1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 */
21
22 /*
23 * Changes: Pedro Roque : Retransmit queue handled by TCP.
24 * : Fragmentation on mtu decrease
25 * : Segment collapse on retransmit
26 * : AF independence
27 *
28 * Linus Torvalds : send_delayed_ack
29 * David S. Miller : Charge memory using the right skb
30 * during syn/ack processing.
31 * David S. Miller : Output engine completely rewritten.
32 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
33 * Cacophonix Gaul : draft-minshall-nagle-01
34 * J Hadi Salim : ECN support
35 *
36 */
37
38 #define pr_fmt(fmt) "TCP: " fmt
39
40 #include <net/tcp.h>
41 #include <net/mptcp.h>
42 #include <net/proto_memory.h>
43
44 #include <linux/compiler.h>
45 #include <linux/gfp.h>
46 #include <linux/module.h>
47 #include <linux/static_key.h>
48 #include <linux/skbuff_ref.h>
49
50 #include <trace/events/tcp.h>
51
52 /* Refresh clocks of a TCP socket,
53 * ensuring monotically increasing values.
54 */
tcp_mstamp_refresh(struct tcp_sock * tp)55 void tcp_mstamp_refresh(struct tcp_sock *tp)
56 {
57 u64 val = tcp_clock_ns();
58
59 tp->tcp_clock_cache = val;
60 tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC);
61 }
62
63 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
64 int push_one, gfp_t gfp);
65
66 /* Account for new data that has been sent to the network. */
tcp_event_new_data_sent(struct sock * sk,struct sk_buff * skb)67 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
68 {
69 struct inet_connection_sock *icsk = inet_csk(sk);
70 struct tcp_sock *tp = tcp_sk(sk);
71 unsigned int prior_packets = tp->packets_out;
72
73 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq);
74
75 __skb_unlink(skb, &sk->sk_write_queue);
76 tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
77
78 if (tp->highest_sack == NULL)
79 tp->highest_sack = skb;
80
81 tp->packets_out += tcp_skb_pcount(skb);
82 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
83 tcp_rearm_rto(sk);
84
85 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
86 tcp_skb_pcount(skb));
87 tcp_check_space(sk);
88 }
89
90 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
91 * window scaling factor due to loss of precision.
92 * If window has been shrunk, what should we make? It is not clear at all.
93 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
94 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
95 * invalid. OK, let's make this for now:
96 */
tcp_acceptable_seq(const struct sock * sk)97 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
98 {
99 const struct tcp_sock *tp = tcp_sk(sk);
100
101 if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
102 (tp->rx_opt.wscale_ok &&
103 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
104 return tp->snd_nxt;
105 else
106 return tcp_wnd_end(tp);
107 }
108
109 /* Calculate mss to advertise in SYN segment.
110 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
111 *
112 * 1. It is independent of path mtu.
113 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
114 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
115 * attached devices, because some buggy hosts are confused by
116 * large MSS.
117 * 4. We do not make 3, we advertise MSS, calculated from first
118 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
119 * This may be overridden via information stored in routing table.
120 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
121 * probably even Jumbo".
122 */
tcp_advertise_mss(struct sock * sk)123 static __u16 tcp_advertise_mss(struct sock *sk)
124 {
125 struct tcp_sock *tp = tcp_sk(sk);
126 const struct dst_entry *dst = __sk_dst_get(sk);
127 int mss = tp->advmss;
128
129 if (dst) {
130 unsigned int metric = dst_metric_advmss(dst);
131
132 if (metric < mss) {
133 mss = metric;
134 tp->advmss = mss;
135 }
136 }
137
138 return (__u16)mss;
139 }
140
141 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
142 * This is the first part of cwnd validation mechanism.
143 */
tcp_cwnd_restart(struct sock * sk,s32 delta)144 void tcp_cwnd_restart(struct sock *sk, s32 delta)
145 {
146 struct tcp_sock *tp = tcp_sk(sk);
147 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
148 u32 cwnd = tcp_snd_cwnd(tp);
149
150 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
151
152 tp->snd_ssthresh = tcp_current_ssthresh(sk);
153 restart_cwnd = min(restart_cwnd, cwnd);
154
155 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
156 cwnd >>= 1;
157 tcp_snd_cwnd_set(tp, max(cwnd, restart_cwnd));
158 tp->snd_cwnd_stamp = tcp_jiffies32;
159 tp->snd_cwnd_used = 0;
160 }
161
162 /* Congestion state accounting after a packet has been sent. */
tcp_event_data_sent(struct tcp_sock * tp,struct sock * sk)163 static void tcp_event_data_sent(struct tcp_sock *tp,
164 struct sock *sk)
165 {
166 struct inet_connection_sock *icsk = inet_csk(sk);
167 const u32 now = tcp_jiffies32;
168
169 if (tcp_packets_in_flight(tp) == 0)
170 tcp_ca_event(sk, CA_EVENT_TX_START);
171
172 tp->lsndtime = now;
173
174 /* If it is a reply for ato after last received
175 * packet, increase pingpong count.
176 */
177 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
178 inet_csk_inc_pingpong_cnt(sk);
179 }
180
181 /* Account for an ACK we sent. */
tcp_event_ack_sent(struct sock * sk,u32 rcv_nxt)182 static inline void tcp_event_ack_sent(struct sock *sk, u32 rcv_nxt)
183 {
184 struct tcp_sock *tp = tcp_sk(sk);
185
186 if (unlikely(tp->compressed_ack)) {
187 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
188 tp->compressed_ack);
189 tp->compressed_ack = 0;
190 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
191 __sock_put(sk);
192 }
193
194 if (unlikely(rcv_nxt != tp->rcv_nxt))
195 return; /* Special ACK sent by DCTCP to reflect ECN */
196 tcp_dec_quickack_mode(sk);
197 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
198 }
199
200 /* Determine a window scaling and initial window to offer.
201 * Based on the assumption that the given amount of space
202 * will be offered. Store the results in the tp structure.
203 * NOTE: for smooth operation initial space offering should
204 * be a multiple of mss if possible. We assume here that mss >= 1.
205 * This MUST be enforced by all callers.
206 */
tcp_select_initial_window(const struct sock * sk,int __space,__u32 mss,__u32 * rcv_wnd,__u32 * __window_clamp,int wscale_ok,__u8 * rcv_wscale,__u32 init_rcv_wnd)207 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
208 __u32 *rcv_wnd, __u32 *__window_clamp,
209 int wscale_ok, __u8 *rcv_wscale,
210 __u32 init_rcv_wnd)
211 {
212 unsigned int space = (__space < 0 ? 0 : __space);
213 u32 window_clamp = READ_ONCE(*__window_clamp);
214
215 /* If no clamp set the clamp to the max possible scaled window */
216 if (window_clamp == 0)
217 window_clamp = (U16_MAX << TCP_MAX_WSCALE);
218 space = min(window_clamp, space);
219
220 /* Quantize space offering to a multiple of mss if possible. */
221 if (space > mss)
222 space = rounddown(space, mss);
223
224 /* NOTE: offering an initial window larger than 32767
225 * will break some buggy TCP stacks. If the admin tells us
226 * it is likely we could be speaking with such a buggy stack
227 * we will truncate our initial window offering to 32K-1
228 * unless the remote has sent us a window scaling option,
229 * which we interpret as a sign the remote TCP is not
230 * misinterpreting the window field as a signed quantity.
231 */
232 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows))
233 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
234 else
235 (*rcv_wnd) = space;
236
237 if (init_rcv_wnd)
238 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
239
240 *rcv_wscale = 0;
241 if (wscale_ok) {
242 /* Set window scaling on max possible window */
243 space = max_t(u32, space, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
244 space = max_t(u32, space, READ_ONCE(sysctl_rmem_max));
245 space = min_t(u32, space, window_clamp);
246 *rcv_wscale = clamp_t(int, ilog2(space) - 15,
247 0, TCP_MAX_WSCALE);
248 }
249 /* Set the clamp no higher than max representable value */
250 WRITE_ONCE(*__window_clamp,
251 min_t(__u32, U16_MAX << (*rcv_wscale), window_clamp));
252 }
253 EXPORT_IPV6_MOD(tcp_select_initial_window);
254
255 /* Chose a new window to advertise, update state in tcp_sock for the
256 * socket, and return result with RFC1323 scaling applied. The return
257 * value can be stuffed directly into th->window for an outgoing
258 * frame.
259 */
tcp_select_window(struct sock * sk)260 static u16 tcp_select_window(struct sock *sk)
261 {
262 struct tcp_sock *tp = tcp_sk(sk);
263 struct net *net = sock_net(sk);
264 u32 old_win = tp->rcv_wnd;
265 u32 cur_win, new_win;
266
267 /* Make the window 0 if we failed to queue the data because we
268 * are out of memory.
269 */
270 if (unlikely(inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOMEM)) {
271 tp->pred_flags = 0;
272 tp->rcv_wnd = 0;
273 tp->rcv_wup = tp->rcv_nxt;
274 return 0;
275 }
276
277 cur_win = tcp_receive_window(tp);
278 new_win = __tcp_select_window(sk);
279 if (new_win < cur_win) {
280 /* Danger Will Robinson!
281 * Don't update rcv_wup/rcv_wnd here or else
282 * we will not be able to advertise a zero
283 * window in time. --DaveM
284 *
285 * Relax Will Robinson.
286 */
287 if (!READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) || !tp->rx_opt.rcv_wscale) {
288 /* Never shrink the offered window */
289 if (new_win == 0)
290 NET_INC_STATS(net, LINUX_MIB_TCPWANTZEROWINDOWADV);
291 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
292 }
293 }
294
295 tp->rcv_wnd = new_win;
296 tp->rcv_wup = tp->rcv_nxt;
297
298 /* Make sure we do not exceed the maximum possible
299 * scaled window.
300 */
301 if (!tp->rx_opt.rcv_wscale &&
302 READ_ONCE(net->ipv4.sysctl_tcp_workaround_signed_windows))
303 new_win = min(new_win, MAX_TCP_WINDOW);
304 else
305 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
306
307 /* RFC1323 scaling applied */
308 new_win >>= tp->rx_opt.rcv_wscale;
309
310 /* If we advertise zero window, disable fast path. */
311 if (new_win == 0) {
312 tp->pred_flags = 0;
313 if (old_win)
314 NET_INC_STATS(net, LINUX_MIB_TCPTOZEROWINDOWADV);
315 } else if (old_win == 0) {
316 NET_INC_STATS(net, LINUX_MIB_TCPFROMZEROWINDOWADV);
317 }
318
319 return new_win;
320 }
321
322 /* Packet ECN state for a SYN-ACK */
tcp_ecn_send_synack(struct sock * sk,struct sk_buff * skb)323 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
324 {
325 const struct tcp_sock *tp = tcp_sk(sk);
326
327 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
328 if (tcp_ecn_disabled(tp))
329 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
330 else if (tcp_ca_needs_ecn(sk) ||
331 tcp_bpf_ca_needs_ecn(sk))
332 INET_ECN_xmit(sk);
333 }
334
335 /* Packet ECN state for a SYN. */
tcp_ecn_send_syn(struct sock * sk,struct sk_buff * skb)336 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
337 {
338 struct tcp_sock *tp = tcp_sk(sk);
339 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
340 bool use_ecn = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn) == 1 ||
341 tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
342
343 if (!use_ecn) {
344 const struct dst_entry *dst = __sk_dst_get(sk);
345
346 if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
347 use_ecn = true;
348 }
349
350 tp->ecn_flags = 0;
351
352 if (use_ecn) {
353 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
354 tcp_ecn_mode_set(tp, TCP_ECN_MODE_RFC3168);
355 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
356 INET_ECN_xmit(sk);
357 }
358 }
359
tcp_ecn_clear_syn(struct sock * sk,struct sk_buff * skb)360 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
361 {
362 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback))
363 /* tp->ecn_flags are cleared at a later point in time when
364 * SYN ACK is ultimatively being received.
365 */
366 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
367 }
368
369 static void
tcp_ecn_make_synack(const struct request_sock * req,struct tcphdr * th)370 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
371 {
372 if (inet_rsk(req)->ecn_ok)
373 th->ece = 1;
374 }
375
376 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
377 * be sent.
378 */
tcp_ecn_send(struct sock * sk,struct sk_buff * skb,struct tcphdr * th,int tcp_header_len)379 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
380 struct tcphdr *th, int tcp_header_len)
381 {
382 struct tcp_sock *tp = tcp_sk(sk);
383
384 if (tcp_ecn_mode_rfc3168(tp)) {
385 /* Not-retransmitted data segment: set ECT and inject CWR. */
386 if (skb->len != tcp_header_len &&
387 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
388 INET_ECN_xmit(sk);
389 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
390 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
391 th->cwr = 1;
392 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
393 }
394 } else if (!tcp_ca_needs_ecn(sk)) {
395 /* ACK or retransmitted segment: clear ECT|CE */
396 INET_ECN_dontxmit(sk);
397 }
398 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
399 th->ece = 1;
400 }
401 }
402
403 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
404 * auto increment end seqno.
405 */
tcp_init_nondata_skb(struct sk_buff * skb,u32 seq,u16 flags)406 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u16 flags)
407 {
408 skb->ip_summed = CHECKSUM_PARTIAL;
409
410 TCP_SKB_CB(skb)->tcp_flags = flags;
411
412 tcp_skb_pcount_set(skb, 1);
413
414 TCP_SKB_CB(skb)->seq = seq;
415 if (flags & (TCPHDR_SYN | TCPHDR_FIN))
416 seq++;
417 TCP_SKB_CB(skb)->end_seq = seq;
418 }
419
tcp_urg_mode(const struct tcp_sock * tp)420 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
421 {
422 return tp->snd_una != tp->snd_up;
423 }
424
425 #define OPTION_SACK_ADVERTISE BIT(0)
426 #define OPTION_TS BIT(1)
427 #define OPTION_MD5 BIT(2)
428 #define OPTION_WSCALE BIT(3)
429 #define OPTION_FAST_OPEN_COOKIE BIT(8)
430 #define OPTION_SMC BIT(9)
431 #define OPTION_MPTCP BIT(10)
432 #define OPTION_AO BIT(11)
433
smc_options_write(__be32 * ptr,u16 * options)434 static void smc_options_write(__be32 *ptr, u16 *options)
435 {
436 #if IS_ENABLED(CONFIG_SMC)
437 if (static_branch_unlikely(&tcp_have_smc)) {
438 if (unlikely(OPTION_SMC & *options)) {
439 *ptr++ = htonl((TCPOPT_NOP << 24) |
440 (TCPOPT_NOP << 16) |
441 (TCPOPT_EXP << 8) |
442 (TCPOLEN_EXP_SMC_BASE));
443 *ptr++ = htonl(TCPOPT_SMC_MAGIC);
444 }
445 }
446 #endif
447 }
448
449 struct tcp_out_options {
450 u16 options; /* bit field of OPTION_* */
451 u16 mss; /* 0 to disable */
452 u8 ws; /* window scale, 0 to disable */
453 u8 num_sack_blocks; /* number of SACK blocks to include */
454 u8 hash_size; /* bytes in hash_location */
455 u8 bpf_opt_len; /* length of BPF hdr option */
456 __u8 *hash_location; /* temporary pointer, overloaded */
457 __u32 tsval, tsecr; /* need to include OPTION_TS */
458 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
459 struct mptcp_out_options mptcp;
460 };
461
mptcp_options_write(struct tcphdr * th,__be32 * ptr,struct tcp_sock * tp,struct tcp_out_options * opts)462 static void mptcp_options_write(struct tcphdr *th, __be32 *ptr,
463 struct tcp_sock *tp,
464 struct tcp_out_options *opts)
465 {
466 #if IS_ENABLED(CONFIG_MPTCP)
467 if (unlikely(OPTION_MPTCP & opts->options))
468 mptcp_write_options(th, ptr, tp, &opts->mptcp);
469 #endif
470 }
471
472 #ifdef CONFIG_CGROUP_BPF
bpf_skops_write_hdr_opt_arg0(struct sk_buff * skb,enum tcp_synack_type synack_type)473 static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb,
474 enum tcp_synack_type synack_type)
475 {
476 if (unlikely(!skb))
477 return BPF_WRITE_HDR_TCP_CURRENT_MSS;
478
479 if (unlikely(synack_type == TCP_SYNACK_COOKIE))
480 return BPF_WRITE_HDR_TCP_SYNACK_COOKIE;
481
482 return 0;
483 }
484
485 /* req, syn_skb and synack_type are used when writing synack */
bpf_skops_hdr_opt_len(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts,unsigned int * remaining)486 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
487 struct request_sock *req,
488 struct sk_buff *syn_skb,
489 enum tcp_synack_type synack_type,
490 struct tcp_out_options *opts,
491 unsigned int *remaining)
492 {
493 struct bpf_sock_ops_kern sock_ops;
494 int err;
495
496 if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
497 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) ||
498 !*remaining)
499 return;
500
501 /* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */
502
503 /* init sock_ops */
504 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
505
506 sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB;
507
508 if (req) {
509 /* The listen "sk" cannot be passed here because
510 * it is not locked. It would not make too much
511 * sense to do bpf_setsockopt(listen_sk) based
512 * on individual connection request also.
513 *
514 * Thus, "req" is passed here and the cgroup-bpf-progs
515 * of the listen "sk" will be run.
516 *
517 * "req" is also used here for fastopen even the "sk" here is
518 * a fullsock "child" sk. It is to keep the behavior
519 * consistent between fastopen and non-fastopen on
520 * the bpf programming side.
521 */
522 sock_ops.sk = (struct sock *)req;
523 sock_ops.syn_skb = syn_skb;
524 } else {
525 sock_owned_by_me(sk);
526
527 sock_ops.is_fullsock = 1;
528 sock_ops.is_locked_tcp_sock = 1;
529 sock_ops.sk = sk;
530 }
531
532 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
533 sock_ops.remaining_opt_len = *remaining;
534 /* tcp_current_mss() does not pass a skb */
535 if (skb)
536 bpf_skops_init_skb(&sock_ops, skb, 0);
537
538 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
539
540 if (err || sock_ops.remaining_opt_len == *remaining)
541 return;
542
543 opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len;
544 /* round up to 4 bytes */
545 opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3;
546
547 *remaining -= opts->bpf_opt_len;
548 }
549
bpf_skops_write_hdr_opt(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts)550 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
551 struct request_sock *req,
552 struct sk_buff *syn_skb,
553 enum tcp_synack_type synack_type,
554 struct tcp_out_options *opts)
555 {
556 u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len;
557 struct bpf_sock_ops_kern sock_ops;
558 int err;
559
560 if (likely(!max_opt_len))
561 return;
562
563 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
564
565 sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB;
566
567 if (req) {
568 sock_ops.sk = (struct sock *)req;
569 sock_ops.syn_skb = syn_skb;
570 } else {
571 sock_owned_by_me(sk);
572
573 sock_ops.is_fullsock = 1;
574 sock_ops.is_locked_tcp_sock = 1;
575 sock_ops.sk = sk;
576 }
577
578 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
579 sock_ops.remaining_opt_len = max_opt_len;
580 first_opt_off = tcp_hdrlen(skb) - max_opt_len;
581 bpf_skops_init_skb(&sock_ops, skb, first_opt_off);
582
583 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
584
585 if (err)
586 nr_written = 0;
587 else
588 nr_written = max_opt_len - sock_ops.remaining_opt_len;
589
590 if (nr_written < max_opt_len)
591 memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP,
592 max_opt_len - nr_written);
593 }
594 #else
bpf_skops_hdr_opt_len(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts,unsigned int * remaining)595 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
596 struct request_sock *req,
597 struct sk_buff *syn_skb,
598 enum tcp_synack_type synack_type,
599 struct tcp_out_options *opts,
600 unsigned int *remaining)
601 {
602 }
603
bpf_skops_write_hdr_opt(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts)604 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
605 struct request_sock *req,
606 struct sk_buff *syn_skb,
607 enum tcp_synack_type synack_type,
608 struct tcp_out_options *opts)
609 {
610 }
611 #endif
612
process_tcp_ao_options(struct tcp_sock * tp,const struct tcp_request_sock * tcprsk,struct tcp_out_options * opts,struct tcp_key * key,__be32 * ptr)613 static __be32 *process_tcp_ao_options(struct tcp_sock *tp,
614 const struct tcp_request_sock *tcprsk,
615 struct tcp_out_options *opts,
616 struct tcp_key *key, __be32 *ptr)
617 {
618 #ifdef CONFIG_TCP_AO
619 u8 maclen = tcp_ao_maclen(key->ao_key);
620
621 if (tcprsk) {
622 u8 aolen = maclen + sizeof(struct tcp_ao_hdr);
623
624 *ptr++ = htonl((TCPOPT_AO << 24) | (aolen << 16) |
625 (tcprsk->ao_keyid << 8) |
626 (tcprsk->ao_rcv_next));
627 } else {
628 struct tcp_ao_key *rnext_key;
629 struct tcp_ao_info *ao_info;
630
631 ao_info = rcu_dereference_check(tp->ao_info,
632 lockdep_sock_is_held(&tp->inet_conn.icsk_inet.sk));
633 rnext_key = READ_ONCE(ao_info->rnext_key);
634 if (WARN_ON_ONCE(!rnext_key))
635 return ptr;
636 *ptr++ = htonl((TCPOPT_AO << 24) |
637 (tcp_ao_len(key->ao_key) << 16) |
638 (key->ao_key->sndid << 8) |
639 (rnext_key->rcvid));
640 }
641 opts->hash_location = (__u8 *)ptr;
642 ptr += maclen / sizeof(*ptr);
643 if (unlikely(maclen % sizeof(*ptr))) {
644 memset(ptr, TCPOPT_NOP, sizeof(*ptr));
645 ptr++;
646 }
647 #endif
648 return ptr;
649 }
650
651 /* Write previously computed TCP options to the packet.
652 *
653 * Beware: Something in the Internet is very sensitive to the ordering of
654 * TCP options, we learned this through the hard way, so be careful here.
655 * Luckily we can at least blame others for their non-compliance but from
656 * inter-operability perspective it seems that we're somewhat stuck with
657 * the ordering which we have been using if we want to keep working with
658 * those broken things (not that it currently hurts anybody as there isn't
659 * particular reason why the ordering would need to be changed).
660 *
661 * At least SACK_PERM as the first option is known to lead to a disaster
662 * (but it may well be that other scenarios fail similarly).
663 */
tcp_options_write(struct tcphdr * th,struct tcp_sock * tp,const struct tcp_request_sock * tcprsk,struct tcp_out_options * opts,struct tcp_key * key)664 static void tcp_options_write(struct tcphdr *th, struct tcp_sock *tp,
665 const struct tcp_request_sock *tcprsk,
666 struct tcp_out_options *opts,
667 struct tcp_key *key)
668 {
669 __be32 *ptr = (__be32 *)(th + 1);
670 u16 options = opts->options; /* mungable copy */
671
672 if (tcp_key_is_md5(key)) {
673 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
674 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
675 /* overload cookie hash location */
676 opts->hash_location = (__u8 *)ptr;
677 ptr += 4;
678 } else if (tcp_key_is_ao(key)) {
679 ptr = process_tcp_ao_options(tp, tcprsk, opts, key, ptr);
680 }
681 if (unlikely(opts->mss)) {
682 *ptr++ = htonl((TCPOPT_MSS << 24) |
683 (TCPOLEN_MSS << 16) |
684 opts->mss);
685 }
686
687 if (likely(OPTION_TS & options)) {
688 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
689 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
690 (TCPOLEN_SACK_PERM << 16) |
691 (TCPOPT_TIMESTAMP << 8) |
692 TCPOLEN_TIMESTAMP);
693 options &= ~OPTION_SACK_ADVERTISE;
694 } else {
695 *ptr++ = htonl((TCPOPT_NOP << 24) |
696 (TCPOPT_NOP << 16) |
697 (TCPOPT_TIMESTAMP << 8) |
698 TCPOLEN_TIMESTAMP);
699 }
700 *ptr++ = htonl(opts->tsval);
701 *ptr++ = htonl(opts->tsecr);
702 }
703
704 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
705 *ptr++ = htonl((TCPOPT_NOP << 24) |
706 (TCPOPT_NOP << 16) |
707 (TCPOPT_SACK_PERM << 8) |
708 TCPOLEN_SACK_PERM);
709 }
710
711 if (unlikely(OPTION_WSCALE & options)) {
712 *ptr++ = htonl((TCPOPT_NOP << 24) |
713 (TCPOPT_WINDOW << 16) |
714 (TCPOLEN_WINDOW << 8) |
715 opts->ws);
716 }
717
718 if (unlikely(opts->num_sack_blocks)) {
719 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
720 tp->duplicate_sack : tp->selective_acks;
721 int this_sack;
722
723 *ptr++ = htonl((TCPOPT_NOP << 24) |
724 (TCPOPT_NOP << 16) |
725 (TCPOPT_SACK << 8) |
726 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
727 TCPOLEN_SACK_PERBLOCK)));
728
729 for (this_sack = 0; this_sack < opts->num_sack_blocks;
730 ++this_sack) {
731 *ptr++ = htonl(sp[this_sack].start_seq);
732 *ptr++ = htonl(sp[this_sack].end_seq);
733 }
734
735 tp->rx_opt.dsack = 0;
736 }
737
738 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
739 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
740 u8 *p = (u8 *)ptr;
741 u32 len; /* Fast Open option length */
742
743 if (foc->exp) {
744 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
745 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
746 TCPOPT_FASTOPEN_MAGIC);
747 p += TCPOLEN_EXP_FASTOPEN_BASE;
748 } else {
749 len = TCPOLEN_FASTOPEN_BASE + foc->len;
750 *p++ = TCPOPT_FASTOPEN;
751 *p++ = len;
752 }
753
754 memcpy(p, foc->val, foc->len);
755 if ((len & 3) == 2) {
756 p[foc->len] = TCPOPT_NOP;
757 p[foc->len + 1] = TCPOPT_NOP;
758 }
759 ptr += (len + 3) >> 2;
760 }
761
762 smc_options_write(ptr, &options);
763
764 mptcp_options_write(th, ptr, tp, opts);
765 }
766
smc_set_option(const struct tcp_sock * tp,struct tcp_out_options * opts,unsigned int * remaining)767 static void smc_set_option(const struct tcp_sock *tp,
768 struct tcp_out_options *opts,
769 unsigned int *remaining)
770 {
771 #if IS_ENABLED(CONFIG_SMC)
772 if (static_branch_unlikely(&tcp_have_smc)) {
773 if (tp->syn_smc) {
774 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
775 opts->options |= OPTION_SMC;
776 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
777 }
778 }
779 }
780 #endif
781 }
782
smc_set_option_cond(const struct tcp_sock * tp,const struct inet_request_sock * ireq,struct tcp_out_options * opts,unsigned int * remaining)783 static void smc_set_option_cond(const struct tcp_sock *tp,
784 const struct inet_request_sock *ireq,
785 struct tcp_out_options *opts,
786 unsigned int *remaining)
787 {
788 #if IS_ENABLED(CONFIG_SMC)
789 if (static_branch_unlikely(&tcp_have_smc)) {
790 if (tp->syn_smc && ireq->smc_ok) {
791 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
792 opts->options |= OPTION_SMC;
793 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
794 }
795 }
796 }
797 #endif
798 }
799
mptcp_set_option_cond(const struct request_sock * req,struct tcp_out_options * opts,unsigned int * remaining)800 static void mptcp_set_option_cond(const struct request_sock *req,
801 struct tcp_out_options *opts,
802 unsigned int *remaining)
803 {
804 if (rsk_is_mptcp(req)) {
805 unsigned int size;
806
807 if (mptcp_synack_options(req, &size, &opts->mptcp)) {
808 if (*remaining >= size) {
809 opts->options |= OPTION_MPTCP;
810 *remaining -= size;
811 }
812 }
813 }
814 }
815
816 /* Compute TCP options for SYN packets. This is not the final
817 * network wire format yet.
818 */
tcp_syn_options(struct sock * sk,struct sk_buff * skb,struct tcp_out_options * opts,struct tcp_key * key)819 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
820 struct tcp_out_options *opts,
821 struct tcp_key *key)
822 {
823 struct tcp_sock *tp = tcp_sk(sk);
824 unsigned int remaining = MAX_TCP_OPTION_SPACE;
825 struct tcp_fastopen_request *fastopen = tp->fastopen_req;
826 bool timestamps;
827
828 /* Better than switch (key.type) as it has static branches */
829 if (tcp_key_is_md5(key)) {
830 timestamps = false;
831 opts->options |= OPTION_MD5;
832 remaining -= TCPOLEN_MD5SIG_ALIGNED;
833 } else {
834 timestamps = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps);
835 if (tcp_key_is_ao(key)) {
836 opts->options |= OPTION_AO;
837 remaining -= tcp_ao_len_aligned(key->ao_key);
838 }
839 }
840
841 /* We always get an MSS option. The option bytes which will be seen in
842 * normal data packets should timestamps be used, must be in the MSS
843 * advertised. But we subtract them from tp->mss_cache so that
844 * calculations in tcp_sendmsg are simpler etc. So account for this
845 * fact here if necessary. If we don't do this correctly, as a
846 * receiver we won't recognize data packets as being full sized when we
847 * should, and thus we won't abide by the delayed ACK rules correctly.
848 * SACKs don't matter, we never delay an ACK when we have any of those
849 * going out. */
850 opts->mss = tcp_advertise_mss(sk);
851 remaining -= TCPOLEN_MSS_ALIGNED;
852
853 if (likely(timestamps)) {
854 opts->options |= OPTION_TS;
855 opts->tsval = tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb) + tp->tsoffset;
856 opts->tsecr = tp->rx_opt.ts_recent;
857 remaining -= TCPOLEN_TSTAMP_ALIGNED;
858 }
859 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling))) {
860 opts->ws = tp->rx_opt.rcv_wscale;
861 opts->options |= OPTION_WSCALE;
862 remaining -= TCPOLEN_WSCALE_ALIGNED;
863 }
864 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_sack))) {
865 opts->options |= OPTION_SACK_ADVERTISE;
866 if (unlikely(!(OPTION_TS & opts->options)))
867 remaining -= TCPOLEN_SACKPERM_ALIGNED;
868 }
869
870 if (fastopen && fastopen->cookie.len >= 0) {
871 u32 need = fastopen->cookie.len;
872
873 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
874 TCPOLEN_FASTOPEN_BASE;
875 need = (need + 3) & ~3U; /* Align to 32 bits */
876 if (remaining >= need) {
877 opts->options |= OPTION_FAST_OPEN_COOKIE;
878 opts->fastopen_cookie = &fastopen->cookie;
879 remaining -= need;
880 tp->syn_fastopen = 1;
881 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
882 }
883 }
884
885 smc_set_option(tp, opts, &remaining);
886
887 if (sk_is_mptcp(sk)) {
888 unsigned int size;
889
890 if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) {
891 if (remaining >= size) {
892 opts->options |= OPTION_MPTCP;
893 remaining -= size;
894 }
895 }
896 }
897
898 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
899
900 return MAX_TCP_OPTION_SPACE - remaining;
901 }
902
903 /* Set up TCP options for SYN-ACKs. */
tcp_synack_options(const struct sock * sk,struct request_sock * req,unsigned int mss,struct sk_buff * skb,struct tcp_out_options * opts,const struct tcp_key * key,struct tcp_fastopen_cookie * foc,enum tcp_synack_type synack_type,struct sk_buff * syn_skb)904 static unsigned int tcp_synack_options(const struct sock *sk,
905 struct request_sock *req,
906 unsigned int mss, struct sk_buff *skb,
907 struct tcp_out_options *opts,
908 const struct tcp_key *key,
909 struct tcp_fastopen_cookie *foc,
910 enum tcp_synack_type synack_type,
911 struct sk_buff *syn_skb)
912 {
913 struct inet_request_sock *ireq = inet_rsk(req);
914 unsigned int remaining = MAX_TCP_OPTION_SPACE;
915
916 if (tcp_key_is_md5(key)) {
917 opts->options |= OPTION_MD5;
918 remaining -= TCPOLEN_MD5SIG_ALIGNED;
919
920 /* We can't fit any SACK blocks in a packet with MD5 + TS
921 * options. There was discussion about disabling SACK
922 * rather than TS in order to fit in better with old,
923 * buggy kernels, but that was deemed to be unnecessary.
924 */
925 if (synack_type != TCP_SYNACK_COOKIE)
926 ireq->tstamp_ok &= !ireq->sack_ok;
927 } else if (tcp_key_is_ao(key)) {
928 opts->options |= OPTION_AO;
929 remaining -= tcp_ao_len_aligned(key->ao_key);
930 ireq->tstamp_ok &= !ireq->sack_ok;
931 }
932
933 /* We always send an MSS option. */
934 opts->mss = mss;
935 remaining -= TCPOLEN_MSS_ALIGNED;
936
937 if (likely(ireq->wscale_ok)) {
938 opts->ws = ireq->rcv_wscale;
939 opts->options |= OPTION_WSCALE;
940 remaining -= TCPOLEN_WSCALE_ALIGNED;
941 }
942 if (likely(ireq->tstamp_ok)) {
943 opts->options |= OPTION_TS;
944 opts->tsval = tcp_skb_timestamp_ts(tcp_rsk(req)->req_usec_ts, skb) +
945 tcp_rsk(req)->ts_off;
946 if (!tcp_rsk(req)->snt_tsval_first) {
947 if (!opts->tsval)
948 opts->tsval = ~0U;
949 tcp_rsk(req)->snt_tsval_first = opts->tsval;
950 }
951 WRITE_ONCE(tcp_rsk(req)->snt_tsval_last, opts->tsval);
952 opts->tsecr = req->ts_recent;
953 remaining -= TCPOLEN_TSTAMP_ALIGNED;
954 }
955 if (likely(ireq->sack_ok)) {
956 opts->options |= OPTION_SACK_ADVERTISE;
957 if (unlikely(!ireq->tstamp_ok))
958 remaining -= TCPOLEN_SACKPERM_ALIGNED;
959 }
960 if (foc != NULL && foc->len >= 0) {
961 u32 need = foc->len;
962
963 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
964 TCPOLEN_FASTOPEN_BASE;
965 need = (need + 3) & ~3U; /* Align to 32 bits */
966 if (remaining >= need) {
967 opts->options |= OPTION_FAST_OPEN_COOKIE;
968 opts->fastopen_cookie = foc;
969 remaining -= need;
970 }
971 }
972
973 mptcp_set_option_cond(req, opts, &remaining);
974
975 smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
976
977 bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb,
978 synack_type, opts, &remaining);
979
980 return MAX_TCP_OPTION_SPACE - remaining;
981 }
982
983 /* Compute TCP options for ESTABLISHED sockets. This is not the
984 * final wire format yet.
985 */
tcp_established_options(struct sock * sk,struct sk_buff * skb,struct tcp_out_options * opts,struct tcp_key * key)986 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
987 struct tcp_out_options *opts,
988 struct tcp_key *key)
989 {
990 struct tcp_sock *tp = tcp_sk(sk);
991 unsigned int size = 0;
992 unsigned int eff_sacks;
993
994 opts->options = 0;
995
996 /* Better than switch (key.type) as it has static branches */
997 if (tcp_key_is_md5(key)) {
998 opts->options |= OPTION_MD5;
999 size += TCPOLEN_MD5SIG_ALIGNED;
1000 } else if (tcp_key_is_ao(key)) {
1001 opts->options |= OPTION_AO;
1002 size += tcp_ao_len_aligned(key->ao_key);
1003 }
1004
1005 if (likely(tp->rx_opt.tstamp_ok)) {
1006 opts->options |= OPTION_TS;
1007 opts->tsval = skb ? tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb) +
1008 tp->tsoffset : 0;
1009 opts->tsecr = tp->rx_opt.ts_recent;
1010 size += TCPOLEN_TSTAMP_ALIGNED;
1011 }
1012
1013 /* MPTCP options have precedence over SACK for the limited TCP
1014 * option space because a MPTCP connection would be forced to
1015 * fall back to regular TCP if a required multipath option is
1016 * missing. SACK still gets a chance to use whatever space is
1017 * left.
1018 */
1019 if (sk_is_mptcp(sk)) {
1020 unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
1021 unsigned int opt_size = 0;
1022
1023 if (mptcp_established_options(sk, skb, &opt_size, remaining,
1024 &opts->mptcp)) {
1025 opts->options |= OPTION_MPTCP;
1026 size += opt_size;
1027 }
1028 }
1029
1030 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
1031 if (unlikely(eff_sacks)) {
1032 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
1033 if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED +
1034 TCPOLEN_SACK_PERBLOCK))
1035 return size;
1036
1037 opts->num_sack_blocks =
1038 min_t(unsigned int, eff_sacks,
1039 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
1040 TCPOLEN_SACK_PERBLOCK);
1041
1042 size += TCPOLEN_SACK_BASE_ALIGNED +
1043 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
1044 }
1045
1046 if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp,
1047 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) {
1048 unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
1049
1050 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
1051
1052 size = MAX_TCP_OPTION_SPACE - remaining;
1053 }
1054
1055 return size;
1056 }
1057
1058
1059 /* TCP SMALL QUEUES (TSQ)
1060 *
1061 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
1062 * to reduce RTT and bufferbloat.
1063 * We do this using a special skb destructor (tcp_wfree).
1064 *
1065 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
1066 * needs to be reallocated in a driver.
1067 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
1068 *
1069 * Since transmit from skb destructor is forbidden, we use a tasklet
1070 * to process all sockets that eventually need to send more skbs.
1071 * We use one tasklet per cpu, with its own queue of sockets.
1072 */
1073 struct tsq_tasklet {
1074 struct tasklet_struct tasklet;
1075 struct list_head head; /* queue of tcp sockets */
1076 };
1077 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
1078
tcp_tsq_write(struct sock * sk)1079 static void tcp_tsq_write(struct sock *sk)
1080 {
1081 if ((1 << sk->sk_state) &
1082 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
1083 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) {
1084 struct tcp_sock *tp = tcp_sk(sk);
1085
1086 if (tp->lost_out > tp->retrans_out &&
1087 tcp_snd_cwnd(tp) > tcp_packets_in_flight(tp)) {
1088 tcp_mstamp_refresh(tp);
1089 tcp_xmit_retransmit_queue(sk);
1090 }
1091
1092 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
1093 0, GFP_ATOMIC);
1094 }
1095 }
1096
tcp_tsq_handler(struct sock * sk)1097 static void tcp_tsq_handler(struct sock *sk)
1098 {
1099 bh_lock_sock(sk);
1100 if (!sock_owned_by_user(sk))
1101 tcp_tsq_write(sk);
1102 else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
1103 sock_hold(sk);
1104 bh_unlock_sock(sk);
1105 }
1106 /*
1107 * One tasklet per cpu tries to send more skbs.
1108 * We run in tasklet context but need to disable irqs when
1109 * transferring tsq->head because tcp_wfree() might
1110 * interrupt us (non NAPI drivers)
1111 */
tcp_tasklet_func(struct tasklet_struct * t)1112 static void tcp_tasklet_func(struct tasklet_struct *t)
1113 {
1114 struct tsq_tasklet *tsq = from_tasklet(tsq, t, tasklet);
1115 LIST_HEAD(list);
1116 unsigned long flags;
1117 struct list_head *q, *n;
1118 struct tcp_sock *tp;
1119 struct sock *sk;
1120
1121 local_irq_save(flags);
1122 list_splice_init(&tsq->head, &list);
1123 local_irq_restore(flags);
1124
1125 list_for_each_safe(q, n, &list) {
1126 tp = list_entry(q, struct tcp_sock, tsq_node);
1127 list_del(&tp->tsq_node);
1128
1129 sk = (struct sock *)tp;
1130 smp_mb__before_atomic();
1131 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
1132
1133 tcp_tsq_handler(sk);
1134 sk_free(sk);
1135 }
1136 }
1137
1138 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \
1139 TCPF_WRITE_TIMER_DEFERRED | \
1140 TCPF_DELACK_TIMER_DEFERRED | \
1141 TCPF_MTU_REDUCED_DEFERRED | \
1142 TCPF_ACK_DEFERRED)
1143 /**
1144 * tcp_release_cb - tcp release_sock() callback
1145 * @sk: socket
1146 *
1147 * called from release_sock() to perform protocol dependent
1148 * actions before socket release.
1149 */
tcp_release_cb(struct sock * sk)1150 void tcp_release_cb(struct sock *sk)
1151 {
1152 unsigned long flags = smp_load_acquire(&sk->sk_tsq_flags);
1153 unsigned long nflags;
1154
1155 /* perform an atomic operation only if at least one flag is set */
1156 do {
1157 if (!(flags & TCP_DEFERRED_ALL))
1158 return;
1159 nflags = flags & ~TCP_DEFERRED_ALL;
1160 } while (!try_cmpxchg(&sk->sk_tsq_flags, &flags, nflags));
1161
1162 if (flags & TCPF_TSQ_DEFERRED) {
1163 tcp_tsq_write(sk);
1164 __sock_put(sk);
1165 }
1166
1167 if (flags & TCPF_WRITE_TIMER_DEFERRED) {
1168 tcp_write_timer_handler(sk);
1169 __sock_put(sk);
1170 }
1171 if (flags & TCPF_DELACK_TIMER_DEFERRED) {
1172 tcp_delack_timer_handler(sk);
1173 __sock_put(sk);
1174 }
1175 if (flags & TCPF_MTU_REDUCED_DEFERRED) {
1176 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
1177 __sock_put(sk);
1178 }
1179 if ((flags & TCPF_ACK_DEFERRED) && inet_csk_ack_scheduled(sk))
1180 tcp_send_ack(sk);
1181 }
1182 EXPORT_IPV6_MOD(tcp_release_cb);
1183
tcp_tasklet_init(void)1184 void __init tcp_tasklet_init(void)
1185 {
1186 int i;
1187
1188 for_each_possible_cpu(i) {
1189 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
1190
1191 INIT_LIST_HEAD(&tsq->head);
1192 tasklet_setup(&tsq->tasklet, tcp_tasklet_func);
1193 }
1194 }
1195
1196 /*
1197 * Write buffer destructor automatically called from kfree_skb.
1198 * We can't xmit new skbs from this context, as we might already
1199 * hold qdisc lock.
1200 */
tcp_wfree(struct sk_buff * skb)1201 void tcp_wfree(struct sk_buff *skb)
1202 {
1203 struct sock *sk = skb->sk;
1204 struct tcp_sock *tp = tcp_sk(sk);
1205 unsigned long flags, nval, oval;
1206 struct tsq_tasklet *tsq;
1207 bool empty;
1208
1209 /* Keep one reference on sk_wmem_alloc.
1210 * Will be released by sk_free() from here or tcp_tasklet_func()
1211 */
1212 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
1213
1214 /* If this softirq is serviced by ksoftirqd, we are likely under stress.
1215 * Wait until our queues (qdisc + devices) are drained.
1216 * This gives :
1217 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
1218 * - chance for incoming ACK (processed by another cpu maybe)
1219 * to migrate this flow (skb->ooo_okay will be eventually set)
1220 */
1221 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
1222 goto out;
1223
1224 oval = smp_load_acquire(&sk->sk_tsq_flags);
1225 do {
1226 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
1227 goto out;
1228
1229 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
1230 } while (!try_cmpxchg(&sk->sk_tsq_flags, &oval, nval));
1231
1232 /* queue this socket to tasklet queue */
1233 local_irq_save(flags);
1234 tsq = this_cpu_ptr(&tsq_tasklet);
1235 empty = list_empty(&tsq->head);
1236 list_add(&tp->tsq_node, &tsq->head);
1237 if (empty)
1238 tasklet_schedule(&tsq->tasklet);
1239 local_irq_restore(flags);
1240 return;
1241 out:
1242 sk_free(sk);
1243 }
1244
1245 /* Note: Called under soft irq.
1246 * We can call TCP stack right away, unless socket is owned by user.
1247 */
tcp_pace_kick(struct hrtimer * timer)1248 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
1249 {
1250 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
1251 struct sock *sk = (struct sock *)tp;
1252
1253 tcp_tsq_handler(sk);
1254 sock_put(sk);
1255
1256 return HRTIMER_NORESTART;
1257 }
1258
tcp_update_skb_after_send(struct sock * sk,struct sk_buff * skb,u64 prior_wstamp)1259 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
1260 u64 prior_wstamp)
1261 {
1262 struct tcp_sock *tp = tcp_sk(sk);
1263
1264 if (sk->sk_pacing_status != SK_PACING_NONE) {
1265 unsigned long rate = READ_ONCE(sk->sk_pacing_rate);
1266
1267 /* Original sch_fq does not pace first 10 MSS
1268 * Note that tp->data_segs_out overflows after 2^32 packets,
1269 * this is a minor annoyance.
1270 */
1271 if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
1272 u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
1273 u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
1274
1275 /* take into account OS jitter */
1276 len_ns -= min_t(u64, len_ns / 2, credit);
1277 tp->tcp_wstamp_ns += len_ns;
1278 }
1279 }
1280 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1281 }
1282
1283 INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1284 INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1285 INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb));
1286
1287 /* This routine actually transmits TCP packets queued in by
1288 * tcp_do_sendmsg(). This is used by both the initial
1289 * transmission and possible later retransmissions.
1290 * All SKB's seen here are completely headerless. It is our
1291 * job to build the TCP header, and pass the packet down to
1292 * IP so it can do the same plus pass the packet off to the
1293 * device.
1294 *
1295 * We are working here with either a clone of the original
1296 * SKB, or a fresh unique copy made by the retransmit engine.
1297 */
__tcp_transmit_skb(struct sock * sk,struct sk_buff * skb,int clone_it,gfp_t gfp_mask,u32 rcv_nxt)1298 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1299 int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1300 {
1301 const struct inet_connection_sock *icsk = inet_csk(sk);
1302 struct inet_sock *inet;
1303 struct tcp_sock *tp;
1304 struct tcp_skb_cb *tcb;
1305 struct tcp_out_options opts;
1306 unsigned int tcp_options_size, tcp_header_size;
1307 struct sk_buff *oskb = NULL;
1308 struct tcp_key key;
1309 struct tcphdr *th;
1310 u64 prior_wstamp;
1311 int err;
1312
1313 BUG_ON(!skb || !tcp_skb_pcount(skb));
1314 tp = tcp_sk(sk);
1315 prior_wstamp = tp->tcp_wstamp_ns;
1316 tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
1317 skb_set_delivery_time(skb, tp->tcp_wstamp_ns, SKB_CLOCK_MONOTONIC);
1318 if (clone_it) {
1319 oskb = skb;
1320
1321 tcp_skb_tsorted_save(oskb) {
1322 if (unlikely(skb_cloned(oskb)))
1323 skb = pskb_copy(oskb, gfp_mask);
1324 else
1325 skb = skb_clone(oskb, gfp_mask);
1326 } tcp_skb_tsorted_restore(oskb);
1327
1328 if (unlikely(!skb))
1329 return -ENOBUFS;
1330 /* retransmit skbs might have a non zero value in skb->dev
1331 * because skb->dev is aliased with skb->rbnode.rb_left
1332 */
1333 skb->dev = NULL;
1334 }
1335
1336 inet = inet_sk(sk);
1337 tcb = TCP_SKB_CB(skb);
1338 memset(&opts, 0, sizeof(opts));
1339
1340 tcp_get_current_key(sk, &key);
1341 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
1342 tcp_options_size = tcp_syn_options(sk, skb, &opts, &key);
1343 } else {
1344 tcp_options_size = tcp_established_options(sk, skb, &opts, &key);
1345 /* Force a PSH flag on all (GSO) packets to expedite GRO flush
1346 * at receiver : This slightly improve GRO performance.
1347 * Note that we do not force the PSH flag for non GSO packets,
1348 * because they might be sent under high congestion events,
1349 * and in this case it is better to delay the delivery of 1-MSS
1350 * packets and thus the corresponding ACK packet that would
1351 * release the following packet.
1352 */
1353 if (tcp_skb_pcount(skb) > 1)
1354 tcb->tcp_flags |= TCPHDR_PSH;
1355 }
1356 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1357
1358 /* We set skb->ooo_okay to one if this packet can select
1359 * a different TX queue than prior packets of this flow,
1360 * to avoid self inflicted reorders.
1361 * The 'other' queue decision is based on current cpu number
1362 * if XPS is enabled, or sk->sk_txhash otherwise.
1363 * We can switch to another (and better) queue if:
1364 * 1) No packet with payload is in qdisc/device queues.
1365 * Delays in TX completion can defeat the test
1366 * even if packets were already sent.
1367 * 2) Or rtx queue is empty.
1368 * This mitigates above case if ACK packets for
1369 * all prior packets were already processed.
1370 */
1371 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1) ||
1372 tcp_rtx_queue_empty(sk);
1373
1374 /* If we had to use memory reserve to allocate this skb,
1375 * this might cause drops if packet is looped back :
1376 * Other socket might not have SOCK_MEMALLOC.
1377 * Packets not looped back do not care about pfmemalloc.
1378 */
1379 skb->pfmemalloc = 0;
1380
1381 skb_push(skb, tcp_header_size);
1382 skb_reset_transport_header(skb);
1383
1384 skb_orphan(skb);
1385 skb->sk = sk;
1386 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1387 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1388
1389 skb_set_dst_pending_confirm(skb, READ_ONCE(sk->sk_dst_pending_confirm));
1390
1391 /* Build TCP header and checksum it. */
1392 th = (struct tcphdr *)skb->data;
1393 th->source = inet->inet_sport;
1394 th->dest = inet->inet_dport;
1395 th->seq = htonl(tcb->seq);
1396 th->ack_seq = htonl(rcv_nxt);
1397 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
1398 (tcb->tcp_flags & TCPHDR_FLAGS_MASK));
1399
1400 th->check = 0;
1401 th->urg_ptr = 0;
1402
1403 /* The urg_mode check is necessary during a below snd_una win probe */
1404 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1405 if (before(tp->snd_up, tcb->seq + 0x10000)) {
1406 th->urg_ptr = htons(tp->snd_up - tcb->seq);
1407 th->urg = 1;
1408 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1409 th->urg_ptr = htons(0xFFFF);
1410 th->urg = 1;
1411 }
1412 }
1413
1414 skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1415 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1416 th->window = htons(tcp_select_window(sk));
1417 tcp_ecn_send(sk, skb, th, tcp_header_size);
1418 } else {
1419 /* RFC1323: The window in SYN & SYN/ACK segments
1420 * is never scaled.
1421 */
1422 th->window = htons(min(tp->rcv_wnd, 65535U));
1423 }
1424
1425 tcp_options_write(th, tp, NULL, &opts, &key);
1426
1427 if (tcp_key_is_md5(&key)) {
1428 #ifdef CONFIG_TCP_MD5SIG
1429 /* Calculate the MD5 hash, as we have all we need now */
1430 sk_gso_disable(sk);
1431 tp->af_specific->calc_md5_hash(opts.hash_location,
1432 key.md5_key, sk, skb);
1433 #endif
1434 } else if (tcp_key_is_ao(&key)) {
1435 int err;
1436
1437 err = tcp_ao_transmit_skb(sk, skb, key.ao_key, th,
1438 opts.hash_location);
1439 if (err) {
1440 kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1441 return -ENOMEM;
1442 }
1443 }
1444
1445 /* BPF prog is the last one writing header option */
1446 bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts);
1447
1448 INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check,
1449 tcp_v6_send_check, tcp_v4_send_check,
1450 sk, skb);
1451
1452 if (likely(tcb->tcp_flags & TCPHDR_ACK))
1453 tcp_event_ack_sent(sk, rcv_nxt);
1454
1455 if (skb->len != tcp_header_size) {
1456 tcp_event_data_sent(tp, sk);
1457 tp->data_segs_out += tcp_skb_pcount(skb);
1458 tp->bytes_sent += skb->len - tcp_header_size;
1459 }
1460
1461 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1462 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1463 tcp_skb_pcount(skb));
1464
1465 tp->segs_out += tcp_skb_pcount(skb);
1466 skb_set_hash_from_sk(skb, sk);
1467 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1468 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1469 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1470
1471 /* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1472
1473 /* Cleanup our debris for IP stacks */
1474 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1475 sizeof(struct inet6_skb_parm)));
1476
1477 tcp_add_tx_delay(skb, tp);
1478
1479 err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit,
1480 inet6_csk_xmit, ip_queue_xmit,
1481 sk, skb, &inet->cork.fl);
1482
1483 if (unlikely(err > 0)) {
1484 tcp_enter_cwr(sk);
1485 err = net_xmit_eval(err);
1486 }
1487 if (!err && oskb) {
1488 tcp_update_skb_after_send(sk, oskb, prior_wstamp);
1489 tcp_rate_skb_sent(sk, oskb);
1490 }
1491 return err;
1492 }
1493
tcp_transmit_skb(struct sock * sk,struct sk_buff * skb,int clone_it,gfp_t gfp_mask)1494 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1495 gfp_t gfp_mask)
1496 {
1497 return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1498 tcp_sk(sk)->rcv_nxt);
1499 }
1500
1501 /* This routine just queues the buffer for sending.
1502 *
1503 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1504 * otherwise socket can stall.
1505 */
tcp_queue_skb(struct sock * sk,struct sk_buff * skb)1506 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1507 {
1508 struct tcp_sock *tp = tcp_sk(sk);
1509
1510 /* Advance write_seq and place onto the write_queue. */
1511 WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq);
1512 __skb_header_release(skb);
1513 tcp_add_write_queue_tail(sk, skb);
1514 sk_wmem_queued_add(sk, skb->truesize);
1515 sk_mem_charge(sk, skb->truesize);
1516 }
1517
1518 /* Initialize TSO segments for a packet. */
tcp_set_skb_tso_segs(struct sk_buff * skb,unsigned int mss_now)1519 static int tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1520 {
1521 int tso_segs;
1522
1523 if (skb->len <= mss_now) {
1524 /* Avoid the costly divide in the normal
1525 * non-TSO case.
1526 */
1527 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1528 tcp_skb_pcount_set(skb, 1);
1529 return 1;
1530 }
1531 TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1532 tso_segs = DIV_ROUND_UP(skb->len, mss_now);
1533 tcp_skb_pcount_set(skb, tso_segs);
1534 return tso_segs;
1535 }
1536
1537 /* Pcount in the middle of the write queue got changed, we need to do various
1538 * tweaks to fix counters
1539 */
tcp_adjust_pcount(struct sock * sk,const struct sk_buff * skb,int decr)1540 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1541 {
1542 struct tcp_sock *tp = tcp_sk(sk);
1543
1544 tp->packets_out -= decr;
1545
1546 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1547 tp->sacked_out -= decr;
1548 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1549 tp->retrans_out -= decr;
1550 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1551 tp->lost_out -= decr;
1552
1553 /* Reno case is special. Sigh... */
1554 if (tcp_is_reno(tp) && decr > 0)
1555 tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1556
1557 if (tp->lost_skb_hint &&
1558 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1559 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1560 tp->lost_cnt_hint -= decr;
1561
1562 tcp_verify_left_out(tp);
1563 }
1564
tcp_has_tx_tstamp(const struct sk_buff * skb)1565 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1566 {
1567 return TCP_SKB_CB(skb)->txstamp_ack ||
1568 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1569 }
1570
tcp_fragment_tstamp(struct sk_buff * skb,struct sk_buff * skb2)1571 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1572 {
1573 struct skb_shared_info *shinfo = skb_shinfo(skb);
1574
1575 if (unlikely(tcp_has_tx_tstamp(skb)) &&
1576 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1577 struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1578 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1579
1580 shinfo->tx_flags &= ~tsflags;
1581 shinfo2->tx_flags |= tsflags;
1582 swap(shinfo->tskey, shinfo2->tskey);
1583 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1584 TCP_SKB_CB(skb)->txstamp_ack = 0;
1585 }
1586 }
1587
tcp_skb_fragment_eor(struct sk_buff * skb,struct sk_buff * skb2)1588 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1589 {
1590 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1591 TCP_SKB_CB(skb)->eor = 0;
1592 }
1593
1594 /* Insert buff after skb on the write or rtx queue of sk. */
tcp_insert_write_queue_after(struct sk_buff * skb,struct sk_buff * buff,struct sock * sk,enum tcp_queue tcp_queue)1595 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1596 struct sk_buff *buff,
1597 struct sock *sk,
1598 enum tcp_queue tcp_queue)
1599 {
1600 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1601 __skb_queue_after(&sk->sk_write_queue, skb, buff);
1602 else
1603 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1604 }
1605
1606 /* Function to create two new TCP segments. Shrinks the given segment
1607 * to the specified size and appends a new segment with the rest of the
1608 * packet to the list. This won't be called frequently, I hope.
1609 * Remember, these are still headerless SKBs at this point.
1610 */
tcp_fragment(struct sock * sk,enum tcp_queue tcp_queue,struct sk_buff * skb,u32 len,unsigned int mss_now,gfp_t gfp)1611 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1612 struct sk_buff *skb, u32 len,
1613 unsigned int mss_now, gfp_t gfp)
1614 {
1615 struct tcp_sock *tp = tcp_sk(sk);
1616 struct sk_buff *buff;
1617 int old_factor;
1618 long limit;
1619 u16 flags;
1620 int nlen;
1621
1622 if (WARN_ON(len > skb->len))
1623 return -EINVAL;
1624
1625 DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb));
1626
1627 /* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
1628 * We need some allowance to not penalize applications setting small
1629 * SO_SNDBUF values.
1630 * Also allow first and last skb in retransmit queue to be split.
1631 */
1632 limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_LEGACY_MAX_SIZE);
1633 if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
1634 tcp_queue != TCP_FRAG_IN_WRITE_QUEUE &&
1635 skb != tcp_rtx_queue_head(sk) &&
1636 skb != tcp_rtx_queue_tail(sk))) {
1637 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
1638 return -ENOMEM;
1639 }
1640
1641 if (skb_unclone_keeptruesize(skb, gfp))
1642 return -ENOMEM;
1643
1644 /* Get a new skb... force flag on. */
1645 buff = tcp_stream_alloc_skb(sk, gfp, true);
1646 if (!buff)
1647 return -ENOMEM; /* We'll just try again later. */
1648 skb_copy_decrypted(buff, skb);
1649 mptcp_skb_ext_copy(buff, skb);
1650
1651 sk_wmem_queued_add(sk, buff->truesize);
1652 sk_mem_charge(sk, buff->truesize);
1653 nlen = skb->len - len;
1654 buff->truesize += nlen;
1655 skb->truesize -= nlen;
1656
1657 /* Correct the sequence numbers. */
1658 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1659 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1660 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1661
1662 /* PSH and FIN should only be set in the second packet. */
1663 flags = TCP_SKB_CB(skb)->tcp_flags;
1664 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1665 TCP_SKB_CB(buff)->tcp_flags = flags;
1666 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1667 tcp_skb_fragment_eor(skb, buff);
1668
1669 skb_split(skb, buff, len);
1670
1671 skb_set_delivery_time(buff, skb->tstamp, SKB_CLOCK_MONOTONIC);
1672 tcp_fragment_tstamp(skb, buff);
1673
1674 old_factor = tcp_skb_pcount(skb);
1675
1676 /* Fix up tso_factor for both original and new SKB. */
1677 tcp_set_skb_tso_segs(skb, mss_now);
1678 tcp_set_skb_tso_segs(buff, mss_now);
1679
1680 /* Update delivered info for the new segment */
1681 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1682
1683 /* If this packet has been sent out already, we must
1684 * adjust the various packet counters.
1685 */
1686 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1687 int diff = old_factor - tcp_skb_pcount(skb) -
1688 tcp_skb_pcount(buff);
1689
1690 if (diff)
1691 tcp_adjust_pcount(sk, skb, diff);
1692 }
1693
1694 /* Link BUFF into the send queue. */
1695 __skb_header_release(buff);
1696 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1697 if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1698 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1699
1700 return 0;
1701 }
1702
1703 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1704 * data is not copied, but immediately discarded.
1705 */
__pskb_trim_head(struct sk_buff * skb,int len)1706 static int __pskb_trim_head(struct sk_buff *skb, int len)
1707 {
1708 struct skb_shared_info *shinfo;
1709 int i, k, eat;
1710
1711 DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb));
1712 eat = len;
1713 k = 0;
1714 shinfo = skb_shinfo(skb);
1715 for (i = 0; i < shinfo->nr_frags; i++) {
1716 int size = skb_frag_size(&shinfo->frags[i]);
1717
1718 if (size <= eat) {
1719 skb_frag_unref(skb, i);
1720 eat -= size;
1721 } else {
1722 shinfo->frags[k] = shinfo->frags[i];
1723 if (eat) {
1724 skb_frag_off_add(&shinfo->frags[k], eat);
1725 skb_frag_size_sub(&shinfo->frags[k], eat);
1726 eat = 0;
1727 }
1728 k++;
1729 }
1730 }
1731 shinfo->nr_frags = k;
1732
1733 skb->data_len -= len;
1734 skb->len = skb->data_len;
1735 return len;
1736 }
1737
1738 /* Remove acked data from a packet in the transmit queue. */
tcp_trim_head(struct sock * sk,struct sk_buff * skb,u32 len)1739 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1740 {
1741 u32 delta_truesize;
1742
1743 if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
1744 return -ENOMEM;
1745
1746 delta_truesize = __pskb_trim_head(skb, len);
1747
1748 TCP_SKB_CB(skb)->seq += len;
1749
1750 skb->truesize -= delta_truesize;
1751 sk_wmem_queued_add(sk, -delta_truesize);
1752 if (!skb_zcopy_pure(skb))
1753 sk_mem_uncharge(sk, delta_truesize);
1754
1755 /* Any change of skb->len requires recalculation of tso factor. */
1756 if (tcp_skb_pcount(skb) > 1)
1757 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1758
1759 return 0;
1760 }
1761
1762 /* Calculate MSS not accounting any TCP options. */
__tcp_mtu_to_mss(struct sock * sk,int pmtu)1763 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1764 {
1765 const struct tcp_sock *tp = tcp_sk(sk);
1766 const struct inet_connection_sock *icsk = inet_csk(sk);
1767 int mss_now;
1768
1769 /* Calculate base mss without TCP options:
1770 It is MMS_S - sizeof(tcphdr) of rfc1122
1771 */
1772 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1773
1774 /* Clamp it (mss_clamp does not include tcp options) */
1775 if (mss_now > tp->rx_opt.mss_clamp)
1776 mss_now = tp->rx_opt.mss_clamp;
1777
1778 /* Now subtract optional transport overhead */
1779 mss_now -= icsk->icsk_ext_hdr_len;
1780
1781 /* Then reserve room for full set of TCP options and 8 bytes of data */
1782 mss_now = max(mss_now,
1783 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss));
1784 return mss_now;
1785 }
1786
1787 /* Calculate MSS. Not accounting for SACKs here. */
tcp_mtu_to_mss(struct sock * sk,int pmtu)1788 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1789 {
1790 /* Subtract TCP options size, not including SACKs */
1791 return __tcp_mtu_to_mss(sk, pmtu) -
1792 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1793 }
1794 EXPORT_IPV6_MOD(tcp_mtu_to_mss);
1795
1796 /* Inverse of above */
tcp_mss_to_mtu(struct sock * sk,int mss)1797 int tcp_mss_to_mtu(struct sock *sk, int mss)
1798 {
1799 const struct tcp_sock *tp = tcp_sk(sk);
1800 const struct inet_connection_sock *icsk = inet_csk(sk);
1801
1802 return mss +
1803 tp->tcp_header_len +
1804 icsk->icsk_ext_hdr_len +
1805 icsk->icsk_af_ops->net_header_len;
1806 }
1807 EXPORT_SYMBOL(tcp_mss_to_mtu);
1808
1809 /* MTU probing init per socket */
tcp_mtup_init(struct sock * sk)1810 void tcp_mtup_init(struct sock *sk)
1811 {
1812 struct tcp_sock *tp = tcp_sk(sk);
1813 struct inet_connection_sock *icsk = inet_csk(sk);
1814 struct net *net = sock_net(sk);
1815
1816 icsk->icsk_mtup.enabled = READ_ONCE(net->ipv4.sysctl_tcp_mtu_probing) > 1;
1817 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1818 icsk->icsk_af_ops->net_header_len;
1819 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, READ_ONCE(net->ipv4.sysctl_tcp_base_mss));
1820 icsk->icsk_mtup.probe_size = 0;
1821 if (icsk->icsk_mtup.enabled)
1822 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1823 }
1824
1825 /* This function synchronize snd mss to current pmtu/exthdr set.
1826
1827 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1828 for TCP options, but includes only bare TCP header.
1829
1830 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1831 It is minimum of user_mss and mss received with SYN.
1832 It also does not include TCP options.
1833
1834 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1835
1836 tp->mss_cache is current effective sending mss, including
1837 all tcp options except for SACKs. It is evaluated,
1838 taking into account current pmtu, but never exceeds
1839 tp->rx_opt.mss_clamp.
1840
1841 NOTE1. rfc1122 clearly states that advertised MSS
1842 DOES NOT include either tcp or ip options.
1843
1844 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1845 are READ ONLY outside this function. --ANK (980731)
1846 */
tcp_sync_mss(struct sock * sk,u32 pmtu)1847 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1848 {
1849 struct tcp_sock *tp = tcp_sk(sk);
1850 struct inet_connection_sock *icsk = inet_csk(sk);
1851 int mss_now;
1852
1853 if (icsk->icsk_mtup.search_high > pmtu)
1854 icsk->icsk_mtup.search_high = pmtu;
1855
1856 mss_now = tcp_mtu_to_mss(sk, pmtu);
1857 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1858
1859 /* And store cached results */
1860 icsk->icsk_pmtu_cookie = pmtu;
1861 if (icsk->icsk_mtup.enabled)
1862 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1863 tp->mss_cache = mss_now;
1864
1865 return mss_now;
1866 }
1867 EXPORT_IPV6_MOD(tcp_sync_mss);
1868
1869 /* Compute the current effective MSS, taking SACKs and IP options,
1870 * and even PMTU discovery events into account.
1871 */
tcp_current_mss(struct sock * sk)1872 unsigned int tcp_current_mss(struct sock *sk)
1873 {
1874 const struct tcp_sock *tp = tcp_sk(sk);
1875 const struct dst_entry *dst = __sk_dst_get(sk);
1876 u32 mss_now;
1877 unsigned int header_len;
1878 struct tcp_out_options opts;
1879 struct tcp_key key;
1880
1881 mss_now = tp->mss_cache;
1882
1883 if (dst) {
1884 u32 mtu = dst_mtu(dst);
1885 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1886 mss_now = tcp_sync_mss(sk, mtu);
1887 }
1888 tcp_get_current_key(sk, &key);
1889 header_len = tcp_established_options(sk, NULL, &opts, &key) +
1890 sizeof(struct tcphdr);
1891 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1892 * some common options. If this is an odd packet (because we have SACK
1893 * blocks etc) then our calculated header_len will be different, and
1894 * we have to adjust mss_now correspondingly */
1895 if (header_len != tp->tcp_header_len) {
1896 int delta = (int) header_len - tp->tcp_header_len;
1897 mss_now -= delta;
1898 }
1899
1900 return mss_now;
1901 }
1902
1903 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1904 * As additional protections, we do not touch cwnd in retransmission phases,
1905 * and if application hit its sndbuf limit recently.
1906 */
tcp_cwnd_application_limited(struct sock * sk)1907 static void tcp_cwnd_application_limited(struct sock *sk)
1908 {
1909 struct tcp_sock *tp = tcp_sk(sk);
1910
1911 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1912 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1913 /* Limited by application or receiver window. */
1914 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1915 u32 win_used = max(tp->snd_cwnd_used, init_win);
1916 if (win_used < tcp_snd_cwnd(tp)) {
1917 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1918 tcp_snd_cwnd_set(tp, (tcp_snd_cwnd(tp) + win_used) >> 1);
1919 }
1920 tp->snd_cwnd_used = 0;
1921 }
1922 tp->snd_cwnd_stamp = tcp_jiffies32;
1923 }
1924
tcp_cwnd_validate(struct sock * sk,bool is_cwnd_limited)1925 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1926 {
1927 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1928 struct tcp_sock *tp = tcp_sk(sk);
1929
1930 /* Track the strongest available signal of the degree to which the cwnd
1931 * is fully utilized. If cwnd-limited then remember that fact for the
1932 * current window. If not cwnd-limited then track the maximum number of
1933 * outstanding packets in the current window. (If cwnd-limited then we
1934 * chose to not update tp->max_packets_out to avoid an extra else
1935 * clause with no functional impact.)
1936 */
1937 if (!before(tp->snd_una, tp->cwnd_usage_seq) ||
1938 is_cwnd_limited ||
1939 (!tp->is_cwnd_limited &&
1940 tp->packets_out > tp->max_packets_out)) {
1941 tp->is_cwnd_limited = is_cwnd_limited;
1942 tp->max_packets_out = tp->packets_out;
1943 tp->cwnd_usage_seq = tp->snd_nxt;
1944 }
1945
1946 if (tcp_is_cwnd_limited(sk)) {
1947 /* Network is feed fully. */
1948 tp->snd_cwnd_used = 0;
1949 tp->snd_cwnd_stamp = tcp_jiffies32;
1950 } else {
1951 /* Network starves. */
1952 if (tp->packets_out > tp->snd_cwnd_used)
1953 tp->snd_cwnd_used = tp->packets_out;
1954
1955 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) &&
1956 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1957 !ca_ops->cong_control)
1958 tcp_cwnd_application_limited(sk);
1959
1960 /* The following conditions together indicate the starvation
1961 * is caused by insufficient sender buffer:
1962 * 1) just sent some data (see tcp_write_xmit)
1963 * 2) not cwnd limited (this else condition)
1964 * 3) no more data to send (tcp_write_queue_empty())
1965 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1966 */
1967 if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1968 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1969 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1970 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1971 }
1972 }
1973
1974 /* Minshall's variant of the Nagle send check. */
tcp_minshall_check(const struct tcp_sock * tp)1975 static bool tcp_minshall_check(const struct tcp_sock *tp)
1976 {
1977 return after(tp->snd_sml, tp->snd_una) &&
1978 !after(tp->snd_sml, tp->snd_nxt);
1979 }
1980
1981 /* Update snd_sml if this skb is under mss
1982 * Note that a TSO packet might end with a sub-mss segment
1983 * The test is really :
1984 * if ((skb->len % mss) != 0)
1985 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1986 * But we can avoid doing the divide again given we already have
1987 * skb_pcount = skb->len / mss_now
1988 */
tcp_minshall_update(struct tcp_sock * tp,unsigned int mss_now,const struct sk_buff * skb)1989 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1990 const struct sk_buff *skb)
1991 {
1992 if (skb->len < tcp_skb_pcount(skb) * mss_now)
1993 tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1994 }
1995
1996 /* Return false, if packet can be sent now without violation Nagle's rules:
1997 * 1. It is full sized. (provided by caller in %partial bool)
1998 * 2. Or it contains FIN. (already checked by caller)
1999 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
2000 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
2001 * With Minshall's modification: all sent small packets are ACKed.
2002 */
tcp_nagle_check(bool partial,const struct tcp_sock * tp,int nonagle)2003 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
2004 int nonagle)
2005 {
2006 return partial &&
2007 ((nonagle & TCP_NAGLE_CORK) ||
2008 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
2009 }
2010
2011 /* Return how many segs we'd like on a TSO packet,
2012 * depending on current pacing rate, and how close the peer is.
2013 *
2014 * Rationale is:
2015 * - For close peers, we rather send bigger packets to reduce
2016 * cpu costs, because occasional losses will be repaired fast.
2017 * - For long distance/rtt flows, we would like to get ACK clocking
2018 * with 1 ACK per ms.
2019 *
2020 * Use min_rtt to help adapt TSO burst size, with smaller min_rtt resulting
2021 * in bigger TSO bursts. We we cut the RTT-based allowance in half
2022 * for every 2^9 usec (aka 512 us) of RTT, so that the RTT-based allowance
2023 * is below 1500 bytes after 6 * ~500 usec = 3ms.
2024 */
tcp_tso_autosize(const struct sock * sk,unsigned int mss_now,int min_tso_segs)2025 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
2026 int min_tso_segs)
2027 {
2028 unsigned long bytes;
2029 u32 r;
2030
2031 bytes = READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift);
2032
2033 r = tcp_min_rtt(tcp_sk(sk)) >> READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_rtt_log);
2034 if (r < BITS_PER_TYPE(sk->sk_gso_max_size))
2035 bytes += sk->sk_gso_max_size >> r;
2036
2037 bytes = min_t(unsigned long, bytes, sk->sk_gso_max_size);
2038
2039 return max_t(u32, bytes / mss_now, min_tso_segs);
2040 }
2041
2042 /* Return the number of segments we want in the skb we are transmitting.
2043 * See if congestion control module wants to decide; otherwise, autosize.
2044 */
tcp_tso_segs(struct sock * sk,unsigned int mss_now)2045 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
2046 {
2047 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2048 u32 min_tso, tso_segs;
2049
2050 min_tso = ca_ops->min_tso_segs ?
2051 ca_ops->min_tso_segs(sk) :
2052 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs);
2053
2054 tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
2055 return min_t(u32, tso_segs, sk->sk_gso_max_segs);
2056 }
2057
2058 /* Returns the portion of skb which can be sent right away */
tcp_mss_split_point(const struct sock * sk,const struct sk_buff * skb,unsigned int mss_now,unsigned int max_segs,int nonagle)2059 static unsigned int tcp_mss_split_point(const struct sock *sk,
2060 const struct sk_buff *skb,
2061 unsigned int mss_now,
2062 unsigned int max_segs,
2063 int nonagle)
2064 {
2065 const struct tcp_sock *tp = tcp_sk(sk);
2066 u32 partial, needed, window, max_len;
2067
2068 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2069 max_len = mss_now * max_segs;
2070
2071 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
2072 return max_len;
2073
2074 needed = min(skb->len, window);
2075
2076 if (max_len <= needed)
2077 return max_len;
2078
2079 partial = needed % mss_now;
2080 /* If last segment is not a full MSS, check if Nagle rules allow us
2081 * to include this last segment in this skb.
2082 * Otherwise, we'll split the skb at last MSS boundary
2083 */
2084 if (tcp_nagle_check(partial != 0, tp, nonagle))
2085 return needed - partial;
2086
2087 return needed;
2088 }
2089
2090 /* Can at least one segment of SKB be sent right now, according to the
2091 * congestion window rules? If so, return how many segments are allowed.
2092 */
tcp_cwnd_test(const struct tcp_sock * tp)2093 static u32 tcp_cwnd_test(const struct tcp_sock *tp)
2094 {
2095 u32 in_flight, cwnd, halfcwnd;
2096
2097 in_flight = tcp_packets_in_flight(tp);
2098 cwnd = tcp_snd_cwnd(tp);
2099 if (in_flight >= cwnd)
2100 return 0;
2101
2102 /* For better scheduling, ensure we have at least
2103 * 2 GSO packets in flight.
2104 */
2105 halfcwnd = max(cwnd >> 1, 1U);
2106 return min(halfcwnd, cwnd - in_flight);
2107 }
2108
2109 /* Initialize TSO state of a skb.
2110 * This must be invoked the first time we consider transmitting
2111 * SKB onto the wire.
2112 */
tcp_init_tso_segs(struct sk_buff * skb,unsigned int mss_now)2113 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
2114 {
2115 int tso_segs = tcp_skb_pcount(skb);
2116
2117 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now))
2118 return tcp_set_skb_tso_segs(skb, mss_now);
2119
2120 return tso_segs;
2121 }
2122
2123
2124 /* Return true if the Nagle test allows this packet to be
2125 * sent now.
2126 */
tcp_nagle_test(const struct tcp_sock * tp,const struct sk_buff * skb,unsigned int cur_mss,int nonagle)2127 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
2128 unsigned int cur_mss, int nonagle)
2129 {
2130 /* Nagle rule does not apply to frames, which sit in the middle of the
2131 * write_queue (they have no chances to get new data).
2132 *
2133 * This is implemented in the callers, where they modify the 'nonagle'
2134 * argument based upon the location of SKB in the send queue.
2135 */
2136 if (nonagle & TCP_NAGLE_PUSH)
2137 return true;
2138
2139 /* Don't use the nagle rule for urgent data (or for the final FIN). */
2140 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
2141 return true;
2142
2143 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
2144 return true;
2145
2146 return false;
2147 }
2148
2149 /* Does at least the first segment of SKB fit into the send window? */
tcp_snd_wnd_test(const struct tcp_sock * tp,const struct sk_buff * skb,unsigned int cur_mss)2150 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
2151 const struct sk_buff *skb,
2152 unsigned int cur_mss)
2153 {
2154 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2155
2156 if (skb->len > cur_mss)
2157 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
2158
2159 return !after(end_seq, tcp_wnd_end(tp));
2160 }
2161
2162 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
2163 * which is put after SKB on the list. It is very much like
2164 * tcp_fragment() except that it may make several kinds of assumptions
2165 * in order to speed up the splitting operation. In particular, we
2166 * know that all the data is in scatter-gather pages, and that the
2167 * packet has never been sent out before (and thus is not cloned).
2168 */
tso_fragment(struct sock * sk,struct sk_buff * skb,unsigned int len,unsigned int mss_now,gfp_t gfp)2169 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
2170 unsigned int mss_now, gfp_t gfp)
2171 {
2172 int nlen = skb->len - len;
2173 struct sk_buff *buff;
2174 u16 flags;
2175
2176 /* All of a TSO frame must be composed of paged data. */
2177 DEBUG_NET_WARN_ON_ONCE(skb->len != skb->data_len);
2178
2179 buff = tcp_stream_alloc_skb(sk, gfp, true);
2180 if (unlikely(!buff))
2181 return -ENOMEM;
2182 skb_copy_decrypted(buff, skb);
2183 mptcp_skb_ext_copy(buff, skb);
2184
2185 sk_wmem_queued_add(sk, buff->truesize);
2186 sk_mem_charge(sk, buff->truesize);
2187 buff->truesize += nlen;
2188 skb->truesize -= nlen;
2189
2190 /* Correct the sequence numbers. */
2191 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
2192 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
2193 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
2194
2195 /* PSH and FIN should only be set in the second packet. */
2196 flags = TCP_SKB_CB(skb)->tcp_flags;
2197 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
2198 TCP_SKB_CB(buff)->tcp_flags = flags;
2199
2200 tcp_skb_fragment_eor(skb, buff);
2201
2202 skb_split(skb, buff, len);
2203 tcp_fragment_tstamp(skb, buff);
2204
2205 /* Fix up tso_factor for both original and new SKB. */
2206 tcp_set_skb_tso_segs(skb, mss_now);
2207 tcp_set_skb_tso_segs(buff, mss_now);
2208
2209 /* Link BUFF into the send queue. */
2210 __skb_header_release(buff);
2211 tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE);
2212
2213 return 0;
2214 }
2215
2216 /* Try to defer sending, if possible, in order to minimize the amount
2217 * of TSO splitting we do. View it as a kind of TSO Nagle test.
2218 *
2219 * This algorithm is from John Heffner.
2220 */
tcp_tso_should_defer(struct sock * sk,struct sk_buff * skb,bool * is_cwnd_limited,bool * is_rwnd_limited,u32 max_segs)2221 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
2222 bool *is_cwnd_limited,
2223 bool *is_rwnd_limited,
2224 u32 max_segs)
2225 {
2226 const struct inet_connection_sock *icsk = inet_csk(sk);
2227 u32 send_win, cong_win, limit, in_flight;
2228 struct tcp_sock *tp = tcp_sk(sk);
2229 struct sk_buff *head;
2230 int win_divisor;
2231 s64 delta;
2232
2233 if (icsk->icsk_ca_state >= TCP_CA_Recovery)
2234 goto send_now;
2235
2236 /* Avoid bursty behavior by allowing defer
2237 * only if the last write was recent (1 ms).
2238 * Note that tp->tcp_wstamp_ns can be in the future if we have
2239 * packets waiting in a qdisc or device for EDT delivery.
2240 */
2241 delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC;
2242 if (delta > 0)
2243 goto send_now;
2244
2245 in_flight = tcp_packets_in_flight(tp);
2246
2247 BUG_ON(tcp_skb_pcount(skb) <= 1);
2248 BUG_ON(tcp_snd_cwnd(tp) <= in_flight);
2249
2250 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2251
2252 /* From in_flight test above, we know that cwnd > in_flight. */
2253 cong_win = (tcp_snd_cwnd(tp) - in_flight) * tp->mss_cache;
2254
2255 limit = min(send_win, cong_win);
2256
2257 /* If a full-sized TSO skb can be sent, do it. */
2258 if (limit >= max_segs * tp->mss_cache)
2259 goto send_now;
2260
2261 /* Middle in queue won't get any more data, full sendable already? */
2262 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
2263 goto send_now;
2264
2265 win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
2266 if (win_divisor) {
2267 u32 chunk = min(tp->snd_wnd, tcp_snd_cwnd(tp) * tp->mss_cache);
2268
2269 /* If at least some fraction of a window is available,
2270 * just use it.
2271 */
2272 chunk /= win_divisor;
2273 if (limit >= chunk)
2274 goto send_now;
2275 } else {
2276 /* Different approach, try not to defer past a single
2277 * ACK. Receiver should ACK every other full sized
2278 * frame, so if we have space for more than 3 frames
2279 * then send now.
2280 */
2281 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
2282 goto send_now;
2283 }
2284
2285 /* TODO : use tsorted_sent_queue ? */
2286 head = tcp_rtx_queue_head(sk);
2287 if (!head)
2288 goto send_now;
2289 delta = tp->tcp_clock_cache - head->tstamp;
2290 /* If next ACK is likely to come too late (half srtt), do not defer */
2291 if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0)
2292 goto send_now;
2293
2294 /* Ok, it looks like it is advisable to defer.
2295 * Three cases are tracked :
2296 * 1) We are cwnd-limited
2297 * 2) We are rwnd-limited
2298 * 3) We are application limited.
2299 */
2300 if (cong_win < send_win) {
2301 if (cong_win <= skb->len) {
2302 *is_cwnd_limited = true;
2303 return true;
2304 }
2305 } else {
2306 if (send_win <= skb->len) {
2307 *is_rwnd_limited = true;
2308 return true;
2309 }
2310 }
2311
2312 /* If this packet won't get more data, do not wait. */
2313 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) ||
2314 TCP_SKB_CB(skb)->eor)
2315 goto send_now;
2316
2317 return true;
2318
2319 send_now:
2320 return false;
2321 }
2322
tcp_mtu_check_reprobe(struct sock * sk)2323 static inline void tcp_mtu_check_reprobe(struct sock *sk)
2324 {
2325 struct inet_connection_sock *icsk = inet_csk(sk);
2326 struct tcp_sock *tp = tcp_sk(sk);
2327 struct net *net = sock_net(sk);
2328 u32 interval;
2329 s32 delta;
2330
2331 interval = READ_ONCE(net->ipv4.sysctl_tcp_probe_interval);
2332 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2333 if (unlikely(delta >= interval * HZ)) {
2334 int mss = tcp_current_mss(sk);
2335
2336 /* Update current search range */
2337 icsk->icsk_mtup.probe_size = 0;
2338 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2339 sizeof(struct tcphdr) +
2340 icsk->icsk_af_ops->net_header_len;
2341 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2342
2343 /* Update probe time stamp */
2344 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2345 }
2346 }
2347
tcp_can_coalesce_send_queue_head(struct sock * sk,int len)2348 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2349 {
2350 struct sk_buff *skb, *next;
2351
2352 skb = tcp_send_head(sk);
2353 tcp_for_write_queue_from_safe(skb, next, sk) {
2354 if (len <= skb->len)
2355 break;
2356
2357 if (tcp_has_tx_tstamp(skb) || !tcp_skb_can_collapse(skb, next))
2358 return false;
2359
2360 len -= skb->len;
2361 }
2362
2363 return true;
2364 }
2365
tcp_clone_payload(struct sock * sk,struct sk_buff * to,int probe_size)2366 static int tcp_clone_payload(struct sock *sk, struct sk_buff *to,
2367 int probe_size)
2368 {
2369 skb_frag_t *lastfrag = NULL, *fragto = skb_shinfo(to)->frags;
2370 int i, todo, len = 0, nr_frags = 0;
2371 const struct sk_buff *skb;
2372
2373 if (!sk_wmem_schedule(sk, to->truesize + probe_size))
2374 return -ENOMEM;
2375
2376 skb_queue_walk(&sk->sk_write_queue, skb) {
2377 const skb_frag_t *fragfrom = skb_shinfo(skb)->frags;
2378
2379 if (skb_headlen(skb))
2380 return -EINVAL;
2381
2382 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, fragfrom++) {
2383 if (len >= probe_size)
2384 goto commit;
2385 todo = min_t(int, skb_frag_size(fragfrom),
2386 probe_size - len);
2387 len += todo;
2388 if (lastfrag &&
2389 skb_frag_page(fragfrom) == skb_frag_page(lastfrag) &&
2390 skb_frag_off(fragfrom) == skb_frag_off(lastfrag) +
2391 skb_frag_size(lastfrag)) {
2392 skb_frag_size_add(lastfrag, todo);
2393 continue;
2394 }
2395 if (unlikely(nr_frags == MAX_SKB_FRAGS))
2396 return -E2BIG;
2397 skb_frag_page_copy(fragto, fragfrom);
2398 skb_frag_off_copy(fragto, fragfrom);
2399 skb_frag_size_set(fragto, todo);
2400 nr_frags++;
2401 lastfrag = fragto++;
2402 }
2403 }
2404 commit:
2405 WARN_ON_ONCE(len != probe_size);
2406 for (i = 0; i < nr_frags; i++)
2407 skb_frag_ref(to, i);
2408
2409 skb_shinfo(to)->nr_frags = nr_frags;
2410 to->truesize += probe_size;
2411 to->len += probe_size;
2412 to->data_len += probe_size;
2413 __skb_header_release(to);
2414 return 0;
2415 }
2416
2417 /* tcp_mtu_probe() and tcp_grow_skb() can both eat an skb (src) if
2418 * all its payload was moved to another one (dst).
2419 * Make sure to transfer tcp_flags, eor, and tstamp.
2420 */
tcp_eat_one_skb(struct sock * sk,struct sk_buff * dst,struct sk_buff * src)2421 static void tcp_eat_one_skb(struct sock *sk,
2422 struct sk_buff *dst,
2423 struct sk_buff *src)
2424 {
2425 TCP_SKB_CB(dst)->tcp_flags |= TCP_SKB_CB(src)->tcp_flags;
2426 TCP_SKB_CB(dst)->eor = TCP_SKB_CB(src)->eor;
2427 tcp_skb_collapse_tstamp(dst, src);
2428 tcp_unlink_write_queue(src, sk);
2429 tcp_wmem_free_skb(sk, src);
2430 }
2431
2432 /* Create a new MTU probe if we are ready.
2433 * MTU probe is regularly attempting to increase the path MTU by
2434 * deliberately sending larger packets. This discovers routing
2435 * changes resulting in larger path MTUs.
2436 *
2437 * Returns 0 if we should wait to probe (no cwnd available),
2438 * 1 if a probe was sent,
2439 * -1 otherwise
2440 */
tcp_mtu_probe(struct sock * sk)2441 static int tcp_mtu_probe(struct sock *sk)
2442 {
2443 struct inet_connection_sock *icsk = inet_csk(sk);
2444 struct tcp_sock *tp = tcp_sk(sk);
2445 struct sk_buff *skb, *nskb, *next;
2446 struct net *net = sock_net(sk);
2447 int probe_size;
2448 int size_needed;
2449 int copy, len;
2450 int mss_now;
2451 int interval;
2452
2453 /* Not currently probing/verifying,
2454 * not in recovery,
2455 * have enough cwnd, and
2456 * not SACKing (the variable headers throw things off)
2457 */
2458 if (likely(!icsk->icsk_mtup.enabled ||
2459 icsk->icsk_mtup.probe_size ||
2460 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2461 tcp_snd_cwnd(tp) < 11 ||
2462 tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2463 return -1;
2464
2465 /* Use binary search for probe_size between tcp_mss_base,
2466 * and current mss_clamp. if (search_high - search_low)
2467 * smaller than a threshold, backoff from probing.
2468 */
2469 mss_now = tcp_current_mss(sk);
2470 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2471 icsk->icsk_mtup.search_low) >> 1);
2472 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2473 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2474 /* When misfortune happens, we are reprobing actively,
2475 * and then reprobe timer has expired. We stick with current
2476 * probing process by not resetting search range to its orignal.
2477 */
2478 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2479 interval < READ_ONCE(net->ipv4.sysctl_tcp_probe_threshold)) {
2480 /* Check whether enough time has elaplased for
2481 * another round of probing.
2482 */
2483 tcp_mtu_check_reprobe(sk);
2484 return -1;
2485 }
2486
2487 /* Have enough data in the send queue to probe? */
2488 if (tp->write_seq - tp->snd_nxt < size_needed)
2489 return -1;
2490
2491 if (tp->snd_wnd < size_needed)
2492 return -1;
2493 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2494 return 0;
2495
2496 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
2497 if (tcp_packets_in_flight(tp) + 2 > tcp_snd_cwnd(tp)) {
2498 if (!tcp_packets_in_flight(tp))
2499 return -1;
2500 else
2501 return 0;
2502 }
2503
2504 if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2505 return -1;
2506
2507 /* We're allowed to probe. Build it now. */
2508 nskb = tcp_stream_alloc_skb(sk, GFP_ATOMIC, false);
2509 if (!nskb)
2510 return -1;
2511
2512 /* build the payload, and be prepared to abort if this fails. */
2513 if (tcp_clone_payload(sk, nskb, probe_size)) {
2514 tcp_skb_tsorted_anchor_cleanup(nskb);
2515 consume_skb(nskb);
2516 return -1;
2517 }
2518 sk_wmem_queued_add(sk, nskb->truesize);
2519 sk_mem_charge(sk, nskb->truesize);
2520
2521 skb = tcp_send_head(sk);
2522 skb_copy_decrypted(nskb, skb);
2523 mptcp_skb_ext_copy(nskb, skb);
2524
2525 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2526 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2527 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2528
2529 tcp_insert_write_queue_before(nskb, skb, sk);
2530 tcp_highest_sack_replace(sk, skb, nskb);
2531
2532 len = 0;
2533 tcp_for_write_queue_from_safe(skb, next, sk) {
2534 copy = min_t(int, skb->len, probe_size - len);
2535
2536 if (skb->len <= copy) {
2537 tcp_eat_one_skb(sk, nskb, skb);
2538 } else {
2539 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2540 ~(TCPHDR_FIN|TCPHDR_PSH);
2541 __pskb_trim_head(skb, copy);
2542 tcp_set_skb_tso_segs(skb, mss_now);
2543 TCP_SKB_CB(skb)->seq += copy;
2544 }
2545
2546 len += copy;
2547
2548 if (len >= probe_size)
2549 break;
2550 }
2551 tcp_init_tso_segs(nskb, nskb->len);
2552
2553 /* We're ready to send. If this fails, the probe will
2554 * be resegmented into mss-sized pieces by tcp_write_xmit().
2555 */
2556 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2557 /* Decrement cwnd here because we are sending
2558 * effectively two packets. */
2559 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) - 1);
2560 tcp_event_new_data_sent(sk, nskb);
2561
2562 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2563 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2564 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2565
2566 return 1;
2567 }
2568
2569 return -1;
2570 }
2571
tcp_pacing_check(struct sock * sk)2572 static bool tcp_pacing_check(struct sock *sk)
2573 {
2574 struct tcp_sock *tp = tcp_sk(sk);
2575
2576 if (!tcp_needs_internal_pacing(sk))
2577 return false;
2578
2579 if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
2580 return false;
2581
2582 if (!hrtimer_is_queued(&tp->pacing_timer)) {
2583 hrtimer_start(&tp->pacing_timer,
2584 ns_to_ktime(tp->tcp_wstamp_ns),
2585 HRTIMER_MODE_ABS_PINNED_SOFT);
2586 sock_hold(sk);
2587 }
2588 return true;
2589 }
2590
tcp_rtx_queue_empty_or_single_skb(const struct sock * sk)2591 static bool tcp_rtx_queue_empty_or_single_skb(const struct sock *sk)
2592 {
2593 const struct rb_node *node = sk->tcp_rtx_queue.rb_node;
2594
2595 /* No skb in the rtx queue. */
2596 if (!node)
2597 return true;
2598
2599 /* Only one skb in rtx queue. */
2600 return !node->rb_left && !node->rb_right;
2601 }
2602
2603 /* TCP Small Queues :
2604 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2605 * (These limits are doubled for retransmits)
2606 * This allows for :
2607 * - better RTT estimation and ACK scheduling
2608 * - faster recovery
2609 * - high rates
2610 * Alas, some drivers / subsystems require a fair amount
2611 * of queued bytes to ensure line rate.
2612 * One example is wifi aggregation (802.11 AMPDU)
2613 */
tcp_small_queue_check(struct sock * sk,const struct sk_buff * skb,unsigned int factor)2614 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2615 unsigned int factor)
2616 {
2617 unsigned long limit;
2618
2619 limit = max_t(unsigned long,
2620 2 * skb->truesize,
2621 READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift));
2622 if (sk->sk_pacing_status == SK_PACING_NONE)
2623 limit = min_t(unsigned long, limit,
2624 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes));
2625 limit <<= factor;
2626
2627 if (static_branch_unlikely(&tcp_tx_delay_enabled) &&
2628 tcp_sk(sk)->tcp_tx_delay) {
2629 u64 extra_bytes = (u64)READ_ONCE(sk->sk_pacing_rate) *
2630 tcp_sk(sk)->tcp_tx_delay;
2631
2632 /* TSQ is based on skb truesize sum (sk_wmem_alloc), so we
2633 * approximate our needs assuming an ~100% skb->truesize overhead.
2634 * USEC_PER_SEC is approximated by 2^20.
2635 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift.
2636 */
2637 extra_bytes >>= (20 - 1);
2638 limit += extra_bytes;
2639 }
2640 if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2641 /* Always send skb if rtx queue is empty or has one skb.
2642 * No need to wait for TX completion to call us back,
2643 * after softirq/tasklet schedule.
2644 * This helps when TX completions are delayed too much.
2645 */
2646 if (tcp_rtx_queue_empty_or_single_skb(sk))
2647 return false;
2648
2649 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2650 /* It is possible TX completion already happened
2651 * before we set TSQ_THROTTLED, so we must
2652 * test again the condition.
2653 */
2654 smp_mb__after_atomic();
2655 if (refcount_read(&sk->sk_wmem_alloc) > limit)
2656 return true;
2657 }
2658 return false;
2659 }
2660
tcp_chrono_set(struct tcp_sock * tp,const enum tcp_chrono new)2661 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2662 {
2663 const u32 now = tcp_jiffies32;
2664 enum tcp_chrono old = tp->chrono_type;
2665
2666 if (old > TCP_CHRONO_UNSPEC)
2667 tp->chrono_stat[old - 1] += now - tp->chrono_start;
2668 tp->chrono_start = now;
2669 tp->chrono_type = new;
2670 }
2671
tcp_chrono_start(struct sock * sk,const enum tcp_chrono type)2672 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2673 {
2674 struct tcp_sock *tp = tcp_sk(sk);
2675
2676 /* If there are multiple conditions worthy of tracking in a
2677 * chronograph then the highest priority enum takes precedence
2678 * over the other conditions. So that if something "more interesting"
2679 * starts happening, stop the previous chrono and start a new one.
2680 */
2681 if (type > tp->chrono_type)
2682 tcp_chrono_set(tp, type);
2683 }
2684
tcp_chrono_stop(struct sock * sk,const enum tcp_chrono type)2685 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2686 {
2687 struct tcp_sock *tp = tcp_sk(sk);
2688
2689
2690 /* There are multiple conditions worthy of tracking in a
2691 * chronograph, so that the highest priority enum takes
2692 * precedence over the other conditions (see tcp_chrono_start).
2693 * If a condition stops, we only stop chrono tracking if
2694 * it's the "most interesting" or current chrono we are
2695 * tracking and starts busy chrono if we have pending data.
2696 */
2697 if (tcp_rtx_and_write_queues_empty(sk))
2698 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2699 else if (type == tp->chrono_type)
2700 tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2701 }
2702
2703 /* First skb in the write queue is smaller than ideal packet size.
2704 * Check if we can move payload from the second skb in the queue.
2705 */
tcp_grow_skb(struct sock * sk,struct sk_buff * skb,int amount)2706 static void tcp_grow_skb(struct sock *sk, struct sk_buff *skb, int amount)
2707 {
2708 struct sk_buff *next_skb = skb->next;
2709 unsigned int nlen;
2710
2711 if (tcp_skb_is_last(sk, skb))
2712 return;
2713
2714 if (!tcp_skb_can_collapse(skb, next_skb))
2715 return;
2716
2717 nlen = min_t(u32, amount, next_skb->len);
2718 if (!nlen || !skb_shift(skb, next_skb, nlen))
2719 return;
2720
2721 TCP_SKB_CB(skb)->end_seq += nlen;
2722 TCP_SKB_CB(next_skb)->seq += nlen;
2723
2724 if (!next_skb->len) {
2725 /* In case FIN is set, we need to update end_seq */
2726 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2727
2728 tcp_eat_one_skb(sk, skb, next_skb);
2729 }
2730 }
2731
2732 /* This routine writes packets to the network. It advances the
2733 * send_head. This happens as incoming acks open up the remote
2734 * window for us.
2735 *
2736 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2737 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2738 * account rare use of URG, this is not a big flaw.
2739 *
2740 * Send at most one packet when push_one > 0. Temporarily ignore
2741 * cwnd limit to force at most one packet out when push_one == 2.
2742
2743 * Returns true, if no segments are in flight and we have queued segments,
2744 * but cannot send anything now because of SWS or another problem.
2745 */
tcp_write_xmit(struct sock * sk,unsigned int mss_now,int nonagle,int push_one,gfp_t gfp)2746 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2747 int push_one, gfp_t gfp)
2748 {
2749 struct tcp_sock *tp = tcp_sk(sk);
2750 struct sk_buff *skb;
2751 unsigned int tso_segs, sent_pkts;
2752 u32 cwnd_quota, max_segs;
2753 int result;
2754 bool is_cwnd_limited = false, is_rwnd_limited = false;
2755
2756 sent_pkts = 0;
2757
2758 tcp_mstamp_refresh(tp);
2759 if (!push_one) {
2760 /* Do MTU probing. */
2761 result = tcp_mtu_probe(sk);
2762 if (!result) {
2763 return false;
2764 } else if (result > 0) {
2765 sent_pkts = 1;
2766 }
2767 }
2768
2769 max_segs = tcp_tso_segs(sk, mss_now);
2770 while ((skb = tcp_send_head(sk))) {
2771 unsigned int limit;
2772 int missing_bytes;
2773
2774 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2775 /* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2776 tp->tcp_wstamp_ns = tp->tcp_clock_cache;
2777 skb_set_delivery_time(skb, tp->tcp_wstamp_ns, SKB_CLOCK_MONOTONIC);
2778 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
2779 tcp_init_tso_segs(skb, mss_now);
2780 goto repair; /* Skip network transmission */
2781 }
2782
2783 if (tcp_pacing_check(sk))
2784 break;
2785
2786 cwnd_quota = tcp_cwnd_test(tp);
2787 if (!cwnd_quota) {
2788 if (push_one == 2)
2789 /* Force out a loss probe pkt. */
2790 cwnd_quota = 1;
2791 else
2792 break;
2793 }
2794 cwnd_quota = min(cwnd_quota, max_segs);
2795 missing_bytes = cwnd_quota * mss_now - skb->len;
2796 if (missing_bytes > 0)
2797 tcp_grow_skb(sk, skb, missing_bytes);
2798
2799 tso_segs = tcp_set_skb_tso_segs(skb, mss_now);
2800
2801 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2802 is_rwnd_limited = true;
2803 break;
2804 }
2805
2806 if (tso_segs == 1) {
2807 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2808 (tcp_skb_is_last(sk, skb) ?
2809 nonagle : TCP_NAGLE_PUSH))))
2810 break;
2811 } else {
2812 if (!push_one &&
2813 tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2814 &is_rwnd_limited, max_segs))
2815 break;
2816 }
2817
2818 limit = mss_now;
2819 if (tso_segs > 1 && !tcp_urg_mode(tp))
2820 limit = tcp_mss_split_point(sk, skb, mss_now,
2821 cwnd_quota,
2822 nonagle);
2823
2824 if (skb->len > limit &&
2825 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2826 break;
2827
2828 if (tcp_small_queue_check(sk, skb, 0))
2829 break;
2830
2831 /* Argh, we hit an empty skb(), presumably a thread
2832 * is sleeping in sendmsg()/sk_stream_wait_memory().
2833 * We do not want to send a pure-ack packet and have
2834 * a strange looking rtx queue with empty packet(s).
2835 */
2836 if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq)
2837 break;
2838
2839 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2840 break;
2841
2842 repair:
2843 /* Advance the send_head. This one is sent out.
2844 * This call will increment packets_out.
2845 */
2846 tcp_event_new_data_sent(sk, skb);
2847
2848 tcp_minshall_update(tp, mss_now, skb);
2849 sent_pkts += tcp_skb_pcount(skb);
2850
2851 if (push_one)
2852 break;
2853 }
2854
2855 if (is_rwnd_limited)
2856 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2857 else
2858 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2859
2860 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp));
2861 if (likely(sent_pkts || is_cwnd_limited))
2862 tcp_cwnd_validate(sk, is_cwnd_limited);
2863
2864 if (likely(sent_pkts)) {
2865 if (tcp_in_cwnd_reduction(sk))
2866 tp->prr_out += sent_pkts;
2867
2868 /* Send one loss probe per tail loss episode. */
2869 if (push_one != 2)
2870 tcp_schedule_loss_probe(sk, false);
2871 return false;
2872 }
2873 return !tp->packets_out && !tcp_write_queue_empty(sk);
2874 }
2875
tcp_schedule_loss_probe(struct sock * sk,bool advancing_rto)2876 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2877 {
2878 struct inet_connection_sock *icsk = inet_csk(sk);
2879 struct tcp_sock *tp = tcp_sk(sk);
2880 u32 timeout, timeout_us, rto_delta_us;
2881 int early_retrans;
2882
2883 /* Don't do any loss probe on a Fast Open connection before 3WHS
2884 * finishes.
2885 */
2886 if (rcu_access_pointer(tp->fastopen_rsk))
2887 return false;
2888
2889 early_retrans = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_early_retrans);
2890 /* Schedule a loss probe in 2*RTT for SACK capable connections
2891 * not in loss recovery, that are either limited by cwnd or application.
2892 */
2893 if ((early_retrans != 3 && early_retrans != 4) ||
2894 !tp->packets_out || !tcp_is_sack(tp) ||
2895 (icsk->icsk_ca_state != TCP_CA_Open &&
2896 icsk->icsk_ca_state != TCP_CA_CWR))
2897 return false;
2898
2899 /* Probe timeout is 2*rtt. Add minimum RTO to account
2900 * for delayed ack when there's one outstanding packet. If no RTT
2901 * sample is available then probe after TCP_TIMEOUT_INIT.
2902 */
2903 if (tp->srtt_us) {
2904 timeout_us = tp->srtt_us >> 2;
2905 if (tp->packets_out == 1)
2906 timeout_us += tcp_rto_min_us(sk);
2907 else
2908 timeout_us += TCP_TIMEOUT_MIN_US;
2909 timeout = usecs_to_jiffies(timeout_us);
2910 } else {
2911 timeout = TCP_TIMEOUT_INIT;
2912 }
2913
2914 /* If the RTO formula yields an earlier time, then use that time. */
2915 rto_delta_us = advancing_rto ?
2916 jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2917 tcp_rto_delta_us(sk); /* How far in future is RTO? */
2918 if (rto_delta_us > 0)
2919 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2920
2921 tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, true);
2922 return true;
2923 }
2924
2925 /* Thanks to skb fast clones, we can detect if a prior transmit of
2926 * a packet is still in a qdisc or driver queue.
2927 * In this case, there is very little point doing a retransmit !
2928 */
skb_still_in_host_queue(struct sock * sk,const struct sk_buff * skb)2929 static bool skb_still_in_host_queue(struct sock *sk,
2930 const struct sk_buff *skb)
2931 {
2932 if (unlikely(skb_fclone_busy(sk, skb))) {
2933 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2934 smp_mb__after_atomic();
2935 if (skb_fclone_busy(sk, skb)) {
2936 NET_INC_STATS(sock_net(sk),
2937 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2938 return true;
2939 }
2940 }
2941 return false;
2942 }
2943
2944 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2945 * retransmit the last segment.
2946 */
tcp_send_loss_probe(struct sock * sk)2947 void tcp_send_loss_probe(struct sock *sk)
2948 {
2949 struct tcp_sock *tp = tcp_sk(sk);
2950 struct sk_buff *skb;
2951 int pcount;
2952 int mss = tcp_current_mss(sk);
2953
2954 /* At most one outstanding TLP */
2955 if (tp->tlp_high_seq)
2956 goto rearm_timer;
2957
2958 tp->tlp_retrans = 0;
2959 skb = tcp_send_head(sk);
2960 if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2961 pcount = tp->packets_out;
2962 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2963 if (tp->packets_out > pcount)
2964 goto probe_sent;
2965 goto rearm_timer;
2966 }
2967 skb = skb_rb_last(&sk->tcp_rtx_queue);
2968 if (unlikely(!skb)) {
2969 tcp_warn_once(sk, tp->packets_out, "invalid inflight: ");
2970 smp_store_release(&inet_csk(sk)->icsk_pending, 0);
2971 return;
2972 }
2973
2974 if (skb_still_in_host_queue(sk, skb))
2975 goto rearm_timer;
2976
2977 pcount = tcp_skb_pcount(skb);
2978 if (WARN_ON(!pcount))
2979 goto rearm_timer;
2980
2981 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2982 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2983 (pcount - 1) * mss, mss,
2984 GFP_ATOMIC)))
2985 goto rearm_timer;
2986 skb = skb_rb_next(skb);
2987 }
2988
2989 if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2990 goto rearm_timer;
2991
2992 if (__tcp_retransmit_skb(sk, skb, 1))
2993 goto rearm_timer;
2994
2995 tp->tlp_retrans = 1;
2996
2997 probe_sent:
2998 /* Record snd_nxt for loss detection. */
2999 tp->tlp_high_seq = tp->snd_nxt;
3000
3001 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
3002 /* Reset s.t. tcp_rearm_rto will restart timer from now */
3003 smp_store_release(&inet_csk(sk)->icsk_pending, 0);
3004 rearm_timer:
3005 tcp_rearm_rto(sk);
3006 }
3007
3008 /* Push out any pending frames which were held back due to
3009 * TCP_CORK or attempt at coalescing tiny packets.
3010 * The socket must be locked by the caller.
3011 */
__tcp_push_pending_frames(struct sock * sk,unsigned int cur_mss,int nonagle)3012 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
3013 int nonagle)
3014 {
3015 /* If we are closed, the bytes will have to remain here.
3016 * In time closedown will finish, we empty the write queue and
3017 * all will be happy.
3018 */
3019 if (unlikely(sk->sk_state == TCP_CLOSE))
3020 return;
3021
3022 if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
3023 sk_gfp_mask(sk, GFP_ATOMIC)))
3024 tcp_check_probe_timer(sk);
3025 }
3026
3027 /* Send _single_ skb sitting at the send head. This function requires
3028 * true push pending frames to setup probe timer etc.
3029 */
tcp_push_one(struct sock * sk,unsigned int mss_now)3030 void tcp_push_one(struct sock *sk, unsigned int mss_now)
3031 {
3032 struct sk_buff *skb = tcp_send_head(sk);
3033
3034 BUG_ON(!skb || skb->len < mss_now);
3035
3036 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
3037 }
3038
3039 /* This function returns the amount that we can raise the
3040 * usable window based on the following constraints
3041 *
3042 * 1. The window can never be shrunk once it is offered (RFC 793)
3043 * 2. We limit memory per socket
3044 *
3045 * RFC 1122:
3046 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
3047 * RECV.NEXT + RCV.WIN fixed until:
3048 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
3049 *
3050 * i.e. don't raise the right edge of the window until you can raise
3051 * it at least MSS bytes.
3052 *
3053 * Unfortunately, the recommended algorithm breaks header prediction,
3054 * since header prediction assumes th->window stays fixed.
3055 *
3056 * Strictly speaking, keeping th->window fixed violates the receiver
3057 * side SWS prevention criteria. The problem is that under this rule
3058 * a stream of single byte packets will cause the right side of the
3059 * window to always advance by a single byte.
3060 *
3061 * Of course, if the sender implements sender side SWS prevention
3062 * then this will not be a problem.
3063 *
3064 * BSD seems to make the following compromise:
3065 *
3066 * If the free space is less than the 1/4 of the maximum
3067 * space available and the free space is less than 1/2 mss,
3068 * then set the window to 0.
3069 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
3070 * Otherwise, just prevent the window from shrinking
3071 * and from being larger than the largest representable value.
3072 *
3073 * This prevents incremental opening of the window in the regime
3074 * where TCP is limited by the speed of the reader side taking
3075 * data out of the TCP receive queue. It does nothing about
3076 * those cases where the window is constrained on the sender side
3077 * because the pipeline is full.
3078 *
3079 * BSD also seems to "accidentally" limit itself to windows that are a
3080 * multiple of MSS, at least until the free space gets quite small.
3081 * This would appear to be a side effect of the mbuf implementation.
3082 * Combining these two algorithms results in the observed behavior
3083 * of having a fixed window size at almost all times.
3084 *
3085 * Below we obtain similar behavior by forcing the offered window to
3086 * a multiple of the mss when it is feasible to do so.
3087 *
3088 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
3089 * Regular options like TIMESTAMP are taken into account.
3090 */
__tcp_select_window(struct sock * sk)3091 u32 __tcp_select_window(struct sock *sk)
3092 {
3093 struct inet_connection_sock *icsk = inet_csk(sk);
3094 struct tcp_sock *tp = tcp_sk(sk);
3095 struct net *net = sock_net(sk);
3096 /* MSS for the peer's data. Previous versions used mss_clamp
3097 * here. I don't know if the value based on our guesses
3098 * of peer's MSS is better for the performance. It's more correct
3099 * but may be worse for the performance because of rcv_mss
3100 * fluctuations. --SAW 1998/11/1
3101 */
3102 int mss = icsk->icsk_ack.rcv_mss;
3103 int free_space = tcp_space(sk);
3104 int allowed_space = tcp_full_space(sk);
3105 int full_space, window;
3106
3107 if (sk_is_mptcp(sk))
3108 mptcp_space(sk, &free_space, &allowed_space);
3109
3110 full_space = min_t(int, tp->window_clamp, allowed_space);
3111
3112 if (unlikely(mss > full_space)) {
3113 mss = full_space;
3114 if (mss <= 0)
3115 return 0;
3116 }
3117
3118 /* Only allow window shrink if the sysctl is enabled and we have
3119 * a non-zero scaling factor in effect.
3120 */
3121 if (READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) && tp->rx_opt.rcv_wscale)
3122 goto shrink_window_allowed;
3123
3124 /* do not allow window to shrink */
3125
3126 if (free_space < (full_space >> 1)) {
3127 icsk->icsk_ack.quick = 0;
3128
3129 if (tcp_under_memory_pressure(sk))
3130 tcp_adjust_rcv_ssthresh(sk);
3131
3132 /* free_space might become our new window, make sure we don't
3133 * increase it due to wscale.
3134 */
3135 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
3136
3137 /* if free space is less than mss estimate, or is below 1/16th
3138 * of the maximum allowed, try to move to zero-window, else
3139 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
3140 * new incoming data is dropped due to memory limits.
3141 * With large window, mss test triggers way too late in order
3142 * to announce zero window in time before rmem limit kicks in.
3143 */
3144 if (free_space < (allowed_space >> 4) || free_space < mss)
3145 return 0;
3146 }
3147
3148 if (free_space > tp->rcv_ssthresh)
3149 free_space = tp->rcv_ssthresh;
3150
3151 /* Don't do rounding if we are using window scaling, since the
3152 * scaled window will not line up with the MSS boundary anyway.
3153 */
3154 if (tp->rx_opt.rcv_wscale) {
3155 window = free_space;
3156
3157 /* Advertise enough space so that it won't get scaled away.
3158 * Import case: prevent zero window announcement if
3159 * 1<<rcv_wscale > mss.
3160 */
3161 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
3162 } else {
3163 window = tp->rcv_wnd;
3164 /* Get the largest window that is a nice multiple of mss.
3165 * Window clamp already applied above.
3166 * If our current window offering is within 1 mss of the
3167 * free space we just keep it. This prevents the divide
3168 * and multiply from happening most of the time.
3169 * We also don't do any window rounding when the free space
3170 * is too small.
3171 */
3172 if (window <= free_space - mss || window > free_space)
3173 window = rounddown(free_space, mss);
3174 else if (mss == full_space &&
3175 free_space > window + (full_space >> 1))
3176 window = free_space;
3177 }
3178
3179 return window;
3180
3181 shrink_window_allowed:
3182 /* new window should always be an exact multiple of scaling factor */
3183 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
3184
3185 if (free_space < (full_space >> 1)) {
3186 icsk->icsk_ack.quick = 0;
3187
3188 if (tcp_under_memory_pressure(sk))
3189 tcp_adjust_rcv_ssthresh(sk);
3190
3191 /* if free space is too low, return a zero window */
3192 if (free_space < (allowed_space >> 4) || free_space < mss ||
3193 free_space < (1 << tp->rx_opt.rcv_wscale))
3194 return 0;
3195 }
3196
3197 if (free_space > tp->rcv_ssthresh) {
3198 free_space = tp->rcv_ssthresh;
3199 /* new window should always be an exact multiple of scaling factor
3200 *
3201 * For this case, we ALIGN "up" (increase free_space) because
3202 * we know free_space is not zero here, it has been reduced from
3203 * the memory-based limit, and rcv_ssthresh is not a hard limit
3204 * (unlike sk_rcvbuf).
3205 */
3206 free_space = ALIGN(free_space, (1 << tp->rx_opt.rcv_wscale));
3207 }
3208
3209 return free_space;
3210 }
3211
tcp_skb_collapse_tstamp(struct sk_buff * skb,const struct sk_buff * next_skb)3212 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
3213 const struct sk_buff *next_skb)
3214 {
3215 if (unlikely(tcp_has_tx_tstamp(next_skb))) {
3216 const struct skb_shared_info *next_shinfo =
3217 skb_shinfo(next_skb);
3218 struct skb_shared_info *shinfo = skb_shinfo(skb);
3219
3220 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
3221 shinfo->tskey = next_shinfo->tskey;
3222 TCP_SKB_CB(skb)->txstamp_ack |=
3223 TCP_SKB_CB(next_skb)->txstamp_ack;
3224 }
3225 }
3226
3227 /* Collapses two adjacent SKB's during retransmission. */
tcp_collapse_retrans(struct sock * sk,struct sk_buff * skb)3228 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
3229 {
3230 struct tcp_sock *tp = tcp_sk(sk);
3231 struct sk_buff *next_skb = skb_rb_next(skb);
3232 int next_skb_size;
3233
3234 next_skb_size = next_skb->len;
3235
3236 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
3237
3238 if (next_skb_size && !tcp_skb_shift(skb, next_skb, 1, next_skb_size))
3239 return false;
3240
3241 tcp_highest_sack_replace(sk, next_skb, skb);
3242
3243 /* Update sequence range on original skb. */
3244 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
3245
3246 /* Merge over control information. This moves PSH/FIN etc. over */
3247 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
3248
3249 /* All done, get rid of second SKB and account for it so
3250 * packet counting does not break.
3251 */
3252 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
3253 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
3254
3255 /* changed transmit queue under us so clear hints */
3256 tcp_clear_retrans_hints_partial(tp);
3257 if (next_skb == tp->retransmit_skb_hint)
3258 tp->retransmit_skb_hint = skb;
3259
3260 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
3261
3262 tcp_skb_collapse_tstamp(skb, next_skb);
3263
3264 tcp_rtx_queue_unlink_and_free(next_skb, sk);
3265 return true;
3266 }
3267
3268 /* Check if coalescing SKBs is legal. */
tcp_can_collapse(const struct sock * sk,const struct sk_buff * skb)3269 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
3270 {
3271 if (tcp_skb_pcount(skb) > 1)
3272 return false;
3273 if (skb_cloned(skb))
3274 return false;
3275 if (!skb_frags_readable(skb))
3276 return false;
3277 /* Some heuristics for collapsing over SACK'd could be invented */
3278 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3279 return false;
3280
3281 return true;
3282 }
3283
3284 /* Collapse packets in the retransmit queue to make to create
3285 * less packets on the wire. This is only done on retransmission.
3286 */
tcp_retrans_try_collapse(struct sock * sk,struct sk_buff * to,int space)3287 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
3288 int space)
3289 {
3290 struct tcp_sock *tp = tcp_sk(sk);
3291 struct sk_buff *skb = to, *tmp;
3292 bool first = true;
3293
3294 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse))
3295 return;
3296 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3297 return;
3298
3299 skb_rbtree_walk_from_safe(skb, tmp) {
3300 if (!tcp_can_collapse(sk, skb))
3301 break;
3302
3303 if (!tcp_skb_can_collapse(to, skb))
3304 break;
3305
3306 space -= skb->len;
3307
3308 if (first) {
3309 first = false;
3310 continue;
3311 }
3312
3313 if (space < 0)
3314 break;
3315
3316 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
3317 break;
3318
3319 if (!tcp_collapse_retrans(sk, to))
3320 break;
3321 }
3322 }
3323
3324 /* This retransmits one SKB. Policy decisions and retransmit queue
3325 * state updates are done by the caller. Returns non-zero if an
3326 * error occurred which prevented the send.
3327 */
__tcp_retransmit_skb(struct sock * sk,struct sk_buff * skb,int segs)3328 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3329 {
3330 struct inet_connection_sock *icsk = inet_csk(sk);
3331 struct tcp_sock *tp = tcp_sk(sk);
3332 unsigned int cur_mss;
3333 int diff, len, err;
3334 int avail_wnd;
3335
3336 /* Inconclusive MTU probe */
3337 if (icsk->icsk_mtup.probe_size)
3338 icsk->icsk_mtup.probe_size = 0;
3339
3340 if (skb_still_in_host_queue(sk, skb))
3341 return -EBUSY;
3342
3343 start:
3344 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
3345 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3346 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN;
3347 TCP_SKB_CB(skb)->seq++;
3348 goto start;
3349 }
3350 if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
3351 WARN_ON_ONCE(1);
3352 return -EINVAL;
3353 }
3354 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3355 return -ENOMEM;
3356 }
3357
3358 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3359 return -EHOSTUNREACH; /* Routing failure or similar. */
3360
3361 cur_mss = tcp_current_mss(sk);
3362 avail_wnd = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3363
3364 /* If receiver has shrunk his window, and skb is out of
3365 * new window, do not retransmit it. The exception is the
3366 * case, when window is shrunk to zero. In this case
3367 * our retransmit of one segment serves as a zero window probe.
3368 */
3369 if (avail_wnd <= 0) {
3370 if (TCP_SKB_CB(skb)->seq != tp->snd_una)
3371 return -EAGAIN;
3372 avail_wnd = cur_mss;
3373 }
3374
3375 len = cur_mss * segs;
3376 if (len > avail_wnd) {
3377 len = rounddown(avail_wnd, cur_mss);
3378 if (!len)
3379 len = avail_wnd;
3380 }
3381 if (skb->len > len) {
3382 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
3383 cur_mss, GFP_ATOMIC))
3384 return -ENOMEM; /* We'll try again later. */
3385 } else {
3386 if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
3387 return -ENOMEM;
3388
3389 diff = tcp_skb_pcount(skb);
3390 tcp_set_skb_tso_segs(skb, cur_mss);
3391 diff -= tcp_skb_pcount(skb);
3392 if (diff)
3393 tcp_adjust_pcount(sk, skb, diff);
3394 avail_wnd = min_t(int, avail_wnd, cur_mss);
3395 if (skb->len < avail_wnd)
3396 tcp_retrans_try_collapse(sk, skb, avail_wnd);
3397 }
3398
3399 /* RFC3168, section 6.1.1.1. ECN fallback */
3400 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
3401 tcp_ecn_clear_syn(sk, skb);
3402
3403 /* Update global and local TCP statistics. */
3404 segs = tcp_skb_pcount(skb);
3405 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
3406 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3407 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3408 tp->total_retrans += segs;
3409 tp->bytes_retrans += skb->len;
3410
3411 /* make sure skb->data is aligned on arches that require it
3412 * and check if ack-trimming & collapsing extended the headroom
3413 * beyond what csum_start can cover.
3414 */
3415 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
3416 skb_headroom(skb) >= 0xFFFF)) {
3417 struct sk_buff *nskb;
3418
3419 tcp_skb_tsorted_save(skb) {
3420 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
3421 if (nskb) {
3422 nskb->dev = NULL;
3423 err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC);
3424 } else {
3425 err = -ENOBUFS;
3426 }
3427 } tcp_skb_tsorted_restore(skb);
3428
3429 if (!err) {
3430 tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
3431 tcp_rate_skb_sent(sk, skb);
3432 }
3433 } else {
3434 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3435 }
3436
3437 if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
3438 tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
3439 TCP_SKB_CB(skb)->seq, segs, err);
3440
3441 if (likely(!err)) {
3442 trace_tcp_retransmit_skb(sk, skb);
3443 } else if (err != -EBUSY) {
3444 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
3445 }
3446
3447 /* To avoid taking spuriously low RTT samples based on a timestamp
3448 * for a transmit that never happened, always mark EVER_RETRANS
3449 */
3450 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
3451
3452 return err;
3453 }
3454
tcp_retransmit_skb(struct sock * sk,struct sk_buff * skb,int segs)3455 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3456 {
3457 struct tcp_sock *tp = tcp_sk(sk);
3458 int err = __tcp_retransmit_skb(sk, skb, segs);
3459
3460 if (err == 0) {
3461 #if FASTRETRANS_DEBUG > 0
3462 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
3463 net_dbg_ratelimited("retrans_out leaked\n");
3464 }
3465 #endif
3466 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
3467 tp->retrans_out += tcp_skb_pcount(skb);
3468 }
3469
3470 /* Save stamp of the first (attempted) retransmit. */
3471 if (!tp->retrans_stamp)
3472 tp->retrans_stamp = tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb);
3473
3474 if (tp->undo_retrans < 0)
3475 tp->undo_retrans = 0;
3476 tp->undo_retrans += tcp_skb_pcount(skb);
3477 return err;
3478 }
3479
3480 /* This gets called after a retransmit timeout, and the initially
3481 * retransmitted data is acknowledged. It tries to continue
3482 * resending the rest of the retransmit queue, until either
3483 * we've sent it all or the congestion window limit is reached.
3484 */
tcp_xmit_retransmit_queue(struct sock * sk)3485 void tcp_xmit_retransmit_queue(struct sock *sk)
3486 {
3487 const struct inet_connection_sock *icsk = inet_csk(sk);
3488 struct sk_buff *skb, *rtx_head, *hole = NULL;
3489 struct tcp_sock *tp = tcp_sk(sk);
3490 bool rearm_timer = false;
3491 u32 max_segs;
3492 int mib_idx;
3493
3494 if (!tp->packets_out)
3495 return;
3496
3497 rtx_head = tcp_rtx_queue_head(sk);
3498 skb = tp->retransmit_skb_hint ?: rtx_head;
3499 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
3500 skb_rbtree_walk_from(skb) {
3501 __u8 sacked;
3502 int segs;
3503
3504 if (tcp_pacing_check(sk))
3505 break;
3506
3507 /* we could do better than to assign each time */
3508 if (!hole)
3509 tp->retransmit_skb_hint = skb;
3510
3511 segs = tcp_snd_cwnd(tp) - tcp_packets_in_flight(tp);
3512 if (segs <= 0)
3513 break;
3514 sacked = TCP_SKB_CB(skb)->sacked;
3515 /* In case tcp_shift_skb_data() have aggregated large skbs,
3516 * we need to make sure not sending too bigs TSO packets
3517 */
3518 segs = min_t(int, segs, max_segs);
3519
3520 if (tp->retrans_out >= tp->lost_out) {
3521 break;
3522 } else if (!(sacked & TCPCB_LOST)) {
3523 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3524 hole = skb;
3525 continue;
3526
3527 } else {
3528 if (icsk->icsk_ca_state != TCP_CA_Loss)
3529 mib_idx = LINUX_MIB_TCPFASTRETRANS;
3530 else
3531 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3532 }
3533
3534 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3535 continue;
3536
3537 if (tcp_small_queue_check(sk, skb, 1))
3538 break;
3539
3540 if (tcp_retransmit_skb(sk, skb, segs))
3541 break;
3542
3543 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3544
3545 if (tcp_in_cwnd_reduction(sk))
3546 tp->prr_out += tcp_skb_pcount(skb);
3547
3548 if (skb == rtx_head &&
3549 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3550 rearm_timer = true;
3551
3552 }
3553 if (rearm_timer)
3554 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3555 inet_csk(sk)->icsk_rto, true);
3556 }
3557
3558 /* We allow to exceed memory limits for FIN packets to expedite
3559 * connection tear down and (memory) recovery.
3560 * Otherwise tcp_send_fin() could be tempted to either delay FIN
3561 * or even be forced to close flow without any FIN.
3562 * In general, we want to allow one skb per socket to avoid hangs
3563 * with edge trigger epoll()
3564 */
sk_forced_mem_schedule(struct sock * sk,int size)3565 void sk_forced_mem_schedule(struct sock *sk, int size)
3566 {
3567 int delta, amt;
3568
3569 delta = size - sk->sk_forward_alloc;
3570 if (delta <= 0)
3571 return;
3572 amt = sk_mem_pages(delta);
3573 sk_forward_alloc_add(sk, amt << PAGE_SHIFT);
3574 sk_memory_allocated_add(sk, amt);
3575
3576 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3577 mem_cgroup_charge_skmem(sk->sk_memcg, amt,
3578 gfp_memcg_charge() | __GFP_NOFAIL);
3579 }
3580
3581 /* Send a FIN. The caller locks the socket for us.
3582 * We should try to send a FIN packet really hard, but eventually give up.
3583 */
tcp_send_fin(struct sock * sk)3584 void tcp_send_fin(struct sock *sk)
3585 {
3586 struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk);
3587 struct tcp_sock *tp = tcp_sk(sk);
3588
3589 /* Optimization, tack on the FIN if we have one skb in write queue and
3590 * this skb was not yet sent, or we are under memory pressure.
3591 * Note: in the latter case, FIN packet will be sent after a timeout,
3592 * as TCP stack thinks it has already been transmitted.
3593 */
3594 tskb = tail;
3595 if (!tskb && tcp_under_memory_pressure(sk))
3596 tskb = skb_rb_last(&sk->tcp_rtx_queue);
3597
3598 if (tskb) {
3599 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3600 TCP_SKB_CB(tskb)->end_seq++;
3601 tp->write_seq++;
3602 if (!tail) {
3603 /* This means tskb was already sent.
3604 * Pretend we included the FIN on previous transmit.
3605 * We need to set tp->snd_nxt to the value it would have
3606 * if FIN had been sent. This is because retransmit path
3607 * does not change tp->snd_nxt.
3608 */
3609 WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1);
3610 return;
3611 }
3612 } else {
3613 skb = alloc_skb_fclone(MAX_TCP_HEADER,
3614 sk_gfp_mask(sk, GFP_ATOMIC |
3615 __GFP_NOWARN));
3616 if (unlikely(!skb))
3617 return;
3618
3619 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3620 skb_reserve(skb, MAX_TCP_HEADER);
3621 sk_forced_mem_schedule(sk, skb->truesize);
3622 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3623 tcp_init_nondata_skb(skb, tp->write_seq,
3624 TCPHDR_ACK | TCPHDR_FIN);
3625 tcp_queue_skb(sk, skb);
3626 }
3627 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3628 }
3629
3630 /* We get here when a process closes a file descriptor (either due to
3631 * an explicit close() or as a byproduct of exit()'ing) and there
3632 * was unread data in the receive queue. This behavior is recommended
3633 * by RFC 2525, section 2.17. -DaveM
3634 */
tcp_send_active_reset(struct sock * sk,gfp_t priority,enum sk_rst_reason reason)3635 void tcp_send_active_reset(struct sock *sk, gfp_t priority,
3636 enum sk_rst_reason reason)
3637 {
3638 struct sk_buff *skb;
3639
3640 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3641
3642 /* NOTE: No TCP options attached and we never retransmit this. */
3643 skb = alloc_skb(MAX_TCP_HEADER, priority);
3644 if (!skb) {
3645 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3646 return;
3647 }
3648
3649 /* Reserve space for headers and prepare control bits. */
3650 skb_reserve(skb, MAX_TCP_HEADER);
3651 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3652 TCPHDR_ACK | TCPHDR_RST);
3653 tcp_mstamp_refresh(tcp_sk(sk));
3654 /* Send it off. */
3655 if (tcp_transmit_skb(sk, skb, 0, priority))
3656 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3657
3658 /* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3659 * skb here is different to the troublesome skb, so use NULL
3660 */
3661 trace_tcp_send_reset(sk, NULL, reason);
3662 }
3663
3664 /* Send a crossed SYN-ACK during socket establishment.
3665 * WARNING: This routine must only be called when we have already sent
3666 * a SYN packet that crossed the incoming SYN that caused this routine
3667 * to get called. If this assumption fails then the initial rcv_wnd
3668 * and rcv_wscale values will not be correct.
3669 */
tcp_send_synack(struct sock * sk)3670 int tcp_send_synack(struct sock *sk)
3671 {
3672 struct sk_buff *skb;
3673
3674 skb = tcp_rtx_queue_head(sk);
3675 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3676 pr_err("%s: wrong queue state\n", __func__);
3677 return -EFAULT;
3678 }
3679 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3680 if (skb_cloned(skb)) {
3681 struct sk_buff *nskb;
3682
3683 tcp_skb_tsorted_save(skb) {
3684 nskb = skb_copy(skb, GFP_ATOMIC);
3685 } tcp_skb_tsorted_restore(skb);
3686 if (!nskb)
3687 return -ENOMEM;
3688 INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3689 tcp_highest_sack_replace(sk, skb, nskb);
3690 tcp_rtx_queue_unlink_and_free(skb, sk);
3691 __skb_header_release(nskb);
3692 tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3693 sk_wmem_queued_add(sk, nskb->truesize);
3694 sk_mem_charge(sk, nskb->truesize);
3695 skb = nskb;
3696 }
3697
3698 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3699 tcp_ecn_send_synack(sk, skb);
3700 }
3701 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3702 }
3703
3704 /**
3705 * tcp_make_synack - Allocate one skb and build a SYNACK packet.
3706 * @sk: listener socket
3707 * @dst: dst entry attached to the SYNACK. It is consumed and caller
3708 * should not use it again.
3709 * @req: request_sock pointer
3710 * @foc: cookie for tcp fast open
3711 * @synack_type: Type of synack to prepare
3712 * @syn_skb: SYN packet just received. It could be NULL for rtx case.
3713 */
tcp_make_synack(const struct sock * sk,struct dst_entry * dst,struct request_sock * req,struct tcp_fastopen_cookie * foc,enum tcp_synack_type synack_type,struct sk_buff * syn_skb)3714 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3715 struct request_sock *req,
3716 struct tcp_fastopen_cookie *foc,
3717 enum tcp_synack_type synack_type,
3718 struct sk_buff *syn_skb)
3719 {
3720 struct inet_request_sock *ireq = inet_rsk(req);
3721 const struct tcp_sock *tp = tcp_sk(sk);
3722 struct tcp_out_options opts;
3723 struct tcp_key key = {};
3724 struct sk_buff *skb;
3725 int tcp_header_size;
3726 struct tcphdr *th;
3727 int mss;
3728 u64 now;
3729
3730 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3731 if (unlikely(!skb)) {
3732 dst_release(dst);
3733 return NULL;
3734 }
3735 /* Reserve space for headers. */
3736 skb_reserve(skb, MAX_TCP_HEADER);
3737
3738 switch (synack_type) {
3739 case TCP_SYNACK_NORMAL:
3740 skb_set_owner_edemux(skb, req_to_sk(req));
3741 break;
3742 case TCP_SYNACK_COOKIE:
3743 /* Under synflood, we do not attach skb to a socket,
3744 * to avoid false sharing.
3745 */
3746 break;
3747 case TCP_SYNACK_FASTOPEN:
3748 /* sk is a const pointer, because we want to express multiple
3749 * cpu might call us concurrently.
3750 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3751 */
3752 skb_set_owner_w(skb, (struct sock *)sk);
3753 break;
3754 }
3755 skb_dst_set(skb, dst);
3756
3757 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3758
3759 memset(&opts, 0, sizeof(opts));
3760 now = tcp_clock_ns();
3761 #ifdef CONFIG_SYN_COOKIES
3762 if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok))
3763 skb_set_delivery_time(skb, cookie_init_timestamp(req, now),
3764 SKB_CLOCK_MONOTONIC);
3765 else
3766 #endif
3767 {
3768 skb_set_delivery_time(skb, now, SKB_CLOCK_MONOTONIC);
3769 if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */
3770 tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb);
3771 }
3772
3773 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
3774 rcu_read_lock();
3775 #endif
3776 if (tcp_rsk_used_ao(req)) {
3777 #ifdef CONFIG_TCP_AO
3778 struct tcp_ao_key *ao_key = NULL;
3779 u8 keyid = tcp_rsk(req)->ao_keyid;
3780 u8 rnext = tcp_rsk(req)->ao_rcv_next;
3781
3782 ao_key = tcp_sk(sk)->af_specific->ao_lookup(sk, req_to_sk(req),
3783 keyid, -1);
3784 /* If there is no matching key - avoid sending anything,
3785 * especially usigned segments. It could try harder and lookup
3786 * for another peer-matching key, but the peer has requested
3787 * ao_keyid (RFC5925 RNextKeyID), so let's keep it simple here.
3788 */
3789 if (unlikely(!ao_key)) {
3790 trace_tcp_ao_synack_no_key(sk, keyid, rnext);
3791 rcu_read_unlock();
3792 kfree_skb(skb);
3793 net_warn_ratelimited("TCP-AO: the keyid %u from SYN packet is not present - not sending SYNACK\n",
3794 keyid);
3795 return NULL;
3796 }
3797 key.ao_key = ao_key;
3798 key.type = TCP_KEY_AO;
3799 #endif
3800 } else {
3801 #ifdef CONFIG_TCP_MD5SIG
3802 key.md5_key = tcp_rsk(req)->af_specific->req_md5_lookup(sk,
3803 req_to_sk(req));
3804 if (key.md5_key)
3805 key.type = TCP_KEY_MD5;
3806 #endif
3807 }
3808 skb_set_hash(skb, READ_ONCE(tcp_rsk(req)->txhash), PKT_HASH_TYPE_L4);
3809 /* bpf program will be interested in the tcp_flags */
3810 TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK;
3811 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts,
3812 &key, foc, synack_type, syn_skb)
3813 + sizeof(*th);
3814
3815 skb_push(skb, tcp_header_size);
3816 skb_reset_transport_header(skb);
3817
3818 th = (struct tcphdr *)skb->data;
3819 memset(th, 0, sizeof(struct tcphdr));
3820 th->syn = 1;
3821 th->ack = 1;
3822 tcp_ecn_make_synack(req, th);
3823 th->source = htons(ireq->ir_num);
3824 th->dest = ireq->ir_rmt_port;
3825 skb->mark = ireq->ir_mark;
3826 skb->ip_summed = CHECKSUM_PARTIAL;
3827 th->seq = htonl(tcp_rsk(req)->snt_isn);
3828 /* XXX data is queued and acked as is. No buffer/window check */
3829 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3830
3831 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3832 th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3833 tcp_options_write(th, NULL, tcp_rsk(req), &opts, &key);
3834 th->doff = (tcp_header_size >> 2);
3835 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3836
3837 /* Okay, we have all we need - do the md5 hash if needed */
3838 if (tcp_key_is_md5(&key)) {
3839 #ifdef CONFIG_TCP_MD5SIG
3840 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3841 key.md5_key, req_to_sk(req), skb);
3842 #endif
3843 } else if (tcp_key_is_ao(&key)) {
3844 #ifdef CONFIG_TCP_AO
3845 tcp_rsk(req)->af_specific->ao_synack_hash(opts.hash_location,
3846 key.ao_key, req, skb,
3847 opts.hash_location - (u8 *)th, 0);
3848 #endif
3849 }
3850 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
3851 rcu_read_unlock();
3852 #endif
3853
3854 bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb,
3855 synack_type, &opts);
3856
3857 skb_set_delivery_time(skb, now, SKB_CLOCK_MONOTONIC);
3858 tcp_add_tx_delay(skb, tp);
3859
3860 return skb;
3861 }
3862 EXPORT_IPV6_MOD(tcp_make_synack);
3863
tcp_ca_dst_init(struct sock * sk,const struct dst_entry * dst)3864 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3865 {
3866 struct inet_connection_sock *icsk = inet_csk(sk);
3867 const struct tcp_congestion_ops *ca;
3868 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3869
3870 if (ca_key == TCP_CA_UNSPEC)
3871 return;
3872
3873 rcu_read_lock();
3874 ca = tcp_ca_find_key(ca_key);
3875 if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
3876 bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner);
3877 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3878 icsk->icsk_ca_ops = ca;
3879 }
3880 rcu_read_unlock();
3881 }
3882
3883 /* Do all connect socket setups that can be done AF independent. */
tcp_connect_init(struct sock * sk)3884 static void tcp_connect_init(struct sock *sk)
3885 {
3886 const struct dst_entry *dst = __sk_dst_get(sk);
3887 struct tcp_sock *tp = tcp_sk(sk);
3888 __u8 rcv_wscale;
3889 u32 rcv_wnd;
3890
3891 /* We'll fix this up when we get a response from the other end.
3892 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3893 */
3894 tp->tcp_header_len = sizeof(struct tcphdr);
3895 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps))
3896 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3897
3898 tcp_ao_connect_init(sk);
3899
3900 /* If user gave his TCP_MAXSEG, record it to clamp */
3901 if (tp->rx_opt.user_mss)
3902 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3903 tp->max_window = 0;
3904 tcp_mtup_init(sk);
3905 tcp_sync_mss(sk, dst_mtu(dst));
3906
3907 tcp_ca_dst_init(sk, dst);
3908
3909 if (!tp->window_clamp)
3910 WRITE_ONCE(tp->window_clamp, dst_metric(dst, RTAX_WINDOW));
3911 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3912
3913 tcp_initialize_rcv_mss(sk);
3914
3915 /* limit the window selection if the user enforce a smaller rx buffer */
3916 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3917 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3918 WRITE_ONCE(tp->window_clamp, tcp_full_space(sk));
3919
3920 rcv_wnd = tcp_rwnd_init_bpf(sk);
3921 if (rcv_wnd == 0)
3922 rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3923
3924 tcp_select_initial_window(sk, tcp_full_space(sk),
3925 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3926 &tp->rcv_wnd,
3927 &tp->window_clamp,
3928 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling),
3929 &rcv_wscale,
3930 rcv_wnd);
3931
3932 tp->rx_opt.rcv_wscale = rcv_wscale;
3933 tp->rcv_ssthresh = tp->rcv_wnd;
3934
3935 WRITE_ONCE(sk->sk_err, 0);
3936 sock_reset_flag(sk, SOCK_DONE);
3937 tp->snd_wnd = 0;
3938 tcp_init_wl(tp, 0);
3939 tcp_write_queue_purge(sk);
3940 tp->snd_una = tp->write_seq;
3941 tp->snd_sml = tp->write_seq;
3942 tp->snd_up = tp->write_seq;
3943 WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3944
3945 if (likely(!tp->repair))
3946 tp->rcv_nxt = 0;
3947 else
3948 tp->rcv_tstamp = tcp_jiffies32;
3949 tp->rcv_wup = tp->rcv_nxt;
3950 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3951
3952 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3953 inet_csk(sk)->icsk_retransmits = 0;
3954 tcp_clear_retrans(tp);
3955 }
3956
tcp_connect_queue_skb(struct sock * sk,struct sk_buff * skb)3957 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3958 {
3959 struct tcp_sock *tp = tcp_sk(sk);
3960 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3961
3962 tcb->end_seq += skb->len;
3963 __skb_header_release(skb);
3964 sk_wmem_queued_add(sk, skb->truesize);
3965 sk_mem_charge(sk, skb->truesize);
3966 WRITE_ONCE(tp->write_seq, tcb->end_seq);
3967 tp->packets_out += tcp_skb_pcount(skb);
3968 }
3969
3970 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3971 * queue a data-only packet after the regular SYN, such that regular SYNs
3972 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3973 * only the SYN sequence, the data are retransmitted in the first ACK.
3974 * If cookie is not cached or other error occurs, falls back to send a
3975 * regular SYN with Fast Open cookie request option.
3976 */
tcp_send_syn_data(struct sock * sk,struct sk_buff * syn)3977 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3978 {
3979 struct inet_connection_sock *icsk = inet_csk(sk);
3980 struct tcp_sock *tp = tcp_sk(sk);
3981 struct tcp_fastopen_request *fo = tp->fastopen_req;
3982 struct page_frag *pfrag = sk_page_frag(sk);
3983 struct sk_buff *syn_data;
3984 int space, err = 0;
3985
3986 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
3987 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3988 goto fallback;
3989
3990 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3991 * user-MSS. Reserve maximum option space for middleboxes that add
3992 * private TCP options. The cost is reduced data space in SYN :(
3993 */
3994 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3995 /* Sync mss_cache after updating the mss_clamp */
3996 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
3997
3998 space = __tcp_mtu_to_mss(sk, icsk->icsk_pmtu_cookie) -
3999 MAX_TCP_OPTION_SPACE;
4000
4001 space = min_t(size_t, space, fo->size);
4002
4003 if (space &&
4004 !skb_page_frag_refill(min_t(size_t, space, PAGE_SIZE),
4005 pfrag, sk->sk_allocation))
4006 goto fallback;
4007 syn_data = tcp_stream_alloc_skb(sk, sk->sk_allocation, false);
4008 if (!syn_data)
4009 goto fallback;
4010 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
4011 if (space) {
4012 space = min_t(size_t, space, pfrag->size - pfrag->offset);
4013 space = tcp_wmem_schedule(sk, space);
4014 }
4015 if (space) {
4016 space = copy_page_from_iter(pfrag->page, pfrag->offset,
4017 space, &fo->data->msg_iter);
4018 if (unlikely(!space)) {
4019 tcp_skb_tsorted_anchor_cleanup(syn_data);
4020 kfree_skb(syn_data);
4021 goto fallback;
4022 }
4023 skb_fill_page_desc(syn_data, 0, pfrag->page,
4024 pfrag->offset, space);
4025 page_ref_inc(pfrag->page);
4026 pfrag->offset += space;
4027 skb_len_add(syn_data, space);
4028 skb_zcopy_set(syn_data, fo->uarg, NULL);
4029 }
4030 /* No more data pending in inet_wait_for_connect() */
4031 if (space == fo->size)
4032 fo->data = NULL;
4033 fo->copied = space;
4034
4035 tcp_connect_queue_skb(sk, syn_data);
4036 if (syn_data->len)
4037 tcp_chrono_start(sk, TCP_CHRONO_BUSY);
4038
4039 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
4040
4041 skb_set_delivery_time(syn, syn_data->skb_mstamp_ns, SKB_CLOCK_MONOTONIC);
4042
4043 /* Now full SYN+DATA was cloned and sent (or not),
4044 * remove the SYN from the original skb (syn_data)
4045 * we keep in write queue in case of a retransmit, as we
4046 * also have the SYN packet (with no data) in the same queue.
4047 */
4048 TCP_SKB_CB(syn_data)->seq++;
4049 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
4050 if (!err) {
4051 tp->syn_data = (fo->copied > 0);
4052 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
4053 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
4054 goto done;
4055 }
4056
4057 /* data was not sent, put it in write_queue */
4058 __skb_queue_tail(&sk->sk_write_queue, syn_data);
4059 tp->packets_out -= tcp_skb_pcount(syn_data);
4060
4061 fallback:
4062 /* Send a regular SYN with Fast Open cookie request option */
4063 if (fo->cookie.len > 0)
4064 fo->cookie.len = 0;
4065 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
4066 if (err)
4067 tp->syn_fastopen = 0;
4068 done:
4069 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
4070 return err;
4071 }
4072
4073 /* Build a SYN and send it off. */
tcp_connect(struct sock * sk)4074 int tcp_connect(struct sock *sk)
4075 {
4076 struct tcp_sock *tp = tcp_sk(sk);
4077 struct sk_buff *buff;
4078 int err;
4079
4080 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
4081
4082 #if defined(CONFIG_TCP_MD5SIG) && defined(CONFIG_TCP_AO)
4083 /* Has to be checked late, after setting daddr/saddr/ops.
4084 * Return error if the peer has both a md5 and a tcp-ao key
4085 * configured as this is ambiguous.
4086 */
4087 if (unlikely(rcu_dereference_protected(tp->md5sig_info,
4088 lockdep_sock_is_held(sk)))) {
4089 bool needs_ao = !!tp->af_specific->ao_lookup(sk, sk, -1, -1);
4090 bool needs_md5 = !!tp->af_specific->md5_lookup(sk, sk);
4091 struct tcp_ao_info *ao_info;
4092
4093 ao_info = rcu_dereference_check(tp->ao_info,
4094 lockdep_sock_is_held(sk));
4095 if (ao_info) {
4096 /* This is an extra check: tcp_ao_required() in
4097 * tcp_v{4,6}_parse_md5_keys() should prevent adding
4098 * md5 keys on ao_required socket.
4099 */
4100 needs_ao |= ao_info->ao_required;
4101 WARN_ON_ONCE(ao_info->ao_required && needs_md5);
4102 }
4103 if (needs_md5 && needs_ao)
4104 return -EKEYREJECTED;
4105
4106 /* If we have a matching md5 key and no matching tcp-ao key
4107 * then free up ao_info if allocated.
4108 */
4109 if (needs_md5) {
4110 tcp_ao_destroy_sock(sk, false);
4111 } else if (needs_ao) {
4112 tcp_clear_md5_list(sk);
4113 kfree(rcu_replace_pointer(tp->md5sig_info, NULL,
4114 lockdep_sock_is_held(sk)));
4115 }
4116 }
4117 #endif
4118 #ifdef CONFIG_TCP_AO
4119 if (unlikely(rcu_dereference_protected(tp->ao_info,
4120 lockdep_sock_is_held(sk)))) {
4121 /* Don't allow connecting if ao is configured but no
4122 * matching key is found.
4123 */
4124 if (!tp->af_specific->ao_lookup(sk, sk, -1, -1))
4125 return -EKEYREJECTED;
4126 }
4127 #endif
4128
4129 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
4130 return -EHOSTUNREACH; /* Routing failure or similar. */
4131
4132 tcp_connect_init(sk);
4133
4134 if (unlikely(tp->repair)) {
4135 tcp_finish_connect(sk, NULL);
4136 return 0;
4137 }
4138
4139 buff = tcp_stream_alloc_skb(sk, sk->sk_allocation, true);
4140 if (unlikely(!buff))
4141 return -ENOBUFS;
4142
4143 /* SYN eats a sequence byte, write_seq updated by
4144 * tcp_connect_queue_skb().
4145 */
4146 tcp_init_nondata_skb(buff, tp->write_seq, TCPHDR_SYN);
4147 tcp_mstamp_refresh(tp);
4148 tp->retrans_stamp = tcp_time_stamp_ts(tp);
4149 tcp_connect_queue_skb(sk, buff);
4150 tcp_ecn_send_syn(sk, buff);
4151 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
4152
4153 /* Send off SYN; include data in Fast Open. */
4154 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
4155 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
4156 if (err == -ECONNREFUSED)
4157 return err;
4158
4159 /* We change tp->snd_nxt after the tcp_transmit_skb() call
4160 * in order to make this packet get counted in tcpOutSegs.
4161 */
4162 WRITE_ONCE(tp->snd_nxt, tp->write_seq);
4163 tp->pushed_seq = tp->write_seq;
4164 buff = tcp_send_head(sk);
4165 if (unlikely(buff)) {
4166 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq);
4167 tp->pushed_seq = TCP_SKB_CB(buff)->seq;
4168 }
4169 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
4170
4171 /* Timer for repeating the SYN until an answer. */
4172 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
4173 inet_csk(sk)->icsk_rto, false);
4174 return 0;
4175 }
4176 EXPORT_SYMBOL(tcp_connect);
4177
tcp_delack_max(const struct sock * sk)4178 u32 tcp_delack_max(const struct sock *sk)
4179 {
4180 u32 delack_from_rto_min = max(tcp_rto_min(sk), 2) - 1;
4181
4182 return min(READ_ONCE(inet_csk(sk)->icsk_delack_max), delack_from_rto_min);
4183 }
4184
4185 /* Send out a delayed ack, the caller does the policy checking
4186 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
4187 * for details.
4188 */
tcp_send_delayed_ack(struct sock * sk)4189 void tcp_send_delayed_ack(struct sock *sk)
4190 {
4191 struct inet_connection_sock *icsk = inet_csk(sk);
4192 int ato = icsk->icsk_ack.ato;
4193 unsigned long timeout;
4194
4195 if (ato > TCP_DELACK_MIN) {
4196 const struct tcp_sock *tp = tcp_sk(sk);
4197 int max_ato = HZ / 2;
4198
4199 if (inet_csk_in_pingpong_mode(sk) ||
4200 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
4201 max_ato = TCP_DELACK_MAX;
4202
4203 /* Slow path, intersegment interval is "high". */
4204
4205 /* If some rtt estimate is known, use it to bound delayed ack.
4206 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
4207 * directly.
4208 */
4209 if (tp->srtt_us) {
4210 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
4211 TCP_DELACK_MIN);
4212
4213 if (rtt < max_ato)
4214 max_ato = rtt;
4215 }
4216
4217 ato = min(ato, max_ato);
4218 }
4219
4220 ato = min_t(u32, ato, tcp_delack_max(sk));
4221
4222 /* Stay within the limit we were given */
4223 timeout = jiffies + ato;
4224
4225 /* Use new timeout only if there wasn't a older one earlier. */
4226 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
4227 /* If delack timer is about to expire, send ACK now. */
4228 if (time_before_eq(icsk_delack_timeout(icsk), jiffies + (ato >> 2))) {
4229 tcp_send_ack(sk);
4230 return;
4231 }
4232
4233 if (!time_before(timeout, icsk_delack_timeout(icsk)))
4234 timeout = icsk_delack_timeout(icsk);
4235 }
4236 smp_store_release(&icsk->icsk_ack.pending,
4237 icsk->icsk_ack.pending | ICSK_ACK_SCHED | ICSK_ACK_TIMER);
4238 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
4239 }
4240
4241 /* This routine sends an ack and also updates the window. */
__tcp_send_ack(struct sock * sk,u32 rcv_nxt,u16 flags)4242 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt, u16 flags)
4243 {
4244 struct sk_buff *buff;
4245
4246 /* If we have been reset, we may not send again. */
4247 if (sk->sk_state == TCP_CLOSE)
4248 return;
4249
4250 /* We are not putting this on the write queue, so
4251 * tcp_transmit_skb() will set the ownership to this
4252 * sock.
4253 */
4254 buff = alloc_skb(MAX_TCP_HEADER,
4255 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4256 if (unlikely(!buff)) {
4257 struct inet_connection_sock *icsk = inet_csk(sk);
4258 unsigned long delay;
4259
4260 delay = TCP_DELACK_MAX << icsk->icsk_ack.retry;
4261 if (delay < tcp_rto_max(sk))
4262 icsk->icsk_ack.retry++;
4263 inet_csk_schedule_ack(sk);
4264 icsk->icsk_ack.ato = TCP_ATO_MIN;
4265 tcp_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, false);
4266 return;
4267 }
4268
4269 /* Reserve space for headers and prepare control bits. */
4270 skb_reserve(buff, MAX_TCP_HEADER);
4271 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK | flags);
4272
4273 /* We do not want pure acks influencing TCP Small Queues or fq/pacing
4274 * too much.
4275 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
4276 */
4277 skb_set_tcp_pure_ack(buff);
4278
4279 /* Send it off, this clears delayed acks for us. */
4280 __tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
4281 }
4282 EXPORT_SYMBOL_GPL(__tcp_send_ack);
4283
tcp_send_ack(struct sock * sk)4284 void tcp_send_ack(struct sock *sk)
4285 {
4286 __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt, 0);
4287 }
4288
4289 /* This routine sends a packet with an out of date sequence
4290 * number. It assumes the other end will try to ack it.
4291 *
4292 * Question: what should we make while urgent mode?
4293 * 4.4BSD forces sending single byte of data. We cannot send
4294 * out of window data, because we have SND.NXT==SND.MAX...
4295 *
4296 * Current solution: to send TWO zero-length segments in urgent mode:
4297 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
4298 * out-of-date with SND.UNA-1 to probe window.
4299 */
tcp_xmit_probe_skb(struct sock * sk,int urgent,int mib)4300 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
4301 {
4302 struct tcp_sock *tp = tcp_sk(sk);
4303 struct sk_buff *skb;
4304
4305 /* We don't queue it, tcp_transmit_skb() sets ownership. */
4306 skb = alloc_skb(MAX_TCP_HEADER,
4307 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4308 if (!skb)
4309 return -1;
4310
4311 /* Reserve space for headers and set control bits. */
4312 skb_reserve(skb, MAX_TCP_HEADER);
4313 /* Use a previous sequence. This should cause the other
4314 * end to send an ack. Don't queue or clone SKB, just
4315 * send it.
4316 */
4317 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
4318 NET_INC_STATS(sock_net(sk), mib);
4319 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
4320 }
4321
4322 /* Called from setsockopt( ... TCP_REPAIR ) */
tcp_send_window_probe(struct sock * sk)4323 void tcp_send_window_probe(struct sock *sk)
4324 {
4325 if (sk->sk_state == TCP_ESTABLISHED) {
4326 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
4327 tcp_mstamp_refresh(tcp_sk(sk));
4328 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
4329 }
4330 }
4331
4332 /* Initiate keepalive or window probe from timer. */
tcp_write_wakeup(struct sock * sk,int mib)4333 int tcp_write_wakeup(struct sock *sk, int mib)
4334 {
4335 struct tcp_sock *tp = tcp_sk(sk);
4336 struct sk_buff *skb;
4337
4338 if (sk->sk_state == TCP_CLOSE)
4339 return -1;
4340
4341 skb = tcp_send_head(sk);
4342 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
4343 int err;
4344 unsigned int mss = tcp_current_mss(sk);
4345 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
4346
4347 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
4348 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
4349
4350 /* We are probing the opening of a window
4351 * but the window size is != 0
4352 * must have been a result SWS avoidance ( sender )
4353 */
4354 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
4355 skb->len > mss) {
4356 seg_size = min(seg_size, mss);
4357 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4358 if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
4359 skb, seg_size, mss, GFP_ATOMIC))
4360 return -1;
4361 } else if (!tcp_skb_pcount(skb))
4362 tcp_set_skb_tso_segs(skb, mss);
4363
4364 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4365 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
4366 if (!err)
4367 tcp_event_new_data_sent(sk, skb);
4368 return err;
4369 } else {
4370 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
4371 tcp_xmit_probe_skb(sk, 1, mib);
4372 return tcp_xmit_probe_skb(sk, 0, mib);
4373 }
4374 }
4375
4376 /* A window probe timeout has occurred. If window is not closed send
4377 * a partial packet else a zero probe.
4378 */
tcp_send_probe0(struct sock * sk)4379 void tcp_send_probe0(struct sock *sk)
4380 {
4381 struct inet_connection_sock *icsk = inet_csk(sk);
4382 struct tcp_sock *tp = tcp_sk(sk);
4383 struct net *net = sock_net(sk);
4384 unsigned long timeout;
4385 int err;
4386
4387 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
4388
4389 if (tp->packets_out || tcp_write_queue_empty(sk)) {
4390 /* Cancel probe timer, if it is not required. */
4391 icsk->icsk_probes_out = 0;
4392 icsk->icsk_backoff = 0;
4393 icsk->icsk_probes_tstamp = 0;
4394 return;
4395 }
4396
4397 icsk->icsk_probes_out++;
4398 if (err <= 0) {
4399 if (icsk->icsk_backoff < READ_ONCE(net->ipv4.sysctl_tcp_retries2))
4400 icsk->icsk_backoff++;
4401 timeout = tcp_probe0_when(sk, tcp_rto_max(sk));
4402 } else {
4403 /* If packet was not sent due to local congestion,
4404 * Let senders fight for local resources conservatively.
4405 */
4406 timeout = TCP_RESOURCE_PROBE_INTERVAL;
4407 }
4408
4409 timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout);
4410 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, true);
4411 }
4412
tcp_rtx_synack(const struct sock * sk,struct request_sock * req)4413 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
4414 {
4415 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
4416 struct flowi fl;
4417 int res;
4418
4419 /* Paired with WRITE_ONCE() in sock_setsockopt() */
4420 if (READ_ONCE(sk->sk_txrehash) == SOCK_TXREHASH_ENABLED)
4421 WRITE_ONCE(tcp_rsk(req)->txhash, net_tx_rndhash());
4422 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL,
4423 NULL);
4424 if (!res) {
4425 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
4426 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
4427 if (unlikely(tcp_passive_fastopen(sk))) {
4428 /* sk has const attribute because listeners are lockless.
4429 * However in this case, we are dealing with a passive fastopen
4430 * socket thus we can change total_retrans value.
4431 */
4432 tcp_sk_rw(sk)->total_retrans++;
4433 }
4434 trace_tcp_retransmit_synack(sk, req);
4435 }
4436 return res;
4437 }
4438 EXPORT_IPV6_MOD(tcp_rtx_synack);
4439