1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: Pedro Roque : Retransmit queue handled by TCP. 24 * : Fragmentation on mtu decrease 25 * : Segment collapse on retransmit 26 * : AF independence 27 * 28 * Linus Torvalds : send_delayed_ack 29 * David S. Miller : Charge memory using the right skb 30 * during syn/ack processing. 31 * David S. Miller : Output engine completely rewritten. 32 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 33 * Cacophonix Gaul : draft-minshall-nagle-01 34 * J Hadi Salim : ECN support 35 * 36 */ 37 38 #define pr_fmt(fmt) "TCP: " fmt 39 40 #include <net/tcp.h> 41 #include <net/tcp_ecn.h> 42 #include <net/mptcp.h> 43 #include <net/smc.h> 44 #include <net/proto_memory.h> 45 #include <net/psp.h> 46 47 #include <linux/compiler.h> 48 #include <linux/gfp.h> 49 #include <linux/module.h> 50 #include <linux/static_key.h> 51 #include <linux/skbuff_ref.h> 52 53 #include <trace/events/tcp.h> 54 55 /* Refresh clocks of a TCP socket, 56 * ensuring monotically increasing values. 57 */ 58 void tcp_mstamp_refresh(struct tcp_sock *tp) 59 { 60 u64 val = tcp_clock_ns(); 61 62 tp->tcp_clock_cache = val; 63 tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC); 64 } 65 66 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 67 int push_one, gfp_t gfp); 68 69 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 70 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 71 { 72 struct rb_node **p = &root->rb_node; 73 struct rb_node *parent = NULL; 74 struct sk_buff *skb1; 75 76 while (*p) { 77 parent = *p; 78 skb1 = rb_to_skb(parent); 79 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 80 p = &parent->rb_left; 81 else 82 p = &parent->rb_right; 83 } 84 rb_link_node(&skb->rbnode, parent, p); 85 rb_insert_color(&skb->rbnode, root); 86 } 87 88 /* Account for new data that has been sent to the network. */ 89 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb) 90 { 91 struct inet_connection_sock *icsk = inet_csk(sk); 92 struct tcp_sock *tp = tcp_sk(sk); 93 unsigned int prior_packets = tp->packets_out; 94 95 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq); 96 97 __skb_unlink(skb, &sk->sk_write_queue); 98 tcp_rbtree_insert(&sk->tcp_rtx_queue, skb); 99 100 if (tp->highest_sack == NULL) 101 tp->highest_sack = skb; 102 103 tp->packets_out += tcp_skb_pcount(skb); 104 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 105 tcp_rearm_rto(sk); 106 107 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT, 108 tcp_skb_pcount(skb)); 109 tcp_check_space(sk); 110 } 111 112 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one 113 * window scaling factor due to loss of precision. 114 * If window has been shrunk, what should we make? It is not clear at all. 115 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 116 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 117 * invalid. OK, let's make this for now: 118 */ 119 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 120 { 121 const struct tcp_sock *tp = tcp_sk(sk); 122 123 if (!before(tcp_wnd_end(tp), tp->snd_nxt) || 124 (tp->rx_opt.wscale_ok && 125 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale)))) 126 return tp->snd_nxt; 127 else 128 return tcp_wnd_end(tp); 129 } 130 131 /* Calculate mss to advertise in SYN segment. 132 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 133 * 134 * 1. It is independent of path mtu. 135 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 136 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 137 * attached devices, because some buggy hosts are confused by 138 * large MSS. 139 * 4. We do not make 3, we advertise MSS, calculated from first 140 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 141 * This may be overridden via information stored in routing table. 142 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 143 * probably even Jumbo". 144 */ 145 static __u16 tcp_advertise_mss(struct sock *sk) 146 { 147 struct tcp_sock *tp = tcp_sk(sk); 148 const struct dst_entry *dst = __sk_dst_get(sk); 149 int mss = tp->advmss; 150 151 if (dst) { 152 unsigned int metric = dst_metric_advmss(dst); 153 154 if (metric < mss) { 155 mss = metric; 156 tp->advmss = mss; 157 } 158 } 159 160 return (__u16)mss; 161 } 162 163 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 164 * This is the first part of cwnd validation mechanism. 165 */ 166 void tcp_cwnd_restart(struct sock *sk, s32 delta) 167 { 168 struct tcp_sock *tp = tcp_sk(sk); 169 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 170 u32 cwnd = tcp_snd_cwnd(tp); 171 172 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 173 174 tp->snd_ssthresh = tcp_current_ssthresh(sk); 175 restart_cwnd = min(restart_cwnd, cwnd); 176 177 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 178 cwnd >>= 1; 179 tcp_snd_cwnd_set(tp, max(cwnd, restart_cwnd)); 180 tp->snd_cwnd_stamp = tcp_jiffies32; 181 tp->snd_cwnd_used = 0; 182 } 183 184 /* Congestion state accounting after a packet has been sent. */ 185 static void tcp_event_data_sent(struct tcp_sock *tp, 186 struct sock *sk) 187 { 188 struct inet_connection_sock *icsk = inet_csk(sk); 189 const u32 now = tcp_jiffies32; 190 191 if (tcp_packets_in_flight(tp) == 0) 192 tcp_ca_event(sk, CA_EVENT_TX_START); 193 194 tp->lsndtime = now; 195 196 /* If it is a reply for ato after last received 197 * packet, increase pingpong count. 198 */ 199 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) 200 inet_csk_inc_pingpong_cnt(sk); 201 } 202 203 /* Account for an ACK we sent. */ 204 static inline void tcp_event_ack_sent(struct sock *sk, u32 rcv_nxt) 205 { 206 struct tcp_sock *tp = tcp_sk(sk); 207 208 if (unlikely(tp->compressed_ack)) { 209 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 210 tp->compressed_ack); 211 tp->compressed_ack = 0; 212 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 213 __sock_put(sk); 214 } 215 216 if (unlikely(rcv_nxt != tp->rcv_nxt)) 217 return; /* Special ACK sent by DCTCP to reflect ECN */ 218 tcp_dec_quickack_mode(sk); 219 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 220 } 221 222 /* Determine a window scaling and initial window to offer. 223 * Based on the assumption that the given amount of space 224 * will be offered. Store the results in the tp structure. 225 * NOTE: for smooth operation initial space offering should 226 * be a multiple of mss if possible. We assume here that mss >= 1. 227 * This MUST be enforced by all callers. 228 */ 229 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss, 230 __u32 *rcv_wnd, __u32 *__window_clamp, 231 int wscale_ok, __u8 *rcv_wscale, 232 __u32 init_rcv_wnd) 233 { 234 unsigned int space = (__space < 0 ? 0 : __space); 235 u32 window_clamp = READ_ONCE(*__window_clamp); 236 237 /* If no clamp set the clamp to the max possible scaled window */ 238 if (window_clamp == 0) 239 window_clamp = (U16_MAX << TCP_MAX_WSCALE); 240 space = min(window_clamp, space); 241 242 /* Quantize space offering to a multiple of mss if possible. */ 243 if (space > mss) 244 space = rounddown(space, mss); 245 246 /* NOTE: offering an initial window larger than 32767 247 * will break some buggy TCP stacks. If the admin tells us 248 * it is likely we could be speaking with such a buggy stack 249 * we will truncate our initial window offering to 32K-1 250 * unless the remote has sent us a window scaling option, 251 * which we interpret as a sign the remote TCP is not 252 * misinterpreting the window field as a signed quantity. 253 */ 254 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)) 255 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 256 else 257 (*rcv_wnd) = space; 258 259 if (init_rcv_wnd) 260 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 261 262 *rcv_wscale = 0; 263 if (wscale_ok) { 264 /* Set window scaling on max possible window */ 265 space = max_t(u32, space, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); 266 space = max_t(u32, space, READ_ONCE(sysctl_rmem_max)); 267 space = min_t(u32, space, window_clamp); 268 *rcv_wscale = clamp_t(int, ilog2(space) - 15, 269 0, TCP_MAX_WSCALE); 270 } 271 /* Set the clamp no higher than max representable value */ 272 WRITE_ONCE(*__window_clamp, 273 min_t(__u32, U16_MAX << (*rcv_wscale), window_clamp)); 274 } 275 EXPORT_IPV6_MOD(tcp_select_initial_window); 276 277 /* Chose a new window to advertise, update state in tcp_sock for the 278 * socket, and return result with RFC1323 scaling applied. The return 279 * value can be stuffed directly into th->window for an outgoing 280 * frame. 281 */ 282 static u16 tcp_select_window(struct sock *sk) 283 { 284 struct tcp_sock *tp = tcp_sk(sk); 285 struct net *net = sock_net(sk); 286 u32 old_win = tp->rcv_wnd; 287 u32 cur_win, new_win; 288 289 /* Make the window 0 if we failed to queue the data because we 290 * are out of memory. 291 */ 292 if (unlikely(inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOMEM)) { 293 tp->pred_flags = 0; 294 tp->rcv_wnd = 0; 295 tp->rcv_wup = tp->rcv_nxt; 296 return 0; 297 } 298 299 cur_win = tcp_receive_window(tp); 300 new_win = __tcp_select_window(sk); 301 if (new_win < cur_win) { 302 /* Danger Will Robinson! 303 * Don't update rcv_wup/rcv_wnd here or else 304 * we will not be able to advertise a zero 305 * window in time. --DaveM 306 * 307 * Relax Will Robinson. 308 */ 309 if (!READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) || !tp->rx_opt.rcv_wscale) { 310 /* Never shrink the offered window */ 311 if (new_win == 0) 312 NET_INC_STATS(net, LINUX_MIB_TCPWANTZEROWINDOWADV); 313 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 314 } 315 } 316 317 tp->rcv_wnd = new_win; 318 tp->rcv_wup = tp->rcv_nxt; 319 320 /* Make sure we do not exceed the maximum possible 321 * scaled window. 322 */ 323 if (!tp->rx_opt.rcv_wscale && 324 READ_ONCE(net->ipv4.sysctl_tcp_workaround_signed_windows)) 325 new_win = min(new_win, MAX_TCP_WINDOW); 326 else 327 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 328 329 /* RFC1323 scaling applied */ 330 new_win >>= tp->rx_opt.rcv_wscale; 331 332 /* If we advertise zero window, disable fast path. */ 333 if (new_win == 0) { 334 tp->pred_flags = 0; 335 if (old_win) 336 NET_INC_STATS(net, LINUX_MIB_TCPTOZEROWINDOWADV); 337 } else if (old_win == 0) { 338 NET_INC_STATS(net, LINUX_MIB_TCPFROMZEROWINDOWADV); 339 } 340 341 return new_win; 342 } 343 344 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 345 * be sent. 346 */ 347 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb, 348 struct tcphdr *th, int tcp_header_len) 349 { 350 struct tcp_sock *tp = tcp_sk(sk); 351 352 if (!tcp_ecn_mode_any(tp)) 353 return; 354 355 if (tcp_ecn_mode_accecn(tp)) { 356 if (!tcp_accecn_ace_fail_recv(tp) && 357 !tcp_accecn_ace_fail_send(tp)) 358 INET_ECN_xmit(sk); 359 else 360 INET_ECN_dontxmit(sk); 361 tcp_accecn_set_ace(tp, skb, th); 362 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ACCECN; 363 } else { 364 /* Not-retransmitted data segment: set ECT and inject CWR. */ 365 if (skb->len != tcp_header_len && 366 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 367 INET_ECN_xmit(sk); 368 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 369 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 370 th->cwr = 1; 371 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 372 } 373 } else if (!tcp_ca_needs_ecn(sk)) { 374 /* ACK or retransmitted segment: clear ECT|CE */ 375 INET_ECN_dontxmit(sk); 376 } 377 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 378 th->ece = 1; 379 } 380 } 381 382 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 383 * auto increment end seqno. 384 */ 385 static void tcp_init_nondata_skb(struct sk_buff *skb, struct sock *sk, 386 u32 seq, u16 flags) 387 { 388 skb->ip_summed = CHECKSUM_PARTIAL; 389 390 TCP_SKB_CB(skb)->tcp_flags = flags; 391 392 tcp_skb_pcount_set(skb, 1); 393 psp_enqueue_set_decrypted(sk, skb); 394 395 TCP_SKB_CB(skb)->seq = seq; 396 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 397 seq++; 398 TCP_SKB_CB(skb)->end_seq = seq; 399 } 400 401 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 402 { 403 return tp->snd_una != tp->snd_up; 404 } 405 406 #define OPTION_SACK_ADVERTISE BIT(0) 407 #define OPTION_TS BIT(1) 408 #define OPTION_MD5 BIT(2) 409 #define OPTION_WSCALE BIT(3) 410 #define OPTION_FAST_OPEN_COOKIE BIT(8) 411 #define OPTION_SMC BIT(9) 412 #define OPTION_MPTCP BIT(10) 413 #define OPTION_AO BIT(11) 414 #define OPTION_ACCECN BIT(12) 415 416 static void smc_options_write(__be32 *ptr, u16 *options) 417 { 418 #if IS_ENABLED(CONFIG_SMC) 419 if (static_branch_unlikely(&tcp_have_smc)) { 420 if (unlikely(OPTION_SMC & *options)) { 421 *ptr++ = htonl((TCPOPT_NOP << 24) | 422 (TCPOPT_NOP << 16) | 423 (TCPOPT_EXP << 8) | 424 (TCPOLEN_EXP_SMC_BASE)); 425 *ptr++ = htonl(TCPOPT_SMC_MAGIC); 426 } 427 } 428 #endif 429 } 430 431 struct tcp_out_options { 432 u16 options; /* bit field of OPTION_* */ 433 u16 mss; /* 0 to disable */ 434 u8 ws; /* window scale, 0 to disable */ 435 u8 num_sack_blocks; /* number of SACK blocks to include */ 436 u8 num_accecn_fields:7, /* number of AccECN fields needed */ 437 use_synack_ecn_bytes:1; /* Use synack_ecn_bytes or not */ 438 u8 hash_size; /* bytes in hash_location */ 439 u8 bpf_opt_len; /* length of BPF hdr option */ 440 __u8 *hash_location; /* temporary pointer, overloaded */ 441 __u32 tsval, tsecr; /* need to include OPTION_TS */ 442 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 443 struct mptcp_out_options mptcp; 444 }; 445 446 static void mptcp_options_write(struct tcphdr *th, __be32 *ptr, 447 struct tcp_sock *tp, 448 struct tcp_out_options *opts) 449 { 450 #if IS_ENABLED(CONFIG_MPTCP) 451 if (unlikely(OPTION_MPTCP & opts->options)) 452 mptcp_write_options(th, ptr, tp, &opts->mptcp); 453 #endif 454 } 455 456 #ifdef CONFIG_CGROUP_BPF 457 static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb, 458 enum tcp_synack_type synack_type) 459 { 460 if (unlikely(!skb)) 461 return BPF_WRITE_HDR_TCP_CURRENT_MSS; 462 463 if (unlikely(synack_type == TCP_SYNACK_COOKIE)) 464 return BPF_WRITE_HDR_TCP_SYNACK_COOKIE; 465 466 return 0; 467 } 468 469 /* req, syn_skb and synack_type are used when writing synack */ 470 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb, 471 struct request_sock *req, 472 struct sk_buff *syn_skb, 473 enum tcp_synack_type synack_type, 474 struct tcp_out_options *opts, 475 unsigned int *remaining) 476 { 477 struct bpf_sock_ops_kern sock_ops; 478 int err; 479 480 if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 481 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) || 482 !*remaining) 483 return; 484 485 /* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */ 486 487 /* init sock_ops */ 488 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 489 490 sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB; 491 492 if (req) { 493 /* The listen "sk" cannot be passed here because 494 * it is not locked. It would not make too much 495 * sense to do bpf_setsockopt(listen_sk) based 496 * on individual connection request also. 497 * 498 * Thus, "req" is passed here and the cgroup-bpf-progs 499 * of the listen "sk" will be run. 500 * 501 * "req" is also used here for fastopen even the "sk" here is 502 * a fullsock "child" sk. It is to keep the behavior 503 * consistent between fastopen and non-fastopen on 504 * the bpf programming side. 505 */ 506 sock_ops.sk = (struct sock *)req; 507 sock_ops.syn_skb = syn_skb; 508 } else { 509 sock_owned_by_me(sk); 510 511 sock_ops.is_fullsock = 1; 512 sock_ops.is_locked_tcp_sock = 1; 513 sock_ops.sk = sk; 514 } 515 516 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type); 517 sock_ops.remaining_opt_len = *remaining; 518 /* tcp_current_mss() does not pass a skb */ 519 if (skb) 520 bpf_skops_init_skb(&sock_ops, skb, 0); 521 522 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk); 523 524 if (err || sock_ops.remaining_opt_len == *remaining) 525 return; 526 527 opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len; 528 /* round up to 4 bytes */ 529 opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3; 530 531 *remaining -= opts->bpf_opt_len; 532 } 533 534 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb, 535 struct request_sock *req, 536 struct sk_buff *syn_skb, 537 enum tcp_synack_type synack_type, 538 struct tcp_out_options *opts) 539 { 540 u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len; 541 struct bpf_sock_ops_kern sock_ops; 542 int err; 543 544 if (likely(!max_opt_len)) 545 return; 546 547 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 548 549 sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB; 550 551 if (req) { 552 sock_ops.sk = (struct sock *)req; 553 sock_ops.syn_skb = syn_skb; 554 } else { 555 sock_owned_by_me(sk); 556 557 sock_ops.is_fullsock = 1; 558 sock_ops.is_locked_tcp_sock = 1; 559 sock_ops.sk = sk; 560 } 561 562 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type); 563 sock_ops.remaining_opt_len = max_opt_len; 564 first_opt_off = tcp_hdrlen(skb) - max_opt_len; 565 bpf_skops_init_skb(&sock_ops, skb, first_opt_off); 566 567 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk); 568 569 if (err) 570 nr_written = 0; 571 else 572 nr_written = max_opt_len - sock_ops.remaining_opt_len; 573 574 if (nr_written < max_opt_len) 575 memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP, 576 max_opt_len - nr_written); 577 } 578 #else 579 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb, 580 struct request_sock *req, 581 struct sk_buff *syn_skb, 582 enum tcp_synack_type synack_type, 583 struct tcp_out_options *opts, 584 unsigned int *remaining) 585 { 586 } 587 588 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb, 589 struct request_sock *req, 590 struct sk_buff *syn_skb, 591 enum tcp_synack_type synack_type, 592 struct tcp_out_options *opts) 593 { 594 } 595 #endif 596 597 static __be32 *process_tcp_ao_options(struct tcp_sock *tp, 598 const struct tcp_request_sock *tcprsk, 599 struct tcp_out_options *opts, 600 struct tcp_key *key, __be32 *ptr) 601 { 602 #ifdef CONFIG_TCP_AO 603 u8 maclen = tcp_ao_maclen(key->ao_key); 604 605 if (tcprsk) { 606 u8 aolen = maclen + sizeof(struct tcp_ao_hdr); 607 608 *ptr++ = htonl((TCPOPT_AO << 24) | (aolen << 16) | 609 (tcprsk->ao_keyid << 8) | 610 (tcprsk->ao_rcv_next)); 611 } else { 612 struct tcp_ao_key *rnext_key; 613 struct tcp_ao_info *ao_info; 614 615 ao_info = rcu_dereference_check(tp->ao_info, 616 lockdep_sock_is_held(&tp->inet_conn.icsk_inet.sk)); 617 rnext_key = READ_ONCE(ao_info->rnext_key); 618 if (WARN_ON_ONCE(!rnext_key)) 619 return ptr; 620 *ptr++ = htonl((TCPOPT_AO << 24) | 621 (tcp_ao_len(key->ao_key) << 16) | 622 (key->ao_key->sndid << 8) | 623 (rnext_key->rcvid)); 624 } 625 opts->hash_location = (__u8 *)ptr; 626 ptr += maclen / sizeof(*ptr); 627 if (unlikely(maclen % sizeof(*ptr))) { 628 memset(ptr, TCPOPT_NOP, sizeof(*ptr)); 629 ptr++; 630 } 631 #endif 632 return ptr; 633 } 634 635 /* Initial values for AccECN option, ordered is based on ECN field bits 636 * similar to received_ecn_bytes. Used for SYN/ACK AccECN option. 637 */ 638 static const u32 synack_ecn_bytes[3] = { 0, 0, 0 }; 639 640 /* Write previously computed TCP options to the packet. 641 * 642 * Beware: Something in the Internet is very sensitive to the ordering of 643 * TCP options, we learned this through the hard way, so be careful here. 644 * Luckily we can at least blame others for their non-compliance but from 645 * inter-operability perspective it seems that we're somewhat stuck with 646 * the ordering which we have been using if we want to keep working with 647 * those broken things (not that it currently hurts anybody as there isn't 648 * particular reason why the ordering would need to be changed). 649 * 650 * At least SACK_PERM as the first option is known to lead to a disaster 651 * (but it may well be that other scenarios fail similarly). 652 */ 653 static void tcp_options_write(struct tcphdr *th, struct tcp_sock *tp, 654 const struct tcp_request_sock *tcprsk, 655 struct tcp_out_options *opts, 656 struct tcp_key *key) 657 { 658 u8 leftover_highbyte = TCPOPT_NOP; /* replace 1st NOP if avail */ 659 u8 leftover_lowbyte = TCPOPT_NOP; /* replace 2nd NOP in succession */ 660 __be32 *ptr = (__be32 *)(th + 1); 661 u16 options = opts->options; /* mungable copy */ 662 663 if (tcp_key_is_md5(key)) { 664 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 665 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); 666 /* overload cookie hash location */ 667 opts->hash_location = (__u8 *)ptr; 668 ptr += 4; 669 } else if (tcp_key_is_ao(key)) { 670 ptr = process_tcp_ao_options(tp, tcprsk, opts, key, ptr); 671 } 672 if (unlikely(opts->mss)) { 673 *ptr++ = htonl((TCPOPT_MSS << 24) | 674 (TCPOLEN_MSS << 16) | 675 opts->mss); 676 } 677 678 if (likely(OPTION_TS & options)) { 679 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 680 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 681 (TCPOLEN_SACK_PERM << 16) | 682 (TCPOPT_TIMESTAMP << 8) | 683 TCPOLEN_TIMESTAMP); 684 options &= ~OPTION_SACK_ADVERTISE; 685 } else { 686 *ptr++ = htonl((TCPOPT_NOP << 24) | 687 (TCPOPT_NOP << 16) | 688 (TCPOPT_TIMESTAMP << 8) | 689 TCPOLEN_TIMESTAMP); 690 } 691 *ptr++ = htonl(opts->tsval); 692 *ptr++ = htonl(opts->tsecr); 693 } 694 695 if (OPTION_ACCECN & options) { 696 const u32 *ecn_bytes = opts->use_synack_ecn_bytes ? 697 synack_ecn_bytes : 698 tp->received_ecn_bytes; 699 const u8 ect0_idx = INET_ECN_ECT_0 - 1; 700 const u8 ect1_idx = INET_ECN_ECT_1 - 1; 701 const u8 ce_idx = INET_ECN_CE - 1; 702 u32 e0b; 703 u32 e1b; 704 u32 ceb; 705 u8 len; 706 707 e0b = ecn_bytes[ect0_idx] + TCP_ACCECN_E0B_INIT_OFFSET; 708 e1b = ecn_bytes[ect1_idx] + TCP_ACCECN_E1B_INIT_OFFSET; 709 ceb = ecn_bytes[ce_idx] + TCP_ACCECN_CEB_INIT_OFFSET; 710 len = TCPOLEN_ACCECN_BASE + 711 opts->num_accecn_fields * TCPOLEN_ACCECN_PERFIELD; 712 713 if (opts->num_accecn_fields == 2) { 714 *ptr++ = htonl((TCPOPT_ACCECN1 << 24) | (len << 16) | 715 ((e1b >> 8) & 0xffff)); 716 *ptr++ = htonl(((e1b & 0xff) << 24) | 717 (ceb & 0xffffff)); 718 } else if (opts->num_accecn_fields == 1) { 719 *ptr++ = htonl((TCPOPT_ACCECN1 << 24) | (len << 16) | 720 ((e1b >> 8) & 0xffff)); 721 leftover_highbyte = e1b & 0xff; 722 leftover_lowbyte = TCPOPT_NOP; 723 } else if (opts->num_accecn_fields == 0) { 724 leftover_highbyte = TCPOPT_ACCECN1; 725 leftover_lowbyte = len; 726 } else if (opts->num_accecn_fields == 3) { 727 *ptr++ = htonl((TCPOPT_ACCECN1 << 24) | (len << 16) | 728 ((e1b >> 8) & 0xffff)); 729 *ptr++ = htonl(((e1b & 0xff) << 24) | 730 (ceb & 0xffffff)); 731 *ptr++ = htonl(((e0b & 0xffffff) << 8) | 732 TCPOPT_NOP); 733 } 734 if (tp) { 735 tp->accecn_minlen = 0; 736 tp->accecn_opt_tstamp = tp->tcp_mstamp; 737 tp->accecn_opt_sent_w_dsack = tp->rx_opt.dsack; 738 if (tp->accecn_opt_demand) 739 tp->accecn_opt_demand--; 740 } 741 } else if (tp) { 742 tp->accecn_opt_sent_w_dsack = 0; 743 } 744 745 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 746 *ptr++ = htonl((leftover_highbyte << 24) | 747 (leftover_lowbyte << 16) | 748 (TCPOPT_SACK_PERM << 8) | 749 TCPOLEN_SACK_PERM); 750 leftover_highbyte = TCPOPT_NOP; 751 leftover_lowbyte = TCPOPT_NOP; 752 } 753 754 if (unlikely(OPTION_WSCALE & options)) { 755 u8 highbyte = TCPOPT_NOP; 756 757 /* Do not split the leftover 2-byte to fit into a single 758 * NOP, i.e., replace this NOP only when 1 byte is leftover 759 * within leftover_highbyte. 760 */ 761 if (unlikely(leftover_highbyte != TCPOPT_NOP && 762 leftover_lowbyte == TCPOPT_NOP)) { 763 highbyte = leftover_highbyte; 764 leftover_highbyte = TCPOPT_NOP; 765 } 766 *ptr++ = htonl((highbyte << 24) | 767 (TCPOPT_WINDOW << 16) | 768 (TCPOLEN_WINDOW << 8) | 769 opts->ws); 770 } 771 772 if (unlikely(opts->num_sack_blocks)) { 773 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 774 tp->duplicate_sack : tp->selective_acks; 775 int this_sack; 776 777 *ptr++ = htonl((leftover_highbyte << 24) | 778 (leftover_lowbyte << 16) | 779 (TCPOPT_SACK << 8) | 780 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 781 TCPOLEN_SACK_PERBLOCK))); 782 leftover_highbyte = TCPOPT_NOP; 783 leftover_lowbyte = TCPOPT_NOP; 784 785 for (this_sack = 0; this_sack < opts->num_sack_blocks; 786 ++this_sack) { 787 *ptr++ = htonl(sp[this_sack].start_seq); 788 *ptr++ = htonl(sp[this_sack].end_seq); 789 } 790 791 tp->rx_opt.dsack = 0; 792 } else if (unlikely(leftover_highbyte != TCPOPT_NOP || 793 leftover_lowbyte != TCPOPT_NOP)) { 794 *ptr++ = htonl((leftover_highbyte << 24) | 795 (leftover_lowbyte << 16) | 796 (TCPOPT_NOP << 8) | 797 TCPOPT_NOP); 798 leftover_highbyte = TCPOPT_NOP; 799 leftover_lowbyte = TCPOPT_NOP; 800 } 801 802 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 803 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 804 u8 *p = (u8 *)ptr; 805 u32 len; /* Fast Open option length */ 806 807 if (foc->exp) { 808 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; 809 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) | 810 TCPOPT_FASTOPEN_MAGIC); 811 p += TCPOLEN_EXP_FASTOPEN_BASE; 812 } else { 813 len = TCPOLEN_FASTOPEN_BASE + foc->len; 814 *p++ = TCPOPT_FASTOPEN; 815 *p++ = len; 816 } 817 818 memcpy(p, foc->val, foc->len); 819 if ((len & 3) == 2) { 820 p[foc->len] = TCPOPT_NOP; 821 p[foc->len + 1] = TCPOPT_NOP; 822 } 823 ptr += (len + 3) >> 2; 824 } 825 826 smc_options_write(ptr, &options); 827 828 mptcp_options_write(th, ptr, tp, opts); 829 } 830 831 static void smc_set_option(struct tcp_sock *tp, 832 struct tcp_out_options *opts, 833 unsigned int *remaining) 834 { 835 #if IS_ENABLED(CONFIG_SMC) 836 if (static_branch_unlikely(&tcp_have_smc) && tp->syn_smc) { 837 tp->syn_smc = !!smc_call_hsbpf(1, tp, syn_option); 838 /* re-check syn_smc */ 839 if (tp->syn_smc && 840 *remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 841 opts->options |= OPTION_SMC; 842 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 843 } 844 } 845 #endif 846 } 847 848 static void smc_set_option_cond(const struct tcp_sock *tp, 849 struct inet_request_sock *ireq, 850 struct tcp_out_options *opts, 851 unsigned int *remaining) 852 { 853 #if IS_ENABLED(CONFIG_SMC) 854 if (static_branch_unlikely(&tcp_have_smc) && tp->syn_smc && ireq->smc_ok) { 855 ireq->smc_ok = !!smc_call_hsbpf(1, tp, synack_option, ireq); 856 /* re-check smc_ok */ 857 if (ireq->smc_ok && 858 *remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 859 opts->options |= OPTION_SMC; 860 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 861 } 862 } 863 #endif 864 } 865 866 static void mptcp_set_option_cond(const struct request_sock *req, 867 struct tcp_out_options *opts, 868 unsigned int *remaining) 869 { 870 if (rsk_is_mptcp(req)) { 871 unsigned int size; 872 873 if (mptcp_synack_options(req, &size, &opts->mptcp)) { 874 if (*remaining >= size) { 875 opts->options |= OPTION_MPTCP; 876 *remaining -= size; 877 } 878 } 879 } 880 } 881 882 static u32 tcp_synack_options_combine_saving(struct tcp_out_options *opts) 883 { 884 /* How much there's room for combining with the alignment padding? */ 885 if ((opts->options & (OPTION_SACK_ADVERTISE | OPTION_TS)) == 886 OPTION_SACK_ADVERTISE) 887 return 2; 888 else if (opts->options & OPTION_WSCALE) 889 return 1; 890 return 0; 891 } 892 893 /* Calculates how long AccECN option will fit to @remaining option space. 894 * 895 * AccECN option can sometimes replace NOPs used for alignment of other 896 * TCP options (up to @max_combine_saving available). 897 * 898 * Only solutions with at least @required AccECN fields are accepted. 899 * 900 * Returns: The size of the AccECN option excluding space repurposed from 901 * the alignment of the other options. 902 */ 903 static int tcp_options_fit_accecn(struct tcp_out_options *opts, int required, 904 int remaining) 905 { 906 int size = TCP_ACCECN_MAXSIZE; 907 int sack_blocks_reduce = 0; 908 int max_combine_saving; 909 int rem = remaining; 910 int align_size; 911 912 if (opts->use_synack_ecn_bytes) 913 max_combine_saving = tcp_synack_options_combine_saving(opts); 914 else 915 max_combine_saving = opts->num_sack_blocks > 0 ? 2 : 0; 916 opts->num_accecn_fields = TCP_ACCECN_NUMFIELDS; 917 while (opts->num_accecn_fields >= required) { 918 /* Pad to dword if cannot combine */ 919 if ((size & 0x3) > max_combine_saving) 920 align_size = ALIGN(size, 4); 921 else 922 align_size = ALIGN_DOWN(size, 4); 923 924 if (rem >= align_size) { 925 size = align_size; 926 break; 927 } else if (opts->num_accecn_fields == required && 928 opts->num_sack_blocks > 2 && 929 required > 0) { 930 /* Try to fit the option by removing one SACK block */ 931 opts->num_sack_blocks--; 932 sack_blocks_reduce++; 933 rem = rem + TCPOLEN_SACK_PERBLOCK; 934 935 opts->num_accecn_fields = TCP_ACCECN_NUMFIELDS; 936 size = TCP_ACCECN_MAXSIZE; 937 continue; 938 } 939 940 opts->num_accecn_fields--; 941 size -= TCPOLEN_ACCECN_PERFIELD; 942 } 943 if (sack_blocks_reduce > 0) { 944 if (opts->num_accecn_fields >= required) 945 size -= sack_blocks_reduce * TCPOLEN_SACK_PERBLOCK; 946 else 947 opts->num_sack_blocks += sack_blocks_reduce; 948 } 949 if (opts->num_accecn_fields < required) 950 return 0; 951 952 opts->options |= OPTION_ACCECN; 953 return size; 954 } 955 956 /* Compute TCP options for SYN packets. This is not the final 957 * network wire format yet. 958 */ 959 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 960 struct tcp_out_options *opts, 961 struct tcp_key *key) 962 { 963 struct tcp_sock *tp = tcp_sk(sk); 964 unsigned int remaining = MAX_TCP_OPTION_SPACE; 965 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 966 bool timestamps; 967 968 /* Better than switch (key.type) as it has static branches */ 969 if (tcp_key_is_md5(key)) { 970 timestamps = false; 971 opts->options |= OPTION_MD5; 972 remaining -= TCPOLEN_MD5SIG_ALIGNED; 973 } else { 974 timestamps = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps); 975 if (tcp_key_is_ao(key)) { 976 opts->options |= OPTION_AO; 977 remaining -= tcp_ao_len_aligned(key->ao_key); 978 } 979 } 980 981 /* We always get an MSS option. The option bytes which will be seen in 982 * normal data packets should timestamps be used, must be in the MSS 983 * advertised. But we subtract them from tp->mss_cache so that 984 * calculations in tcp_sendmsg are simpler etc. So account for this 985 * fact here if necessary. If we don't do this correctly, as a 986 * receiver we won't recognize data packets as being full sized when we 987 * should, and thus we won't abide by the delayed ACK rules correctly. 988 * SACKs don't matter, we never delay an ACK when we have any of those 989 * going out. */ 990 opts->mss = tcp_advertise_mss(sk); 991 remaining -= TCPOLEN_MSS_ALIGNED; 992 993 if (likely(timestamps)) { 994 opts->options |= OPTION_TS; 995 opts->tsval = tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb) + tp->tsoffset; 996 opts->tsecr = tp->rx_opt.ts_recent; 997 remaining -= TCPOLEN_TSTAMP_ALIGNED; 998 } 999 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling))) { 1000 opts->ws = tp->rx_opt.rcv_wscale; 1001 opts->options |= OPTION_WSCALE; 1002 remaining -= TCPOLEN_WSCALE_ALIGNED; 1003 } 1004 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_sack))) { 1005 opts->options |= OPTION_SACK_ADVERTISE; 1006 if (unlikely(!(OPTION_TS & opts->options))) 1007 remaining -= TCPOLEN_SACKPERM_ALIGNED; 1008 } 1009 1010 if (fastopen && fastopen->cookie.len >= 0) { 1011 u32 need = fastopen->cookie.len; 1012 1013 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE : 1014 TCPOLEN_FASTOPEN_BASE; 1015 need = (need + 3) & ~3U; /* Align to 32 bits */ 1016 if (remaining >= need) { 1017 opts->options |= OPTION_FAST_OPEN_COOKIE; 1018 opts->fastopen_cookie = &fastopen->cookie; 1019 remaining -= need; 1020 tp->syn_fastopen = 1; 1021 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0; 1022 } 1023 } 1024 1025 smc_set_option(tp, opts, &remaining); 1026 1027 if (sk_is_mptcp(sk)) { 1028 unsigned int size; 1029 1030 if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) { 1031 if (remaining >= size) { 1032 opts->options |= OPTION_MPTCP; 1033 remaining -= size; 1034 } 1035 } 1036 } 1037 1038 /* Simultaneous open SYN/ACK needs AccECN option but not SYN. 1039 * It is attempted to negotiate the use of AccECN also on the first 1040 * retransmitted SYN, as mentioned in "3.1.4.1. Retransmitted SYNs" 1041 * of AccECN draft. 1042 */ 1043 if (unlikely((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK) && 1044 tcp_ecn_mode_accecn(tp) && 1045 inet_csk(sk)->icsk_retransmits < 2 && 1046 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_option) && 1047 remaining >= TCPOLEN_ACCECN_BASE)) { 1048 opts->use_synack_ecn_bytes = 1; 1049 remaining -= tcp_options_fit_accecn(opts, 0, remaining); 1050 } 1051 1052 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining); 1053 1054 return MAX_TCP_OPTION_SPACE - remaining; 1055 } 1056 1057 /* Set up TCP options for SYN-ACKs. */ 1058 static unsigned int tcp_synack_options(const struct sock *sk, 1059 struct request_sock *req, 1060 unsigned int mss, struct sk_buff *skb, 1061 struct tcp_out_options *opts, 1062 const struct tcp_key *key, 1063 struct tcp_fastopen_cookie *foc, 1064 enum tcp_synack_type synack_type, 1065 struct sk_buff *syn_skb) 1066 { 1067 struct inet_request_sock *ireq = inet_rsk(req); 1068 unsigned int remaining = MAX_TCP_OPTION_SPACE; 1069 struct tcp_request_sock *treq = tcp_rsk(req); 1070 1071 if (tcp_key_is_md5(key)) { 1072 opts->options |= OPTION_MD5; 1073 remaining -= TCPOLEN_MD5SIG_ALIGNED; 1074 1075 /* We can't fit any SACK blocks in a packet with MD5 + TS 1076 * options. There was discussion about disabling SACK 1077 * rather than TS in order to fit in better with old, 1078 * buggy kernels, but that was deemed to be unnecessary. 1079 */ 1080 if (synack_type != TCP_SYNACK_COOKIE) 1081 ireq->tstamp_ok &= !ireq->sack_ok; 1082 } else if (tcp_key_is_ao(key)) { 1083 opts->options |= OPTION_AO; 1084 remaining -= tcp_ao_len_aligned(key->ao_key); 1085 ireq->tstamp_ok &= !ireq->sack_ok; 1086 } 1087 1088 /* We always send an MSS option. */ 1089 opts->mss = mss; 1090 remaining -= TCPOLEN_MSS_ALIGNED; 1091 1092 if (likely(ireq->wscale_ok)) { 1093 opts->ws = ireq->rcv_wscale; 1094 opts->options |= OPTION_WSCALE; 1095 remaining -= TCPOLEN_WSCALE_ALIGNED; 1096 } 1097 if (likely(ireq->tstamp_ok)) { 1098 opts->options |= OPTION_TS; 1099 opts->tsval = tcp_skb_timestamp_ts(tcp_rsk(req)->req_usec_ts, skb) + 1100 tcp_rsk(req)->ts_off; 1101 if (!tcp_rsk(req)->snt_tsval_first) { 1102 if (!opts->tsval) 1103 opts->tsval = ~0U; 1104 tcp_rsk(req)->snt_tsval_first = opts->tsval; 1105 } 1106 WRITE_ONCE(tcp_rsk(req)->snt_tsval_last, opts->tsval); 1107 opts->tsecr = req->ts_recent; 1108 remaining -= TCPOLEN_TSTAMP_ALIGNED; 1109 } 1110 if (likely(ireq->sack_ok)) { 1111 opts->options |= OPTION_SACK_ADVERTISE; 1112 if (unlikely(!ireq->tstamp_ok)) 1113 remaining -= TCPOLEN_SACKPERM_ALIGNED; 1114 } 1115 if (foc != NULL && foc->len >= 0) { 1116 u32 need = foc->len; 1117 1118 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE : 1119 TCPOLEN_FASTOPEN_BASE; 1120 need = (need + 3) & ~3U; /* Align to 32 bits */ 1121 if (remaining >= need) { 1122 opts->options |= OPTION_FAST_OPEN_COOKIE; 1123 opts->fastopen_cookie = foc; 1124 remaining -= need; 1125 } 1126 } 1127 1128 mptcp_set_option_cond(req, opts, &remaining); 1129 1130 smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining); 1131 1132 if (treq->accecn_ok && 1133 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_option) && 1134 synack_type != TCP_SYNACK_RETRANS && remaining >= TCPOLEN_ACCECN_BASE) { 1135 opts->use_synack_ecn_bytes = 1; 1136 remaining -= tcp_options_fit_accecn(opts, 0, remaining); 1137 } 1138 1139 bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb, 1140 synack_type, opts, &remaining); 1141 1142 return MAX_TCP_OPTION_SPACE - remaining; 1143 } 1144 1145 /* Compute TCP options for ESTABLISHED sockets. This is not the 1146 * final wire format yet. 1147 */ 1148 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 1149 struct tcp_out_options *opts, 1150 struct tcp_key *key) 1151 { 1152 struct tcp_sock *tp = tcp_sk(sk); 1153 unsigned int size = 0; 1154 unsigned int eff_sacks; 1155 1156 opts->options = 0; 1157 1158 /* Better than switch (key.type) as it has static branches */ 1159 if (tcp_key_is_md5(key)) { 1160 opts->options |= OPTION_MD5; 1161 size += TCPOLEN_MD5SIG_ALIGNED; 1162 } else if (tcp_key_is_ao(key)) { 1163 opts->options |= OPTION_AO; 1164 size += tcp_ao_len_aligned(key->ao_key); 1165 } 1166 1167 if (likely(tp->rx_opt.tstamp_ok)) { 1168 opts->options |= OPTION_TS; 1169 opts->tsval = skb ? tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb) + 1170 tp->tsoffset : 0; 1171 opts->tsecr = tp->rx_opt.ts_recent; 1172 size += TCPOLEN_TSTAMP_ALIGNED; 1173 } 1174 1175 /* MPTCP options have precedence over SACK for the limited TCP 1176 * option space because a MPTCP connection would be forced to 1177 * fall back to regular TCP if a required multipath option is 1178 * missing. SACK still gets a chance to use whatever space is 1179 * left. 1180 */ 1181 if (sk_is_mptcp(sk)) { 1182 unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 1183 unsigned int opt_size = 0; 1184 1185 if (mptcp_established_options(sk, skb, &opt_size, remaining, 1186 &opts->mptcp)) { 1187 opts->options |= OPTION_MPTCP; 1188 size += opt_size; 1189 } 1190 } 1191 1192 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 1193 if (unlikely(eff_sacks)) { 1194 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 1195 if (likely(remaining >= TCPOLEN_SACK_BASE_ALIGNED + 1196 TCPOLEN_SACK_PERBLOCK)) { 1197 opts->num_sack_blocks = 1198 min_t(unsigned int, eff_sacks, 1199 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 1200 TCPOLEN_SACK_PERBLOCK); 1201 1202 size += TCPOLEN_SACK_BASE_ALIGNED + 1203 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 1204 } else { 1205 opts->num_sack_blocks = 0; 1206 } 1207 } else { 1208 opts->num_sack_blocks = 0; 1209 } 1210 1211 if (tcp_ecn_mode_accecn(tp)) { 1212 int ecn_opt = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_option); 1213 1214 if (ecn_opt && tp->saw_accecn_opt && 1215 (ecn_opt >= TCP_ACCECN_OPTION_PERSIST || 1216 !tcp_accecn_opt_fail_send(tp)) && 1217 (ecn_opt >= TCP_ACCECN_OPTION_FULL || tp->accecn_opt_demand || 1218 tcp_accecn_option_beacon_check(sk))) { 1219 opts->use_synack_ecn_bytes = 0; 1220 size += tcp_options_fit_accecn(opts, tp->accecn_minlen, 1221 MAX_TCP_OPTION_SPACE - size); 1222 } 1223 } 1224 1225 if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp, 1226 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) { 1227 unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 1228 1229 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining); 1230 1231 size = MAX_TCP_OPTION_SPACE - remaining; 1232 } 1233 1234 return size; 1235 } 1236 1237 1238 /* TCP SMALL QUEUES (TSQ) 1239 * 1240 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 1241 * to reduce RTT and bufferbloat. 1242 * We do this using a special skb destructor (tcp_wfree). 1243 * 1244 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 1245 * needs to be reallocated in a driver. 1246 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc 1247 * 1248 * Since transmit from skb destructor is forbidden, we use a BH work item 1249 * to process all sockets that eventually need to send more skbs. 1250 * We use one work item per cpu, with its own queue of sockets. 1251 */ 1252 struct tsq_work { 1253 struct work_struct work; 1254 struct list_head head; /* queue of tcp sockets */ 1255 }; 1256 static DEFINE_PER_CPU(struct tsq_work, tsq_work); 1257 1258 static void tcp_tsq_write(struct sock *sk) 1259 { 1260 if ((1 << sk->sk_state) & 1261 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 1262 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) { 1263 struct tcp_sock *tp = tcp_sk(sk); 1264 1265 if (tp->lost_out > tp->retrans_out && 1266 tcp_snd_cwnd(tp) > tcp_packets_in_flight(tp)) { 1267 tcp_mstamp_refresh(tp); 1268 tcp_xmit_retransmit_queue(sk); 1269 } 1270 1271 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle, 1272 0, GFP_ATOMIC); 1273 } 1274 } 1275 1276 static void tcp_tsq_handler(struct sock *sk) 1277 { 1278 bh_lock_sock(sk); 1279 if (!sock_owned_by_user(sk)) 1280 tcp_tsq_write(sk); 1281 else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) 1282 sock_hold(sk); 1283 bh_unlock_sock(sk); 1284 } 1285 /* 1286 * One work item per cpu tries to send more skbs. 1287 * We run in BH context but need to disable irqs when 1288 * transferring tsq->head because tcp_wfree() might 1289 * interrupt us (non NAPI drivers) 1290 */ 1291 static void tcp_tsq_workfn(struct work_struct *work) 1292 { 1293 struct tsq_work *tsq = container_of(work, struct tsq_work, work); 1294 LIST_HEAD(list); 1295 unsigned long flags; 1296 struct list_head *q, *n; 1297 struct tcp_sock *tp; 1298 struct sock *sk; 1299 1300 local_irq_save(flags); 1301 list_splice_init(&tsq->head, &list); 1302 local_irq_restore(flags); 1303 1304 list_for_each_safe(q, n, &list) { 1305 tp = list_entry(q, struct tcp_sock, tsq_node); 1306 list_del(&tp->tsq_node); 1307 1308 sk = (struct sock *)tp; 1309 smp_mb__before_atomic(); 1310 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags); 1311 1312 tcp_tsq_handler(sk); 1313 sk_free(sk); 1314 } 1315 } 1316 1317 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \ 1318 TCPF_WRITE_TIMER_DEFERRED | \ 1319 TCPF_DELACK_TIMER_DEFERRED | \ 1320 TCPF_MTU_REDUCED_DEFERRED | \ 1321 TCPF_ACK_DEFERRED) 1322 /** 1323 * tcp_release_cb - tcp release_sock() callback 1324 * @sk: socket 1325 * 1326 * called from release_sock() to perform protocol dependent 1327 * actions before socket release. 1328 */ 1329 void tcp_release_cb(struct sock *sk) 1330 { 1331 unsigned long flags = smp_load_acquire(&sk->sk_tsq_flags); 1332 unsigned long nflags; 1333 1334 /* perform an atomic operation only if at least one flag is set */ 1335 do { 1336 if (!(flags & TCP_DEFERRED_ALL)) 1337 return; 1338 nflags = flags & ~TCP_DEFERRED_ALL; 1339 } while (!try_cmpxchg(&sk->sk_tsq_flags, &flags, nflags)); 1340 1341 if (flags & TCPF_TSQ_DEFERRED) { 1342 tcp_tsq_write(sk); 1343 __sock_put(sk); 1344 } 1345 1346 if (flags & TCPF_WRITE_TIMER_DEFERRED) { 1347 tcp_write_timer_handler(sk); 1348 __sock_put(sk); 1349 } 1350 if (flags & TCPF_DELACK_TIMER_DEFERRED) { 1351 tcp_delack_timer_handler(sk); 1352 __sock_put(sk); 1353 } 1354 if (flags & TCPF_MTU_REDUCED_DEFERRED) { 1355 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk); 1356 __sock_put(sk); 1357 } 1358 if ((flags & TCPF_ACK_DEFERRED) && inet_csk_ack_scheduled(sk)) 1359 tcp_send_ack(sk); 1360 } 1361 EXPORT_IPV6_MOD(tcp_release_cb); 1362 1363 void __init tcp_tsq_work_init(void) 1364 { 1365 int i; 1366 1367 for_each_possible_cpu(i) { 1368 struct tsq_work *tsq = &per_cpu(tsq_work, i); 1369 1370 INIT_LIST_HEAD(&tsq->head); 1371 INIT_WORK(&tsq->work, tcp_tsq_workfn); 1372 } 1373 } 1374 1375 /* 1376 * Write buffer destructor automatically called from kfree_skb. 1377 * We can't xmit new skbs from this context, as we might already 1378 * hold qdisc lock. 1379 */ 1380 void tcp_wfree(struct sk_buff *skb) 1381 { 1382 struct sock *sk = skb->sk; 1383 struct tcp_sock *tp = tcp_sk(sk); 1384 unsigned long flags, nval, oval; 1385 struct tsq_work *tsq; 1386 bool empty; 1387 1388 /* Keep one reference on sk_wmem_alloc. 1389 * Will be released by sk_free() from here or tcp_tsq_workfn() 1390 */ 1391 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc)); 1392 1393 /* If this softirq is serviced by ksoftirqd, we are likely under stress. 1394 * Wait until our queues (qdisc + devices) are drained. 1395 * This gives : 1396 * - less callbacks to tcp_write_xmit(), reducing stress (batches) 1397 * - chance for incoming ACK (processed by another cpu maybe) 1398 * to migrate this flow (skb->ooo_okay will be eventually set) 1399 */ 1400 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current) 1401 goto out; 1402 1403 oval = smp_load_acquire(&sk->sk_tsq_flags); 1404 do { 1405 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED)) 1406 goto out; 1407 1408 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED; 1409 } while (!try_cmpxchg(&sk->sk_tsq_flags, &oval, nval)); 1410 1411 /* queue this socket to BH workqueue */ 1412 local_irq_save(flags); 1413 tsq = this_cpu_ptr(&tsq_work); 1414 empty = list_empty(&tsq->head); 1415 list_add(&tp->tsq_node, &tsq->head); 1416 if (empty) 1417 queue_work(system_bh_wq, &tsq->work); 1418 local_irq_restore(flags); 1419 return; 1420 out: 1421 sk_free(sk); 1422 } 1423 1424 /* Note: Called under soft irq. 1425 * We can call TCP stack right away, unless socket is owned by user. 1426 */ 1427 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer) 1428 { 1429 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer); 1430 struct sock *sk = (struct sock *)tp; 1431 1432 tcp_tsq_handler(sk); 1433 sock_put(sk); 1434 1435 return HRTIMER_NORESTART; 1436 } 1437 1438 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb, 1439 u64 prior_wstamp) 1440 { 1441 struct tcp_sock *tp = tcp_sk(sk); 1442 1443 if (sk->sk_pacing_status != SK_PACING_NONE) { 1444 unsigned long rate = READ_ONCE(sk->sk_pacing_rate); 1445 1446 /* Original sch_fq does not pace first 10 MSS 1447 * Note that tp->data_segs_out overflows after 2^32 packets, 1448 * this is a minor annoyance. 1449 */ 1450 if (rate != ~0UL && rate && tp->data_segs_out >= 10) { 1451 u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate); 1452 u64 credit = tp->tcp_wstamp_ns - prior_wstamp; 1453 1454 /* take into account OS jitter */ 1455 len_ns -= min_t(u64, len_ns / 2, credit); 1456 tp->tcp_wstamp_ns += len_ns; 1457 } 1458 } 1459 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 1460 } 1461 1462 /* Snapshot the current delivery information in the skb, to generate 1463 * a rate sample later when the skb is (s)acked in tcp_rate_skb_delivered(). 1464 */ 1465 static void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb) 1466 { 1467 struct tcp_sock *tp = tcp_sk(sk); 1468 1469 /* In general we need to start delivery rate samples from the 1470 * time we received the most recent ACK, to ensure we include 1471 * the full time the network needs to deliver all in-flight 1472 * packets. If there are no packets in flight yet, then we 1473 * know that any ACKs after now indicate that the network was 1474 * able to deliver those packets completely in the sampling 1475 * interval between now and the next ACK. 1476 * 1477 * Note that we use packets_out instead of tcp_packets_in_flight(tp) 1478 * because the latter is a guess based on RTO and loss-marking 1479 * heuristics. We don't want spurious RTOs or loss markings to cause 1480 * a spuriously small time interval, causing a spuriously high 1481 * bandwidth estimate. 1482 */ 1483 if (!tp->packets_out) { 1484 u64 tstamp_us = tcp_skb_timestamp_us(skb); 1485 1486 tp->first_tx_mstamp = tstamp_us; 1487 tp->delivered_mstamp = tstamp_us; 1488 } 1489 1490 TCP_SKB_CB(skb)->tx.first_tx_mstamp = tp->first_tx_mstamp; 1491 TCP_SKB_CB(skb)->tx.delivered_mstamp = tp->delivered_mstamp; 1492 TCP_SKB_CB(skb)->tx.delivered = tp->delivered; 1493 TCP_SKB_CB(skb)->tx.delivered_ce = tp->delivered_ce; 1494 TCP_SKB_CB(skb)->tx.is_app_limited = tp->app_limited ? 1 : 0; 1495 } 1496 1497 INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)); 1498 INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)); 1499 INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)); 1500 1501 /* This routine actually transmits TCP packets queued in by 1502 * tcp_do_sendmsg(). This is used by both the initial 1503 * transmission and possible later retransmissions. 1504 * All SKB's seen here are completely headerless. It is our 1505 * job to build the TCP header, and pass the packet down to 1506 * IP so it can do the same plus pass the packet off to the 1507 * device. 1508 * 1509 * We are working here with either a clone of the original 1510 * SKB, or a fresh unique copy made by the retransmit engine. 1511 */ 1512 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, 1513 int clone_it, gfp_t gfp_mask, u32 rcv_nxt) 1514 { 1515 const struct inet_connection_sock *icsk = inet_csk(sk); 1516 struct inet_sock *inet; 1517 struct tcp_sock *tp; 1518 struct tcp_skb_cb *tcb; 1519 struct tcp_out_options opts; 1520 unsigned int tcp_options_size, tcp_header_size; 1521 struct sk_buff *oskb = NULL; 1522 struct tcp_key key; 1523 struct tcphdr *th; 1524 u64 prior_wstamp; 1525 int err; 1526 1527 BUG_ON(!skb || !tcp_skb_pcount(skb)); 1528 tp = tcp_sk(sk); 1529 prior_wstamp = tp->tcp_wstamp_ns; 1530 tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache); 1531 skb_set_delivery_time(skb, tp->tcp_wstamp_ns, SKB_CLOCK_MONOTONIC); 1532 if (clone_it) { 1533 oskb = skb; 1534 1535 tcp_skb_tsorted_save(oskb) { 1536 if (unlikely(skb_cloned(oskb))) 1537 skb = pskb_copy(oskb, gfp_mask); 1538 else 1539 skb = skb_clone(oskb, gfp_mask); 1540 } tcp_skb_tsorted_restore(oskb); 1541 1542 if (unlikely(!skb)) 1543 return -ENOBUFS; 1544 /* retransmit skbs might have a non zero value in skb->dev 1545 * because skb->dev is aliased with skb->rbnode.rb_left 1546 */ 1547 skb->dev = NULL; 1548 } 1549 1550 inet = inet_sk(sk); 1551 tcb = TCP_SKB_CB(skb); 1552 memset(&opts, 0, sizeof(opts)); 1553 1554 tcp_get_current_key(sk, &key); 1555 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) { 1556 tcp_options_size = tcp_syn_options(sk, skb, &opts, &key); 1557 } else { 1558 tcp_options_size = tcp_established_options(sk, skb, &opts, &key); 1559 /* Force a PSH flag on all (GSO) packets to expedite GRO flush 1560 * at receiver : This slightly improve GRO performance. 1561 * Note that we do not force the PSH flag for non GSO packets, 1562 * because they might be sent under high congestion events, 1563 * and in this case it is better to delay the delivery of 1-MSS 1564 * packets and thus the corresponding ACK packet that would 1565 * release the following packet. 1566 */ 1567 if (tcp_skb_pcount(skb) > 1) 1568 tcb->tcp_flags |= TCPHDR_PSH; 1569 } 1570 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 1571 1572 /* We set skb->ooo_okay to one if this packet can select 1573 * a different TX queue than prior packets of this flow, 1574 * to avoid self inflicted reorders. 1575 * The 'other' queue decision is based on current cpu number 1576 * if XPS is enabled, or sk->sk_txhash otherwise. 1577 * We can switch to another (and better) queue if: 1578 * 1) No packet with payload is in qdisc/device queues. 1579 * Delays in TX completion can defeat the test 1580 * even if packets were already sent. 1581 * 2) Or rtx queue is empty. 1582 * This mitigates above case if ACK packets for 1583 * all prior packets were already processed. 1584 */ 1585 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1) || 1586 tcp_rtx_queue_empty(sk); 1587 1588 /* If we had to use memory reserve to allocate this skb, 1589 * this might cause drops if packet is looped back : 1590 * Other socket might not have SOCK_MEMALLOC. 1591 * Packets not looped back do not care about pfmemalloc. 1592 */ 1593 skb->pfmemalloc = 0; 1594 1595 __skb_push(skb, tcp_header_size); 1596 skb_reset_transport_header(skb); 1597 1598 skb_orphan(skb); 1599 skb->sk = sk; 1600 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree; 1601 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 1602 1603 skb_set_dst_pending_confirm(skb, READ_ONCE(sk->sk_dst_pending_confirm)); 1604 1605 /* Build TCP header and checksum it. */ 1606 th = (struct tcphdr *)skb->data; 1607 th->source = inet->inet_sport; 1608 th->dest = inet->inet_dport; 1609 th->seq = htonl(tcb->seq); 1610 th->ack_seq = htonl(rcv_nxt); 1611 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 1612 (tcb->tcp_flags & TCPHDR_FLAGS_MASK)); 1613 1614 th->check = 0; 1615 th->urg_ptr = 0; 1616 1617 /* The urg_mode check is necessary during a below snd_una win probe */ 1618 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 1619 if (before(tp->snd_up, tcb->seq + 0x10000)) { 1620 th->urg_ptr = htons(tp->snd_up - tcb->seq); 1621 th->urg = 1; 1622 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 1623 th->urg_ptr = htons(0xFFFF); 1624 th->urg = 1; 1625 } 1626 } 1627 1628 skb_shinfo(skb)->gso_type = sk->sk_gso_type; 1629 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) { 1630 th->window = htons(tcp_select_window(sk)); 1631 tcp_ecn_send(sk, skb, th, tcp_header_size); 1632 } else { 1633 /* RFC1323: The window in SYN & SYN/ACK segments 1634 * is never scaled. 1635 */ 1636 th->window = htons(min(tp->rcv_wnd, 65535U)); 1637 } 1638 1639 tcp_options_write(th, tp, NULL, &opts, &key); 1640 1641 if (tcp_key_is_md5(&key)) { 1642 #ifdef CONFIG_TCP_MD5SIG 1643 /* Calculate the MD5 hash, as we have all we need now */ 1644 sk_gso_disable(sk); 1645 tp->af_specific->calc_md5_hash(opts.hash_location, 1646 key.md5_key, sk, skb); 1647 #endif 1648 } else if (tcp_key_is_ao(&key)) { 1649 int err; 1650 1651 err = tcp_ao_transmit_skb(sk, skb, key.ao_key, th, 1652 opts.hash_location); 1653 if (err) { 1654 sk_skb_reason_drop(sk, skb, SKB_DROP_REASON_NOT_SPECIFIED); 1655 return -ENOMEM; 1656 } 1657 } 1658 1659 /* BPF prog is the last one writing header option */ 1660 bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts); 1661 1662 INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check, 1663 tcp_v6_send_check, tcp_v4_send_check, 1664 sk, skb); 1665 1666 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 1667 tcp_event_ack_sent(sk, rcv_nxt); 1668 1669 if (skb->len != tcp_header_size) { 1670 tcp_event_data_sent(tp, sk); 1671 tp->data_segs_out += tcp_skb_pcount(skb); 1672 tp->bytes_sent += skb->len - tcp_header_size; 1673 } 1674 1675 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 1676 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 1677 tcp_skb_pcount(skb)); 1678 1679 tp->segs_out += tcp_skb_pcount(skb); 1680 skb_set_hash_from_sk(skb, sk); 1681 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */ 1682 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb); 1683 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb); 1684 1685 /* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */ 1686 1687 /* Cleanup our debris for IP stacks */ 1688 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm), 1689 sizeof(struct inet6_skb_parm))); 1690 1691 tcp_add_tx_delay(skb, tp); 1692 1693 err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit, 1694 inet6_csk_xmit, ip_queue_xmit, 1695 sk, skb, &inet->cork.fl); 1696 1697 if (unlikely(err > 0)) { 1698 tcp_enter_cwr(sk); 1699 err = net_xmit_eval(err); 1700 } 1701 if (!err && oskb) { 1702 tcp_update_skb_after_send(sk, oskb, prior_wstamp); 1703 tcp_rate_skb_sent(sk, oskb); 1704 } 1705 return err; 1706 } 1707 1708 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 1709 gfp_t gfp_mask) 1710 { 1711 return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask, 1712 tcp_sk(sk)->rcv_nxt); 1713 } 1714 1715 /* This routine just queues the buffer for sending. 1716 * 1717 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 1718 * otherwise socket can stall. 1719 */ 1720 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 1721 { 1722 struct tcp_sock *tp = tcp_sk(sk); 1723 1724 /* Advance write_seq and place onto the write_queue. */ 1725 WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq); 1726 __skb_header_release(skb); 1727 psp_enqueue_set_decrypted(sk, skb); 1728 tcp_add_write_queue_tail(sk, skb); 1729 sk_wmem_queued_add(sk, skb->truesize); 1730 sk_mem_charge(sk, skb->truesize); 1731 } 1732 1733 /* Initialize TSO segments for a packet. */ 1734 static int tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1735 { 1736 int tso_segs; 1737 1738 if (skb->len <= mss_now) { 1739 /* Avoid the costly divide in the normal 1740 * non-TSO case. 1741 */ 1742 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1743 tcp_skb_pcount_set(skb, 1); 1744 return 1; 1745 } 1746 TCP_SKB_CB(skb)->tcp_gso_size = mss_now; 1747 tso_segs = DIV_ROUND_UP(skb->len, mss_now); 1748 tcp_skb_pcount_set(skb, tso_segs); 1749 return tso_segs; 1750 } 1751 1752 /* Pcount in the middle of the write queue got changed, we need to do various 1753 * tweaks to fix counters 1754 */ 1755 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1756 { 1757 struct tcp_sock *tp = tcp_sk(sk); 1758 1759 tp->packets_out -= decr; 1760 1761 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1762 tp->sacked_out -= decr; 1763 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1764 tp->retrans_out -= decr; 1765 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1766 tp->lost_out -= decr; 1767 1768 /* Reno case is special. Sigh... */ 1769 if (tcp_is_reno(tp) && decr > 0) 1770 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1771 1772 tcp_verify_left_out(tp); 1773 } 1774 1775 static bool tcp_has_tx_tstamp(const struct sk_buff *skb) 1776 { 1777 return TCP_SKB_CB(skb)->txstamp_ack || 1778 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP); 1779 } 1780 1781 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2) 1782 { 1783 struct skb_shared_info *shinfo = skb_shinfo(skb); 1784 1785 if (unlikely(tcp_has_tx_tstamp(skb)) && 1786 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) { 1787 struct skb_shared_info *shinfo2 = skb_shinfo(skb2); 1788 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP; 1789 1790 shinfo->tx_flags &= ~tsflags; 1791 shinfo2->tx_flags |= tsflags; 1792 swap(shinfo->tskey, shinfo2->tskey); 1793 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack; 1794 TCP_SKB_CB(skb)->txstamp_ack = 0; 1795 } 1796 } 1797 1798 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2) 1799 { 1800 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor; 1801 TCP_SKB_CB(skb)->eor = 0; 1802 } 1803 1804 /* Insert buff after skb on the write or rtx queue of sk. */ 1805 static void tcp_insert_write_queue_after(struct sk_buff *skb, 1806 struct sk_buff *buff, 1807 struct sock *sk, 1808 enum tcp_queue tcp_queue) 1809 { 1810 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE) 1811 __skb_queue_after(&sk->sk_write_queue, skb, buff); 1812 else 1813 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 1814 } 1815 1816 /* Function to create two new TCP segments. Shrinks the given segment 1817 * to the specified size and appends a new segment with the rest of the 1818 * packet to the list. This won't be called frequently, I hope. 1819 * Remember, these are still headerless SKBs at this point. 1820 */ 1821 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, 1822 struct sk_buff *skb, u32 len, 1823 unsigned int mss_now, gfp_t gfp) 1824 { 1825 struct tcp_sock *tp = tcp_sk(sk); 1826 struct sk_buff *buff; 1827 int old_factor; 1828 long limit; 1829 u16 flags; 1830 int nlen; 1831 1832 if (WARN_ON(len > skb->len)) 1833 return -EINVAL; 1834 1835 DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb)); 1836 1837 /* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb. 1838 * We need some allowance to not penalize applications setting small 1839 * SO_SNDBUF values. 1840 * Also allow first and last skb in retransmit queue to be split. 1841 */ 1842 limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_LEGACY_MAX_SIZE); 1843 if (unlikely((sk->sk_wmem_queued >> 1) > limit && 1844 tcp_queue != TCP_FRAG_IN_WRITE_QUEUE && 1845 skb != tcp_rtx_queue_head(sk) && 1846 skb != tcp_rtx_queue_tail(sk))) { 1847 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG); 1848 return -ENOMEM; 1849 } 1850 1851 if (skb_unclone_keeptruesize(skb, gfp)) 1852 return -ENOMEM; 1853 1854 /* Get a new skb... force flag on. */ 1855 buff = tcp_stream_alloc_skb(sk, gfp, true); 1856 if (!buff) 1857 return -ENOMEM; /* We'll just try again later. */ 1858 skb_copy_decrypted(buff, skb); 1859 mptcp_skb_ext_copy(buff, skb); 1860 1861 sk_wmem_queued_add(sk, buff->truesize); 1862 sk_mem_charge(sk, buff->truesize); 1863 nlen = skb->len - len; 1864 buff->truesize += nlen; 1865 skb->truesize -= nlen; 1866 1867 /* Correct the sequence numbers. */ 1868 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1869 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1870 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1871 1872 /* PSH and FIN should only be set in the second packet. */ 1873 flags = TCP_SKB_CB(skb)->tcp_flags; 1874 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1875 TCP_SKB_CB(buff)->tcp_flags = flags; 1876 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1877 tcp_skb_fragment_eor(skb, buff); 1878 1879 skb_split(skb, buff, len); 1880 1881 skb_set_delivery_time(buff, skb->tstamp, SKB_CLOCK_MONOTONIC); 1882 tcp_fragment_tstamp(skb, buff); 1883 1884 old_factor = tcp_skb_pcount(skb); 1885 1886 /* Fix up tso_factor for both original and new SKB. */ 1887 tcp_set_skb_tso_segs(skb, mss_now); 1888 tcp_set_skb_tso_segs(buff, mss_now); 1889 1890 /* Update delivered info for the new segment */ 1891 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx; 1892 1893 /* If this packet has been sent out already, we must 1894 * adjust the various packet counters. 1895 */ 1896 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1897 int diff = old_factor - tcp_skb_pcount(skb) - 1898 tcp_skb_pcount(buff); 1899 1900 if (diff) 1901 tcp_adjust_pcount(sk, skb, diff); 1902 } 1903 1904 /* Link BUFF into the send queue. */ 1905 __skb_header_release(buff); 1906 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue); 1907 if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE) 1908 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor); 1909 1910 return 0; 1911 } 1912 1913 /* This is similar to __pskb_pull_tail(). The difference is that pulled 1914 * data is not copied, but immediately discarded. 1915 */ 1916 static int __pskb_trim_head(struct sk_buff *skb, int len) 1917 { 1918 struct skb_shared_info *shinfo; 1919 int i, k, eat; 1920 1921 DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb)); 1922 eat = len; 1923 k = 0; 1924 shinfo = skb_shinfo(skb); 1925 for (i = 0; i < shinfo->nr_frags; i++) { 1926 int size = skb_frag_size(&shinfo->frags[i]); 1927 1928 if (size <= eat) { 1929 skb_frag_unref(skb, i); 1930 eat -= size; 1931 } else { 1932 shinfo->frags[k] = shinfo->frags[i]; 1933 if (eat) { 1934 skb_frag_off_add(&shinfo->frags[k], eat); 1935 skb_frag_size_sub(&shinfo->frags[k], eat); 1936 eat = 0; 1937 } 1938 k++; 1939 } 1940 } 1941 shinfo->nr_frags = k; 1942 1943 skb->data_len -= len; 1944 skb->len = skb->data_len; 1945 return len; 1946 } 1947 1948 /* Remove acked data from a packet in the transmit queue. */ 1949 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1950 { 1951 u32 delta_truesize; 1952 1953 if (skb_unclone_keeptruesize(skb, GFP_ATOMIC)) 1954 return -ENOMEM; 1955 1956 delta_truesize = __pskb_trim_head(skb, len); 1957 1958 TCP_SKB_CB(skb)->seq += len; 1959 1960 skb->truesize -= delta_truesize; 1961 sk_wmem_queued_add(sk, -delta_truesize); 1962 if (!skb_zcopy_pure(skb)) 1963 sk_mem_uncharge(sk, delta_truesize); 1964 1965 /* Any change of skb->len requires recalculation of tso factor. */ 1966 if (tcp_skb_pcount(skb) > 1) 1967 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb)); 1968 1969 return 0; 1970 } 1971 1972 /* Calculate MSS not accounting any TCP options. */ 1973 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) 1974 { 1975 const struct tcp_sock *tp = tcp_sk(sk); 1976 const struct inet_connection_sock *icsk = inet_csk(sk); 1977 int mss_now; 1978 1979 /* Calculate base mss without TCP options: 1980 It is MMS_S - sizeof(tcphdr) of rfc1122 1981 */ 1982 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1983 1984 /* Clamp it (mss_clamp does not include tcp options) */ 1985 if (mss_now > tp->rx_opt.mss_clamp) 1986 mss_now = tp->rx_opt.mss_clamp; 1987 1988 /* Now subtract optional transport overhead */ 1989 mss_now -= icsk->icsk_ext_hdr_len; 1990 1991 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1992 mss_now = max(mss_now, 1993 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss)); 1994 return mss_now; 1995 } 1996 1997 /* Calculate MSS. Not accounting for SACKs here. */ 1998 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1999 { 2000 /* Subtract TCP options size, not including SACKs */ 2001 return __tcp_mtu_to_mss(sk, pmtu) - 2002 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); 2003 } 2004 EXPORT_IPV6_MOD(tcp_mtu_to_mss); 2005 2006 /* Inverse of above */ 2007 int tcp_mss_to_mtu(struct sock *sk, int mss) 2008 { 2009 const struct tcp_sock *tp = tcp_sk(sk); 2010 const struct inet_connection_sock *icsk = inet_csk(sk); 2011 2012 return mss + 2013 tp->tcp_header_len + 2014 icsk->icsk_ext_hdr_len + 2015 icsk->icsk_af_ops->net_header_len; 2016 } 2017 EXPORT_SYMBOL(tcp_mss_to_mtu); 2018 2019 /* MTU probing init per socket */ 2020 void tcp_mtup_init(struct sock *sk) 2021 { 2022 struct tcp_sock *tp = tcp_sk(sk); 2023 struct inet_connection_sock *icsk = inet_csk(sk); 2024 struct net *net = sock_net(sk); 2025 2026 icsk->icsk_mtup.enabled = READ_ONCE(net->ipv4.sysctl_tcp_mtu_probing) > 1; 2027 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 2028 icsk->icsk_af_ops->net_header_len; 2029 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, READ_ONCE(net->ipv4.sysctl_tcp_base_mss)); 2030 icsk->icsk_mtup.probe_size = 0; 2031 if (icsk->icsk_mtup.enabled) 2032 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 2033 } 2034 2035 /* This function synchronize snd mss to current pmtu/exthdr set. 2036 2037 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 2038 for TCP options, but includes only bare TCP header. 2039 2040 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 2041 It is minimum of user_mss and mss received with SYN. 2042 It also does not include TCP options. 2043 2044 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 2045 2046 tp->mss_cache is current effective sending mss, including 2047 all tcp options except for SACKs. It is evaluated, 2048 taking into account current pmtu, but never exceeds 2049 tp->rx_opt.mss_clamp. 2050 2051 NOTE1. rfc1122 clearly states that advertised MSS 2052 DOES NOT include either tcp or ip options. 2053 2054 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 2055 are READ ONLY outside this function. --ANK (980731) 2056 */ 2057 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 2058 { 2059 struct tcp_sock *tp = tcp_sk(sk); 2060 struct inet_connection_sock *icsk = inet_csk(sk); 2061 int mss_now; 2062 2063 if (icsk->icsk_mtup.search_high > pmtu) 2064 icsk->icsk_mtup.search_high = pmtu; 2065 2066 mss_now = tcp_mtu_to_mss(sk, pmtu); 2067 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 2068 2069 /* And store cached results */ 2070 icsk->icsk_pmtu_cookie = pmtu; 2071 if (icsk->icsk_mtup.enabled) 2072 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 2073 tp->mss_cache = mss_now; 2074 2075 return mss_now; 2076 } 2077 EXPORT_IPV6_MOD(tcp_sync_mss); 2078 2079 /* Compute the current effective MSS, taking SACKs and IP options, 2080 * and even PMTU discovery events into account. 2081 */ 2082 unsigned int tcp_current_mss(struct sock *sk) 2083 { 2084 const struct tcp_sock *tp = tcp_sk(sk); 2085 const struct dst_entry *dst = __sk_dst_get(sk); 2086 u32 mss_now; 2087 unsigned int header_len; 2088 struct tcp_out_options opts; 2089 struct tcp_key key; 2090 2091 mss_now = tp->mss_cache; 2092 2093 if (dst) { 2094 u32 mtu = dst_mtu(dst); 2095 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 2096 mss_now = tcp_sync_mss(sk, mtu); 2097 } 2098 tcp_get_current_key(sk, &key); 2099 header_len = tcp_established_options(sk, NULL, &opts, &key) + 2100 sizeof(struct tcphdr); 2101 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 2102 * some common options. If this is an odd packet (because we have SACK 2103 * blocks etc) then our calculated header_len will be different, and 2104 * we have to adjust mss_now correspondingly */ 2105 if (header_len != tp->tcp_header_len) { 2106 int delta = (int) header_len - tp->tcp_header_len; 2107 mss_now -= delta; 2108 } 2109 2110 return mss_now; 2111 } 2112 2113 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 2114 * As additional protections, we do not touch cwnd in retransmission phases, 2115 * and if application hit its sndbuf limit recently. 2116 */ 2117 static void tcp_cwnd_application_limited(struct sock *sk) 2118 { 2119 struct tcp_sock *tp = tcp_sk(sk); 2120 2121 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 2122 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 2123 /* Limited by application or receiver window. */ 2124 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 2125 u32 win_used = max(tp->snd_cwnd_used, init_win); 2126 if (win_used < tcp_snd_cwnd(tp)) { 2127 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2128 tcp_snd_cwnd_set(tp, (tcp_snd_cwnd(tp) + win_used) >> 1); 2129 } 2130 tp->snd_cwnd_used = 0; 2131 } 2132 tp->snd_cwnd_stamp = tcp_jiffies32; 2133 } 2134 2135 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited) 2136 { 2137 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 2138 struct tcp_sock *tp = tcp_sk(sk); 2139 2140 /* Track the strongest available signal of the degree to which the cwnd 2141 * is fully utilized. If cwnd-limited then remember that fact for the 2142 * current window. If not cwnd-limited then track the maximum number of 2143 * outstanding packets in the current window. (If cwnd-limited then we 2144 * chose to not update tp->max_packets_out to avoid an extra else 2145 * clause with no functional impact.) 2146 */ 2147 if (!before(tp->snd_una, tp->cwnd_usage_seq) || 2148 is_cwnd_limited || 2149 (!tp->is_cwnd_limited && 2150 tp->packets_out > tp->max_packets_out)) { 2151 tp->is_cwnd_limited = is_cwnd_limited; 2152 tp->max_packets_out = tp->packets_out; 2153 tp->cwnd_usage_seq = tp->snd_nxt; 2154 } 2155 2156 if (tcp_is_cwnd_limited(sk)) { 2157 /* Network is feed fully. */ 2158 tp->snd_cwnd_used = 0; 2159 tp->snd_cwnd_stamp = tcp_jiffies32; 2160 } else { 2161 /* Network starves. */ 2162 if (tp->packets_out > tp->snd_cwnd_used) 2163 tp->snd_cwnd_used = tp->packets_out; 2164 2165 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) && 2166 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto && 2167 !ca_ops->cong_control) 2168 tcp_cwnd_application_limited(sk); 2169 2170 /* The following conditions together indicate the starvation 2171 * is caused by insufficient sender buffer: 2172 * 1) just sent some data (see tcp_write_xmit) 2173 * 2) not cwnd limited (this else condition) 2174 * 3) no more data to send (tcp_write_queue_empty()) 2175 * 4) application is hitting buffer limit (SOCK_NOSPACE) 2176 */ 2177 if (tcp_write_queue_empty(sk) && sk->sk_socket && 2178 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) && 2179 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 2180 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED); 2181 } 2182 } 2183 2184 /* Minshall's variant of the Nagle send check. */ 2185 static bool tcp_minshall_check(const struct tcp_sock *tp) 2186 { 2187 return after(tp->snd_sml, tp->snd_una) && 2188 !after(tp->snd_sml, tp->snd_nxt); 2189 } 2190 2191 /* Update snd_sml if this skb is under mss 2192 * Note that a TSO packet might end with a sub-mss segment 2193 * The test is really : 2194 * if ((skb->len % mss) != 0) 2195 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 2196 * But we can avoid doing the divide again given we already have 2197 * skb_pcount = skb->len / mss_now 2198 */ 2199 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now, 2200 const struct sk_buff *skb) 2201 { 2202 if (skb->len < tcp_skb_pcount(skb) * mss_now) 2203 tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 2204 } 2205 2206 /* Return false, if packet can be sent now without violation Nagle's rules: 2207 * 1. It is full sized. (provided by caller in %partial bool) 2208 * 2. Or it contains FIN. (already checked by caller) 2209 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 2210 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 2211 * With Minshall's modification: all sent small packets are ACKed. 2212 */ 2213 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp, 2214 int nonagle) 2215 { 2216 return partial && 2217 ((nonagle & TCP_NAGLE_CORK) || 2218 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 2219 } 2220 2221 /* Return how many segs we'd like on a TSO packet, 2222 * depending on current pacing rate, and how close the peer is. 2223 * 2224 * Rationale is: 2225 * - For close peers, we rather send bigger packets to reduce 2226 * cpu costs, because occasional losses will be repaired fast. 2227 * - For long distance/rtt flows, we would like to get ACK clocking 2228 * with 1 ACK per ms. 2229 * 2230 * Use min_rtt to help adapt TSO burst size, with smaller min_rtt resulting 2231 * in bigger TSO bursts. We we cut the RTT-based allowance in half 2232 * for every 2^9 usec (aka 512 us) of RTT, so that the RTT-based allowance 2233 * is below 1500 bytes after 6 * ~500 usec = 3ms. 2234 */ 2235 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now, 2236 int min_tso_segs) 2237 { 2238 unsigned long bytes; 2239 u32 r; 2240 2241 bytes = READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift); 2242 2243 r = tcp_min_rtt(tcp_sk(sk)) >> READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_rtt_log); 2244 if (r < BITS_PER_TYPE(sk->sk_gso_max_size)) 2245 bytes += sk->sk_gso_max_size >> r; 2246 2247 bytes = min_t(unsigned long, bytes, sk->sk_gso_max_size); 2248 2249 return max_t(u32, bytes / mss_now, min_tso_segs); 2250 } 2251 2252 /* Return the number of segments we want in the skb we are transmitting. 2253 * See if congestion control module wants to decide; otherwise, autosize. 2254 */ 2255 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now) 2256 { 2257 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 2258 u32 min_tso, tso_segs; 2259 2260 min_tso = ca_ops->min_tso_segs ? 2261 ca_ops->min_tso_segs(sk) : 2262 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs); 2263 2264 tso_segs = tcp_tso_autosize(sk, mss_now, min_tso); 2265 return min_t(u32, tso_segs, sk->sk_gso_max_segs); 2266 } 2267 2268 /* Returns the portion of skb which can be sent right away */ 2269 static unsigned int tcp_mss_split_point(const struct sock *sk, 2270 const struct sk_buff *skb, 2271 unsigned int mss_now, 2272 unsigned int max_segs, 2273 int nonagle) 2274 { 2275 const struct tcp_sock *tp = tcp_sk(sk); 2276 u32 partial, needed, window, max_len; 2277 2278 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 2279 max_len = mss_now * max_segs; 2280 2281 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) 2282 return max_len; 2283 2284 needed = min(skb->len, window); 2285 2286 if (max_len <= needed) 2287 return max_len; 2288 2289 partial = needed % mss_now; 2290 /* If last segment is not a full MSS, check if Nagle rules allow us 2291 * to include this last segment in this skb. 2292 * Otherwise, we'll split the skb at last MSS boundary 2293 */ 2294 if (tcp_nagle_check(partial != 0, tp, nonagle)) 2295 return needed - partial; 2296 2297 return needed; 2298 } 2299 2300 /* Can at least one segment of SKB be sent right now, according to the 2301 * congestion window rules? If so, return how many segments are allowed. 2302 */ 2303 static u32 tcp_cwnd_test(const struct tcp_sock *tp) 2304 { 2305 u32 in_flight, cwnd, halfcwnd; 2306 2307 in_flight = tcp_packets_in_flight(tp); 2308 cwnd = tcp_snd_cwnd(tp); 2309 if (in_flight >= cwnd) 2310 return 0; 2311 2312 /* For better scheduling, ensure we have at least 2313 * 2 GSO packets in flight. 2314 */ 2315 halfcwnd = max(cwnd >> 1, 1U); 2316 return min(halfcwnd, cwnd - in_flight); 2317 } 2318 2319 /* Initialize TSO state of a skb. 2320 * This must be invoked the first time we consider transmitting 2321 * SKB onto the wire. 2322 */ 2323 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now) 2324 { 2325 int tso_segs = tcp_skb_pcount(skb); 2326 2327 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) 2328 return tcp_set_skb_tso_segs(skb, mss_now); 2329 2330 return tso_segs; 2331 } 2332 2333 2334 /* Return true if the Nagle test allows this packet to be 2335 * sent now. 2336 */ 2337 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 2338 unsigned int cur_mss, int nonagle) 2339 { 2340 /* Nagle rule does not apply to frames, which sit in the middle of the 2341 * write_queue (they have no chances to get new data). 2342 * 2343 * This is implemented in the callers, where they modify the 'nonagle' 2344 * argument based upon the location of SKB in the send queue. 2345 */ 2346 if (nonagle & TCP_NAGLE_PUSH) 2347 return true; 2348 2349 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 2350 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 2351 return true; 2352 2353 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle)) 2354 return true; 2355 2356 return false; 2357 } 2358 2359 /* Does at least the first segment of SKB fit into the send window? */ 2360 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 2361 const struct sk_buff *skb, 2362 unsigned int cur_mss) 2363 { 2364 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 2365 2366 if (skb->len > cur_mss) 2367 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 2368 2369 return !after(end_seq, tcp_wnd_end(tp)); 2370 } 2371 2372 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 2373 * which is put after SKB on the list. It is very much like 2374 * tcp_fragment() except that it may make several kinds of assumptions 2375 * in order to speed up the splitting operation. In particular, we 2376 * know that all the data is in scatter-gather pages, and that the 2377 * packet has never been sent out before (and thus is not cloned). 2378 */ 2379 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, 2380 unsigned int mss_now, gfp_t gfp) 2381 { 2382 int nlen = skb->len - len; 2383 struct sk_buff *buff; 2384 u16 flags; 2385 2386 /* All of a TSO frame must be composed of paged data. */ 2387 DEBUG_NET_WARN_ON_ONCE(skb->len != skb->data_len); 2388 2389 buff = tcp_stream_alloc_skb(sk, gfp, true); 2390 if (unlikely(!buff)) 2391 return -ENOMEM; 2392 skb_copy_decrypted(buff, skb); 2393 mptcp_skb_ext_copy(buff, skb); 2394 2395 sk_wmem_queued_add(sk, buff->truesize); 2396 sk_mem_charge(sk, buff->truesize); 2397 buff->truesize += nlen; 2398 skb->truesize -= nlen; 2399 2400 /* Correct the sequence numbers. */ 2401 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 2402 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 2403 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 2404 2405 /* PSH and FIN should only be set in the second packet. */ 2406 flags = TCP_SKB_CB(skb)->tcp_flags; 2407 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 2408 TCP_SKB_CB(buff)->tcp_flags = flags; 2409 2410 tcp_skb_fragment_eor(skb, buff); 2411 2412 skb_split(skb, buff, len); 2413 tcp_fragment_tstamp(skb, buff); 2414 2415 /* Fix up tso_factor for both original and new SKB. */ 2416 tcp_set_skb_tso_segs(skb, mss_now); 2417 tcp_set_skb_tso_segs(buff, mss_now); 2418 2419 /* Link BUFF into the send queue. */ 2420 __skb_header_release(buff); 2421 tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE); 2422 2423 return 0; 2424 } 2425 2426 /* Try to defer sending, if possible, in order to minimize the amount 2427 * of TSO splitting we do. View it as a kind of TSO Nagle test. 2428 * 2429 * This algorithm is from John Heffner. 2430 */ 2431 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb, 2432 bool *is_cwnd_limited, 2433 bool *is_rwnd_limited, 2434 u32 max_segs) 2435 { 2436 const struct inet_connection_sock *icsk = inet_csk(sk); 2437 u32 send_win, cong_win, limit, in_flight, threshold; 2438 u64 srtt_in_ns, expected_ack, how_far_is_the_ack; 2439 struct tcp_sock *tp = tcp_sk(sk); 2440 struct sk_buff *head; 2441 int win_divisor; 2442 s64 delta; 2443 2444 if (icsk->icsk_ca_state >= TCP_CA_Recovery) 2445 goto send_now; 2446 2447 /* Avoid bursty behavior by allowing defer 2448 * only if the last write was recent (1 ms). 2449 * Note that tp->tcp_wstamp_ns can be in the future if we have 2450 * packets waiting in a qdisc or device for EDT delivery. 2451 */ 2452 delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC; 2453 if (delta > 0) 2454 goto send_now; 2455 2456 in_flight = tcp_packets_in_flight(tp); 2457 2458 BUG_ON(tcp_skb_pcount(skb) <= 1); 2459 BUG_ON(tcp_snd_cwnd(tp) <= in_flight); 2460 2461 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 2462 2463 /* From in_flight test above, we know that cwnd > in_flight. */ 2464 cong_win = (tcp_snd_cwnd(tp) - in_flight) * tp->mss_cache; 2465 2466 limit = min(send_win, cong_win); 2467 2468 /* If a full-sized TSO skb can be sent, do it. */ 2469 if (limit >= max_segs * tp->mss_cache) 2470 goto send_now; 2471 2472 /* Middle in queue won't get any more data, full sendable already? */ 2473 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 2474 goto send_now; 2475 2476 win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor); 2477 if (win_divisor) { 2478 u32 chunk = min(tp->snd_wnd, tcp_snd_cwnd(tp) * tp->mss_cache); 2479 2480 /* If at least some fraction of a window is available, 2481 * just use it. 2482 */ 2483 chunk /= win_divisor; 2484 if (limit >= chunk) 2485 goto send_now; 2486 } else { 2487 /* Different approach, try not to defer past a single 2488 * ACK. Receiver should ACK every other full sized 2489 * frame, so if we have space for more than 3 frames 2490 * then send now. 2491 */ 2492 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 2493 goto send_now; 2494 } 2495 2496 /* TODO : use tsorted_sent_queue ? */ 2497 head = tcp_rtx_queue_head(sk); 2498 if (!head) 2499 goto send_now; 2500 2501 srtt_in_ns = (u64)(NSEC_PER_USEC >> 3) * tp->srtt_us; 2502 /* When is the ACK expected ? */ 2503 expected_ack = head->tstamp + srtt_in_ns; 2504 /* How far from now is the ACK expected ? */ 2505 how_far_is_the_ack = expected_ack - tp->tcp_clock_cache; 2506 2507 /* If next ACK is likely to come too late, 2508 * ie in more than min(1ms, half srtt), do not defer. 2509 */ 2510 threshold = min(srtt_in_ns >> 1, NSEC_PER_MSEC); 2511 2512 if ((s64)(how_far_is_the_ack - threshold) > 0) 2513 goto send_now; 2514 2515 /* Ok, it looks like it is advisable to defer. 2516 * Three cases are tracked : 2517 * 1) We are cwnd-limited 2518 * 2) We are rwnd-limited 2519 * 3) We are application limited. 2520 */ 2521 if (cong_win < send_win) { 2522 if (cong_win <= skb->len) { 2523 *is_cwnd_limited = true; 2524 return true; 2525 } 2526 } else { 2527 if (send_win <= skb->len) { 2528 *is_rwnd_limited = true; 2529 return true; 2530 } 2531 } 2532 2533 /* If this packet won't get more data, do not wait. */ 2534 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) || 2535 TCP_SKB_CB(skb)->eor) 2536 goto send_now; 2537 2538 return true; 2539 2540 send_now: 2541 return false; 2542 } 2543 2544 static inline void tcp_mtu_check_reprobe(struct sock *sk) 2545 { 2546 struct inet_connection_sock *icsk = inet_csk(sk); 2547 struct tcp_sock *tp = tcp_sk(sk); 2548 struct net *net = sock_net(sk); 2549 u32 interval; 2550 s32 delta; 2551 2552 interval = READ_ONCE(net->ipv4.sysctl_tcp_probe_interval); 2553 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp; 2554 if (unlikely(delta >= interval * HZ)) { 2555 int mss = tcp_current_mss(sk); 2556 2557 /* Update current search range */ 2558 icsk->icsk_mtup.probe_size = 0; 2559 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + 2560 sizeof(struct tcphdr) + 2561 icsk->icsk_af_ops->net_header_len; 2562 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss); 2563 2564 /* Update probe time stamp */ 2565 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 2566 } 2567 } 2568 2569 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len) 2570 { 2571 struct sk_buff *skb, *next; 2572 2573 skb = tcp_send_head(sk); 2574 tcp_for_write_queue_from_safe(skb, next, sk) { 2575 if (len <= skb->len) 2576 break; 2577 2578 if (tcp_has_tx_tstamp(skb) || !tcp_skb_can_collapse(skb, next)) 2579 return false; 2580 2581 len -= skb->len; 2582 } 2583 2584 return true; 2585 } 2586 2587 static int tcp_clone_payload(struct sock *sk, struct sk_buff *to, 2588 int probe_size) 2589 { 2590 skb_frag_t *lastfrag = NULL, *fragto = skb_shinfo(to)->frags; 2591 int i, todo, len = 0, nr_frags = 0; 2592 const struct sk_buff *skb; 2593 2594 if (!sk_wmem_schedule(sk, to->truesize + probe_size)) 2595 return -ENOMEM; 2596 2597 skb_queue_walk(&sk->sk_write_queue, skb) { 2598 const skb_frag_t *fragfrom = skb_shinfo(skb)->frags; 2599 2600 if (skb_headlen(skb)) 2601 return -EINVAL; 2602 2603 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, fragfrom++) { 2604 if (len >= probe_size) 2605 goto commit; 2606 todo = min_t(int, skb_frag_size(fragfrom), 2607 probe_size - len); 2608 len += todo; 2609 if (lastfrag && 2610 skb_frag_page(fragfrom) == skb_frag_page(lastfrag) && 2611 skb_frag_off(fragfrom) == skb_frag_off(lastfrag) + 2612 skb_frag_size(lastfrag)) { 2613 skb_frag_size_add(lastfrag, todo); 2614 continue; 2615 } 2616 if (unlikely(nr_frags == MAX_SKB_FRAGS)) 2617 return -E2BIG; 2618 skb_frag_page_copy(fragto, fragfrom); 2619 skb_frag_off_copy(fragto, fragfrom); 2620 skb_frag_size_set(fragto, todo); 2621 nr_frags++; 2622 lastfrag = fragto++; 2623 } 2624 } 2625 commit: 2626 WARN_ON_ONCE(len != probe_size); 2627 for (i = 0; i < nr_frags; i++) 2628 skb_frag_ref(to, i); 2629 2630 skb_shinfo(to)->nr_frags = nr_frags; 2631 to->truesize += probe_size; 2632 to->len += probe_size; 2633 to->data_len += probe_size; 2634 __skb_header_release(to); 2635 return 0; 2636 } 2637 2638 /* tcp_mtu_probe() and tcp_grow_skb() can both eat an skb (src) if 2639 * all its payload was moved to another one (dst). 2640 * Make sure to transfer tcp_flags, eor, and tstamp. 2641 */ 2642 static void tcp_eat_one_skb(struct sock *sk, 2643 struct sk_buff *dst, 2644 struct sk_buff *src) 2645 { 2646 TCP_SKB_CB(dst)->tcp_flags |= TCP_SKB_CB(src)->tcp_flags; 2647 TCP_SKB_CB(dst)->eor = TCP_SKB_CB(src)->eor; 2648 tcp_skb_collapse_tstamp(dst, src); 2649 tcp_unlink_write_queue(src, sk); 2650 tcp_wmem_free_skb(sk, src); 2651 } 2652 2653 /* Create a new MTU probe if we are ready. 2654 * MTU probe is regularly attempting to increase the path MTU by 2655 * deliberately sending larger packets. This discovers routing 2656 * changes resulting in larger path MTUs. 2657 * 2658 * Returns 0 if we should wait to probe (no cwnd available), 2659 * 1 if a probe was sent, 2660 * -1 otherwise 2661 */ 2662 static int tcp_mtu_probe(struct sock *sk) 2663 { 2664 struct inet_connection_sock *icsk = inet_csk(sk); 2665 struct tcp_sock *tp = tcp_sk(sk); 2666 struct sk_buff *skb, *nskb, *next; 2667 struct net *net = sock_net(sk); 2668 int probe_size; 2669 int size_needed; 2670 int copy, len; 2671 int mss_now; 2672 int interval; 2673 2674 /* Not currently probing/verifying, 2675 * not in recovery, 2676 * have enough cwnd, and 2677 * not SACKing (the variable headers throw things off) 2678 */ 2679 if (likely(!icsk->icsk_mtup.enabled || 2680 icsk->icsk_mtup.probe_size || 2681 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 2682 tcp_snd_cwnd(tp) < 11 || 2683 tp->rx_opt.num_sacks || tp->rx_opt.dsack)) 2684 return -1; 2685 2686 /* Use binary search for probe_size between tcp_mss_base, 2687 * and current mss_clamp. if (search_high - search_low) 2688 * smaller than a threshold, backoff from probing. 2689 */ 2690 mss_now = tcp_current_mss(sk); 2691 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high + 2692 icsk->icsk_mtup.search_low) >> 1); 2693 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 2694 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low; 2695 /* When misfortune happens, we are reprobing actively, 2696 * and then reprobe timer has expired. We stick with current 2697 * probing process by not resetting search range to its orignal. 2698 */ 2699 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) || 2700 interval < READ_ONCE(net->ipv4.sysctl_tcp_probe_threshold)) { 2701 /* Check whether enough time has elaplased for 2702 * another round of probing. 2703 */ 2704 tcp_mtu_check_reprobe(sk); 2705 return -1; 2706 } 2707 2708 /* Have enough data in the send queue to probe? */ 2709 if (tp->write_seq - tp->snd_nxt < size_needed) 2710 return -1; 2711 2712 if (tp->snd_wnd < size_needed) 2713 return -1; 2714 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 2715 return 0; 2716 2717 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 2718 if (tcp_packets_in_flight(tp) + 2 > tcp_snd_cwnd(tp)) { 2719 if (!tcp_packets_in_flight(tp)) 2720 return -1; 2721 else 2722 return 0; 2723 } 2724 2725 if (!tcp_can_coalesce_send_queue_head(sk, probe_size)) 2726 return -1; 2727 2728 /* We're allowed to probe. Build it now. */ 2729 nskb = tcp_stream_alloc_skb(sk, GFP_ATOMIC, false); 2730 if (!nskb) 2731 return -1; 2732 2733 /* build the payload, and be prepared to abort if this fails. */ 2734 if (tcp_clone_payload(sk, nskb, probe_size)) { 2735 tcp_skb_tsorted_anchor_cleanup(nskb); 2736 consume_skb(nskb); 2737 return -1; 2738 } 2739 sk_wmem_queued_add(sk, nskb->truesize); 2740 sk_mem_charge(sk, nskb->truesize); 2741 2742 skb = tcp_send_head(sk); 2743 skb_copy_decrypted(nskb, skb); 2744 mptcp_skb_ext_copy(nskb, skb); 2745 2746 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 2747 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 2748 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 2749 2750 tcp_insert_write_queue_before(nskb, skb, sk); 2751 tcp_highest_sack_replace(sk, skb, nskb); 2752 2753 len = 0; 2754 tcp_for_write_queue_from_safe(skb, next, sk) { 2755 copy = min_t(int, skb->len, probe_size - len); 2756 2757 if (skb->len <= copy) { 2758 tcp_eat_one_skb(sk, nskb, skb); 2759 } else { 2760 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 2761 ~(TCPHDR_FIN|TCPHDR_PSH); 2762 __pskb_trim_head(skb, copy); 2763 tcp_set_skb_tso_segs(skb, mss_now); 2764 TCP_SKB_CB(skb)->seq += copy; 2765 } 2766 2767 len += copy; 2768 2769 if (len >= probe_size) 2770 break; 2771 } 2772 tcp_init_tso_segs(nskb, nskb->len); 2773 2774 /* We're ready to send. If this fails, the probe will 2775 * be resegmented into mss-sized pieces by tcp_write_xmit(). 2776 */ 2777 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 2778 /* Decrement cwnd here because we are sending 2779 * effectively two packets. */ 2780 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) - 1); 2781 tcp_event_new_data_sent(sk, nskb); 2782 2783 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 2784 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 2785 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 2786 2787 return 1; 2788 } 2789 2790 return -1; 2791 } 2792 2793 static bool tcp_pacing_check(struct sock *sk) 2794 { 2795 struct tcp_sock *tp = tcp_sk(sk); 2796 2797 if (!tcp_needs_internal_pacing(sk)) 2798 return false; 2799 2800 if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache) 2801 return false; 2802 2803 if (!hrtimer_is_queued(&tp->pacing_timer)) { 2804 hrtimer_start(&tp->pacing_timer, 2805 ns_to_ktime(tp->tcp_wstamp_ns), 2806 HRTIMER_MODE_ABS_PINNED_SOFT); 2807 sock_hold(sk); 2808 } 2809 return true; 2810 } 2811 2812 static bool tcp_rtx_queue_empty_or_single_skb(const struct sock *sk) 2813 { 2814 const struct rb_node *node = sk->tcp_rtx_queue.rb_node; 2815 2816 /* No skb in the rtx queue. */ 2817 if (!node) 2818 return true; 2819 2820 /* Only one skb in rtx queue. */ 2821 return !node->rb_left && !node->rb_right; 2822 } 2823 2824 /* TCP Small Queues : 2825 * Control number of packets in qdisc/devices to two packets / or ~1 ms. 2826 * (These limits are doubled for retransmits) 2827 * This allows for : 2828 * - better RTT estimation and ACK scheduling 2829 * - faster recovery 2830 * - high rates 2831 * Alas, some drivers / subsystems require a fair amount 2832 * of queued bytes to ensure line rate. 2833 * One example is wifi aggregation (802.11 AMPDU) 2834 */ 2835 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb, 2836 unsigned int factor) 2837 { 2838 unsigned long limit; 2839 2840 limit = max_t(unsigned long, 2841 2 * skb->truesize, 2842 READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift)); 2843 limit = min_t(unsigned long, limit, 2844 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes)); 2845 limit <<= factor; 2846 2847 if (static_branch_unlikely(&tcp_tx_delay_enabled) && 2848 tcp_sk(sk)->tcp_tx_delay) { 2849 u64 extra_bytes = (u64)READ_ONCE(sk->sk_pacing_rate) * 2850 tcp_sk(sk)->tcp_tx_delay; 2851 2852 /* TSQ is based on skb truesize sum (sk_wmem_alloc), so we 2853 * approximate our needs assuming an ~100% skb->truesize overhead. 2854 * USEC_PER_SEC is approximated by 2^20. 2855 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift. 2856 */ 2857 extra_bytes >>= (20 - 1); 2858 limit += extra_bytes; 2859 } 2860 if (refcount_read(&sk->sk_wmem_alloc) > limit) { 2861 /* Always send skb if rtx queue is empty or has one skb. 2862 * No need to wait for TX completion to call us back, 2863 * after softirq schedule. 2864 * This helps when TX completions are delayed too much. 2865 */ 2866 if (tcp_rtx_queue_empty_or_single_skb(sk)) 2867 return false; 2868 2869 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 2870 /* It is possible TX completion already happened 2871 * before we set TSQ_THROTTLED, so we must 2872 * test again the condition. 2873 */ 2874 smp_mb__after_atomic(); 2875 if (refcount_read(&sk->sk_wmem_alloc) > limit) 2876 return true; 2877 } 2878 return false; 2879 } 2880 2881 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new) 2882 { 2883 const u32 now = tcp_jiffies32; 2884 enum tcp_chrono old = tp->chrono_type; 2885 2886 if (old > TCP_CHRONO_UNSPEC) 2887 tp->chrono_stat[old - 1] += now - tp->chrono_start; 2888 tp->chrono_start = now; 2889 tp->chrono_type = new; 2890 } 2891 2892 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type) 2893 { 2894 struct tcp_sock *tp = tcp_sk(sk); 2895 2896 /* If there are multiple conditions worthy of tracking in a 2897 * chronograph then the highest priority enum takes precedence 2898 * over the other conditions. So that if something "more interesting" 2899 * starts happening, stop the previous chrono and start a new one. 2900 */ 2901 if (type > tp->chrono_type) 2902 tcp_chrono_set(tp, type); 2903 } 2904 2905 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type) 2906 { 2907 struct tcp_sock *tp = tcp_sk(sk); 2908 2909 2910 /* There are multiple conditions worthy of tracking in a 2911 * chronograph, so that the highest priority enum takes 2912 * precedence over the other conditions (see tcp_chrono_start). 2913 * If a condition stops, we only stop chrono tracking if 2914 * it's the "most interesting" or current chrono we are 2915 * tracking and starts busy chrono if we have pending data. 2916 */ 2917 if (tcp_rtx_and_write_queues_empty(sk)) 2918 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC); 2919 else if (type == tp->chrono_type) 2920 tcp_chrono_set(tp, TCP_CHRONO_BUSY); 2921 } 2922 2923 /* First skb in the write queue is smaller than ideal packet size. 2924 * Check if we can move payload from the second skb in the queue. 2925 */ 2926 static void tcp_grow_skb(struct sock *sk, struct sk_buff *skb, int amount) 2927 { 2928 struct sk_buff *next_skb = skb->next; 2929 unsigned int nlen; 2930 2931 if (tcp_skb_is_last(sk, skb)) 2932 return; 2933 2934 if (!tcp_skb_can_collapse(skb, next_skb)) 2935 return; 2936 2937 nlen = min_t(u32, amount, next_skb->len); 2938 if (!nlen || !skb_shift(skb, next_skb, nlen)) 2939 return; 2940 2941 TCP_SKB_CB(skb)->end_seq += nlen; 2942 TCP_SKB_CB(next_skb)->seq += nlen; 2943 2944 if (!next_skb->len) { 2945 /* In case FIN is set, we need to update end_seq */ 2946 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 2947 2948 tcp_eat_one_skb(sk, skb, next_skb); 2949 } 2950 } 2951 2952 /* This routine writes packets to the network. It advances the 2953 * send_head. This happens as incoming acks open up the remote 2954 * window for us. 2955 * 2956 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 2957 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 2958 * account rare use of URG, this is not a big flaw. 2959 * 2960 * Send at most one packet when push_one > 0. Temporarily ignore 2961 * cwnd limit to force at most one packet out when push_one == 2. 2962 2963 * Returns true, if no segments are in flight and we have queued segments, 2964 * but cannot send anything now because of SWS or another problem. 2965 */ 2966 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 2967 int push_one, gfp_t gfp) 2968 { 2969 struct tcp_sock *tp = tcp_sk(sk); 2970 struct sk_buff *skb; 2971 unsigned int tso_segs, sent_pkts; 2972 u32 cwnd_quota, max_segs; 2973 int result; 2974 bool is_cwnd_limited = false, is_rwnd_limited = false; 2975 2976 sent_pkts = 0; 2977 2978 tcp_mstamp_refresh(tp); 2979 2980 /* AccECN option beacon depends on mstamp, it may change mss */ 2981 if (tcp_ecn_mode_accecn(tp) && tcp_accecn_option_beacon_check(sk)) 2982 mss_now = tcp_current_mss(sk); 2983 2984 if (!push_one) { 2985 /* Do MTU probing. */ 2986 result = tcp_mtu_probe(sk); 2987 if (!result) { 2988 return false; 2989 } else if (result > 0) { 2990 sent_pkts = 1; 2991 } 2992 } 2993 2994 max_segs = tcp_tso_segs(sk, mss_now); 2995 while ((skb = tcp_send_head(sk))) { 2996 unsigned int limit; 2997 int missing_bytes; 2998 2999 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) { 3000 /* "skb_mstamp_ns" is used as a start point for the retransmit timer */ 3001 tp->tcp_wstamp_ns = tp->tcp_clock_cache; 3002 skb_set_delivery_time(skb, tp->tcp_wstamp_ns, SKB_CLOCK_MONOTONIC); 3003 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 3004 tcp_init_tso_segs(skb, mss_now); 3005 goto repair; /* Skip network transmission */ 3006 } 3007 3008 if (tcp_pacing_check(sk)) 3009 break; 3010 3011 cwnd_quota = tcp_cwnd_test(tp); 3012 if (!cwnd_quota) { 3013 if (push_one == 2) 3014 /* Force out a loss probe pkt. */ 3015 cwnd_quota = 1; 3016 else 3017 break; 3018 } 3019 cwnd_quota = min(cwnd_quota, max_segs); 3020 missing_bytes = cwnd_quota * mss_now - skb->len; 3021 if (missing_bytes > 0) 3022 tcp_grow_skb(sk, skb, missing_bytes); 3023 3024 tso_segs = tcp_set_skb_tso_segs(skb, mss_now); 3025 3026 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) { 3027 is_rwnd_limited = true; 3028 break; 3029 } 3030 3031 if (tso_segs == 1) { 3032 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 3033 (tcp_skb_is_last(sk, skb) ? 3034 nonagle : TCP_NAGLE_PUSH)))) 3035 break; 3036 } else { 3037 if (!push_one && 3038 tcp_tso_should_defer(sk, skb, &is_cwnd_limited, 3039 &is_rwnd_limited, max_segs)) 3040 break; 3041 } 3042 3043 limit = mss_now; 3044 if (tso_segs > 1 && !tcp_urg_mode(tp)) 3045 limit = tcp_mss_split_point(sk, skb, mss_now, 3046 cwnd_quota, 3047 nonagle); 3048 3049 if (skb->len > limit && 3050 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp))) 3051 break; 3052 3053 if (tcp_small_queue_check(sk, skb, 0)) 3054 break; 3055 3056 /* Argh, we hit an empty skb(), presumably a thread 3057 * is sleeping in sendmsg()/sk_stream_wait_memory(). 3058 * We do not want to send a pure-ack packet and have 3059 * a strange looking rtx queue with empty packet(s). 3060 */ 3061 if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) 3062 break; 3063 3064 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 3065 break; 3066 3067 repair: 3068 /* Advance the send_head. This one is sent out. 3069 * This call will increment packets_out. 3070 */ 3071 tcp_event_new_data_sent(sk, skb); 3072 3073 tcp_minshall_update(tp, mss_now, skb); 3074 sent_pkts += tcp_skb_pcount(skb); 3075 3076 if (push_one) 3077 break; 3078 } 3079 3080 if (is_rwnd_limited) 3081 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED); 3082 else 3083 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED); 3084 3085 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp)); 3086 if (likely(sent_pkts || is_cwnd_limited)) 3087 tcp_cwnd_validate(sk, is_cwnd_limited); 3088 3089 if (likely(sent_pkts)) { 3090 if (tcp_in_cwnd_reduction(sk)) 3091 tp->prr_out += sent_pkts; 3092 3093 /* Send one loss probe per tail loss episode. */ 3094 if (push_one != 2) 3095 tcp_schedule_loss_probe(sk, false); 3096 return false; 3097 } 3098 return !tp->packets_out && !tcp_write_queue_empty(sk); 3099 } 3100 3101 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto) 3102 { 3103 struct inet_connection_sock *icsk = inet_csk(sk); 3104 struct tcp_sock *tp = tcp_sk(sk); 3105 u32 timeout, timeout_us, rto_delta_us; 3106 int early_retrans; 3107 3108 /* Don't do any loss probe on a Fast Open connection before 3WHS 3109 * finishes. 3110 */ 3111 if (rcu_access_pointer(tp->fastopen_rsk)) 3112 return false; 3113 3114 early_retrans = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_early_retrans); 3115 /* Schedule a loss probe in 2*RTT for SACK capable connections 3116 * not in loss recovery, that are either limited by cwnd or application. 3117 */ 3118 if ((early_retrans != 3 && early_retrans != 4) || 3119 !tp->packets_out || !tcp_is_sack(tp) || 3120 (icsk->icsk_ca_state != TCP_CA_Open && 3121 icsk->icsk_ca_state != TCP_CA_CWR)) 3122 return false; 3123 3124 /* Probe timeout is 2*rtt. Add minimum RTO to account 3125 * for delayed ack when there's one outstanding packet. If no RTT 3126 * sample is available then probe after TCP_TIMEOUT_INIT. 3127 */ 3128 if (tp->srtt_us) { 3129 timeout_us = tp->srtt_us >> 2; 3130 if (tp->packets_out == 1) 3131 timeout_us += tcp_rto_min_us(sk); 3132 else 3133 timeout_us += TCP_TIMEOUT_MIN_US; 3134 timeout = usecs_to_jiffies(timeout_us); 3135 } else { 3136 timeout = TCP_TIMEOUT_INIT; 3137 } 3138 3139 /* If the RTO formula yields an earlier time, then use that time. */ 3140 rto_delta_us = advancing_rto ? 3141 jiffies_to_usecs(inet_csk(sk)->icsk_rto) : 3142 tcp_rto_delta_us(sk); /* How far in future is RTO? */ 3143 if (rto_delta_us > 0) 3144 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us)); 3145 3146 tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, true); 3147 return true; 3148 } 3149 3150 /* Thanks to skb fast clones, we can detect if a prior transmit of 3151 * a packet is still in a qdisc or driver queue. 3152 * In this case, there is very little point doing a retransmit ! 3153 */ 3154 static bool skb_still_in_host_queue(struct sock *sk, 3155 const struct sk_buff *skb) 3156 { 3157 if (unlikely(skb_fclone_busy(sk, skb))) { 3158 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 3159 smp_mb__after_atomic(); 3160 if (skb_fclone_busy(sk, skb)) { 3161 NET_INC_STATS(sock_net(sk), 3162 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); 3163 return true; 3164 } 3165 } 3166 return false; 3167 } 3168 3169 /* When probe timeout (PTO) fires, try send a new segment if possible, else 3170 * retransmit the last segment. 3171 */ 3172 void tcp_send_loss_probe(struct sock *sk) 3173 { 3174 struct tcp_sock *tp = tcp_sk(sk); 3175 struct sk_buff *skb; 3176 int pcount; 3177 int mss = tcp_current_mss(sk); 3178 3179 /* At most one outstanding TLP */ 3180 if (tp->tlp_high_seq) 3181 goto rearm_timer; 3182 3183 tp->tlp_retrans = 0; 3184 skb = tcp_send_head(sk); 3185 if (skb && tcp_snd_wnd_test(tp, skb, mss)) { 3186 pcount = tp->packets_out; 3187 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); 3188 if (tp->packets_out > pcount) 3189 goto probe_sent; 3190 goto rearm_timer; 3191 } 3192 skb = skb_rb_last(&sk->tcp_rtx_queue); 3193 if (unlikely(!skb)) { 3194 tcp_warn_once(sk, tp->packets_out, "invalid inflight: "); 3195 smp_store_release(&inet_csk(sk)->icsk_pending, 0); 3196 return; 3197 } 3198 3199 if (skb_still_in_host_queue(sk, skb)) 3200 goto rearm_timer; 3201 3202 pcount = tcp_skb_pcount(skb); 3203 if (WARN_ON(!pcount)) 3204 goto rearm_timer; 3205 3206 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { 3207 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 3208 (pcount - 1) * mss, mss, 3209 GFP_ATOMIC))) 3210 goto rearm_timer; 3211 skb = skb_rb_next(skb); 3212 } 3213 3214 if (WARN_ON(!skb || !tcp_skb_pcount(skb))) 3215 goto rearm_timer; 3216 3217 if (__tcp_retransmit_skb(sk, skb, 1)) 3218 goto rearm_timer; 3219 3220 tp->tlp_retrans = 1; 3221 3222 probe_sent: 3223 /* Record snd_nxt for loss detection. */ 3224 tp->tlp_high_seq = tp->snd_nxt; 3225 3226 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES); 3227 /* Reset s.t. tcp_rearm_rto will restart timer from now */ 3228 smp_store_release(&inet_csk(sk)->icsk_pending, 0); 3229 rearm_timer: 3230 tcp_rearm_rto(sk); 3231 } 3232 3233 /* Push out any pending frames which were held back due to 3234 * TCP_CORK or attempt at coalescing tiny packets. 3235 * The socket must be locked by the caller. 3236 */ 3237 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 3238 int nonagle) 3239 { 3240 /* If we are closed, the bytes will have to remain here. 3241 * In time closedown will finish, we empty the write queue and 3242 * all will be happy. 3243 */ 3244 if (unlikely(sk->sk_state == TCP_CLOSE)) 3245 return; 3246 3247 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, 3248 sk_gfp_mask(sk, GFP_ATOMIC))) 3249 tcp_check_probe_timer(sk); 3250 } 3251 3252 /* Send _single_ skb sitting at the send head. This function requires 3253 * true push pending frames to setup probe timer etc. 3254 */ 3255 void tcp_push_one(struct sock *sk, unsigned int mss_now) 3256 { 3257 struct sk_buff *skb = tcp_send_head(sk); 3258 3259 BUG_ON(!skb || skb->len < mss_now); 3260 3261 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 3262 } 3263 3264 /* This function returns the amount that we can raise the 3265 * usable window based on the following constraints 3266 * 3267 * 1. The window can never be shrunk once it is offered (RFC 793) 3268 * 2. We limit memory per socket 3269 * 3270 * RFC 1122: 3271 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 3272 * RECV.NEXT + RCV.WIN fixed until: 3273 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 3274 * 3275 * i.e. don't raise the right edge of the window until you can raise 3276 * it at least MSS bytes. 3277 * 3278 * Unfortunately, the recommended algorithm breaks header prediction, 3279 * since header prediction assumes th->window stays fixed. 3280 * 3281 * Strictly speaking, keeping th->window fixed violates the receiver 3282 * side SWS prevention criteria. The problem is that under this rule 3283 * a stream of single byte packets will cause the right side of the 3284 * window to always advance by a single byte. 3285 * 3286 * Of course, if the sender implements sender side SWS prevention 3287 * then this will not be a problem. 3288 * 3289 * BSD seems to make the following compromise: 3290 * 3291 * If the free space is less than the 1/4 of the maximum 3292 * space available and the free space is less than 1/2 mss, 3293 * then set the window to 0. 3294 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 3295 * Otherwise, just prevent the window from shrinking 3296 * and from being larger than the largest representable value. 3297 * 3298 * This prevents incremental opening of the window in the regime 3299 * where TCP is limited by the speed of the reader side taking 3300 * data out of the TCP receive queue. It does nothing about 3301 * those cases where the window is constrained on the sender side 3302 * because the pipeline is full. 3303 * 3304 * BSD also seems to "accidentally" limit itself to windows that are a 3305 * multiple of MSS, at least until the free space gets quite small. 3306 * This would appear to be a side effect of the mbuf implementation. 3307 * Combining these two algorithms results in the observed behavior 3308 * of having a fixed window size at almost all times. 3309 * 3310 * Below we obtain similar behavior by forcing the offered window to 3311 * a multiple of the mss when it is feasible to do so. 3312 * 3313 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 3314 * Regular options like TIMESTAMP are taken into account. 3315 */ 3316 u32 __tcp_select_window(struct sock *sk) 3317 { 3318 struct inet_connection_sock *icsk = inet_csk(sk); 3319 struct tcp_sock *tp = tcp_sk(sk); 3320 struct net *net = sock_net(sk); 3321 /* MSS for the peer's data. Previous versions used mss_clamp 3322 * here. I don't know if the value based on our guesses 3323 * of peer's MSS is better for the performance. It's more correct 3324 * but may be worse for the performance because of rcv_mss 3325 * fluctuations. --SAW 1998/11/1 3326 */ 3327 int mss = icsk->icsk_ack.rcv_mss; 3328 int free_space = tcp_space(sk); 3329 int allowed_space = tcp_full_space(sk); 3330 int full_space, window; 3331 3332 if (sk_is_mptcp(sk)) 3333 mptcp_space(sk, &free_space, &allowed_space); 3334 3335 full_space = min_t(int, tp->window_clamp, allowed_space); 3336 3337 if (unlikely(mss > full_space)) { 3338 mss = full_space; 3339 if (mss <= 0) 3340 return 0; 3341 } 3342 3343 /* Only allow window shrink if the sysctl is enabled and we have 3344 * a non-zero scaling factor in effect. 3345 */ 3346 if (READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) && tp->rx_opt.rcv_wscale) 3347 goto shrink_window_allowed; 3348 3349 /* do not allow window to shrink */ 3350 3351 if (free_space < (full_space >> 1)) { 3352 icsk->icsk_ack.quick = 0; 3353 3354 if (tcp_under_memory_pressure(sk)) 3355 tcp_adjust_rcv_ssthresh(sk); 3356 3357 /* free_space might become our new window, make sure we don't 3358 * increase it due to wscale. 3359 */ 3360 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 3361 3362 /* if free space is less than mss estimate, or is below 1/16th 3363 * of the maximum allowed, try to move to zero-window, else 3364 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and 3365 * new incoming data is dropped due to memory limits. 3366 * With large window, mss test triggers way too late in order 3367 * to announce zero window in time before rmem limit kicks in. 3368 */ 3369 if (free_space < (allowed_space >> 4) || free_space < mss) 3370 return 0; 3371 } 3372 3373 if (free_space > tp->rcv_ssthresh) 3374 free_space = tp->rcv_ssthresh; 3375 3376 /* Don't do rounding if we are using window scaling, since the 3377 * scaled window will not line up with the MSS boundary anyway. 3378 */ 3379 if (tp->rx_opt.rcv_wscale) { 3380 window = free_space; 3381 3382 /* Advertise enough space so that it won't get scaled away. 3383 * Import case: prevent zero window announcement if 3384 * 1<<rcv_wscale > mss. 3385 */ 3386 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale)); 3387 } else { 3388 window = tp->rcv_wnd; 3389 /* Get the largest window that is a nice multiple of mss. 3390 * Window clamp already applied above. 3391 * If our current window offering is within 1 mss of the 3392 * free space we just keep it. This prevents the divide 3393 * and multiply from happening most of the time. 3394 * We also don't do any window rounding when the free space 3395 * is too small. 3396 */ 3397 if (window <= free_space - mss || window > free_space) 3398 window = rounddown(free_space, mss); 3399 else if (mss == full_space && 3400 free_space > window + (full_space >> 1)) 3401 window = free_space; 3402 } 3403 3404 return window; 3405 3406 shrink_window_allowed: 3407 /* new window should always be an exact multiple of scaling factor */ 3408 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 3409 3410 if (free_space < (full_space >> 1)) { 3411 icsk->icsk_ack.quick = 0; 3412 3413 if (tcp_under_memory_pressure(sk)) 3414 tcp_adjust_rcv_ssthresh(sk); 3415 3416 /* if free space is too low, return a zero window */ 3417 if (free_space < (allowed_space >> 4) || free_space < mss || 3418 free_space < (1 << tp->rx_opt.rcv_wscale)) 3419 return 0; 3420 } 3421 3422 if (free_space > tp->rcv_ssthresh) { 3423 free_space = tp->rcv_ssthresh; 3424 /* new window should always be an exact multiple of scaling factor 3425 * 3426 * For this case, we ALIGN "up" (increase free_space) because 3427 * we know free_space is not zero here, it has been reduced from 3428 * the memory-based limit, and rcv_ssthresh is not a hard limit 3429 * (unlike sk_rcvbuf). 3430 */ 3431 free_space = ALIGN(free_space, (1 << tp->rx_opt.rcv_wscale)); 3432 } 3433 3434 return free_space; 3435 } 3436 3437 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 3438 const struct sk_buff *next_skb) 3439 { 3440 if (unlikely(tcp_has_tx_tstamp(next_skb))) { 3441 const struct skb_shared_info *next_shinfo = 3442 skb_shinfo(next_skb); 3443 struct skb_shared_info *shinfo = skb_shinfo(skb); 3444 3445 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP; 3446 shinfo->tskey = next_shinfo->tskey; 3447 TCP_SKB_CB(skb)->txstamp_ack |= 3448 TCP_SKB_CB(next_skb)->txstamp_ack; 3449 } 3450 } 3451 3452 /* Collapses two adjacent SKB's during retransmission. */ 3453 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 3454 { 3455 struct tcp_sock *tp = tcp_sk(sk); 3456 struct sk_buff *next_skb = skb_rb_next(skb); 3457 int next_skb_size; 3458 3459 next_skb_size = next_skb->len; 3460 3461 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 3462 3463 if (next_skb_size && !tcp_skb_shift(skb, next_skb, 1, next_skb_size)) 3464 return false; 3465 3466 tcp_highest_sack_replace(sk, next_skb, skb); 3467 3468 /* Update sequence range on original skb. */ 3469 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 3470 3471 /* Merge over control information. This moves PSH/FIN etc. over */ 3472 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 3473 3474 /* All done, get rid of second SKB and account for it so 3475 * packet counting does not break. 3476 */ 3477 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 3478 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor; 3479 3480 /* changed transmit queue under us so clear hints */ 3481 if (next_skb == tp->retransmit_skb_hint) 3482 tp->retransmit_skb_hint = skb; 3483 3484 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 3485 3486 tcp_skb_collapse_tstamp(skb, next_skb); 3487 3488 tcp_rtx_queue_unlink_and_free(next_skb, sk); 3489 return true; 3490 } 3491 3492 /* Check if coalescing SKBs is legal. */ 3493 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 3494 { 3495 if (tcp_skb_pcount(skb) > 1) 3496 return false; 3497 if (skb_cloned(skb)) 3498 return false; 3499 if (!skb_frags_readable(skb)) 3500 return false; 3501 /* Some heuristics for collapsing over SACK'd could be invented */ 3502 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 3503 return false; 3504 3505 return true; 3506 } 3507 3508 /* Collapse packets in the retransmit queue to make to create 3509 * less packets on the wire. This is only done on retransmission. 3510 */ 3511 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 3512 int space) 3513 { 3514 struct tcp_sock *tp = tcp_sk(sk); 3515 struct sk_buff *skb = to, *tmp; 3516 bool first = true; 3517 3518 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse)) 3519 return; 3520 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 3521 return; 3522 3523 skb_rbtree_walk_from_safe(skb, tmp) { 3524 if (!tcp_can_collapse(sk, skb)) 3525 break; 3526 3527 if (!tcp_skb_can_collapse(to, skb)) 3528 break; 3529 3530 space -= skb->len; 3531 3532 if (first) { 3533 first = false; 3534 continue; 3535 } 3536 3537 if (space < 0) 3538 break; 3539 3540 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 3541 break; 3542 3543 if (!tcp_collapse_retrans(sk, to)) 3544 break; 3545 } 3546 } 3547 3548 /* This retransmits one SKB. Policy decisions and retransmit queue 3549 * state updates are done by the caller. Returns non-zero if an 3550 * error occurred which prevented the send. 3551 */ 3552 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 3553 { 3554 struct inet_connection_sock *icsk = inet_csk(sk); 3555 struct tcp_sock *tp = tcp_sk(sk); 3556 unsigned int cur_mss; 3557 int diff, len, err; 3558 int avail_wnd; 3559 3560 /* Inconclusive MTU probe */ 3561 if (icsk->icsk_mtup.probe_size) 3562 icsk->icsk_mtup.probe_size = 0; 3563 3564 if (skb_still_in_host_queue(sk, skb)) { 3565 err = -EBUSY; 3566 goto out; 3567 } 3568 3569 start: 3570 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 3571 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 3572 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN; 3573 TCP_SKB_CB(skb)->seq++; 3574 goto start; 3575 } 3576 if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) { 3577 WARN_ON_ONCE(1); 3578 err = -EINVAL; 3579 goto out; 3580 } 3581 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) { 3582 err = -ENOMEM; 3583 goto out; 3584 } 3585 } 3586 3587 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) { 3588 err = -EHOSTUNREACH; /* Routing failure or similar. */ 3589 goto out; 3590 } 3591 3592 cur_mss = tcp_current_mss(sk); 3593 avail_wnd = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 3594 3595 /* If receiver has shrunk his window, and skb is out of 3596 * new window, do not retransmit it. The exception is the 3597 * case, when window is shrunk to zero. In this case 3598 * our retransmit of one segment serves as a zero window probe. 3599 */ 3600 if (avail_wnd <= 0) { 3601 if (TCP_SKB_CB(skb)->seq != tp->snd_una) { 3602 err = -EAGAIN; 3603 goto out; 3604 } 3605 avail_wnd = cur_mss; 3606 } 3607 3608 len = cur_mss * segs; 3609 if (len > avail_wnd) { 3610 len = rounddown(avail_wnd, cur_mss); 3611 if (!len) 3612 len = avail_wnd; 3613 } 3614 if (skb->len > len) { 3615 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len, 3616 cur_mss, GFP_ATOMIC)) { 3617 err = -ENOMEM; /* We'll try again later. */ 3618 goto out; 3619 } 3620 } else { 3621 if (skb_unclone_keeptruesize(skb, GFP_ATOMIC)) { 3622 err = -ENOMEM; 3623 goto out; 3624 } 3625 3626 diff = tcp_skb_pcount(skb); 3627 tcp_set_skb_tso_segs(skb, cur_mss); 3628 diff -= tcp_skb_pcount(skb); 3629 if (diff) 3630 tcp_adjust_pcount(sk, skb, diff); 3631 avail_wnd = min_t(int, avail_wnd, cur_mss); 3632 if (skb->len < avail_wnd) 3633 tcp_retrans_try_collapse(sk, skb, avail_wnd); 3634 } 3635 3636 if (!tcp_ecn_mode_pending(tp) || icsk->icsk_retransmits > 1) { 3637 /* RFC3168, section 6.1.1.1. ECN fallback 3638 * As AccECN uses the same SYN flags (+ AE), this check 3639 * covers both cases. 3640 */ 3641 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == 3642 TCPHDR_SYN_ECN) 3643 tcp_ecn_clear_syn(sk, skb); 3644 } 3645 3646 /* Update global and local TCP statistics. */ 3647 segs = tcp_skb_pcount(skb); 3648 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs); 3649 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 3650 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 3651 tp->total_retrans += segs; 3652 tp->bytes_retrans += skb->len; 3653 3654 /* make sure skb->data is aligned on arches that require it 3655 * and check if ack-trimming & collapsing extended the headroom 3656 * beyond what csum_start can cover. 3657 */ 3658 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || 3659 skb_headroom(skb) >= 0xFFFF)) { 3660 struct sk_buff *nskb; 3661 3662 tcp_skb_tsorted_save(skb) { 3663 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC); 3664 if (nskb) { 3665 nskb->dev = NULL; 3666 err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC); 3667 } else { 3668 err = -ENOBUFS; 3669 } 3670 } tcp_skb_tsorted_restore(skb); 3671 3672 if (!err) { 3673 tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns); 3674 tcp_rate_skb_sent(sk, skb); 3675 } 3676 } else { 3677 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3678 } 3679 3680 if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG)) 3681 tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB, 3682 TCP_SKB_CB(skb)->seq, segs, err); 3683 3684 if (unlikely(err) && err != -EBUSY) 3685 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs); 3686 3687 /* To avoid taking spuriously low RTT samples based on a timestamp 3688 * for a transmit that never happened, always mark EVER_RETRANS 3689 */ 3690 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS; 3691 3692 out: 3693 trace_tcp_retransmit_skb(sk, skb, err); 3694 return err; 3695 } 3696 3697 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 3698 { 3699 struct tcp_sock *tp = tcp_sk(sk); 3700 int err = __tcp_retransmit_skb(sk, skb, segs); 3701 3702 if (err == 0) { 3703 #if FASTRETRANS_DEBUG > 0 3704 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 3705 net_dbg_ratelimited("retrans_out leaked\n"); 3706 } 3707 #endif 3708 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 3709 tp->retrans_out += tcp_skb_pcount(skb); 3710 } 3711 3712 /* Save stamp of the first (attempted) retransmit. */ 3713 if (!tp->retrans_stamp) 3714 tp->retrans_stamp = tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb); 3715 3716 if (tp->undo_retrans < 0) 3717 tp->undo_retrans = 0; 3718 tp->undo_retrans += tcp_skb_pcount(skb); 3719 return err; 3720 } 3721 3722 /* This gets called after a retransmit timeout, and the initially 3723 * retransmitted data is acknowledged. It tries to continue 3724 * resending the rest of the retransmit queue, until either 3725 * we've sent it all or the congestion window limit is reached. 3726 */ 3727 void tcp_xmit_retransmit_queue(struct sock *sk) 3728 { 3729 const struct inet_connection_sock *icsk = inet_csk(sk); 3730 struct sk_buff *skb, *rtx_head, *hole = NULL; 3731 struct tcp_sock *tp = tcp_sk(sk); 3732 bool rearm_timer = false; 3733 u32 max_segs; 3734 int mib_idx; 3735 3736 if (!tp->packets_out) 3737 return; 3738 3739 rtx_head = tcp_rtx_queue_head(sk); 3740 skb = tp->retransmit_skb_hint ?: rtx_head; 3741 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk)); 3742 skb_rbtree_walk_from(skb) { 3743 __u8 sacked; 3744 int segs; 3745 3746 if (tcp_pacing_check(sk)) 3747 break; 3748 3749 /* we could do better than to assign each time */ 3750 if (!hole) 3751 tp->retransmit_skb_hint = skb; 3752 3753 segs = tcp_snd_cwnd(tp) - tcp_packets_in_flight(tp); 3754 if (segs <= 0) 3755 break; 3756 sacked = TCP_SKB_CB(skb)->sacked; 3757 /* In case tcp_shift_skb_data() have aggregated large skbs, 3758 * we need to make sure not sending too bigs TSO packets 3759 */ 3760 segs = min_t(int, segs, max_segs); 3761 3762 if (tp->retrans_out >= tp->lost_out) { 3763 break; 3764 } else if (!(sacked & TCPCB_LOST)) { 3765 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 3766 hole = skb; 3767 continue; 3768 3769 } else { 3770 if (icsk->icsk_ca_state != TCP_CA_Loss) 3771 mib_idx = LINUX_MIB_TCPFASTRETRANS; 3772 else 3773 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 3774 } 3775 3776 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 3777 continue; 3778 3779 if (tcp_small_queue_check(sk, skb, 1)) 3780 break; 3781 3782 if (tcp_retransmit_skb(sk, skb, segs)) 3783 break; 3784 3785 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb)); 3786 3787 if (tcp_in_cwnd_reduction(sk)) 3788 tp->prr_out += tcp_skb_pcount(skb); 3789 3790 if (skb == rtx_head && 3791 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT) 3792 rearm_timer = true; 3793 3794 } 3795 if (rearm_timer) 3796 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3797 inet_csk(sk)->icsk_rto, true); 3798 } 3799 3800 /* Send a FIN. The caller locks the socket for us. 3801 * We should try to send a FIN packet really hard, but eventually give up. 3802 */ 3803 void tcp_send_fin(struct sock *sk) 3804 { 3805 struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk); 3806 struct tcp_sock *tp = tcp_sk(sk); 3807 3808 /* Optimization, tack on the FIN if we have one skb in write queue and 3809 * this skb was not yet sent, or we are under memory pressure. 3810 * Note: in the latter case, FIN packet will be sent after a timeout, 3811 * as TCP stack thinks it has already been transmitted. 3812 */ 3813 tskb = tail; 3814 if (!tskb && tcp_under_memory_pressure(sk)) 3815 tskb = skb_rb_last(&sk->tcp_rtx_queue); 3816 3817 if (tskb) { 3818 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN; 3819 TCP_SKB_CB(tskb)->end_seq++; 3820 tp->write_seq++; 3821 if (!tail) { 3822 /* This means tskb was already sent. 3823 * Pretend we included the FIN on previous transmit. 3824 * We need to set tp->snd_nxt to the value it would have 3825 * if FIN had been sent. This is because retransmit path 3826 * does not change tp->snd_nxt. 3827 */ 3828 WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1); 3829 return; 3830 } 3831 } else { 3832 skb = alloc_skb_fclone(MAX_TCP_HEADER, 3833 sk_gfp_mask(sk, GFP_ATOMIC | 3834 __GFP_NOWARN)); 3835 if (unlikely(!skb)) 3836 return; 3837 3838 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 3839 skb_reserve(skb, MAX_TCP_HEADER); 3840 sk_forced_mem_schedule(sk, skb->truesize); 3841 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 3842 tcp_init_nondata_skb(skb, sk, tp->write_seq, 3843 TCPHDR_ACK | TCPHDR_FIN); 3844 tcp_queue_skb(sk, skb); 3845 } 3846 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF); 3847 } 3848 3849 /* We get here when a process closes a file descriptor (either due to 3850 * an explicit close() or as a byproduct of exit()'ing) and there 3851 * was unread data in the receive queue. This behavior is recommended 3852 * by RFC 2525, section 2.17. -DaveM 3853 */ 3854 void tcp_send_active_reset(struct sock *sk, gfp_t priority, 3855 enum sk_rst_reason reason) 3856 { 3857 struct sk_buff *skb; 3858 3859 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 3860 3861 /* NOTE: No TCP options attached and we never retransmit this. */ 3862 skb = alloc_skb(MAX_TCP_HEADER, priority); 3863 if (!skb) { 3864 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3865 return; 3866 } 3867 3868 /* Reserve space for headers and prepare control bits. */ 3869 skb_reserve(skb, MAX_TCP_HEADER); 3870 tcp_init_nondata_skb(skb, sk, tcp_acceptable_seq(sk), 3871 TCPHDR_ACK | TCPHDR_RST); 3872 tcp_mstamp_refresh(tcp_sk(sk)); 3873 /* Send it off. */ 3874 if (tcp_transmit_skb(sk, skb, 0, priority)) 3875 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3876 3877 /* skb of trace_tcp_send_reset() keeps the skb that caused RST, 3878 * skb here is different to the troublesome skb, so use NULL 3879 */ 3880 trace_tcp_send_reset(sk, NULL, reason); 3881 } 3882 3883 /* Send a crossed SYN-ACK during socket establishment. 3884 * WARNING: This routine must only be called when we have already sent 3885 * a SYN packet that crossed the incoming SYN that caused this routine 3886 * to get called. If this assumption fails then the initial rcv_wnd 3887 * and rcv_wscale values will not be correct. 3888 */ 3889 int tcp_send_synack(struct sock *sk) 3890 { 3891 struct sk_buff *skb; 3892 3893 skb = tcp_rtx_queue_head(sk); 3894 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 3895 pr_err("%s: wrong queue state\n", __func__); 3896 return -EFAULT; 3897 } 3898 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 3899 if (skb_cloned(skb)) { 3900 struct sk_buff *nskb; 3901 3902 tcp_skb_tsorted_save(skb) { 3903 nskb = skb_copy(skb, GFP_ATOMIC); 3904 } tcp_skb_tsorted_restore(skb); 3905 if (!nskb) 3906 return -ENOMEM; 3907 INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor); 3908 tcp_highest_sack_replace(sk, skb, nskb); 3909 tcp_rtx_queue_unlink_and_free(skb, sk); 3910 __skb_header_release(nskb); 3911 tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb); 3912 sk_wmem_queued_add(sk, nskb->truesize); 3913 sk_mem_charge(sk, nskb->truesize); 3914 skb = nskb; 3915 } 3916 3917 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 3918 tcp_ecn_send_synack(sk, skb); 3919 } 3920 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3921 } 3922 3923 /** 3924 * tcp_make_synack - Allocate one skb and build a SYNACK packet. 3925 * @sk: listener socket 3926 * @dst: dst entry attached to the SYNACK. It is consumed and caller 3927 * should not use it again. 3928 * @req: request_sock pointer 3929 * @foc: cookie for tcp fast open 3930 * @synack_type: Type of synack to prepare 3931 * @syn_skb: SYN packet just received. It could be NULL for rtx case. 3932 */ 3933 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 3934 struct request_sock *req, 3935 struct tcp_fastopen_cookie *foc, 3936 enum tcp_synack_type synack_type, 3937 struct sk_buff *syn_skb) 3938 { 3939 struct inet_request_sock *ireq = inet_rsk(req); 3940 const struct tcp_sock *tp = tcp_sk(sk); 3941 struct tcp_out_options opts; 3942 struct tcp_key key = {}; 3943 struct sk_buff *skb; 3944 int tcp_header_size; 3945 struct tcphdr *th; 3946 int mss; 3947 u64 now; 3948 3949 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 3950 if (unlikely(!skb)) { 3951 dst_release(dst); 3952 return NULL; 3953 } 3954 /* Reserve space for headers. */ 3955 skb_reserve(skb, MAX_TCP_HEADER); 3956 3957 switch (synack_type) { 3958 case TCP_SYNACK_NORMAL: 3959 case TCP_SYNACK_RETRANS: 3960 skb_set_owner_edemux(skb, req_to_sk(req)); 3961 break; 3962 case TCP_SYNACK_COOKIE: 3963 /* Under synflood, we do not attach skb to a socket, 3964 * to avoid false sharing. 3965 */ 3966 break; 3967 case TCP_SYNACK_FASTOPEN: 3968 /* sk is a const pointer, because we want to express multiple 3969 * cpu might call us concurrently. 3970 * sk->sk_wmem_alloc in an atomic, we can promote to rw. 3971 */ 3972 skb_set_owner_w(skb, (struct sock *)sk); 3973 break; 3974 } 3975 skb_dst_set(skb, dst); 3976 3977 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3978 3979 memset(&opts, 0, sizeof(opts)); 3980 now = tcp_clock_ns(); 3981 #ifdef CONFIG_SYN_COOKIES 3982 if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok)) 3983 skb_set_delivery_time(skb, cookie_init_timestamp(req, now), 3984 SKB_CLOCK_MONOTONIC); 3985 else 3986 #endif 3987 { 3988 skb_set_delivery_time(skb, now, SKB_CLOCK_MONOTONIC); 3989 if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */ 3990 tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb); 3991 } 3992 3993 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO) 3994 rcu_read_lock(); 3995 #endif 3996 if (tcp_rsk_used_ao(req)) { 3997 #ifdef CONFIG_TCP_AO 3998 struct tcp_ao_key *ao_key = NULL; 3999 u8 keyid = tcp_rsk(req)->ao_keyid; 4000 u8 rnext = tcp_rsk(req)->ao_rcv_next; 4001 4002 ao_key = tcp_sk(sk)->af_specific->ao_lookup(sk, req_to_sk(req), 4003 keyid, -1); 4004 /* If there is no matching key - avoid sending anything, 4005 * especially usigned segments. It could try harder and lookup 4006 * for another peer-matching key, but the peer has requested 4007 * ao_keyid (RFC5925 RNextKeyID), so let's keep it simple here. 4008 */ 4009 if (unlikely(!ao_key)) { 4010 trace_tcp_ao_synack_no_key(sk, keyid, rnext); 4011 rcu_read_unlock(); 4012 kfree_skb(skb); 4013 net_warn_ratelimited("TCP-AO: the keyid %u from SYN packet is not present - not sending SYNACK\n", 4014 keyid); 4015 return NULL; 4016 } 4017 key.ao_key = ao_key; 4018 key.type = TCP_KEY_AO; 4019 #endif 4020 } else { 4021 #ifdef CONFIG_TCP_MD5SIG 4022 key.md5_key = tcp_rsk(req)->af_specific->req_md5_lookup(sk, 4023 req_to_sk(req)); 4024 if (key.md5_key) 4025 key.type = TCP_KEY_MD5; 4026 #endif 4027 } 4028 skb_set_hash(skb, READ_ONCE(tcp_rsk(req)->txhash), PKT_HASH_TYPE_L4); 4029 /* bpf program will be interested in the tcp_flags */ 4030 TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK; 4031 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, 4032 &key, foc, synack_type, syn_skb) 4033 + sizeof(*th); 4034 4035 skb_push(skb, tcp_header_size); 4036 skb_reset_transport_header(skb); 4037 4038 th = (struct tcphdr *)skb->data; 4039 memset(th, 0, sizeof(struct tcphdr)); 4040 th->syn = 1; 4041 th->ack = 1; 4042 tcp_ecn_make_synack(req, th, synack_type); 4043 th->source = htons(ireq->ir_num); 4044 th->dest = ireq->ir_rmt_port; 4045 skb->mark = ireq->ir_mark; 4046 skb->ip_summed = CHECKSUM_PARTIAL; 4047 th->seq = htonl(tcp_rsk(req)->snt_isn); 4048 /* XXX data is queued and acked as is. No buffer/window check */ 4049 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); 4050 4051 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 4052 th->window = htons(min(req->rsk_rcv_wnd, 65535U)); 4053 tcp_options_write(th, NULL, tcp_rsk(req), &opts, &key); 4054 th->doff = (tcp_header_size >> 2); 4055 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS); 4056 4057 /* Okay, we have all we need - do the md5 hash if needed */ 4058 if (tcp_key_is_md5(&key)) { 4059 #ifdef CONFIG_TCP_MD5SIG 4060 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 4061 key.md5_key, req_to_sk(req), skb); 4062 #endif 4063 } else if (tcp_key_is_ao(&key)) { 4064 #ifdef CONFIG_TCP_AO 4065 tcp_rsk(req)->af_specific->ao_synack_hash(opts.hash_location, 4066 key.ao_key, req, skb, 4067 opts.hash_location - (u8 *)th, 0); 4068 #endif 4069 } 4070 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO) 4071 rcu_read_unlock(); 4072 #endif 4073 4074 bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb, 4075 synack_type, &opts); 4076 4077 skb_set_delivery_time(skb, now, SKB_CLOCK_MONOTONIC); 4078 tcp_add_tx_delay(skb, tp); 4079 4080 return skb; 4081 } 4082 EXPORT_IPV6_MOD(tcp_make_synack); 4083 4084 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst) 4085 { 4086 struct inet_connection_sock *icsk = inet_csk(sk); 4087 const struct tcp_congestion_ops *ca; 4088 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO); 4089 4090 if (ca_key == TCP_CA_UNSPEC) 4091 return; 4092 4093 rcu_read_lock(); 4094 ca = tcp_ca_find_key(ca_key); 4095 if (likely(ca && bpf_try_module_get(ca, ca->owner))) { 4096 bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner); 4097 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst); 4098 icsk->icsk_ca_ops = ca; 4099 } 4100 rcu_read_unlock(); 4101 } 4102 4103 /* Do all connect socket setups that can be done AF independent. */ 4104 static void tcp_connect_init(struct sock *sk) 4105 { 4106 const struct dst_entry *dst = __sk_dst_get(sk); 4107 struct tcp_sock *tp = tcp_sk(sk); 4108 __u8 rcv_wscale; 4109 u16 user_mss; 4110 u32 rcv_wnd; 4111 4112 /* We'll fix this up when we get a response from the other end. 4113 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 4114 */ 4115 tp->tcp_header_len = sizeof(struct tcphdr); 4116 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps)) 4117 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED; 4118 4119 tcp_ao_connect_init(sk); 4120 4121 /* If user gave his TCP_MAXSEG, record it to clamp */ 4122 user_mss = READ_ONCE(tp->rx_opt.user_mss); 4123 if (user_mss) 4124 tp->rx_opt.mss_clamp = user_mss; 4125 tp->max_window = 0; 4126 tcp_mtup_init(sk); 4127 tcp_sync_mss(sk, dst_mtu(dst)); 4128 4129 tcp_ca_dst_init(sk, dst); 4130 4131 if (!tp->window_clamp) 4132 WRITE_ONCE(tp->window_clamp, dst_metric(dst, RTAX_WINDOW)); 4133 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 4134 4135 tcp_initialize_rcv_mss(sk); 4136 4137 /* limit the window selection if the user enforce a smaller rx buffer */ 4138 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 4139 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 4140 WRITE_ONCE(tp->window_clamp, tcp_full_space(sk)); 4141 4142 rcv_wnd = tcp_rwnd_init_bpf(sk); 4143 if (rcv_wnd == 0) 4144 rcv_wnd = dst_metric(dst, RTAX_INITRWND); 4145 4146 tcp_select_initial_window(sk, tcp_full_space(sk), 4147 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 4148 &tp->rcv_wnd, 4149 &tp->window_clamp, 4150 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling), 4151 &rcv_wscale, 4152 rcv_wnd); 4153 4154 tp->rx_opt.rcv_wscale = rcv_wscale; 4155 tp->rcv_ssthresh = tp->rcv_wnd; 4156 4157 WRITE_ONCE(sk->sk_err, 0); 4158 sock_reset_flag(sk, SOCK_DONE); 4159 tp->snd_wnd = 0; 4160 tcp_init_wl(tp, 0); 4161 tcp_write_queue_purge(sk); 4162 tp->snd_una = tp->write_seq; 4163 tp->snd_sml = tp->write_seq; 4164 tp->snd_up = tp->write_seq; 4165 WRITE_ONCE(tp->snd_nxt, tp->write_seq); 4166 4167 if (likely(!tp->repair)) 4168 tp->rcv_nxt = 0; 4169 else 4170 tp->rcv_tstamp = tcp_jiffies32; 4171 tp->rcv_wup = tp->rcv_nxt; 4172 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 4173 4174 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk); 4175 WRITE_ONCE(inet_csk(sk)->icsk_retransmits, 0); 4176 tcp_clear_retrans(tp); 4177 } 4178 4179 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 4180 { 4181 struct tcp_sock *tp = tcp_sk(sk); 4182 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 4183 4184 tcb->end_seq += skb->len; 4185 __skb_header_release(skb); 4186 sk_wmem_queued_add(sk, skb->truesize); 4187 sk_mem_charge(sk, skb->truesize); 4188 WRITE_ONCE(tp->write_seq, tcb->end_seq); 4189 tp->packets_out += tcp_skb_pcount(skb); 4190 } 4191 4192 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 4193 * queue a data-only packet after the regular SYN, such that regular SYNs 4194 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 4195 * only the SYN sequence, the data are retransmitted in the first ACK. 4196 * If cookie is not cached or other error occurs, falls back to send a 4197 * regular SYN with Fast Open cookie request option. 4198 */ 4199 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 4200 { 4201 struct inet_connection_sock *icsk = inet_csk(sk); 4202 struct tcp_sock *tp = tcp_sk(sk); 4203 struct tcp_fastopen_request *fo = tp->fastopen_req; 4204 struct page_frag *pfrag = sk_page_frag(sk); 4205 struct sk_buff *syn_data; 4206 int space, err = 0; 4207 4208 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 4209 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie)) 4210 goto fallback; 4211 4212 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 4213 * user-MSS. Reserve maximum option space for middleboxes that add 4214 * private TCP options. The cost is reduced data space in SYN :( 4215 */ 4216 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp); 4217 /* Sync mss_cache after updating the mss_clamp */ 4218 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 4219 4220 space = __tcp_mtu_to_mss(sk, icsk->icsk_pmtu_cookie) - 4221 MAX_TCP_OPTION_SPACE; 4222 4223 space = min_t(size_t, space, fo->size); 4224 4225 if (space && 4226 !skb_page_frag_refill(min_t(size_t, space, PAGE_SIZE), 4227 pfrag, sk->sk_allocation)) 4228 goto fallback; 4229 syn_data = tcp_stream_alloc_skb(sk, sk->sk_allocation, false); 4230 if (!syn_data) 4231 goto fallback; 4232 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb)); 4233 if (space) { 4234 space = min_t(size_t, space, pfrag->size - pfrag->offset); 4235 space = tcp_wmem_schedule(sk, space); 4236 } 4237 if (space) { 4238 space = copy_page_from_iter(pfrag->page, pfrag->offset, 4239 space, &fo->data->msg_iter); 4240 if (unlikely(!space)) { 4241 tcp_skb_tsorted_anchor_cleanup(syn_data); 4242 kfree_skb(syn_data); 4243 goto fallback; 4244 } 4245 skb_fill_page_desc(syn_data, 0, pfrag->page, 4246 pfrag->offset, space); 4247 page_ref_inc(pfrag->page); 4248 pfrag->offset += space; 4249 skb_len_add(syn_data, space); 4250 skb_zcopy_set(syn_data, fo->uarg, NULL); 4251 } 4252 /* No more data pending in inet_wait_for_connect() */ 4253 if (space == fo->size) 4254 fo->data = NULL; 4255 fo->copied = space; 4256 4257 tcp_connect_queue_skb(sk, syn_data); 4258 if (syn_data->len) 4259 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 4260 4261 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation); 4262 4263 skb_set_delivery_time(syn, syn_data->skb_mstamp_ns, SKB_CLOCK_MONOTONIC); 4264 4265 /* Now full SYN+DATA was cloned and sent (or not), 4266 * remove the SYN from the original skb (syn_data) 4267 * we keep in write queue in case of a retransmit, as we 4268 * also have the SYN packet (with no data) in the same queue. 4269 */ 4270 TCP_SKB_CB(syn_data)->seq++; 4271 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH; 4272 if (!err) { 4273 tp->syn_data = (fo->copied > 0); 4274 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data); 4275 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT); 4276 goto done; 4277 } 4278 4279 /* data was not sent, put it in write_queue */ 4280 __skb_queue_tail(&sk->sk_write_queue, syn_data); 4281 tp->packets_out -= tcp_skb_pcount(syn_data); 4282 4283 fallback: 4284 /* Send a regular SYN with Fast Open cookie request option */ 4285 if (fo->cookie.len > 0) 4286 fo->cookie.len = 0; 4287 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 4288 if (err) 4289 tp->syn_fastopen = 0; 4290 done: 4291 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 4292 return err; 4293 } 4294 4295 /* Build a SYN and send it off. */ 4296 int tcp_connect(struct sock *sk) 4297 { 4298 struct tcp_sock *tp = tcp_sk(sk); 4299 struct sk_buff *buff; 4300 int err; 4301 4302 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL); 4303 4304 #if defined(CONFIG_TCP_MD5SIG) && defined(CONFIG_TCP_AO) 4305 /* Has to be checked late, after setting daddr/saddr/ops. 4306 * Return error if the peer has both a md5 and a tcp-ao key 4307 * configured as this is ambiguous. 4308 */ 4309 if (unlikely(rcu_dereference_protected(tp->md5sig_info, 4310 lockdep_sock_is_held(sk)))) { 4311 bool needs_ao = !!tp->af_specific->ao_lookup(sk, sk, -1, -1); 4312 bool needs_md5 = !!tp->af_specific->md5_lookup(sk, sk); 4313 struct tcp_ao_info *ao_info; 4314 4315 ao_info = rcu_dereference_check(tp->ao_info, 4316 lockdep_sock_is_held(sk)); 4317 if (ao_info) { 4318 /* This is an extra check: tcp_ao_required() in 4319 * tcp_v{4,6}_parse_md5_keys() should prevent adding 4320 * md5 keys on ao_required socket. 4321 */ 4322 needs_ao |= ao_info->ao_required; 4323 WARN_ON_ONCE(ao_info->ao_required && needs_md5); 4324 } 4325 if (needs_md5 && needs_ao) 4326 return -EKEYREJECTED; 4327 4328 /* If we have a matching md5 key and no matching tcp-ao key 4329 * then free up ao_info if allocated. 4330 */ 4331 if (needs_md5) { 4332 tcp_ao_destroy_sock(sk, false); 4333 } else if (needs_ao) { 4334 tcp_clear_md5_list(sk); 4335 kfree(rcu_replace_pointer(tp->md5sig_info, NULL, 4336 lockdep_sock_is_held(sk))); 4337 } 4338 } 4339 #endif 4340 #ifdef CONFIG_TCP_AO 4341 if (unlikely(rcu_dereference_protected(tp->ao_info, 4342 lockdep_sock_is_held(sk)))) { 4343 /* Don't allow connecting if ao is configured but no 4344 * matching key is found. 4345 */ 4346 if (!tp->af_specific->ao_lookup(sk, sk, -1, -1)) 4347 return -EKEYREJECTED; 4348 } 4349 #endif 4350 4351 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 4352 return -EHOSTUNREACH; /* Routing failure or similar. */ 4353 4354 tcp_connect_init(sk); 4355 4356 if (unlikely(tp->repair)) { 4357 tcp_finish_connect(sk, NULL); 4358 return 0; 4359 } 4360 4361 buff = tcp_stream_alloc_skb(sk, sk->sk_allocation, true); 4362 if (unlikely(!buff)) 4363 return -ENOBUFS; 4364 4365 /* SYN eats a sequence byte, write_seq updated by 4366 * tcp_connect_queue_skb(). 4367 */ 4368 tcp_init_nondata_skb(buff, sk, tp->write_seq, TCPHDR_SYN); 4369 tcp_mstamp_refresh(tp); 4370 tp->retrans_stamp = tcp_time_stamp_ts(tp); 4371 tcp_connect_queue_skb(sk, buff); 4372 tcp_ecn_send_syn(sk, buff); 4373 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 4374 4375 /* Send off SYN; include data in Fast Open. */ 4376 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 4377 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 4378 if (err == -ECONNREFUSED) 4379 return err; 4380 4381 /* We change tp->snd_nxt after the tcp_transmit_skb() call 4382 * in order to make this packet get counted in tcpOutSegs. 4383 */ 4384 WRITE_ONCE(tp->snd_nxt, tp->write_seq); 4385 tp->pushed_seq = tp->write_seq; 4386 buff = tcp_send_head(sk); 4387 if (unlikely(buff)) { 4388 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq); 4389 tp->pushed_seq = TCP_SKB_CB(buff)->seq; 4390 } 4391 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 4392 4393 /* Timer for repeating the SYN until an answer. */ 4394 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 4395 inet_csk(sk)->icsk_rto, false); 4396 return 0; 4397 } 4398 EXPORT_SYMBOL(tcp_connect); 4399 4400 u32 tcp_delack_max(const struct sock *sk) 4401 { 4402 u32 delack_from_rto_min = max(tcp_rto_min(sk), 2) - 1; 4403 4404 return min(READ_ONCE(inet_csk(sk)->icsk_delack_max), delack_from_rto_min); 4405 } 4406 4407 /* Send out a delayed ack, the caller does the policy checking 4408 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 4409 * for details. 4410 */ 4411 void tcp_send_delayed_ack(struct sock *sk) 4412 { 4413 struct inet_connection_sock *icsk = inet_csk(sk); 4414 int ato = icsk->icsk_ack.ato; 4415 unsigned long timeout; 4416 4417 if (ato > TCP_DELACK_MIN) { 4418 const struct tcp_sock *tp = tcp_sk(sk); 4419 int max_ato = HZ / 2; 4420 4421 if (inet_csk_in_pingpong_mode(sk) || 4422 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 4423 max_ato = TCP_DELACK_MAX; 4424 4425 /* Slow path, intersegment interval is "high". */ 4426 4427 /* If some rtt estimate is known, use it to bound delayed ack. 4428 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 4429 * directly. 4430 */ 4431 if (tp->srtt_us) { 4432 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3), 4433 TCP_DELACK_MIN); 4434 4435 if (rtt < max_ato) 4436 max_ato = rtt; 4437 } 4438 4439 ato = min(ato, max_ato); 4440 } 4441 4442 ato = min_t(u32, ato, tcp_delack_max(sk)); 4443 4444 /* Stay within the limit we were given */ 4445 timeout = jiffies + ato; 4446 4447 /* Use new timeout only if there wasn't a older one earlier. */ 4448 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 4449 /* If delack timer is about to expire, send ACK now. */ 4450 if (time_before_eq(icsk_delack_timeout(icsk), jiffies + (ato >> 2))) { 4451 tcp_send_ack(sk); 4452 return; 4453 } 4454 4455 if (!time_before(timeout, icsk_delack_timeout(icsk))) 4456 timeout = icsk_delack_timeout(icsk); 4457 } 4458 smp_store_release(&icsk->icsk_ack.pending, 4459 icsk->icsk_ack.pending | ICSK_ACK_SCHED | ICSK_ACK_TIMER); 4460 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 4461 } 4462 4463 /* This routine sends an ack and also updates the window. */ 4464 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt, u16 flags) 4465 { 4466 struct sk_buff *buff; 4467 4468 /* If we have been reset, we may not send again. */ 4469 if (sk->sk_state == TCP_CLOSE) 4470 return; 4471 4472 /* We are not putting this on the write queue, so 4473 * tcp_transmit_skb() will set the ownership to this 4474 * sock. 4475 */ 4476 buff = alloc_skb(MAX_TCP_HEADER, 4477 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 4478 if (unlikely(!buff)) { 4479 struct inet_connection_sock *icsk = inet_csk(sk); 4480 unsigned long delay; 4481 4482 delay = TCP_DELACK_MAX << icsk->icsk_ack.retry; 4483 if (delay < tcp_rto_max(sk)) 4484 icsk->icsk_ack.retry++; 4485 inet_csk_schedule_ack(sk); 4486 icsk->icsk_ack.ato = TCP_ATO_MIN; 4487 tcp_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, false); 4488 return; 4489 } 4490 4491 /* Reserve space for headers and prepare control bits. */ 4492 skb_reserve(buff, MAX_TCP_HEADER); 4493 tcp_init_nondata_skb(buff, sk, 4494 tcp_acceptable_seq(sk), TCPHDR_ACK | flags); 4495 4496 /* We do not want pure acks influencing TCP Small Queues or fq/pacing 4497 * too much. 4498 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784 4499 */ 4500 skb_set_tcp_pure_ack(buff); 4501 4502 /* Send it off, this clears delayed acks for us. */ 4503 __tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt); 4504 } 4505 EXPORT_SYMBOL_GPL(__tcp_send_ack); 4506 4507 void tcp_send_ack(struct sock *sk) 4508 { 4509 __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt, 0); 4510 } 4511 4512 /* This routine sends a packet with an out of date sequence 4513 * number. It assumes the other end will try to ack it. 4514 * 4515 * Question: what should we make while urgent mode? 4516 * 4.4BSD forces sending single byte of data. We cannot send 4517 * out of window data, because we have SND.NXT==SND.MAX... 4518 * 4519 * Current solution: to send TWO zero-length segments in urgent mode: 4520 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 4521 * out-of-date with SND.UNA-1 to probe window. 4522 */ 4523 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib) 4524 { 4525 struct tcp_sock *tp = tcp_sk(sk); 4526 struct sk_buff *skb; 4527 4528 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 4529 skb = alloc_skb(MAX_TCP_HEADER, 4530 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 4531 if (!skb) 4532 return -1; 4533 4534 /* Reserve space for headers and set control bits. */ 4535 skb_reserve(skb, MAX_TCP_HEADER); 4536 /* Use a previous sequence. This should cause the other 4537 * end to send an ack. Don't queue or clone SKB, just 4538 * send it. 4539 */ 4540 tcp_init_nondata_skb(skb, sk, tp->snd_una - !urgent, TCPHDR_ACK); 4541 NET_INC_STATS(sock_net(sk), mib); 4542 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0); 4543 } 4544 4545 /* Called from setsockopt( ... TCP_REPAIR ) */ 4546 void tcp_send_window_probe(struct sock *sk) 4547 { 4548 if (sk->sk_state == TCP_ESTABLISHED) { 4549 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 4550 tcp_mstamp_refresh(tcp_sk(sk)); 4551 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE); 4552 } 4553 } 4554 4555 /* Initiate keepalive or window probe from timer. */ 4556 int tcp_write_wakeup(struct sock *sk, int mib) 4557 { 4558 struct tcp_sock *tp = tcp_sk(sk); 4559 struct sk_buff *skb; 4560 4561 if (sk->sk_state == TCP_CLOSE) 4562 return -1; 4563 4564 skb = tcp_send_head(sk); 4565 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 4566 int err; 4567 unsigned int mss = tcp_current_mss(sk); 4568 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 4569 4570 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 4571 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 4572 4573 /* We are probing the opening of a window 4574 * but the window size is != 0 4575 * must have been a result SWS avoidance ( sender ) 4576 */ 4577 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 4578 skb->len > mss) { 4579 seg_size = min(seg_size, mss); 4580 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 4581 if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 4582 skb, seg_size, mss, GFP_ATOMIC)) 4583 return -1; 4584 } else if (!tcp_skb_pcount(skb)) 4585 tcp_set_skb_tso_segs(skb, mss); 4586 4587 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 4588 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 4589 if (!err) 4590 tcp_event_new_data_sent(sk, skb); 4591 return err; 4592 } else { 4593 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 4594 tcp_xmit_probe_skb(sk, 1, mib); 4595 return tcp_xmit_probe_skb(sk, 0, mib); 4596 } 4597 } 4598 4599 /* A window probe timeout has occurred. If window is not closed send 4600 * a partial packet else a zero probe. 4601 */ 4602 void tcp_send_probe0(struct sock *sk) 4603 { 4604 struct inet_connection_sock *icsk = inet_csk(sk); 4605 struct tcp_sock *tp = tcp_sk(sk); 4606 struct net *net = sock_net(sk); 4607 unsigned long timeout; 4608 int err; 4609 4610 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE); 4611 4612 if (tp->packets_out || tcp_write_queue_empty(sk)) { 4613 /* Cancel probe timer, if it is not required. */ 4614 WRITE_ONCE(icsk->icsk_probes_out, 0); 4615 icsk->icsk_backoff = 0; 4616 icsk->icsk_probes_tstamp = 0; 4617 return; 4618 } 4619 4620 WRITE_ONCE(icsk->icsk_probes_out, icsk->icsk_probes_out + 1); 4621 if (err <= 0) { 4622 if (icsk->icsk_backoff < READ_ONCE(net->ipv4.sysctl_tcp_retries2)) 4623 icsk->icsk_backoff++; 4624 timeout = tcp_probe0_when(sk, tcp_rto_max(sk)); 4625 } else { 4626 /* If packet was not sent due to local congestion, 4627 * Let senders fight for local resources conservatively. 4628 */ 4629 timeout = TCP_RESOURCE_PROBE_INTERVAL; 4630 } 4631 4632 timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout); 4633 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, true); 4634 } 4635 4636 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req) 4637 { 4638 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific; 4639 struct flowi fl; 4640 int res; 4641 4642 /* Paired with WRITE_ONCE() in sock_setsockopt() */ 4643 if (READ_ONCE(sk->sk_txrehash) == SOCK_TXREHASH_ENABLED) 4644 WRITE_ONCE(tcp_rsk(req)->txhash, net_tx_rndhash()); 4645 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_RETRANS, 4646 NULL); 4647 if (!res) { 4648 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 4649 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 4650 if (unlikely(tcp_passive_fastopen(sk))) { 4651 /* sk has const attribute because listeners are lockless. 4652 * However in this case, we are dealing with a passive fastopen 4653 * socket thus we can change total_retrans value. 4654 */ 4655 tcp_sk_rw(sk)->total_retrans++; 4656 } 4657 trace_tcp_retransmit_synack(sk, req); 4658 WRITE_ONCE(req->num_retrans, req->num_retrans + 1); 4659 } 4660 return res; 4661 } 4662 EXPORT_IPV6_MOD(tcp_rtx_synack); 4663