_time)
3748 {
3749 /* Paired with the WRITE_ONCE() in this function. */
3750 u32 val = READ_ONCE(*last_oow_ack_time);
3751
3752 if (val) {
3753 s32 elapsed = (s32)(tcp_jiffies32 - val);
3754
3755 if (0 <= elapsed &&
3756 elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) {
3757 NET_INC_STATS(net, mib_idx);
3758 return true; /* rate-limited: don't send yet! */
3759 }
3760 }
3761
3762 /* Paired with the prior READ_ONCE() and with itself,
3763 * as we might be lockless.
3764 */
3765 WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32);
3766
3767 return false; /* not rate-limited: go ahead, send dupack now! */
3768 }
3769
3770 /* Return true if we're currently rate-limiting out-of-window ACKs and
3771 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3772 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3773 * attacks that send repeated SYNs or ACKs for the same connection. To
3774 * do this, we do not send a duplicate SYNACK or ACK if the remote
3775 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3776 */
tcp_oow_rate_limited(struct net * net,const struct sk_buff * skb,int mib_idx,u32 * last_oow_ack_time)3777 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3778 int mib_idx, u32 *last_oow_ack_time)
3779 {
3780 /* Data packets without SYNs are not likely part of an ACK loop. */
3781 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3782 !tcp_hdr(skb)->syn)
3783 return false;
3784
3785 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3786 }
3787
3788 /* RFC 5961 7 [ACK Throttling] */
tcp_send_challenge_ack(struct sock * sk)3789 static void tcp_send_challenge_ack(struct sock *sk)
3790 {
3791 struct tcp_sock *tp = tcp_sk(sk);
3792 struct net *net = sock_net(sk);
3793 u32 count, now, ack_limit;
3794
3795 /* First check our per-socket dupack rate limit. */
3796 if (__tcp_oow_rate_limited(net,
3797 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3798 &tp->last_oow_ack_time))
3799 return;
3800
3801 ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit);
3802 if (ack_limit == INT_MAX)
3803 goto send_ack;
3804
3805 /* Then check host-wide RFC 5961 rate limit. */
3806 now = jiffies / HZ;
3807 if (now != READ_ONCE(net->ipv4.tcp_challenge_timestamp)) {
3808 u32 half = (ack_limit + 1) >> 1;
3809
3810 WRITE_ONCE(net->ipv4.tcp_challenge_timestamp, now);
3811 WRITE_ONCE(net->ipv4.tcp_challenge_count,
3812 get_random_u32_inclusive(half, ack_limit + half - 1));
3813 }
3814 count = READ_ONCE(net->ipv4.tcp_challenge_count);
3815 if (count > 0) {
3816 WRITE_ONCE(net->ipv4.tcp_challenge_count, count - 1);
3817 send_ack:
3818 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3819 tcp_send_ack(sk);
3820 }
3821 }
3822
tcp_store_ts_recent(struct tcp_sock * tp)3823 static void tcp_store_ts_recent(struct tcp_sock *tp)
3824 {
3825 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3826 tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3827 }
3828
__tcp_replace_ts_recent(struct tcp_sock * tp,s32 tstamp_delta)3829 static int __tcp_replace_ts_recent(struct tcp_sock *tp, s32 tstamp_delta)
3830 {
3831 tcp_store_ts_recent(tp);
3832 return tstamp_delta > 0 ? FLAG_TS_PROGRESS : 0;
3833 }
3834
tcp_replace_ts_recent(struct tcp_sock * tp,u32 seq)3835 static int tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3836 {
3837 s32 delta;
3838
3839 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3840 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3841 * extra check below makes sure this can only happen
3842 * for pure ACK frames. -DaveM
3843 *
3844 * Not only, also it occurs for expired timestamps.
3845 */
3846
3847 if (tcp_paws_check(&tp->rx_opt, 0)) {
3848 delta = tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent;
3849 return __tcp_replace_ts_recent(tp, delta);
3850 }
3851 }
3852
3853 return 0;
3854 }
3855
3856 /* This routine deals with acks during a TLP episode and ends an episode by
3857 * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
3858 */
tcp_process_tlp_ack(struct sock * sk,u32 ack,int flag)3859 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3860 {
3861 struct tcp_sock *tp = tcp_sk(sk);
3862
3863 if (before(ack, tp->tlp_high_seq))
3864 return;
3865
3866 if (!tp->tlp_retrans) {
3867 /* TLP of new data has been acknowledged */
3868 tp->tlp_high_seq = 0;
3869 } else if (flag & FLAG_DSACK_TLP) {
3870 /* This DSACK means original and TLP probe arrived; no loss */
3871 tp->tlp_high_seq = 0;
3872 } else if (after(ack, tp->tlp_high_seq)) {
3873 /* ACK advances: there was a loss, so reduce cwnd. Reset
3874 * tlp_high_seq in tcp_init_cwnd_reduction()
3875 */
3876 tcp_init_cwnd_reduction(sk);
3877 tcp_set_ca_state(sk, TCP_CA_CWR);
3878 tcp_end_cwnd_reduction(sk);
3879 tcp_try_keep_open(sk);
3880 NET_INC_STATS(sock_net(sk),
3881 LINUX_MIB_TCPLOSSPROBERECOVERY);
3882 } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3883 FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3884 /* Pure dupack: original and TLP probe arrived; no loss */
3885 tp->tlp_high_seq = 0;
3886 }
3887 }
3888
tcp_in_ack_event(struct sock * sk,int flag)3889 static void tcp_in_ack_event(struct sock *sk, int flag)
3890 {
3891 const struct inet_connection_sock *icsk = inet_csk(sk);
3892
3893 if (icsk->icsk_ca_ops->in_ack_event) {
3894 u32 ack_ev_flags = 0;
3895
3896 if (flag & FLAG_WIN_UPDATE)
3897 ack_ev_flags |= CA_ACK_WIN_UPDATE;
3898 if (flag & FLAG_SLOWPATH) {
3899 ack_ev_flags |= CA_ACK_SLOWPATH;
3900 if (flag & FLAG_ECE)
3901 ack_ev_flags |= CA_ACK_ECE;
3902 }
3903
3904 icsk->icsk_ca_ops->in_ack_event(sk, ack_ev_flags);
3905 }
3906 }
3907
3908 /* Congestion control has updated the cwnd already. So if we're in
3909 * loss recovery then now we do any new sends (for FRTO) or
3910 * retransmits (for CA_Loss or CA_recovery) that make sense.
3911 */
tcp_xmit_recovery(struct sock * sk,int rexmit)3912 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3913 {
3914 struct tcp_sock *tp = tcp_sk(sk);
3915
3916 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3917 return;
3918
3919 if (unlikely(rexmit == REXMIT_NEW)) {
3920 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
3921 TCP_NAGLE_OFF);
3922 if (after(tp->snd_nxt, tp->high_seq))
3923 return;
3924 tp->frto = 0;
3925 }
3926 tcp_xmit_retransmit_queue(sk);
3927 }
3928
3929 /* Returns the number of packets newly acked or sacked by the current ACK */
tcp_newly_delivered(struct sock * sk,u32 prior_delivered,int flag)3930 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3931 {
3932 const struct net *net = sock_net(sk);
3933 struct tcp_sock *tp = tcp_sk(sk);
3934 u32 delivered;
3935
3936 delivered = tp->delivered - prior_delivered;
3937 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3938 if (flag & FLAG_ECE)
3939 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3940
3941 return delivered;
3942 }
3943
3944 /* This routine deals with incoming acks, but not outgoing ones. */
tcp_ack(struct sock * sk,const struct sk_buff * skb,int flag)3945 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3946 {
3947 struct inet_connection_sock *icsk = inet_csk(sk);
3948 struct tcp_sock *tp = tcp_sk(sk);
3949 struct tcp_sacktag_state sack_state;
3950 struct rate_sample rs = { .prior_delivered = 0 };
3951 u32 prior_snd_una = tp->snd_una;
3952 bool is_sack_reneg = tp->is_sack_reneg;
3953 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3954 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3955 int num_dupack = 0;
3956 int prior_packets = tp->packets_out;
3957 u32 delivered = tp->delivered;
3958 u32 lost = tp->lost;
3959 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3960 u32 prior_fack;
3961
3962 sack_state.first_sackt = 0;
3963 sack_state.rate = &rs;
3964 sack_state.sack_delivered = 0;
3965
3966 /* We very likely will need to access rtx queue. */
3967 prefetch(sk->tcp_rtx_queue.rb_node);
3968
3969 /* If the ack is older than previous acks
3970 * then we can probably ignore it.
3971 */
3972 if (before(ack, prior_snd_una)) {
3973 u32 max_window;
3974
3975 /* do not accept ACK for bytes we never sent. */
3976 max_window = min_t(u64, tp->max_window, tp->bytes_acked);
3977 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3978 if (before(ack, prior_snd_una - max_window)) {
3979 if (!(flag & FLAG_NO_CHALLENGE_ACK))
3980 tcp_send_challenge_ack(sk);
3981 return -SKB_DROP_REASON_TCP_TOO_OLD_ACK;
3982 }
3983 goto old_ack;
3984 }
3985
3986 /* If the ack includes data we haven't sent yet, discard
3987 * this segment (RFC793 Section 3.9).
3988 */
3989 if (after(ack, tp->snd_nxt))
3990 return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA;
3991
3992 if (after(ack, prior_snd_una)) {
3993 flag |= FLAG_SND_UNA_ADVANCED;
3994 icsk->icsk_retransmits = 0;
3995
3996 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3997 if (static_branch_unlikely(&clean_acked_data_enabled.key))
3998 if (tp->tcp_clean_acked)
3999 tp->tcp_clean_acked(sk, ack);
4000 #endif
4001 }
4002
4003 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
4004 rs.prior_in_flight = tcp_packets_in_flight(tp);
4005
4006 /* ts_recent update must be made after we are sure that the packet
4007 * is in window.
4008 */
4009 if (flag & FLAG_UPDATE_TS_RECENT)
4010 flag |= tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4011
4012 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
4013 FLAG_SND_UNA_ADVANCED) {
4014 /* Window is constant, pure forward advance.
4015 * No more checks are required.
4016 * Note, we use the fact that SND.UNA>=SND.WL2.
4017 */
4018 tcp_update_wl(tp, ack_seq);
4019 tcp_snd_una_update(tp, ack);
4020 flag |= FLAG_WIN_UPDATE;
4021
4022 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
4023 } else {
4024 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
4025 flag |= FLAG_DATA;
4026 else
4027 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
4028
4029 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
4030
4031 if (TCP_SKB_CB(skb)->sacked)
4032 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
4033 &sack_state);
4034
4035 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb)))
4036 flag |= FLAG_ECE;
4037
4038 if (sack_state.sack_delivered)
4039 tcp_count_delivered(tp, sack_state.sack_delivered,
4040 flag & FLAG_ECE);
4041 }
4042
4043 /* This is a deviation from RFC3168 since it states that:
4044 * "When the TCP data sender is ready to set the CWR bit after reducing
4045 * the congestion window, it SHOULD set the CWR bit only on the first
4046 * new data packet that it transmits."
4047 * We accept CWR on pure ACKs to be more robust
4048 * with widely-deployed TCP implementations that do this.
4049 */
4050 tcp_ecn_accept_cwr(sk, skb);
4051
4052 /* We passed data and got it acked, remove any soft error
4053 * log. Something worked...
4054 */
4055 WRITE_ONCE(sk->sk_err_soft, 0);
4056 icsk->icsk_probes_out = 0;
4057 tp->rcv_tstamp = tcp_jiffies32;
4058 if (!prior_packets)
4059 goto no_queue;
4060
4061 /* See if we can take anything off of the retransmit queue. */
4062 flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una,
4063 &sack_state, flag & FLAG_ECE);
4064
4065 tcp_rack_update_reo_wnd(sk, &rs);
4066
4067 tcp_in_ack_event(sk, flag);
4068
4069 if (tp->tlp_high_seq)
4070 tcp_process_tlp_ack(sk, ack, flag);
4071
4072 if (tcp_ack_is_dubious(sk, flag)) {
4073 if (!(flag & (FLAG_SND_UNA_ADVANCED |
4074 FLAG_NOT_DUP | FLAG_DSACKING_ACK))) {
4075 num_dupack = 1;
4076 /* Consider if pure acks were aggregated in tcp_add_backlog() */
4077 if (!(flag & FLAG_DATA))
4078 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4079 }
4080 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4081 &rexmit);
4082 }
4083
4084 /* If needed, reset TLP/RTO timer when RACK doesn't set. */
4085 if (flag & FLAG_SET_XMIT_TIMER)
4086 tcp_set_xmit_timer(sk);
4087
4088 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
4089 sk_dst_confirm(sk);
4090
4091 delivered = tcp_newly_delivered(sk, delivered, flag);
4092 lost = tp->lost - lost; /* freshly marked lost */
4093 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
4094 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
4095 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
4096 tcp_xmit_recovery(sk, rexmit);
4097 return 1;
4098
4099 no_queue:
4100 tcp_in_ack_event(sk, flag);
4101 /* If data was DSACKed, see if we can undo a cwnd reduction. */
4102 if (flag & FLAG_DSACKING_ACK) {
4103 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4104 &rexmit);
4105 tcp_newly_delivered(sk, delivered, flag);
4106 }
4107 /* If this ack opens up a zero window, clear backoff. It was
4108 * being used to time the probes, and is probably far higher than
4109 * it needs to be for normal retransmission.
4110 */
4111 tcp_ack_probe(sk);
4112
4113 if (tp->tlp_high_seq)
4114 tcp_process_tlp_ack(sk, ack, flag);
4115 return 1;
4116
4117 old_ack:
4118 /* If data was SACKed, tag it and see if we should send more data.
4119 * If data was DSACKed, see if we can undo a cwnd reduction.
4120 */
4121 if (TCP_SKB_CB(skb)->sacked) {
4122 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
4123 &sack_state);
4124 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4125 &rexmit);
4126 tcp_newly_delivered(sk, delivered, flag);
4127 tcp_xmit_recovery(sk, rexmit);
4128 }
4129
4130 return 0;
4131 }
4132
tcp_parse_fastopen_option(int len,const unsigned char * cookie,bool syn,struct tcp_fastopen_cookie * foc,bool exp_opt)4133 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
4134 bool syn, struct tcp_fastopen_cookie *foc,
4135 bool exp_opt)
4136 {
4137 /* Valid only in SYN or SYN-ACK with an even length. */
4138 if (!foc || !syn || len < 0 || (len & 1))
4139 return;
4140
4141 if (len >= TCP_FASTOPEN_COOKIE_MIN &&
4142 len <= TCP_FASTOPEN_COOKIE_MAX)
4143 memcpy(foc->val, cookie, len);
4144 else if (len != 0)
4145 len = -1;
4146 foc->len = len;
4147 foc->exp = exp_opt;
4148 }
4149
smc_parse_options(const struct tcphdr * th,struct tcp_options_received * opt_rx,const unsigned char * ptr,int opsize)4150 static bool smc_parse_options(const struct tcphdr *th,
4151 struct tcp_options_received *opt_rx,
4152 const unsigned char *ptr,
4153 int opsize)
4154 {
4155 #if IS_ENABLED(CONFIG_SMC)
4156 if (static_branch_unlikely(&tcp_have_smc)) {
4157 if (th->syn && !(opsize & 1) &&
4158 opsize >= TCPOLEN_EXP_SMC_BASE &&
4159 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) {
4160 opt_rx->smc_ok = 1;
4161 return true;
4162 }
4163 }
4164 #endif
4165 return false;
4166 }
4167
4168 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
4169 * value on success.
4170 */
tcp_parse_mss_option(const struct tcphdr * th,u16 user_mss)4171 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
4172 {
4173 const unsigned char *ptr = (const unsigned char *)(th + 1);
4174 int length = (th->doff * 4) - sizeof(struct tcphdr);
4175 u16 mss = 0;
4176
4177 while (length > 0) {
4178 int opcode = *ptr++;
4179 int opsize;
4180
4181 switch (opcode) {
4182 case TCPOPT_EOL:
4183 return mss;
4184 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
4185 length--;
4186 continue;
4187 default:
4188 if (length < 2)
4189 return mss;
4190 opsize = *ptr++;
4191 if (opsize < 2) /* "silly options" */
4192 return mss;
4193 if (opsize > length)
4194 return mss; /* fail on partial options */
4195 if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
4196 u16 in_mss = get_unaligned_be16(ptr);
4197
4198 if (in_mss) {
4199 if (user_mss && user_mss < in_mss)
4200 in_mss = user_mss;
4201 mss = in_mss;
4202 }
4203 }
4204 ptr += opsize - 2;
4205 length -= opsize;
4206 }
4207 }
4208 return mss;
4209 }
4210
4211 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
4212 * But, this can also be called on packets in the established flow when
4213 * the fast version below fails.
4214 */
tcp_parse_options(const struct net * net,const struct sk_buff * skb,struct tcp_options_received * opt_rx,int estab,struct tcp_fastopen_cookie * foc)4215 void tcp_parse_options(const struct net *net,
4216 const struct sk_buff *skb,
4217 struct tcp_options_received *opt_rx, int estab,
4218 struct tcp_fastopen_cookie *foc)
4219 {
4220 const unsigned char *ptr;
4221 const struct tcphdr *th = tcp_hdr(skb);
4222 int length = (th->doff * 4) - sizeof(struct tcphdr);
4223
4224 ptr = (const unsigned char *)(th + 1);
4225 opt_rx->saw_tstamp = 0;
4226 opt_rx->saw_unknown = 0;
4227
4228 while (length > 0) {
4229 int opcode = *ptr++;
4230 int opsize;
4231
4232 switch (opcode) {
4233 case TCPOPT_EOL:
4234 return;
4235 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
4236 length--;
4237 continue;
4238 default:
4239 if (length < 2)
4240 return;
4241 opsize = *ptr++;
4242 if (opsize < 2) /* "silly options" */
4243 return;
4244 if (opsize > length)
4245 return; /* don't parse partial options */
4246 switch (opcode) {
4247 case TCPOPT_MSS:
4248 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
4249 u16 in_mss = get_unaligned_be16(ptr);
4250 if (in_mss) {
4251 if (opt_rx->user_mss &&
4252 opt_rx->user_mss < in_mss)
4253 in_mss = opt_rx->user_mss;
4254 opt_rx->mss_clamp = in_mss;
4255 }
4256 }
4257 break;
4258 case TCPOPT_WINDOW:
4259 if (opsize == TCPOLEN_WINDOW && th->syn &&
4260 !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) {
4261 __u8 snd_wscale = *(__u8 *)ptr;
4262 opt_rx->wscale_ok = 1;
4263 if (snd_wscale > TCP_MAX_WSCALE) {
4264 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
4265 __func__,
4266 snd_wscale,
4267 TCP_MAX_WSCALE);
4268 snd_wscale = TCP_MAX_WSCALE;
4269 }
4270 opt_rx->snd_wscale = snd_wscale;
4271 }
4272 break;
4273 case TCPOPT_TIMESTAMP:
4274 if ((opsize == TCPOLEN_TIMESTAMP) &&
4275 ((estab && opt_rx->tstamp_ok) ||
4276 (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) {
4277 opt_rx->saw_tstamp = 1;
4278 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
4279 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
4280 }
4281 break;
4282 case TCPOPT_SACK_PERM:
4283 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
4284 !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) {
4285 opt_rx->sack_ok = TCP_SACK_SEEN;
4286 tcp_sack_reset(opt_rx);
4287 }
4288 break;
4289
4290 case TCPOPT_SACK:
4291 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
4292 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
4293 opt_rx->sack_ok) {
4294 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
4295 }
4296 break;
4297 #ifdef CONFIG_TCP_MD5SIG
4298 case TCPOPT_MD5SIG:
4299 /* The MD5 Hash has already been
4300 * checked (see tcp_v{4,6}_rcv()).
4301 */
4302 break;
4303 #endif
4304 #ifdef CONFIG_TCP_AO
4305 case TCPOPT_AO:
4306 /* TCP AO has already been checked
4307 * (see tcp_inbound_ao_hash()).
4308 */
4309 break;
4310 #endif
4311 case TCPOPT_FASTOPEN:
4312 tcp_parse_fastopen_option(
4313 opsize - TCPOLEN_FASTOPEN_BASE,
4314 ptr, th->syn, foc, false);
4315 break;
4316
4317 case TCPOPT_EXP:
4318 /* Fast Open option shares code 254 using a
4319 * 16 bits magic number.
4320 */
4321 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4322 get_unaligned_be16(ptr) ==
4323 TCPOPT_FASTOPEN_MAGIC) {
4324 tcp_parse_fastopen_option(opsize -
4325 TCPOLEN_EXP_FASTOPEN_BASE,
4326 ptr + 2, th->syn, foc, true);
4327 break;
4328 }
4329
4330 if (smc_parse_options(th, opt_rx, ptr, opsize))
4331 break;
4332
4333 opt_rx->saw_unknown = 1;
4334 break;
4335
4336 default:
4337 opt_rx->saw_unknown = 1;
4338 }
4339 ptr += opsize-2;
4340 length -= opsize;
4341 }
4342 }
4343 }
4344 EXPORT_SYMBOL(tcp_parse_options);
4345
tcp_parse_aligned_timestamp(struct tcp_sock * tp,const struct tcphdr * th)4346 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4347 {
4348 const __be32 *ptr = (const __be32 *)(th + 1);
4349
4350 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4351 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4352 tp->rx_opt.saw_tstamp = 1;
4353 ++ptr;
4354 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4355 ++ptr;
4356 if (*ptr)
4357 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4358 else
4359 tp->rx_opt.rcv_tsecr = 0;
4360 return true;
4361 }
4362 return false;
4363 }
4364
4365 /* Fast parse options. This hopes to only see timestamps.
4366 * If it is wrong it falls back on tcp_parse_options().
4367 */
tcp_fast_parse_options(const struct net * net,const struct sk_buff * skb,const struct tcphdr * th,struct tcp_sock * tp)4368 static bool tcp_fast_parse_options(const struct net *net,
4369 const struct sk_buff *skb,
4370 const struct tcphdr *th, struct tcp_sock *tp)
4371 {
4372 /* In the spirit of fast parsing, compare doff directly to constant
4373 * values. Because equality is used, short doff can be ignored here.
4374 */
4375 if (th->doff == (sizeof(*th) / 4)) {
4376 tp->rx_opt.saw_tstamp = 0;
4377 return false;
4378 } else if (tp->rx_opt.tstamp_ok &&
4379 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4380 if (tcp_parse_aligned_timestamp(tp, th))
4381 return true;
4382 }
4383
4384 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4385 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4386 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4387
4388 return true;
4389 }
4390
4391 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
4392 /*
4393 * Parse Signature options
4394 */
tcp_do_parse_auth_options(const struct tcphdr * th,const u8 ** md5_hash,const u8 ** ao_hash)4395 int tcp_do_parse_auth_options(const struct tcphdr *th,
4396 const u8 **md5_hash, const u8 **ao_hash)
4397 {
4398 int length = (th->doff << 2) - sizeof(*th);
4399 const u8 *ptr = (const u8 *)(th + 1);
4400 unsigned int minlen = TCPOLEN_MD5SIG;
4401
4402 if (IS_ENABLED(CONFIG_TCP_AO))
4403 minlen = sizeof(struct tcp_ao_hdr) + 1;
4404
4405 *md5_hash = NULL;
4406 *ao_hash = NULL;
4407
4408 /* If not enough data remaining, we can short cut */
4409 while (length >= minlen) {
4410 int opcode = *ptr++;
4411 int opsize;
4412
4413 switch (opcode) {
4414 case TCPOPT_EOL:
4415 return 0;
4416 case TCPOPT_NOP:
4417 length--;
4418 continue;
4419 default:
4420 opsize = *ptr++;
4421 if (opsize < 2 || opsize > length)
4422 return -EINVAL;
4423 if (opcode == TCPOPT_MD5SIG) {
4424 if (opsize != TCPOLEN_MD5SIG)
4425 return -EINVAL;
4426 if (unlikely(*md5_hash || *ao_hash))
4427 return -EEXIST;
4428 *md5_hash = ptr;
4429 } else if (opcode == TCPOPT_AO) {
4430 if (opsize <= sizeof(struct tcp_ao_hdr))
4431 return -EINVAL;
4432 if (unlikely(*md5_hash || *ao_hash))
4433 return -EEXIST;
4434 *ao_hash = ptr;
4435 }
4436 }
4437 ptr += opsize - 2;
4438 length -= opsize;
4439 }
4440 return 0;
4441 }
4442 EXPORT_SYMBOL(tcp_do_parse_auth_options);
4443 #endif
4444
4445 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4446 *
4447 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4448 * it can pass through stack. So, the following predicate verifies that
4449 * this segment is not used for anything but congestion avoidance or
4450 * fast retransmit. Moreover, we even are able to eliminate most of such
4451 * second order effects, if we apply some small "replay" window (~RTO)
4452 * to timestamp space.
4453 *
4454 * All these measures still do not guarantee that we reject wrapped ACKs
4455 * on networks with high bandwidth, when sequence space is recycled fastly,
4456 * but it guarantees that such events will be very rare and do not affect
4457 * connection seriously. This doesn't look nice, but alas, PAWS is really
4458 * buggy extension.
4459 *
4460 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4461 * states that events when retransmit arrives after original data are rare.
4462 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4463 * the biggest problem on large power networks even with minor reordering.
4464 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4465 * up to bandwidth of 18Gigabit/sec. 8) ]
4466 */
4467
4468 /* Estimates max number of increments of remote peer TSval in
4469 * a replay window (based on our current RTO estimation).
4470 */
tcp_tsval_replay(const struct sock * sk)4471 static u32 tcp_tsval_replay(const struct sock *sk)
4472 {
4473 /* If we use usec TS resolution,
4474 * then expect the remote peer to use the same resolution.
4475 */
4476 if (tcp_sk(sk)->tcp_usec_ts)
4477 return inet_csk(sk)->icsk_rto * (USEC_PER_SEC / HZ);
4478
4479 /* RFC 7323 recommends a TSval clock between 1ms and 1sec.
4480 * We know that some OS (including old linux) can use 1200 Hz.
4481 */
4482 return inet_csk(sk)->icsk_rto * 1200 / HZ;
4483 }
4484
tcp_disordered_ack_check(const struct sock * sk,const struct sk_buff * skb)4485 static enum skb_drop_reason tcp_disordered_ack_check(const struct sock *sk,
4486 const struct sk_buff *skb)
4487 {
4488 const struct tcp_sock *tp = tcp_sk(sk);
4489 const struct tcphdr *th = tcp_hdr(skb);
4490 SKB_DR_INIT(reason, TCP_RFC7323_PAWS);
4491 u32 ack = TCP_SKB_CB(skb)->ack_seq;
4492 u32 seq = TCP_SKB_CB(skb)->seq;
4493
4494 /* 1. Is this not a pure ACK ? */
4495 if (!th->ack || seq != TCP_SKB_CB(skb)->end_seq)
4496 return reason;
4497
4498 /* 2. Is its sequence not the expected one ? */
4499 if (seq != tp->rcv_nxt)
4500 return before(seq, tp->rcv_nxt) ?
4501 SKB_DROP_REASON_TCP_RFC7323_PAWS_ACK :
4502 reason;
4503
4504 /* 3. Is this not a duplicate ACK ? */
4505 if (ack != tp->snd_una)
4506 return reason;
4507
4508 /* 4. Is this updating the window ? */
4509 if (tcp_may_update_window(tp, ack, seq, ntohs(th->window) <<
4510 tp->rx_opt.snd_wscale))
4511 return reason;
4512
4513 /* 5. Is this not in the replay window ? */
4514 if ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) >
4515 tcp_tsval_replay(sk))
4516 return reason;
4517
4518 return 0;
4519 }
4520
4521 /* Check segment sequence number for validity.
4522 *
4523 * Segment controls are considered valid, if the segment
4524 * fits to the window after truncation to the window. Acceptability
4525 * of data (and SYN, FIN, of course) is checked separately.
4526 * See tcp_data_queue(), for example.
4527 *
4528 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4529 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4530 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4531 * (borrowed from freebsd)
4532 */
4533
tcp_sequence(const struct tcp_sock * tp,u32 seq,u32 end_seq)4534 static enum skb_drop_reason tcp_sequence(const struct tcp_sock *tp,
4535 u32 seq, u32 end_seq)
4536 {
4537 if (before(end_seq, tp->rcv_wup))
4538 return SKB_DROP_REASON_TCP_OLD_SEQUENCE;
4539
4540 if (after(seq, tp->rcv_nxt + tcp_receive_window(tp)))
4541 return SKB_DROP_REASON_TCP_INVALID_SEQUENCE;
4542
4543 return SKB_NOT_DROPPED_YET;
4544 }
4545
4546
tcp_done_with_error(struct sock * sk,int err)4547 void tcp_done_with_error(struct sock *sk, int err)
4548 {
4549 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4550 WRITE_ONCE(sk->sk_err, err);
4551 smp_wmb();
4552
4553 tcp_write_queue_purge(sk);
4554 tcp_done(sk);
4555
4556 if (!sock_flag(sk, SOCK_DEAD))
4557 sk_error_report(sk);
4558 }
4559 EXPORT_IPV6_MOD(tcp_done_with_error);
4560
4561 /* When we get a reset we do this. */
tcp_reset(struct sock * sk,struct sk_buff * skb)4562 void tcp_reset(struct sock *sk, struct sk_buff *skb)
4563 {
4564 int err;
4565
4566 trace_tcp_receive_reset(sk);
4567
4568 /* mptcp can't tell us to ignore reset pkts,
4569 * so just ignore the return value of mptcp_incoming_options().
4570 */
4571 if (sk_is_mptcp(sk))
4572 mptcp_incoming_options(sk, skb);
4573
4574 /* We want the right error as BSD sees it (and indeed as we do). */
4575 switch (sk->sk_state) {
4576 case TCP_SYN_SENT:
4577 err = ECONNREFUSED;
4578 break;
4579 case TCP_CLOSE_WAIT:
4580 err = EPIPE;
4581 break;
4582 case TCP_CLOSE:
4583 return;
4584 default:
4585 err = ECONNRESET;
4586 }
4587 tcp_done_with_error(sk, err);
4588 }
4589
4590 /*
4591 * Process the FIN bit. This now behaves as it is supposed to work
4592 * and the FIN takes effect when it is validly part of sequence
4593 * space. Not before when we get holes.
4594 *
4595 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4596 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4597 * TIME-WAIT)
4598 *
4599 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4600 * close and we go into CLOSING (and later onto TIME-WAIT)
4601 *
4602 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4603 */
tcp_fin(struct sock * sk)4604 void tcp_fin(struct sock *sk)
4605 {
4606 struct tcp_sock *tp = tcp_sk(sk);
4607
4608 inet_csk_schedule_ack(sk);
4609
4610 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
4611 sock_set_flag(sk, SOCK_DONE);
4612
4613 switch (sk->sk_state) {
4614 case TCP_SYN_RECV:
4615 case TCP_ESTABLISHED:
4616 /* Move to CLOSE_WAIT */
4617 tcp_set_state(sk, TCP_CLOSE_WAIT);
4618 inet_csk_enter_pingpong_mode(sk);
4619 break;
4620
4621 case TCP_CLOSE_WAIT:
4622 case TCP_CLOSING:
4623 /* Received a retransmission of the FIN, do
4624 * nothing.
4625 */
4626 break;
4627 case TCP_LAST_ACK:
4628 /* RFC793: Remain in the LAST-ACK state. */
4629 break;
4630
4631 case TCP_FIN_WAIT1:
4632 /* This case occurs when a simultaneous close
4633 * happens, we must ack the received FIN and
4634 * enter the CLOSING state.
4635 */
4636 tcp_send_ack(sk);
4637 tcp_set_state(sk, TCP_CLOSING);
4638 break;
4639 case TCP_FIN_WAIT2:
4640 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4641 tcp_send_ack(sk);
4642 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4643 break;
4644 default:
4645 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4646 * cases we should never reach this piece of code.
4647 */
4648 pr_err("%s: Impossible, sk->sk_state=%d\n",
4649 __func__, sk->sk_state);
4650 break;
4651 }
4652
4653 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4654 * Probably, we should reset in this case. For now drop them.
4655 */
4656 skb_rbtree_purge(&tp->out_of_order_queue);
4657 if (tcp_is_sack(tp))
4658 tcp_sack_reset(&tp->rx_opt);
4659
4660 if (!sock_flag(sk, SOCK_DEAD)) {
4661 sk->sk_state_change(sk);
4662
4663 /* Do not send POLL_HUP for half duplex close. */
4664 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4665 sk->sk_state == TCP_CLOSE)
4666 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4667 else
4668 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4669 }
4670 }
4671
tcp_sack_extend(struct tcp_sack_block * sp,u32 seq,u32 end_seq)4672 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4673 u32 end_seq)
4674 {
4675 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4676 if (before(seq, sp->start_seq))
4677 sp->start_seq = seq;
4678 if (after(end_seq, sp->end_seq))
4679 sp->end_seq = end_seq;
4680 return true;
4681 }
4682 return false;
4683 }
4684
tcp_dsack_set(struct sock * sk,u32 seq,u32 end_seq)4685 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4686 {
4687 struct tcp_sock *tp = tcp_sk(sk);
4688
4689 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4690 int mib_idx;
4691
4692 if (before(seq, tp->rcv_nxt))
4693 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4694 else
4695 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4696
4697 NET_INC_STATS(sock_net(sk), mib_idx);
4698
4699 tp->rx_opt.dsack = 1;
4700 tp->duplicate_sack[0].start_seq = seq;
4701 tp->duplicate_sack[0].end_seq = end_seq;
4702 }
4703 }
4704
tcp_dsack_extend(struct sock * sk,u32 seq,u32 end_seq)4705 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4706 {
4707 struct tcp_sock *tp = tcp_sk(sk);
4708
4709 if (!tp->rx_opt.dsack)
4710 tcp_dsack_set(sk, seq, end_seq);
4711 else
4712 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4713 }
4714
tcp_rcv_spurious_retrans(struct sock * sk,const struct sk_buff * skb)4715 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4716 {
4717 /* When the ACK path fails or drops most ACKs, the sender would
4718 * timeout and spuriously retransmit the same segment repeatedly.
4719 * If it seems our ACKs are not reaching the other side,
4720 * based on receiving a duplicate data segment with new flowlabel
4721 * (suggesting the sender suffered an RTO), and we are not already
4722 * repathing due to our own RTO, then rehash the socket to repath our
4723 * packets.
4724 */
4725 #if IS_ENABLED(CONFIG_IPV6)
4726 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss &&
4727 skb->protocol == htons(ETH_P_IPV6) &&
4728 (tcp_sk(sk)->inet_conn.icsk_ack.lrcv_flowlabel !=
4729 ntohl(ip6_flowlabel(ipv6_hdr(skb)))) &&
4730 sk_rethink_txhash(sk))
4731 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4732
4733 /* Save last flowlabel after a spurious retrans. */
4734 tcp_save_lrcv_flowlabel(sk, skb);
4735 #endif
4736 }
4737
tcp_send_dupack(struct sock * sk,const struct sk_buff * skb)4738 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4739 {
4740 struct tcp_sock *tp = tcp_sk(sk);
4741
4742 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4743 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4744 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4745 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4746
4747 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4748 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4749
4750 tcp_rcv_spurious_retrans(sk, skb);
4751 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4752 end_seq = tp->rcv_nxt;
4753 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4754 }
4755 }
4756
4757 tcp_send_ack(sk);
4758 }
4759
4760 /* These routines update the SACK block as out-of-order packets arrive or
4761 * in-order packets close up the sequence space.
4762 */
tcp_sack_maybe_coalesce(struct tcp_sock * tp)4763 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4764 {
4765 int this_sack;
4766 struct tcp_sack_block *sp = &tp->selective_acks[0];
4767 struct tcp_sack_block *swalk = sp + 1;
4768
4769 /* See if the recent change to the first SACK eats into
4770 * or hits the sequence space of other SACK blocks, if so coalesce.
4771 */
4772 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4773 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4774 int i;
4775
4776 /* Zap SWALK, by moving every further SACK up by one slot.
4777 * Decrease num_sacks.
4778 */
4779 tp->rx_opt.num_sacks--;
4780 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4781 sp[i] = sp[i + 1];
4782 continue;
4783 }
4784 this_sack++;
4785 swalk++;
4786 }
4787 }
4788
tcp_sack_compress_send_ack(struct sock * sk)4789 void tcp_sack_compress_send_ack(struct sock *sk)
4790 {
4791 struct tcp_sock *tp = tcp_sk(sk);
4792
4793 if (!tp->compressed_ack)
4794 return;
4795
4796 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4797 __sock_put(sk);
4798
4799 /* Since we have to send one ack finally,
4800 * substract one from tp->compressed_ack to keep
4801 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4802 */
4803 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4804 tp->compressed_ack - 1);
4805
4806 tp->compressed_ack = 0;
4807 tcp_send_ack(sk);
4808 }
4809
4810 /* Reasonable amount of sack blocks included in TCP SACK option
4811 * The max is 4, but this becomes 3 if TCP timestamps are there.
4812 * Given that SACK packets might be lost, be conservative and use 2.
4813 */
4814 #define TCP_SACK_BLOCKS_EXPECTED 2
4815
tcp_sack_new_ofo_skb(struct sock * sk,u32 seq,u32 end_seq)4816 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4817 {
4818 struct tcp_sock *tp = tcp_sk(sk);
4819 struct tcp_sack_block *sp = &tp->selective_acks[0];
4820 int cur_sacks = tp->rx_opt.num_sacks;
4821 int this_sack;
4822
4823 if (!cur_sacks)
4824 goto new_sack;
4825
4826 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4827 if (tcp_sack_extend(sp, seq, end_seq)) {
4828 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4829 tcp_sack_compress_send_ack(sk);
4830 /* Rotate this_sack to the first one. */
4831 for (; this_sack > 0; this_sack--, sp--)
4832 swap(*sp, *(sp - 1));
4833 if (cur_sacks > 1)
4834 tcp_sack_maybe_coalesce(tp);
4835 return;
4836 }
4837 }
4838
4839 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4840 tcp_sack_compress_send_ack(sk);
4841
4842 /* Could not find an adjacent existing SACK, build a new one,
4843 * put it at the front, and shift everyone else down. We
4844 * always know there is at least one SACK present already here.
4845 *
4846 * If the sack array is full, forget about the last one.
4847 */
4848 if (this_sack >= TCP_NUM_SACKS) {
4849 this_sack--;
4850 tp->rx_opt.num_sacks--;
4851 sp--;
4852 }
4853 for (; this_sack > 0; this_sack--, sp--)
4854 *sp = *(sp - 1);
4855
4856 new_sack:
4857 /* Build the new head SACK, and we're done. */
4858 sp->start_seq = seq;
4859 sp->end_seq = end_seq;
4860 tp->rx_opt.num_sacks++;
4861 }
4862
4863 /* RCV.NXT advances, some SACKs should be eaten. */
4864
tcp_sack_remove(struct tcp_sock * tp)4865 static void tcp_sack_remove(struct tcp_sock *tp)
4866 {
4867 struct tcp_sack_block *sp = &tp->selective_acks[0];
4868 int num_sacks = tp->rx_opt.num_sacks;
4869 int this_sack;
4870
4871 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4872 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4873 tp->rx_opt.num_sacks = 0;
4874 return;
4875 }
4876
4877 for (this_sack = 0; this_sack < num_sacks;) {
4878 /* Check if the start of the sack is covered by RCV.NXT. */
4879 if (!before(tp->rcv_nxt, sp->start_seq)) {
4880 int i;
4881
4882 /* RCV.NXT must cover all the block! */
4883 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4884
4885 /* Zap this SACK, by moving forward any other SACKS. */
4886 for (i = this_sack+1; i < num_sacks; i++)
4887 tp->selective_acks[i-1] = tp->selective_acks[i];
4888 num_sacks--;
4889 continue;
4890 }
4891 this_sack++;
4892 sp++;
4893 }
4894 tp->rx_opt.num_sacks = num_sacks;
4895 }
4896
4897 /**
4898 * tcp_try_coalesce - try to merge skb to prior one
4899 * @sk: socket
4900 * @to: prior buffer
4901 * @from: buffer to add in queue
4902 * @fragstolen: pointer to boolean
4903 *
4904 * Before queueing skb @from after @to, try to merge them
4905 * to reduce overall memory use and queue lengths, if cost is small.
4906 * Packets in ofo or receive queues can stay a long time.
4907 * Better try to coalesce them right now to avoid future collapses.
4908 * Returns true if caller should free @from instead of queueing it
4909 */
tcp_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4910 static bool tcp_try_coalesce(struct sock *sk,
4911 struct sk_buff *to,
4912 struct sk_buff *from,
4913 bool *fragstolen)
4914 {
4915 int delta;
4916
4917 *fragstolen = false;
4918
4919 /* Its possible this segment overlaps with prior segment in queue */
4920 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4921 return false;
4922
4923 if (!tcp_skb_can_collapse_rx(to, from))
4924 return false;
4925
4926 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4927 return false;
4928
4929 atomic_add(delta, &sk->sk_rmem_alloc);
4930 sk_mem_charge(sk, delta);
4931 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4932 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4933 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4934 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4935
4936 if (TCP_SKB_CB(from)->has_rxtstamp) {
4937 TCP_SKB_CB(to)->has_rxtstamp = true;
4938 to->tstamp = from->tstamp;
4939 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4940 }
4941
4942 return true;
4943 }
4944
tcp_ooo_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4945 static bool tcp_ooo_try_coalesce(struct sock *sk,
4946 struct sk_buff *to,
4947 struct sk_buff *from,
4948 bool *fragstolen)
4949 {
4950 bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4951
4952 /* In case tcp_drop_reason() is called later, update to->gso_segs */
4953 if (res) {
4954 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4955 max_t(u16, 1, skb_shinfo(from)->gso_segs);
4956
4957 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4958 }
4959 return res;
4960 }
4961
4962 noinline_for_tracing static void
tcp_drop_reason(struct sock * sk,struct sk_buff * skb,enum skb_drop_reason reason)4963 tcp_drop_reason(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason reason)
4964 {
4965 sk_drops_add(sk, skb);
4966 sk_skb_reason_drop(sk, skb, reason);
4967 }
4968
4969 /* This one checks to see if we can put data from the
4970 * out_of_order queue into the receive_queue.
4971 */
tcp_ofo_queue(struct sock * sk)4972 static void tcp_ofo_queue(struct sock *sk)
4973 {
4974 struct tcp_sock *tp = tcp_sk(sk);
4975 __u32 dsack_high = tp->rcv_nxt;
4976 bool fin, fragstolen, eaten;
4977 struct sk_buff *skb, *tail;
4978 struct rb_node *p;
4979
4980 p = rb_first(&tp->out_of_order_queue);
4981 while (p) {
4982 skb = rb_to_skb(p);
4983 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4984 break;
4985
4986 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4987 __u32 dsack = dsack_high;
4988 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4989 dsack_high = TCP_SKB_CB(skb)->end_seq;
4990 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4991 }
4992 p = rb_next(p);
4993 rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4994
4995 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4996 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP);
4997 continue;
4998 }
4999
5000 tail = skb_peek_tail(&sk->sk_receive_queue);
5001 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
5002 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
5003 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
5004 if (!eaten)
5005 tcp_add_receive_queue(sk, skb);
5006 else
5007 kfree_skb_partial(skb, fragstolen);
5008
5009 if (unlikely(fin)) {
5010 tcp_fin(sk);
5011 /* tcp_fin() purges tp->out_of_order_queue,
5012 * so we must end this loop right now.
5013 */
5014 break;
5015 }
5016 }
5017 }
5018
5019 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb);
5020 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb);
5021
tcp_try_rmem_schedule(struct sock * sk,struct sk_buff * skb,unsigned int size)5022 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
5023 unsigned int size)
5024 {
5025 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
5026 !sk_rmem_schedule(sk, skb, size)) {
5027
5028 if (tcp_prune_queue(sk, skb) < 0)
5029 return -1;
5030
5031 while (!sk_rmem_schedule(sk, skb, size)) {
5032 if (!tcp_prune_ofo_queue(sk, skb))
5033 return -1;
5034 }
5035 }
5036 return 0;
5037 }
5038
tcp_data_queue_ofo(struct sock * sk,struct sk_buff * skb)5039 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
5040 {
5041 struct tcp_sock *tp = tcp_sk(sk);
5042 struct rb_node **p, *parent;
5043 struct sk_buff *skb1;
5044 u32 seq, end_seq;
5045 bool fragstolen;
5046
5047 tcp_save_lrcv_flowlabel(sk, skb);
5048 tcp_data_ecn_check(sk, skb);
5049
5050 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
5051 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
5052 sk->sk_data_ready(sk);
5053 tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM);
5054 return;
5055 }
5056
5057 /* Disable header prediction. */
5058 tp->pred_flags = 0;
5059 inet_csk_schedule_ack(sk);
5060
5061 tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
5062 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
5063 seq = TCP_SKB_CB(skb)->seq;
5064 end_seq = TCP_SKB_CB(skb)->end_seq;
5065
5066 p = &tp->out_of_order_queue.rb_node;
5067 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5068 /* Initial out of order segment, build 1 SACK. */
5069 if (tcp_is_sack(tp)) {
5070 tp->rx_opt.num_sacks = 1;
5071 tp->selective_acks[0].start_seq = seq;
5072 tp->selective_acks[0].end_seq = end_seq;
5073 }
5074 rb_link_node(&skb->rbnode, NULL, p);
5075 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
5076 tp->ooo_last_skb = skb;
5077 goto end;
5078 }
5079
5080 /* In the typical case, we are adding an skb to the end of the list.
5081 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
5082 */
5083 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
5084 skb, &fragstolen)) {
5085 coalesce_done:
5086 /* For non sack flows, do not grow window to force DUPACK
5087 * and trigger fast retransmit.
5088 */
5089 if (tcp_is_sack(tp))
5090 tcp_grow_window(sk, skb, true);
5091 kfree_skb_partial(skb, fragstolen);
5092 skb = NULL;
5093 goto add_sack;
5094 }
5095 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
5096 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
5097 parent = &tp->ooo_last_skb->rbnode;
5098 p = &parent->rb_right;
5099 goto insert;
5100 }
5101
5102 /* Find place to insert this segment. Handle overlaps on the way. */
5103 parent = NULL;
5104 while (*p) {
5105 parent = *p;
5106 skb1 = rb_to_skb(parent);
5107 if (before(seq, TCP_SKB_CB(skb1)->seq)) {
5108 p = &parent->rb_left;
5109 continue;
5110 }
5111 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
5112 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
5113 /* All the bits are present. Drop. */
5114 NET_INC_STATS(sock_net(sk),
5115 LINUX_MIB_TCPOFOMERGE);
5116 tcp_drop_reason(sk, skb,
5117 SKB_DROP_REASON_TCP_OFOMERGE);
5118 skb = NULL;
5119 tcp_dsack_set(sk, seq, end_seq);
5120 goto add_sack;
5121 }
5122 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
5123 /* Partial overlap. */
5124 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
5125 } else {
5126 /* skb's seq == skb1's seq and skb covers skb1.
5127 * Replace skb1 with skb.
5128 */
5129 rb_replace_node(&skb1->rbnode, &skb->rbnode,
5130 &tp->out_of_order_queue);
5131 tcp_dsack_extend(sk,
5132 TCP_SKB_CB(skb1)->seq,
5133 TCP_SKB_CB(skb1)->end_seq);
5134 NET_INC_STATS(sock_net(sk),
5135 LINUX_MIB_TCPOFOMERGE);
5136 tcp_drop_reason(sk, skb1,
5137 SKB_DROP_REASON_TCP_OFOMERGE);
5138 goto merge_right;
5139 }
5140 } else if (tcp_ooo_try_coalesce(sk, skb1,
5141 skb, &fragstolen)) {
5142 goto coalesce_done;
5143 }
5144 p = &parent->rb_right;
5145 }
5146 insert:
5147 /* Insert segment into RB tree. */
5148 rb_link_node(&skb->rbnode, parent, p);
5149 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
5150
5151 merge_right:
5152 /* Remove other segments covered by skb. */
5153 while ((skb1 = skb_rb_next(skb)) != NULL) {
5154 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
5155 break;
5156 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
5157 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
5158 end_seq);
5159 break;
5160 }
5161 rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
5162 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
5163 TCP_SKB_CB(skb1)->end_seq);
5164 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
5165 tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE);
5166 }
5167 /* If there is no skb after us, we are the last_skb ! */
5168 if (!skb1)
5169 tp->ooo_last_skb = skb;
5170
5171 add_sack:
5172 if (tcp_is_sack(tp))
5173 tcp_sack_new_ofo_skb(sk, seq, end_seq);
5174 end:
5175 if (skb) {
5176 /* For non sack flows, do not grow window to force DUPACK
5177 * and trigger fast retransmit.
5178 */
5179 if (tcp_is_sack(tp))
5180 tcp_grow_window(sk, skb, false);
5181 skb_condense(skb);
5182 skb_set_owner_r(skb, sk);
5183 }
5184 tcp_rcvbuf_grow(sk);
5185 }
5186
tcp_queue_rcv(struct sock * sk,struct sk_buff * skb,bool * fragstolen)5187 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
5188 bool *fragstolen)
5189 {
5190 int eaten;
5191 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
5192
5193 eaten = (tail &&
5194 tcp_try_coalesce(sk, tail,
5195 skb, fragstolen)) ? 1 : 0;
5196 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
5197 if (!eaten) {
5198 tcp_add_receive_queue(sk, skb);
5199 skb_set_owner_r(skb, sk);
5200 }
5201 return eaten;
5202 }
5203
tcp_send_rcvq(struct sock * sk,struct msghdr * msg,size_t size)5204 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
5205 {
5206 struct sk_buff *skb;
5207 int err = -ENOMEM;
5208 int data_len = 0;
5209 bool fragstolen;
5210
5211 if (size == 0)
5212 return 0;
5213
5214 if (size > PAGE_SIZE) {
5215 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
5216
5217 data_len = npages << PAGE_SHIFT;
5218 size = data_len + (size & ~PAGE_MASK);
5219 }
5220 skb = alloc_skb_with_frags(size - data_len, data_len,
5221 PAGE_ALLOC_COSTLY_ORDER,
5222 &err, sk->sk_allocation);
5223 if (!skb)
5224 goto err;
5225
5226 skb_put(skb, size - data_len);
5227 skb->data_len = data_len;
5228 skb->len = size;
5229
5230 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5231 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5232 goto err_free;
5233 }
5234
5235 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
5236 if (err)
5237 goto err_free;
5238
5239 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
5240 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
5241 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
5242
5243 if (tcp_queue_rcv(sk, skb, &fragstolen)) {
5244 WARN_ON_ONCE(fragstolen); /* should not happen */
5245 __kfree_skb(skb);
5246 }
5247 return size;
5248
5249 err_free:
5250 kfree_skb(skb);
5251 err:
5252 return err;
5253
5254 }
5255
tcp_data_ready(struct sock * sk)5256 void tcp_data_ready(struct sock *sk)
5257 {
5258 if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE))
5259 sk->sk_data_ready(sk);
5260 }
5261
tcp_data_queue(struct sock * sk,struct sk_buff * skb)5262 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
5263 {
5264 struct tcp_sock *tp = tcp_sk(sk);
5265 enum skb_drop_reason reason;
5266 bool fragstolen;
5267 int eaten;
5268
5269 /* If a subflow has been reset, the packet should not continue
5270 * to be processed, drop the packet.
5271 */
5272 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) {
5273 __kfree_skb(skb);
5274 return;
5275 }
5276
5277 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
5278 __kfree_skb(skb);
5279 return;
5280 }
5281 tcp_cleanup_skb(skb);
5282 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
5283
5284 reason = SKB_DROP_REASON_NOT_SPECIFIED;
5285 tp->rx_opt.dsack = 0;
5286
5287 /* Queue data for delivery to the user.
5288 * Packets in sequence go to the receive queue.
5289 * Out of sequence packets to the out_of_order_queue.
5290 */
5291 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5292 if (tcp_receive_window(tp) == 0) {
5293 /* Some stacks are known to send bare FIN packets
5294 * in a loop even if we send RWIN 0 in our ACK.
5295 * Accepting this FIN does not hurt memory pressure
5296 * because the FIN flag will simply be merged to the
5297 * receive queue tail skb in most cases.
5298 */
5299 if (!skb->len &&
5300 (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
5301 goto queue_and_out;
5302
5303 reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5304 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5305 goto out_of_window;
5306 }
5307
5308 /* Ok. In sequence. In window. */
5309 queue_and_out:
5310 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5311 /* TODO: maybe ratelimit these WIN 0 ACK ? */
5312 inet_csk(sk)->icsk_ack.pending |=
5313 (ICSK_ACK_NOMEM | ICSK_ACK_NOW);
5314 inet_csk_schedule_ack(sk);
5315 sk->sk_data_ready(sk);
5316
5317 if (skb_queue_len(&sk->sk_receive_queue) && skb->len) {
5318 reason = SKB_DROP_REASON_PROTO_MEM;
5319 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5320 goto drop;
5321 }
5322 sk_forced_mem_schedule(sk, skb->truesize);
5323 }
5324
5325 eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5326 if (skb->len)
5327 tcp_event_data_recv(sk, skb);
5328 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
5329 tcp_fin(sk);
5330
5331 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5332 tcp_ofo_queue(sk);
5333
5334 /* RFC5681. 4.2. SHOULD send immediate ACK, when
5335 * gap in queue is filled.
5336 */
5337 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5338 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
5339 }
5340
5341 if (tp->rx_opt.num_sacks)
5342 tcp_sack_remove(tp);
5343
5344 tcp_fast_path_check(sk);
5345
5346 if (eaten > 0)
5347 kfree_skb_partial(skb, fragstolen);
5348 if (!sock_flag(sk, SOCK_DEAD))
5349 tcp_data_ready(sk);
5350 return;
5351 }
5352
5353 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
5354 tcp_rcv_spurious_retrans(sk, skb);
5355 /* A retransmit, 2nd most common case. Force an immediate ack. */
5356 reason = SKB_DROP_REASON_TCP_OLD_DATA;
5357 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
5358 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5359
5360 out_of_window:
5361 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5362 inet_csk_schedule_ack(sk);
5363 drop:
5364 tcp_drop_reason(sk, skb, reason);
5365 return;
5366 }
5367
5368 /* Out of window. F.e. zero window probe. */
5369 if (!before(TCP_SKB_CB(skb)->seq,
5370 tp->rcv_nxt + tcp_receive_window(tp))) {
5371 reason = SKB_DROP_REASON_TCP_OVERWINDOW;
5372 goto out_of_window;
5373 }
5374
5375 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5376 /* Partial packet, seq < rcv_next < end_seq */
5377 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
5378
5379 /* If window is closed, drop tail of packet. But after
5380 * remembering D-SACK for its head made in previous line.
5381 */
5382 if (!tcp_receive_window(tp)) {
5383 reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5384 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5385 goto out_of_window;
5386 }
5387 goto queue_and_out;
5388 }
5389
5390 tcp_data_queue_ofo(sk, skb);
5391 }
5392
tcp_skb_next(struct sk_buff * skb,struct sk_buff_head * list)5393 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
5394 {
5395 if (list)
5396 return !skb_queue_is_last(list, skb) ? skb->next : NULL;
5397
5398 return skb_rb_next(skb);
5399 }
5400
tcp_collapse_one(struct sock * sk,struct sk_buff * skb,struct sk_buff_head * list,struct rb_root * root)5401 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
5402 struct sk_buff_head *list,
5403 struct rb_root *root)
5404 {
5405 struct sk_buff *next = tcp_skb_next(skb, list);
5406
5407 if (list)
5408 __skb_unlink(skb, list);
5409 else
5410 rb_erase(&skb->rbnode, root);
5411
5412 __kfree_skb(skb);
5413 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
5414
5415 return next;
5416 }
5417
5418 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
tcp_rbtree_insert(struct rb_root * root,struct sk_buff * skb)5419 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
5420 {
5421 struct rb_node **p = &root->rb_node;
5422 struct rb_node *parent = NULL;
5423 struct sk_buff *skb1;
5424
5425 while (*p) {
5426 parent = *p;
5427 skb1 = rb_to_skb(parent);
5428 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
5429 p = &parent->rb_left;
5430 else
5431 p = &parent->rb_right;
5432 }
5433 rb_link_node(&skb->rbnode, parent, p);
5434 rb_insert_color(&skb->rbnode, root);
5435 }
5436
5437 /* Collapse contiguous sequence of skbs head..tail with
5438 * sequence numbers start..end.
5439 *
5440 * If tail is NULL, this means until the end of the queue.
5441 *
5442 * Segments with FIN/SYN are not collapsed (only because this
5443 * simplifies code)
5444 */
5445 static void
tcp_collapse(struct sock * sk,struct sk_buff_head * list,struct rb_root * root,struct sk_buff * head,struct sk_buff * tail,u32 start,u32 end)5446 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5447 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
5448 {
5449 struct sk_buff *skb = head, *n;
5450 struct sk_buff_head tmp;
5451 bool end_of_skbs;
5452
5453 /* First, check that queue is collapsible and find
5454 * the point where collapsing can be useful.
5455 */
5456 restart:
5457 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5458 n = tcp_skb_next(skb, list);
5459
5460 if (!skb_frags_readable(skb))
5461 goto skip_this;
5462
5463 /* No new bits? It is possible on ofo queue. */
5464 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5465 skb = tcp_collapse_one(sk, skb, list, root);
5466 if (!skb)
5467 break;
5468 goto restart;
5469 }
5470
5471 /* The first skb to collapse is:
5472 * - not SYN/FIN and
5473 * - bloated or contains data before "start" or
5474 * overlaps to the next one and mptcp allow collapsing.
5475 */
5476 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5477 (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5478 before(TCP_SKB_CB(skb)->seq, start))) {
5479 end_of_skbs = false;
5480 break;
5481 }
5482
5483 if (n && n != tail && skb_frags_readable(n) &&
5484 tcp_skb_can_collapse_rx(skb, n) &&
5485 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5486 end_of_skbs = false;
5487 break;
5488 }
5489
5490 skip_this:
5491 /* Decided to skip this, advance start seq. */
5492 start = TCP_SKB_CB(skb)->end_seq;
5493 }
5494 if (end_of_skbs ||
5495 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) ||
5496 !skb_frags_readable(skb))
5497 return;
5498
5499 __skb_queue_head_init(&tmp);
5500
5501 while (before(start, end)) {
5502 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5503 struct sk_buff *nskb;
5504
5505 nskb = alloc_skb(copy, GFP_ATOMIC);
5506 if (!nskb)
5507 break;
5508
5509 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5510 skb_copy_decrypted(nskb, skb);
5511 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5512 if (list)
5513 __skb_queue_before(list, skb, nskb);
5514 else
5515 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5516 skb_set_owner_r(nskb, sk);
5517 mptcp_skb_ext_move(nskb, skb);
5518
5519 /* Copy data, releasing collapsed skbs. */
5520 while (copy > 0) {
5521 int offset = start - TCP_SKB_CB(skb)->seq;
5522 int size = TCP_SKB_CB(skb)->end_seq - start;
5523
5524 BUG_ON(offset < 0);
5525 if (size > 0) {
5526 size = min(copy, size);
5527 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5528 BUG();
5529 TCP_SKB_CB(nskb)->end_seq += size;
5530 copy -= size;
5531 start += size;
5532 }
5533 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5534 skb = tcp_collapse_one(sk, skb, list, root);
5535 if (!skb ||
5536 skb == tail ||
5537 !tcp_skb_can_collapse_rx(nskb, skb) ||
5538 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) ||
5539 !skb_frags_readable(skb))
5540 goto end;
5541 }
5542 }
5543 }
5544 end:
5545 skb_queue_walk_safe(&tmp, skb, n)
5546 tcp_rbtree_insert(root, skb);
5547 }
5548
5549 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5550 * and tcp_collapse() them until all the queue is collapsed.
5551 */
tcp_collapse_ofo_queue(struct sock * sk)5552 static void tcp_collapse_ofo_queue(struct sock *sk)
5553 {
5554 struct tcp_sock *tp = tcp_sk(sk);
5555 u32 range_truesize, sum_tiny = 0;
5556 struct sk_buff *skb, *head;
5557 u32 start, end;
5558
5559 skb = skb_rb_first(&tp->out_of_order_queue);
5560 new_range:
5561 if (!skb) {
5562 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5563 return;
5564 }
5565 start = TCP_SKB_CB(skb)->seq;
5566 end = TCP_SKB_CB(skb)->end_seq;
5567 range_truesize = skb->truesize;
5568
5569 for (head = skb;;) {
5570 skb = skb_rb_next(skb);
5571
5572 /* Range is terminated when we see a gap or when
5573 * we are at the queue end.
5574 */
5575 if (!skb ||
5576 after(TCP_SKB_CB(skb)->seq, end) ||
5577 before(TCP_SKB_CB(skb)->end_seq, start)) {
5578 /* Do not attempt collapsing tiny skbs */
5579 if (range_truesize != head->truesize ||
5580 end - start >= SKB_WITH_OVERHEAD(PAGE_SIZE)) {
5581 tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5582 head, skb, start, end);
5583 } else {
5584 sum_tiny += range_truesize;
5585 if (sum_tiny > sk->sk_rcvbuf >> 3)
5586 return;
5587 }
5588 goto new_range;
5589 }
5590
5591 range_truesize += skb->truesize;
5592 if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5593 start = TCP_SKB_CB(skb)->seq;
5594 if (after(TCP_SKB_CB(skb)->end_seq, end))
5595 end = TCP_SKB_CB(skb)->end_seq;
5596 }
5597 }
5598
5599 /*
5600 * Clean the out-of-order queue to make room.
5601 * We drop high sequences packets to :
5602 * 1) Let a chance for holes to be filled.
5603 * This means we do not drop packets from ooo queue if their sequence
5604 * is before incoming packet sequence.
5605 * 2) not add too big latencies if thousands of packets sit there.
5606 * (But if application shrinks SO_RCVBUF, we could still end up
5607 * freeing whole queue here)
5608 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5609 *
5610 * Return true if queue has shrunk.
5611 */
tcp_prune_ofo_queue(struct sock * sk,const struct sk_buff * in_skb)5612 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb)
5613 {
5614 struct tcp_sock *tp = tcp_sk(sk);
5615 struct rb_node *node, *prev;
5616 bool pruned = false;
5617 int goal;
5618
5619 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5620 return false;
5621
5622 goal = sk->sk_rcvbuf >> 3;
5623 node = &tp->ooo_last_skb->rbnode;
5624
5625 do {
5626 struct sk_buff *skb = rb_to_skb(node);
5627
5628 /* If incoming skb would land last in ofo queue, stop pruning. */
5629 if (after(TCP_SKB_CB(in_skb)->seq, TCP_SKB_CB(skb)->seq))
5630 break;
5631 pruned = true;
5632 prev = rb_prev(node);
5633 rb_erase(node, &tp->out_of_order_queue);
5634 goal -= skb->truesize;
5635 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE);
5636 tp->ooo_last_skb = rb_to_skb(prev);
5637 if (!prev || goal <= 0) {
5638 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5639 !tcp_under_memory_pressure(sk))
5640 break;
5641 goal = sk->sk_rcvbuf >> 3;
5642 }
5643 node = prev;
5644 } while (node);
5645
5646 if (pruned) {
5647 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5648 /* Reset SACK state. A conforming SACK implementation will
5649 * do the same at a timeout based retransmit. When a connection
5650 * is in a sad state like this, we care only about integrity
5651 * of the connection not performance.
5652 */
5653 if (tp->rx_opt.sack_ok)
5654 tcp_sack_reset(&tp->rx_opt);
5655 }
5656 return pruned;
5657 }
5658
5659 /* Reduce allocated memory if we can, trying to get
5660 * the socket within its memory limits again.
5661 *
5662 * Return less than zero if we should start dropping frames
5663 * until the socket owning process reads some of the data
5664 * to stabilize the situation.
5665 */
tcp_prune_queue(struct sock * sk,const struct sk_buff * in_skb)5666 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb)
5667 {
5668 struct tcp_sock *tp = tcp_sk(sk);
5669
5670 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5671
5672 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5673 tcp_clamp_window(sk);
5674 else if (tcp_under_memory_pressure(sk))
5675 tcp_adjust_rcv_ssthresh(sk);
5676
5677 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5678 return 0;
5679
5680 tcp_collapse_ofo_queue(sk);
5681 if (!skb_queue_empty(&sk->sk_receive_queue))
5682 tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5683 skb_peek(&sk->sk_receive_queue),
5684 NULL,
5685 tp->copied_seq, tp->rcv_nxt);
5686
5687 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5688 return 0;
5689
5690 /* Collapsing did not help, destructive actions follow.
5691 * This must not ever occur. */
5692
5693 tcp_prune_ofo_queue(sk, in_skb);
5694
5695 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5696 return 0;
5697
5698 /* If we are really being abused, tell the caller to silently
5699 * drop receive data on the floor. It will get retransmitted
5700 * and hopefully then we'll have sufficient space.
5701 */
5702 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5703
5704 /* Massive buffer overcommit. */
5705 tp->pred_flags = 0;
5706 return -1;
5707 }
5708
tcp_should_expand_sndbuf(struct sock * sk)5709 static bool tcp_should_expand_sndbuf(struct sock *sk)
5710 {
5711 const struct tcp_sock *tp = tcp_sk(sk);
5712
5713 /* If the user specified a specific send buffer setting, do
5714 * not modify it.
5715 */
5716 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5717 return false;
5718
5719 /* If we are under global TCP memory pressure, do not expand. */
5720 if (tcp_under_memory_pressure(sk)) {
5721 int unused_mem = sk_unused_reserved_mem(sk);
5722
5723 /* Adjust sndbuf according to reserved mem. But make sure
5724 * it never goes below SOCK_MIN_SNDBUF.
5725 * See sk_stream_moderate_sndbuf() for more details.
5726 */
5727 if (unused_mem > SOCK_MIN_SNDBUF)
5728 WRITE_ONCE(sk->sk_sndbuf, unused_mem);
5729
5730 return false;
5731 }
5732
5733 /* If we are under soft global TCP memory pressure, do not expand. */
5734 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5735 return false;
5736
5737 /* If we filled the congestion window, do not expand. */
5738 if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp))
5739 return false;
5740
5741 return true;
5742 }
5743
tcp_new_space(struct sock * sk)5744 static void tcp_new_space(struct sock *sk)
5745 {
5746 struct tcp_sock *tp = tcp_sk(sk);
5747
5748 if (tcp_should_expand_sndbuf(sk)) {
5749 tcp_sndbuf_expand(sk);
5750 tp->snd_cwnd_stamp = tcp_jiffies32;
5751 }
5752
5753 INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk);
5754 }
5755
5756 /* Caller made space either from:
5757 * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced)
5758 * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt)
5759 *
5760 * We might be able to generate EPOLLOUT to the application if:
5761 * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2
5762 * 2) notsent amount (tp->write_seq - tp->snd_nxt) became
5763 * small enough that tcp_stream_memory_free() decides it
5764 * is time to generate EPOLLOUT.
5765 */
tcp_check_space(struct sock * sk)5766 void tcp_check_space(struct sock *sk)
5767 {
5768 /* pairs with tcp_poll() */
5769 smp_mb();
5770 if (sk->sk_socket &&
5771 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5772 tcp_new_space(sk);
5773 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5774 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5775 }
5776 }
5777
tcp_data_snd_check(struct sock * sk)5778 static inline void tcp_data_snd_check(struct sock *sk)
5779 {
5780 tcp_push_pending_frames(sk);
5781 tcp_check_space(sk);
5782 }
5783
5784 /*
5785 * Check if sending an ack is needed.
5786 */
__tcp_ack_snd_check(struct sock * sk,int ofo_possible)5787 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5788 {
5789 struct tcp_sock *tp = tcp_sk(sk);
5790 unsigned long rtt, delay;
5791
5792 /* More than one full frame received... */
5793 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5794 /* ... and right edge of window advances far enough.
5795 * (tcp_recvmsg() will send ACK otherwise).
5796 * If application uses SO_RCVLOWAT, we want send ack now if
5797 * we have not received enough bytes to satisfy the condition.
5798 */
5799 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5800 __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5801 /* We ACK each frame or... */
5802 tcp_in_quickack_mode(sk) ||
5803 /* Protocol state mandates a one-time immediate ACK */
5804 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5805 /* If we are running from __release_sock() in user context,
5806 * Defer the ack until tcp_release_cb().
5807 */
5808 if (sock_owned_by_user_nocheck(sk) &&
5809 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_backlog_ack_defer)) {
5810 set_bit(TCP_ACK_DEFERRED, &sk->sk_tsq_flags);
5811 return;
5812 }
5813 send_now:
5814 tcp_send_ack(sk);
5815 return;
5816 }
5817
5818 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5819 tcp_send_delayed_ack(sk);
5820 return;
5821 }
5822
5823 if (!tcp_is_sack(tp) ||
5824 tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr))
5825 goto send_now;
5826
5827 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5828 tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5829 tp->dup_ack_counter = 0;
5830 }
5831 if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5832 tp->dup_ack_counter++;
5833 goto send_now;
5834 }
5835 tp->compressed_ack++;
5836 if (hrtimer_is_queued(&tp->compressed_ack_timer))
5837 return;
5838
5839 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5840
5841 rtt = tp->rcv_rtt_est.rtt_us;
5842 if (tp->srtt_us && tp->srtt_us < rtt)
5843 rtt = tp->srtt_us;
5844
5845 delay = min_t(unsigned long,
5846 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns),
5847 rtt * (NSEC_PER_USEC >> 3)/20);
5848 sock_hold(sk);
5849 hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5850 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns),
5851 HRTIMER_MODE_REL_PINNED_SOFT);
5852 }
5853
tcp_ack_snd_check(struct sock * sk)5854 static inline void tcp_ack_snd_check(struct sock *sk)
5855 {
5856 if (!inet_csk_ack_scheduled(sk)) {
5857 /* We sent a data segment already. */
5858 return;
5859 }
5860 __tcp_ack_snd_check(sk, 1);
5861 }
5862
5863 /*
5864 * This routine is only called when we have urgent data
5865 * signaled. Its the 'slow' part of tcp_urg. It could be
5866 * moved inline now as tcp_urg is only called from one
5867 * place. We handle URGent data wrong. We have to - as
5868 * BSD still doesn't use the correction from RFC961.
5869 * For 1003.1g we should support a new option TCP_STDURG to permit
5870 * either form (or just set the sysctl tcp_stdurg).
5871 */
5872
tcp_check_urg(struct sock * sk,const struct tcphdr * th)5873 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5874 {
5875 struct tcp_sock *tp = tcp_sk(sk);
5876 u32 ptr = ntohs(th->urg_ptr);
5877
5878 if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg))
5879 ptr--;
5880 ptr += ntohl(th->seq);
5881
5882 /* Ignore urgent data that we've already seen and read. */
5883 if (after(tp->copied_seq, ptr))
5884 return;
5885
5886 /* Do not replay urg ptr.
5887 *
5888 * NOTE: interesting situation not covered by specs.
5889 * Misbehaving sender may send urg ptr, pointing to segment,
5890 * which we already have in ofo queue. We are not able to fetch
5891 * such data and will stay in TCP_URG_NOTYET until will be eaten
5892 * by recvmsg(). Seems, we are not obliged to handle such wicked
5893 * situations. But it is worth to think about possibility of some
5894 * DoSes using some hypothetical application level deadlock.
5895 */
5896 if (before(ptr, tp->rcv_nxt))
5897 return;
5898
5899 /* Do we already have a newer (or duplicate) urgent pointer? */
5900 if (tp->urg_data && !after(ptr, tp->urg_seq))
5901 return;
5902
5903 /* Tell the world about our new urgent pointer. */
5904 sk_send_sigurg(sk);
5905
5906 /* We may be adding urgent data when the last byte read was
5907 * urgent. To do this requires some care. We cannot just ignore
5908 * tp->copied_seq since we would read the last urgent byte again
5909 * as data, nor can we alter copied_seq until this data arrives
5910 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5911 *
5912 * NOTE. Double Dutch. Rendering to plain English: author of comment
5913 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5914 * and expect that both A and B disappear from stream. This is _wrong_.
5915 * Though this happens in BSD with high probability, this is occasional.
5916 * Any application relying on this is buggy. Note also, that fix "works"
5917 * only in this artificial test. Insert some normal data between A and B and we will
5918 * decline of BSD again. Verdict: it is better to remove to trap
5919 * buggy users.
5920 */
5921 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5922 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5923 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5924 tp->copied_seq++;
5925 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5926 __skb_unlink(skb, &sk->sk_receive_queue);
5927 __kfree_skb(skb);
5928 }
5929 }
5930
5931 WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET);
5932 WRITE_ONCE(tp->urg_seq, ptr);
5933
5934 /* Disable header prediction. */
5935 tp->pred_flags = 0;
5936 }
5937
5938 /* This is the 'fast' part of urgent handling. */
tcp_urg(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)5939 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5940 {
5941 struct tcp_sock *tp = tcp_sk(sk);
5942
5943 /* Check if we get a new urgent pointer - normally not. */
5944 if (unlikely(th->urg))
5945 tcp_check_urg(sk, th);
5946
5947 /* Do we wait for any urgent data? - normally not... */
5948 if (unlikely(tp->urg_data == TCP_URG_NOTYET)) {
5949 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5950 th->syn;
5951
5952 /* Is the urgent pointer pointing into this packet? */
5953 if (ptr < skb->len) {
5954 u8 tmp;
5955 if (skb_copy_bits(skb, ptr, &tmp, 1))
5956 BUG();
5957 WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp);
5958 if (!sock_flag(sk, SOCK_DEAD))
5959 sk->sk_data_ready(sk);
5960 }
5961 }
5962 }
5963
5964 /* Accept RST for rcv_nxt - 1 after a FIN.
5965 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5966 * FIN is sent followed by a RST packet. The RST is sent with the same
5967 * sequence number as the FIN, and thus according to RFC 5961 a challenge
5968 * ACK should be sent. However, Mac OSX rate limits replies to challenge
5969 * ACKs on the closed socket. In addition middleboxes can drop either the
5970 * challenge ACK or a subsequent RST.
5971 */
tcp_reset_check(const struct sock * sk,const struct sk_buff * skb)5972 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5973 {
5974 const struct tcp_sock *tp = tcp_sk(sk);
5975
5976 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5977 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5978 TCPF_CLOSING));
5979 }
5980
5981 /* Does PAWS and seqno based validation of an incoming segment, flags will
5982 * play significant role here.
5983 */
tcp_validate_incoming(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th,int syn_inerr)5984 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5985 const struct tcphdr *th, int syn_inerr)
5986 {
5987 struct tcp_sock *tp = tcp_sk(sk);
5988 SKB_DR(reason);
5989
5990 /* RFC1323: H1. Apply PAWS check first. */
5991 if (!tcp_fast_parse_options(sock_net(sk), skb, th, tp) ||
5992 !tp->rx_opt.saw_tstamp ||
5993 tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW))
5994 goto step1;
5995
5996 reason = tcp_disordered_ack_check(sk, skb);
5997 if (!reason)
5998 goto step1;
5999 /* Reset is accepted even if it did not pass PAWS. */
6000 if (th->rst)
6001 goto step1;
6002 if (unlikely(th->syn))
6003 goto syn_challenge;
6004
6005 /* Old ACK are common, increment PAWS_OLD_ACK
6006 * and do not send a dupack.
6007 */
6008 if (reason == SKB_DROP_REASON_TCP_RFC7323_PAWS_ACK) {
6009 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWS_OLD_ACK);
6010 goto discard;
6011 }
6012 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
6013 if (!tcp_oow_rate_limited(sock_net(sk), skb,
6014 LINUX_MIB_TCPACKSKIPPEDPAWS,
6015 &tp->last_oow_ack_time))
6016 tcp_send_dupack(sk, skb);
6017 goto discard;
6018
6019 step1:
6020 /* Step 1: check sequence number */
6021 reason = tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
6022 if (reason) {
6023 /* RFC793, page 37: "In all states except SYN-SENT, all reset
6024 * (RST) segments are validated by checking their SEQ-fields."
6025 * And page 69: "If an incoming segment is not acceptable,
6026 * an acknowledgment should be sent in reply (unless the RST
6027 * bit is set, if so drop the segment and return)".
6028 */
6029 if (!th->rst) {
6030 if (th->syn)
6031 goto syn_challenge;
6032 if (!tcp_oow_rate_limited(sock_net(sk), skb,
6033 LINUX_MIB_TCPACKSKIPPEDSEQ,
6034 &tp->last_oow_ack_time))
6035 tcp_send_dupack(sk, skb);
6036 } else if (tcp_reset_check(sk, skb)) {
6037 goto reset;
6038 }
6039 goto discard;
6040 }
6041
6042 /* Step 2: check RST bit */
6043 if (th->rst) {
6044 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
6045 * FIN and SACK too if available):
6046 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
6047 * the right-most SACK block,
6048 * then
6049 * RESET the connection
6050 * else
6051 * Send a challenge ACK
6052 */
6053 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
6054 tcp_reset_check(sk, skb))
6055 goto reset;
6056
6057 if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
6058 struct tcp_sack_block *sp = &tp->selective_acks[0];
6059 int max_sack = sp[0].end_seq;
6060 int this_sack;
6061
6062 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
6063 ++this_sack) {
6064 max_sack = after(sp[this_sack].end_seq,
6065 max_sack) ?
6066 sp[this_sack].end_seq : max_sack;
6067 }
6068
6069 if (TCP_SKB_CB(skb)->seq == max_sack)
6070 goto reset;
6071 }
6072
6073 /* Disable TFO if RST is out-of-order
6074 * and no data has been received
6075 * for current active TFO socket
6076 */
6077 if (tp->syn_fastopen && !tp->data_segs_in &&
6078 sk->sk_state == TCP_ESTABLISHED)
6079 tcp_fastopen_active_disable(sk);
6080 tcp_send_challenge_ack(sk);
6081 SKB_DR_SET(reason, TCP_RESET);
6082 goto discard;
6083 }
6084
6085 /* step 3: check security and precedence [ignored] */
6086
6087 /* step 4: Check for a SYN
6088 * RFC 5961 4.2 : Send a challenge ack
6089 */
6090 if (th->syn) {
6091 if (sk->sk_state == TCP_SYN_RECV && sk->sk_socket && th->ack &&
6092 TCP_SKB_CB(skb)->seq + 1 == TCP_SKB_CB(skb)->end_seq &&
6093 TCP_SKB_CB(skb)->seq + 1 == tp->rcv_nxt &&
6094 TCP_SKB_CB(skb)->ack_seq == tp->snd_nxt)
6095 goto pass;
6096 syn_challenge:
6097 if (syn_inerr)
6098 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6099 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
6100 tcp_send_challenge_ack(sk);
6101 SKB_DR_SET(reason, TCP_INVALID_SYN);
6102 goto discard;
6103 }
6104
6105 pass:
6106 bpf_skops_parse_hdr(sk, skb);
6107
6108 return true;
6109
6110 discard:
6111 tcp_drop_reason(sk, skb, reason);
6112 return false;
6113
6114 reset:
6115 tcp_reset(sk, skb);
6116 __kfree_skb(skb);
6117 return false;
6118 }
6119
6120 /*
6121 * TCP receive function for the ESTABLISHED state.
6122 *
6123 * It is split into a fast path and a slow path. The fast path is
6124 * disabled when:
6125 * - A zero window was announced from us - zero window probing
6126 * is only handled properly in the slow path.
6127 * - Out of order segments arrived.
6128 * - Urgent data is expected.
6129 * - There is no buffer space left
6130 * - Unexpected TCP flags/window values/header lengths are received
6131 * (detected by checking the TCP header against pred_flags)
6132 * - Data is sent in both directions. Fast path only supports pure senders
6133 * or pure receivers (this means either the sequence number or the ack
6134 * value must stay constant)
6135 * - Unexpected TCP option.
6136 *
6137 * When these conditions are not satisfied it drops into a standard
6138 * receive procedure patterned after RFC793 to handle all cases.
6139 * The first three cases are guaranteed by proper pred_flags setting,
6140 * the rest is checked inline. Fast processing is turned on in
6141 * tcp_data_queue when everything is OK.
6142 */
tcp_rcv_established(struct sock * sk,struct sk_buff * skb)6143 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
6144 {
6145 enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED;
6146 const struct tcphdr *th = (const struct tcphdr *)skb->data;
6147 struct tcp_sock *tp = tcp_sk(sk);
6148 unsigned int len = skb->len;
6149
6150 /* TCP congestion window tracking */
6151 trace_tcp_probe(sk, skb);
6152
6153 tcp_mstamp_refresh(tp);
6154 if (unlikely(!rcu_access_pointer(sk->sk_rx_dst)))
6155 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
6156 /*
6157 * Header prediction.
6158 * The code loosely follows the one in the famous
6159 * "30 instruction TCP receive" Van Jacobson mail.
6160 *
6161 * Van's trick is to deposit buffers into socket queue
6162 * on a device interrupt, to call tcp_recv function
6163 * on the receive process context and checksum and copy
6164 * the buffer to user space. smart...
6165 *
6166 * Our current scheme is not silly either but we take the
6167 * extra cost of the net_bh soft interrupt processing...
6168 * We do checksum and copy also but from device to kernel.
6169 */
6170
6171 tp->rx_opt.saw_tstamp = 0;
6172
6173 /* pred_flags is 0xS?10 << 16 + snd_wnd
6174 * if header_prediction is to be made
6175 * 'S' will always be tp->tcp_header_len >> 2
6176 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
6177 * turn it off (when there are holes in the receive
6178 * space for instance)
6179 * PSH flag is ignored.
6180 */
6181
6182 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
6183 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
6184 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6185 int tcp_header_len = tp->tcp_header_len;
6186 s32 delta = 0;
6187 int flag = 0;
6188
6189 /* Timestamp header prediction: tcp_header_len
6190 * is automatically equal to th->doff*4 due to pred_flags
6191 * match.
6192 */
6193
6194 /* Check timestamp */
6195 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
6196 /* No? Slow path! */
6197 if (!tcp_parse_aligned_timestamp(tp, th))
6198 goto slow_path;
6199
6200 delta = tp->rx_opt.rcv_tsval -
6201 tp->rx_opt.ts_recent;
6202 /* If PAWS failed, check it more carefully in slow path */
6203 if (delta < 0)
6204 goto slow_path;
6205
6206 /* DO NOT update ts_recent here, if checksum fails
6207 * and timestamp was corrupted part, it will result
6208 * in a hung connection since we will drop all
6209 * future packets due to the PAWS test.
6210 */
6211 }
6212
6213 if (len <= tcp_header_len) {
6214 /* Bulk data transfer: sender */
6215 if (len == tcp_header_len) {
6216 /* Predicted packet is in window by definition.
6217 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
6218 * Hence, check seq<=rcv_wup reduces to:
6219 */
6220 if (tcp_header_len ==
6221 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
6222 tp->rcv_nxt == tp->rcv_wup)
6223 flag |= __tcp_replace_ts_recent(tp,
6224 delta);
6225
6226 /* We know that such packets are checksummed
6227 * on entry.
6228 */
6229 tcp_ack(sk, skb, flag);
6230 __kfree_skb(skb);
6231 tcp_data_snd_check(sk);
6232 /* When receiving pure ack in fast path, update
6233 * last ts ecr directly instead of calling
6234 * tcp_rcv_rtt_measure_ts()
6235 */
6236 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
6237 return;
6238 } else { /* Header too small */
6239 reason = SKB_DROP_REASON_PKT_TOO_SMALL;
6240 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6241 goto discard;
6242 }
6243 } else {
6244 int eaten = 0;
6245 bool fragstolen = false;
6246
6247 if (tcp_checksum_complete(skb))
6248 goto csum_error;
6249
6250 if ((int)skb->truesize > sk->sk_forward_alloc)
6251 goto step5;
6252
6253 /* Predicted packet is in window by definition.
6254 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
6255 * Hence, check seq<=rcv_wup reduces to:
6256 */
6257 if (tcp_header_len ==
6258 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
6259 tp->rcv_nxt == tp->rcv_wup)
6260 flag |= __tcp_replace_ts_recent(tp,
6261 delta);
6262
6263 tcp_rcv_rtt_measure_ts(sk, skb);
6264
6265 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
6266
6267 /* Bulk data transfer: receiver */
6268 tcp_cleanup_skb(skb);
6269 __skb_pull(skb, tcp_header_len);
6270 eaten = tcp_queue_rcv(sk, skb, &fragstolen);
6271
6272 tcp_event_data_recv(sk, skb);
6273
6274 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
6275 /* Well, only one small jumplet in fast path... */
6276 tcp_ack(sk, skb, flag | FLAG_DATA);
6277 tcp_data_snd_check(sk);
6278 if (!inet_csk_ack_scheduled(sk))
6279 goto no_ack;
6280 } else {
6281 tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
6282 }
6283
6284 __tcp_ack_snd_check(sk, 0);
6285 no_ack:
6286 if (eaten)
6287 kfree_skb_partial(skb, fragstolen);
6288 tcp_data_ready(sk);
6289 return;
6290 }
6291 }
6292
6293 slow_path:
6294 if (len < (th->doff << 2) || tcp_checksum_complete(skb))
6295 goto csum_error;
6296
6297 if (!th->ack && !th->rst && !th->syn) {
6298 reason = SKB_DROP_REASON_TCP_FLAGS;
6299 goto discard;
6300 }
6301
6302 /*
6303 * Standard slow path.
6304 */
6305
6306 if (!tcp_validate_incoming(sk, skb, th, 1))
6307 return;
6308
6309 step5:
6310 reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT);
6311 if ((int)reason < 0) {
6312 reason = -reason;
6313 goto discard;
6314 }
6315 tcp_rcv_rtt_measure_ts(sk, skb);
6316
6317 /* Process urgent data. */
6318 tcp_urg(sk, skb, th);
6319
6320 /* step 7: process the segment text */
6321 tcp_data_queue(sk, skb);
6322
6323 tcp_data_snd_check(sk);
6324 tcp_ack_snd_check(sk);
6325 return;
6326
6327 csum_error:
6328 reason = SKB_DROP_REASON_TCP_CSUM;
6329 trace_tcp_bad_csum(skb);
6330 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
6331 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6332
6333 discard:
6334 tcp_drop_reason(sk, skb, reason);
6335 }
6336 EXPORT_IPV6_MOD(tcp_rcv_established);
6337
tcp_init_transfer(struct sock * sk,int bpf_op,struct sk_buff * skb)6338 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb)
6339 {
6340 struct inet_connection_sock *icsk = inet_csk(sk);
6341 struct tcp_sock *tp = tcp_sk(sk);
6342
6343 tcp_mtup_init(sk);
6344 icsk->icsk_af_ops->rebuild_header(sk);
6345 tcp_init_metrics(sk);
6346
6347 /* Initialize the congestion window to start the transfer.
6348 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
6349 * retransmitted. In light of RFC6298 more aggressive 1sec
6350 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
6351 * retransmission has occurred.
6352 */
6353 if (tp->total_retrans > 1 && tp->undo_marker)
6354 tcp_snd_cwnd_set(tp, 1);
6355 else
6356 tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk)));
6357 tp->snd_cwnd_stamp = tcp_jiffies32;
6358
6359 bpf_skops_established(sk, bpf_op, skb);
6360 /* Initialize congestion control unless BPF initialized it already: */
6361 if (!icsk->icsk_ca_initialized)
6362 tcp_init_congestion_control(sk);
6363 tcp_init_buffer_space(sk);
6364 }
6365
tcp_finish_connect(struct sock * sk,struct sk_buff * skb)6366 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
6367 {
6368 struct tcp_sock *tp = tcp_sk(sk);
6369 struct inet_connection_sock *icsk = inet_csk(sk);
6370
6371 tcp_ao_finish_connect(sk, skb);
6372 tcp_set_state(sk, TCP_ESTABLISHED);
6373 icsk->icsk_ack.lrcvtime = tcp_jiffies32;
6374
6375 if (skb) {
6376 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
6377 security_inet_conn_established(sk, skb);
6378 sk_mark_napi_id(sk, skb);
6379 }
6380
6381 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb);
6382
6383 /* Prevent spurious tcp_cwnd_restart() on first data
6384 * packet.
6385 */
6386 tp->lsndtime = tcp_jiffies32;
6387
6388 if (sock_flag(sk, SOCK_KEEPOPEN))
6389 tcp_reset_keepalive_timer(sk, keepalive_time_when(tp));
6390
6391 if (!tp->rx_opt.snd_wscale)
6392 __tcp_fast_path_on(tp, tp->snd_wnd);
6393 else
6394 tp->pred_flags = 0;
6395 }
6396
tcp_rcv_fastopen_synack(struct sock * sk,struct sk_buff * synack,struct tcp_fastopen_cookie * cookie)6397 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
6398 struct tcp_fastopen_cookie *cookie)
6399 {
6400 struct tcp_sock *tp = tcp_sk(sk);
6401 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
6402 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
6403 bool syn_drop = false;
6404
6405 if (mss == tp->rx_opt.user_mss) {
6406 struct tcp_options_received opt;
6407
6408 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
6409 tcp_clear_options(&opt);
6410 opt.user_mss = opt.mss_clamp = 0;
6411 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
6412 mss = opt.mss_clamp;
6413 }
6414
6415 if (!tp->syn_fastopen) {
6416 /* Ignore an unsolicited cookie */
6417 cookie->len = -1;
6418 } else if (tp->total_retrans) {
6419 /* SYN timed out and the SYN-ACK neither has a cookie nor
6420 * acknowledges data. Presumably the remote received only
6421 * the retransmitted (regular) SYNs: either the original
6422 * SYN-data or the corresponding SYN-ACK was dropped.
6423 */
6424 syn_drop = (cookie->len < 0 && data);
6425 } else if (cookie->len < 0 && !tp->syn_data) {
6426 /* We requested a cookie but didn't get it. If we did not use
6427 * the (old) exp opt format then try so next time (try_exp=1).
6428 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
6429 */
6430 try_exp = tp->syn_fastopen_exp ? 2 : 1;
6431 }
6432
6433 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
6434
6435 if (data) { /* Retransmit unacked data in SYN */
6436 if (tp->total_retrans)
6437 tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
6438 else
6439 tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
6440 skb_rbtree_walk_from(data)
6441 tcp_mark_skb_lost(sk, data);
6442 tcp_non_congestion_loss_retransmit(sk);
6443 NET_INC_STATS(sock_net(sk),
6444 LINUX_MIB_TCPFASTOPENACTIVEFAIL);
6445 return true;
6446 }
6447 tp->syn_data_acked = tp->syn_data;
6448 if (tp->syn_data_acked) {
6449 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
6450 /* SYN-data is counted as two separate packets in tcp_ack() */
6451 if (tp->delivered > 1)
6452 --tp->delivered;
6453 }
6454
6455 tcp_fastopen_add_skb(sk, synack);
6456
6457 return false;
6458 }
6459
smc_check_reset_syn(struct tcp_sock * tp)6460 static void smc_check_reset_syn(struct tcp_sock *tp)
6461 {
6462 #if IS_ENABLED(CONFIG_SMC)
6463 if (static_branch_unlikely(&tcp_have_smc)) {
6464 if (tp->syn_smc && !tp->rx_opt.smc_ok)
6465 tp->syn_smc = 0;
6466 }
6467 #endif
6468 }
6469
tcp_try_undo_spurious_syn(struct sock * sk)6470 static void tcp_try_undo_spurious_syn(struct sock *sk)
6471 {
6472 struct tcp_sock *tp = tcp_sk(sk);
6473 u32 syn_stamp;
6474
6475 /* undo_marker is set when SYN or SYNACK times out. The timeout is
6476 * spurious if the ACK's timestamp option echo value matches the
6477 * original SYN timestamp.
6478 */
6479 syn_stamp = tp->retrans_stamp;
6480 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
6481 syn_stamp == tp->rx_opt.rcv_tsecr)
6482 tp->undo_marker = 0;
6483 }
6484
tcp_rcv_synsent_state_process(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)6485 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
6486 const struct tcphdr *th)
6487 {
6488 struct inet_connection_sock *icsk = inet_csk(sk);
6489 struct tcp_sock *tp = tcp_sk(sk);
6490 struct tcp_fastopen_cookie foc = { .len = -1 };
6491 int saved_clamp = tp->rx_opt.mss_clamp;
6492 bool fastopen_fail;
6493 SKB_DR(reason);
6494
6495 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
6496 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
6497 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
6498
6499 if (th->ack) {
6500 /* rfc793:
6501 * "If the state is SYN-SENT then
6502 * first check the ACK bit
6503 * If the ACK bit is set
6504 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6505 * a reset (unless the RST bit is set, if so drop
6506 * the segment and return)"
6507 */
6508 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
6509 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6510 /* Previous FIN/ACK or RST/ACK might be ignored. */
6511 if (icsk->icsk_retransmits == 0)
6512 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
6513 TCP_TIMEOUT_MIN, false);
6514 SKB_DR_SET(reason, TCP_INVALID_ACK_SEQUENCE);
6515 goto reset_and_undo;
6516 }
6517
6518 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
6519 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
6520 tcp_time_stamp_ts(tp))) {
6521 NET_INC_STATS(sock_net(sk),
6522 LINUX_MIB_PAWSACTIVEREJECTED);
6523 SKB_DR_SET(reason, TCP_RFC7323_PAWS);
6524 goto reset_and_undo;
6525 }
6526
6527 /* Now ACK is acceptable.
6528 *
6529 * "If the RST bit is set
6530 * If the ACK was acceptable then signal the user "error:
6531 * connection reset", drop the segment, enter CLOSED state,
6532 * delete TCB, and return."
6533 */
6534
6535 if (th->rst) {
6536 tcp_reset(sk, skb);
6537 consume:
6538 __kfree_skb(skb);
6539 return 0;
6540 }
6541
6542 /* rfc793:
6543 * "fifth, if neither of the SYN or RST bits is set then
6544 * drop the segment and return."
6545 *
6546 * See note below!
6547 * --ANK(990513)
6548 */
6549 if (!th->syn) {
6550 SKB_DR_SET(reason, TCP_FLAGS);
6551 goto discard_and_undo;
6552 }
6553 /* rfc793:
6554 * "If the SYN bit is on ...
6555 * are acceptable then ...
6556 * (our SYN has been ACKed), change the connection
6557 * state to ESTABLISHED..."
6558 */
6559
6560 tcp_ecn_rcv_synack(tp, th);
6561
6562 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6563 tcp_try_undo_spurious_syn(sk);
6564 tcp_ack(sk, skb, FLAG_SLOWPATH);
6565
6566 /* Ok.. it's good. Set up sequence numbers and
6567 * move to established.
6568 */
6569 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6570 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6571
6572 /* RFC1323: The window in SYN & SYN/ACK segments is
6573 * never scaled.
6574 */
6575 tp->snd_wnd = ntohs(th->window);
6576
6577 if (!tp->rx_opt.wscale_ok) {
6578 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6579 WRITE_ONCE(tp->window_clamp,
6580 min(tp->window_clamp, 65535U));
6581 }
6582
6583 if (tp->rx_opt.saw_tstamp) {
6584 tp->rx_opt.tstamp_ok = 1;
6585 tp->tcp_header_len =
6586 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6587 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6588 tcp_store_ts_recent(tp);
6589 } else {
6590 tp->tcp_header_len = sizeof(struct tcphdr);
6591 }
6592
6593 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6594 tcp_initialize_rcv_mss(sk);
6595
6596 /* Remember, tcp_poll() does not lock socket!
6597 * Change state from SYN-SENT only after copied_seq
6598 * is initialized. */
6599 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6600
6601 smc_check_reset_syn(tp);
6602
6603 smp_mb();
6604
6605 tcp_finish_connect(sk, skb);
6606
6607 fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6608 tcp_rcv_fastopen_synack(sk, skb, &foc);
6609
6610 if (!sock_flag(sk, SOCK_DEAD)) {
6611 sk->sk_state_change(sk);
6612 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6613 }
6614 if (fastopen_fail)
6615 return -1;
6616 if (sk->sk_write_pending ||
6617 READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept) ||
6618 inet_csk_in_pingpong_mode(sk)) {
6619 /* Save one ACK. Data will be ready after
6620 * several ticks, if write_pending is set.
6621 *
6622 * It may be deleted, but with this feature tcpdumps
6623 * look so _wonderfully_ clever, that I was not able
6624 * to stand against the temptation 8) --ANK
6625 */
6626 inet_csk_schedule_ack(sk);
6627 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6628 tcp_reset_xmit_timer(sk, ICSK_TIME_DACK,
6629 TCP_DELACK_MAX, false);
6630 goto consume;
6631 }
6632 tcp_send_ack(sk);
6633 return -1;
6634 }
6635
6636 /* No ACK in the segment */
6637
6638 if (th->rst) {
6639 /* rfc793:
6640 * "If the RST bit is set
6641 *
6642 * Otherwise (no ACK) drop the segment and return."
6643 */
6644 SKB_DR_SET(reason, TCP_RESET);
6645 goto discard_and_undo;
6646 }
6647
6648 /* PAWS check. */
6649 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6650 tcp_paws_reject(&tp->rx_opt, 0)) {
6651 SKB_DR_SET(reason, TCP_RFC7323_PAWS);
6652 goto discard_and_undo;
6653 }
6654 if (th->syn) {
6655 /* We see SYN without ACK. It is attempt of
6656 * simultaneous connect with crossed SYNs.
6657 * Particularly, it can be connect to self.
6658 */
6659 #ifdef CONFIG_TCP_AO
6660 struct tcp_ao_info *ao;
6661
6662 ao = rcu_dereference_protected(tp->ao_info,
6663 lockdep_sock_is_held(sk));
6664 if (ao) {
6665 WRITE_ONCE(ao->risn, th->seq);
6666 ao->rcv_sne = 0;
6667 }
6668 #endif
6669 tcp_set_state(sk, TCP_SYN_RECV);
6670
6671 if (tp->rx_opt.saw_tstamp) {
6672 tp->rx_opt.tstamp_ok = 1;
6673 tcp_store_ts_recent(tp);
6674 tp->tcp_header_len =
6675 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6676 } else {
6677 tp->tcp_header_len = sizeof(struct tcphdr);
6678 }
6679
6680 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6681 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6682 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6683
6684 /* RFC1323: The window in SYN & SYN/ACK segments is
6685 * never scaled.
6686 */
6687 tp->snd_wnd = ntohs(th->window);
6688 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
6689 tp->max_window = tp->snd_wnd;
6690
6691 tcp_ecn_rcv_syn(tp, th);
6692
6693 tcp_mtup_init(sk);
6694 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6695 tcp_initialize_rcv_mss(sk);
6696
6697 tcp_send_synack(sk);
6698 #if 0
6699 /* Note, we could accept data and URG from this segment.
6700 * There are no obstacles to make this (except that we must
6701 * either change tcp_recvmsg() to prevent it from returning data
6702 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6703 *
6704 * However, if we ignore data in ACKless segments sometimes,
6705 * we have no reasons to accept it sometimes.
6706 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6707 * is not flawless. So, discard packet for sanity.
6708 * Uncomment this return to process the data.
6709 */
6710 return -1;
6711 #else
6712 goto consume;
6713 #endif
6714 }
6715 /* "fifth, if neither of the SYN or RST bits is set then
6716 * drop the segment and return."
6717 */
6718
6719 discard_and_undo:
6720 tcp_clear_options(&tp->rx_opt);
6721 tp->rx_opt.mss_clamp = saved_clamp;
6722 tcp_drop_reason(sk, skb, reason);
6723 return 0;
6724
6725 reset_and_undo:
6726 tcp_clear_options(&tp->rx_opt);
6727 tp->rx_opt.mss_clamp = saved_clamp;
6728 /* we can reuse/return @reason to its caller to handle the exception */
6729 return reason;
6730 }
6731
tcp_rcv_synrecv_state_fastopen(struct sock * sk)6732 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6733 {
6734 struct tcp_sock *tp = tcp_sk(sk);
6735 struct request_sock *req;
6736
6737 /* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6738 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6739 */
6740 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss && !tp->packets_out)
6741 tcp_try_undo_recovery(sk);
6742
6743 tcp_update_rto_time(tp);
6744 inet_csk(sk)->icsk_retransmits = 0;
6745 /* In tcp_fastopen_synack_timer() on the first SYNACK RTO we set
6746 * retrans_stamp but don't enter CA_Loss, so in case that happened we
6747 * need to zero retrans_stamp here to prevent spurious
6748 * retransmits_timed_out(). However, if the ACK of our SYNACK caused us
6749 * to enter CA_Recovery then we need to leave retrans_stamp as it was
6750 * set entering CA_Recovery, for correct retransmits_timed_out() and
6751 * undo behavior.
6752 */
6753 tcp_retrans_stamp_cleanup(sk);
6754
6755 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6756 * we no longer need req so release it.
6757 */
6758 req = rcu_dereference_protected(tp->fastopen_rsk,
6759 lockdep_sock_is_held(sk));
6760 reqsk_fastopen_remove(sk, req, false);
6761
6762 /* Re-arm the timer because data may have been sent out.
6763 * This is similar to the regular data transmission case
6764 * when new data has just been ack'ed.
6765 *
6766 * (TFO) - we could try to be more aggressive and
6767 * retransmitting any data sooner based on when they
6768 * are sent out.
6769 */
6770 tcp_rearm_rto(sk);
6771 }
6772
6773 /*
6774 * This function implements the receiving procedure of RFC 793 for
6775 * all states except ESTABLISHED and TIME_WAIT.
6776 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6777 * address independent.
6778 */
6779
6780 enum skb_drop_reason
tcp_rcv_state_process(struct sock * sk,struct sk_buff * skb)6781 tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6782 {
6783 struct tcp_sock *tp = tcp_sk(sk);
6784 struct inet_connection_sock *icsk = inet_csk(sk);
6785 const struct tcphdr *th = tcp_hdr(skb);
6786 struct request_sock *req;
6787 int queued = 0;
6788 SKB_DR(reason);
6789
6790 switch (sk->sk_state) {
6791 case TCP_CLOSE:
6792 SKB_DR_SET(reason, TCP_CLOSE);
6793 goto discard;
6794
6795 case TCP_LISTEN:
6796 if (th->ack)
6797 return SKB_DROP_REASON_TCP_FLAGS;
6798
6799 if (th->rst) {
6800 SKB_DR_SET(reason, TCP_RESET);
6801 goto discard;
6802 }
6803 if (th->syn) {
6804 if (th->fin) {
6805 SKB_DR_SET(reason, TCP_FLAGS);
6806 goto discard;
6807 }
6808 /* It is possible that we process SYN packets from backlog,
6809 * so we need to make sure to disable BH and RCU right there.
6810 */
6811 rcu_read_lock();
6812 local_bh_disable();
6813 icsk->icsk_af_ops->conn_request(sk, skb);
6814 local_bh_enable();
6815 rcu_read_unlock();
6816
6817 consume_skb(skb);
6818 return 0;
6819 }
6820 SKB_DR_SET(reason, TCP_FLAGS);
6821 goto discard;
6822
6823 case TCP_SYN_SENT:
6824 tp->rx_opt.saw_tstamp = 0;
6825 tcp_mstamp_refresh(tp);
6826 queued = tcp_rcv_synsent_state_process(sk, skb, th);
6827 if (queued >= 0)
6828 return queued;
6829
6830 /* Do step6 onward by hand. */
6831 tcp_urg(sk, skb, th);
6832 __kfree_skb(skb);
6833 tcp_data_snd_check(sk);
6834 return 0;
6835 }
6836
6837 tcp_mstamp_refresh(tp);
6838 tp->rx_opt.saw_tstamp = 0;
6839 req = rcu_dereference_protected(tp->fastopen_rsk,
6840 lockdep_sock_is_held(sk));
6841 if (req) {
6842 bool req_stolen;
6843
6844 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6845 sk->sk_state != TCP_FIN_WAIT1);
6846
6847 SKB_DR_SET(reason, TCP_FASTOPEN);
6848 if (!tcp_check_req(sk, skb, req, true, &req_stolen, &reason))
6849 goto discard;
6850 }
6851
6852 if (!th->ack && !th->rst && !th->syn) {
6853 SKB_DR_SET(reason, TCP_FLAGS);
6854 goto discard;
6855 }
6856 if (!tcp_validate_incoming(sk, skb, th, 0))
6857 return 0;
6858
6859 /* step 5: check the ACK field */
6860 reason = tcp_ack(sk, skb, FLAG_SLOWPATH |
6861 FLAG_UPDATE_TS_RECENT |
6862 FLAG_NO_CHALLENGE_ACK);
6863
6864 if ((int)reason <= 0) {
6865 if (sk->sk_state == TCP_SYN_RECV) {
6866 /* send one RST */
6867 if (!reason)
6868 return SKB_DROP_REASON_TCP_OLD_ACK;
6869 return -reason;
6870 }
6871 /* accept old ack during closing */
6872 if ((int)reason < 0) {
6873 tcp_send_challenge_ack(sk);
6874 reason = -reason;
6875 goto discard;
6876 }
6877 }
6878 SKB_DR_SET(reason, NOT_SPECIFIED);
6879 switch (sk->sk_state) {
6880 case TCP_SYN_RECV:
6881 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6882 if (!tp->srtt_us)
6883 tcp_synack_rtt_meas(sk, req);
6884
6885 if (tp->rx_opt.tstamp_ok)
6886 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6887
6888 if (req) {
6889 tcp_rcv_synrecv_state_fastopen(sk);
6890 } else {
6891 tcp_try_undo_spurious_syn(sk);
6892 tp->retrans_stamp = 0;
6893 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,
6894 skb);
6895 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6896 }
6897 tcp_ao_established(sk);
6898 smp_mb();
6899 tcp_set_state(sk, TCP_ESTABLISHED);
6900 sk->sk_state_change(sk);
6901
6902 /* Note, that this wakeup is only for marginal crossed SYN case.
6903 * Passively open sockets are not waked up, because
6904 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6905 */
6906 if (sk->sk_socket)
6907 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6908
6909 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6910 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6911 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6912
6913 if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6914 tcp_update_pacing_rate(sk);
6915
6916 /* Prevent spurious tcp_cwnd_restart() on first data packet */
6917 tp->lsndtime = tcp_jiffies32;
6918
6919 tcp_initialize_rcv_mss(sk);
6920 tcp_fast_path_on(tp);
6921 if (sk->sk_shutdown & SEND_SHUTDOWN)
6922 tcp_shutdown(sk, SEND_SHUTDOWN);
6923 break;
6924
6925 case TCP_FIN_WAIT1: {
6926 int tmo;
6927
6928 if (req)
6929 tcp_rcv_synrecv_state_fastopen(sk);
6930
6931 if (tp->snd_una != tp->write_seq)
6932 break;
6933
6934 tcp_set_state(sk, TCP_FIN_WAIT2);
6935 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN);
6936
6937 sk_dst_confirm(sk);
6938
6939 if (!sock_flag(sk, SOCK_DEAD)) {
6940 /* Wake up lingering close() */
6941 sk->sk_state_change(sk);
6942 break;
6943 }
6944
6945 if (READ_ONCE(tp->linger2) < 0) {
6946 tcp_done(sk);
6947 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6948 return SKB_DROP_REASON_TCP_ABORT_ON_DATA;
6949 }
6950 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6951 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6952 /* Receive out of order FIN after close() */
6953 if (tp->syn_fastopen && th->fin)
6954 tcp_fastopen_active_disable(sk);
6955 tcp_done(sk);
6956 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6957 return SKB_DROP_REASON_TCP_ABORT_ON_DATA;
6958 }
6959
6960 tmo = tcp_fin_time(sk);
6961 if (tmo > TCP_TIMEWAIT_LEN) {
6962 tcp_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6963 } else if (th->fin || sock_owned_by_user(sk)) {
6964 /* Bad case. We could lose such FIN otherwise.
6965 * It is not a big problem, but it looks confusing
6966 * and not so rare event. We still can lose it now,
6967 * if it spins in bh_lock_sock(), but it is really
6968 * marginal case.
6969 */
6970 tcp_reset_keepalive_timer(sk, tmo);
6971 } else {
6972 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6973 goto consume;
6974 }
6975 break;
6976 }
6977
6978 case TCP_CLOSING:
6979 if (tp->snd_una == tp->write_seq) {
6980 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6981 goto consume;
6982 }
6983 break;
6984
6985 case TCP_LAST_ACK:
6986 if (tp->snd_una == tp->write_seq) {
6987 tcp_update_metrics(sk);
6988 tcp_done(sk);
6989 goto consume;
6990 }
6991 break;
6992 }
6993
6994 /* step 6: check the URG bit */
6995 tcp_urg(sk, skb, th);
6996
6997 /* step 7: process the segment text */
6998 switch (sk->sk_state) {
6999 case TCP_CLOSE_WAIT:
7000 case TCP_CLOSING:
7001 case TCP_LAST_ACK:
7002 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
7003 /* If a subflow has been reset, the packet should not
7004 * continue to be processed, drop the packet.
7005 */
7006 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb))
7007 goto discard;
7008 break;
7009 }
7010 fallthrough;
7011 case TCP_FIN_WAIT1:
7012 case TCP_FIN_WAIT2:
7013 /* RFC 793 says to queue data in these states,
7014 * RFC 1122 says we MUST send a reset.
7015 * BSD 4.4 also does reset.
7016 */
7017 if (sk->sk_shutdown & RCV_SHUTDOWN) {
7018 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
7019 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
7020 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
7021 tcp_reset(sk, skb);
7022 return SKB_DROP_REASON_TCP_ABORT_ON_DATA;
7023 }
7024 }
7025 fallthrough;
7026 case TCP_ESTABLISHED:
7027 tcp_data_queue(sk, skb);
7028 queued = 1;
7029 break;
7030 }
7031
7032 /* tcp_data could move socket to TIME-WAIT */
7033 if (sk->sk_state != TCP_CLOSE) {
7034 tcp_data_snd_check(sk);
7035 tcp_ack_snd_check(sk);
7036 }
7037
7038 if (!queued) {
7039 discard:
7040 tcp_drop_reason(sk, skb, reason);
7041 }
7042 return 0;
7043
7044 consume:
7045 __kfree_skb(skb);
7046 return 0;
7047 }
7048 EXPORT_IPV6_MOD(tcp_rcv_state_process);
7049
pr_drop_req(struct request_sock * req,__u16 port,int family)7050 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
7051 {
7052 struct inet_request_sock *ireq = inet_rsk(req);
7053
7054 if (family == AF_INET)
7055 net_dbg_ratelimited("drop open request from %pI4/%u\n",
7056 &ireq->ir_rmt_addr, port);
7057 #if IS_ENABLED(CONFIG_IPV6)
7058 else if (family == AF_INET6)
7059 net_dbg_ratelimited("drop open request from %pI6/%u\n",
7060 &ireq->ir_v6_rmt_addr, port);
7061 #endif
7062 }
7063
7064 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
7065 *
7066 * If we receive a SYN packet with these bits set, it means a
7067 * network is playing bad games with TOS bits. In order to
7068 * avoid possible false congestion notifications, we disable
7069 * TCP ECN negotiation.
7070 *
7071 * Exception: tcp_ca wants ECN. This is required for DCTCP
7072 * congestion control: Linux DCTCP asserts ECT on all packets,
7073 * including SYN, which is most optimal solution; however,
7074 * others, such as FreeBSD do not.
7075 *
7076 * Exception: At least one of the reserved bits of the TCP header (th->res1) is
7077 * set, indicating the use of a future TCP extension (such as AccECN). See
7078 * RFC8311 §4.3 which updates RFC3168 to allow the development of such
7079 * extensions.
7080 */
tcp_ecn_create_request(struct request_sock * req,const struct sk_buff * skb,const struct sock * listen_sk,const struct dst_entry * dst)7081 static void tcp_ecn_create_request(struct request_sock *req,
7082 const struct sk_buff *skb,
7083 const struct sock *listen_sk,
7084 const struct dst_entry *dst)
7085 {
7086 const struct tcphdr *th = tcp_hdr(skb);
7087 const struct net *net = sock_net(listen_sk);
7088 bool th_ecn = th->ece && th->cwr;
7089 bool ect, ecn_ok;
7090 u32 ecn_ok_dst;
7091
7092 if (!th_ecn)
7093 return;
7094
7095 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
7096 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
7097 ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst;
7098
7099 if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
7100 (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
7101 tcp_bpf_ca_needs_ecn((struct sock *)req))
7102 inet_rsk(req)->ecn_ok = 1;
7103 }
7104
tcp_openreq_init(struct request_sock * req,const struct tcp_options_received * rx_opt,struct sk_buff * skb,const struct sock * sk)7105 static void tcp_openreq_init(struct request_sock *req,
7106 const struct tcp_options_received *rx_opt,
7107 struct sk_buff *skb, const struct sock *sk)
7108 {
7109 struct inet_request_sock *ireq = inet_rsk(req);
7110
7111 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
7112 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
7113 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
7114 tcp_rsk(req)->snt_synack = 0;
7115 tcp_rsk(req)->snt_tsval_first = 0;
7116 tcp_rsk(req)->last_oow_ack_time = 0;
7117 req->mss = rx_opt->mss_clamp;
7118 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
7119 ireq->tstamp_ok = rx_opt->tstamp_ok;
7120 ireq->sack_ok = rx_opt->sack_ok;
7121 ireq->snd_wscale = rx_opt->snd_wscale;
7122 ireq->wscale_ok = rx_opt->wscale_ok;
7123 ireq->acked = 0;
7124 ireq->ecn_ok = 0;
7125 ireq->ir_rmt_port = tcp_hdr(skb)->source;
7126 ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
7127 ireq->ir_mark = inet_request_mark(sk, skb);
7128 #if IS_ENABLED(CONFIG_SMC)
7129 ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested &&
7130 tcp_sk(sk)->smc_hs_congested(sk));
7131 #endif
7132 }
7133
7134 /*
7135 * Return true if a syncookie should be sent
7136 */
tcp_syn_flood_action(struct sock * sk,const char * proto)7137 static bool tcp_syn_flood_action(struct sock *sk, const char *proto)
7138 {
7139 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
7140 const char *msg = "Dropping request";
7141 struct net *net = sock_net(sk);
7142 bool want_cookie = false;
7143 u8 syncookies;
7144
7145 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
7146
7147 #ifdef CONFIG_SYN_COOKIES
7148 if (syncookies) {
7149 msg = "Sending cookies";
7150 want_cookie = true;
7151 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
7152 } else
7153 #endif
7154 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
7155
7156 if (!READ_ONCE(queue->synflood_warned) && syncookies != 2 &&
7157 xchg(&queue->synflood_warned, 1) == 0) {
7158 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_family == AF_INET6) {
7159 net_info_ratelimited("%s: Possible SYN flooding on port [%pI6c]:%u. %s.\n",
7160 proto, inet6_rcv_saddr(sk),
7161 sk->sk_num, msg);
7162 } else {
7163 net_info_ratelimited("%s: Possible SYN flooding on port %pI4:%u. %s.\n",
7164 proto, &sk->sk_rcv_saddr,
7165 sk->sk_num, msg);
7166 }
7167 }
7168
7169 return want_cookie;
7170 }
7171
tcp_reqsk_record_syn(const struct sock * sk,struct request_sock * req,const struct sk_buff * skb)7172 static void tcp_reqsk_record_syn(const struct sock *sk,
7173 struct request_sock *req,
7174 const struct sk_buff *skb)
7175 {
7176 if (tcp_sk(sk)->save_syn) {
7177 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
7178 struct saved_syn *saved_syn;
7179 u32 mac_hdrlen;
7180 void *base;
7181
7182 if (tcp_sk(sk)->save_syn == 2) { /* Save full header. */
7183 base = skb_mac_header(skb);
7184 mac_hdrlen = skb_mac_header_len(skb);
7185 len += mac_hdrlen;
7186 } else {
7187 base = skb_network_header(skb);
7188 mac_hdrlen = 0;
7189 }
7190
7191 saved_syn = kmalloc(struct_size(saved_syn, data, len),
7192 GFP_ATOMIC);
7193 if (saved_syn) {
7194 saved_syn->mac_hdrlen = mac_hdrlen;
7195 saved_syn->network_hdrlen = skb_network_header_len(skb);
7196 saved_syn->tcp_hdrlen = tcp_hdrlen(skb);
7197 memcpy(saved_syn->data, base, len);
7198 req->saved_syn = saved_syn;
7199 }
7200 }
7201 }
7202
7203 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
7204 * used for SYN cookie generation.
7205 */
tcp_get_syncookie_mss(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct tcphdr * th)7206 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
7207 const struct tcp_request_sock_ops *af_ops,
7208 struct sock *sk, struct tcphdr *th)
7209 {
7210 struct tcp_sock *tp = tcp_sk(sk);
7211 u16 mss;
7212
7213 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 &&
7214 !inet_csk_reqsk_queue_is_full(sk))
7215 return 0;
7216
7217 if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
7218 return 0;
7219
7220 if (sk_acceptq_is_full(sk)) {
7221 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
7222 return 0;
7223 }
7224
7225 mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
7226 if (!mss)
7227 mss = af_ops->mss_clamp;
7228
7229 return mss;
7230 }
7231 EXPORT_IPV6_MOD_GPL(tcp_get_syncookie_mss);
7232
tcp_conn_request(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct sk_buff * skb)7233 int tcp_conn_request(struct request_sock_ops *rsk_ops,
7234 const struct tcp_request_sock_ops *af_ops,
7235 struct sock *sk, struct sk_buff *skb)
7236 {
7237 struct tcp_fastopen_cookie foc = { .len = -1 };
7238 struct tcp_options_received tmp_opt;
7239 struct tcp_sock *tp = tcp_sk(sk);
7240 struct net *net = sock_net(sk);
7241 struct sock *fastopen_sk = NULL;
7242 struct request_sock *req;
7243 bool want_cookie = false;
7244 struct dst_entry *dst;
7245 struct flowi fl;
7246 u8 syncookies;
7247 u32 isn;
7248
7249 #ifdef CONFIG_TCP_AO
7250 const struct tcp_ao_hdr *aoh;
7251 #endif
7252
7253 isn = __this_cpu_read(tcp_tw_isn);
7254 if (isn) {
7255 /* TW buckets are converted to open requests without
7256 * limitations, they conserve resources and peer is
7257 * evidently real one.
7258 */
7259 __this_cpu_write(tcp_tw_isn, 0);
7260 } else {
7261 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
7262
7263 if (syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) {
7264 want_cookie = tcp_syn_flood_action(sk,
7265 rsk_ops->slab_name);
7266 if (!want_cookie)
7267 goto drop;
7268 }
7269 }
7270
7271 if (sk_acceptq_is_full(sk)) {
7272 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
7273 goto drop;
7274 }
7275
7276 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
7277 if (!req)
7278 goto drop;
7279
7280 req->syncookie = want_cookie;
7281 tcp_rsk(req)->af_specific = af_ops;
7282 tcp_rsk(req)->ts_off = 0;
7283 tcp_rsk(req)->req_usec_ts = false;
7284 #if IS_ENABLED(CONFIG_MPTCP)
7285 tcp_rsk(req)->is_mptcp = 0;
7286 #endif
7287
7288 tcp_clear_options(&tmp_opt);
7289 tmp_opt.mss_clamp = af_ops->mss_clamp;
7290 tmp_opt.user_mss = tp->rx_opt.user_mss;
7291 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
7292 want_cookie ? NULL : &foc);
7293
7294 if (want_cookie && !tmp_opt.saw_tstamp)
7295 tcp_clear_options(&tmp_opt);
7296
7297 if (IS_ENABLED(CONFIG_SMC) && want_cookie)
7298 tmp_opt.smc_ok = 0;
7299
7300 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
7301 tcp_openreq_init(req, &tmp_opt, skb, sk);
7302 inet_rsk(req)->no_srccheck = inet_test_bit(TRANSPARENT, sk);
7303
7304 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
7305 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
7306
7307 dst = af_ops->route_req(sk, skb, &fl, req, isn);
7308 if (!dst)
7309 goto drop_and_free;
7310
7311 if (tmp_opt.tstamp_ok) {
7312 tcp_rsk(req)->req_usec_ts = dst_tcp_usec_ts(dst);
7313 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
7314 }
7315 if (!want_cookie && !isn) {
7316 int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog);
7317
7318 /* Kill the following clause, if you dislike this way. */
7319 if (!syncookies &&
7320 (max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
7321 (max_syn_backlog >> 2)) &&
7322 !tcp_peer_is_proven(req, dst)) {
7323 /* Without syncookies last quarter of
7324 * backlog is filled with destinations,
7325 * proven to be alive.
7326 * It means that we continue to communicate
7327 * to destinations, already remembered
7328 * to the moment of synflood.
7329 */
7330 pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
7331 rsk_ops->family);
7332 goto drop_and_release;
7333 }
7334
7335 isn = af_ops->init_seq(skb);
7336 }
7337
7338 tcp_ecn_create_request(req, skb, sk, dst);
7339
7340 if (want_cookie) {
7341 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
7342 if (!tmp_opt.tstamp_ok)
7343 inet_rsk(req)->ecn_ok = 0;
7344 }
7345
7346 #ifdef CONFIG_TCP_AO
7347 if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh))
7348 goto drop_and_release; /* Invalid TCP options */
7349 if (aoh) {
7350 tcp_rsk(req)->used_tcp_ao = true;
7351 tcp_rsk(req)->ao_rcv_next = aoh->keyid;
7352 tcp_rsk(req)->ao_keyid = aoh->rnext_keyid;
7353
7354 } else {
7355 tcp_rsk(req)->used_tcp_ao = false;
7356 }
7357 #endif
7358 tcp_rsk(req)->snt_isn = isn;
7359 tcp_rsk(req)->txhash = net_tx_rndhash();
7360 tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
7361 tcp_openreq_init_rwin(req, sk, dst);
7362 sk_rx_queue_set(req_to_sk(req), skb);
7363 if (!want_cookie) {
7364 tcp_reqsk_record_syn(sk, req, skb);
7365 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
7366 }
7367 if (fastopen_sk) {
7368 af_ops->send_synack(fastopen_sk, dst, &fl, req,
7369 &foc, TCP_SYNACK_FASTOPEN, skb);
7370 /* Add the child socket directly into the accept queue */
7371 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
7372 reqsk_fastopen_remove(fastopen_sk, req, false);
7373 bh_unlock_sock(fastopen_sk);
7374 sock_put(fastopen_sk);
7375 goto drop_and_free;
7376 }
7377 sk->sk_data_ready(sk);
7378 bh_unlock_sock(fastopen_sk);
7379 sock_put(fastopen_sk);
7380 } else {
7381 tcp_rsk(req)->tfo_listener = false;
7382 if (!want_cookie) {
7383 req->timeout = tcp_timeout_init((struct sock *)req);
7384 if (unlikely(!inet_csk_reqsk_queue_hash_add(sk, req,
7385 req->timeout))) {
7386 reqsk_free(req);
7387 dst_release(dst);
7388 return 0;
7389 }
7390
7391 }
7392 af_ops->send_synack(sk, dst, &fl, req, &foc,
7393 !want_cookie ? TCP_SYNACK_NORMAL :
7394 TCP_SYNACK_COOKIE,
7395 skb);
7396 if (want_cookie) {
7397 reqsk_free(req);
7398 return 0;
7399 }
7400 }
7401 reqsk_put(req);
7402 return 0;
7403
7404 drop_and_release:
7405 dst_release(dst);
7406 drop_and_free:
7407 __reqsk_free(req);
7408 drop:
7409 tcp_listendrop(sk);
7410 return 0;
7411 }
7412 EXPORT_IPV6_MOD(tcp_conn_request);
7413